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Abstract

This dissertation presents an approach to non-contact respiration monitoring in sleeping
positions using cameras. Firstly, the dissertation reviews existing respiratory monitoring
techniques along with non-contact respiration monitoring techniques based on optical sensors
and insight into a sleeping situation. In addition, the image processing technique related to the

approach has been present.

Secondly, the dissertation introduces an approach to non-contact respiratory monitoring by
focusing on sleeping posture using a smartphone camera-based RGB images recorded at high
and frame rates. For the first challenge, the high frame rate video has been obtained and the
respiratory is extracted in sleeping positions. Then, a technique is proposed with the manual
region of interest selection to extract the respiratory information for estimating respiratory. For
the second challenge, the ordinary video was used in the sleeping position with changing
background views where subjects are covered with a black blanket. This approach presented
the automatic region of interest selection technique and was compared with whole frame and
human body area detection. The results show that the body’s boundary as shoulder, chest, and
abdominal is mainly related to the breathing movement in the sleeping position. Moreover, the

ROI selection is found as a significant issue in vision-based respiratory estimation.

Thirdly, the dissertation adopts an approach to monitoring the respiratory in an actual sleeping
situation using a thermal camera plugged into a smartphone. Moreover, body movement during
sleep has been investigated in this study. The automatic ROI selection can be used to acquire
the respiration signal and detect body movements. The results show that the respiratory rate
was successfully estimated with an RMSE of 1.82 + 0.75bpm. Next, the adoption of
technology acceptance of the user's perspective has been evaluated using effort expectancy
questions based on the UTAUT model. The result shows that the participants were satisfied to

use a thermal camera to monitor respiratory while sleeping at home.
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The dissertation emphasizes the significance of using cameras to monitor the respiratory during
sleep. The ROI selection in sleeping posture was proposed to capture the respiratory
information and also body movements. The proposed approach deals with the challenges of
uncontrol scenarios during sleeping that has difficulty in selecting the ROI. Achievements of

this dissertation would be a guideline for the further development of technology in healthcare.
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Chapter 1
Introduction

This chapter describes the background and objectives of this thesis focuses on developing a
non-contact respiration monitoring system to monitor respiration and body movements during
sleep to be applied in a real environment. The respiratory system and irregular respiratory
during sleeping are discussed. Existing respiratory monitoring techniques are reviewed and
non-contact respiration monitoring techniques based on computer vision are also presented.

Finally, the objectives and contributions of this thesis are explained.

1.1 Background

Respiration is a significant predictor of serious illness. The early detection of abnormal
respiration can reduce the risk of acute respiratory disorders and lower associated morbidity
and mortality. A respiratory rate should be tracked throughout sleep periods because over half
of all patients, who suffer a severe adverse event in the general wards (such as a cardiac arrest
or ICU admission), had a respiratory rate higher than 24 bpm [1]. An increase in respiratory
rate is found until 24 hours before the severe event with high specificity. Approximately 50%
of patients with heart failure have sleep apnea, and 20% of heart-failure related deaths occur at
night [2]. Besides, several studies were shown that an abnormal respiratory rate (RR) is a
predictor of such cardiopulmonary arrest [3], [4], chronic heart failure [5], pneumonia [6],
pulmonary embolism [7] [8], weaning failure [9], and overdose [10]. The current gold standard
for sleep monitoring and assessment is performing overnight polysomnography (PSG) at a
sleep clinic that uses many sensors to measure vital signs during sleep in various settings. The

PSG consists of a



simultaneous recording of multiple physiologic parameters related to sleep and wakefulness.
The physiologic parameters such as brainwaves, eye movements, heart rate, breathing pattern,
blood oxygen level, body position, chest/abdominal movement, limb movement, and snoring
are recorded by multiple sensors attached to the patient's body. The PSG was performed
overnight and was continuously monitored by a credentialed technologist. However, this
process is an expensive, time-consuming, and labor-intensive, and the test subject has a

cramped feeling while asleep.

Nowadays, the technology for monitoring respiration is growing rapidly. Various studies
perform non-contact respiratory monitoring during sleep with different techniques. The Wi-Fi-
based techniques are used to track people's vital signs by exploiting channel state information
extracted from the Wi-Fi physical layer to detect the minor motions caused by breathing and
heartbeat. A Doppler radar is also used to capture the subject's movement and breathing signal.
The limitation of such techniques is related to the high cost of instrumentation, the need for
specialized operators, and a low signal-to-noise ratio, making them impractical for large-scale
deployment. Some approaches have been investigated to monitor the respiratory in a different
situations, like a pressure-based method. Most non-contact techniques used to monitor
respiratory are based on optical sensors because it is a growing preeminence owing to the recent
progress in video technology. Both simple cameras and specialized cameras have been used to
measure and monitor respiration like a webcam, depth, infrared, and thermal cameras [11]-

[16].

The precision of detected breathing area while a user is sleeping plays a vital role in monitoring
daily life. Many researchers have analyzed video and image sequences to detect the motions
and extract a vital sign in a sleeping position. For example, in the works of Nakajima et al. [17]
and Frigola et al. [18], the breath rate is computed by measuring the chest movement by
analyzing the optical flow vectors. Kaiyin Zhu et al. [19] proposes a tracking algorithm of the
upper torso's motion and head using an infrared camera during unconstrained nocturnal sleep.
Sato and Nakajima [20] calculate the volume change amount using fiber-grating 3D vision
sensors to monitor the bright spots moved by inhalation. Ching-Wei Wang investigated sleep
apnea using infrared video [21]-[25]. Ali Al-Naji [26] proposed a motion magnification
technique to magnify the baby's respiratory chest movements. Their studies demonstrated that
the respiratory rate could be assessed successfully using a Digital Single Lens Reflex (DSLR)
camera shooting the baby's chest at different positions, even in the presence of a blanket on the

baby or unclear region of interest (ROI). Ilde Lorato [27] presented a camera-based online short



cessation of breathing using a CCD camera. Although various studies adopting video cameras
are used to monitor the respiratory system during sleep, there are no results regarding the
validity of such methods in practice since most of these studies offer the experiment testing by
controlling the environment or under the sleep simulation [28]-[30]. The respiratory monitoring
should be performed continuously, and it is reasonable to monitor that RR using simple
electronic devices. However, the main challenge commonly emphasized is the limited use of
respiratory systems to screen and monitor everyday life in a variety of sleep environments
where noises are associated with the unpredictability of body movements, body orientations,

and changes in the environment sleeping posture.

Therefore, this thesis focuses on a non-contact respiratory measurement in the sleeping position
using an accessibility device and easy to use with a smartphone. This study considers the
various bedroom environments with different conditions like a room background, lighting, bed,
blanket, and pillow. Then our approach should be able to provide accurate respiratory
monitoring under such challenging conditions. The target group of this study is people who
live alone and have a symptom of irregular breathing because they are unaware of their
symptoms without being reminded by their partners. They require screening before going to a
hospital for taking a sleep test. The benefit of screening for respiration problems is monitoring
breath activity continuously under natural physiological conditions in a sleep environment,
reducing the cost of a complete sleep test, and reducing the risk of serious illness associated

with respiration.
1.2 The Role of Respiratory

The respiratory system is the gas exchange process to take in oxygen and expel carbon dioxide
as breathing moves air in and out of the lungs. The structures involved in the breathing process
consist of the nose, airways, and lungs. This inspiratory and expiratory process occurs with the
thorax and abdomen's synchronous movement. The frequency of breaths over a period of time
is defined as a respiratory rate usually measured by counting the number of breaths a person
takes per minute. Therefore, the clinical staff can count the number of times the chest moves
up and down for a full minute. The typical respiratory rate for healthy individuals is 12-20
breaths per minute [31]. Like a bit of change, three to five breaths per minute have a critical
predictor of serious illness with changes in the patient's condition. A rate of less than eight bpm

or a decreasing RR may also signify deterioration. Besides, shortness of breath at rest is a sign



of a medical problem. Various abnormalities cause shortness of breath in different organ
systems in the body (lung, heart, systemic illness, nervous system) [32]. Goldhill and
colleagues' study reported that a patient with a 25-29 bpm respiratory rate had a 15-25%

hospital mortality rate [33].

Therefore, the early detection of abnormal respiration can reduce the risk of acute respiratory
disorders and lower associated morbidity and mortality. Although the respiratory rate indicates
a clinically severe event, respiratory rate measurement is still widely performed by manual
counting, making inaccurate results [34] or neglected [35]. Respiratory rate was often not

documented routinely, actually when the patient's primary problem is a respiratory condition.
1.3 Respiratory Monitoring Techniques

The respiratory rate could be recorded with various techniques in the clinical, including contact
and non-contact methods. The breath measuring approaches can derive breathing parameters
from body surface motion detection by inferring thoracic volume changes. A continuous
breathing monitoring system uses either wearable (respiratory inductance plethysmography,
resistance-based sensors, capacitance-based sensors, inertial measurement units, fiber optic
sensors) or non-wearable devices (mechanical ventilators, long-term oxygen therapy,
polysomnography). Some wearable devices require cumbersome and expensive apparatus that
may interfere with natural breathing and can be unmanageable in specific applications such as
ambulatory monitoring, stress testing, and sleep studies. For example, Respiratory Inductance
Plethysmography (RIP) uses two transducer bands placed around the subject to measure the
chest and abdomen movement. Several wearable sensors are based on the principle that the
measured resistance varies with the torso's movement. An example is the Go Direct Respiration
Belt, which uses a force sensor and an adjustable nylon strap around the chest to measure

respiration effort and respiration rate.

Non-wearable devices are used in continuous monitoring of breathing performed with
unobtrusive devices as Long-term Oxygen Therapy (LOT). There are commercial devices to
calculate the RR via a sensor that detects pressure changes in the oxygen line. Nowadays, sleep
respiratory monitoring comprises different measuring methods with specific sensors or
measurement techniques that depend on applications, environments, limitations, requirements,
and user needs. There are various approaches for respiration monitoring, categorized into

contact and non-contact respiratory monitoring methods described in the following section.



1.3.1 Contact-based Respiratory Monitoring

In contact-based measuring methods, various sensors (i.e., airflow sensors, acoustic sensors,

carbon dioxide sensors, strain sensors, movement sensors, bio-potential sensors, temperature

sensors, and humidity sensors) are attached to the subject's body. The sensors must be

positioned in a different body area to detect respiratory sounds, respiratory airflow, respiratory-

related chest or abdominal movements, air temperature, air humidity, and respiratory CO,

emission [36], as shown in Table 1.1.

Table 0.1 Contact-based Respiratory Monitoring Techniques.

Light intensity

PPG sensors

Techniques Measurements Sensors/Devices Body area

Respiratory sound | Acoustic Microphones Nose,

Mouth,
Neck, Chest

Respiratory airflow | Flow Differential flowmeters Nose,
(mechanical ventilators, Mouth
spirometers),

Turbine flowmeters (spirometers,
metabolic cart),

Hot wire anemometers,

Fiber optic sensors

Respiratory-related | Strain Resistive sensors, Capacitive Chest,

chest or abdominal sensors, Inductive sensors, Fiber Abdomen

movement optic sensors
Impedance Transthoracic impedance sensors
Movement Accelerometers, Gyroscopes,
Magnetometers

Air temperature Temperature Thermistors, Thermocouples, Nose,
pyroelectric sensors, Fiber optic Mouth
Sensors,

Air humidity Relative humidity | Capacitive sensors, Resistive Nose,
sensors, Nanocrystal and Mouth
nanoparticles sensors, Fiber optic
Sensors

Respiratory CO, CO, Infrared sensor, Fiber optic Nose,

emission Sensors Mouth

Cardiopulmonary Electrophysiologi | ECG sensors Heart

cal signal muscle




1.3.2 Non-Contact based Respiratory Monitoring

Non-contact respiratory monitoring methods are usually based on radar, Wi-Fi, thermal, and
depth image sensors, which do not involve anybody's surface contact. These have been done
using different techniques, including those based on thermal imaging [37], depth imaging [38],
infrared imaging [39], and RGB imaging [40]. Several techniques are categorized based on
measurement, where Massaroni et al. [41] identified four different classes, including
techniques based on environmental respiratory sounds, air temperature, chest wall movements,
and cardiac activity modulation, as shown in Table 1.2. The respiratory sound approach is often
used to detect apnea and snoring events. In some scenarios, the respiratory estimation from
sounds is difficult to retrieve robust respiratory sounds because of the intrinsic susceptibility
of breathing sounds to various environment interferences. The Wi-Fi [42] and radar [43]
approaches can measure respiration based on radio frequency through wireless electromagnetic
signals in 3kHz-300GHz. In [44], researchers used a Wi-Fi signal to monitor breathing and
heart rate for different sleep postures in real-time. Another work [42] used a Wi-Fi network to
capture the movements caused by breathing and heartbeats during sleep in a realistic setting
(bedrooms). The Wi-Fi-based approaches were evaluated only during short-duration sleep
experiments in very controlled settings, which would be a limitation in the natural environment

with breathing-unrelated movements.

Table 0.2 Non-Contact based Respiratory Monitoring Techniques.

Techniques Measurements Sensors/Devices Related area of the
body
Respiratory sound Acoustic Microphones -
Air temperature Temperature Thermal cameras Nose, Mouth
Chest wall Body movement Depth sensors Neck, Top body
movement Radar sensors

Wi-Fi sensors

RGB cameras and
visible light sensors

Cardiac activity Light intensity RGB cameras Face, Neck,
modulation Shoulder




Non-Contact Respiration Monitoring During Sleep

Respiration and statistics of sleep events are essential indicators of sleep quality, stress level,
and various health conditions. Traditional approaches use many sensors to measure vital signs
during sleep in various settings environment. Such systems incur high costs and are usually
limited to clinical usage. Especially as mentioned before, the non-contact method is appropriate
for automatic, reliable, and convenient sensors and devices to monitor the respiratory rate
during sleep. It should be performed continuously for a long time without impressing the
patient's burden. Various studies perform non-contact respiratory monitoring during sleep with
different techniques, as shown in Table 1.3. Works in [42] [44] collect the wireless channel
state information (CSI) of the radio signals and extract rhythmic patterns associated with
breathing and abrupt changes due to body movement. However, CSI cannot identify getting-
ups or hand movements activities, and thus it is very hard to track a person's respiration in the
presence of these activities. In addition, the minimum transmission power should be set without
decreasing the system's performance for tracking a person's sleep even for different persons
and in different room environments. Doppler radar is also used to monitor vital human signs
[43] [45]. It relies on the modulation effect due to the chest-wall displacement of a radio signal
towards the patient. However, several other factors should also be measured close to or within
the device, such as room temperature, sound, and light exposure. Moreover, complex signal
processing techniques are required to detect and measure these vital signs accurately, and these

techniques significantly increase power consumption.

In general, the respiration information is captured by a video camera containing helpful
information about respiration activity. Many researchers have analyzed video and image
sequences to detect the motions and extract vital signs in a sleeping position. Several
approaches investigated to monitor the respiratory through infrared, thermal, and depth video
[11-14], [38], [46-52]. Simple commercial cameras are low-cost and easy to use for measuring
physiological signals. However, a specialized camera like a thermal camera is suitable for sleep
monitoring because it can classify the human from the background even when turning off the
light. There still exist challenging issues that the achievements on non-contact physiological
vital signs estimations are generally based on “stationary” and “direct-facing” subject

measurements, which is not ideal for sleep monitoring.



Table 0.3 Summary of non-contact respiration monitoring during sleep.

Tefll;:ilgeusey Authors Year Proposed Measurement Performance Limitation Challenging
Wi-Fi based Jian Liu [42] | 2018 Monitor CSI RR: more than80% The experiment was It should be
method respiratory rate, estimation errors are less simulated in each sleep | performed in an

heart rate, and than 0.5 b/min, postures. actual sleep
posture HR: 57% of estimation situation.
errors are less than 2 b/min
and over 90% of
estimation errors are less
than 4 b/min, Posture
identification: > 90%
Yu Gu [44] 2019 Breathing and CSI MAE: 0.575 bpm for The experiment was It should be
heart rate detecting breath, 3.9 bpm performed in a short performed in an
for detecting heart rate. time. actual sleep
The overall accuracy is situation.
96.636% and 94.215%.
Doppler radar- | Feng Linet | 2017 Recognize sleep Sleep status Accuracy: 95.1% (Short The experiment was It should be
based sensor al. [43] status (on-bed recognition term-controlled simulated in each sleep | performed in an
movement, bed framework environment) postures in short term. | actual sleep
exit, and Error: 6.65% (75 min in situation.
breathing section) real life)

Mari Z [45] | 2015 Respiration Using a center The coverage of The length of the The epoch lengths
estimation method | successfully demodulated epqchs }lsefi for.center should be automatic
and the arctangent | radar data was ~58%— estimation in this study | setting.
channel 78%. was probably not
combining optimal.
method

Infrared Geertsema E | 2019 Detect central The arrest of Specificity: 99% Fal§e detections in Classify movement
vision-based [46] apnea oscillatory which a very small is required
methods breathing movement precedes a

larger movement

Kaiyin Zhu | 2019 Respiratory and Motion analysis Accuracy: 89.89% for BR, Unable to isolate Classify movement

et al. [47] heart rates by using PCA and | 77.97% for HR respiratory and heart is required




Techniques/

devices Authors Year Proposed Measurement Performance Limitation Challenging
ICA RMSE: 2.10 bpm, 7.47 beat during periods
bpm with large movements
Fei Deng 2018 Breathing, head Motion Accuracy: 96% in Use simulation data set | It should be
[48] posture, and body | magnification recognizing abnormal that the thresholds of performed in an
posture breathing and body the algorithm may have | actual sleep
movements, 87.6% in head | to be changed when situation.
tracking, and over 90% in | applied in an actual
classifying most body situation
postures.
Michael H 2017 Respiratory and Identify and track | Error: 3.4% for BR,5.0% | Motion tracking with Automatic sleep
Li etal. [49] heart rates in feature point for HR optical flow may suffer | position
different sleeping | (chest motion) if regions lack texture identification and
position when white sheet offers | handle unwanted
enough texture. motions.
Michael H 2014 Respiratory rate Feature point Accuracy: 97% Small sample size (five | It should be
Li etal. [50] analysis and PCA participants) in performed in an
simulate overnight actual sleep
sleep situation.
Abbas K 2011 Monitor Temperature N/A A variation in Automatic ROI
Abbas [51] respiratory of change in the background selection
neonatal nostril’s region temperatures, the
neonate’s respiration
was manually
registered
Video based Usman [52] | 2019 Respiratory Temperature 70% well corelated The subject did not Detect the
method fluctuations have large body reparation without
(Thermal) movement and the face detection

camera is fixed, the
face may not remain
within the camera's
field of view




Tefll;:ilgeusey Authors Year Proposed Measurement Performance Limitation Challenging
Video-based Bernal E 2014 Respiratory Respiratory N/A Accuracy of Detect the
method [38] motion of the measurements on reparation with
(Depth chest and subjects wearing loose | various clothes
sensing + abdomen clothes that occlude the
invisible near visibility of the
infrared respiratory motion of
illuminator) the chest and abdomen
can be a drawback.
Video based- Cobos- 2018 Monitor Analysis the color | Correlation coefficient: It would not work in It could be
method (RGB) | Torres J [12] respiratory, and intensity 0.86 for BR, 0.94 for HR the case of poor improved to detect
heart rate of variations lighting or darkness. in a dark
neonatal environment
Mauricio 2017 Respiratory rate, Face detection MAE: 2.1 bpm for over The experiment was It could be
Villarroel heart rate, and and tracking 69% of the time for BR, carried out in similar improved to detect
[13] detect change in algorithm 2.8 beats per minute for condition as patients’ in a dark
peripheral oxygen over 65% of the time for upper torso at a similar | environment and
saturation in the HR distance from the various conditions
clinic camera.
L Tarassenko | 2014 Respiratory rate, Ambient light and | N/A It would not work in It could be
[14] heart rate, and auto regressive the case of poor improved to detect
oxygen saturation | models lighting or darkness. in a dark
change environment and
various conditions
Video based- MatsuuraY | 2017 Screening sleep Moving average N/A The bodies movement Classify movement
method [11] disorder or posture change is required
(Depth) temporarily affected
the monitoring of the
respiration condition
Pressure- Lorcan 2014 Monitor The amount of Mean difference of 0.12 N/A N/A
based method | Walsh [53] respiratory and light passing breaths per five minutes
sleep events between an and a mean percentage

emitter and
receiver woven
into a semi-

error (MPE) of 0.16%
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Tefll;:ilgeusey Authors Year Proposed Measurement Performance Limitation Challenging
permeable
substrate
Impulse-radio | Sun Kang 2020 Sleep apnea Respiratory Intraclass correlation A fixed distance It required in
ultra- [16] events coefficient = 0.927). The between the radar and various setting

wideband
radar (IR-
UWB Radar)

overall agreements of the
impulse-radio ultra-
wideband radar were 0.93
for Model 1 (AHI = 5),
0.91 for Model 2 (AHI =
15), and 1 for Model 3
(AHI =3

subject.

environments.
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The challenge of optical sensors-based methods that have been investigated in many studies is
the accuracy of respiratory detection. The advantage of camera-based methods is an attractive
sensing option that offers comfort in measuring the patient's respiration. The respiratory is
related to movements of the abdominal area, face area, area at the edge of the shoulder, and a
pit of the neck. The video extracts the respiratory signal based on image subtraction, optical
flow analysis, Eulerian Video Magnification (EVM), and Independent Component Analysis

(ICA) applied to pixel intensity changes.

By the review of literature works, several approaches have been proposed to select an ROI
related to breathing movement to estimate the respiratory rate using a smartphone camera. In
2001, Nakajima et al. [54] reported that small areas or ROI could be detected in real-time
without a high-speed image processor, although the ROI would have to track the subject's
movement. Takemura et al. [55] introduced a technique to extract a partial region with a
respiratory movement as the ROI by creating several small partial areas in the same area and
then evaluating their up and down motion. Wiesner and Yaniv [56] presented a respiratory
monitoring system using a single optical camera that tracks the motion of color fiducials placed
on the abdomen. Zhao et al. [57] identified ROI by detecting the face and upper body positions
of the subject and then selecting the area between the bottom of the face region and the upper
body region with a width equal to 80% of the width of the upper body region as the ROI for
respiratory measurement. Bartula et al. [28] obtained the ROI through a projection like a
transformation onto a vertical axis. The region is selected from the most influential motion
component of natural person camera geometry along that axis. Tarassenko et al. [14] identified
an ROI within the subject’s face. The size of an ROI for respiratory rate estimation is usually
smaller than that for heart rate estimation. This study recommended that a small area, e.g. ROI,
could be more suitable for respiratory evaluation. Li et al. [S0] presented a respiratory rate
estimation method in which each frame is divided into 10 x 13 grids, and then feature points
are extracted from each grid. Makkapati and Rambhatla [58] projects a circular dot of light
onto the chest and abdomen region of the subject and observes the change in the shape and size
of the spot so as to derive the respiration signal at a given frame. Lin et al. [59] locates the face
and upper body area and detects the salient ROI by Haar-like features with their responses
converged by interquartile range. Wei et al. [60] measured the respiratory rate by selecting a
dual ROI on a facial video image. Wiede et al. [61] selected the ROI from face detection and
upper body detection, which are available in the sitting position. Other researchers have

monitored the respiratory rate at the neck's pit rather than from the chest or abdomen [62]. An
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ROl is determined by selecting the pixels at the pit of the neck that is the anatomical point near
the suprasternal notch. The dip between the neck and the two collarbones is significant and
visible enough to be easily identified. Shao et al. [63] selected a region of 40 x 40 pixels around
the edge of the shoulder for breathing detection. The size was large enough to capture the
complete range of possible shoulder movement due to breathing activity. Cobos-Torres et al.
[12] measure a newborn’s two vital signs by calculating the intensity of pixels with 40x40

pixels.

Most studies select regions of interest based on breath movement (e.g., from the face, chest,
torsos, abdomen, shoulder, or pit of the neck), which can be identified when the subject is
sitting in front of a camera. However, in a practical situation, the face and torsos are not
completely visible in sleeping, and body and skin pixel detection is usually disturbed by
blankets. Therefore, it is more challenging when the subject is in a sleeping posture. The
Eulerian video magnification method features estimation in a sleeping position where whole
frame imaging is executed to amplify a small motion such as blood flow or respiratory
movement that can hardly be seen with the naked eye [64]. In Naji and Chahl [26], the chest
area was selected as the ROI, and breathing movement inside the ROI is magnified by using
wavelet decomposition and an elliptic filter. This ROI-based method resulted in fewer errors
than that of the Eulerian video magnification method, which was accompanied by noise and

artifacts.

It is known that the size of the region may affect respiratory monitoring accuracy. The ROI
selection is the primary key when extracting the respiratory signals from video images, and
one of the significant challenges is to enable automatic ROI selection while sleeping to detect
small movements that occur during breaths. Typically, the respiration signal incurs large
distortion when the subject moves, and the accuracy is degraded [65]. A few studies treat
automatic ROI selection for respiratory monitoring. In 2013, [57] detected the face and upper
body to locate an ROI in a similar manner with [40][59] for motion analysis by using a signal-
to-noise ratio (SNR) in estimating the temporal properties of a velocity waveform. Janssen et
al. [66] presented an automatic ROI selection, which can reject the non-respiratory motion. In
2018, [67] proposed an automatic selection of ROI through means of the extracted periodic

features presented in [68].

The above study detects respiration information using a simple camera to obtain the video in a
sitting position with visible light. The ROI selection was performed to limit the observed area,

increasing the accuracy of respiratory estimation. Thus, any method needs to pay attention to
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selecting the body related to the breathing area in the sleeping position. One of the experiments
in this thesis uses a smartphone to obtain the video and presents an automatic ROI selection

for accurate breathing area.

1.4 Research Contributions

Based on the above survey of literature works, the objectives and the contributions of this
research are described here. This research aims to propose an approach to monitoring
respiration in an actual sleeping situation using an accessibility device in various conditions.

First, we discover the suitable ROI location and size when using an optical sensor to monitor
respiration in a sleeping position. The proposed method focuses on automatically selecting the
size and location of the ROI to improve the accuracy of respiratory estimation in sleeping
posture. Limiting the observed area in an image frame can reduce the processing time, and
make respiration monitoring more accurate. Besides, motion detection has been employed to
locate the breath movement area. In this research, edge detection has been used to detect the
body's boundary when the subject lies down on the bed. This stage of the simulation experiment
has a limitation of the background pattern and cloth pattern that disrupt the edge detection.
Secondly, non-contact respiration monitoring for an actual sleep environment using the thermal
camera is proposed. Several test scenarios were carried out with various bed covers or blankets
in dim light and uncontrolled sleeping positions to test the reliability. The body movements are
also analyzed. Finally, user acceptance has measured the level of ease of use associated with

the use of new technology.

1.5 Thesis Outline

Chapter 2 introduces a non-contact respiration monitoring technique based on a simple camera
and a solution for estimating respiration from the sleeping posture. A smartphone camera is
used to record an RGB video at a high frame rate and an ordinary frame rate. We focus on the
respiratory ROI selection, especially in sleeping posture. An uncontrollable sleep posture
makes it challenging to find an area to detect breathing movements significantly related to
respiratory measuring accuracy. Different from the sitting posture that can be easier seen on
camera in a sitting position and monitoring breathing from a conscious person. Then Chapter

3 proposes a non-contact respiration monitoring technique for an actual sleep environment
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using thermal imaging in a dim environment. Experiments are carried out in an actual sleeping
situation in the participant's bedroom. Chapter 4 presents the user acceptance-based effort
expectancy of users after they try to use this preliminary system to record their sleeping by
themselves. User acceptance of health monitoring is studied to understand the factors that affect
the intended users' perception. Finally, concluding remarks and future work are given in

Chapter 5. The thesis outline is shown in Figure 1.1.
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Figure 0-1: Outline of the thesis.



Chapter 2

Non-Contact Respiration Monitoring in
Sleeping Position using Smartphone
Cameras

This chapter discusses non-contact respiratory monitoring in sleeping posture via smartphone
camera-based RGB images. Experimental tests of extracting respiratory values with high frame
rate video (240 fps) and ordinary video were executed by smartphone with the objects lying

down on the bed.
2.1 Introduction

As discussed in Sect. 1.1, non-contact respiration monitoring based on camera imaging has
comfort for the patient and accessibility. Due to this, a patient who has a smartphone can utilize
this method for monitoring themselves at their home. The respiratory in sitting position has
been proposed in literatures, but only a few works focused on sleeping positions. The non-
contact respiratory monitoring in sleeping posture via smartphone camera-based RGB images
with different frame rates is investigated in this study. The higher than 30 fps in terms of the
frame rate is used to create a slow-motion video to ensure a higher level of detailed information
for the motion capture. This study also records 240 fps because the respiratory is a very tiny

motion, and more frames may provide details, allowing for more flexibility. The movement



17

during sleeping is referred to the breathing (inhalation and exhalation). Inhalation (also known
as inspiration) happens when air or other gases enter the lung. Exhalation (or expiration) is the
flow of the breath out of an organism. In humans, air moves from the lungs out of the airways
to the external environment during breathing. Respiratory-related body movement can be
monitored by using optical sensors. Typically, an area at the edge of the shoulder [69], the pit
of the neck [70], the thorax[22][59][67], the thoracoabdominal area [71], and the abdomen
movements could be used to measure respiratory rate values by using a built-in notebook
camera [72], built-in smartphone camera [73], and CCD camera [22]. Then, the video is

recorded to retrieve respiratory patterns from video frames.

Different approaches have been used to postprocess the pixel data to extract signals related to
the respiration from such videos by the subtraction of two continuous images [6, 9], analysis
of pixel intensity changes based upon independent component analysis [10, 74], analysis of
average contributions of red, green, and blue channels of the video [75, 35, 36], analysis of

optical flow [7], and magnified the movement.

In the pixel intensity change based approaches, the breathing pattern can be determined by
detecting and analyzing body movements associated with breathing. For example, Yunyoung
Nam et al. estimated the respiratory rate from the chest and abdominal motions using the front-
facing video camera [76]. They found that the use of the maximum peaks based on the Welch
periodogram provided an accurate breathing rate for low and high breathing ranges (0.1-1 Hz).
However, this approach did not always provide satisfactory results at the medium to high
breathing rates (0.4 and 0.5 Hz), especially when subjects wore either loose clothing or
breathed shallowly. Massaroni et al. extracted the respiratory pattern from intensity variations
of reflected light at the level of the collar bones and above the sternum [70]. The influence of
the video sensor resolutions, i.e., HD 720, PAL, WVGA, VGA, SVGA, and NTSC, have been
evaluated. In their experiments, the HD 720 resolution indicated perfect agreement with
average breathing frequency values gathered by the proposed measuring and reference
instruments. The video recorded at a set frame rate of 30 Hz is enough to discretize the
breathing movements that generally happen up to 60 breaths per minute, equal to 1 Hz. This
method collects the respiratory pattern from the chest wall motion by selecting an ROI, and

analyzes the intensity change to extract the breath-by-breath respiratory rate.

Although several studies acquired video data with different frame rates at 4-30 fps [28][12],
[22], none tried high frame rate video capturing more images in a second for smooth video.

Besides, many studies were developed for adult subjects sitting in front of the camera, for



18

which it is easy to select the ROI and analyze the respiratory because the pit of the neck is large

and easily identifiable.

Then, respiratory monitoring in sleeping positions has been studied for newborns with
manually cropped images that contain only the chest and abdomen region [29]. Alinovi et al.
[67] used the Maximum Likelihood (ML) approach to perform ROI selection, ML data fusion,
and RR estimation. The selected area is still near the chest of the newborn patient. This study
confirms that the chest area is strongly related to breathing movement in lie-down posture.
However, the ROI size also affects respiratory estimation. In addition, environmental
conditions have a strong influence on image signals, for example, the noise from light, the
distance between subjects and camera, clothing, and background view [61]. The distance from
the camera to a subject is generally set between 0.5 meters to 3 meters. Shao et al. set the
distance at 0.5 meters, and Massaroni et al. set the distance at 1.5 meters for the first study and
then at 1.2 meters in the second study. Wiede et al. [61] considered the distance from the
camera, the brightness of the image, the influence of different clothing, and the back view.
They recommended using FFT and Welch methods to determine the frequency of the
respiratory signal. In the experiment, the distance (1 meter, 3 meters), the illumination, and the
influence of clothing did not substantially affect the algorithm. However, the slim-fit T-shirt
was provided for better performance than the loose-fit T-shirt [62]. So, the clothing and
background view should be considered when taking the experiments. Besides, the camera
distance is not significant for the accuracy of respiratory estimation, but it depends on whether

the subjects are available in the camera view.

Therefore, despite the large number of studies adopting video cameras for respiratory
monitoring purposes, there is a lack of results about the validity and accuracy of such methods
in practice since most of these studies present proof of concepts or preliminary tests. This
chapter presents non-contact respiratory monitoring in sleeping positions based on the RGB
images recorded by a smartphone camera. The aim of the present study is three-fold: (i) an
approach of non-contact monitoring of respiration in sleeping positions by using RGB video
signal acquired from a built-in smartphone camera; (ii) the experimental test of this monitoring
approach in extracting the respiration values from high frame rate video and ordinary video;

and (iii) the evaluation of the accuracy of ROI selection and ROI size for sleeping position.
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2.2 High Frame Rate Video Experiment

2.2.1 Proposed Method

Assuming that the high frame rate video contains greater details, this experiment proposes a
respiratory rate and breathing pattern estimation method shown in Figure 2.1. The first step of
the processing is to record the RGB video using the high frame rate video at 240 frames per
second. Frame rate is an indicator of the video's quality captured by a camera. The high frame
rate incurs smoother-looking transitions from one frame to the next, ensuring a higher level of
details in the amount of captured motion, which includes tiny movements like breathing
movements. In the second step, we select the region of 50 x 50 pixels around the abdomen or
the shoulder and use the Gaussian filter to reduce the noise. We have considered the ROI in
different sizes as 50x50, 100x100, and 150x150 in the empirical experiment and found that the
50x50 gives the best result. Then we continue to find the object of interest again in subsequent
video frames. Specifically, the Minimum Output Sum of Squared Error (MOSSE) motion
tracking is used to track the selected region of interest. The last step is to calculate the average
pixel intensity in the selected region of interest. Signal filtering is the primary key process to
acuratetly estimating the respiratory rate and representing breathing patterns. Therefore, the
Butterworth filter, Filtfilter, and Saviszky-Golay filter are considered for smoothing waveform
before counting the peaks. Moreover, the Findpeaks function provides the peak location of the

input data by searching for the maximum local value of the sequence.

Record RGB video

—» Manual select ROl ——» Reduce noise
(240 fps)

!

Calculate pixels  [€— Track motion

Count number of ¢
breaths

Figure 0-1:The proposed method (high frame rate video experiment).
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ROI Selection

Like the related works described in Section 2.1, the respiratory rate can be counted by
observing breathing movement. In this phase, the boundary of the subject’s body laying down
on the bed is focused on utilizing edge detection and thresholding technique to locate the area
related to breathing movements. We manually test to select the region of interest on the
subject’s boundaries, as depicted in Figure 2.2, which shows the possible selected rectangles
used to detect the breathing movement. The size of each ROI was set as 50 x 50 pixels and
placed on the upper body. The characteristic of the selected area contains a part of the body
and background. We calculate the accuracy of each ROI from P1- P11 to find the body area
associated with breathing movement. For example, the clear points related to breathing
movements that we can see with the naked eye are P5, P6, and P8, placed around the waist area.
The selected region of interest and the accuracy of each ROI are shown in Figure 2.3. Breathing

movements can be detectable in the raw signal of some waveforms as shown in Figure 2.4 (PS5,

P6, P9, P10).

Figure 0-2: Manual ROI selection on the body edge.

The accuracy formula provides accuracy as a difference in error rate from 100% (2.1). The
error rate is the percentage of the difference between observed and actual values divided by the
actual value (2.2). The observed value is the number of breaths from the experiments, and the

actual value is the number of breathings from ground truth data.

Accuracty = 100% — Error Rate (0.1)
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|Observed Value—Actual Value|

Error Rate = %X 100 (0.2)

Actual Value

Fail to detect an object

Original images HHHHIG..EEE
¢
Binary images Hduuuu‘gg

Accuracy (%) 93.10 82.76 93.10 75.86 100.00 100.00 89.66 86.21 100.00 100.00 89.66
e —

Figure 0-3: The depict of each ROI and its accuracy.

P1 P2 P3

Figure 0-4: Plot of respiratory signal of each ROI.

As the above observation, we found that the ROI should be placed on the upper body's
boundary and should contain the haft of background. Then we try to apply edge detection to
locate the body boundary more precisely, as explained in Figure 2.5. Firstly, the Gaussian filter
is used for smoothing the image. Second, the edge function has been performed. The detected
edge is smoothed and is dilated with kernel 25 and iteration 2. Finally, we find the contour and
draw a bounding box around the contour. There are multiple bounding boxes that are not related
to the breathing movement. Figure 2.6 depicts all boundary boxes placed on the body edges
using edge detection. The size of each box depends on the detected edges. Then, we calculate
all candidate ROIs and manually select the best result, which gives the highest accuracy for

each subject.
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Edge Detection

/ Input image /L) Applf?lltgﬁﬁzsmn ;App|y bilateral fllterlng > Applydgtaencrzgredge
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Apply median blur

Contour Detection ¢

. Bounding box around | . L Apply morphological
/Candldate ROI/@ found contour | Find Contour < operations (dilation)

Figure 0-5: The ROI selection method.
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Figure 0-6: The sample output of candidate ROI selection based on edge detection.
Noise Reduction

After manual ROI selection, we applied the Gaussian filter to blur the image and remove noise
in that ROI again. The Gaussian filter can remove noises in images due to light conditions.
Then the signal is calculated as the average pixel intensity of the region of interest for each

frame.

Motion Tracking

Manual i
/ selected ROI /L> Apply blur function d App'll')lfa,\élkoe?SE ; :wrsslén:);i?tggg/
at 1st frame

Figure 0-7: Breaths movement tracking process.

A

Motion tracking is the process of tracking the movement of an object within a region of interest
area. The purpose of this process is to precisely locate a moving object in the video. The

MOSSE motion tracking was compared as the empirical experiment with another object
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tracking algorithm using the OpenCV library. The result shows that the MOSSE motion
tracking is more suitable for our experiment. We take the initial set of object detection (breaths
movement area) as an input set of bounding box coordinates. The MOSSE tracker uses an
adaptive correlation filter to track the object [77]. The correlation is performed in the Fourier
domain to make the computations faster. It is indeed robust and efficient computation with
speed reaching several hundred frames per second. After the ROI is selected at the first frame,
the ROI is cropped and the filter is initialized with the ROI set in its center. Then the filter is
correlated with a tracking window in the video to find the new location of the object. Figure

2.7 shows the process of breath motion tracking.

Respiratory Extraction

The average pixel of »  Butterworth filter
each frame

Y

Saviszky-Golay filter » Findpeaks function

A

Find window size by
FFT

Figure 0-8: Respiratory estimation workflow.

The respiratory extraction workflow shows in Figure 2.8. Firstly, the ROI related to the breath’s
movement area was selected as a set of bounding box coordinates. We applied the blur function
to reduce some noise and tracked that box. Next, at each frame f, the average intensity value is
calculated for each ROI of each frame. Figure 2.9 exemplifies a gathered signal from the mean
intensity of a selected ROI in a sequence of frames. Then the respiratory pattern is extracted
using filtering operations. Thus, appropriate cut-off frequencies and bandwidth need to be
defined. It is crucial to accurately design the filter parameters to obtain the proper performance
of the measuring system. A 7" order Butterworth low pass filter with a cut-off frequency in 1.5
Hertz, corresponding to 90 breaths per minute, was chosen to eliminate unreasonable
frequencies unrelated to respiratory movements. Even after applying a low pass filter, the
signal still has multi-peaks in one cycle, requiring smoothing signals. A Savitzky- Golay (SG)
filter is a low pass filter that can be applied to a set of digital data for smoothing the data and
increasing the data's precision without distorting the signal tendency [78]. The SG filter has
two design parameters, i.e. the window length and the filter order. The optimal window length
depends on the noise power, the number of samples, signal waveform, and filter order [79].

Figure 2.10 shows the smoothing results for a breathing pattern (red dash-dot line) in case of
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using a third-order polynomial fit with 825 window length. The empirical experiment is
executed to select the proper window length that provides higher accuracy for all subjects.
Finally, we apply the Findpeaks function to obtain the input data's peak location by searching

for the maximum local value of the sequence.
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Figure 0-9: The sample of original breathing waveform.
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Figure 0-10: The sample of filtered breathing waveform.

2.2.2 Data Acquisition

Data were collected while volunteers were lying down on a bed in front of the smartphone
camera (Galaxy S9+) at a distance of 0.6 meters. The smartphone is stabilized on the table by
using the tripod to ensure that the camera was not affected by movement during the experiment.
The experiments were carried out indoors and with a stable amount of light.

Data were collected from 9 volunteers (four females and five males) between 25 and 32 years
old, each dressed in slim fit and dark clothes. The background view and bedcovers are white
color. Although this is an unusual sleeping environment, we set this situation for the test with
people who want to nap in the daytime and use their smartphones to monitor themselves. The
volunteers are invited to lie down on the side of the bed and regularly breathing. The video was

recorded with a built-in slow-motion mode for approximately 120-160 seconds. The resolution
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is set at 1920 x 1080 pixels and saved in MP4 format. Table 2.1 shows the environmental setup
details displayed in Figure 2.11.

The reference breaths are observed from the vertical rise and fall of the volunteer's waist or
shoulder, and the number of torso rises is counted. One respiration consists of one complete
vertical rise and fall of the torso or the inhalation cycle and exhalation of air. Breathing patterns
obtained from the video signal show the shape of uphill and downhill graphs representing

inhalation and exhalation clarity.

Table 0.1 Environmental Setup and Details.

Items Description
Camera Smartphone (Galaxy S9+)
Resolution 1920 x 1080
Frame Rate 240 fps
Distance 0.6 m
Number of Subjects 9
Color Depth 8-bit
Image Format MP4
Low light Compensation Disable
Ground-Truth Observed

Figure 0-11: Environment setup of sleeping position.
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2.2.3 Result of High Frame Rate Video Experiment

We use the Google Colab to implement the proposed method on image and signal processing.
Figures 2.12-2.20 illustrate waveforms of the respiratory signal extracted from the recorded
image of subjects in sleeping situations. Time durations in trials are between 134 seconds on
average. The number of breaths refers to the number of peaks, corresponding to the number of

breathing, is counted by the Findpeaks function.
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Figure 0-12: The breathing pattern of subject No.001.
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Figure 0-13: The breathing pattern of subject No.002.
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Figure 0-14: The breathing pattern of subject No.003.
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Figure 0-15: The breathing pattern of subject No.004.
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Figure 0-16: The breathing pattern of subject No.005.
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Figure 0-17: The breathing pattern of subject No.006.
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Figure 0-18: The breathing pattern of subject No.007.
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Figure 0-19: The breathing pattern of subject No.008.
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Figure 0-20: The breathing pattern of subject No.009.
Table 0.2 The result of the reference number of breaths comparing the experiment.

Subject | Duration EPS Reference Breaths | [Number of peaks Accuracy (%)
No. (secs) (times) LowPass | LowPass+SG|LowPass|LowPass+SG
001 151.63 240.27 39 39 38 100.00 97.44
002 138.37 240.23 35 36 34 97.14 97.14
003 130.99 240.27 36 36 37 100.00 97.22
004 128.55 240.18 33 23 33 69.70 100.00
005 125.98 240.23 31 29 31 93.55 100.00
006 128.27 240.27 29 24 29 82.76 100.00
007 144.72 240.24 43 45 43 95.35 100.00
008 135.68 240.27 43 45 43 95.35 100.00
009 130.47 240.24 30 32 30 93.33 100.00

Average 134.962 240.24 91.91 99.09
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The high frame rate experiment results are summarized in Table 2.2, compared with the

reference breaths. Subject 06 has reference breaths 29 times, and when applied only LowPass
filtered, breaths are counted as 24 times because some peaks are not prominent or have a small
width. The LowPass filter followed by the SG filter is applied, giving more apparent
prominence with a smoother waveform. The result gives 29 peaks are counted, although the
waveform is not stationary. As for the result of all subjects, when applied only to the lowpass
filter, the average accuracy is 91.91 percent. Besides, the average accuracy after the applied
proposed approach is 99.09 percent, where 100% accuracy is obtained for six of nine subjects.

This result confirms that the SG filter for smoothing signals provides high accuracy.
2.3 Ordinary Video Experiment

As we discussed in Sect. 2.2, the smartphone camera is a simple device that is used daily.
However, the slow-motion video required a high computation for processing. Therefore, this
section uses a regular smartphone camera to record ordinary video at 30 fps in the bedroom,
and the subjects are covered by a black blanket. Additionally, this section presents an automatic
ROI selection for respiration estimation in sleeping positions, which utilizes a human detection
method to remove unrelated breathing movement signals to improve respiratory estimation
accuracy. This experiment aims at individual continuous monitoring at home to screen the

cessation of breathing while sleeping.

2.3.1 Proposed Method

This experiment investigates the automatic selection of the relevant area to extract respiratory

signals from RGB video. Operations with automatic ROI selection are described in Figure 2.21.

Record RGB video Automatic ROI

(30 fps) selection [ >|Image pre-processing

|

<€«— Signal processing [€«— Signal extraction

Count number of
breaths

Figure 0-21: The proposed method (ordinary video experiment).
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RGB Video

The RGB video input is converted to grayscale pixels by calculating the weighted sum of the

corresponding red, green, and blue pixels as (2.3).
Y =0.2125R+0.7154 G+ 0.0721 B (0.3)

Gaussian blur [76] is used to remove the noise from the frames in order to avoid interference
with the experimental results. Then, our ROI selection method utilizes a motion detection
method to locate the movement area that relates to the breathing movement in the video. The
breathing movement is generally very tiny and cannot be seen with the naked eye. In video
image processing, the motion would be detected by examining the difference in pixel values
between consecutive frames. The breathing movement area is located in the first ten seconds

(300 frames) of the video to ensure at least one breath cycle is included.

ROI Selection

In this experiment, we compare the different ROI sizes, including whole frame, human
detection, and ROI selection. First, the Mask R-CNN [76] was applied to locate the human in
sleep position. This step features a cropping method to limit the observation area by removing
the unwanted areas at the beginning frame. Then, the image from the video capture is imported
into the Mask R-CNN model built on ResNet101 to locate the person area. Finally, pre-trained
models based on the COCO dataset are used to detect a person. As a result, the Mask R-CNN
detects a human in a sleeping position, lying on the back and lying on the side, as shown in
Figure 2.22. The sleeping person in an image and the bounded box around them are detected.
Boxes, masks, class scores, and labels are drawn in the left figure. There are three objects
detected in this figure with their scores of the human body (0.768), bed (0.943), and human
head (0.896).

Figure 0-22: The human detection through Mask-R-CNN (left), The ROI of human detection
(right).
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(d)

Figure 0-23: Frame x (a) and frame y (b) both after noise removal are used to compare the
difference between frames. (c) is a binary image of different images (a) and (b). (d) shows the

located breathing motion area.

The comparison of selected areas is executed based on the Structural SIMilarity (SSIM) index,
that is a method for measuring the similarity between two images [80]. SSIM measures the
perceptual difference between two similar images to determine the (X,y) coordinate difference.
First, we calculate the SSIM by using (2.4) between frames and then select two frames, i.e.
SSIMmax and SSIMmin, representing the maximum and the minimum values of SSIM. Next,
these two frames (Figure 2.23 (a) and Figure 2.23(b)) are used to calculate the difference
between two similar images by using the SSIM method again. This is because the largest value
between those two frames may indicate the breathing movement. Next, the threshold method
is applied to create the binary image in which a white pixel indicates the difference, as shown
in Figure 2.23 (c). Finally, the white pixel area is set to ROI by the bounding box using the
contour function (see Figure 2.23 (d)). Obtained three different ROI sizes are depicted in Figure
2.24, where blue represents the whole frame, red is the human detection result, and green is

used for ROI.

(pxty+ C1)(20xy+C3)
(u3+u3+C1)(03+05+C3)

SSIM (x,y) =

(0.4)
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The SSIM measure between two windows x and y of common size (N X N) with pu,is the
average of x, u, is the average of y, o7 is the variance of x, gy is the variance of y, gy, is the

covariance of x and y.

Lying on back
position

'l

!

l |

Lying on side
position

kRl

Figure 0-24: Display the subjects with a region of the whole frame (blue), human detection
(red), and the ROI selection (green).

Image Pre-processing

After the bounding box of ROI is set, the next step is signal extraction by converting RGB
images to grayscale pixels to calculate the weighted sum of the corresponding red, green, and

blue pixels (2.3). Then uses the Gaussian blur filter to remove noise in the ROI area.

Respiratory Signal Extraction

We compare three signal generation methods among varoius signal extraction methods as the
difference between frames, the average pixel values, and the white pixel count for each frame.
In addition, the ROI selection (proposed method), human detection, and the whole frame are
compared. Equation (2.5) is the function from the scikit-image used to compute the score and
difference between two grayscale images. The score represents the structural similarity index
between the two input images. The difference image contains the actual image differences

between the two input images that we wish to visualize.

score,dif ference = compare_ssim(Frame,, frame, ) (0.5)
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Let P be a set of pixels in a frame, the average pixel values are calculated by (2.6), and the

white pixel is counted by (2.7) where white pixel value (x) is 255.

Average of pixels = Z’l‘i%x (0.6)
Count white pixel = Y epx=255 1 (0.7)

Respiratory Signal Processing

The obtained respiratory signals retrieved above are smoothed before applying signal
processing based on the scipy.signal.findpeaks package. Then we count the number of peaks
corresponding to the number of breaths. A 6th-order bandpass Butterworth filter [81] with a
lower cutoff frequency of 0.05 Hz and a higher cutoff frequency of 1.5 Hz, which are equivalent
to 3-90 breaths per minute, is used. Next, we use the SG filter [82] to smooth the respiratory
signals by applying a 3 order polynomial and a window length of 71, which is decided based
on preliminary experiment research. Formula (2.8) calculates the percentage error to measure
the error between the ground truth value and the measured value. The number of peaks refers
to the measured value, and the ground truth value is the number of breaths counted manually

from the video by the three persons.

|Measured—Groundtruth|

Percentage Error = x 100 (0.8)

Groundtruth

2.3.2 Data Acquisition

Our experiment uses a smartphone camera (iPhone XS) to record video sequences at the frame
rate of 30 fps and an image resolution of 1920 x 1080 pixels. The video was recorded for
approximately 80 seconds and saved in RGB, MOV raw format. Volunteers were invited to lie
down on a bed in front of the camera. The distance between the camera and the volunteers was
approximately 0.60 meters. The smartphone was stabilized using a tripod to ensure the camera
was not affected by any movement during the experiment. The experiments were performed
indoors and with a stable amount of light. Data were collected from nine volunteers (five
females and four males) between 25 and 32 years old whose BMIs ranged from 18.36 to 25.73

kg/m?. They were covered with a thin black blanket, and the temperature of the room was kept
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at 27-29°C. The background view was a light-colored wall. The ground truth breathing signal

was obtained from a thermal camera (Seek Thermal CompactPRO) with a 320 x 240 thermal

sensor to monitor the subjects' noses.

Table 0.3 Environment setup and details.

Items Description

Camera iPhone XS

Resolution 1920 x 1080

Frame Rate 30 fps

Distance 0.6 m

Number of Subjects 9

Color Depth 8-bit

Image Format MP4

Low light Compensation Disable

Ground-Truth Observed

Table 0.4 Subjects detail.
Subjects Weight (kg) Height (cm) Gender BMI

01 59.00 168 M 20.90
02 47.00 160 F 18.36
03 60.00 169 M 21.01
04 52.70 167 F 18.90
05 55.00 160 F 21.48
06 47.50 157 F 19.27
07 57.50 168 M 20.37
08 77.00 173 F 25.73
09 75.00 180 M 23.15
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2.3.3 Result of Ordinary Video Experiment

Table 2.5 shows the accuracy of the respiratory rate obtained by three signal extraction
methods; the difference of frame, average pixels, and count number of white pixels. Each
method was tested in two sleeping postures and three region sizes, including whole frame,
human area detection, and ROI detection. The results show that the accuracy of the average
pixels method is the highest at 98.80% (lying on the back) and 93.21% (lying on the side). The
proposed method also had the highest accuracy in both sleeping positions when estimated by

the average of pixels.

Table 0.5 The accuracy of respiratory rate extracted from different method.

Accuracy (%)

Signal Extraction Lying on the Back Posture Lying on Side Posture
Methods

Whole Human Proposed | Whole Human Proposed
Frame Detected Method Frame  Detected Method

Difference of frame 90.78%  90.19% 88.24% 88.68% 90.61% 92.82%

Average pixels 89.28%  95.41% 98.80% 87.46% 92.56% 93.21%

Count white pixel 86.42% 87.78% 87.29% 89.00% 91.75% 88.70%

Then we explain the result of each subject with the average pixels method in Table 2.6 in which
the ground truth value is obtained by manual counting of the breathing. From this table, it is
clearly seen that the performance of the proposed method is better than that of the whole frame
and human detection for all sleeping positions. An ROI can be detected more precisely for the
lying on the back position than the side position. With the lying on the side position, an ROI
around the arm area caused more errors than that around the chest area (i.e., subject005,

subject006, and subject009).



Table 0.6 The result of average pixels method of each subjects.
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Measured value (#breath) Accuracy (%)
S Ground truth
(#breath) ‘Whole Human ROI Whole Human ROI
Frame Detection selection Frame Detection selection

001-back 27 24 27 27 88.89 100.00 100.00
002-back 15 19 18 14 73.33 80.00 93.33
003-back 16 16 16 16 100.00 100.00 100.00
004-back 19 17 18 19 89.47 94.74 100.00
005-back 21 19 21 21 90.48 100.00 100.00
006-back 14 12 13 14 85.71 92.86 100.00
007-back 14 13 14 15 92.86 100.00 92.86
008-back 21 20 20 21 95.24 95.24 100.00
009-back 24 21 23 23 87.50 95.83 95.83
001-left 26 24 26 26 92.31 100.00 100.00
002-left 19 20 20 20 94.74 94.74 94.74
003-left 16 15 15 15 93.75 93.75 93.75
004-left 19 18 18 18 94.74 94.74 94.74
005-left 17 22 20 15 70.59 82.35 88.24
006-left 21 19 20 20 90.48 95.24 95.24
007-left 18 25 23 21 61.11 72.22 83.33
008-left 17 17 17 17 100.00 100.00 100.00
009-left 19 21 19 18 89.47 100.00 94.74
Average of lying on back side position| 89.28 95.41 98.00

Average of lying on left side position| 87.46 92.56 93.86

Average all position| 88.37 93.98 95.93
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The results of ROI selection and breathing waveform of each subject are shown below. The
sample ROI of each subject shown in the photo is in a fixed position for all frames that we
located from the breathing motion area. Besides, the waveform is depicted by calculating the

average pixel within each frame's ROI.

Table 0.7 The result of selected ROI and breathing pattern for each subject.
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The scatter plot and linear regression results of the reference and measured respiration rates are
presented in Figure 2.25. A strong correlation was found in the proposed method (R? = 0.914),
as the data points (green line). The human detection technique showed a positive relationship
(R? = 0.807). The whole frame technique had a low relationship (R? = 0.500). These results

demonstrate that the proposed method is effective for respiratory measurement.

28
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16 A Proposed method (R2 = 0.914)

A @® Human detection (R2 = 0.807)
: % Whole frame (R = 0.500)
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Figure 0-25: Scatter plot of the ground truth value and measured value.
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2.4 Discussion

In order to investigate the performance of high frame rate video and ordinary video
experiments, we have shown the ROI selection methods to estimate the respiratory in a sleeping
position. In the experiments, the respiratory signal is collected in two different conditions; i.e.
the subjects covered with a blanket and without a blanket. In the high frame rate video
experiment, the proposed method focused on the boundary between the body and the
background, which may depend on the postures or clothing patterns of the subjects. Assuming
that the spatial features are correctly selected, this method is simple and effective. Although it
is not the ideal sleeping environment, this study confirms that ROI is essential in acquiring
respiratory information from images. Then, we consider changing the experiment environment
by covering the subject with the black blanket in the ordinary video experiment. Besides, we
applied the Mark R-CNN to detect the human body in sleeping postures, comparing it with the

ROI selection method based on motion.

The limitations of this study include the video recording of the breathing while the volunteers
were lying down and instructed not to move, as found in other non-contact optical approaches
[30]. Additionally, in this study, we evaluated the performances of the proposed system only
in the quiet breathing range and in a limited population. We also found the many factors that
affect the breathing estimation based on the non-contact optical approach described below.
Varying Motion Patterns

There are various kinds of motions of a subject, such as a limb movement, jaw and face
movement, head/neck or trunk movement, rotation, translation, and body shaking. In the
experiment, we found a motion of the background seriously affects the performance. The non-
respiratory motions should be recognized and to be removed when estimating the respiratory
signal. Abnormal movements are also associated with wakefulness or sleep.

Varying Clothing and Blanket Pattern

The clothing and blanket pattern may directly affect respiratory ROI detection. The slim-fit
and loose-fit clothes influence the data quality and validity of the video-based methods. The
clothing and blanket pattern degrades the edge detection performance, which creates the wrong
position not related to breathing motion. In the first experiment, the background view and cloth
pattern are detected by using the edge method which some areas are not related to the body and

breath movements. Then, we used a dark, non-patterned blanket covering the subject to reduce
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the edges that were not involved in breathing in the second experiment. Besides, we select ROI

by motion detection technique to estimate the more accurate respiratory.

Figure 0-26: Example of candidate bounding boxes.

Varying Sleeping Positions

The sleeping position is uncontrollable in the natural sleep environment. In experiments, the
volunteer was asked to lie down on the bed with no movement. In the first experiment, we
manually selected the ROI, and in the second experiment, we applied the image processing
algorithm to select the ROI. However, it still has a limitation when the volunteer moves or
changes their posture. Therefore, the ROI cannot be set in the first frame but must be
automatically located and usually updated when the subjects change their posture. The
uncontrolled sleeping posture challenge is the accurate locating of the related breathing area in

the sleeping position.
Varying Frame Rate Video

The frame rate is thus the number of frames displayed per unit of time, and it is measured in
frames per second that consists of a sequence of photos displayed at a specific rate to show
motion. High frame rates are good for slow-motion video because we capture the image with
more stills, whereas a high frame rate requires ample storage. High frame rate video also takes
longer than ordinary video to process images due to many frames. However, the results have

similar accuracy.
2.5 Summary

This chapter discussed respiration monitoring based on smartphone cameras to obtain the
subjects' video when lying on the bed. The first experiment lies in the high frame rate video at

240 fps, and the second experiment uses an ordinary video at 30 fps. Both experiments show
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that the accuracy was similar, but the high frame rate video takes a long time to process due to
numerous images. The main factor affecting the number of peaks on the waveform depends on
the breath’s movement area. It is more challenging when the subjects are in a sleeping position.
The solution is limiting the observed area was also presented by using ROI selection. We
present a manual ROI selection for a high frame rate video to prove the highest related area
and the condition that affects accuracy. Experimental results showed that the subject body's
boundaries as the shoulder, chest, and abdominal are mainly related to the breathing movement
area. The background and cloth patterns also affect the performance of image processing when
locating the subject body's boundaries. In the ordinary video experiment, we controlled the
background view and covered the subject with a black blanket to solve the problem. The

automatic ROI selection and ROI size have been discussed in this study.



Chapter 3

Non-Contact Respiration Monitoring
based on Thermal Camera

To possibly apply the vision-based non-contact respiration monitoring in the real sleeping
environment with a dim light and uncontrolled sleeping position, a thermal camera may detect
respiration in this environment, where each subject lies on a bed naturally in a home. This
chapter aims to integrate the analysis of respiration and body movements. Since respiratory
signals and that of body movement are related to common sleep disorders, such an approach

can provide comprehensive information that aids diagnosis.
3.1 Introduction

The breathing patterns during sleeping are utilized to identify the sleep disorder as sleep apnea,
including obstructive sleep apnea (OSA), central sleep apnea, and complex sleep apnea
syndrome. Sleep apnea is a cessation of the airflow that occurs when breathing repeatedly stops
and starts during sleep, resulting in decreased oxygen flow to the brain and the rest of the body.
Sleep apnea is generally characterized by the cessation of breath for at least 10 seconds during
sleep [83]. The well-known index used to indicate the severity of sleep apnea is the Apnea-
Hypopnoea Index (AHI), which counts the number of apnea events per hour. Besides, sleep
monitoring can detect periodic limb movement disorder (PLMD), which is repetitive cramping
or jerking of the legs during sleep. Patients with PLMD may suffer from daytime sleepiness,
daytime fatigue, trouble falling asleep at night, and difficulty staying asleep throughout the

night [84]. Usually, patients with PLMD are unaware of their leg movements unless their bed
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partner tells them. It is also reported that movements are repetitive and rhythmic and occur

every 20-40 seconds [85].

Thermal imaging is a rapidly evolving technology that is now turning up in hospitals, airports,
and even homes. Respiratory can be monitored through thermal imaging [86]-[99]. Thermal
imaging cameras rely on microelectromechanical sensors to produce an image from heat; the
human body stands out from the surrounding field because it gives off more heat. The thermal
image-based method has an advantage under varying illumination conditions and can reduce
privacy issues. Previously, several approaches have been proposed to monitor respiration with
a thermal camera by detecting the temperature change around the nostrils [37], [89], [91], [93]—
[96], [99] or the airflow [90], [97], [98] in seated positions. They set the nose or the mouth as
the region of interest (ROI) that can be defined manually or automatically by using anatomical
features integrated with tracking algorithms [37], [93]-[96]. These approaches are performed
by simulated breathing scenarios that the researcher designed, i.e., regular breathing, fast
breathing, and hold breathing [93], [94], [96], [99]-[101]. The excellent result showed when
they took the experiments in a controlled room in terms of temperature, humidity, and lighting.
However, nose detection during sleep is still unsuccessful at all monitoring times.

In the sleeping position, the thermal-based method is an effective technique to measure the
nasal airflow patterns [51] and has been utilized to detect sleep apnea [52], [102], analyze sleep
activity [103], to classify body posture [104] during sleep for assisting the diagnosis of sleep
disorders or evaluation of the quality of sleep. The studies using thermal imaging to monitor
respiration in sleeping positions are reviewed in Table 3.1. Usman et al. [52] adopted thermal
imaging to detect sleep apnea and study various breathing patterns. They used the Kanade—
Lucas—Tomasi tracking algorithm to track a manually selected nose region. The result showed
that 16% of a subject's head position did not allow correct identification of the region of interest
at the nostrils. Therefore, this method was only possible with minor head movement without
changing position. The automatic ROI selection was used to locate the nostrils, the tip of the
nose, and the mouth area [15], [105], [106]. That ROI requires a tracking algorithm and works
well without large head movement under a controlled environment. Abbas et al. [51] developed
respiration monitoring for neonatal intensive care units by manually selecting the ROI around

the nostrils of an infant.
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Table 0.1 A research review of the thermal imaging-based method for respiration monitoring

of sleeping position.

Exp Controlled | Simulated Selection ROT localization
Authors Subjects
Duration Env Breathing /Detection Area Tracking
Usman et al. Adult 5 min Yes Yes M Nostrils Yes
Fei el al. Adult 60 min Yes No A-S Nostrils Yes
Al-Khalidi Tip of
) Children 2 min Yes No A-S Yes
eial. the nose
Nose,
Hu et al. Adult 10 min Yes Yes A-S Yes
mouth
Abbas et al. Infant 2 min Yes No M Nostrils No
Pereira et al. Infant 5 min No No A-D N/A No
Lorato et al. Adult 2 min Yes Yes A-D N/A No

M: Manually, A-S: Automatically Selection, A-D: Automatically Detection.

Most techniques work well when the nose is clearly visible in the image. On the other hand,
the measurement was not feasible when the nose is outside the camera's field of view, a blanket
blocks the nose, or the subject has large head movements. Recent works from Pereira et al. and
Lorato et al. [107], [108] detected the respiration signal without the use of anatomical features.
They selected the ROI containing the respiration information by using the Signal Quality Index.
However, they did an experiment in a controlled environment in a short period that was not a
real environment. Moreover, the motion artifacts are still a significant drawback of this
algorithm. It was suitable for monitoring infants in neonatal care who did not have large

movements.

This section aims to develop a measuring system capable of non-contact monitoring of
respiration and body movements in natural sleep environment using a thermal camera. The
natural sleep environment implies uncontrolled sleep posture, darkness, and covered subjects
with a blanket. The proposed method for respiration monitoring and body movements detection
is described. An overview of the proposed method is depicted in Figure 3.1. The input of the
proposed method is the thermal video obtained under dark light. The Gaussian filter is applied
to the input images as the pre-processing so as to remove noises from the input. The main part

of the proposed method is composed of respiration monitoring and body movements detection,
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each of which utilizes image processing and signal processing techniques in order. Details of

these processes will be written below.

Thermal video

|

Pre-processing
Gaussian Blur
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A4 A4 Y Y
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Integrated breathing signals Body movements
Smooth signal and count number of peaks

Respiration

Figure 0-1: Proposed method.

3.2 Respiration Monitoring

The proposed respiration monitoring method contains an automatic detection of ROI by finding

the highest temperature point and the largest portion of the high-temperature area and a
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breathing motion detection. The temperature information is used to find the area of the breath
while the breathing motion corresponds to the airflow and body movements presented by
breathing. The respiration signals are extracted by integrated automatic ROI detection and
breathing motion detection. Then the signal processing is applied to calculate the respiratory

rate.

3.2.1 Automatic ROI Selection

We employ an ROI detection to limit the observation area, extracting important information to
raise the accuracy of the respiratory estimation. Determining a suitable ROI position with
proper size is also important. In a real sleep monitoring environment, it is not easy to detect a
face or nostrils as an ROI because of the uncontrolled sleep posture, and the fixed camera
position may make a face that does not appear in the camera view on some occasions. Besides,
when the subject changes the sleep posture, ROI should be updated to the new location for
which some research applied a tracking algorithm. The tracking algorithm works well with an
apparent object but sometimes fails to track the nose or mouth in a sleeping posture. We
propose an ROI detection on the thermal image in a sleeping position that does not require a
tracking algorithm. Two different ROI detections are considered in this section, 1) the highest

temperature point detection and 2) the largest portion of high-temperature area detection.
The highest temperature point detection

The highest temperature point is detected by using minMaxLoc, a function of the OpenCV
[109] libraries that return the minimum and maximum intensities found in an image with their
(x,y) coordinates. It is assumed that the maximum pixel intensities of the thermal image refer
to a human's heat signature that is not covered by a blanket. The maximum pixel intensities
found in the image correspond to the highest temperature of the body. We set the pixel to the
center of the observation area. Then we draw a rectangle around the pixel, with the size of the
square N X N pixels depending on the original frame resolution. In [14], the authors compared
the ROI size of 10 X 10, 25 X 25,50 x 50, 100 X 100, and 150 X 150 pixels. They found
that the size of the ROIs for respiratory rate estimation is usually smaller than that for heart
rate estimation. Therefore, in this study, we consider the three different ROIh sizes as 10 X 10,
25 x 25, and 50 x 50, as shown in Figure 3.2. The result of empirical research has shown that
the 50 X 50 pixels provided the highest accuracy in accordance with the original frame

resolution of 640 X 480.
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10x 10 25x 25 SOXO

Figure 0-2: The sample of three different ROIh sizes as 10x 10, 25%25, and 50%50 (red point

indicates the highest temperature point).

The largest portion of high-temperature area detection

Assuming that the human skin area indicates high temperature than other parts, the largest
portion of the high-temperature area is detected by using the thresholding method.
Thresholding is the method of segmenting the object from the background, finding the
thresholds to segment the image into regions. This method is based on a threshold value to turn
a grayscale image into a binary image. The suitable threshold value needs to be determined,
and then the image can be segmented by comparing the pixel properties with these thresholds
value. If the image intensity I(x, y) is less than the threshold value, the image pixel is replaced

by a black or white pixel if the image intensity is greater than the threshold value.
The threshold image g(x,y) can be defined as (3.1) [110]:

1if I(x,y) = Tg

g(x,y) = {() if I(x,y) < Tg

(0.1)

To determine the threshold value T, we coordinated empirical research with varying values
among 128, 144, 160, 176, 192, 208, and 224. It was confirmed that the Tz value 176 is the
one that yielded the best results in all the performed tests.

Figure 3.3 (a) shows the segmentation of the input image with the thresholding method. Then,
we used the findContours function of the OpenCV library to find the location of white regions
that return the outlines corresponding to each of the white blobs on the binary image. The
bounding box is drawn around those contours (see Figure 3.3 (b). Finally, we find the most
prominent contour and bounding box around that contour, as shown in Figure 3.3 (c). In this

study, we selected the biggest box as ROIt.
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(@)

Figure 0-3: (a) All contours, (b) bounding rectangles around all contours, and (c) bounding

rectangle around the most prominent contour.

Then ROIh and ROIt are cropped to extract signals s, (f) and 5,(f) by computing the average
of pixel values (3.2) within each ROI of each frame, where S(x, y, f) is the pixel value of the
thermal image at pixel (x,y) in the video frame f , N, is the vector of pixel coordinates in

ROIh or ROIt, and n, is its number.

5.00 = - Zeyen. S® ¥, f) (02)

3.2.2 Breathing Motion Detection

Breathing motion detection applies a subtraction method for detecting the motion by
calculating the difference between two frames. Specifically, the absolute difference for all
pixels between the current frame I(x, y, f) and the frame one second before I(x,y, f —s) is

calculated (3.3):

Bx,y,f) = I, y,f) —1(x,y,f =9I, (0.3)
where s is the frame rate.

Then, we extract portions of the moved area by using thresholding, erosion, and dilation
operations. Parameters used in these operations are 5 for thresholding pixel value difference
and 5 X 5 kernel for opening (i.e., erosion and dilation). Next, bounding boxes are determined
by finding contours by filtering out small movements as noise. Finally, the number of bounding

boxes is counted as the metric of breathing motion (BM), as shown in Figure 3.4.
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.

Figure 0-4 The bounding boxes around the breathing motion.

3.2.3 Respiration Signal Analysis

There are three respiration signals extracted by using ROIs based on temperature detection and
breathing motion detection. Steps to estimate the respiration signals are described as follows.
The respiration signals can be extracted by detecting the chest movements, breathing airflow,
and the temperature change around the nostrils. However, a specific method does not always
detect the above phenomena in sleep monitoring due to the fixed camera position. An
independent subject posture may make the region out from the camera view. In such a case, an
alternative method for respiration detection is required. We assume that respiration can be
detected by mixing the temperature change of ROIs and breathing motion. Therefore, we
combine three signals by employing the root mean square (RMS) to calculate the average of

the respiration signals as (3.4).

Respiration signals = VROIt? + ROIh% + BM? (0.4)

The 3 order Butterworth bandpass filter [111] with a lower cutoff frequency of 0.05 Hz and
a higher cutoff frequency of 1.5 Hz was applied to the respiratory signals. The frequency bound
is equivalent to 3-90 bpm, based on the typical RR for an adult person (12-20 bpm) and
monitoring the abnormal RR that is less than 12 bpm and higher than 20 bpm.

The SG filter is a least-square polynomial filter that reduces noises while retaining the shape
and height of waveform peaks [112]. Here, the SG filter was used to smooth the signal after
the bandpass filter. The SG filter's output increased the precision of the data without distorting

the signal tendency. There are two parameters of the SG filter, including window length and
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the filter order, which closely relate to the filter’s performance. In this study, we tested the
parameters and selected the optimal values to get the best-filtered signal, i.e., the window
length of 51 and the polynomial order at 37 were used. The result of the SG filter still includes
small peaks, and thus a moving average is calculated to detect only the desired peaks and ignore

small ones.

The fusion signal in Figure 3.5 (a) was smoothed by the SG filter and moving average
calculation (see Figure 3.5 (b)), and then the number of peaks was counted. Figure 3.5 (c)
depicts the peaks detection of the experiment signal, followed by the peak detection of the
reference signal in Figure 3.5 (d), which are assumed to reflect the number of breaths. The

findpeaks function is used with adjusting its width to 10 based on empirical research.

The number of peaks is calculated as breaths per minute (bpm) for each 60 seconds slice of
input video (1020 samples at 17 fps) and was compared with the reference RR. For
performance comparison, the accuracy of the RR estimation was tested using the RMSE

defined as (3.5).

2
RMSE = \/%zgvﬂ(xf"p —x") (0.5)

where N is the total number of the slices, and xie *Pand xir ef represent the experimented and

reference RR values obtained for slice.
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Figure 0-5: (a) Sample of fusion signal, (b) filtered and smoothed signals, (c) peak detection

of experiment signal, and (d) peak detection of the reference signal.
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3.3 Body Movement Detection

This process aims to determine more significant action than the respiration representing a big
movement like limb movement, head movement, and full position change during sleep. First,
an absolute difference image B'(x,y, f) between adjust two thermal images I(x,y, f) and
I(x,y,f — 1) is obtained by B'(x,y,f) = |I(x,y,f) —I(x,y,f — 1) | Then, we binarize the
difference image by thresholding method.

In the same manner as the breathing motion detection, we extract portions of the moved area
by erosion and dilation operations. While using 35 for the thresholding value in order to detect
large body movements, the same parameters are used for erosion and dilation. Then, we apply
the findContour function to examine whether those are a portion of the moved area. If any
contour is found, the body movement signal is set to 1. An example output of the body

movement is shown in Figure 3.6.

No Movement Significant Movement

Figure 0-6: Sample output of the body movements detection.

3.4 Experimental Results

This section analyzes the signal gathered in two experiments. Experiment (1) is the respiration
monitoring, and experiment (2) is the body movements detection during sleep. The results were

compared with the reference signals obtained by the Go Direct Respiration Belt.

We assessed the performance of our proposed non-contact monitoring of respiration and body
movement detection under natural sleep environments. During the experiments, the thermal

videos were captured using a portable thermal camera (Seek Thermal Compact PRO for
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iPhone) attached to a smartphone and fixed on a tripod in front of a participant located at
approximately 100 cm. The camera was set at the proper position so that the upper body of a
participant was apparent in the camera's field of view. The Seek Thermal Compact PRO is a
highly portable thermal imaging camera with a wide, 32-degree field of view. This thermal
camera has a resolution of 640 x 480 pixels and detects infrared wavelengths in the spectral
range of 7.5 to 14 Microns. The camera's emissivity was set to 0.97, as this is suitable for
human skin temperature measurement. Besides, the videos were recorded at 17 frames per
second (fps). The Go Direct Respiration Belt was used as a reference to collect human
respiratory effort and respiratory rate from a force sensor and an adjustable nylon strap around
the chest during respiration. The measuring parameters were set to 10 samples/s, and the

duration was approximately 5,400 seconds. Figure 3.7 illustrates an environment setup.

q, $ (((.)))
- Respiratory Belt Smartphone

oz I

Camera
l
/.\

Thermal video monitoring

Ground truth Collection

Figure 0-7: Environmental setup.

The data were collected on different days, from multiple camera positions with volunteers
wearing different clothes. The experiments were conducted under real-life conditions, and
volunteers were invited to record in their rooms while they were sleeping. They placed a
respiratory belt around their ribs and mounted a thermal camera on a tripod by themselves
before they went to bed. Sixteen healthy people with ages between 25 years old and 37 years
old (29.88 + 3.26 years old), ten females and six males, with heights between 151 cm and 180
cm (162.63 £ 7.37 cm), with weights between 47 kg and 78 kg (57.38 + 9.28 kg), and body
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mass index (BMI) between 18.65 kg/m? and 27.64 kg/m? (21.64 + 2.98 kg/m?) volunteered

for this experiment.
Breathing Pattern Monitoring

The breathing pattern signal is obtained from ROIh, ROIt, and breathing motion. There are two
ROIs shown in Figure 3.8 that were identified for every frame. The red rectangle is the
bounding box around the highest temperature point; the blue rectangle is the significant portion
of the high-temperature area. The ROIh locates on the subject's skin, preferably at the highest
body temperature point, has a smaller size. The most oversized box is detected by the
thresholding method as the ROIt. The size of detected ROIt is dependent on the contour area.
Then ROIh and ROIt are cropped to extract the signal by computing the average pixel values

within each ROI of each frame.

Figure 0-8 : The sample result of selected ROI.

Table 3.2 summarizes the results obtained for all subjects, including respiratory rate estimation

and body movement detection. The respiratory rate estimated by our proposed method was
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compared with the reference signal obtained by the respiratory belt. The RMSE was calculated
by considering all the breaths in each signal collected during the experiment minute-by-minute.
The average respiratory rate in the overall subjects is 14.78 + 1.93 bpm in the reference signal
and 14.47 + 0.60 bpm with the proposed approach. The standard deviation of RMSE for the
respiratory rate of all subjects is 0.75 bpm, and the average is 1.82 bpm. The small RMSE
indicates that the proposed approach is robust for the subject’s variation. As for body
movement detection, we counted the number of movements, the number of frames including

body movement, and the total duration of body movements.

Table 0.2 The result of respiratory rate estimation.

Respiratory rate (bpm) Body movements
Subjects é“ Reference Experiment #Moveme #Frames Duration Degree
duration(secs) RMSE
RR RR nts (secs)
S01 5371.05 12.71 14.05 1.56 14 269 15.69 1.12
S02 5397.94 13.69 14.22 1.11 15 199 11.65 0.78
S03 5379.37 16.75 14.78 2.20 7 63 3.69 0.53
S04 5192.31 12.23 13.37 2.00 35 642 37.86 1.08
S05 5212.78 17.62 14.39 3.32 9 200 11.72 1.30
S06 5200.51 16.45 14.48 2.23 9 214 12.53 1.39
S07 5332.39 14.38 14.36 1.47 16 218 12.80 0.80
S08 3495.39 14.65 14.29 1.18 15 749 43.48 2.90
S09 5407.22 12.17 14.60 2.68 0 3 0.17 0.00
S10 4520.26 14.91 14.79 0.75 5 91 5.33 1.07
S11 5346.70 13.12 13.76 1.25 16 417 24.42 1.53
S12 5361.45 13.25 15.37 2.35 7 140 8.20 1.17
S13 5399.74 18.61 15.99 2.79 5 20 1.17 0.23
S14 5380.52 15.15 14.32 1.49 16 535 31.14 1.95
S15 5315.23 16.32 14.40 1.99 12 225 13.19 1.10
S16 4287.12 14.43 14.41 0.72 6 250 14.51 2.42
Mean 14.78 14.47 1.82 1.21
STD 1.93 0.60 0.75 0.74

Movements in PLMD occur repetitive and rhythmic every 20 - 40 seconds, which generally

incur a slight movement of limb or head in a short duration while sleeping. In contrast,
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significant movements or position changes can take a long time. Therefore, the number of body
movements every 40 seconds is counted to check the symptoms of PLMD. We also calculated
the degree of body movements by dividing the movement period by the number of movements,
which is assumed to be closely related to sleep quality. Figure 3.9 shows the respiratory rate
and body movements of SO1-S16. A blue bar represents an observed body movement. In case
of observing movements several times in the beginning, it is considered that a subject had a
difficulty in falling asleep, e.g. subject 04 shows the body movements at the beginning as a
long time (50 minutes). Normal sleep for adults means that they fall asleep within 10 to 20
minutes after climbing into bed (sleep latency) [113]. Respiratory rates of the reference and the
experiment were plotted “x' and " o', respectively. The blue column represents the histogram of
body movements every 40 seconds. From this figure, we can confirm that there were no regular
and repetitive body movements for all subjects during experiments, which is the typical

phenomenon of PLMD.
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Figure 0-9: The result of respiratory rate estimation and body movements detection.

3.5 Summary

This chapter has proposed an approach for non-contact respiration monitoring and body
movements detection in a natural sleep environment using a thermal camera. The thermal
camera can handle many viewing angles, which enables easy installation in the bedroom. We
have to overcome specific challenges to acquire non-contact respiration data from participants
in their natural sleep environment when the lights were turned off, and they were covered by a
blanket. Thermal video sleep monitoring can be performed in a dark environment to settle
privacy concerns. The participants were asked to set up the system and perform a recording by

themselves at their homes.
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The proposed approach employs automatic detection of the ROIs, which is used to acquire the
respiration signal and detection of the body movements of the participant based on image
processing on the continuous thermal image. The signals were obtained for each frame with
the process of normalization and smoothing. Then, we computed the number of breathing and
counted the number of body movements. The approach has been validated using a respiratory
belt as a reference signal. We evaluate respiration monitoring performance and body
movements detection in different rooms with 16 participants who have independent sleep
postures. Our results show that the proposed approach successfully estimated the RR with its
RMSE of 1.82 £ 0.75 bpm. The performed experiments confirmed that a thermal camera is
easy to use for respiration monitoring and body movements during sleeping within various
environments. This study has limitations as the portable thermal camera is attached to the
smartphone to record the thermal video, making the experiment duration depend on the

smartphone battery.



Chapter 4

User Acceptance of Respiration
Monitoring Used Thermal Camera

This chapter explores the user acceptance of the participants using a thermal camera to monitor
their sleeping by themselves in their own bedroom. Here we applied a UTAUT model to
measure the technology acceptance in terms of the Effort Expectancy (EE) of using a thermal
camera to monitor sleep respiration. The EE is a metric for a technology that represents

simpleness with reference to the needed effort for using a system.
4.1 Introduction

The use of information technology in healthcare systems has promoted healthcare quality and
access to healthcare services leading to a noticeable reduction in medical errors and costs.
However, attention to information technology acceptance is required when implementing any
healthcare applications. There are barriers to using new technology in healthcare applications
observed in human-computer interaction issues like user acceptance. The most dominant IT
theories providing proper models for understanding the success and failure of IT applications
appear to be Innovation Diffusion Theory (IDT) [114], Theory of Planned Behavior (TPB)
[115], Model of PC Utilization (MPCU) [116], the Unified Theory of Acceptance and Use of
Technology (UTAUT) [117] and the Technology Acceptance Model (TAM) [118].

TAM was designed to predict information technology acceptance and usage on the job. There

are two core constructs: Perceived Usefulness (PU) and Perceived Ease of Use (PEOU). PU is



63

the "degree to which a person believes that using a particular system would enhance his or her
job performance". On the other hand, PEOU is "the degree to which a person believes that
using a particular system would be free of effort" [118], i.e., physical and mental efforts as well
as ease of learning. TAM provides a direct relationship between acceptance of the technology,

the technology’s perceived usability, and ease of use.

Next, regarding the theories of information technology, UTAUT is widely applied model to
describe the consumer acceptability of a technology. Venkatesh et al. formulated the UTAUT
as shown in Figure 4.1 that proposed four behavioral intention correlations to the use of
technologies [117]. First is Performance Expectancy (PE): “the degree to which an individual
believes that using the system will help him or her attain gains in job performance”. The second
is Effort Expectancy (EE): “the degree of ease associated with the use of the system”. The third
correlate is Social Influence (SI): “the degree to which an individual perceives that important
others believe he or she should use the new system”. Finally, the fourth correlate is Facilitating
Conditions (FC): “the degree to which an individual believes that an organizational and
technical infrastructure exists to support the use of the system”. The variables of gender, age,
experience, and voluntariness of use moderate the key relationships in the model. The UTAUT

model explained 69% of the intention to use IT (technology acceptance).

Performance
Expectancy 7
Behaw_oral > Use Behavior
Intention
Effort | 1
Expectancy
Social //
Influence
Facilitating ~ |_—T |
Conditions
Gender Age Experience Voluntariness of Use

Figure 0-1: UTAUT Model [117].

Table 0.1 The ease of use definitions and scales of each model.
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Constructs

Definition

Items Used in Estimation

Perceived ease of

The degree to

1. Learning to operate the system would be easy for me.

use (TAM/TAM?2) | which a person 2. I would find it easy to get the system to do what I
[118] believes that want it to do.
using a particular | 3. My interaction with the system would be clear and
system would be understandable.
free of effort 4. Twould find the system to be flexible to interact with.
5. It would be easy for me to become skillful at using
the system.
6. I would find the system easy to use.
Complexity The degree to 1. Using the system takes too much time from my

(MPCU) [119]

which a system is
perceived as
relatively difficult

to understand and

normal duties.
2. Working with the system is so complicated, it is
difficult to understand what is going on.

3. Using the system involves too much time doing

use mechanical operations (e.g., data input).
4. It takes too long to learn how to use the system to
make it worth the effort.
Ease of use (IDT) The degree to My interaction with the system is clear and
[120] which using an understandable.

innovation is

perceived as

I believe that it is easy to get the system to do what I

want it to do.

being difficult to Overall, I believe that the system is easy to use.
use Learning to operate the system is easy for me.
Effort expectancy The degree of EOU3: My interaction with the system would be clear

(UTAUT) [117]

ease associated
with the use of the

system

and understandable.

EOUS: It would be easy for me to become skillful at
using the system.

EOUG6: 1 would find the system easy to use.

EU4: Learning to operate the system is easy for me.

Our study is on respiratory monitoring that combines the area of information systems, computer

science, and healthcare. This system is available for patient monitoring, which can be set at

home, utilizing a video camera to collect the patient's respiratory rate and body movement
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during sleeping. Thus, to explore the health information technology acceptance of using the
thermal camera to monitor respiration during sleeping, we consider the PU and PEOU based
on the TAM and UTAUT models in health information technology acceptance of professional
heath technology users. Many research has been tested in the context of healthcare [121]-
[125]. Some studies found that PU and PEOU significantly impact technology adoption
attitudes [124], [125]. However, the other studies found that only PU is a significant
determinant of attitude and intention, but PEOU is not [121]-[123], [126]. Their results show
that PU has positive effects on the usage of health information technology. Though previous
studies focus on professional heath technology, the consumer health technology acceptance
behavior is less discussed. Ease of use context is usually considered in the consumer health
technology acceptance behavior. Therefore, we focus on the ease of use when the participants
use thermal imaging to monitor their sleeping at home. Ease of use is a significant influence
on the intention to use technology that constructs from the existing model as perceived ease of
use (TAM/TAM2), Complexity (MPCU), and ease of use (IDT). There is a substantial
similarity among constructs, definitions, and measurement scales see Table 4.1. Therefore, this
study investigates the effort expectancy affecting usage behaviors using a thermal camera to

monitor users during their sleep.

4.2 Data Collection

A survey was used to test the hypotheses with sixteen volunteers who used our respiratory
monitoring system. We provided the devices (camera, smartphone, tripod, respiratory belt) to
the volunteers to set up the system and record themselves at their homes before going to bed.
It can handle many viewing angles, which makes installation in the bedroom easy. The thermal
camera is used to obtain respiratory information and body movements in natural sleep
environments such as a dark room to settle privacy concerns. Since the users closed the lighting,
the acquired video images differed in their overall brightness. Nevertheless, the video recording

process is carried out with the same settings following the instruction.

The scaled items for effort expectancy were adapted from the UTAUT model shown in Table
4.2. The scales are slightly modified to suit the context of the use of the thermal camera. Each
item is measured using a five-point Likert-type scale, ranging from “strongly disagree” (1) to

“strongly agree” (5). Demographic data about gender and age were collected to describe the
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sample characteristics. Data were collected using an online survey method developed by

Google Form.

Table 0.2 Scale items for estimate the effort expectancy.

SA A US DA SDA
G @ 3 @ @

Items

Learning how to use a thermal camera is easy for me.

My interaction with the thermal camera is clear and understandable.

I find the thermal camera easy to use.

It is easy for me to become skillful at using a thermal camera.

4.3 Results

All 16 completed questionnaires are returned, i.e. 100% response rate. The detailed sample

characteristics are described in Table 4.3.

Table 0.3 Descriptive statistics of respondents’ characteristics.

Measurement Items Frequency %

Gender Female 10 62.50
Male 6 37.50

Age > 25 < 30 years 9 56.25
> 30 < 35 yesrs 5 31.25
> 35 years 2 12.50

Table 0.4 Effort Expectancy of Using Thermal Camera to Monitor Sleeping.

Ttems Response (%)
SA A US DA SDA Mean SD
EE1 56.25 25.00 18.75 0.00 0.00 4.38 0.19
EE2 37.50 43.75 18.75 0.00 0.00 4.19 0.15
EE3 56.25 31.25 12.50 0.00 0.00 4.44 0.19
EE4 43.75 37.50 18.75 0.00 0.00 4.25 0.15
Overall 48.44 34.38 17.19 0.00 0.00 4.38 0.19

Note: SA = Strongly Agreed (5), A= Agreed (4), S = Unsure (3), DA = Disagreed (2), SDA=
Strongly Disagreed (1), M = Mean, SD = Standard Deviation

Table 4.4 shows participants’ responses for items associated with their levels of satisfaction

with using the thermal video to monitor sleeping. The results show that 82.81% of the
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participants were satisfied with using the thermal camera in this monitoring (mean = 4.38;
standard deviation, SD = 0.22). It is clarified that the use of thermal video to monitor sleeping

promises it’s easy to use.

4.4 Conclusion

This study concerns the consumer of health technology acceptance behavior in using the
thermal camera for monitoring respiratory while sleeping at home. This system is useful for
the consumer by providing potential prediction and risk reduction of serious illness. Nowadays,
the respiratory monitoring system was developed through video monitoring without any device
attached to the body, while privacy is an important issue, especially in the sleep environment.
The respiratory monitoring system offers valuable functionalities. To improve the
practicability of the respiratory monitoring system, the system must be developed by
considering users’ actual needs, technology adoption, convenience, etc. Thus, an acceptance
of the respiratory monitoring system from the users’ perspective should be necessarily
evaluated. Therefore, we estimated the ease of use from users’ perspective by measuring the
effort expectancy based on the UTAUT model, which indicates the intention to use. The result
shows that the participants are satisfied with using the thermal camera to monitor their

respiratory while sleeping at home.



Chapter 5
Conclusion

In this dissertation, non-contact respiratory monitoring in sleeping posture using a smartphone
camera and thermal camera has been introduced. The goals are (i) to determine the accuracy
of respiratory rate estimation by comparing with ground truth data, (ii) to identify the factors
that influence respiratory information extraction, (iii) to provide the prototype development of
the non-contact system, and (iv) to discuss the factors that affect the health information
technology acceptance. The content goes from the respiratory monitoring in sleep position
using a smartphone camera to capture the high frame rate video and the ordinary video, through
the using the thermal camera to capture in the natural sleep environment and ends at the
estimation of use acceptance when using the thermal camera for monitoring their respiratory

in the actual situation.
5.1 Conclusion

Chapter 2 discussed the use of a smartphone camera at a high frame rate to record video in a
sleeping position, which is the beginning of the research study. The environment is set in the
visible room for this experiment, and the blanket does not cover the subjects. The smartphone
camera is set on the tripod to capture breath movement around the waist and shoulder area of
the subjects in a lie on the side of sleeping positions at a 240 fps of frame rate. There are two
issues to estimate the respiratory in the sleeping position. The first issue is the ROI selection
which is significantly related to the respiratory. The ROI with its size of 50 x50 pixels is placed
around the waist or shoulder of the subjects that also contain a background view to observe the
body movement. Then used the Gaussian blur filter to reduce the noise within that ROI. Besides,

the MOSSE tracker has been applied to track the selected ROI movement.



The second issue is the respiratory signal extraction that is calculated from the intensity value
within the ROI of each frame. When obtaining the signal, the Butterworth with a low pass and
Filtfilt filter was applied to. The Fast Fourier Transform was used to find the suitable window
length to the Savitzky-Golay filter. The last step was to use the Findpeaks function to count the
number of breaths. The results demonstrated the high accuracy of respiratory estimation and
confirmed that the accuracy depends on the location and size of the ROI. In other words, the
region of interest location is a significant point to detect breathing movement. Moreover, the
background view affects the accuracy of the breathing rate estimation. The white and no pattern

of background is recommended in this study.

Regarding the effect from the background view and the clothing pattern, we experimented
again with the ordinary video at 30 fps. We used a black blanket to cover the subject and set
the experiment in a room with no background pattern. In the second experiment, we proposed
an automatic ROI selection to measure the respiratory rate and its patterns using the ordinary
video. This study demonstrated that the respiratory rate could be assessed successfully using a
smartphone camera to capture the chest or abdomen's breathing movement under a blanket in
lying on the back and lying on the side positions. Our automatic ROI selection method uses
motion detection based on the differences between two frames to detect the respiratory
movement in the video. We used the average of the pixels in the region to estimate the
respiratory rate and its patterns. The experimental results showed that the respiratory rates were
successfully measured at different sleeping positions, with its RMSE of 0.47 (lying on the back),
1.60 (lying on the side), and 1.18 as an average. Under a controlled environment, linear
regression analysis showed that the measured respiratory signal had a relatively good
relationship with a ground truth signal, with a determination coefficient of 0.914. The
suggestion is that the small region provides the most accurate respiratory rate estimation among
camera-based approaches. This work's limitation is noise caused by lip-smacking, eye
movement, and body movement while sleeping. These are uncontrolled movements would be
detected by the difference between frames, which degraded the performance. In the future, we
will extend our automatic ROI selection to comply with a variety of sleeping positions with

properly updating the ROI location.

In Chapter 3, we coordinated the experiment based on thermal video with the blanket in real-
life conditions, implying an uncontrolled sleep posture, darkness, and subjects covered with a

blanket. The automatic ROI extraction by temperature detection and breathing motion
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detection based on image processing are integrated to obtain the respiration signals. A signal
processing technique was used to estimate respiration and body movement information from a
sequence of thermal videos. The proposed approach has been tested on 16 volunteers, for which
video recordings were carried out by themselves. The participants were also asked to wear the
Go Direct respiratory belt for capturing reference data. The result revealed that our proposed

respiratory estimation system obtains RMSE of 1.82 + 0.75 bpm.

Chapter 4 tested the user technology acceptance from the user’s perspective when using the
thermal camera to monitor the respiratory during sleeping at home. The effort expectancy was
evaluated based on the UTAUT model by participants who participated in the experiment in

chapter 3. The result shows that they were satisfied with the ease of using our proposed system.

This dissertation has studied the non-contact respiratory monitoring in the sleeping position
using cameras. The challenge is automatic to specify the region of interest in sleeping positions
in uncontrolled posture while sleeping. The study starts with the fundamental of the
conventional approach to image processing and proposed solutions. Next, the non-contact
respiratory and sleep monitoring in the actual environment has been addressed by using the
thermal camera. However, because the participants in the study did not have respiratory
problems, only the respiratory estimation accuracy can be provided based on ROI detection. In
future work, we will focus on monitoring a patient who has irregular breathing. Another
element of our future work is continuing to develop the automatic optimization of the
thresholding value. The other limitations of the proposed method, such as a variation of room
temperature, the type of bed cover, blanket, and night sweats (neck or face) in subjects, rapid
eye movement (REM) stage, and heart rate, provide ideas for addressing these issues in future

studies.

5.2 Future Work

The proposed approach to monitoring respiration in sleeping positions is carried out in several
test scenarios to test the system's reliability in measuring RR, for example, using various kinds
of bed covers or blankets. Thermal video can be performed in a dark environment to settle
privacy concerns. Moreover, using thermal cameras is a part of non-contact monitoring to
support current telemedicine technology and provides a hygienic aspect for users in the

COVID-19 pandemic. There are no components attached to the body to minimize contact
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between users. Therefore, the results obtained through the course of this research should be
viable for practical use, especially in the post-pandemic era.

However, the participants in this study are healthy; therefore, no exploration with the person
who has an abnormal respiratory. We will explore experimenting with applying the thermal
camera to patients with broader subject demographics who have respiration conditions as a
disorder for future work.

There also remains a room for developing more sophisticated algorithms to raise the detection
quality. The future algorithm should be able to distinguish apneas from gross body motion,
usable during day and nighttime, independent of skin visibility and body tracking.

Because the video duration has been recorded at approximately 1.30 hours depending on the
smartphone's battery life when using the smartphone's portable thermal camera, the whole night
monitoring using a thermal camera will also be examined in the future.

Furthermore, the automatic determination and adjustment of the threshold value used to detect
the observed area and motion detection are to be considered. Classification of movements as

breath movements or body movements may contribute to raising detection performance.
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