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A quadratic equation for the temperature-independent Gru¨neisen coefficientg was derived by a method in
which the Walsh-Christian and Mie-Gru¨neisen equations are combined. Some previously existingab initio
temperature Hugoniots for hexagonal close-packed solid Fe are inaccurate because the constant-volume spe-
cific heats on the HugoniotsCVH , which are related uniquely to the solutions of the quadratic equation, have
values that are too small. ACVH distribution in the solid phase range was demonstrated to agree approximately
with a previousab initio distribution. In contrast, the correspondingg distribution was significantly different
from theab initio distribution in the lower pressure region, and theg distribution in the liquid phase range had
a considerably larger gradient than theab initio distribution. The causes of these disagreements are clarified.

DOI: 10.1103/PhysRevB.69.144201 PACS number~s!: 64.70.Dv, 64.30.1t, 62.50.1p, 47.40.Nm
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I. INTRODUCTION

The thermoelastic properties of hexagonal close-pac
~hcp! Fe at pressures up to 400 GPa were recently inve
gated using theab initio approach. Wasserman, Stixrude, a
Cohen1 used a tight-binding total-energy method and the c
model of vibrational partition function, while the calcula
tions of Alfè, Price, and Gillan2 were based on density
function theory~DFT! using a generalized-gradient approx
mation. The Hugoniot pressures calculated by Cohenet al.1

agreed almost perfectly with the experimental data of Bro
and McQueen3 in the region of 150 to 240 GPa, as did th
different statistical-mechanical calculations of Alfe` et al.2

The temperature Hugoniots calculated by Cohenet al. and
Alfè et al. approximate those of Brown and McQueen.

The constant-volume specific heats on the isotherms
culated by Cohenet al.,1 however, are significantly smalle
than those of Alfe` et al.2 The main reason for this seems
be the anharmonic corrections included by Alfe` et al.2 More-
over, there is a crucial difference between the Gru¨neisen co-
efficients on isotherms in the lower pressure region in
solid phase range predicted by both groups. The distribut
of Cohenet al. increase rapidly with a decrease in press
in the lower pressure region, whereas those of Alfe` et al.
vary only slightly in the solid phase range. It is importa
that we clarify the cause of this enigmatic difference betwe
these distributions in the lower pressure region, because
sumptions or estimates of the values of the Gru¨neisen coef-
ficient have a key role in constructing parametrized eq
tions of the state for Fe.4 We attempted to investigate th
cause of the difference by predicting the thermal proper
of Fe using classical thermodynamics, and without rely
on theab initio method.

In this study, we derive a quadratic equation for the Gru¨n-
eisen coefficient using a method that combines the Wa
Christian equation5,6 and a Mie-Gru¨neisen equation inte
grated from a statically compressed state to a Hugoniot s
at thermodynamic equilibrium. The assumptions used w
that the constant-volume specific heat is a linear function
0163-1829/2004/69~14!/144201~8!/$22.50 69 1442
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temperature and that the Gru¨neisen coefficient is a function
of specific volume alone. For solid Fe, the validity of the
two assumptions was verified. We obtained the Hugon
pressures included in the solution of the quadratic equa
from the experimental Hugoniot for Fe of Brownet al.3,7 and
the quasistatic pressures at an ambient temperature from
experimental equation of state for Fe of Maoet al.8 Unfor-
tunately, there is no existing experimental temperature Hu
niot for Fe available from which the Hugoniot temperatur
in the solution can be found. For the Hugoniot temperatu
therefore, we adopted the theoretical temperature Hugon
for solid Fe of Cohenet al.,1 Alfè et al.,2 Brown and
McQueen,3 and Alfè et al.4; for liquid Fe, we relied on the
theoretical work of Alfèet al.4 and Belonoshko, Ahuja, and
Johansson.9 Based on the experimental pressure Hugon
and static equation of state, we assess the reliability of
above-mentioned temperature Hugoniots. The inaccurac
some of the four temperature Hugoniots for solid Fe w
found by showing that the constant-volume specific he
along the Hugoniots, which are related uniquely to the so
tions of the quadratic equation, become smaller than th
harmonic contribution. In addition, our Gru¨neisen coeffi-
cients for the temperature Hugoniots for solid and liquid
of Alfè et al.4 are compared with theab initio result2 and the
result calculated by another thermodynamic formalism.10 Fi-
nally, we evaluate a thermal equation of state based on
perimental data for hcp Fe by deducing the temperat
Hugoniot, the constant-volume specific heat on the Hu
niot, and the Gru¨neisen coefficient from our alternate the
modynamic theory that incorporates the thermal equation
state.

II. THERMODYNAMIC THEORY

A. Quadratic equation for the Grüneisen coefficient

The Walsh-Christian equation holds at the rear of a sh
wave front:5,6
©2004 The American Physical Society01-1
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CVH

dTH

dVH
1

gH

VH
CVHTH5FH , ~1!

where

FH5
1

2

dpH

dVH
~V02VH!1

1

2
pH , ~2!

wherep is the pressure,T is the temperature,V is the specific
volume,CV is the constant-volume specific heat, andg is the
Grüneisen coefficient. The subscript 0 refers to an amb
state and the subscriptH to a Hugoniot state, as in the ex
ample, CVH[CV(VH ,TH)[CVH(VH) and gH[g(VH ,TH)
[gH(VH). The following Mie-Grüneisen equation is de
rived by integratingdp5@g(V,T)/V#CV(V,T)dT along V
5const from a static compression state at an ambient t
peratureT0 to a Hugoniot state:

pH~VH!2pT0
~V!5E

T0

TH(VH)g~V,T!

V
CV~V,T!dT, ~3!

whereV[VH andpT0
is the quasistatic pressure atT0. Note

that CV5CVharm1CVanharm1CVel , where the harmonic con
tribution to the constant-volume specific heatCVharm is equal
to 3NkB to a good approximation (N being the number of
atoms per unit mass andkB is the Boltzmann constant!, and
where the anharmonic contributionCVanharm is proportional
to T.2 First, we assume that in the region ofT0 to TH as
defined in Eq.~3!, the electronic contributionCVel is propor-
tional to T. Then, becauseCVanharm1CVel5GT, where G
5Ganharm1Gel , it follows that CV(V,T)53NkB1G(V)T in
Eq. ~3! andCVH53NkB1G(VH)TH in Eq. ~1!. Second, we
assume thatg depends only onV, irrespective ofT, in the
region ofT0 to TH . It then follows thatgH[g(VH) in Eq.
~1! and g(V,T)[g(V) in Eq. ~3!. For solid Fe, Secs. III A
and III D verify the validity of the assumptions of linea
CVel(T) and temperature independentg, respectively. Equa-
tion ~3! is integrated under the two assumptions descri
above to become

pH2pT0
5

1

2

g

V
~TH2T0!@6NkB1G~TH1T0!#, ~4!

where G[G(V) and g[g(V). We assume thatpH , and
hencedpH /dVH , andTH , and hencedTH /dVH , are known.
Two unknown variablesCVH or G(VH) andg(VH) are then
included in Eq.~1!. If pT0

(V) is also assumed to be known

then in Eq.~4!, G(V) andg(V) appear as unknowns.
We transform Eq.~1! to the following equation for

G(VH):

G5
1

TH
F FH

dTH /dVH1~g/VH!TH
23NkBG . ~5!

We also obtain an equation forG(VH), which is identical to
G(V), from Eq. ~4!:

G5
2~pH2pT0

!

TH
2 2T0

2 S g

VH
D 21

2
6NkB

TH1T0
, ~6!
14420
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wherepT0
[pT0

(V), in which V5VH , andg[g(VH). We

derive a quadratic equation forg/VH by equating Eqs.~5!
and ~6!:

aS g

VH
D 2

1bS g

VH
D1c50, ~7!

where

a53NkB~TH2T0!2,

b5
TH

2 2T0
2

TH
FH13NkB

~TH2T0!2

TH

dTH

dVH
22~pH2pT0

!TH ,

c522~pH2pT0
!

dTH

dVH
, ~8!

where a.0, b,0 becauseFH,0 and dTH /dVH,0, and
c.0 for Fe in the pressure region of interest. For Fe, the
fore, a nontrivial solution of Eq.~7! is given by

g

VH
5

2b2Ab224ac

2a
. ~9!

Three quantitiespH , pT0
, andTH included in coefficientsa,

b, and c are obtained, respectively, from the experimen
pressure Hugoniot of Brownet al.,3,7 the experimental equa
tion of state of Maoet al.,8 and severalab initio temperature
Hugoniots1,2,4,9presented by many authors.

B. Experimental pressure Hugoniot
and equation of state for Fe

Brown, Fritz, and Fixson7 refined theUS2UP measure-
ments for hcp Fe of Brown and McQueen3 and gaveUS

53.69111.788UP20.038UP
2 for a quadratic fit to the re-

fined data, whereUS and UP are in km/s. Brown11 trans-
formed the measured data into pressure-specific volume
up to 400 GPa using the Rankine-Hugoniot jump conditio
~Fig. 1!. Mao et al.8 reported the results of x-ray-diffractio
experiments with the diamond anvil cell~DAC! to pressures
above 300 GPa at room temperatures on hcp Fe and gav

FIG. 1. pH(VH) Hugoniot obtained using the quadraticUS

2UP relation of Brownet al. ~Ref. 7! ~heavy solid curve! and static
pressure-volume distributionpT0

(V) of Mao et al. ~Ref. 8! ~solid
curve!.
1-2
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THERMAL PROPERTIES OF CLOSE-PACKED Fe UP TO . . . PHYSICAL REVIEW B69, 144201 ~2004!
Birch-Murnaghan equation of state parameters ofV02

56.73 cm3/mol, K025165 GPa, andK028 55.33. The Birch-
Murnaghan equation of statepT0

(V) is shown in Fig. 1.

C. TH„pH… solid Hugoniots for Fe

Theab initio TH(pH) Hugoniot for hcp solid Fe of Cohen
et al.1 in the region from 40 to 400 GPa is approximated
a quadratic equation for 40<pH<100 GPa and by a linea
equation for 100,pH<400 GPa. TheTH(pH) Hugoniot for
40<pH<400 GPa of Alfèet al.2 also is approximated by a
quadratic equation. The solid Hugoniots of both groups
shown in Fig. 2~a!. From 40 to 200 GPa, the Hugoniot o
Alfè et al.2 is in good agreement with that of Cohenet al.1

We can find aTH(pH) solid Hugoniot which agrees we
with the ab initio Hugoniot of Alfè et al.4 up to 243 GPa
from Eq. ~1! using the following linearG(pH) and the cor-
respondingg/VH :

G~pH!5aGpH1bG , ~10!

where aG528.490431025 J/kg K2 GPa and bG

50.080145 J/kg K2. The equation forg/VH , which is re-
lated toG, is obtained from Eq.~4!:

g

VH
5

2~pH2pT0
!

~TH2T0!@6NkB1G~TH1T0!#
. ~11!

FIG. 2. ~a! Solid Hugoniots of Cohenet al. ~Ref. 1! ~dashed
curve!, Alfè et al. ~Ref. 2! ~solid curve!, and that calculated usingG
given by Eq.~10! ~heavy solid curve!. ~b! Solid Hugoniot of Brown
and McQueen,~Ref. 3! melting curve, and liquid Hugoniot of Be
lonoshkoet al. ~Ref. 9! ~heavy dotted curves! and solid Hugoniot,
melting curve, and liquid Hugoniot of Alfe` et al. ~Ref. 4! ~heavy
solid curves!. All solid Hugoniots shown in~a! and ~b! start from
the point~40 GPa, 670 K!. ~Ref. 12!.
14420
e

The TH(pH) Hugoniot calculated using Eqs.~1!, ~10!, and
~11! under the initial condition ofTH(pH)5670 K at pH
540 GPa~Ref. 12! is shown in Fig. 2~a!.

D. TH„pH… solid Hugoniots, melting curves, andTH„pH… liquid
Hugoniots for Fe

Because the material in question is a mixture of a so
and a liquid on a melting curve@Tm(p)#, all the results ob-
tained forCVH and g are meaningless, even ifTm is used
instead ofTH . Our calculations apply only to single-phas
solids and liquids, but nevertheless the melting curve pl
an important role in determining the melting incipience a
completion states. Several independent attempts to ob
ab initio melting curves were recently reported.4,9 Be-
lonoshkoet al.9 presented a melting curve that is in agre
ment with DAC experimental melting data13 at low pressures
and is in excellent agreement with the shock melting res
of 5500 K at 243 GPa.3 Using Eqs.~1! and ~11!, and the
equation CVH53NkB1GTH@G5be(VH /V0)ge

# of Brown
and McQueen,3 wherebe50.0612 J/kg K2 andge51.34, we
calculate aTH(pH) solid Hugoniot that intersects the meltin
curve of Belonoshkoet al.9 at 221 GPa; we approximate th
ab initio TH(pH) liquid Hugoniot of Belonoshkoet al.9 by a
linear equation in the region above 260 GPa. Our value
be50.0612 J/kg K2 is smaller than that of 0.091 J/kg K2

used by Brown and McQueen,3 and our value ofge51.34 is
the same as that used by Brown and McQueen.3 The solid
Hugoniot, melting curve, and liquid Hugoniot are shown
Fig. 2~b!.

Alfè et al.4 constructed an improved DFT, which co
rected free energyF in their previous DFT;2 in addition they
presented a melting curve with anF correction, which is in
quite good agreement with the measurement of Shenet al.14

and with the shock melting result of 5500 K at 243 GP3

Finally, Alfè et al.4 introduced aTH(pH) solid Hugoniot up
to 243 GPa and aTH(pH) liquid Hugoniot from 298 GPa tha
correctedF for consistency. The solid Hugoniot with theF
correction is very close to our solid Hugoniot that was c
culated using Eq.~10! and illustrated in Fig. 2~a!. Therefore,
we use our Hugoniot up to 243 GPa, where it intersects
melting curve of Alfèet al.4 The liquid Hugoniot is approxi-
mated by a linear equation. The solid Hugoniot, melti
curve, and liquid Hugoniot are shown in Fig. 2~b!.

Laio et al.15 also calculated a melting curve for Fe usin
their ab initio method. Boehler and co-workers16 compared
the melting curves of Belonoshkoet al.,9 Laio et al.,15 and
Alfè et al.17 with the DAC data of Boehler13,18 and demon-
strated that only the results of Laioet al.,15 which are con-
siderably lower than the others, are comparable with
DAC data. On the other hand, the experimental melt
curve of Yoo et al.19 is considerably higher than those o
Belonoshkoet al.9 and Alfèet al.4,17 in the pressure region o
interest. Burakovskyet al.20 presented a theory of the mel
ing of elements as a dislocation-mediated phase transit
Burakovskyet al.21 derived an equation for the pressure d
pendence of the melting temperatures of the elements, ca
lated the melting curves for 24 elements, and obtained g
agreement with existing experimental data. For Fe, howe
1-3
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the curve is a little higher than that of Yooet al.19 We chose
the melting curves of Belonoshkoet al.9 and Alfè et al.4 be-
cause they are in good agreement with the DAC data at
pressures and with the estimate based on the shock da
243 GPa.

III. THERMAL PROPERTIES

A. Validity of linear CVel„T… assumption

Alfè et al.2 calculated the electronic specific he
Cperf(T)@[CVel# of the rigid perfect lattice for hcp solid F
in the region of 0 to 6000 K using theab initio method and
plotted the resulting values for atomic volumes of 7.03

(VH50.754831024 m3/kg and pH5377.1 GPa), 8.0 Å3

(VH50.862731024 m3/kg, pH5166.8 GPa, and TH
53546 K), 9.0 Å3 (VH50.970531024 m3/kg, pH
573.75 GPa, andTH51318 K), and 10.0 Å3. In these
equations,pH was calculated fromVH using thePH(VH)
Hugoniot of Brownet al.3,7 andTH was then calculated from
pH using theTH(pH) solid Hugoniot of Alfè et al.4 The
Cperf(T) distribution for 7 Å3 is the closest to a straight line
When the volume is large, the deviation of the distributi
from a straight line is also large in the whole region of 0
6000 K, but it does not become large in a portion ofT0 to
TH , defined in Eq.~3!, becauseTH is lower than 6000 K.
The deviations over the region ofT0 to TH for the volumes
of interest are not great, so we consider that our assump
regarding the constant-volume heat in the region ofT0 to
TH , expressed byCVel5GelT or CV53NkB1GT, is valid.

To substantiate the validity ofCVel5GelT for hcp solid
Fe, we evaluate@G(pH)TH2ab initio CVHanharm#, where
G(pH) is given by Eq.~10!, and theab initio CVHel of Alfè
et al.2 We obtained ab initio CVHanharm5(1/6000)@0.28
10.25(VA2VH)/(VA2VB)#THNkB , whereVA57 and VB
510 Å3, using theab initio specific-heat data of Alfe` et al.2

The calculated@G(pH)TH2ab initio CVHanharm#/NkB distri-
bution as a function of the Hugoniot temperatureTH
is shown in Fig. 3. The calculated distribution~solid curve!

FIG. 3. Electronic specific heatCVHel /NkB in the solid phase
range calculated from@G(pH)TH2ab initio CVHanharm#/NkB using
ab initio CVHanharm formulated by incorporating the specific-he
data of Alfèet al. ~Ref. 2! ~solid curve! andab initio CVHel /NkB of
Alfè et al. ~Ref. 2! at TH53546 K for atomic volumes 8 Å3 and
TH51318 K for 9 Å3 ~circles!.
14420
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is close to the values ~circles! of the ab initio
CVHel of Alfè et al.2 at TH53546 K for 8 Å3 and TH
51318 K for 9 Å3, indicating that @G(pH)TH
2ab initio CVHanharm#'ab initio CVHel . This approximate
equation can be transformed toab initio CVHel'@G(pH)
2ab initioGanharm(VH)#TH , that is, to ab initio CVHel
'Gel(VH)TH . This means that the electronic specific he
at temperaturesT within the regions of 0 toTH for the spe-
cific volumes of interestV, CVel(V,T), are expressed ap
proximately byGel(V)T. The validity of our linearCVel(T)
assumption was thus verified.

B. Constant-volume specific heat

The distributions ofG(pH) for the TH(pH) solid Hugoni-
ots of Cohenet al.1 and Alfè et al.2 are obtained by substi
tuting solution~9! into Eq. ~6! @Fig. 4#. The difference be-
tween the twoG distributions is due only to the differenc
between theTH(pH) Hugoniots. Since theTH(pH) Hugoni-
ots of Cohenet al.1 and Alfè et al.2 are similar below 200
GPa, theG(pH) for both Hugoniots are also similar. Here w
define the rejection of a set ofTH , CVH , andg ~or gH) by
the relationshipdG(pH)/dpH>0, becausedGel /dpH,03

and, as is clear from theab initio CVHanharmderived above,
dGanharm/dpH,0. A situation in which dG(pH)/dpH.0
might cause the values ofCVH to drop below 3NkB , that is,
below the harmonic contribution value. TheTH(pH) Hugo-
niots of Cohenet al.1 and Alfè et al.2 are not correct in the
regions below at least 210 and 180 GPa, respectively.
pH(VH) Hugoniots of both groups1,2 greatly deviate from the
experimental Hugoniot used in our calculations in the pr
sure region below 150 GPa; thus, this deviation may resu
regions wheredG(pH)/dpH>0.

The distributions ofG(pH) for the TH(pH) liquid Hugo-
niots of Alfè et al.4 and Belonoshkoet al.9 are shown in Fig.
4. TheG(pH) distribution for theTH(pH) liquid Hugoniot of
Alfè et al.4 is almost parallel to and is greatly above th

FIG. 4. Distributions ofG for the solid Hugoniots of Cohen
et al. ~Ref. 1! ~dashed curve!, Alfè et al. ~Ref. 2! ~solid curve!,
Brown and McQueen~Ref. 3! ~heavy dotted curve!, andG given by
Eq. ~10! ~heavy solid curve! as a function of Hugoniot pressurepH .
G distributions for the liquid Hugoniots from 260 to 400 GPa
Belonoshkoet al. ~Ref. 9! ~heavy dotted curve!, from 298 to 400
GPa of Alfèet al. ~Ref. 4! ~heavy solid curve!, and from 298 to 400
GPa of Alfèet al. ~Ref. 4! obtained by substitutingg51.51 into Eq.
~5! ~heavy dashed curve! are also shown.
1-4
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linear G(pH) distribution ~Fig. 4! in the solid phase rang
given by Eq.~10!. The same is true for theG(pH) distribu-
tion for the TH(pH) liquid Hugoniot of Belonoshkoet al.,9

although theG(pH) distribution ~Fig. 4! of Brown and
McQueen3 with be50.0612 J/kg K2 andge51.34 is not lin-
ear.

The CVH(pH)/NkB distributions calculated using th
G(pH) distributions described above are shown in Fig. 5
portion of the smallCVH(pH) on theTH(pH) Hugoniot of
Cohenet al.1 below 210 GPa was excluded, and the dis
bution of Brown and McQueen3 with be50.091 J/kg K2 and
ge51.34 was added. TheCVH(pH)/NkB on the TH(pH)
Hugoniot of Alfè et al.2 decreases greatly with a decrease
pH from about 180 GPa, reaches a value of 3 at about
GPa, and further lowers untilpH reaches 40 GPa. Thus, th
CVH distribution includes a region of disagreement from
to 180 GPa wheredG/dpH>0 andCVH>3NkB and an un-
physical portion from 40 to 70 GPa wheredG/dpH>0 and
CVH,3NkB . The CVH(pH) distribution of Brown and
McQueen3 with be50.091 J/kg K2 and ge51.34 is accept-
able becausedG(pH)/dpH,0, but it is lower than that on
the TH(pH) Hugoniot of Alfè et al.4 This difference can be
explained by the anharmonic contribution neglected
Brown and McQueen.3 In fact, in the solid phase range

@be(VH /V0)ge
TH1ab initio CVHanharm# coincides almost

perfectly with G(pH)TH , whereG(pH) @dG(pH)/dpH,0#
is given by Eq.~10!. In the liquid phase range, theTH(pH)
Hugoniots of Belonoshkoet al.9 and Brown and McQueen3

with be50.091 J/kg K2 and ge51.34 are close and bot
CVH(pH) distributions are also similar, as shown in Fig. 5

Here we compare the constant-volume specific h
on the TH(pH) solid Hugoniot of Alfè et al.,4 CVH

@53NkB1G(pH)TH#, with the ab initio CVH of
Alfè et al.2 By substituting ab initio CVHel'G(pH)TH

FIG. 5. Distributions of constant-volume specific heatCVH /NkB

obtained usingG for the solid Hugoniots of Cohenet al. ~Ref. 1!
~dashed curve!, Alfè et al. ~Ref. 2! ~solid curve!, Brown and Mc-
Queen ~Ref. 3! with be50.0612 ~heavy dotted curve! and
0.091 J/kg K2 ~dotted curve!, G given by Eq. ~10! ~heavy solid
curve!, andG for the solid Hugoniot of Alfe` et al. ~Ref. 4! obtained
using estimatedgH ~heavy dashed curve! as a function of Hugoniot
pressurepH . Distributions ofCVH obtained usingG for the liquid
Hugoniots from 260 to 400 GPa of Belonoshkoet al. ~Ref. 9!
~heavy dotted curve! and from 298 to 400 GPa of Alfe` et al. ~Ref.
4! ~heavy solid curve! are also shown.
14420
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2ab initio CVHanharm revealed above intoab initio CVH
53NkB1ab initio CVHanharm1ab initio CVHel , we obtain
ab initio CVH'3NkB1G(pH)TH . Therefore, CVH
'ab initio CVH .

C. Temperature-independent Grüneisen coefficient

The distributions ofg(pH) for the TH(pH) solid Hugoni-
ots of Alfè et al.2 and Alfè et al.4 calculated using Eq.~9!
and Eq.~11!, respectively, are shown in Fig. 6. As was th
case with theg distribution of Cohenet al.,1 both g distri-
butions increase rapidly with a decrease inpH . An ab initio
gH(pH) distribution is estimated from theab initio g isoth(p)
distributions of Alfèet al.2 on isotherms at 2000 and 4000
in the solid phase range below 243 GPa~heavy dashed curve
in Fig. 6!. In the region of 170 to 243 GPa, the estimatedgH
distribution is just above theg distribution for theTH(pH)
solid Hugoniot of Alfèet al.4 As pH decreases from abou
170 GPa,g increases rapidly up to 3.8 at 40 GPa, butgH
increases only a little. We find that whileCVH
'ab initio CVH in the solid phase range as demonstra
above, the difference between both distributions is sign
cantly large in this lower pressure region. Because theab i-
nitio pH(VH) Hugoniot of Alfè et al.4 agrees well with the
experimental data3,7 in the region above about 80 GPa, th
experimental Hugoniot used in our calculations could n
have caused the difference from thegH distribution above 80
GPa. This suggests that theab initio method may be incom-
plete in some manner that is responsible for the prediction
the significantly lower distribution of the Gru¨neisen coeffi-
cient in the lower pressure region.

We can use our method to investigate the cause of
significantly lower gH distribution by predicting theCVH
corresponding to the estimatedab initio gH . Note that when
gH is given, there is aCVH that provides the same Hugonio
temperature as theTH of Alfè et al.4 We substitute theab i-
nitio gH into g ([gH) in Eq. ~5! and obtain theCVH distri-
bution on theTH(pH) solid Hugoniot of Alfè et al.4 by

FIG. 6. Distributions of the Gru¨neisen coefficientg for the solid
Hugoniot of Alfè et al. ~Ref. 2! ~solid curve!, g for the solid and
liquid Hugoniots of Alfèet al. ~Ref. 4! ~heavy solid curve!, ab initio
gH estimated from theab initio g isoth distributions on isotherms in
the solid phase range andab initio gH in the liquid phase range o
Alfè et al. ~Ref. 2! ~heavy dashed curve! as a function of Hugoniot
pressurepH , and g(p) along the melting curve of Anderson an
Isaak~Ref. 10! ~chain curve!.
1-5
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evaluating Eq.~5! ~heavy dashed curve in Fig. 5!. The Hugo-
niot CVH distribution comprises three regions: an accepta
region above about 140 GPa wheredG/dpH,0, which is
close to theCVH distribution obtained from the linearG
given by Eq.~10!; an unacceptable portion from about 55
140 GPa wheredG/dpH>0 andCVH>3NkB , in which this
function is lower than theCVH distribution obtained from the
linear G; and an unphysical portion below 55 GPa whe
dG/dpH>0 and CVH,3NkB . The unacceptable and un
physical portions ofCVH thus result from the significantly
lower gH distribution in the region below 140 GPa. In co
trast, in theab initio method2 mentioned above, the accep
able CVH near the constant-volume specific heat obtain
from the linearG corresponds to the significantly small
gH . This indicates that theab initio method incorrectly pre-
dicted the Gru¨neisen coefficient. Theab initio method2,4

should be improved so that a set ofTH , CVH , andgH would
be correctly deduced.

A distribution of g(pH) for the TH(pH) liquid Hugoniot
of Alfè et al.,4 calculated using Eq.~9!, is shown in Fig. 6.g
is larger at the melting completion pressure of 298 than at
melting incipience pressure of 243 GPa. Equation~11! indi-
cates that this is due to the larger value of (pH2pT0

) at 298

GPa, in spite of the smaller value ofVH and the larger values
of TH andG ~Fig. 4! at 298 GPa. Note that the value ofg at
298 GPa varies with the gradient of the liquid Hugoni
becauseG depends ondTH /dVH @see Eq.~5!#. On the other
hand,g also decreases with an increase inpH in the liquid
phase range, as was the case in the solid phase range. T
due to the decrease inVH and the increase inTH in spite of
the decrease inG with increasingpH .

The ab initio gH(pH) distribution of Alfè et al.2 in the
liquid phase range from 280 to 340 GPa~heavy dashed
curve,gH'1.51) is shown in Fig. 6. Theab initio gH distri-
bution approximates theg distribution ~heavy solid curve!
for the liquid Hugoniot of Alfèet al.4 although the difference
in slope between both distributions is large. To investig
the cause of the large slope difference, we evaluateG for the
liquid Hugoniot of Alfèet al.4 by substitutinggH51.51 into
Eq. ~5!. The G distribution evaluated from 298 to 400 GP
~heavy dashed curve! is shown in Fig. 4. BothG distributions
~heavy dashed and solid curves! have a slope difference
Thus, the slope difference between both of theG ~or CVH)
distributions caused the large slope difference between
gH andg distributions.

Anderson and Isaak10 found the Gru¨neisen paramete
g(p) along the melting curveTm(p) of hcp Fe by a method
of combining the Lindemann melting equation with the Vin
equation of state atTm0

, whereTm0
is the melting tempera

ture atp50. They assumedg(V)5g0(V/V0)q, whereq is a
constant andV0 is the specific volume at the initial state o
p50 and Tm5Tm0

, and transformedg(V)5g0(V/V0)q to

the g(p) for q51, g051.92, andTm0
51600 K by further

assumingCV53NkB ~chain curve in Fig. 6!. In the solid
phase range, theirg(p) distribution also increases rapidl
with a decrease inp, but the overall magnitude is conside
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ably lower than the distributions for theTH(pH) solid and
liquid Hugoniots of Alfèet al.4

D. Temperature dependence of the Gru¨neisen coefficient

We derived Eq.~9! from Eqs.~1! and ~3! under the as-
sumption that the Gru¨neisen coefficient is temperature ind
pendent. However, theab initio coefficientsg isoth on iso-
therms at 2000, 4000, and 6000 K of Cohenet al.1 and Alfè
et al.2 showed that the Gru¨neisen coefficient is temperatur
dependent. Although the temperature dependentg(VH ,TH)
cannot be determined uniquely from Eqs.~1! and ~3! alone,
we deducegH in the solid phase range from Eq.~1! using
Eq. ~10! and the Hugoniot shifted from theTH(pH) solid
Hugoniot of Alfè et al.4 Using the deducedgH , we then
attempt to obtaing isoth from g(V,T)5g i(V)1w(V)T ex-
pressed by the sum of a temperature-independent te
g i(V), and a temperature-dependent term,w(V)T. It follows
that gH5g i(VH)1w(VH)TH on a Hugoniot. We derive the
following equation forw(pH) by substitutingg(V,T) into
Eq. ~3!:

w5
VH~pH2pT0

!2gHd

e2THd
, ~12!

where

d53NkB~TH2T0!1 1
2 G~TH

2 2T0
2!,

e5 3
2 NkB~TH

2 2T0
2!1 1

3 G~TH
3 2T0

3!, ~13!

whereG(pH) is given by Eq.~10!. We first deducew(pH)
from Eq. ~12! using the shiftedTH(pH) Hugoniot, then ob-
tain g i(pH) from g i5gH2wTH , and finally determine
g isoth(p). Here, g isoth(p)5g i(p)1w(p)Tisoth, where g i(p)
[g i(pH) andw(p)[w(pH).

We now verify the validity of our assumption concernin
the Grüneisen coefficient. We evaluatew(pH) in the case in
which the shifted Hugoniot is lower than theTH(pH) solid
Hugoniot of Alfèet al.4 by 12 K at 243 GPa~for the sake of
simplicity, only the maximum difference between bo
Hugoniots is noted!. In this case,w was clearly negative
between 175 and 243 GPa. We find thatw,0 appeared in
the ab initio result2 of Cohenet al.1 Figure 7~a! illustrates
our g isoth distributions on isotherms at 2000 and 4000 K
the case where the shifted Hugoniot is higher by 12 K at 2
GPa, together with theab initio results of Alfèet al.2 Here,
the shift of the solid Hugoniot was adjusted so that the f
lowing three conditions would be satisfied:~1! Our g isoth
distribution on an isotherm at 2000 K is close to that of A`
et al.2 at 243 GPa;~2! the same is true for theg isoth distribu-
tion on the isotherm at 4000 K; and~3! w.0 and the forms
of both g isoth distributions on the isotherm at 2000 K~and
4000 K! do not differ greatly in the pressure region of inte
est. We find thatw is clearly positive between 130 and 24
GPa and that ourg isoth distributions on the isotherms at 200
K and 4000 K approximately satisfy the three conditio
@Fig. 7~a!#. Our g isoth distribution on the isotherm at 2000 K
is close to that of Alfe` et al.2 from about 140 to 243 GPa, bu
both distributions rapidly part with a decrease in press
1-6
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from 140 GPa. A calculatedgH distribution and theg distri-
bution depicted in Fig. 6 are shown in Fig. 7~b!. The differ-
ence between these distributions is slight. Thus, the G¨n-
eisen coefficient is only slightly temperature dependent.22

E. Sound velocity

We calculate adiabatic sound velocities in the liquid ph
range above 298 GPa using the equationCs

5(VH /V0)US@11seH2sV0(g/VH)eH
2 #/(12seH),3 where

c54089.0 m/s,s51.5470,eH5UP /US , andg is the Grün-
eisen coefficient for theTH(pH) liquid Hugoniot of Alfè
et al.4 The values ofc and s were obtained by fittingUS
5c1sUP to the refinedUS2UP data of Brownet al.7 in the
region above 260 GPa. In Fig. 8, our calculatedCs distribu-
tion is compared with the experimental sound velocity d
in the liquid phase range above 260 GPa of Brown a
McQueen3 and Nguyen and Holmes.23 Our sound velocity
curve agrees well with the experimental data.

IV. THERMAL EQUATION OF STATE

Dubrovinsky et al.24 collected the experimental data o
Mao et al. ~300 K!,8 Jephcoatet al. ~300 K!,25 Huanget al.
~723 K!,26 Funamoriet al. ~950–1050, 1150–1250 K!,27 and
Saxena et al. ~300, 650–750, 950–1050, 1150–125

FIG. 7. ~a! Distributions of the Gru¨neisen coefficientg isoth on
isotherms at 2000~heavy solid curve! and 4000 K~heavy dashed
curve! and ab initio g isoth on isotherms at 2000~solid curve! and
4000 K ~dashed curve! of Alfè et al. ~Ref. 2! as a function of pres-
surep. ~b! Distributions of temperature-dependent Gru¨neisen coef-
ficient gH in the solid phase range~solid curve! and temperature-
independentg for the solid Hugoniot of Alfe` et al. ~Ref. 4! ~dashed
curve! as a function of Hugoniot pressurepH .
14420
e

a
d

K!,24,28–31and determined a thermal equation of state of h
Fe. We can obtain a static pressure at a temperatureT1 higher
than T0 , pT1

(V), from their thermal equation of state. Fu

ther using a Mie-Gru¨neisen equation includingT1 and
pT1

(V), we here construct a thermodynamic theory fro

which TH , CVH , andg can be deduced.
Under the same assumptions as those used in Sec.

that is, CV(V,T)53NkB1G(V)T and g(V,T)[g(V), the
following Mie-Grüneisen equation, integrated from a sta
compression state atT1 to a Hugoniot state, is derived:

pH2pT1
5

1

2

g

V
~TH2T1!@6NkB1G~TH1T1!#, ~14!

wherepT1
is obtained from the thermal equation of state

Dubrovinsky et al.24 Equations~4! and ~14!, in which V
[VH , yield an equation forG(pH) including an unknown
variableTH :

G5
6NkB@~TH2T1!~pH2pT0

!2~TH2T0!~pH2pT1
!#

~TH
2 2T0

2!~pH2pT1
!2~TH

2 2T1
2!~pH2pT0

!
.

~15!

TABLE I. Hugoniot temperaturesTH , constant-volume specific
heats on the HugoniotCVH /NkB , and Grüneisen coefficientsg for
some solid Hugoniot pressurespH calculated forT15500 K.

pH ~GPa! TH ~K! CVH /NkB g

40 6.11 3.00 3.65
60 219 2.79 3.85
80 237 2.75 4.01
100 243 2.72 4.15
120 246 2.70 4.26
140 247 2.68 4.36
160 247 2.66 4.44
180 193 2.72 4.52
200 212 2.68 4.59
220 3290 22.11 4.65
243 4710 24.63 4.71

FIG. 8. Sound velocity distribution for the liquid Hugoniot from
298 to 400 GPa of Alfe` et al. ~Ref. 4! ~heavy solid curve! as a
function of Hugoniot pressurepH and the experimental data fo
sound velocity of Brown and McQueen~Ref. 3! ~circles! and
Nguyen and Holmes~Ref. 23! ~solid circles!.
1-7
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YUKIO SANO AND TOMOKAZU SANO PHYSICAL REVIEW B 69, 144201 ~2004!
When Eq.~11! for g/VH and Eq.~15! are incorporated in Eq
~1!, Eq. ~1! has onlyTH as unknown. We first calculateTH
using Eq.~1!, thenG(pH) from Eq. ~15! using theTH , and
finally g(pH) from Eq. ~11! using theTH andG(pH).

We calculatedTH , CVH , andg in the solid phase rang
from 40 to 243 GPa forT1 between 300 and 1250 K usin
the thermoelastic parameters determined by Dubrovin
et al.24 However, as shown in Table I forT15500 K as an
example, we could not obtain meaningful results for t
three variables for anyT1, suggesting that their therma
equation of state is not sufficiently precise to determine th
variables. The necessity of a more precise thermal equa
of state might be suggested by Eq.~15!. The first term in the
bracket of the numerator of the right side of Eq.~15!, (TH
2T1)(pH2pT0

), has a value near that of the second ter

(TH2T0)(pH2pT1
). The same is true for the denominato

V. CONCLUSIONS

The Grüneisen coefficientsg and the constant-volum
specific heatsCVH on Hugoniots for solid and liquid Fe wer
evaluated using thermodynamic relations derived by
method that combines the Walsh-Christian and M
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Grüneisen equations. The validity of our assumptions thag
is a function of specific volume alone and thatCV is a linear
function of temperature was verified in the solid phase ran
We tested the reliability of theab initio results using the
thermodynamic relations including reliable experimen
data. We found that two previously existingab initio tem-
perature Hugoniots are inaccurate and that theab initio
method incorrectly predicted agH distribution which is sig-
nificantly lower than ourg distribution in the lower pressure
region in the solid phase range. The reliability of theab initio
results should be also assessed using these thermodyn
relations in theab initio calculations, and any needed im
provements implemented. In the liquid phase range, theab i-
nitio gH distribution had a smaller gradient than ourg dis-
tribution. This difference was caused by a smaller slope
the G distribution corresponding to thegH distribution. The
sound velocities calculated using thisg distribution agreed
well with the experimental data.
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