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1. Introduction

A stochastic process{ : ≥ 0} on R is called an additive process if it has
independent increments and if it is continuous in probability with cadlag paths and

0 = 0. It is called a Lévy process if, in addition, it has stationary increments. Path
behaviors and distributional properties of Lévy processes are deeply analyzed (see [1],
[19]). Concerning additive processes, the Lévy–Itô decomposition of paths is known in
complete generality. But, in order to get further results, we have to restrict our study
to some special classes. Examples are the class of selfsimilar additive processes in-
troduced in [18] and the class of semi-selfsimilar additiveprocesses in [12]. Another
interesting class is that of semi-Lévy processes, that is,additive processes with semi-
stationary (sometimes called periodically stationary) increments. In order to analyze
distributional properties of processes of these classes, it is important to treat stochastic
integrals (of nonrandom integrands) based on additive processes. Keeping in mind this
application, we study in this paper stochastic integrals based on additive processes and
their distributions.

Our study in this paper does not depend on the cadlag property. We define addi-
tive processes in law, Lévy processes in law, and semi-Lévy processes in law, drop-
ping the cadlag requirement in their definitions but retaining the requirement of con-
tinuity in probability. We will call an additive process in law { : ≥ 0} natural
if the location parameterγ in the generating triplet ( ν γ ) of the distribution of

is locally of bounded variation in . An additive process is natural if and only if
it is, at the same time, a semimartingale. This fact is essentially given in Jacod and
Shiryaev [5]. Thus we can consider stochastic integrals fornatural additive processes
as a special case of semimartingale integrals of Kunita and Watanabe [9]. But we
will not rely on the theory of semimartingales, but directlydefine stochastic integrals
(of nonrandom functions) and seek the representation of thecharacteristic functions of
their distributions. This is in the same line as the study of independently scattered ran-
dom measures by Urbanik and Woyczynski [23] and Rajput and Rosinski [15]. We
show that a natural additive process in law onR induces anR -valued independently
scattered random measure, and vice versa. Thus our random measures areR -valued,
not R-valued as in [23] and [15]. Further, we are interested in construction of random



212 K. SATO

measures on the same probability space as the original additive process in law is de-
fined.

For a natural additive process in law{ : ≥ 0} on R we use a system of
infinitely divisible distributions{ρ : ≥ 0} and a measureσ on [0 ∞) such that

〈 〉 = exp
∫

0
log ρ̂ ( )σ( ) for ∈ R

where ρ̂ ( ) is the characteristic function ofρ . We will call ({ρ } σ) a factoring of
{ }. In fact, existence of a factoring is a necessary and sufficient condition for natu-
ralness. There is a canonical one among such pairs ({ρ } σ), which we call thecanon-
ical factoring of { }. For a class of × matrix-valued functions ( ) including
all locally bounded measurable functions, stochastic integrals

∫
( ) for bounded

Borel sets are defined and shown to satisfy

exp

[ 〈 ∫
( )

〉]
= exp

∫
log ρ̂ ( ( )′ )σ( ) for ∈ R

where ( )′ is the transpose of ( ). Based on this formula we will study properties
of stochastic integrals. Then we will treat the problem of the existence of stochastic
integrals

∫∞

0
− , where is a × matrix all of whose eigenvalues have pos-

itive real parts and{ : ≥ 0} is a semi-Lévy process in law. It will be shown that∫∞

0
− exists if and only if{ } has finite log-moment.

In a forthcoming paper joint with M. Maejima, these results will be applied to
a study of the relationship of semi-Lévy processes, semi-selfsimilar additive processes,
and semi-stationary Ornstein–Uhlenbeck type processes. This study will extend the the-
ory of the representation of selfdecomposable distributions by Wolfe [24], Jurek and
Vervaat [7], Sato and Yamazato [20], [21], Sato [18], and Jeanblanc, Pitman, and
Yor [6] to the case of semi-selfdecomposable and ( )-decomposable distributions.

Natural additive processes in law and factorings are discussed in Section 2. Their
relations to independently scattered random measures are studied in Section 3. Then
stochastic integrals are treated in Section 4. Finally Section 5 contains the study of∫∞

0
− for semi-Lévy processes in law.

Our notation and definitions follow [19]. Besides, we use thefollowing: =
(R ) is the class of infinitely divisible distributions onR ; B(R ) is the class of

Borel sets inR ; B0(R ) is the class of ∈ B(R ) satisfying inf ∈ | | > 0; B for
an interval is the class of Borel sets in ;B0

[0 ∞) is the class of bounded Borel sets
in [0 ∞); p-lim stands for limit in probability;S+ is the class of × symmetric
nonnegative-definite matrices;M × is the class of × real matrices;M = M ×

is the class of × real matrices; tr is the trace of ∈ S+; M+ is the class of
∈ M all of whose eigenvalues have positive (> 0) real parts; is the ×

identity matrix. Recall that an element of the Euclidean space R is understood to
be a column vector with components. For ∈ M × , ′ denotes the transpose
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of . The norm of ∈ M × is ‖ ‖ = sup| |≤1 | |. For > 0 and ∈ M ,
=
∑∞

=0( !)−1(log ) ∈ M . The inner products inR and R are denoted by
the same symbol〈 〉. Thus we have〈 〉 = 〈 ′ 〉 for ∈ R , ∈ R , and
∈ M × . A set or a function is called measurable if it is Borel measurable. The

characteristic function of a distributionµ is denoted bŷµ( ). Denote byL( ) the dis-

tribution of a random element . WhenL( ) = L( ), we write
d
= . For two

stochastic processes{ } and { }, { } d
= { } means that they have an identical

distribution as infinite-dimensional random elements, that is, have an identical system

of finite-dimensional distributions, while
d
= means that and have an iden-

tical distribution for a fixed . If the characteristic function µ̂( ) of a distributionµ on
R vanishes nowhere, then there is a unique continuous function ( ) on R such that

(0) = 0 andµ̂( ) = ( ). This ( ) is called the distinguished logarithm ofµ̂( ) and
written as ( ) = loĝµ( ) ([19] p. 33). The wordincreaseis used in the wide sense
allowing flatness.

2. Natural additive processes in law and factorings

When { : ≥ 0} is an additive process in law onR , we write µ = L( ) ∈
. Let ( ) be a real-valued bounded measurable function satisfying

(2.1) ( ) =

{
1 + (| |) as | | → 0

(| |−1) as | | → ∞

Then we get the Lévy–Khintchine representation ofµ of the form

(2.2) µ̂ ( ) = exp

[
−1

2
〈 〉 +

∫

R

( )ν ( ) + 〈 γ 〉
]

with

(2.3) ( ) = 〈 〉 − 1− 〈 〉 ( )

Here ∈ S+, ν is a measure onR satisfying ν ({0}) = 0 and
∫

(1∧ | |2)ν ( ) <
∞, and γ ∈ R . They are called Gaussian covariance, Lévy measure, and location
parameter, respectively. The triplet of ,ν , and γ is denoted by ( ν γ ) . Here

andν do not depend on the choice of ( ). See [19] Theorem 8.1 and Remark 8.4.
Standard choice of ( ) is 1{| |≤1}( ) or (1 +| |2)−1. The system{( ν γ ) : ≥ 0}
satisfies the following:
(1) 0 = 0, ν0 = 0, γ0 = 0,
(2) − ∈ S+ and ν − ν ≥ 0 for ≤ ,
(3) → , ν ( )→ ν ( ) for all ∈ B0(R ), andγ → γ as → .
Conversely, any system satisfying (1), (2), and (3) induces, uniquely in law, an addi-
tive process in law (Theorem 9.8 of [19]) and it has a modification which is an addi-
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tive process (Theorem 11.5 of [19]).

DEFINITION. An additive process in law{ } on R is said to benatural if the
location parameterγ is locally of bounded variation in (that is, of bounded variation
on any finite subinterval of [0∞)).

This definition does not depend on the choice of ( ) by the following assertion.

Proposition 2.1. Let 1( ) and 2( ) be real-valued bounded measurable func-
tions satisfying(2.1). Let { } be an additive process in law onR with triplets
( ν γ1) 1 and ( ν γ2) 2. Thenγ1 is locally of bounded variation if and only if
γ2 is locally of bounded variation.

Proof. We haveγ2 = γ1 + ( ) with ( ) =
∫

R
( 2( ) − 1( ))ν ( ). We can

check that ( ) is locally of bounded variation.

For example, any Lévy process in law{ } is a natural additive process in law,
sinceγ = γ1.

Proposition 2.2. If { } is an additive process in law onR , then there is an
R -valued continuous function( ) on [0 ∞) such that{ − ( )} is a natural addi-
tive process in law.

Proof. Use an arbitrary ( ) satisfying (2.1) and choose ( ) =γ .

Proposition 2.3. Let { } be an additive process in law onR . Suppose that∫
| |≤1 | |ν ( ) < ∞ for all and let γ♯ be the drift ofµ . Then{ } is natural if

and only if γ♯ is locally of bounded variation.

See [19] p. 39 for the definition of the drift.

Proof. Note thatγ♯ = γ −
∫
| |≤1 ν ( ) and that

∫
| |≤1 ν ( ) is locally of

bounded variation in .

For example, any additive process{ } on R with increasing paths is a natural
additive process.

Henceforth we use

(2.4) ( ) = (1 +| |2)−1

unless mentioned otherwise. Thus the triplet (ν γ) of an infinitely divisible distri-
bution stands for ( ν γ) with ( ) of (2.4). The following fact is basic.
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Lemma 2.4. Let µ and µ , = 1, 2 . . . , be in (R ) such thatµ → µ as
→∞. Let ( ν γ) and ( ν γ ) be the triplets ofµ and µ , respectively. Then

tr +
∫

R

(1∧ | |2)ν ( )→ tr +
∫

R

(1∧ | |2)ν( )(2.5)

and

γ → γ(2.6)

Proof. Noting that ( ) of (2.4) is bounded and continuous, useTheorem 8.7
of [19].

Lemma 2.5. Let { } be an additive process in law onR with triplet ( ν γ )
of µ = L( ). Then, for every ∈ B0

[0 ∞), there are a unique ∈ S+ and a unique
measureν on R such that andν ( ) for any ∈ B0(R ) are countably ad-
ditive in ∈ B0

[0 ∞) and that [0 ] = and ν[0 ] = ν . The components ( ),
, = 1 . . . , of are absolutely continuous with respect to the measuretr on

[0 0] for each 0. If, moreover, { } is natural, then there is a uniqueγ such that
γ is countably additive in ∈ B0

[0 ∞) and γ[0 ] = γ .

Proof. Since tr is increasing and continuous in , it induces an atomless mea-
sure σ1 on [0 ∞). Let ( ) and γ ( ) be the components of andγ . Since
| ( ) − ( )| ≤ tr − tr for ≤ , ( ) is locally of bounded variation
and absolutely continuous with respect toσ1. Thus ( ) induces a signed measure

( ). We have
∑

( ) ≥ 0, since it is true when is an interval. Thus
= ( ( )) ∈ S+. If { } is natural, then the assertion onγ is proved similarly.

Concerningν , there is a unique measurẽν on [0 ∞)× R such that

(2.7) ν̃([0 ] × ) = ν ( ) for ∈ B(R ) and ≥ 0

as in [19] Remark 9.9. Then it suffices to letν ( ) = ν̃( × ).

DEFINITION. Let { } be an additive process in law onR . A pair ({ρ : ≥
0} σ) is called afactoring of { } if the following conditions are satisfied:
(1) σ is a locally finite measure on [0∞), that is, a measure on [0∞) such that
σ([0 ]) <∞ for all ∈ [0 ∞),
(2) σ is continuous (that is, atomless),
(3) ρ ∈ (R ) for all ∈ [0 ∞),
(4) logρ̂ ( ) is measurable in for each∈ R ,
(5)

∫
0 | log ρ̂ ( )|σ( ) <∞ for all ∈ [0 ∞) and ∈ R ,



216 K. SATO

(6) we have

(2.8) µ̂ ( ) = exp
∫

0
log ρ̂ ( )σ( ) for all ∈ [0 ∞) and ∈ R

For example, any Lévy process in law{ } on R has a factoring given byρ =
L( 1) for all and byσ = Lebesgue. The following theorem is a main result of this
section.

Theorem 2.6. Let { : ≥ 0} be an additive process in law onR . Then, { }
is natural if and only if{ } has a factoring.

Denote by ( ρ νρ γρ) the triplet of ρ .

Lemma 2.7. If ({ρ : ≥ 0} σ) is a factoring of an additive process in law
{ } on R , then
(7) ρ, γρ, and νρ( ) for any ∈ B0(R ) are measurable in ,
(8) we have

(2.9)
∫

0

(
tr( ρ) +

∫

R

(1∧ | |2)νρ( ) + |γρ|
)
σ( ) <∞ for all ∈ [0 ∞)

(9) we have

(2.10) =
∫

0

ρσ( ) ν ( ) =
∫

0
νρ( )σ( ) γ =

∫

0
γρσ( )

for ∈ B0(R ),
(10)

∫
0 log ρ̂ ( ) σ( ) = log µ̂ ( ), the distinguished logarithm of̂µ ( ).

Proof. Since, for each , we can expressρ, γρ, and νρ( ) by using loĝρ ( )
as in Section 8 of [19], assertion (7) is proved. To see (8), weuse

|µ̂ ( )| = exp
∫

0
Re(logρ̂ ( ))σ( )

Assertions (9) and (10) follow from (8). Details are omitted.

The “if” part of Theorem 2.6 is proved by this lemma. Indeed, if { } has a fac-
toring ({ρ } σ), thenγ is locally of bounded variation by the expression in (2.10) and
hence{ } is natural. The “only if” part of the theorem will be proved inthe form
of Proposition 2.8 after we introduce the notions of canonical measures and canonical
factorings.
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DEFINITION. Let { } be a natural additive process in law onR and let |γ| be
the variation function ofγ . Use the notation in Lemma 2.5. Denote by|γ| the mea-
sure such that|γ|[0 ] = |γ| . Then a measureσ on [0 ∞) defined by

(2.11) σ( ) = tr +
∫

R

(1∧ | |2) ν ( ) + |γ|

is called thecanonical measureof { }. A pair ({ρ } σ) is called acanonical factor-
ing of { } if it is a factoring of { } and if σ is the canonical measure of{ }.

Proposition 2.8. Let { } be a natural additive process in law onR . Then
there exists a canonical factoring of{ }. It is unique in the sense that, if ({ρ1} σ)
and ({ρ2} σ) are canonical factorings of{ }, then ρ1 = ρ2 for σ-a. e. . If ({ρ } σ)
is a canonical factoring of{ }, then

(2.12) esssup
∈[0 ∞)

sup
| |≤

| log ρ̂ ( )| <∞

for any ∈ (0 ∞) and

(2.13) esssup
∈[0 ∞)

(
tr( ρ) +

∫

R

(1∧ | |2)νρ( ) + |γρ|
)
<∞

where the essential supremums are with respect toσ.

Proof. Let σ1, σ2, and σ3 be the measures defined byσ1( ) = tr , σ2( ) =∫
R

(1∧ | |2)ν ( ), andσ3( ) = |γ| . Let ( ) be the Radon–Nikodým derivative of

σ with respect toσ for = 1, 2, 3. Let ♯ ( ) and γ♯( ) be the Radon–Nikodým
derivatives of ( ) andγ ( ) with respect toσ1 and σ3, respectively. For the mea-
sure ν̃ in the proof of Lemma 2.5, there are a measureσ♯ on [0 ∞) and measuresν♯

on R such thatσ♯ is continuous and locally finite,ν♯( ) is measurable in ≥ 0 for
each ∈ B0(R ),

∫
R

(1∧ | |2)ν♯( ) = 1, ν♯({0}) = 0, and

ν̃( × ) =
∫

σ♯( )
∫
ν♯( ) for ∈ B[0 ∞) ∈ B(R )

The argument is similar to the construction of conditional distributions. Letting
νρ( ) = ν♯( ) 2( ), ρ = ( ρ ( )) with ρ ( ) = ♯ ( ) 1( ), andγρ = (γρ( )) with

γρ( ) = γ♯( ) 3( ), we can prove that ({ρ } σ) is a factoring of{ } and that (2.10)
is satisfied. Properties (2.12) and (2.13) are proved easily. The uniqueness of a canon-
ical factoring is proved by (9) and (10) in Lemma 2.7.

Proposition 2.9. Let { } be an additive process in law onR . Then it is nat-
ural if and only if µ̂ ( ) is locally of bounded variation in for each∈ R .
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Proof. In order to see the “only if” part, notice that{ } has a factoring
by Theorem 2.6 and use (2.8). Let us prove the “if” part. Define= − γ . Then
{ } is a natural additive process in law and hence〈 〉 is locally of bounded vari-
ation in . We have 〈 〉 = − 〈 γ 〉µ̂ ( ). Since µ̂ ( ) is continuous, non-vanishing,
and locally of bounded variation in for each , it follows that− 〈 γ 〉 is locally of
bounded variation in for each . Hence〈 γ 〉 is locally of bounded variation in
for each . Hence, so isγ .

Proposition 2.10. Let { } be an additive process onR . Then{ } is natural
if and only if { } is a semimartingale.

Proof. This is a consequence of Proposition 2.9 combined with Jacod and
Shiryaev [5], Chapter II, Theorem 4.14.

We add some facts on factorings.

Proposition 2.11. If {ρ : ≥ 0} and σ satisfy conditions(1), (2), (3), of the
definition of a factoring and(7), (8) of Lemma 2.7,then ({ρ } σ) is a factoring of
some additive process in law{ : ≥ 0} on R .

Proof. Define ,ν , and γ by (2.10). Then ( ν γ ) is the triplet of some
µ ∈ and satisfies conditions (1), (2), and (3) in the first paragraph of this section.
Thus there is an additive process in law{ } such thatL( ) = µ . Conditions (4)
and (5) of the definition of a factoring follow from (7) and (8)and we can see that
({ρ } σ) is a factoring of{ }.

Proposition 2.12 (Time change). Let { : ≥ 0} be a natural additive process
in law on R . Given an increasing continuous functionτ ( ) from [0 ∞) into [0 ∞)
with τ (0) = 0, define = τ ( ). Then{ : ≥ 0} is a natural additive process in law
on R . If ({ρ } σ) is a factoring of{ }, then ({ρ̃ } σ̃) defined by

(2.14) ρ̃ = ρτ ( ) and σ̃([0 ]) = σ([0 τ ( )])

gives a factoring of{ }. If ({ρ } σ) is canonical, then ({ρ̃ } σ̃) is canonical.

Proof is elementary and omitted.
Let us study conditions for naturalness in some classes of additive processes. In

analogy to definitions in [18] and [19] we give the following definition.
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DEFINITION. Let ∈ M+. An R -valued stochastic process{ : ≥ 0} is called
-selfsimilar if, for every > 1 (hence for every > 0),

(2.15) { : ≥ 0} d
= { : ≥ 0}

It is called -semi-selfsimilarif (2.15) holds for some > 1. In this case is called
an epoch.

A basic property we need of a general∈ M+ is the following: there are positive
constants 1 . . . 4 such that

(2.16) 4
− 2 | | ≤ | − | ≤ 3

− 1 | | for ≥ 0 and ∈ R

(see [22] p. 139 or [17]). We have1 ≤ 2 and 4 ≤ 1 ≤ 3 automatically. It follows
that

(2.17) −1
3

1 | | ≤ | | ≤ −1
4

2 | | for ≥ 0 and ∈ R

Theorem 2.13. Let ∈ M+. Let { } be a -semi-selfsimilar additive process
in law on R with epoch . Then{ } is natural if and only ifγ is of bounded vari-
ation on [1 ].

Proof. The “only if” part is evident. Let us prove the “if” part. Assume thatγ
is of bounded variation on [1 ]. It follows from (2.15) that

(2.18) γ = γ +
∫

R

( )ν ( )

with

( ) =
1

1 + | |2 −
1

1 + | |2 =
| |2 − | |2

(1 + | |2)(1 + | |2)

Denote by|γ|[ 1 2] the variation ofγ on [ 1 2]. Then

|γ|[ +1 +2] ≤ ‖ ‖ |γ|[ +1] +
∫
| | | ( )|(ν +1 − ν )( )

Finiteness of the last integral follows from (2.17). Henceγ is locally of bounded vari-
ation on [1∞). As → ∞, ‖ − ‖1/ tends to max1≤ ≤ | − |, where 1 . . .

are the eigenvalues of ([8], p. 153). Since∈ M+, this limit is less than 1. Thus
we can choose an integer ≥ 1 such that‖ − ‖ < 1. Let = and use as an
epoch of{ }. We get (2.18) with replaced by . It follows that

|γ|[ − −1 − ] ≤ ‖ − ‖ |γ|[ − − +1] +
∫
| | | ( )|(ν − − ν − −1)( )



220 K. SATO

Hence we obtain

(1− ‖ − ‖)|γ|[0 1] ≤ ‖ − ‖ |γ|[1 ] +
∫
| | | ( )|ν1( )

Now we see that|γ|[0 1] <∞.

Theorem 2.14. Let ∈ M+. Let { } be a -selfsimilar additive process in
law on R . Then{ } is natural.

Proof. It is enough to show thatγ is of bounded variation on [1 2], since we
can use the preceding theorem with = 2. Since we haveγ = γ1+

∫
( )ν1( ),

we can prove thatγ has continuous derivative in > 0. It follows that γ is of
bounded variation on [1 2].

REMARK. When = with ∈ (0 ∞), the -semi-selfsimilarity is the -semi-
selfsimilarity studied in Maejima and Sato [12]. Theorems 7and 10 of [12] show that,
given a semi-selfdecomposable (see [19] Definition 15.1) distribution µ on R with
span , there is a wide variety of choice ofL( ) for 1 < < in construct-
ing a -semi-selfsimilar additive process in law{ : ≥ 0} with epoch such that
L( 1) = µ. Thus we can find a non-natural -semi-selfsimilar additive process in law
{ : ≥ 0} with epoch satisfyingL( 1) = µ.

3. Independently scattered random measures

Following Urbanik and Woyczynski [23] and Rajput and Rosinski [15] and ex-
tending the notion from real-valued toR -valued, we give the following definition.

DEFINITION. A family of R -valued random variables{ ( ) : ∈ B0
[0 ∞)} is

called anR -valued independently scattered random measure(i. s. r. m.) if the follow-
ing conditions are satisfied:
(1) (countably additive) for any sequence1, 2 . . . of disjoint sets inB0

[0 ∞) with⋃∞
=1 ∈ B0

[0 ∞),
∑∞

=1 ( ) converges a. s. and equals (
⋃∞

=1 ) a. s.,
(2) (independent increments) for any finite sequence1 . . . of disjoint sets in
B0

[0 ∞), ( 1) . . . ( ) are independent,
(3) (atomless) ({ }) = 0 a. s. for every one-point set{ }.

Note that, if 1, 2 . . . is an increasing sequence inB0
[0 ∞) with =

⋃∞
=1

∈ B0
[0 ∞), then ( )→ ( ) a. s. This follows from property (1). Note also that

property (1) implies that (∅) = 0 a. s., where 0 is the origin ofR .

Lemma 3.1. If { ( )} is an R -valued i. s. r. m., then L( ( )) ∈ for any
∈ B0

[0 ∞).
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Proof. Let ∈ B0
[0 ∞). Define = ( ∩ [0 ]). Then it follows from the

defining properties of i. s. r. m. that{ : ≥ 0} is an additive process in law. Hence
L( ) ∈ . ThusL( ( )) ∈ , since ( ) = for large .

Here is our main result in this section.

Theorem 3.2. (i) Let { ( ) : ∈ B0
[0 ∞)} be an R -valued i. s. r. m. Define

{ : ≥ 0} by

(3.1) = ([0 ])

for ∈ [0 ∞). Then{ } is a natural additive process in law.
(ii) Let { : ≥ 0} be a natural additive process in law onR . Then there is an
R -valued i. s. r. m.{ ( ) : ∈ B0

[0 ∞)} such that(3.1) holds. This is unique in the
sense that, if { 1( )} and { 2( )} both satisfy this condition, then 1( ) = 2( )
a. s. for every ∈ B0

[0 ∞). Denoteµ = L( ( )). Then , ν , and γ in the triplet
of µ coincides with those ofLemma 2.5. For any factoring ({ρ } σ) of { } and
any ∈ B0

[0 ∞),

(3.2) logµ̂ ( ) =
∫

log ρ̂ ( )σ( )

Proof. (i) Using Lemma 3.1, denote the location parameter ofL( ( )) by γ .
Then γ is countably additive in ∈ B0

[0 ∞), which follows from countable additivity
of ( ) and (2.6) of Lemma 2.4. Henceγ = γ[0 ] is a function locally of bounded
variation by Section 29 of [4].
(ii) Let { } be a natural additive process in law onR with a factoring ({ρ } σ).
We will define ( ) for ∈ B0

[0 ∞) in several steps.
STEP 1. If is an empty set or a one-point set, then we define ( ) = 0. If

is a finite interval in [0∞) with left end and right end , that is, = ( ), [ ],
( ], or [ ), then we define ( ) = − . If =

⋃
=1 with disjoint finite in-

tervals 1 . . . in [0 ∞), then we define ( ) =
∑

=1 ( ). This definition does
not depend on the expression of . We see from (2.8) that (3.2) is true for this . Fi-
nite additivity and independent increment property withinthe class of sets of this type
are obvious.

STEP 2. Let be a bounded open set in [0∞). Then is expressed uniquely
(up to the order) as =

⋃
, where 1, 2 . . . (finite or infinite sequence) are dis-

joint open intervals (possibly of the form [0 )). If it is a finite sequence, ( ) is
defined in Step 1. So we assume that it is an infinite sequence. Let = ( ) and
let =

∑
=1( − ). Then, for < ,

〈 − 〉 = exp
∫S

= +1

log ρ̂ ( )σ( )→ 1 as →∞
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In general, a sequence{ } of R -valued random variables converges in probability if
〈 − 〉 → 1 as , →∞ with < , because, for anyε > 0,

1
ε

∫ ε

−ε

(
1−Re (( ) −( ) )

)
≥

[
|( ) − ( ) | ≥ ε

2

]

where the subscript denotes the th component ([19] p. 430). This fact is often use-
ful. Since the summands are independent, convergence in probability implies conver-
gence a. s. Thus we define ( ) =

∑∞
=1 ( ) a. s. We can prove that this definition

does not depend on the order of summation.
STEP 3. Let be a compact set and ⊂ [0 ∞). Choose 0 such that ⊂

[0 0) and let = [0 0) \ . Then is open in [0∞). Define ( ) by ( ) =
([0 0)) − ( ). If is an interval, then this definition is consistent withthat

of Step 1. Let = sup∈ . Express =
⋃

, where 1, 2 . . . is a se-
quence of disjoint open intervals and1 = ( 0). Let =

⋃
=1 . Then ( ) =

lim →∞ ([0 0) \ ) a. s. We have an expression [00) \ =
⋃

=1[ ], where
[ 1 1] . . . [ ] are disjoint closed intervals (possibly one-point sets). It fol-
lows that

(3.3) ( ) = lim
→∞

∑

=1

( − ) a. s.

Obviously (3.2) is true for = . Using the expression (3.3), wecan prove that, if

1 and 2 are compact and 1 ⊃ 2, then

(3.4) 〈 ( 1)− ( 2)〉 = exp
∫

1\ 2

log ρ̂ ( )σ( )

We can also show that, if 1 . . . are disjoint compact sets, then (1) . . .
( ) are independent and

(⋃
=1

)
=
∑

=1 ( ) a. s.
STEP 4. Let ∈ B0

[0 ∞). By the regularity of the measureσ (see Section 52
of [4]), we can find an increasing sequence of compact sets1, 2 . . . such that
⊂ and lim →∞ σ( ) = σ( ). As , →∞ with < ,

〈 ( )− ( )〉 = exp
∫

\

log ρ̂ ( )σ( )→ 1

by (3.4). Hence ( ) is convergent in probability as→ ∞. We define ( ) =
p-lim →∞ ( ). We can show that this definition does not depend on the choice of
the sequence .

STEP 5. It follows from the definition in Step 4 that has properties(1)
and (2) of the definition of i. s. r. m. and also (3.2).

STEP 6. Proof of uniqueness of . Let 1 and 2 be R -valued i. s. r. m. satis-
fying (3.1). Fix 0 > 0. The classS of all ∈ B[0 0] satisfying 1( ) = 2( ) is a
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λ-system and contains∅ and all intervals of the form ( ] in [00]. HenceS = B[0 0]

by Dynkin’s π-λ theorem in [2] p. 37. Hence 1( ) = 2( ) a. s. for every . Let
( ν γ ) be its triplet. Then ,γ , and ν ( ) for each ∈ B0(R ) are count-
ably additive in ∈ B0

[0 ∞), which follows from countable additivity of ( ), as
in the proof of Theorem 9.8 of [19]. Hence we see that they coincide with those of
Lemma 2.5.

REMARK. Like in the proof of Proposition 2.1 (b) of [15], one can construct an
R -valued i. s. r. m. on the product measurable space (R )B

0
[0 ∞) , using Kolmogorov’s

extension theorem. Namely, letω = (ω ) ∈B0
[0 ∞)

be a general element of this

space. Start withµ ∈ (R ) with triplet ( ν γ ) in Lemma 2.5 and define
((ω 1 . . . ω ) ∈ ), ∈ B((R ) ), as the product ofµ 1 . . . µ if 1 . . .

are disjoint. If 1 . . . are not disjoint, then express1 . . . as unions of some
of disjoint sets 1 . . . and define ((ω 1 . . . ω ) ∈ ) in the form derived from
the product ofµ 1 . . . µ and check the consistency. However, we cannot in this
way construct{ ( )} in the same probability space that the given{ } is defined.
(Added to the final version: Pedersen [13] observes that the construction of an i. s. r. m.
from a given natural additive process can be done on the basisof the Lévy–Itô decom-
position of the additive process.)

The case where the process{ } in Theorem 3.2 is a Lévy process in law is im-

portant. An R -valued i. s. r. m.{ ( )} is called homogeneousif ( )
d
= ( + )

a. s. for any ∈ B0
[0 ∞) and ≥ 0.

Proposition 3.3. Let { ( )} be anR -valued i. s. r. m. Then the following state-
ments are equivalent:
(1) { ( )} is homogeneous,

(2) (( ])
d
= (( + + ]) a. s. if 0≤ < <∞ and ≥ 0,

(3) the process{ : ≥ 0} defined by = ([0 ]) is a Lévy process in law.

Proof is easy and omitted.
Let { ( )} be anR -valued i. s. r. m. Then the canonical measure of the natu-

ral additive process in law{ } defined by (3.1) is called the canonical measure of
{ ( )}.

Proposition 3.4. Let { ( )} be anR -valued i. s. r. m. andσ its canonical mea-
sure. Then, ∈ B0

[0 ∞) satisfiesσ( ) = 0 if and only if

(3.5) ( ) = 0 a. s. for all Borel sets satisfying ⊂ .
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Proof. If σ( ) = 0, then, for any Borel set ⊂ , σ( ) = 0 and hence ( ) =
0 a. s. by formula (3.2). Conversely, if (3.5) holds, then = 0,ν = 0, andγ = 0
for all Borel sets ⊂ and we haveσ( ) = 0 by formula (2.11).

Proposition 3.5. Let { ( )} be anR -valued i. s. r. m. If({ρ0} σ0) is a factor-
ing of the natural additive process in law{ } defined by(3.1), then the canonical
measureσ is absolutely continuous with respect toσ0.

Proof. By Theorem 3.2, (3.2) is true both for ({ρ } σ) and for ({ρ0} σ0). Let
∈ B0

[0 ∞). If σ0( ) = 0, thenσ0( ) = 0 for all ⊂ and thus ( ) = 0 a. s. for
all ⊂ , which impliesσ( ) = 0 by Proposition 3.4.

The following useful result is by Urbanik and Woyczynski [23] when = 1.

Proposition 3.6. For = 1, 2 . . ., let { ( )} be R -valued i. s. r. m. Suppose
that for each ∈ B0

[0 ∞) there is anR -valued random variable ( ) such that

(3.6) p-lim
→∞

( ) = ( )

Then, { ( )} is an i. s. r. m.

Proof. It is clear that ( ) is finitely additive and satisfies (2) and (3) of the
definition of i. s. r. m. SinceL( ( )) ∈ and L( ( )) → L( ( )), we have
L( ( )) ∈ for each . Let ( ν γ ) and ( ν γ ) be the triplets of
L( ( )) andL( ( )), respectively. Defineτ = tr( )+

∫
R

(1∧| |2)ν ( ) and τ =
tr( ) +

∫
R

(1∧ | |2)ν ( ). Then, for each ,τ → τ and γ → γ by Lemma 2.4.
Hence by the Nikodým Theorem (see Dunford and Schwartz [3] p. 160) τ and γ
are countably additive in . We claim that, if1 2 . . . is a decreasing sequence of
bounded Borel sets with

⋂∞
=1 = ∅, then p-lim→∞ ( ) = 0. Indeed, we have⋃∞

= = for = \ +1 and hence
∑∞

= γ = γ . This shows thatγ → 0.
Similarly, τ → 0. Since | ( )| ≤ const (1∧ | |2) for any fixed , it follows that

〈 ( )〉 → 1 as → ∞. That is, p-lim ( ) = 0. It follows that is countably
additive.

4. Stochastic integrals based on natural additive processes in law

In this section let{ : ≥ 0} be a natural additive process in law onR and let
({ρ } σ) be its canonical factoring. By Theorem 3.2{ } induces a uniqueR -valued
independently scattered random measure{ ( ) : ∈ B0

[0 ∞)}. We will define and
study stochastic integrals ofM × -valued nonrandom functions based on this ran-
dom measure. As is remarked in Proposition 2.10, the process{ } is a semimartin-
gale. Thus stochastic integrals based on{ } are defined for some class of random
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integrands in 2-theory through random localization; see Kunita and Watanabe [9]
and Jacod and Shiryaev [5]. But we will define stochastic integrals of nonrandom
integrands directly through convergence in probability and give a representation of
the characteristic functions of the distributions of the integrals, as was done in [23]
and [15]. In the case of Lévy processes, this was already done by Lukacs [10]; see
also [16]. We prove some properties of the integrals including a Fubini type theorem.

An M × -valued function ( ) on [0∞) is called asimple functionif

(4.1) ( ) =
∑

=1

1 ( )

for some , where 1 . . . are disjoint Borel sets in [0∞) and 0 . . . ∈
M × . It is called astep functionif, in addition, 1 . . . are intervals or one-point
sets. The following definition of integrals and Proposition4.1 follow [23] of the case

= 1.

DEFINITION. Let ( ) be anM × -valued simple function on [0∞) in (4.1) and
let ∈ B0

[0 ∞). Define

(4.2)
∫

( ) =
∫

( ) ( ) =
∑

=1

( ∩ )

We use
∫

( ) and
∫

( ) ( ) in the same meaning.

The definition (4.2) does not depend (in the a. s. sense) on thechoice of a repre-
sentation (4.1) of ( ).

DEFINITION. An M × -valued function ( ) on [0∞) is said to be -integrable
or { }-integrable if it is measurable and if there is a sequence of simple functions

( ), = 1, 2 . . ., such that (1) ( )→ ( ) σ-a. e. and (2) for every ∈ B0
[0 ∞),

the sequence
∫

( ) is convergent in probability as→∞.

Proposition 4.1. If ( ) is -integrable and if 1( ) and 2( ) are sequences
satisfying(1) and (2) above, then

(4.3) p-lim
→∞

∫
1( ) = p-lim

→∞

∫
2( ) a. s. for each ∈ B0

[0 ∞)

DEFINITION. For any -integrableM × -valued function ( ) on [0∞), define

(4.4)
∫

( ) =
∫

( ) ( ) = p-lim
→∞

∫
( )
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using the sequence ( ) in the definition of -integrability andusing Proposition 4.1.

Proposition 4.2. Let 1( ) and 2( ) be -integrableM × -valued functions on
[0 ∞). Then, for any 1, 2 ∈ R, 1 1( ) + 2 2( ) is -integrable and

(4.5)
∫

( 1 1( ) + 2 2( )) = 1

∫
1( ) + 2

∫
2( ) a. s.

for ∈ B0
[0 ∞).

Proposition 4.3. Let ( ) be an -integrableM × -valued function on[0 ∞).
Let ( ) =

∫
( ) and λ = L( ( )) for ∈ B0

[0 ∞). Then{ ( ) : ∈ B0
[0 ∞)}

is an R -valued i. s. r. m.,

(4.6)
∫

0
| log ρ̂ ( ( )′ )|σ( ) <∞ for ∈ (0 ∞)

and

(4.7) logλ̂ ( ) =
∫

log ρ̂ ( ( )′ ) σ( ) for ∈ B0
[0 ∞)

Here log ρ̂ ( ( )′ ) means(log ρ̂ ( )) = ( )′ .

Proof of Propositions 4.1, 4.2, and 4.3. If1( ) and 2( ) are simple functions,
then 1 1( ) + 2 2( ) is simple and (4.5) is obvious. If ( ) is a simple function,
then the statements in Proposition 4.3 are easily shown. Indeed, in this case, it follows
from (3.2) and (4.2) that

〈 ( )〉 = exp



〈

∑

=1

( ∩ )

〉
 =

∏

=1

〈 ( ∩ )〉

=
∏

=1

exp
∫

∩

log ρ̂ ( ′ )σ( ) = exp
∫

log ρ̂



∑

=1

1 ( ) ′


σ( )

which gives (4.6) and (4.7).
Let 1( ) and 2( ) be the sequences in the statement of Proposition 4.1. Define

( ) = 1( ) − 2( ), ˜ ( ) =
∫

( ) , and ˜ ( ) = p-lim →∞
˜ ( ). Since

˜ is an i. s. r. m.,˜ is also i. s. r. m. by Proposition 3.6. By Egoroff’s theorem ([4]
p. 88), for any 0 > 0, there are disjoint Borel sets1, 2 . . . in [0 0] such that
lim →∞ sup∈ ‖ ( )‖ = 0 for each andσ([0 0] \ ) = 0, where =

⋃∞
=1 .

Using (4.7) for ˜ and noting (2.12), we see that 〈 e ( ∩ )〉 → 1 as → ∞ for
every ∈ B0

[0 ∞) and . Hence˜ ( ∩ ) = 0 a. s. Therefore,̃ ( ∩ ) =
∑∞

=1
˜ ( ∩
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) = 0 a. s. Moreover,̃ ( \ ) = 0 a. s. sincẽ ( \ ) = 0 a. s. by (4.6) for˜ . It
follows that ˜ ( ) = 0 a. s. for all ∈ B[0 0] and thus for all ∈ B0

[0 ∞). This proves
Proposition 4.1. Proposition 4.2 is now straightforward.

Turning to proof of Proposition 4.3, let ( ) be simple functions in the defini-
tion of -integrability and let ( ) =

∫
( ) and λ = L( ( )). This

is an i. s. r. m. It follows from p-lim ( ) = ( ) that is an i. s. r. m.by Proposi-
tion 3.6 and that loĝλ ( ) → log λ̂ ( ) by Lemma 7.7 of [19]. Fix 0 > 0. We see
that logλ̂ ( ) is countably additive in ∈ B[0 0] and absolutely continuous with re-
spect toσ, since it satisfies (4.7) with ( ) replacing ( ). Hence logλ̂ ( ) is count-
ably additive in ∈ B[0 0] and absolutely continuous with respect toσ by the Vitali–
Hahn–Saks theorem and the Nikodým theorem ([3] p. 158–160). Hence there is the
Radon–Nikodým derivative ( ) such that

∫
0

0 | ( )|σ( ) < ∞ and loĝλ ( ) =∫
( )σ( ). On the other hand, fix and find that logρ̂ ( ( )′ )→ log ρ̂ ( ( )′ )

for σ-a. e. , since loĝρ ( ) is continuous in . A use of Egoroff’s theorem as in
the proof of Proposition 2.6 of [15] yields that loĝρ ( ( )′ ) = ( ) for σ-a. e. in
[0 0]. Hence (4.6) and (4.7) follow.

Corollary 4.4. Let ({ρ0} σ0) be a (not necessarily canonical) factoring of { }.
Then, in the situation ofProposition 4.3,

∫

0
| log ρ̂0( ( )′ )|σ0( ) <∞ for ∈ (0 ∞)

log λ̂ ( ) =
∫

log ρ̂0( ( )′ ) σ0( ) for ∈ B0
[0 ∞)

and the additive process in law{ } defined by = ([0 ]) has a factoring
({ρ♯} σ0), where ρ̂♯( ) = ρ̂0( ( )′ ), ∈ R .

Proof. By Proposition 3.5, the canonical measureσ is absolutely continuous with
respect toσ0. Thus there is a measurable function ( )≥ 0 such thatσ( ) =

( )σ0( ). Let = { : ( ) > 0}. We can prove thatρ = (ρ0)1/ ( ) for σ-a. e.
and thatρ0 = δ0 for σ0-a. e. in [0∞) \ , whereδ0 is the unit mass at 0. Thus the
assertion follows from (4.6) and (4.7). Details are omitted.

Proposition 4.5. Let ({ρ0} σ0) be a factoring of { }. Let ( ) be an
M × -valued measurable function locally bounded on[0 ∞). Then ( ) is

-integrable. If ( ) is a sequence of simple functions on[0 ∞) such that
( ) → ( ) σ0-a. e. and, for any 0 > 0, ‖ ( )‖ is uniformly bounded on[0 0],

then

p-lim
→∞

∫
( ) =

∫
( ) for ∈ B0

[0 ∞)
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Proof. We can find simple functions ( ) such that ( )→ ( ) for all and
‖ ( )‖ is uniformly bounded on [00] for any 0. Then

exp

[ 〈 ∫
( ) −

∫
( )

〉]
= exp

∫
log ρ̂

(
( ( )− ( ))′

)
σ( )

which tends to 1 as , → ∞, using (2.12). Hence,
∫

( ) is convergent in
probability. Hence ( ) is -integrable. To prove the second half of the assertion we
use Propositions 3.5, 4.1, and the argument above.

Theorem 4.6. Let ( ) be anM × -valued measurable function locally bounded
on [0 ∞). Define ( ) =

∫
( ) and = ([0 ]). Then, for any M × -valued

measurable function ( ) locally bounded on[0 ∞) and for any ∈ B0
[0 ∞),

(4.8)
∫

( ) =
∫

( ) ( ) a. s.

Proof. Choose simple functions ( ) and ( ) such that ( )→ ( ) and
( )→ ( ) for all and, for any 0 > 0, ( ) and ( ) are uniformly bounded on

[0 0]. Then
∫

( ) = p-lim →∞

∫
( ) ( ) from the definitions and, us-

ing (4.7), we get
∫

( ) ( ) −
∫

( ) ( ) → 0 in probability as →∞.
Then, letting →∞, we get (4.8).

REMARK. Let ( ) be an -integrableM × -valued function on [0∞). Some-
times we write

(4.9)
∫

( ) =





∫
( ] ( ) for 0≤ < <∞

0 for 0≤ = <∞
−
∫

( ] ( ) for 0≤ < <∞

By Theorem 11.5 of [19], there is an additive process modification {˜ : ≥ 0} of the
additive process in law{ : ≥ 0} of Corollary 4.4. We understand

∫
( ) in

the meaning that

(4.10)
∫

( ) = ˜ − ˜

without explicit mention.

Theorem 4.7. Let ( ) be M × -valued and ( ) be M × -valued, both locally
bounded, measurable on[0 ∞). Then, for 0≤ 0 < 1 <∞,

(4.11)
∫

1

0

( )

(∫

0

( )

)
=
∫

1

0

(∫
1

( )

)
( )
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Lemma 4.8. If ( ) is an M × -valued bounded measurable function on[ 0 1],
then there is a sequence ( ) of uniformly bounded step functions on[ 0 1] such that

( )→ ( ) except on a set of Lebesgue measure0.

Proof. By Lusin’s theorem ([4] p. 243), for each , there is a closed set ⊂
[ 0 1] such that [0 1] \ has Lebesgue measure< 2− and the restriction of

( ) to is continuous. Then, by Urysohn’s theorem in general topology, there
is an M × -valued, uniformly bounded, continuous function0 on [ 0 1] such that

0 = on . Now choose uniformly bounded step functions on [0 1] such that
‖ ( )− 0( )‖ < 2− .

Outline of proof of Theorem 4.7. Define

=
∫

1

0

( )

(∫

0

( )

)
=
∫

1

0

(∫
1

( )

)
( )

STEP 1. Show that

(4.12) 〈 〉 = 〈 〉 = exp
∫

1

0

log ρ̂

(
( )′

∫
1

( )′
)
σ( )

The second equality in (4.12) is a consequence of (4.7). Calculation of 〈 〉 is

done by approximation by =
∫

1

0
( )
(∫ τ ( )

0
( )

)
, whereτ ( ) = for

−1 < ≤ with = 0 + 2− ( 1− 0).
STEP 2. Prove the identity

∫
1

0

= 1 1 − 0 0 −
∫

1

0

a. s.,

by approximation of byτ ( ) in Step 1. Then, using this, we can show that =
a. s., under the assumption that ( ) and ( ) are step functions.

STEP 3. Let ( ) be a step function. If there are step functions ( ) such that
( )→ ( ) σ-a. e., then we can show that = a. s. by using Step 2 for ( ) and
( ) and then, for convergence, using (4.12) with ( )− ( ) in place of ( ). Thus
= a. s. is true if ( ) = 1 ( ) with an open set and∈ M × . Then the case

where ( ) = 1 ( ) with compact is treated and then the case with Borel. Next
we can show that = a. s. when ( ) is locally bounded and measurable.

STEP 4. Show that = a. s. when ( ) and ( ) satisfy the conditions in the
theorem, using Lemma 4.8 and the result in Step 3.
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Corollary 4.9 (Integration-by-parts formula).Let ( ) be an M × -valued func-
tion of class 1 on [0 ∞). Then, for 0≤ 0 < 1 <∞,

(4.13)
∫

1

0

( ) = ( 1) 1 − ( 0) 0 −
∫

1

0

( )
a. s.,

where in the integrand of the last integral is understood to be a Ĺevy process mod-
ification.

Proof. Rewrite
∫

1

0
( ) , using ( ) = (1) −

∫
1( ( )/ ) and then

apply Theorem 4.7.

Theorem 4.10 (Time change). Let τ ( ) be an increasing continuous mapping
from [0 ∞) into [0 ∞) with τ (0) = 0. Define a natural additive process in law
{ : ≥ 0} on R by = τ ( ). Let ( ) be an M × -valued measurable function
locally bounded on[0 ∞). Then, for any Borel set satisfying ⊂ [0 0] with some

0 < τ (∞),

(4.14)
∫

τ−1( )
(τ ( )) =

∫
( ) a. s.

Proof. The process{ } is a natural additive process in law by Proposition 2.12.
Denote by{ ( )} the R -valued i. s. r. m. induced by{ }. Then we can show that

(τ−1( )) = ( ) for any Borel set satisfying ⊂ [0 0] with some 0 < τ (∞).
Thus we can show (4.14) whenever is a simple function. Then wecan extend it to

in the theorem, using Propositions 2.8, 2.12, and 4.5.

5. Some stochastic integrals over unbounded sets

In the preceding section we defined stochastic integrals
∫

( ) only for
bounded Borel sets in [0∞). Now we consider unbounded Borel sets .

DEFINITION. Let { : ≥ 0} be a natural additive process in law onR and let
be the R -valued independently scattered random measure induced by{ }. Let

( ) be an -integrableM × -valued function. Let be an unbounded Borel set in
[0 ∞). We define

∫
( ) =

∫
( ) ( ) = p-lim

↑∞

∫

∩[0 ]
( )

whenever this limit in probability exists. In this case we say that
∫

( ) is
definable. When = [0 ∞) and

∫
( ) is definable, we sometimes write∫∞

0
( ) for

∫
( ) .
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When { } is a Lévy process onR and ( ) = − with ∈ M+, the follow-
ing important facts are known (see [7], [16], [21], [24]). The integral

∫∞

0
− is

definable if and only if{ } has finite log-moment, that is, log+ | | <∞ for all .
If the integral

∫∞

0
− is definable, then its distributionµ is -selfdecomposable,

that is, for each ∈ (0 1), there is a distribution (automatically infinitely divisible) ρ
such that

µ̂( ) = µ̂(
′

)ρ̂ ( )

Conversely, any -selfdecomposable distribution can be expressed asL
(∫∞

0
−

)

with a unique (in law) Lévy process with finite log-moment.
We study a case where{ } belongs to a class of additive processes in law more

general than Lévy processes in law.

DEFINITION. A stochastic process{ : ≥ 0} on R is called asemi-Ĺevy pro-
cess in lawor additive process in law with semi-stationary incrementson R if it is
an additive process in law onR such that, for some > 0,

(5.1) − d
= + − + for any choice of 0≤ < <∞

This is called aperiod of the semi-Lévy process in law. A cadlag modification of
a semi-Lévy process in law is called asemi-Ĺevy process. An additive process in law
{ } on R is said to havefinite log-momentif log+ | | <∞ for all .

REMARK. Let { } be a semi-Lévy process in law onR with period and let
( ν γ ) be the triplet of . Then{ } is natural if and only ifγ is of bounded
variation on [0 ]. There exist non-natural semi-Lévy processes in law onR .

Proposition 5.1. Let { : ≥ 0} be a natural additive process in law onR .
Then the following statements are equivalent:
(1) { } is a semi-Ĺevy process in law with period ,
(2) the canonical factoring({ρ } σ) of { } is periodic with period in the sense
that ρ = ρ + for σ-a. e. andσ( ) = σ( + ) for all ∈ B([0 ∞)),
(3) the i. s. r. m.{ ( )} induced by{ } is periodic with period in the sense that

( )
d
= ( + ) for all ∈ B0

[0 ∞).

Using Proposition 2.8 and (2.11), proof of Proposition 5.1 is easy and omitted.
Let us recall some classes of distributions defined in [14]. Let ∈ M+ and
∈ (0 1). A probability measureµ on R is said to be ( )-decomposableif

µ̂( ) = µ̂(
′

)ρ̂( ) with someρ ∈ (R ). The class of all such probability measures
is denoted by 0( ). In the terminology of [19], the class0( ) with > 0 is
the class of semi-selfdecomposable distributions with span − .
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Theorem 5.2. Let { : ≥ 0} be a natural semi-Ĺevy process in law onR
with period . Suppose that it has finite log-moment, that is,

(5.2) log+ | | <∞

Then, for any ∈ M+, the stochastic integral
∫∞

0
− is definable and its dis-

tribution µ belongs to 0( − ). Moreover, for any ∈ (0 ∞),

(5.3)
∫ ∞

0
sup
| |≤

| log ρ̂ ( − ′

)|σ( ) <∞

and

(5.4) logµ̂( ) =
∫ ∞

0
log ρ̂ ( − ′

)σ( )

where ({ρ } σ) is the periodic canonical factoring of{ : ≥ 0}.

In particular, when = with > 0, the stochastic integral
∫∞

0
− is

definable and has a semi-selfdecomposable distribution with span , if condition (5.2)
is satisfied.

The case without finite log-moment will be treated in Theorem5.4.

REMARK. In a forthcoming paper jointly written with M. Maejima, it will be
proved that, for anyµ ∈ 0( − ), there exists a natural semi-Lévy process in law
{ } with finite log-moment such thatL

(∫∞

0
−

)
= µ.

Proof of Theorem 5.2 uses the following lemma.

Lemma 5.3. Let { : ≥ 0} be a semi-Ĺevy process in law onR with period
. Let ν be the Ĺevy measure of and let̃ν be the unique measure on[0 ∞)×R

satisfying (2.7). Then, there are a measureν∗ on R and measuresσ∗, ∈ R , on
[0 ∞) satisfying the following conditions:
(1) ν∗({0}) = 0 and

∫
R

(1∧ | |2)ν∗( ) <∞,
(2) for any ∈ R , σ∗ is a periodic measure with period andσ∗((0 ]) =
σ∗([0 ]) = 1,
(3) for any ∈ B[0 ∞), σ∗( ) is measurable in ,
(4) for any nonnegative function ( ) measurable in( ),

(5.5)
∫

[0 ∞)×R

( )ν̃( ( )) =
∫

R

ν∗( )
∫

[0 ∞)
( )σ∗( )

If (ν∗ σ∗) and (ν∗∗ σ∗∗) both satisfy these conditions, then ν∗ = ν∗∗ and σ∗ = σ∗∗

for ν∗-a. e. .
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When { } in the lemma has a factoring ({ρ } σ), then

(5.6)
∫ ∞

0
σ( )

∫

R

( )νρ( ) =
∫

[0 ∞)×R

( )ν̃( ( ))

for all nonnegative measurable function ( ). If ( ) = 1[0 ]( ) 1 ( ), then (5.6)
holds by (2.10) and (2.7). From this (5.6) follows in general. Comparing (5.5)
and (5.6), we see that ({νρ} σ) and (ν∗ {σ∗}) are dual in a sense.

Proof of Lemma 5.3. We havẽν({ } × R ) = 0 for all ≥ 0. Fix a posi-
tive integer . Apply the conditional distribution theorem to the probability measure

( ) =
∫

(1 ∧ | |2)ν̃( ( )) on [0 ]× R , where is a normalizing constant.
Then we get a measureν∗ on R and measuresσ∗ on [0 ] such thatν∗({0}) = 0,∫

R
(1 ∧ | |2)ν∗( ) = ( )−1, σ∗([0 ]) = , σ∗( ) is measurable in for each
∈ B([0 ]) and

∫

[0 ]×R

( )(1∧ | |2)ν̃( ( )) =
∫

R

(1∧ | |2)ν∗( )
∫

[0 ]
( )σ∗( )

for all nonnegative measurable ( ). Sinceν + = ν + ν , we can show that

∫
ν∗( )

∫

( + ]
σ∗( ) =

∫
ν∗( )

∫

(0 ]
σ∗( ) for ∈ B(R )

Henceσ∗(( + ]) = σ∗((0 ]) for ν∗-a. e. . By right-continuity in , the excep-
tional set of can be chosen to be independent of . Thus we can chooseσ∗ satis-
fying property (2). By the uniqueness in the conditional distribution theorem,ν∗ does
not depend on andσ∗ can be extended to a periodic measure on [0∞).

Proof of Theorem 5.2. Let ({ρ } σ) be the periodic canonical factoring of
{ }. Let us prove (5.3). First notice that

| ( )| ≤ | |2(1 + | |2)−1 with = (| |2 + 2| |) ∨ (4 + | |)

Then,

| log ρ̂ ( − ′

)| ≤ 1
2

(tr ρ)| − ′ |2 + | || − γρ|

+
∫

R

| − |2
1 + | − |2ν

ρ( ) + | |
∫

R

| − | | ( )| νρ( )

where ( ) = (− ) − ( ). Since the estimate (2.16) remains true if
is replaced by ′ and sinceσ is periodic,

∫∞

0 | − ′ |2σ( ) ≤ const| |2 and∫∞

0 | − ′ |σ( ) ≤ const| |. Note that tr ρ and |γρ| are σ-essentially bounded
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(Proposition 2.8). Further, we will prove that

∫ ∞

0
σ( )

∫

R

| − |2
1 + | − |2ν

ρ( ) <∞(5.7)
∫ ∞

0
σ( )

∫

R

| − | | ( )| νρ( ) <∞(5.8)

Write (ξ) = ξ2/(1 +ξ2). Then, by (5.5), (5.6), and (2.16), the iterated integral in (5.7)
is

≤
∫

R

ν∗( )
∫ ∞

0
( 3

− 1 | |)σ∗( ) = say.

Notice that, by (2) of Lemma 5.3,
∫

( ( +1) ]
( 3

− 1 | |)σ∗( ) ≤ ( 3
− 1 | |) ≤ 1

∫

( −1)
( 3

− 1 | |)

Hence,

≤ 1
∫

R

ν∗( )
∫ ∞

−

( 3
− 1 | |) =

1
2 1

∫

R

log(1 + 2
3

2 1 | |2)ν∗( )

which is finite by (1) of Lemma 5.3 and by
∫

log+ | |ν∗( ) =
∫

log+ | |ν ( ).
Note that the condition (5.2) is equivalent to the conditionthat

∫
log+ | |ν ( ) < ∞

by [19], Theorem 25.3 and Proposition 25.4. Thus we get (5.7). Proof of (5.8) is sim-
ilar, since the iterated integral in (5.8) is

≤ const
∫ ∞

0
σ( )

∫

R

| − | | |2
(1 + | − |2)(1 + | |2)

νρ( )

and since (1 +ξ)/(1 + ξ2) ≤ 2 for ξ ≥ 0. This finishes a proof of (5.3).
Note that − is -integrable by Proposition 4.5. Let1 < 2. Then

exp

[ 〈 ∫
2

1

−

〉]
= exp

∫
2

1

log ρ̂ ( − ′

)σ( )→ 1

as 1 2→∞, by using (4.7) and (5.3). Hence
∫

0
− is convergent in probabil-

ity as →∞ by the remark in Step 2 of the proof of Theorem 3.2 (ii).
Let us prove thatµ = L

(∫∞

0
−

)
is in 0( − ). Let

µ( ) = L
(∫

0

−

)

Then µ( ) ∈ . Since
∫

0
− and

∫∞ − are independent and the

latter has the same law as−
∫∞

0
− by property (5.1), we get̂µ( ) =

µ̂( )( )µ̂( − ′

). That is,µ is in 0( − ).
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Theorem 5.4. Let { : ≥ 0} be a natural semi-Ĺevy process in law onR
with period . Assume that

(5.9) log+ | | =∞

Then, for any ∈ M+,
∫∞

0
− is not definable. Moreover, for any sequence

→∞, L
(∫

0
−

)
does not converge to any probability measure.

Proof. Fix and a sequence → ∞. DenoteL
(∫

0
−

)
= µ( ). Sup-

pose thatµ( ) → µ(∞) for some probability measureµ(∞). Then µ(∞) ∈ , since
µ( ) ∈ . Let ν( ) and ν(∞) be the Lévy measures ofµ( ) and µ(∞), respectively.
Then, by [19] Theorem 8.7,

(5.10)
∫

( )ν( )( )→
∫

( )ν(∞)( )

for all bounded continuous functions vanishing on a neighborhood of 0. We have,
by (2.16), (5.5), and (5.6),

∫

| |>1
ν( )( ) =

∫

0
σ( )

∫
1{| − |>1}ν

ρ( ) ≥
∫

[0 ]×R

1{ 4
− 2 | |>1}ν̃( ( ))

=
∫

R

ν∗( )
∫

(0 ]
1{| |> −1

4
2 }σ

∗( ) ≥
∫

| |> −1
4

ν∗( )
∫

(0 ]
1{ < −1

2 log 4| |}σ
∗( )

where is an integer such that ≤ < ( + 1) . The inner integral is

=
−1∑

=0

∫

(0 ]
1{ + < −1

2 log 4| |}σ
∗( ) ≥

−1∑

=0

1{( +1) < −1
2 log 4| |}

which is bounded from below by ((2 )−1 log 4| | − 1)∧ . Since
∫

log+ | |ν∗( ) =∫
log+ | |ν ( ) = ∞ by (5.9), it follows that

∫
| |>1 ν

( )( ) → ∞. This contra-
dicts (5.10).
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[13] J. Pedersen:The Lévy–Ito decomposition of an independently scatteredrandom measure,

MaPhySto Research Report 2003-2.
[14] M. Maejima, K. Sato and T. Watanabe:Operator semi-selfdecomposability, ( )-decompos-

ability and related nested classes, Tokyo J. Math.22 (1999), 473–509.
[15] B.S. Rajput and J. Rosinski:Spectral representations of infinitely divisible processes, Probab.

Theory Related Fields82 (1989), 451–487.
[16] A. Rocha-Arteaga and K. Sato: Topics in Infinitely Divisible Distributions and Lévy Pro-
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