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Introduction

Throughout this paper all rings will be commutative with identities and
R will always denote a Noetherian local domain with maximal ideal M.

In section one, we assume that depth R=1, (Krull) dim R>1 and the
integral closure of R is a finite R-module. It is well known that a non-zero
principal ideal aR (# R) has an embedded prime divisor M. Also, see [2, §5].
More generally, we consider the reason of the occurrence of an embedded pri-
mary component.

In section two, we assume that depth R=d<dimR and R is a Nagata
local domain satisfying the demension formula. In treating this case, we can
reduce to the case that depth R=1, using the theory of Rees rings. Hence we
will study an embedded primary component in this manner.

Our general reference for undefined terminology is [4].

1. The case of Rings of depth one

Throughout this section, (R, M) denotes a Noetherian local domian such
that depth R=1, dim R<1 and the integral closure R is a finite R-module. For
an element o of the quotient field of R, we put I,={x&R/ax&R}. Moreover,
we put

A = {aeR/I,DM' for some positive integer I} .

From [1, 3. 24], it follows immediately that depth R=1 if and only if I,=M for
some element « of the quotient field of R. From [3, Exercise 3, p. 12] and
dimR>1, we have acR. Hence =4 and a&R. Thus A+R. Also it
follows that 4 is an intermediate ring between R and R. In fact, for any e,
BE A, there exist positive integers / and k such that [,DM' and I;DM*. Since
I,gDI,-1y and I,,D1,-I, we have I,z M"* and I,D M'**. Hence
a+B&€A and aBEA. Moreover, the conductor ideal ¢(4/R)=R: 4 is an M-
primary ideal and A is the largest ring among the set {B/B is an intermediate
ring between R and R such that ¢(B/R) is M-primary}. For, since A=Ra,+
--+Ra, for some elements «,, -++, a,, there exist natural numbers ; (1<i<n)
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such that I, DM". Put l=Il+---+I,. We have M'ACR, that is, M'C¢(4/R).
Hence ¢(4/R) is M-primary. Let B be an intermediate ring between R and R
and ¢(B/R) be M-primary. Since M'BCR for some integer /, we have I,D M’
for any element b of B. From the definition of A, it follows that b= 4, that is,
BcA.

First we recall the following definitions.

DerFINITION. (1) Let I be an ideal of R. I is called contractible if
J NR=I for some intermediate ring B (= R) between R and A4 and some ideal
J of B.

(2) Let I be an ideal of R. Put R(I)={acsd/alcC I}.
This ring R([) is called the coefficient ring of I.

(3) PutIz'={acd/al CR}.

ReMARK. Let I (3= R) be an ideal of R. Then I3'2R. In fact, since
A=ER, there exists an element o €A such that I,=M. Hence ool CR.

Lemma 1- Let I be an ideal of R. Then I=] N R for some ideal J of A
if and only if IANR=I1. Moreover, if these conditions are satisfied, Iz'=R(I).
(Consequently, Iz is an intermediate ring between R and A.)

Proof. The first statement is easy and so the second remains to be proved.
We assume that JA N R=1. Take any element ¢ of I3'. Then alCIANR=L.
Hence a=R(I). Thus Iz'cR(I). Clearly R(I)cC Iz, which implies Iz'=R([).

Proposition 2. Let I (=% R) be an ideal of R. Then I is not contractible if
and only if R(I)=R.

Proof. First, we prove the “only if” part. Put B=R(I). Suppose that
B=2R. Since I is also an ideal of B, we have IBNR=1. Thus I is contrac-
tible. This contradicts the assumption.

Conversely, suppose that I is contractible. So there exists an intermediate
ring B (#R) between R and A such that J N R=I for some ideal Jin B. Clearly
IBNR=I. Put C={B<B|BICR}. Then R&CcR(I). Infact,there exists
an element a €B—R. Since I, is an M-primary ideal, there exists some element
a of R such that M=1I,: aR=1,, and so we can take aa instead of a@. Since
IcM,aeCand a&R. Since CICIBNR=I, CCR(I). Thus R&CCR(I).
The proof is complete.

Proposition 3. Let I be an ideal of R and let I=Q,N -+ NQ; be an irre-
dundant primary decomposition of I where Q; is a Py-primary ideal for i=1, -, ¢.
If P, M for every i (1<i<t), then IANR=I.

Proof. Itis clear that /TcIANR. We shall prove that JANRCI. Since
P,< M, we see that P;Dc(A/R). Hence Rp,=Ap, for 1<i<t. Thus
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(IANR)p,=IRp,CQO;Rp, and so IJANRCQ; for 1<i<z. Consequently IAN
Rcl.

Theorem 4. Let I be an ideal of R with height I<dim R. If R(I)=R,
then I has an embedded M-primary component.

Proof. Suppose that I has no embedded M-primary components. From
Proposition 3, we have JANR=1. By Lemma 1, we have Iz'=R(I). Since
Iz'2R by Remark, it contradicts the assumption. The proof is complete.

More precisely, Theorem 4 can be stated as follows:

Theorem 5. Let I be an ideal of R with height I<dim R. Also, let I=
0.N0,N-NO:NQ be an irredundant primary decomposition, where Q; is P;-
primary (i=1, -+, t) and P;+= M (i=1, ---,t). If RU)=R, then Q is an M-
primary ideal such that R(Q)=R.

Proof. By Theorem 4, an M-primary component Q must occur in the
primary decomposition. Put J=0Q,N -+ NQ,. By Proposition 3, we have
JANR=]. So Jz'=R(J) by Lemma 1. Suppose that R(Q)=2R. Then we
claim that there exists an element ¢ R(Q)—R such that I,=M. Since I,
is M-primary, there exists some element a of R such that M=1I,:aR. On the
other hand, I,: aR=J,, and so we can take aa instead of a. By this claim,
we see that [,DJ and so ¢fCR. Thus a€Jz'=R(J). Since a€R(J)N
R(Q)C R(I), it follows that R(I)2R. This contradicts the assumption. Hence
R(Q)=R.

ReEMark. We can give another proof of the following well-known result:

Let a0 be a non-unit element of R. Then aR has M as an embedded
prime divisor. In fact, since R(@R)=R and height (¢R)=<1, it follows from
Theorem 4.

3- The Rees Rings and embedded primary components

Throughout this section, (R, M) denotes a Nagata local domain satisfying
the dimension formula and depth R=d<<dim R=n.

We recall the following two definitions:

DerFINITION. A Noetherian domain R satisfies the dimension formula if
for any finitely generated extension domain T of R, and for any Q&Spec T
with P=Q N R, we have height P+ tr.deg ;T = height Q 4 tr.deg z»(T/O).
Here tr.deg ,B is the transcendence degree of the quotient field of a domain B
over that of a subdomain A4 of B.

DrrFINITION (cf. [4, (31.A)]. A ring B is a Nagata ring if it is Noetherian
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and if, for any finite extension L of the quotient field of B/P, the integral closure
of B/P in L is a finite B/P-module for every P& Spec B.

Let a,, -+, a; be a maximal regular sequence of elements in R and write
I=(a,, :++,a;). Then Assg (R/I)=Ass; (R/I") for all I>0 (cf. [3, p. 103, Exercise
13]) Since M&Assg (R[I), we put Assgp (R/I)={p,, ***, pus M}. Let I'=gq,,
Ng,N-+Ng,;NO, be an irredundant primary decomposition where the ¢, ; is
pi-primary and Q, is M-primary. Put J,=q,,;N¢,;N-*Ng,,; J;isindependent
of the irredundant primary decomposition of I'. In fact, J;=I'N R[1/a]UR for
some ac€M—U¥%.1p;. Thus J,J,C Ji+m Let A be the Rees ring of R with
respect to I, that is, the ring A=R[t™", I{] with an indeterminate #. Put 4=
R[t™D(DisoJit"). A is a Z-graded ring containing 4. Since R is a Nagata
ring, A and A are also Nagata rings by [4, (31. H)]. In the following let 4, 4,
I, I' and J, be as above.

Proposition 6. A is integral over A.

Proof. Let A4 be the integral closure of 4. Since 4 is a Krull domain, we
have A= N 45, the intersection being taken over all PeHt,(4) where Ht,(4)
denotes the set of all prime ideals of height one in 4. Put P=PN A4 for P
Ht,(4). Since R satisfies the dimension formula and A4 is a finitely generated R-
algebra, it follows that A4 satisfies the dimension formula. Hence P& Ht,(4).
Put PNR=p. We shall prove that Ac A5 for any P€Ht,(4). First, we con-
sider the case that t"'€P. Using the dimension formula, we have height p=
tr.degg, (A/P). Since t™'P, it follows that POI=(a,, -*+, a;). Hence pDI.
Thus height p = height I=d. Since I=(a,, :*-, a;) and ay, -**, a; is a regular
sequence, it follows that @;s, I'/I'*'=(R/I) [X,, -+, X,], where X, --+, X, are
indeterminates over R/I. We see that the canonical homomorphism A[t7'A=
@iz I'[I"*'—>A|P is surjective, and so height p=tr.degg/,4/P <tr.degg;, (R/p)
[X,, -+, Xs]=d. Hence height p=d. Since height M=n>>d, we see that M 2 p.
Therefore (I'),=(J),- Since 4,=R[t™"],D(D>o(I"),#)=R[t™1,D(D >0 (J1)st")
=A4,, we have A3 D A4, Next, we consider the case that t"'é&P. Since 4=
R[t™D(DB;>0Jit') by definition, R,[¢, ¢ 1DA. Since t™ '€ P, we have 4, DR,
[t,t™"]. Thus Ac Ap,c As. Hence AC Npenyi) As=A. Therefore 4 is
integral over A. The proof is complete.

Put A, = ANR[t, t7].
Lemma 7. A={acdy/M'ac A for some I>0}.

Proof. Put A'={aedy/M'ac A for some [>0}. First we shall prove
that A4CA’. Take a homogeneouse elment at” (a< J,). Then there exists a
positive integer / such that J,M'cI". Hence M'(at"yC A. Thus ANA’. Next,



ON EMBEDDED PRiMARY COMPONENTS 669

we shall prove that 4'C 4. Take an element & of A’. Since 4 is a graded ring
over R, we can assume that ¢ is a homogeneous element. Let a=at" where
acR. It is obvious that = 4 in the case that n<0. We suppose that #>>0.
Since M'ac A, we have M'acI". Hence ac(I"),,NRCg;, Thus ac
N¥.1¢9;,»=__,- Therefore a € 4. Thus we prove that A'C 4. 'The proof is
complete.

Lemma 8. Ass, (4/4)={M}.

Proof. It is enough to prove that “if P& Ass,(A/A4), then PN R=M"
(cf. [4, p. 57,9. A]). Since 4 and A are graded rings, there exists a=at"(a € J,,)
such that P=A4:a. Hence PNR=1I":a. Since a€J,, it follows that I":
a>Q,. Therefore I": a is an M-primary ideal. Thus PNR=M. The proof
is complete.

Now, we consider the problem when M is a prime divisor of an ideal N
containing /. We recall the definition:

Ri(IA) ={ac AjalAC IA} .

Theorem 9- Let (R, M) be a Nagara local domain satisfying the dimension
formula and depth R=d<<dim R=n. Let N be an ideal of R containing 1. If
height N<n and R3(NA)=A, then M is an embedded prime divisor of N.

Proof. First, we shall prove that “if M is not a prime divisor of N then
NANA=NA”. For this, it is enough to prove that NAN ACNA, that is,
NJ,NI"CNI" for any n>0. Take an element a of NJ,NI"

o= DXy, ... i, A1 A4 4

the sum being taken over the integers i,, -*, 7, such that 7,47, 4 +i,=mn.
We claim that ;.. ;,,€N. Let N=¢,N-Ng, be an irredundant primary de-
composition of N. Let p/=rad(¢q;) where rad (¢;) denotes the radical of g;.
It follows that p{S M by the assumption. Put p=pi. Then (J,),=("), (cf.
The proof in Proposition 6). Since a & (N],),=(NI"),, it follows that

A=Y . i1 af
where y;, ...;,€EN,. Since a&(I”),, we have
ac ;"' c @ LI =(R,/1) [X,, -+, Xd] -

Therefore
a=>%¥, .. idalil"'ad‘d = 21%;, ., i,gali""adi” .

Thus y;,.....;,=%i,,...,i; (mod 1), that is,
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Xipoyig = Yigy o igtH®iy, i, forsome =z . . EI,.

Since yy,,....,, €N, and ;... ;,EI,C N, we see that x;, .. ;,EN,NRCg;. There-
fore NAN A=NA.

Next, we shall prove that Rz(NA)=(NA)5;'2A. We recall the definition:
(NA)Z' = {asdlaNAcC 4} .

It is clear that Rz(NA)C (NA)3" and so we prove that (NA)3'C Ri(NA4). Take
any element @ of (NA)3'. Then §€ A4 and INAC A. Since NANA=NA, we
have §(NA)c NANA=NA. Thus § € Ri(NA). Hence Ri(NA)=(NA)3.
Now, we shall prove that (NA)7'2 A. From Lemma 8, there exists some
ac A—4 such that M=A:, a. Since N M, it follws that «N C 4, that is,
ae(NA)7'. Hence Ri(NA)RA. This is'a contradiction.
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