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Thermal properties of close-packed Fe up to 400 GPa determined using Hugoniot functions
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A quadratic equation for the temperature-independenn@sen coefficienty was derived by a method in
which the Walsh-Christian and Mie-Graisen equations are combined. Some previously existimmitio
temperature Hugoniots for hexagonal close-packed solid Fe are inaccurate because the constant-volume spe-
cific heats on the HugoniotS,,y, which are related uniquely to the solutions of the quadratic equation, have
values that are too small. By, distribution in the solid phase range was demonstrated to agree approximately
with a previousab initio distribution. In contrast, the correspondingdistribution was significantly different
from theab initio distribution in the lower pressure region, and thdistribution in the liquid phase range had
a considerably larger gradient than thie initio distribution. The causes of these disagreements are clarified.

DOI: 10.1103/PhysRevB.69.144201 PACS nunider64.70.Dv, 64.30+t, 62.50+p, 47.40.Nm

[. INTRODUCTION temperature and that the Grisen coefficient is a function
of specific volume alone. For solid Fe, the validity of these

The thermoelastic properties of hexagonal close-packetivo assumptions was verified. We obtained the Hugoniot
(hcp Fe at pressures up to 400 GPa were recently investipressures included in the solution of the quadratic equation
gated using thab initio approach. Wasserman, Stixrude, andfrom the experimental Hugoniot for Fe of Broven al3’ and
Cohert used a tight-binding total-energy method and the celthe quasistatic pressures at an ambient temperature from the
model of vibrational partition function, while the calcula- experimental equation of state for Fe of Mabal® Unfor-
tions of Alfe, Price, and Gillah were based on density- tunately, there is no existing experimental temperature Hugo-
function theory(DFT) using a generalized-gradient approxi- niot for Fe available from which the Hugoniot temperatures
mation. The Hugoniot pressures calculated by Cosieal!  in the solution can be found. For the Hugoniot temperatures,

agreed almost perfectly with the experimental data of Browntherefore, we adopted the theoretical temperature Hugoniots
and McQueehin the region of 150 to 240 GPa, as did the for solid Fe of Cohenetal,! Alfé etal.? Brown and

different statistical-mechanical calculations of Al al? McQueer? and Alfe et al?; for liquid Fe, we relied on the

The temperature Hugoniots calculated by Cole¢ml. and  theoretical work of Alfeet al* and Belonoshko, Ahuja, and
Alfehet aI.approxmlate those ?f Bhrown anthc_Quien. Johanssof.Based on the experimental pressure Hugoniot
th edck;) nséarr]]t-voturlnle hspeu ic heats on :c € |st|ot erm”s C83nd static equation of state, we assess the reliability of the
culated by Loheret a " OWever, are signilicantly sSmafler o, o mentioned temperature Hugoniots. The inaccuracy of
than those of Alfeet al* The main reason for this seems to some of the four temperature Hugoniots for solid Fe was

. . . ‘E Il 2 _

25;‘ (?[haerlzairsmaoglcj é:iglrrgic&tlecigﬁ ér;clljuec:\t,evi eb%/ the éial\e/zlr??o- found by showing that the constant-volume specific heats
y ealong the Hugoniots, which are related uniquely to the solu-

efficients on isotherms in the lower pressure region in the. ¢ th drati . b ller th hei
solid phase range predicted by both groups. The distributiononS ©f the quadratic equation, become smaller than their
armonic contribution. In addition, our Quaisen coeffi-

of Cohenet al. increase rapidly with a decrease in pressure " ; - el
in the lower pressure region, whereas those of Adfeal. cients for the temperature Hugoniots for solid and liquid Fe

vary only slightly in the solid phase range. It is important Of Alfé et al* are compared with thab initio resulf and the
that we clarify the cause of this enigmatic difference betweeresult calculated by another thermodynamic formaftSiii-
these distributions in the lower pressure region, because agally, we evaluate a thermal equation of state based on ex-
sumptions or estimates of the values of the i@isen coef- perimental data for hcp Fe by deducing the temperature
ficient have a key role in constructing parametrized equaHugoniot, the constant-volume specific heat on the Hugo-
tions of the state for F&We attempted to investigate the niot, and the Groeisen coefficient from our alternate ther-
cause of the difference by predicting the thermal propertiegnodynamic theory that incorporates the thermal equation of
of Fe using classical thermodynamics, and without relyingstate.
on theab initio method.

In this study, we derive a quadratic equation for thérGru
eisen coefficient using a method that combines the Walsh- Il. THERMODYNAMIC THEORY
Christian equation® and a Mie-Grmeisen equation inte-
grated from a statically compressed state to a Hugoniot state
at thermodynamic equilibrium. The assumptions used were The Walsh-Christian equation holds at the rear of a shock
that the constant-volume specific heat is a linear function ofvave front>®

A. Quadratic equation for the Gruineisen coefficient

0163-1829/2004/694)/1442018)/$22.50 69 144201-1 ©2004 The American Physical Society
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dTh  u 400
VHM+ V_HCVHTH:FHi 1)
300} -
where
1 dpy, 1 ?‘5" 200} .
FHZEE(VO—VH)+ 5PH, 2 <
100} 1
wherep is the pressurel is the temperaturé/ is the specific
volume,C,, is the constant-volume specific heat, anis the 0 . s s
Gruneisen coefficient. The subscript 0 refers to an ambient 0.7 0.8 0.9 1.0 1.1
state and the subscript to a Hugoniot state, as in the ex- V10~ m*/ke)
ample, Cyp=Cy(Vn,Tn)=Cyn(Vy) and yu=y(Vy,Th) . ) .
=y4(Vy). The following Mie-Grineisen equation is de- ~ FIG. 1. py(Vy) Hugoniot obtained using the quadrati¢s
rived by integratingdp=[y(V,T)/V]Cy(V,T)dT along V —Up relation of Bro_wn_et a_l. (Ref. 7) (heavy solid curveand static
= const from a static compression state at an ambient tenressure-volume distributiopr (V) of Mao et al. (Ref. 8 (solid
peratureT, to a Hugoniot state: curve.
THVR) Y(V,T) where pt =p+1 (V), in whichV=Vy, and y=y(Vy). We
pH(VH)_pTo(V):I \Vi Cu(v,DdT, (3 derive a0 uadoratic equation for/Vy by equating Egs(5)
To e q q orVy Dy eq g Eq
an :
whereV=V,, andpr is the quasistatic pressure'd. Note
that Cy,= Cyparmt Cvanharmit Cvel, Where the harmonic con- a R 2+ bl Xl 4c=0 )
tribution to the constant-volume specific h€f,,mis equal Vy Vy e
to 3Nkg to a good approximationN being the number of
atoms per unit mass arg is the Boltzmann constaptand ~ Where
where the anharmonic contributid@ znnamiS Proportional a=3Nkg(Ty—To)
to T.? First, we assume that in the region ©f to Ty as BUTH 00
defined in Eq(3), the electronic contributio® is propor- T2_T2 (Ty—To)? dT
tional to T. Then, because€y  phamit Cve=IT, WhereT b=—— °F 43Nka—1—_ % “H_ o5 — )T
; ; T H BT T av (PH=P1)TH,
=T anharmit Lel, it follows thatCy(V,T)=3Nkg+ (V)T in H H H
Eq. (3) andCyy=3Nkg+TI'(Vy) Ty in Eg. (1). Second, we
assume thaty depends only orV, irrespective ofT, in the dTy

region of Ty to Ty,. It then follows thaty,=y(V,,) in Eq. ¢=—2(Pu—Pr) dvy’ ®

(1) and y(V,T)=vy(V) in Eq. (3). For solid Fe, Secs. Il A

and 111D verify the validity of the assumptions of linear Wherea=>0, b<0 becauseé=,<0 anddTy/dV,<0, and
Cye(T) and temperature independent respectively. Equa- c>0 for Fe |_n_the pressure region of |_nterest. For Fe, there-
tion (3) is integrated under the two assumptions describedere: @ nontrivial solution of Eq(7) is given by

above to become
y —b—+b*-4ac

1y Y €)
PH=P1,= 5 (Th~ To)[6Nkg+ I'(Ty+To) |, 4

Vy 2a
Three quantitiep,, PT,: andTy included in coefficients,
where I'=T'(V) and y=vy(V). We assume thap,, and b, andc are obtained, respectively, from the experimental
hencedpy /dVy, andTy, and hencelT,;/dVy,, are known.  pressure Hugoniot of Browat al,>’ the experimental equa-
Two unknown variable€y or I'(Vy) and y(Vy) are then  tion of state of Macet al.,® and severahb initio temperature
included in Eq.(2). If pr (V) is also assumed to be known, Hugoniots'>*®presented by many authors.
then in Eq.(4), I'(V) and y(V) appear as unknowns.

We transform Eq.(1) to the following equation for B. Experimental pressure Hugoniot
I'(vy): and equation of state for Fe
1 Fu Brown, Fritz, and Fixsohrefined theUs— Up measure-
=— — . ments for hcp Fe of Brown and McQuéeand gaveU
L= T idve T (Ve T, 3'\“‘4 © P Q gavels

=3.691+1.788J,,—0.038J3 for a quadratic fit to the re-
We also obtain an equation foi(V), which is identical to ~ fined data, wherdJg and Up are in km/s. Browf trans-

(), from Eq.(4): formed the measured data into pressure-specific volume data
up to 400 GPa using the Rankine-Hugoniot jump conditions
2(Pu—Pry) [ |1 6Nkg (Fig. 1). Mao et al® reported the results of x-ray-diffraction
= ﬁ(v—) T IT (6) experiments with the diamond anvil céDDAC) to pressures
Th—To H HT 0 above 300 GPa at room temperatures on hcp Fe and gave the
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10 . . ' The Ty(py) Hugoniot calculated using Eq$¢l), (10), and
(@) (12) under the initial condition ofTy(py) =670 K at py
8r =40 GPa(Ref. 12 is shown in Fig. 2a).
o 6
= D. Ty (py) solid Hugoniots, melting curves, andT ,(py) liquid
:I 4r Hugoniots for Fe
2+ Because the material in question is a mixture of a solid
and a liquid on a melting curviel ,,(p) ], all the results ob-
00 100 200 300 400 tained forCyy and y are meaningless, even T, is used
5. (GPa) msj[ead oFFH. Qur calculations apply only to single-phase
10 H solids and liquids, but nevertheless the melting curve plays
(b) ' ' ' an important role in determining the melting incipience and
gl Belonoshko et al. completion states. Several independent attempts to obtain
ab initio melting curves were recently reportéd. Be-
o 6r lonoshkoet al® presented a melting curve that is in agree-
s ment with DAC experimental melting datsat low pressures
= 4 and is in excellent agreement with the shock melting result
~ , of 5500 K at 243 GP&.Using Egs.(1) and (11), and the
equation Cyp=3Nkg+ I Ti[['=Bc(Vy/Vo)?] of Brown
0 - - - and McQueer,whereB,=0.0612 J/kg K and y®=1.34, we
0 100 200 300 400

calculate ary(py) solid Hugoniot that intersects the melting
curve of Belonoshket al® at 221 GPa; we approximate the
ab initio Ty(py) liquid Hugoniot of Belonoshket al® by a
linear equation in the region above 260 GPa. Our value of
B.=0.0612 J/kgR is smaller than that of 0.091 J/k¢K
used by Brown and McQueérand our value ofy®=1.34 is

the same as that used by Brown and McQu&&he solid
Hugoniot, melting curve, and liquid Hugoniot are shown in
Fig. 2(b).

Alfe et al? constructed an improved DFT, which cor-
rected free energf in their previous DFF in addition they
presented a melting curve with &hcorrection, which is in
quite good agreement with the measurement of Sfienil*
and with the shock melting result of 5500 K at 243 GPa.
Finally, Alfe et al? introduced aT(py) solid Hugoniot up
to 243 GPa and @y(py) liquid Hugoniot from 298 GPa that
correctedF for consistency. The solid Hugoniot with the

Theab initio T,(py) Hugoniot for hep solid Fe of Cohen correction is very close to our solid Hugoniot that was cal-
et all in the region from 40 to 400 GPa is approximated byculated using Eq(10) and illustrated in Fig. @). Therefore,
a quadratic equation for 40p,,<100 GPa and by a linear We use our Hugoniot up to 243 GPa, where it intersects the
equation for 108 p,; <400 GPa. Th& ,(py) Hugoniot for melting curve _of Alfeet al.‘".The liquid Hygoniot is_ approxi-.
40<py <400 GPa of Alfeet al? also is approximated by a Mated by a linear equation. The solid Hugoniot, melting
quadratic equation. The solid Hugoniots of both groups aréUrve, and liquid Hugoniot are shown in Figlb .
shown in Fig. 2a). From 40 to 200 GPa, the Hugoniot of  Laio etal™ also calculated a melting curve for Fe using
Alfé et al? is in good agreement with that of Cohenalt their ab initio method. Boehler and co-workéfscompared

We can find aTy(py) solid Hugoniot which agrees well the melting curves of Belonoshiet al.® Laio et al,™ and
with the ab initio Hugoniot of Alfe et al® up to 243 GPa Alfé etal!’ with the DAC data of Boehlé?'® and demon-

from Eq. (1) using the following lineal(py) and the cor-  Strated that only the results of Lagt al,'® which are con-
respondingy/V, : siderably lower than the others, are comparable with the
DAC data. On the other hand, the experimental melting
curve of Yooetall® is considerably higher than those of
Belonoshkeet al® and Alfeet al*’in the pressure region of
interest. Burakovskget al?° presented a theory of the melt-
ing of elements as a dislocation-mediated phase transition.
Burakovskyet al?! derived an equation for the pressure de-
pendence of the melting temperatures of the elements, calcu-
(11  lated the melting curves for 24 elements, and obtained good
agreement with existing experimental data. For Fe, however,

p, (GPa)

FIG. 2. (a) Solid Hugoniots of Coheret al. (Ref. 1) (dashed
curve, Alfe et al. (Ref. 2 (solid curve, and that calculated usirg
given by Eq.(10) (heavy solid curvg (b) Solid Hugoniot of Brown
and McQueen(Ref. 3 melting curve, and liquid Hugoniot of Be-
lonoshkoet al. (Ref. 9 (heavy dotted curvgsand solid Hugoniot,
melting curve, and liquid Hugoniot of Alfet al. (Ref. 4 (heavy
solid curves. All solid Hugoniots shown ina) and (b) start from
the point(40 GPa, 670 K (Ref. 12.

Birch-Murnaghan equation of state parameters \&f,
=6.73 cni/mol, Ky,=165 GPa, and ,,=5.33. The Birch-
Murnaghan equation of staparo(V) is shown in Fig. 1.

C. Ty(py) solid Hugoniots for Fe

I'(py)=arpu+br, (10

where  ap=-8.4904x10 ° J/kgK?’GPa and by
=0.080145 J/kg R The equation fory/Vy, which is re-
lated toI', is obtained from Eq(4):

Y 2(pu—Ppr,)
Vi (Ty—To)[6Nkg+ I (Ty+To)]"
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7, (10°K)

FIG. 3. Electronic specific hed® e /NKkg in the solid phase
range calculated frompI'(py) Ty —ab initio Cyyannamd/NKg USINg
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FIG. 4. Distributions ofl" for the solid Hugoniots of Cohen
et al. (Ref. 1) (dashed curve Alfe et al. (Ref. 2 (solid curve,
Brown and McQueelRef. 3 (heavy dotted curyeandI” given by

ab initio Cypannam formulated by incorporating the specific-heat Ed. (10) (heavy solid curvias a function of Hugoniot pressupe, .

data of Alfeet al. (Ref. 2 (solid curvé andab initio Cy e /NKkg Of
Alfé et al. (Ref. 2 at T,=3546 K for atomic volumes 8 Aand
Ty=1318 K for 9 A2 (circles.

the curve is a little higher than that of Yaa al1® We chose
the melting curves of Belonoshlet al® and Alfe et al? be-

cause they are in good agreement with the DAC data at lo
pressures and with the estimate based on the shock data

243 GPa.

lll. THERMAL PROPERTIES
A. Validity of linear Cy¢(T) assumption

Wws close

I' distributions for the liquid Hugoniots from 260 to 400 GPa of
Belonoshkoet al. (Ref. 9 (heavy dotted curye from 298 to 400
GPa of Alfeet al. (Ref. 4 (heavy solid curvg and from 298 to 400
GPa of Alfeet al. (Ref. 4 obtained by substituting=1.51 into Eq.
(5) (heavy dashed curyare also shown.

to the values(circles of the abinitio
Gyrel Of Alfe etal? at T,=3546 K for 8 A and Ty
=1318 K for 9 A3 indicating that [['(py)Th
—ab initio Cyyanharmd ~ab initio Cy e . This approximate
equation can be transformed b initio Cype~[T'(Py)
—abinitiol’ ;pnaml VH) 1Ty, that is, to abinitio Cypyg
~I'¢(Vy) Ty . This means that the electronic specific heats
at temperature3 within the regions of 0 tal', for the spe-

Alfe etal? calculated the electronic specific heat cific volumes of interest, Cye(V,T), are expressed ap-

Cpe T)[=Cye] of the rigid perfect lattice for hcp solid Fe

proximately byI'(V)T. The validity of our linearCy,o(T)

in the region of 0 to 6000 K using theb initio method and  assumption was thus verified.

plotted the resulting values for atomic volumes of 7.8 A

(V4=0.7548<10 * m*/kg and py=377.1 GPa), 8.0 A
(Vy=0.8627x 10 * m/kg, pp=166.8 GPa, and Ty
=3546 K), 9.0A8 (V4=0.9705<10 * m* kg, pu
=73.75 GPa, andT;=1318 K), and 10.0 A In these
equations,py was calculated fromVy using thePy(Vy)
Hugoniot of Brownet al’ andT, was then calculated from
py using theTy(py) solid Hugoniot of Alfe et al? The
Cper( T) distribution for 7 A is the closest to a straight line.

B. Constant-volume specific heat

The distributions ofl"(py) for the T(py) solid Hugoni-
ots of Coheret al! and Alfe et al? are obtained by substi-
tuting solution(9) into Eq. (6) [Fig. 4]. The difference be-
tween the twol’ distributions is due only to the difference
between theT(py) Hugoniots. Since th&y(py) Hugoni-
ots of Cohenet al! and Alfe et al? are similar below 200

When the volume is large, the deviation of the distributionGPa, thel’(py) for both Hugoniots are also similar. Here we
from a straight line is also large in the whole region of 0 todefine the rejection of a set @y, Cyy, andy (or yy) by

6000 K, but it does not become large in a portionTgfto
Ty, defined in Eq.3), becauseTy is lower than 6000 K.
The deviations over the region @f, to T for the volumes

the relationshipdI'(py)/dpy=0, becausedl'y/dp,y<0°®
and, as is clear from thab initio Cyannarmderived above,
dI' spharf dpy<0. A situation in whichdI'(py)/dpy>0

of interest are not great, so we consider that our assumptiomight cause the values @, to drop below 3Nkg, that is,

regarding the constant-volume heat in the regionTgfto
Ty, expressed by =1"gT or Cy=3Nkg+I'T, is valid.
To substantiate the validity o€y=1"¢T for hcp solid
Fe, we evaluate[I'(py)Ty—ab initio Cypanharmd, Where
I'(py) is given by Eq.(10), and theab initio Cy ¢ of Alfe
etal® We obtained ab initio Cypanname (1/6000]0.28
+0.25VA—V)/(VAo—VE) ] TuNKkg, whereV,=7 andVg
=10 A3, using theab initio specific-heat data of Alfet al?
The calculated I'(py) Ty —ab initio Cyyanhaml/Nkg distri-
bution as a function of the Hugoniot temperatufg,
is shown in Fig. 3. The calculated distributi¢solid curve

below the harmonic contribution value. Thg(py) Hugo-
niots of Coheret al! and Alfe et al? are not correct in the
regions below at least 210 and 180 GPa, respectively. The
pu(Vy) Hugoniots of both groug€ greatly deviate from the
experimental Hugoniot used in our calculations in the pres-
sure region below 150 GPa; thus, this deviation may result in
regions wheraI'(py)/dpy=0.

The distributions ofl"’(py) for the Ty(py) liquid Hugo-
niots of Alfe et al* and Belonoshket al® are shown in Fig.
4. Thel'(py) distribution for theT(py) liquid Hugoniot of
Alfe et al® is almost parallel to and is greatly above the
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FIG. 6. Distributions of the Gmeisen coefficieny for the solid
Hugoniot of Alfe et al. (Ref. 2 (solid curve, y for the solid and
liquid Hugoniots of Alfeet al. (Ref. 4 (heavy solid curvg ab initio
vn estimated from theb initio ., distributions on isotherms in
the solid phase range amdb initio v, in the liquid phase range of
Alfe et al. (Ref. 2 (heavy dashed curyeas a function of Hugoniot
pressurepy, and y(p) along the melting curve of Anderson and
Isaak(Ref. 10 (chain curvé.

FIG. 5. Distributions of constant-volume specific h€gt,/Nkg
obtained usind" for the solid Hugoniots of Coheat al. (Ref. 1)
(dashed curve Alfe et al. (Ref. 2 (solid curve, Brown and Mc-
Queen (Ref. 3 with B,=0.0612 (heavy dotted curye and
0.091 J/kg R (dotted curvg T given by Eq.(10) (heavy solid
curve), andI for the solid Hugoniot of Alfeet al. (Ref. 4 obtained
using estimated, (heavy dashed curyes a function of Hugoniot
pressurepy . Distributions ofCy, obtained usind” for the liquid
Hugoniots from 260 to 400 GPa of Belonoshkot al. (Ref. 9

(heavy dotted curjeand from 298 to 400 GPa of Alfet al. (Ref. ~ —ab initio CvHanham revealed f?b.O_VG intoab initio Cun
4) (heavy solid curviare also shown. =3Nkg+ab initio Cypyannarmit @b initio Cy e, We obtain
abinitio  Cyy~3Nkg+IT'(py)Ty.  Therefore, Cyy

linear I'(py) distribution (Fig. 4) in the solid phase range ~abinitio Cyy.

given by Eq.(10). The same is true for thE(py) distribu- . L .
tion for the Ty(py) liquid Hugoniot of Belonoshket al.® C. Temperature-independent Grineisen coefficient

although thel'(py) distribution (Fig. 4) of Brown and The distributions ofy(py,) for the Ty (py) solid Hugoni-
McQueeri with B.=0.0612 J/kgK andy*=1.34 is not lin-  ots of Alfe et al? and Alfe et al* calculated using Ec(9)
ear. and Eq.(11), respectively, are shown in Fig. 6. As was the
The Cyy(py)/Nkg distributions calculated using the case with they distribution of Coheret al.! both y distri-
F(pH) distributions described above are shown in 'Fig. 5. Aputions increase rapidly with a decreasepjn. An ab initio
portion of the smallCyy(py) on the Tyy(py) Hugoniot of o, (p, distribution is estimated from theb initio isou{p)
Cohenet al." below 210 GPa was excluded, and the distri-gistributions of Alfeet al? on isotherms at 2000 and 4000 K
bution of Brown and McQueémwith 8,=0.091 J/kgK and i the solid phase range below 243 GRaavy dashed curve
¥°=1.34 was added. Th€yu(pu)/Nkg on the Ty(Pu)  in Fig. 6). In the region of 170 to 243 GPa, the estimaigd
Hugoniot of Alfe et al? decreases greatly with a decrease iNdistribution is just above the distribution for theT(py)
py from about 180 GPa, reaches a value of 3 at about 7@pjig Hugoniot of Alfeet al* As p,; decreases from about
GPa, and further lowers untdy reaches 40 GPa. Thus, the 170 GPa,y increases rapidly up to 3.8 at 40 GPa, byt
Cyy distribution includes a region of disagreement from 70jncreases only a litle. We find that whileCyy
to 180 GPa wherell'/dp,=0 andCyy=3Nkg and an un- < ap initio C4 in the solid phase range as demonstrated
physical portion from 40 to 70 GPa whetd'/dp,=0 and  gpove, the difference between both distributions is signifi-
Cyn<3Nkg. The Cyy(py) distribution of Brown and  cantly large in this lower pressure region. Becauseathé
McQueeri with B.=0.091 J/kgK and y°=1.34 is accept- nitio p,(V,;) Hugoniot of Alfe et al? agrees well with the
able becausel’(py)/dpy<0, but it is lower than that on  experimental dafd in the region above about 80 GPa, the
the T,y(py) Hugoniot of Alfe et al* This difference can be experimental Hugoniot used in our calculations could not
explained by the anharmonic contribution neglected byhave caused the difference from thg distribution above 80
Brown and McQueen.In fact, in the solid phase range, Gpa. This suggests that ta® initio method may be incom-
[Be(Vy Vo) 7eTHJrab initio Cynanhard ~ €OINcides  almost  plete in some manner that is responsible for the prediction of
perfectly with I'(py) Ty, whereI'(py) [dI'(py)/dpy<<0]  the significantly lower distribution of the Gneisen coeffi-
is given by Eq.(10). In the liquid phase range, the,(py) cient in the lower pressure region.
Hugoniots of Belonoshket al® and Brown and McQueén We can use our method to investigate the cause of the
with 8,=0.091 J/kgK and y°=1.34 are close and both significantly lower y, distribution by predicting theC,y
Cyn(py) distributions are also similar, as shown in Fig. 5. corresponding to the estimated initio y, . Note that when
Here we compare the constant-volume specific heaty is given, there is &€, that provides the same Hugoniot
on the Ty(py) solid Hugoniot of Alfe etal,* Cyy  temperature as th€, of Alfé et al* We substitute thab i-
[=3Nkg+T'(py)Th], with the abinito Cyy of nitio yy into y (=vy) in Eq. (5 and obtain theC,,, distri-
Alfe etal? By substituting abinitio Cyne~I'(py)Ty  bution on theT,(py) solid Hugoniot of Alfe et al? by
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evaluating Eq(5) (heavy dashed curve in Fig).5The Hugo-

PHYSICAL REVIEW B 69, 144201 (2004

ably lower than the distributions for thg,(py) solid and

niot Cy, distribution comprises three regions: an acceptabldiquid Hugoniots of Alfeet al?

region above about 140 GPa wheat€&/dp,<0, which is
close to theC,y distribution obtained from the linear

given by Eq.(10); an unacceptable portion from about 55 to

140 GPa wherel'/dp,=0 andC,4=3NKkg, in which this
function is lower than th€,, distribution obtained from the

D. Temperature dependence of the Graeisen coefficient

We derived Eq.(9) from Egs.(1) and (3) under the as-
sumption that the Gneisen coefficient is temperature inde-
pendent. However, thab initio coefficients y;go, 0N iso-

linear I'; and an unphysical portion below 55 GPa wheretherms at 2000, 4000, and 6000 K of Cotetral! and Alfe

dI'/dpy=0 and Cy<3Nkg. The unacceptable and un-
physical portions ofC thus result from the significantly

lower vy, distribution in the region below 140 GPa. In con-

et al? showed that the Gneisen coefficient is temperature
dependent. Although the temperature dependéit,,Ty)
cannot be determined uniquely from E@$) and (3) alone,

trast, in theab initio method mentioned above, the accept- we deduceyy, in the solid phase range from E€l) using
able Cyy near the constant-volume specific heat obtainedEq. (10) and the Hugoniot shifted from th&,(py) solid
from the linear[’ corresponds to the significantly smaller Hugoniot of Alfe et al* Using the deducedy,, we then

vy . This indicates that thab initio method incorrectly pre-
dicted the Grneisen coefficient. Theb initio method*
should be improved so that a set®f, Cy, andyy would
be correctly deduced.

A distribution of y(py) for the Ty(py) liquid Hugoniot
of Alfe et al,* calculated using Eq9), is shown in Fig. 6z

is larger at the melting completion pressure of 298 than at the

melting incipience pressure of 243 GPa. Equaltibd) indi-
cates that this is due to the larger value pfi¢- pr,) at 298
GPa, in spite of the smaller value \@f; and the larger values
of Ty andI” (Fig. 4) at 298 GPa. Note that the value pfat

298 GPa varies with the gradient of the liquid Hugoniot,

becausd” depends o Ty /dVy [see Eq(5)]. On the other
hand, y also decreases with an increasepip in the liquid

attempt to obtainysyy, from y(V,T)=y(V)+w(V)T ex-
pressed by the sum of a temperature-independent term,
vi(V), and a temperature-dependent tewly) T. It follows

that yy= i(Vy) +w(Vy) Ty on a Hugoniot. We derive the
following equation forw(py) by substitutingy(V,T) into

Eq. (3):

Vu(Pu—pr,) — yud

w= e_THd ' (12)
where
d=3Nkg(Ty—To)+ 3 (TG3—T9),
e=32Nkg(TZ—T3) + iI(T3-T3), (13

phase range, as was the case in the solid phase range. Thi%/\jﬁerel“(pH) is given by Eq.(10). We first deducan(py)

due to the decrease W, and the increase i in spite of
the decrease il with increasingpy .

The ab initio y(py) distribution of Alfe et al? in the
liquid phase range from 280 to 340 GRhaeavy dashed
curve,yy=~1.51) is shown in Fig. 6. Thab initio yy distri-
bution approximates the distribution (heavy solid curve
for the liquid Hugoniot of Alfeet al* although the difference

from Eq. (12) using the shiftedl'y(py) Hugoniot, then ob-
tain yi(py) from y=yy—wTy, and finally determine
Yisotr(P) - Here, ¥isotr(P) = ¥i(P) +W(P) Tisorm, Where yi(p)
= 7i(pn) andw(p)=w(py).

We now verify the validity of our assumption concerning
the Grineisen coefficient. We evaluat®(py) in the case in
which the shifted Hugoniot is lower than thg,(py) solid

in slope between both distributions is large. To investigateHugoniot of Alfe et al* by 12 K at 243 GP4for the sake of

the cause of the large slope difference, we evalliater the
liquid Hugoniot of Alfe et al* by substitutingy, =1.51 into

simplicity, only the maximum difference between both
Hugoniots is noted In this casew was clearly negative

Eqg. (5). TheT distribution evaluated from 298 to 400 GPa between 175 and 243 GPa. We find that 0 appeared in

(heavy dashed curyés shown in Fig. 4. Both" distributions
(heavy dashed and solid curyelsave a slope difference.
Thus, the slope difference between both of théor Cy)

the ab initio result of Cohenet al! Figure 7a) illustrates
our vyisomn distributions on isotherms at 2000 and 4000 K in
the case where the shifted Hugoniot is higher by 12 K at 243

. - - - 1 1 111 ¥ 2
distributions caused the large slope difference between thePa. together with thab initio results of Alfeet al” Here,

vy and vy distributions.

Anderson and Isaak found the Grmeisen parameter
v(p) along the melting curvé ,(p) of hcp Fe by a method
of combining the Lindemann melting equation with the Vine
equation of state alm,, whereTmo is the melting tempera-

ture atp=0. They assumeg(V) = yo(V/V,y)9, whereqis a
constant and/, is the specific volume at the initial state of
p=0 andTy,=Tp,, and transformedy (V) = yo(V/V()? to
the y(p) for q=1, y=1.92, andTmoz 1600 K by further
assumingC,,=3Nkg (chain curve in Fig. § In the solid
phase range, theiy(p) distribution also increases rapidly

the shift of the solid Hugoniot was adjusted so that the fol-
lowing three conditions would be satisfiett) Our yisom
distribution on an isotherm at 2000 K is close to that of Alfe

i€t al? at 243 GPa(2) the same is true for thesyy, distribu-

tion on the isotherm at 4000 K; ar{8) w>0 and the forms
of both y,,o distributions on the isotherm at 2000 (&nd
4000 K) do not differ greatly in the pressure region of inter-
est. We find thatv is clearly positive between 130 and 243
GPa and that ouy,.., distributions on the isotherms at 2000
K and 4000 K approximately satisfy the three conditions
[Fig. 7(@)]. Our vyisum distribution on the isotherm at 2000 K
is close to that of Alfeet al2 from about 140 to 243 GPa, but

with a decrease ip, but the overall magnitude is consider- both distributions rapidly part with a decrease in pressure

144201-6



THERMAL PROPERTIES OF CLOSE-PACKED Fe UP TO. ..

20
19}
18}
17}
£ 16}
15}
14}
13

200 300

p (GPa)

100

(b)

yH’ 4

300

FIG. 7. (a) Distributions of the Groeisen coefficienty;e, on
isotherms at 200@heavy solid curveand 4000 K(heavy dashed
curve and ab initio ;5o ON isotherms at 2000solid curvg and
4000 K (dashed curveof Alfe et al. (Ref. 2 as a function of pres-
surep. (b) Distributions of temperature-dependent Geisen coef-
ficient v, in the solid phase rangesolid curve and temperature-
independent for the solid Hugoniot of Alfeet al. (Ref. 4 (dashed
curve as a function of Hugoniot pressupg, .

from 140 GPa. A calculategh, distribution and they distri-
bution depicted in Fig. 6 are shown in Figb}. The differ-
ence between these distributions is slight. Thus, thenGru
eisen coefficient is only slightly temperature dependént.

E. Sound velocity

We calculate adiabatic sound velocities in the liquid phase

range above 298 GPa using the equatio@g
=(Vu/Vo)Ud 1+sey—sVo(¥/Vy) €3 1/(1—sey),® where
c=4089.0 m/ss=1.5470,e4=Up/Ug, andy is the Grun-
eisen coefficient for thely(py) liquid Hugoniot of Alfe
et al? The values ofc and s were obtained by fittingJ g
=c+sUp to the refinedJ s— Up data of Brownet al.” in the
region above 260 GPa. In Fig. 8, our calculaddistribu-

tion is compared with the experimental sound velocity data
in the liquid phase range above 260 GPa of Brown an

McQueer and Nguyen and Holmés.Our sound velocity
curve agrees well with the experimental data.

IV. THERMAL EQUATION OF STATE

Dubrovinsky et al?* collected the experimental data of

Mao et al. (300 K),2 Jephcoatt al. (300 K),?° Huanget al.
(723 K),?® Funamoriet al. (950—1050, 1150—1250)K’ and
Saxena et al.

(300, 650-750, 950-1050, 1150-1250

PHYSICAL REVIEWEB, 144201 (2004
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FIG. 8. Sound velocity distribution for the liquid Hugoniot from
298 to 400 GPa of Alfeet al. (Ref. 4 (heavy solid curveas a
function of Hugoniot pressurgy, and the experimental data for
sound velocity of Brown and McQuee(Ref. 3 (circles and
Nguyen and HolmegRef. 23 (solid circles.

K),2428-31and determined a thermal equation of state of hcp

Fe. We can obtain a static pressure at a temperatuhégher
thanTy, pTl(V), from their thermal equation of state. Fur-
ther using a Mie-Grmeisen equation includingr; and
pTl(V), we here construct a thermodynamic theory from
which T, Cyy, andy can be deduced.

Under the same assumptions as those used in Sec. Il A,
that is, Cy(V,T)=3Nkg+I'(V)T and y(V,T)=y(V), the
following Mie-Gruneisen equation, integrated from a static
compression state at; to a Hugoniot state, is derived:

ly
Ph=PT, =5 V(TH_Tl)[GN ke+T(Ty+Ty)], (14

whereps, is obtained from the thermal equation of state of

Dubrovinsky et al?* Equations(4) and (14), in which V
=Vy, yield an equation fol'(py) including an unknown
variableTy:

B 6Nkg[ (Th=T1)(Py—P1,) = (Th=To)(PH—PT1,)]
(TA=To)(pu—pr)—(TA=TD(Pu—Pr)

(15

TABLE |. Hugoniot temperature$,,, constant-volume specific
heats on the Hugonid®,/Nkg, and Grueisen coefficienty for
some solid Hugoniot pressureg calculated forT, =500 K.

py (GPa Ty (K) Cvn/NKkg Y
40 6.11 3.00 3.65
60 219 2.79 3.85
237 2.75 4.01
243 2.72 4.15
246 2.70 4.26
140 247 2.68 4.36
160 247 2.66 4.44
180 193 2.72 4.52
200 212 2.68 4.59
220 3290 —-2.11 4.65
243 4710 —4.63 4.71
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When Eq.(11) for v/V4 and Eq.(15) are incorporated in Eq.
(1), Eq. (1) has onlyTy as unknown. We first calculafg,

Gruneisen equations. The validity of our assumptions that
is a function of specific volume alone and ti@ is a linear
using Eq.(1), thenI'(py) from Eg. (15) using theTy, and  function of temperature was verified in the solid phase range.
finally y(py) from Eqg. (11) using theT, andI'(py). We tested the reliability of theb initio results using the
We calculatedly, Cyy, andy in the solid phase range thermodynamic relations including reliable experimental
from 40 to 243 GPa foil ; between 300 and 1250 K using data. We found that two previously existirap initio tem-
the thermoelastic parameters determined by Dubrovinskperature Hugoniots are inaccurate and that &#teinitio
et al?* However, as shown in Table | f6F;=500 K as an method incorrectly predicted g distribution which is sig-
example, we could not obtain meaningful results for thenificantly lower than oury distribution in the lower pressure
three variables for anyl;, suggesting that their thermal region in the solid phase range. The reliability of #ieinitio
equation of state is not sufficiently precise to determine thesegesults should be also assessed using these thermodynamic
variables. The necessity of a more precise thermal equatiorelations in theab initio calculations, and any needed im-
of state might be suggested by Ef5). The first term in the provements implemented. In the liquid phase rangeathi
bracket of the numerator of the right side of E@5), (T4 nitio yy distribution had a smaller gradient than ourdis-
—T1)(Py—Pr,), has a value near that of the second term ribution. This difference was caused by a smaller slope of
(Th—To)(Py—pr)- The same is true for the denominator. the I" distribution corresponding to the distribution. The
sound velocities calculated using thjsdistribution agreed

well with the experimental data.
V. CONCLUSIONS

The Grineisen coefficientsy and the constant-volume
specific heat€,,y on Hugoniots for solid and liquid Fe were

evaluated using thermodynamic relations derived by a The authors wish to thank Dr. Alfef University College
method that combines the Walsh-Christian and Mie-London for helpful discussions.
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