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Abstract 

 
This dissertation presents an approach to non-contact respiration monitoring in sleeping 

positions using cameras. Firstly, the dissertation reviews existing respiratory monitoring 

techniques along with non-contact respiration monitoring techniques based on optical sensors 

and insight into a sleeping situation. In addition, the image processing technique related to the 

approach has been present.  
Secondly, the dissertation introduces an approach to non-contact respiratory monitoring by 

focusing on sleeping posture using a smartphone camera-based RGB images recorded at high 

and frame rates. For the first challenge, the high frame rate video has been obtained and the 

respiratory is extracted in sleeping positions. Then, a technique is proposed with the manual 

region of interest selection to extract the respiratory information for estimating respiratory. For 

the second challenge, the ordinary video was used in the sleeping position with changing 

background views where subjects are covered with a black blanket. This approach presented 

the automatic region of interest selection technique and was compared with whole frame and 

human body area detection. The results show that the body’s boundary as shoulder, chest, and 

abdominal is mainly related to the breathing movement in the sleeping position. Moreover, the 

ROI selection is found as a significant issue in vision-based respiratory estimation.  

Thirdly, the dissertation adopts an approach to monitoring the respiratory in an actual sleeping 

situation using a thermal camera plugged into a smartphone. Moreover, body movement during 

sleep has been investigated in this study. The automatic ROI selection can be used to acquire 

the respiration signal and detect body movements. The results show that the respiratory rate 

was successfully estimated with an RMSE of 1.82 ±  0.75bpm. Next, the adoption of 

technology acceptance of the user's perspective has been evaluated using effort expectancy 

questions based on the UTAUT model. The result shows that the participants were satisfied to 

use a thermal camera to monitor respiratory while sleeping at home. 
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The dissertation emphasizes the significance of using cameras to monitor the respiratory during 

sleep. The ROI selection in sleeping posture was proposed to capture the respiratory 

information and also body movements. The proposed approach deals with the challenges of 

uncontrol scenarios during sleeping that has difficulty in selecting the ROI. Achievements of 

this dissertation would be a guideline for the further development of technology in healthcare. 
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Chapter 1 
Introduction 
 
 
This chapter describes the background and objectives of this thesis focuses on developing a 

non-contact respiration monitoring system to monitor respiration and body movements during 

sleep to be applied in a real environment. The respiratory system and irregular respiratory 

during sleeping are discussed. Existing respiratory monitoring techniques are reviewed and 

non-contact respiration monitoring techniques based on computer vision are also presented. 

Finally, the objectives and contributions of this thesis are explained.  

1.1 Background 

Respiration is a significant predictor of serious illness. The early detection of abnormal 

respiration can reduce the risk of acute respiratory disorders and lower associated morbidity 

and mortality. A respiratory rate should be tracked throughout sleep periods because over half 

of all patients, who suffer a severe adverse event in the general wards (such as a cardiac arrest 

or ICU admission), had a respiratory rate higher than 24 bpm [1]. An increase in respiratory 

rate is found until 24 hours before the severe event with high specificity. Approximately 50% 

of patients with heart failure have sleep apnea, and 20% of heart-failure related deaths occur at 

night [2]. Besides, several studies were shown that an abnormal respiratory rate (RR) is a 

predictor of such cardiopulmonary arrest [3], [4], chronic heart failure [5], pneumonia [6], 

pulmonary embolism [7] [8], weaning failure [9], and overdose [10]. The current gold standard 

for sleep monitoring and assessment is performing overnight polysomnography (PSG) at a 

sleep clinic that uses many sensors to measure vital signs during sleep in various settings. The 

PSG consists of a 
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simultaneous recording of multiple physiologic parameters related to sleep and wakefulness. 

The physiologic parameters such as brainwaves, eye movements, heart rate, breathing pattern, 

blood oxygen level, body position, chest/abdominal movement, limb movement, and snoring 

are recorded by multiple sensors attached to the patient's body. The PSG was performed 

overnight and was continuously monitored by a credentialed technologist. However, this 

process is an expensive, time-consuming, and labor-intensive, and the test subject has a 

cramped feeling while asleep.  

Nowadays, the technology for monitoring respiration is growing rapidly. Various studies 

perform non-contact respiratory monitoring during sleep with different techniques. The Wi-Fi-

based techniques are used to track people's vital signs by exploiting channel state information 

extracted from the Wi-Fi physical layer to detect the minor motions caused by breathing and 

heartbeat. A Doppler radar is also used to capture the subject's movement and breathing signal. 

The limitation of such techniques is related to the high cost of instrumentation, the need for 

specialized operators, and a low signal-to-noise ratio, making them impractical for large-scale 

deployment. Some approaches have been investigated to monitor the respiratory in a different 

situations, like a pressure-based method. Most non-contact techniques used to monitor 

respiratory are based on optical sensors because it is a growing preeminence owing to the recent 

progress in video technology. Both simple cameras and specialized cameras have been used to 

measure and monitor respiration like a webcam, depth, infrared, and thermal cameras [11]-

[16].  

The precision of detected breathing area while a user is sleeping plays a vital role in monitoring 

daily life. Many researchers have analyzed video and image sequences to detect the motions 

and extract a vital sign in a sleeping position. For example, in the works of Nakajima et al. [17] 

and Frigola et al. [18], the breath rate is computed by measuring the chest movement by 

analyzing the optical flow vectors. Kaiyin Zhu et al. [19] proposes a tracking algorithm of the 

upper torso's motion and head using an infrared camera during unconstrained nocturnal sleep. 

Sato and Nakajima [20] calculate the volume change amount using fiber-grating 3D vision 

sensors to monitor the bright spots moved by inhalation. Ching-Wei Wang investigated sleep 

apnea using infrared video [21]–[25]. Ali Al-Naji [26] proposed a motion magnification 

technique to magnify the baby's respiratory chest movements. Their studies demonstrated that 

the respiratory rate could be assessed successfully using a Digital Single Lens Reflex (DSLR) 

camera shooting the baby's chest at different positions, even in the presence of a blanket on the 

baby or unclear region of interest (ROI). Ilde Lorato [27] presented a camera-based online short 
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cessation of breathing using a CCD camera. Although various studies adopting video cameras 

are used to monitor the respiratory system during sleep, there are no results regarding the 

validity of such methods in practice since most of these studies offer the experiment testing by 

controlling the environment or under the sleep simulation [28]-[30]. The respiratory monitoring 

should be performed continuously, and it is reasonable to monitor that RR using simple 

electronic devices. However, the main challenge commonly emphasized is the limited use of 

respiratory systems to screen and monitor everyday life in a variety of sleep environments 

where noises are associated with the unpredictability of body movements, body orientations, 

and changes in the environment sleeping posture. 

Therefore, this thesis focuses on a non-contact respiratory measurement in the sleeping position 

using an accessibility device and easy to use with a smartphone. This study considers the 

various bedroom environments with different conditions like a room background, lighting, bed, 

blanket, and pillow. Then our approach should be able to provide accurate respiratory 

monitoring under such challenging conditions. The target group of this study is people who 

live alone and have a symptom of irregular breathing because they are unaware of their 

symptoms without being reminded by their partners. They require screening before going to a 

hospital for taking a sleep test. The benefit of screening for respiration problems is monitoring 

breath activity continuously under natural physiological conditions in a sleep environment, 

reducing the cost of a complete sleep test, and reducing the risk of serious illness associated 

with respiration. 

1.2 The Role of Respiratory 

The respiratory system is the gas exchange process to take in oxygen and expel carbon dioxide 

as breathing moves air in and out of the lungs. The structures involved in the breathing process 

consist of the nose, airways, and lungs. This inspiratory and expiratory process occurs with the 

thorax and abdomen's synchronous movement. The frequency of breaths over a period of time 

is defined as a respiratory rate usually measured by counting the number of breaths a person 

takes per minute. Therefore, the clinical staff can count the number of times the chest moves 

up and down for a full minute. The typical respiratory rate for healthy individuals is 12–20 

breaths per minute [31]. Like a bit of change, three to five breaths per minute have a critical 

predictor of serious illness with changes in the patient's condition. A rate of less than eight bpm 

or a decreasing RR may also signify deterioration. Besides, shortness of breath at rest is a sign 
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of a medical problem. Various abnormalities cause shortness of breath in different organ 

systems in the body (lung, heart, systemic illness, nervous system) [32]. Goldhill and 

colleagues' study reported that a patient with a 25–29 bpm respiratory rate had a 15-25% 

hospital mortality rate [33]. 

Therefore, the early detection of abnormal respiration can reduce the risk of acute respiratory 

disorders and lower associated morbidity and mortality. Although the respiratory rate indicates 

a clinically severe event, respiratory rate measurement is still widely performed by manual 

counting, making inaccurate results [34] or neglected [35]. Respiratory rate was often not 

documented routinely, actually when the patient's primary problem is a respiratory condition.   

1.3 Respiratory Monitoring Techniques 

The respiratory rate could be recorded with various techniques in the clinical, including contact 

and non-contact methods. The breath measuring approaches can derive breathing parameters 

from body surface motion detection by inferring thoracic volume changes. A continuous 

breathing monitoring system uses either wearable (respiratory inductance plethysmography, 

resistance-based sensors, capacitance-based sensors, inertial measurement units, fiber optic 

sensors) or non-wearable devices (mechanical ventilators, long-term oxygen therapy, 

polysomnography). Some wearable devices require cumbersome and expensive apparatus that 

may interfere with natural breathing and can be unmanageable in specific applications such as 

ambulatory monitoring, stress testing, and sleep studies. For example, Respiratory Inductance 

Plethysmography (RIP) uses two transducer bands placed around the subject to measure the 

chest and abdomen movement. Several wearable sensors are based on the principle that the 

measured resistance varies with the torso's movement. An example is the Go Direct Respiration 

Belt, which uses a force sensor and an adjustable nylon strap around the chest to measure 

respiration effort and respiration rate.  

Non-wearable devices are used in continuous monitoring of breathing performed with 

unobtrusive devices as Long-term Oxygen Therapy (LOT). There are commercial devices to 

calculate the RR via a sensor that detects pressure changes in the oxygen line. Nowadays, sleep 

respiratory monitoring comprises different measuring methods with specific sensors or 

measurement techniques that depend on applications, environments, limitations, requirements, 

and user needs. There are various approaches for respiration monitoring, categorized into 

contact and non-contact respiratory monitoring methods described in the following section. 
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1.3.1 Contact-based Respiratory Monitoring 

In contact-based measuring methods, various sensors (i.e., airflow sensors, acoustic sensors, 

carbon dioxide sensors, strain sensors, movement sensors, bio-potential sensors, temperature 

sensors, and humidity sensors) are attached to the subject's body. The sensors must be 

positioned in a different body area to detect respiratory sounds, respiratory airflow, respiratory-

related chest or abdominal movements, air temperature, air humidity, and respiratory CO2 

emission [36], as shown in Table 1.1.  

Table 0.1 Contact-based Respiratory Monitoring Techniques. 

Techniques Measurements Sensors/Devices Body area 
Respiratory sound Acoustic  Microphones Nose, 

Mouth, 
Neck, Chest 

Respiratory airflow Flow Differential flowmeters 
(mechanical ventilators, 
spirometers), 
Turbine flowmeters (spirometers, 
metabolic cart), 
Hot wire anemometers, 
Fiber optic sensors 

Nose, 
Mouth 

Respiratory-related 
chest or abdominal 
movement 

Strain 
 

Resistive sensors, Capacitive 
sensors, Inductive sensors, Fiber 
optic sensors 

Chest, 
Abdomen 

Impedance 
 

Transthoracic impedance sensors  

Movement Accelerometers, Gyroscopes, 
Magnetometers 

Air temperature Temperature Thermistors, Thermocouples, 
pyroelectric sensors, Fiber optic 
sensors, 

Nose, 
Mouth 

Air humidity Relative humidity Capacitive sensors, Resistive 
sensors, Nanocrystal and 
nanoparticles sensors, Fiber optic 
sensors 

Nose, 
Mouth 

Respiratory CO2 
emission 

CO2 Infrared sensor, Fiber optic 
sensors 

Nose, 
Mouth 

Cardiopulmonary  Electrophysiologi
cal signal 

ECG sensors Heart 
muscle 

Light intensity PPG sensors 
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1.3.2 Non-Contact based Respiratory Monitoring 

Non-contact respiratory monitoring methods are usually based on radar, Wi-Fi, thermal, and 

depth image sensors, which do not involve anybody's surface contact. These have been done 

using different techniques, including those based on thermal imaging [37], depth imaging [38], 

infrared imaging [39], and RGB imaging [40]. Several techniques are categorized based on 

measurement, where Massaroni et al. [41] identified four different classes, including 

techniques based on environmental respiratory sounds, air temperature, chest wall movements, 

and cardiac activity modulation, as shown in Table 1.2. The respiratory sound approach is often 

used to detect apnea and snoring events. In some scenarios, the respiratory estimation from 

sounds is difficult to retrieve robust respiratory sounds because of the intrinsic susceptibility 

of breathing sounds to various environment interferences. The Wi-Fi [42] and radar [43] 

approaches can measure respiration based on radio frequency through wireless electromagnetic 

signals in 3kHz-300GHz. In [44], researchers used a Wi-Fi signal to monitor breathing and 

heart rate for different sleep postures in real-time. Another work [42] used a Wi-Fi network to 

capture the movements caused by breathing and heartbeats during sleep in a realistic setting 

(bedrooms). The Wi-Fi-based approaches were evaluated only during short-duration sleep 

experiments in very controlled settings, which would be a limitation in the natural environment 

with breathing-unrelated movements. 

Table 0.2 Non-Contact based Respiratory Monitoring Techniques. 

Techniques Measurements Sensors/Devices Related area of the 
body 

Respiratory sound Acoustic Microphones - 
Air temperature Temperature Thermal cameras Nose, Mouth 
Chest wall 
movement 

Body movement Depth sensors Neck, Top body  
Radar sensors 
Wi-Fi sensors 
RGB cameras and 
visible light sensors 

Cardiac activity 
modulation 

Light intensity RGB cameras Face, Neck, 
Shoulder 
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Non-Contact Respiration Monitoring During Sleep 

Respiration and statistics of sleep events are essential indicators of sleep quality, stress level, 

and various health conditions. Traditional approaches use many sensors to measure vital signs 

during sleep in various settings environment. Such systems incur high costs and are usually 

limited to clinical usage. Especially as mentioned before, the non-contact method is appropriate 

for automatic, reliable, and convenient sensors and devices to monitor the respiratory rate 

during sleep. It should be performed continuously for a long time without impressing the 

patient's burden. Various studies perform non-contact respiratory monitoring during sleep with 

different techniques, as shown in Table 1.3. Works in [42] [44] collect the wireless channel 

state information (CSI) of the radio signals and extract rhythmic patterns associated with 

breathing and abrupt changes due to body movement. However, CSI cannot identify getting-

ups or hand movements activities, and thus it is very hard to track a person's respiration in the 

presence of these activities. In addition, the minimum transmission power should be set without 

decreasing the system's performance for tracking a person's sleep even for different persons 

and in different room environments. Doppler radar is also used to monitor vital human signs 

[43] [45]. It relies on the modulation effect due to the chest-wall displacement of a radio signal 

towards the patient. However, several other factors should also be measured close to or within 

the device, such as room temperature, sound, and light exposure. Moreover, complex signal 

processing techniques are required to detect and measure these vital signs accurately, and these 

techniques significantly increase power consumption.  

In general, the respiration information is captured by a video camera containing helpful 

information about respiration activity.  Many researchers have analyzed video and image 

sequences to detect the motions and extract vital signs in a sleeping position. Several 

approaches investigated to monitor the respiratory through infrared, thermal, and depth video 

[11-14], [38], [46–52]. Simple commercial cameras are low-cost and easy to use for measuring 

physiological signals. However, a specialized camera like a thermal camera is suitable for sleep 

monitoring because it can classify the human from the background even when turning off the 

light. There still exist challenging issues that the achievements on non-contact physiological 

vital signs estimations are generally based on “stationary” and “direct-facing” subject 

measurements, which is not ideal for sleep monitoring.
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Table 0.3 Summary of non-contact respiration monitoring during sleep. 

Techniques/ 
devices Authors Year Proposed Measurement Performance Limitation Challenging 

Wi-Fi based 
method 

Jian Liu [42] 2018 Monitor 
respiratory rate, 
heart rate, and 
posture 

CSI RR: more than80% 
estimation errors are less 
than 0.5 b/min, 
HR: 57% of estimation 
errors are less than 2 b/min 
and over 90% of 
estimation errors are less 
than 4 b/min, Posture 
identification: > 90% 

The experiment was 
simulated in each sleep 
postures. 

It should be 
performed in an 
actual sleep 
situation. 

Yu Gu [44] 2019 Breathing and 
heart rate 

CSI MAE: 0.575 bpm for 
detecting breath, 3.9 bpm 
for detecting heart rate. 
The overall accuracy is 
96.636% and 94.215%. 

The experiment was 
performed in a short 
time. 

It should be 
performed in an 
actual sleep 
situation. 

Doppler radar-
based sensor 

Feng Lin et 
al. [43] 

2017 Recognize sleep 
status (on-bed 
movement, bed 
exit, and 
breathing section) 

Sleep status 
recognition 
framework 

Accuracy: 95.1% (Short 
term-controlled 
environment) 
Error: 6.65% (75 min in 
real life) 

The experiment was 
simulated in each sleep 
postures in short term. 

It should be 
performed in an 
actual sleep 
situation. 

Mari Z [45] 2015 Respiration Using a center 
estimation method 
and the arctangent 
channel 
combining 
method 

The coverage of 
successfully demodulated 
radar data was ∼58%–
78%. 

The length of the 
epochs used for center 
estimation in this study 
was probably not 
optimal. 

The epoch lengths 
should be automatic 
setting. 

Infrared 
vision-based 
methods 

Geertsema E 
[46] 

2019 Detect central 
apnea 

The arrest of 
oscillatory 
breathing 

Specificity: 99% False detections in 
which a very small 
movement precedes a 
larger movement 

Classify movement 
is required 

Kaiyin Zhu 
et al. [47] 

2019 Respiratory and 
heart rates 

Motion analysis 
by using PCA and 

Accuracy: 89.89% for BR, 
77.97% for HR 

Unable to isolate 
respiratory and heart 

Classify movement 
is required 
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Techniques/ 
devices Authors Year Proposed Measurement Performance Limitation Challenging 

ICA RMSE: 2.10 bpm, 7.47 
bpm 

beat during periods 
with large movements 

Fei Deng 
[48] 

2018 Breathing, head 
posture, and body 
posture 

Motion 
magnification 

Accuracy: 96% in 
recognizing abnormal 
breathing and body 
movements, 87.6% in head 
tracking, and over 90% in 
classifying most body 
postures. 

Use simulation data set 
that the thresholds of 
the algorithm may have 
to be changed when 
applied in an actual 
situation 

It should be 
performed in an 
actual sleep 
situation. 

Michael H 
Li  et al. [49] 

2017 Respiratory and 
heart rates in 
different sleeping 
position 

Identify and track 
feature point 
(chest motion) 

Error: 3.4% for BR, 5.0% 
for HR  

Motion tracking with 
optical flow may suffer 
if regions lack texture 
when white sheet offers 
enough texture. 

Automatic sleep 
position 
identification and 
handle unwanted 
motions. 
 

Michael H 
Li  et al. [50] 

2014 Respiratory rate Feature point 
analysis and PCA 

Accuracy: 97% Small sample size (five 
participants) in 
simulate overnight 
sleep 

It should be 
performed in an 
actual sleep 
situation. 

Abbas K 
Abbas [51] 

2011 Monitor 
respiratory of 
neonatal 

Temperature 
change in the 
nostril’s region 

N/A A variation in 
background 
temperatures, the 
neonate’s respiration 
was manually 
registered 

Automatic ROI 
selection 

Video based 
method 
(Thermal) 

Usman [52] 2019 Respiratory Temperature 
fluctuations 

70% well corelated The subject did not 
have large body 
movement and the 
camera is fixed, the 
face may not remain 
within the camera's 
field of view 

Detect the 
reparation without 
face detection 
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Techniques/ 
devices Authors Year Proposed Measurement Performance Limitation Challenging 

Video-based 
method 
(Depth 
sensing + 
invisible near 
infrared 
illuminator) 

Bernal E 
[38] 

2014 Respiratory Respiratory 
motion of the 
chest and 
abdomen 
 

N/A Accuracy of 
measurements on 
subjects wearing loose 
clothes that occlude the 
visibility of the 
respiratory motion of 
the chest and abdomen 
can be a drawback.  

Detect the 
reparation with 
various clothes 

Video based-
method (RGB) 

Cobos-
Torres J [12] 

2018 Monitor 
respiratory, and 
heart rate of 
neonatal  

Analysis the color 
intensity 
variations 

Correlation coefficient: 
0.86 for BR, 0.94 for HR 

It would not work in 
the case of poor 
lighting or darkness.  

It could be 
improved to detect 
in a dark 
environment  

Mauricio 
Villarroel 
[13] 

2017 Respiratory rate, 
heart rate, and 
detect change in 
peripheral oxygen 
saturation in the 
clinic 

Face detection 
and tracking 
algorithm 

MAE: 2.1 bpm for over 
69% of the time for BR, 
2.8 beats per minute for 
over 65% of the time for 
HR 

The experiment was 
carried out in similar 
condition as patients’ 
upper torso at a similar 
distance from the 
camera. 

It could be 
improved to detect 
in a dark 
environment and 
various conditions  

L Tarassenko 
[14] 

2014 Respiratory rate, 
heart rate, and 
oxygen saturation 
change 

Ambient light and 
auto regressive 
models 

N/A It would not work in 
the case of poor 
lighting or darkness. 

It could be 
improved to detect 
in a dark 
environment and 
various conditions 

Video based-
method 
(Depth) 

Matsuura Y 
[11] 

2017 Screening sleep 
disorder 

Moving average N/A The bodies movement 
or posture change 
temporarily affected 
the monitoring of the 
respiration condition 

Classify movement 
is required 

Pressure-
based method 

Lorcan 
Walsh [53] 

2014 Monitor 
respiratory and 
sleep events 

The amount of 
light passing 
between an 
emitter and 
receiver woven 
into a semi-

Mean difference of 0.12 
breaths per five minutes 
and a mean percentage 
error (MPE) of 0.16% 

N/A N/A 
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Techniques/ 
devices Authors Year Proposed Measurement Performance Limitation Challenging 

permeable 
substrate 

Impulse-radio 
ultra- 
wideband 
radar (IR-
UWB Radar) 

Sun Kang 
[16] 

2020 Sleep apnea Respiratory 
events 

Intraclass correlation 
coefficient = 0.927). The 
overall agreements of the 
impulse-radio ultra-
wideband radar were 0.93 
for Model 1 (AHI ≥ 5), 
0.91 for Model 2 (AHI ≥ 
15), and 1 for Model 3 
(AHI ≥ 3 

A fixed distance 
between the radar and 
subject. 

It required in 
various setting 
environments. 
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The challenge of optical sensors-based methods that have been investigated in many studies is 

the accuracy of respiratory detection. The advantage of camera-based methods is an attractive 

sensing option that offers comfort in measuring the patient's respiration. The respiratory is 

related to movements of the abdominal area, face area, area at the edge of the shoulder, and a 

pit of the neck. The video extracts the respiratory signal based on image subtraction, optical 

flow analysis, Eulerian Video Magnification (EVM), and Independent Component Analysis 

(ICA) applied to pixel intensity changes.  

By the review of literature works, several approaches have been proposed to select an ROI 

related to breathing movement to estimate the respiratory rate using a smartphone camera. In 

2001, Nakajima et al. [54] reported that small areas or ROI could be detected in real-time 

without a high-speed image processor, although the ROI would have to track the subject's 

movement. Takemura et al. [55] introduced a technique to extract a partial region with a 

respiratory movement as the ROI by creating several small partial areas in the same area and 

then evaluating their up and down motion. Wiesner and Yaniv [56] presented a respiratory 

monitoring system using a single optical camera that tracks the motion of color fiducials placed 

on the abdomen. Zhao et al. [57] identified ROI by detecting the face and upper body positions 

of the subject and then selecting the area between the bottom of the face region and the upper 

body region with a width equal to 80% of the width of the upper body region as the ROI for 

respiratory measurement. Bartula et al. [28] obtained the ROI through a projection like a 

transformation onto a vertical axis. The region is selected from the most influential motion 

component of natural person camera geometry along that axis. Tarassenko et al. [14] identified 

an ROI within the subject’s face. The size of an ROI for respiratory rate estimation is usually 

smaller than that for heart rate estimation. This study recommended that a small area, e.g. ROI, 

could be more suitable for respiratory evaluation. Li et al. [50] presented a respiratory rate 

estimation method in which each frame is divided into 10 × 13 grids, and then feature points 

are extracted from each grid. Makkapati and Rambhatla [58] projects a circular dot of light 

onto the chest and abdomen region of the subject and observes the change in the shape and size 

of the spot so as to derive the respiration signal at a given frame. Lin et al. [59] locates the face 

and upper body area and detects the salient ROI by Haar-like features with their responses 

converged by interquartile range. Wei et al. [60] measured the respiratory rate by selecting a 

dual ROI on a facial video image. Wiede et al. [61] selected the ROI from face detection and 

upper body detection, which are available in the sitting position. Other researchers have 

monitored the respiratory rate at the neck's pit rather than from the chest or abdomen [62]. An 
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ROI is determined by selecting the pixels at the pit of the neck that is the anatomical point near 

the suprasternal notch. The dip between the neck and the two collarbones is significant and 

visible enough to be easily identified. Shao et al. [63] selected a region of 40 × 40 pixels around 

the edge of the shoulder for breathing detection. The size was large enough to capture the 

complete range of possible shoulder movement due to breathing activity. Cobos-Torres et al. 

[12] measure a newborn’s two vital signs by calculating the intensity of pixels with 40×40 

pixels.  

Most studies select regions of interest based on breath movement (e.g., from the face, chest, 

torsos, abdomen, shoulder, or pit of the neck), which can be identified when the subject is 

sitting in front of a camera. However, in a practical situation, the face and torsos are not 

completely visible in sleeping, and body and skin pixel detection is usually disturbed by 

blankets. Therefore, it is more challenging when the subject is in a sleeping posture. The 

Eulerian video magnification method features estimation in a sleeping position where whole 

frame imaging is executed to amplify a small motion such as blood flow or respiratory 

movement that can hardly be seen with the naked eye [64]. In  Naji and Chahl [26], the chest 

area was selected as the ROI, and breathing movement inside the ROI is magnified by using 

wavelet decomposition and an elliptic filter. This ROI-based method resulted in fewer errors 

than that of the Eulerian video magnification method, which was accompanied by noise and 

artifacts.  

It is known that the size of the region may affect respiratory monitoring accuracy. The ROI 

selection is the primary key when extracting the respiratory signals from video images, and 

one of the significant challenges is to enable automatic ROI selection while sleeping to detect 

small movements that occur during breaths. Typically, the respiration signal incurs large 

distortion when the subject moves, and the accuracy is degraded [65]. A few studies treat 

automatic ROI selection for respiratory monitoring. In 2013, [57] detected the face and upper 

body to locate an ROI in a similar manner with [40][59] for motion analysis by using a signal-

to-noise ratio (SNR) in estimating the temporal properties of a velocity waveform. Janssen et 

al. [66] presented an automatic ROI selection, which can reject the non-respiratory motion. In 

2018, [67] proposed an automatic selection of ROI through means of the extracted periodic 

features presented in [68].  

The above study detects respiration information using a simple camera to obtain the video in a 

sitting position with visible light. The ROI selection was performed to limit the observed area, 

increasing the accuracy of respiratory estimation. Thus, any method needs to pay attention to 
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selecting the body related to the breathing area in the sleeping position. One of the experiments 

in this thesis uses a smartphone to obtain the video and presents an automatic ROI selection 

for accurate breathing area. 

1.4 Research Contributions 

Based on the above survey of literature works, the objectives and the contributions of this 

research are described here. This research aims to propose an approach to monitoring 

respiration in an actual sleeping situation using an accessibility device in various conditions.  

First, we discover the suitable ROI location and size when using an optical sensor to monitor 

respiration in a sleeping position. The proposed method focuses on automatically selecting the 

size and location of the ROI to improve the accuracy of respiratory estimation in sleeping 

posture. Limiting the observed area in an image frame can reduce the processing time, and 

make respiration monitoring more accurate. Besides, motion detection has been employed to 

locate the breath movement area. In this research, edge detection has been used to detect the 

body's boundary when the subject lies down on the bed. This stage of the simulation experiment 

has a limitation of the background pattern and cloth pattern that disrupt the edge detection. 

Secondly, non-contact respiration monitoring for an actual sleep environment using the thermal 

camera is proposed. Several test scenarios were carried out with various bed covers or blankets 

in dim light and uncontrolled sleeping positions to test the reliability. The body movements are 

also analyzed. Finally, user acceptance has measured the level of ease of use associated with 

the use of new technology.  

1.5 Thesis Outline 

Chapter 2 introduces a non-contact respiration monitoring technique based on a simple camera 

and a solution for estimating respiration from the sleeping posture. A smartphone camera is 

used to record an RGB video at a high frame rate and an ordinary frame rate. We focus on the 

respiratory ROI selection, especially in sleeping posture. An uncontrollable sleep posture 

makes it challenging to find an area to detect breathing movements significantly related to 

respiratory measuring accuracy. Different from the sitting posture that can be easier seen on 

camera in a sitting position and monitoring breathing from a conscious person. Then Chapter 

3 proposes a non-contact respiration monitoring technique for an actual sleep environment 
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using thermal imaging in a dim environment. Experiments are carried out in an actual sleeping 

situation in the participant's bedroom. Chapter 4 presents the user acceptance-based effort 

expectancy of users after they try to use this preliminary system to record their sleeping by 

themselves. User acceptance of health monitoring is studied to understand the factors that affect 

the intended users' perception. Finally, concluding remarks and future work are given in 

Chapter 5. The thesis outline is shown in Figure 1.1. 

 

 

Figure 0-1: Outline of the thesis.
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Chapter 2 
Non-Contact Respiration Monitoring in 
Sleeping Position using Smartphone 
Cameras 
 

This chapter discusses non-contact respiratory monitoring in sleeping posture via smartphone 

camera-based RGB images. Experimental tests of extracting respiratory values with high frame 

rate video (240 fps) and ordinary video were executed by smartphone with the objects lying 

down on the bed. 

2.1 Introduction 

As discussed in Sect. 1.1, non-contact respiration monitoring based on camera imaging has 

comfort for the patient and accessibility. Due to this, a patient who has a smartphone can utilize 

this method for monitoring themselves at their home. The respiratory in sitting position has 

been proposed in literatures, but only a few works focused on sleeping positions. The non-

contact respiratory monitoring in sleeping posture via smartphone camera-based RGB images 

with different frame rates is investigated in this study. The higher than 30 fps in terms of the 

frame rate is used to create a slow-motion video to ensure a higher level of detailed information 

for the motion capture. This study also records 240 fps because the respiratory is a very tiny 

motion, and more frames may provide details, allowing for more flexibility. The movement 
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during sleeping is referred to the breathing (inhalation and exhalation). Inhalation (also known 

as inspiration) happens when air or other gases enter the lung. Exhalation (or expiration) is the 

flow of the breath out of an organism. In humans, air moves from the lungs out of the airways 

to the external environment during breathing. Respiratory-related body movement can be 

monitored by using optical sensors. Typically, an area at the edge of the shoulder [69], the pit 

of the neck [70], the thorax[22][59][67], the thoracoabdominal area [71], and the abdomen 

movements could be used to measure respiratory rate values by using a built-in notebook 

camera [72], built-in smartphone camera [73], and CCD camera [22]. Then, the video is 

recorded to retrieve respiratory patterns from video frames.  

Different approaches have been used to postprocess the pixel data to extract signals related to 

the respiration from such videos by the subtraction of two continuous images [6, 9], analysis 

of pixel intensity changes based upon independent component analysis [10, 74], analysis of 

average contributions of red, green, and blue channels of the video [75, 35, 36], analysis of 

optical flow [7], and magnified the movement. 

In the pixel intensity change based approaches, the breathing pattern can be determined by 

detecting and analyzing body movements associated with breathing. For example, Yunyoung 

Nam et al. estimated the respiratory rate from the chest and abdominal motions using the front-

facing video camera [76]. They found that the use of the maximum peaks based on the Welch 

periodogram provided an accurate breathing rate for low and high breathing ranges (0.1–1 Hz). 

However, this approach did not always provide satisfactory results at the medium to high 

breathing rates (0.4 and 0.5 Hz), especially when subjects wore either loose clothing or 

breathed shallowly. Massaroni et al. extracted the respiratory pattern from intensity variations 

of reflected light at the level of the collar bones and above the sternum [70]. The influence of 

the video sensor resolutions, i.e., HD 720, PAL, WVGA, VGA, SVGA, and NTSC, have been 

evaluated. In their experiments, the HD 720 resolution indicated perfect agreement with 

average breathing frequency values gathered by the proposed measuring and reference 

instruments. The video recorded at a set frame rate of 30 Hz is enough to discretize the 

breathing movements that generally happen up to 60 breaths per minute, equal to 1 Hz. This 

method collects the respiratory pattern from the chest wall motion by selecting an ROI, and 

analyzes the intensity change to extract the breath-by-breath respiratory rate.  

Although several studies acquired video data with different frame rates at 4-30 fps [28][12], 

[22], none tried high frame rate video capturing more images in a second for smooth video. 

Besides, many studies were developed for adult subjects sitting in front of the camera, for 
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which it is easy to select the ROI and analyze the respiratory because the pit of the neck is large 

and easily identifiable.  

Then, respiratory monitoring in sleeping positions has been studied for newborns with 

manually cropped images that contain only the chest and abdomen region [29]. Alinovi et al. 

[67] used the Maximum Likelihood (ML) approach to perform ROI selection, ML data fusion, 

and RR estimation. The selected area is still near the chest of the newborn patient. This study 

confirms that the chest area is strongly related to breathing movement in lie-down posture. 

However, the ROI size also affects respiratory estimation. In addition, environmental 

conditions have a strong influence on image signals, for example, the noise from light, the 

distance between subjects and camera, clothing, and background view [61]. The distance from 

the camera to a subject is generally set between 0.5 meters to 3 meters. Shao et al. set the 

distance at 0.5 meters, and Massaroni et al. set the distance at 1.5 meters for the first study and 

then at 1.2 meters in the second study. Wiede et al. [61] considered the distance from the 

camera, the brightness of the image, the influence of different clothing, and the back view. 

They recommended using FFT and Welch methods to determine the frequency of the 

respiratory signal. In the experiment, the distance (1 meter, 3 meters), the illumination, and the 

influence of clothing did not substantially affect the algorithm. However, the slim-fit T-shirt 

was provided for better performance than the loose-fit T-shirt [62]. So, the clothing and 

background view should be considered when taking the experiments. Besides, the camera 

distance is not significant for the accuracy of respiratory estimation, but it depends on whether 

the subjects are available in the camera view. 

Therefore, despite the large number of studies adopting video cameras for respiratory 

monitoring purposes, there is a lack of results about the validity and accuracy of such methods 

in practice since most of these studies present proof of concepts or preliminary tests. This 

chapter presents non-contact respiratory monitoring in sleeping positions based on the RGB 

images recorded by a smartphone camera. The aim of the present study is three-fold: (i) an 

approach of non-contact monitoring of respiration in sleeping positions by using RGB video 

signal acquired from a built-in smartphone camera; (ii) the experimental test of this monitoring 

approach in extracting the respiration values from high frame rate video and ordinary video; 

and (iii) the evaluation of the accuracy of ROI selection and ROI size for sleeping position. 
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2.2 High Frame Rate Video Experiment 

2.2.1 Proposed Method 

Assuming that the high frame rate video contains greater details, this experiment proposes a 

respiratory rate and breathing pattern estimation method shown in Figure 2.1. The first step of 

the processing is to record the RGB video using the high frame rate video at 240 frames per 

second. Frame rate is an indicator of the video's quality captured by a camera. The high frame 

rate incurs smoother-looking transitions from one frame to the next, ensuring a higher level of 

details in the amount of captured motion, which includes tiny movements like breathing 

movements. In the second step, we select the region of 50 x 50 pixels around the abdomen or 

the shoulder and use the Gaussian filter to reduce the noise. We have considered the ROI in 

different sizes as 50x50, 100x100, and 150x150 in the empirical experiment and found that the 

50x50 gives the best result. Then we continue to find the object of interest again in subsequent 

video frames. Specifically, the Minimum Output Sum of Squared Error (MOSSE) motion 

tracking is used to track the selected region of interest. The last step is to calculate the average 

pixel intensity in the selected region of interest. Signal filtering is the primary key process to 

acuratetly estimating the respiratory rate and representing breathing patterns. Therefore, the 

Butterworth filter, Filtfilter, and Saviszky-Golay filter are considered for smoothing waveform 

before counting the peaks. Moreover, the Findpeaks function provides the peak location of the 

input data by searching for the maximum local value of the sequence.  

 

Figure 0-1:The proposed method (high frame rate video experiment). 

 

 

 

Record RGB video
(240 fps) Manual select ROI Reduce noise

Track motionCalculate pixelsCount number of
breaths
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ROI Selection 

Like the related works described in Section 2.1, the respiratory rate can be counted by 

observing breathing movement. In this phase, the boundary of the subject’s body laying down 

on the bed is focused on utilizing edge detection and thresholding technique to locate the area 

related to breathing movements. We manually test to select the region of interest on the 

subject’s boundaries, as depicted in Figure 2.2, which shows the possible selected rectangles 

used to detect the breathing movement. The size of each ROI was set as 50 x 50 pixels and 

placed on the upper body. The characteristic of the selected area contains a part of the body 

and background. We calculate the accuracy of each ROI from P1- P11 to find the body area 

associated with breathing movement. For example, the clear points related to breathing 

movements that we can see with the naked eye are P5, P6, and P8, placed around the waist area. 

The selected region of interest and the accuracy of each ROI are shown in Figure 2.3. Breathing 

movements can be detectable in the raw signal of some waveforms as shown in Figure 2.4 (P5, 

P6, P9, P10).  

 

Figure 0-2: Manual ROI selection on the body edge. 

 

The accuracy formula provides accuracy as a difference in error rate from 100% (2.1). The 

error rate is the percentage of the difference between observed and actual values divided by the 

actual value (2.2). The observed value is the number of breaths from the experiments, and the 

actual value is the number of breathings from ground truth data. 

!""#$%"&' = 100%− -$$.$	0%&1      ( 0.1 ) 
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× 100     ( 0.2 ) 

 

 

Figure 0-3: The depict of each ROI and its accuracy. 

 

 

Figure 0-4: Plot of respiratory signal of each ROI. 

 

 

As the above observation, we found that the ROI should be placed on the upper body's 

boundary and should contain the haft of background. Then we try to apply edge detection to 

locate the body boundary more precisely, as explained in Figure 2.5. Firstly, the Gaussian filter 

is used for smoothing the image. Second, the edge function has been performed. The detected 

edge is smoothed and is dilated with kernel 25 and iteration 2. Finally, we find the contour and 

draw a bounding box around the contour. There are multiple bounding boxes that are not related 

to the breathing movement. Figure 2.6 depicts all boundary boxes placed on the body edges 

using edge detection. The size of each box depends on the detected edges. Then, we calculate 

all candidate ROIs and manually select the best result, which gives the highest accuracy for 

each subject. 

P11 
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Figure 0-5: The ROI selection method. 

 

  

Figure 0-6: The sample output of candidate ROI selection based on edge detection. 

Noise Reduction 

After manual ROI selection, we applied the Gaussian filter to blur the image and remove noise 

in that ROI again. The Gaussian filter can remove noises in images due to light conditions. 

Then the signal is calculated as the average pixel intensity of the region of interest for each 

frame.  

Motion Tracking 

 

 

Figure 0-7:  Breaths movement tracking process. 

 

Motion tracking is the process of tracking the movement of an object within a region of interest 

area. The purpose of this process is to precisely locate a moving object in the video. The 

MOSSE motion tracking was compared as the empirical experiment with another object 
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tracking algorithm using the OpenCV library. The result shows that the MOSSE motion 

tracking is more suitable for our experiment. We take the initial set of object detection (breaths 

movement area) as an input set of bounding box coordinates. The MOSSE tracker uses an 

adaptive correlation filter to track the object [77]. The correlation is performed in the Fourier 

domain to make the computations faster. It is indeed robust and efficient computation with 

speed reaching several hundred frames per second. After the ROI is selected at the first frame, 

the ROI is cropped and the filter is initialized with the ROI set in its center. Then the filter is 

correlated with a tracking window in the video to find the new location of the object. Figure 

2.7 shows the process of breath motion tracking. 

Respiratory Extraction 

 

Figure 0-8: Respiratory estimation workflow. 

The respiratory extraction workflow shows in Figure 2.8. Firstly, the ROI related to the breath’s 

movement area was selected as a set of bounding box coordinates. We applied the blur function 

to reduce some noise and tracked that box. Next, at each frame f, the average intensity value is 

calculated for each ROI of each frame. Figure 2.9 exemplifies a gathered signal from the mean 

intensity of a selected ROI in a sequence of frames. Then the respiratory pattern is extracted 

using filtering operations. Thus, appropriate cut-off frequencies and bandwidth need to be 

defined. It is crucial to accurately design the filter parameters to obtain the proper performance 

of the measuring system. A 7th order Butterworth low pass filter with a cut-off frequency in 1.5 

Hertz, corresponding to 90 breaths per minute, was chosen to eliminate unreasonable 

frequencies unrelated to respiratory movements. Even after applying a low pass filter, the 

signal still has multi-peaks in one cycle, requiring smoothing signals. A Savitzky- Golay (SG) 

filter is a low pass filter that can be applied to a set of digital data for smoothing the data and 

increasing the data's precision without distorting the signal tendency [78]. The SG filter has 

two design parameters, i.e. the window length and the filter order. The optimal window length 

depends on the noise power, the number of samples, signal waveform, and filter order [79]. 

Figure 2.10 shows the smoothing results for a breathing pattern (red dash-dot line) in case of 

The average pixel of
each frame Butterworth filter Saviszky-Golay filter Findpeaks function

Find window size by
FFT
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using a third-order polynomial fit with 825 window length. The empirical experiment is 

executed to select the proper window length that provides higher accuracy for all subjects. 

Finally, we apply the Findpeaks function to obtain the input data's peak location by searching 

for the maximum local value of the sequence. 

 

 

Figure 0-9: The sample of original breathing waveform. 

 

 

Figure 0-10: The sample of filtered breathing waveform. 

2.2.2 Data Acquisition 

Data were collected while volunteers were lying down on a bed in front of the smartphone 

camera (Galaxy S9+) at a distance of 0.6 meters. The smartphone is stabilized on the table by 

using the tripod to ensure that the camera was not affected by movement during the experiment. 

The experiments were carried out indoors and with a stable amount of light.  

Data were collected from 9 volunteers (four females and five males) between 25 and 32 years 

old, each dressed in slim fit and dark clothes. The background view and bedcovers are white 

color. Although this is an unusual sleeping environment, we set this situation for the test with 

people who want to nap in the daytime and use their smartphones to monitor themselves. The 

volunteers are invited to lie down on the side of the bed and regularly breathing. The video was 

recorded with a built-in slow-motion mode for approximately 120-160 seconds. The resolution 



 25 

is set at 1920 x 1080 pixels and saved in MP4 format. Table 2.1 shows the environmental setup 

details displayed in Figure 2.11. 

The reference breaths are observed from the vertical rise and fall of the volunteer's waist or 

shoulder, and the number of torso rises is counted. One respiration consists of one complete 

vertical rise and fall of the torso or the inhalation cycle and exhalation of air. Breathing patterns 

obtained from the video signal show the shape of uphill and downhill graphs representing 

inhalation and exhalation clarity. 

Table 0.1 Environmental Setup and Details. 

Items Description 

Camera Smartphone (Galaxy S9+) 

Resolution 1920 x 1080 

Frame Rate 240 fps 

Distance 0.6 m 

Number of Subjects 9 

Color Depth 8-bit 

Image Format MP4 

Low light Compensation Disable 

Ground-Truth Observed  

 

 

Figure 0-11: Environment setup of sleeping position. 
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2.2.3 Result of High Frame Rate Video Experiment 
We use the Google Colab to implement the proposed method on image and signal processing. 

Figures 2.12-2.20 illustrate waveforms of the respiratory signal extracted from the recorded 

image of subjects in sleeping situations. Time durations in trials are between 134 seconds on 

average. The number of breaths refers to the number of peaks, corresponding to the number of 

breathing, is counted by the Findpeaks function.  

 

Figure 0-12: The breathing pattern of subject No.001. 

  

Figure 0-13: The breathing pattern of subject No.002. 

 

Figure 0-14: The breathing pattern of subject No.003. 
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Figure 0-15: The breathing pattern of subject No.004. 

  

Figure 0-16: The breathing pattern of subject No.005. 

  

Figure 0-17: The breathing pattern of subject No.006. 

 

Figure 0-18: The breathing pattern of subject No.007. 
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Figure 0-19: The breathing pattern of subject No.008. 

 

Figure 0-20: The breathing pattern of subject No.009. 

 

Table 0.2 The result of the reference number of breaths comparing the experiment. 

Subject 

No. 

Duration 

(secs) 
FPS 

Reference Breaths 

(times) 

Number of peaks  Accuracy (%) 

LowPass  LowPass+SG  LowPass  LowPass+SG  

001 151.63 240.27 39 39 38 100.00 97.44 

002 138.37 240.23 35 36 34 97.14 97.14 

003 130.99 240.27 36 36 37 100.00 97.22 

004 128.55 240.18 33 23 33 69.70 100.00 

005 125.98 240.23 31 29 31 93.55 100.00 

006 128.27 240.27 29 24 29 82.76 100.00 

007 144.72 240.24 43 45 43 95.35 100.00 

008 135.68 240.27 43 45 43 95.35 100.00 

009 130.47 240.24 30 32 30 93.33 100.00 

Average 134.962 240.24    91.91 99.09 
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The high frame rate experiment results are summarized in Table 2.2, compared with the 

reference breaths. Subject 06 has reference breaths 29 times, and when applied only LowPass 

filtered, breaths are counted as 24 times because some peaks are not prominent or have a small 

width. The LowPass filter followed by the SG filter is applied, giving more apparent 

prominence with a smoother waveform. The result gives 29 peaks are counted, although the 

waveform is not stationary. As for the result of all subjects, when applied only to the lowpass 

filter, the average accuracy is 91.91 percent. Besides, the average accuracy after the applied 

proposed approach is 99.09 percent, where 100% accuracy is obtained for six of nine subjects. 

This result confirms that the SG filter for smoothing signals provides high accuracy. 

2.3 Ordinary Video Experiment 

As we discussed in Sect. 2.2, the smartphone camera is a simple device that is used daily. 

However, the slow-motion video required a high computation for processing. Therefore, this 

section uses a regular smartphone camera to record ordinary video at 30 fps in the bedroom, 

and the subjects are covered by a black blanket. Additionally, this section presents an automatic 

ROI selection for respiration estimation in sleeping positions, which utilizes a human detection 

method to remove unrelated breathing movement signals to improve respiratory estimation 

accuracy. This experiment aims at individual continuous monitoring at home to screen the 

cessation of breathing while sleeping. 

2.3.1 Proposed Method 

This experiment investigates the automatic selection of the relevant area to extract respiratory 

signals from RGB video. Operations with automatic ROI selection are described in Figure 2.21.  

 

Figure 0-21: The proposed method (ordinary video experiment). 
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RGB Video 

The RGB video input is converted to grayscale pixels by calculating the weighted sum of the 

corresponding red, green, and blue pixels as (2.3). 

Y = 0.2125 R + 0.7154 G + 0.0721 B    ( 0.3 ) 

Gaussian blur [76] is used to remove the noise from the frames in order to avoid interference 

with the experimental results. Then, our ROI selection method utilizes a motion detection 

method to locate the movement area that relates to the breathing movement in the video. The 

breathing movement is generally very tiny and cannot be seen with the naked eye. In video 

image processing, the motion would be detected by examining the difference in pixel values 

between consecutive frames. The breathing movement area is located in the first ten seconds 

(300 frames) of the video to ensure at least one breath cycle is included. 

 

ROI Selection 

In this experiment, we compare the different ROI sizes, including whole frame, human 

detection, and ROI selection. First, the Mask R-CNN [76] was applied to locate the human in 

sleep position. This step features a cropping method to limit the observation area by removing 

the unwanted areas at the beginning frame. Then, the image from the video capture is imported 

into the Mask R-CNN model built on ResNet101 to locate the person area. Finally, pre-trained 

models based on the COCO dataset are used to detect a person. As a result, the Mask R-CNN 

detects a human in a sleeping position, lying on the back and lying on the side, as shown in 

Figure 2.22. The sleeping person in an image and the bounded box around them are detected. 

Boxes, masks, class scores, and labels are drawn in the left figure. There are three objects 

detected in this figure with their scores of the human body (0.768), bed (0.943), and human 

head (0.896). 

  

Figure 0-22: The human detection through Mask-R-CNN (left), The ROI of human detection 

(right). 
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Figure 0-23: Frame x (a) and frame y (b) both after noise removal are used to compare the 

difference between frames. (c) is a binary image of different images (a) and (b). (d) shows the 

located breathing motion area. 

The comparison of selected areas is executed based on the Structural SIMilarity (SSIM) index, 

that is a method for measuring the similarity between two images [80]. SSIM measures the 

perceptual difference between two similar images to determine the (x,y) coordinate difference.   

First, we calculate the SSIM by using (2.4) between frames and then select two frames, i.e. 

SSIMmax and SSIMmin, representing the maximum and the minimum values of SSIM. Next, 

these two frames (Figure 2.23 (a) and Figure 2.23(b)) are used to calculate the difference 

between two similar images by using the SSIM method again. This is because the largest value 

between those two frames may indicate the breathing movement. Next, the threshold method 

is applied to create the binary image in which a white pixel indicates the difference, as shown 

in Figure 2.23 (c). Finally, the white pixel area is set to ROI by the bounding box using the 

contour function (see Figure 2.23 (d)). Obtained three different ROI sizes are depicted in Figure 

2.24, where blue represents the whole frame, red is the human detection result, and green is 

used for ROI.  

CCDE(G, ') = 	
(JKLKMN	OP)(JQLMNOR)

(KL
RNKM

RNOP)(QL
RNQM

RNOR)
     ( 0.4 ) 
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The SSIM measure between two windows G and ' of common size (S × S) with TU is the 

average of G, TV  is the average of ', WUJ is the variance of G, WVJ is the variance of ', WUV is the 

covariance of G and '. 

 

 

 

Figure 0-24: Display the subjects with a region of the whole frame (blue), human detection 

(red), and the ROI selection (green). 

Image Pre-processing 

After the bounding box of ROI is set, the next step is signal extraction by converting RGB 

images to grayscale pixels to calculate the weighted sum of the corresponding red, green, and 

blue pixels (2.3). Then uses the Gaussian blur filter to remove noise in the ROI area. 

 

Respiratory Signal Extraction 

We compare three signal generation methods among varoius signal extraction methods as the 

difference between frames, the average pixel values, and the white pixel count for each frame. 

In addition, the ROI selection (proposed method), human detection, and the whole frame are 

compared. Equation (2.5) is the function from the scikit-image used to compute the score and 

difference between two grayscale images. The score represents the structural similarity index 

between the two input images. The difference image contains the actual image differences 

between the two input images that we wish to visualize.  

X".$1, YZ[[1$1\"1 = ".]^%$1_XXZ](`$%]1a, [$%]1aNb)  ( 0.5 )  
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Let P be a set of pixels in a frame, the average pixel values are calculated by (2.6), and the 

white pixel is counted by (2.7) where white pixel value (x) is 255. 

!c1$%d1	.[	^ZG1eX =
∑ UL∈h

|i|
     ( 0.6 ) 

j.#\&	kℎZ&1	^ZG1e = 	∑ 1U∈i|UmJnn     ( 0.7 ) 

 

Respiratory Signal Processing 

The obtained respiratory signals retrieved above are smoothed before applying signal 

processing based on the scipy.signal.findpeaks package. Then we count the number of peaks 

corresponding to the number of breaths. A 6th-order bandpass Butterworth filter [81] with a 

lower cutoff frequency of 0.05 Hz and a higher cutoff frequency of 1.5 Hz, which are equivalent 

to 3-90 breaths per minute, is used. Next, we use the SG filter [82] to smooth the respiratory 

signals by applying a 3rd order polynomial and a window length of 71, which is decided based 

on preliminary experiment research. Formula (2.8) calculates the percentage error to measure 

the error between the ground truth value and the measured value. The number of peaks refers 

to the measured value, and the ground truth value is the number of breaths counted manually 

from the video by the three persons.  

o1$"1\&%d1	-$$.$ = 	
|p6;5=769>q7r=a9A7=As|

q7r=a9A7=As
	× 	100    ( 0.8 )  

 

 

2.3.2 Data Acquisition 

Our experiment uses a smartphone camera (iPhone XS) to record video sequences at the frame 

rate of 30 fps and an image resolution of 1920 × 1080 pixels. The video was recorded for 

approximately 80 seconds and saved in RGB, MOV raw format. Volunteers were invited to lie 

down on a bed in front of the camera. The distance between the camera and the volunteers was 

approximately 0.60 meters. The smartphone was stabilized using a tripod to ensure the camera 

was not affected by any movement during the experiment. The experiments were performed 

indoors and with a stable amount of light. Data were collected from nine volunteers (five 

females and four males) between 25 and 32 years old whose BMIs ranged from 18.36 to 25.73 

kg/m2. They were covered with a thin black blanket, and the temperature of the room was kept 
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at 27–29°C. The background view was a light-colored wall. The ground truth breathing signal 

was obtained from a thermal camera (Seek Thermal CompactPRO) with a 320 × 240 thermal 

sensor to monitor the subjects' noses. 

Table 0.3 Environment setup and details. 

Items Description 

Camera iPhone XS 

Resolution 1920 x 1080 

Frame Rate 30 fps 

Distance 0.6 m 

Number of Subjects 9 

Color Depth 8-bit 

Image Format MP4 

Low light Compensation Disable 

Ground-Truth Observed  

 
 
 

Table 0.4 Subjects detail. 

Subjects Weight (kg) Height (cm) Gender BMI 

01 59.00 168 M 20.90 

02 47.00 160 F 18.36 

03 60.00 169 M 21.01 

04 52.70 167 F 18.90 

05 55.00 160 F 21.48 

06 47.50 157 F 19.27 

07 57.50 168 M 20.37 

08 77.00 173 F 25.73 

09 75.00 180 M 23.15 
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2.3.3 Result of Ordinary Video Experiment 

Table 2.5 shows the accuracy of the respiratory rate obtained by three signal extraction 

methods; the difference of frame, average pixels, and count number of white pixels. Each 

method was tested in two sleeping postures and three region sizes, including whole frame, 

human area detection, and ROI detection. The results show that the accuracy of the average 

pixels method is the highest at 98.80% (lying on the back) and 93.21% (lying on the side). The 

proposed method also had the highest accuracy in both sleeping positions when estimated by 

the average of pixels. 

 

Table 0.5 The accuracy of respiratory rate extracted from different method. 

Signal Extraction 

Methods 

Accuracy (%) 

Lying on the Back Posture Lying on Side Posture 

Whole 

Frame 

Human 

Detected 

Proposed 

Method 

Whole 

Frame 

Human 

Detected 

Proposed 

Method 

Difference of frame 90.78% 90.19% 88.24% 88.68% 90.61% 92.82% 

Average pixels 89.28% 95.41% 98.80% 87.46% 92.56% 93.21% 

Count white pixel 86.42% 87.78% 87.29% 89.00% 91.75% 88.70% 

 

Then we explain the result of each subject with the average pixels method in Table 2.6 in which 

the ground truth value is obtained by manual counting of the breathing. From this table, it is 

clearly seen that the performance of the proposed method is better than that of the whole frame 

and human detection for all sleeping positions. An ROI can be detected more precisely for the 

lying on the back position than the side position. With the lying on the side position, an ROI 

around the arm area caused more errors than that around the chest area (i.e., subject005, 

subject006, and subject009).  
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Table 0.6 The result of average pixels method of each subjects. 

Video 
Ground truth 

(#breath) 

Measured value (#breath) Accuracy (%) 

Whole 

Frame 

Human 

Detection 

ROI 

selection  

Whole 

Frame 

Human 

Detection 

ROI 

selection  

001-back 27 24 27 27 88.89 100.00 100.00 

002-back 15 19 18 14 73.33 80.00 93.33 

003-back 16 16 16 16 100.00 100.00 100.00 

004-back 19 17 18 19 89.47 94.74 100.00 

005-back 21 19 21 21 90.48 100.00 100.00 

006-back 14 12 13 14 85.71 92.86 100.00 

007-back 14 13 14 15 92.86 100.00 92.86 

008-back 21 20 20 21 95.24 95.24 100.00 

009-back 24 21 23 23 87.50 95.83 95.83 

001-left 26 24 26 26 92.31 100.00 100.00 

002-left 19 20 20 20 94.74 94.74 94.74 

003-left 16 15 15 15 93.75 93.75 93.75 

004-left 19 18 18 18 94.74 94.74 94.74 

005-left 17 22 20 15 70.59 82.35 88.24 

006-left 21 19 20 20 90.48 95.24 95.24 

007-left 18 25 23 21 61.11 72.22 83.33 

008-left 17 17 17 17 100.00 100.00 100.00 

009-left 19 21 19 18 89.47 100.00 94.74 

Average of lying on back side position 89.28 95.41 98.00 

Average of lying on left side position 87.46 92.56 93.86 

Average all position 88.37 93.98 95.93 
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The results of ROI selection and breathing waveform of each subject are shown below. The 

sample ROI of each subject shown in the photo is in a fixed position for all frames that we 

located from the breathing motion area. Besides, the waveform is depicted by calculating the 

average pixel within each frame's ROI. 

Table 0.7 The result of selected ROI and breathing pattern for each subject. 

Subjects Lying on the side Lying on the back 

001 
 

 

 

 

 

 

002 
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Subjects Lying on the side Lying on the back 

003 

 

 

 

 

 

 

004 

 

 

 

 

 

005 
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Subjects Lying on the side Lying on the back 

006 

 

 

 

 

 

007 

 

 

 

 

 

 

 

008 
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Subjects Lying on the side Lying on the back 

009 

 

 

 

 

 

 

The scatter plot and linear regression results of the reference and measured respiration rates are 

presented in Figure 2.25. A strong correlation was found in the proposed method (R2 = 0.914), 

as the data points (green line). The human detection technique showed a positive relationship 

(R2 = 0.807). The whole frame technique had a low relationship (R2 = 0.500). These results 

demonstrate that the proposed method is effective for respiratory measurement. 

 

Figure 0-25: Scatter plot of the ground truth value and measured value. 
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2.4 Discussion  

In order to investigate the performance of high frame rate video and ordinary video 

experiments, we have shown the ROI selection methods to estimate the respiratory in a sleeping 

position. In the experiments, the respiratory signal is collected in two different conditions; i.e. 

the subjects covered with a blanket and without a blanket. In the high frame rate video 

experiment, the proposed method focused on the boundary between the body and the 

background, which may depend on the postures or clothing patterns of the subjects. Assuming 

that the spatial features are correctly selected, this method is simple and effective. Although it 

is not the ideal sleeping environment, this study confirms that ROI is essential in acquiring 

respiratory information from images. Then, we consider changing the experiment environment 

by covering the subject with the black blanket in the ordinary video experiment. Besides, we 

applied the Mark R-CNN to detect the human body in sleeping postures, comparing it with the 

ROI selection method based on motion.   

The limitations of this study include the video recording of the breathing while the volunteers 

were lying down and instructed not to move, as found in other non-contact optical approaches 

[30]. Additionally, in this study, we evaluated the performances of the proposed system only 

in the quiet breathing range and in a limited population. We also found the many factors that 

affect the breathing estimation based on the non-contact optical approach described below. 

Varying Motion Patterns 

There are various kinds of motions of a subject, such as a limb movement, jaw and face 

movement, head/neck or trunk movement, rotation, translation, and body shaking. In the 

experiment, we found a motion of the background seriously affects the performance. The non-

respiratory motions should be recognized and to be removed when estimating the respiratory 

signal. Abnormal movements are also associated with wakefulness or sleep. 

Varying Clothing and Blanket Pattern 

The clothing and blanket pattern may directly affect respiratory ROI detection. The slim-fit 

and loose-fit clothes influence the data quality and validity of the video-based methods. The 

clothing and blanket pattern degrades the edge detection performance, which creates the wrong 

position not related to breathing motion. In the first experiment, the background view and cloth 

pattern are detected by using the edge method which some areas are not related to the body and 

breath movements. Then, we used a dark, non-patterned blanket covering the subject to reduce 
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the edges that were not involved in breathing in the second experiment. Besides, we select ROI 

by motion detection technique to estimate the more accurate respiratory. 

 

Figure 0-26: Example of candidate bounding boxes. 

 
Varying Sleeping Positions 

The sleeping position is uncontrollable in the natural sleep environment. In experiments, the 

volunteer was asked to lie down on the bed with no movement. In the first experiment, we 

manually selected the ROI, and in the second experiment, we applied the image processing 

algorithm to select the ROI. However, it still has a limitation when the volunteer moves or 

changes their posture. Therefore, the ROI cannot be set in the first frame but must be 

automatically located and usually updated when the subjects change their posture. The 

uncontrolled sleeping posture challenge is the accurate locating of the related breathing area in 

the sleeping position. 

Varying Frame Rate Video 

The frame rate is thus the number of frames displayed per unit of time, and it is measured in 

frames per second that consists of a sequence of photos displayed at a specific rate to show 

motion. High frame rates are good for slow-motion video because we capture the image with 

more stills, whereas a high frame rate requires ample storage. High frame rate video also takes 

longer than ordinary video to process images due to many frames. However, the results have 

similar accuracy.   

2.5 Summary 

This chapter discussed respiration monitoring based on smartphone cameras to obtain the 

subjects' video when lying on the bed. The first experiment lies in the high frame rate video at 

240 fps, and the second experiment uses an ordinary video at 30 fps. Both experiments show 
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that the accuracy was similar, but the high frame rate video takes a long time to process due to 

numerous images. The main factor affecting the number of peaks on the waveform depends on 

the breath’s movement area. It is more challenging when the subjects are in a sleeping position. 

The solution is limiting the observed area was also presented by using ROI selection. We 

present a manual ROI selection for a high frame rate video to prove the highest related area 

and the condition that affects accuracy. Experimental results showed that the subject body's 

boundaries as the shoulder, chest, and abdominal are mainly related to the breathing movement 

area. The background and cloth patterns also affect the performance of image processing when 

locating the subject body's boundaries. In the ordinary video experiment, we controlled the 

background view and covered the subject with a black blanket to solve the problem. The 

automatic ROI selection and ROI size have been discussed in this study. 



 

Chapter 3 
Non-Contact Respiration Monitoring 
based on Thermal Camera 
 

 

To possibly apply the vision-based non-contact respiration monitoring in the real sleeping 

environment with a dim light and uncontrolled sleeping position, a thermal camera may detect 

respiration in this environment, where each subject lies on a bed naturally in a home. This 

chapter aims to integrate the analysis of respiration and body movements. Since respiratory 

signals and that of body movement are related to common sleep disorders, such an approach 

can provide comprehensive information that aids diagnosis.  

3.1 Introduction 

The breathing patterns during sleeping are utilized to identify the sleep disorder as sleep apnea, 

including obstructive sleep apnea (OSA), central sleep apnea, and complex sleep apnea 

syndrome. Sleep apnea is a cessation of the airflow that occurs when breathing repeatedly stops 

and starts during sleep, resulting in decreased oxygen flow to the brain and the rest of the body. 

Sleep apnea is generally characterized by the cessation of breath for at least 10 seconds during 

sleep [83]. The well-known index used to indicate the severity of sleep apnea is the Apnea-

Hypopnoea Index (AHI), which counts the number of apnea events per hour. Besides, sleep 

monitoring can detect periodic limb movement disorder (PLMD), which is repetitive cramping 

or jerking of the legs during sleep. Patients with PLMD may suffer from daytime sleepiness, 

daytime fatigue, trouble falling asleep at night, and difficulty staying asleep throughout the 

night [84]. Usually, patients with PLMD are unaware of their leg movements unless their bed 
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partner tells them. It is also reported that movements are repetitive and rhythmic and occur 

every 20-40 seconds [85]. 

Thermal imaging is a rapidly evolving technology that is now turning up in hospitals, airports, 

and even homes. Respiratory can be monitored through thermal imaging [86]–[99]. Thermal 

imaging cameras rely on microelectromechanical sensors to produce an image from heat; the 

human body stands out from the surrounding field because it gives off more heat. The thermal 

image-based method has an advantage under varying illumination conditions and can reduce 

privacy issues. Previously, several approaches have been proposed to monitor respiration with 

a thermal camera by detecting the temperature change around the nostrils [37], [89], [91], [93]–

[96], [99] or the airflow [90], [97], [98]  in seated positions. They set the nose or the mouth as 

the region of interest (ROI) that can be defined manually or automatically by using anatomical 

features integrated with tracking algorithms [37], [93]–[96]. These approaches are performed 

by simulated breathing scenarios that the researcher designed, i.e., regular breathing, fast 

breathing, and hold breathing [93], [94], [96], [99]–[101]. The excellent result showed when 

they took the experiments in a controlled room in terms of temperature, humidity, and lighting. 

However, nose detection during sleep is still unsuccessful at all monitoring times.  

In the sleeping position, the thermal-based method is an effective technique to measure the 

nasal airflow patterns [51] and has been utilized to detect sleep apnea [52], [102], analyze sleep 

activity [103], to classify body posture [104] during sleep for assisting the diagnosis of sleep 

disorders or evaluation of the quality of sleep. The studies using thermal imaging to monitor 

respiration in sleeping positions are reviewed in Table 3.1. Usman et al. [52] adopted thermal 

imaging to detect sleep apnea and study various breathing patterns. They used the Kanade–

Lucas–Tomasi tracking algorithm to track a manually selected nose region. The result showed 

that 16% of a subject's head position did not allow correct identification of the region of interest 

at the nostrils. Therefore, this method was only possible with minor head movement without 

changing position. The automatic ROI selection was used to locate the nostrils, the tip of the 

nose, and the mouth area [15], [105], [106]. That ROI requires a tracking algorithm and works 

well without large head movement under a controlled environment. Abbas et al. [51] developed 

respiration monitoring for neonatal intensive care units by manually selecting the ROI around 

the nostrils of an infant.  
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Table 0.1 A research review of the thermal imaging-based method for respiration monitoring 

of sleeping position. 

Authors Subjects 
Exp 

Duration 

Controlled 

Env 

Simulated 

Breathing 

Selection 

/Detection 

ROI localization 

Area Tracking 

Usman et al. Adult 5 min Yes Yes M Nostrils Yes 

Fei el al. Adult 60 min Yes No A-S Nostrils Yes 

Al-Khalidi 

ei al. 
Children 2 min Yes No A-S 

Tip of 

the nose 
Yes 

Hu et al. Adult 10 min Yes Yes A-S 
Nose, 

mouth 
Yes 

Abbas et al. Infant 2 min Yes No M Nostrils No 

Pereira et al. Infant 5 min No No A-D N/A No 

Lorato et al. Adult 2 min Yes Yes A-D N/A No 

M: Manually, A-S: Automatically Selection, A-D: Automatically Detection. 

Most techniques work well when the nose is clearly visible in the image. On the other hand, 

the measurement was not feasible when the nose is outside the camera's field of view, a blanket 

blocks the nose, or the subject has large head movements. Recent works from Pereira et al. and 

Lorato et al. [107], [108] detected the respiration signal without the use of anatomical features. 

They selected the ROI containing the respiration information by using the Signal Quality Index. 

However, they did an experiment in a controlled environment in a short period that was not a 

real environment. Moreover, the motion artifacts are still a significant drawback of this 

algorithm. It was suitable for monitoring infants in neonatal care who did not have large 

movements. 

This section aims to develop a measuring system capable of non-contact monitoring of 

respiration and body movements in natural sleep environment using a thermal camera. The 

natural sleep environment implies uncontrolled sleep posture, darkness, and covered subjects 

with a blanket. The proposed method for respiration monitoring and body movements detection 

is described. An overview of the proposed method is depicted in Figure 3.1. The input of the 

proposed method is the thermal video obtained under dark light. The Gaussian filter is applied 

to the input images as the pre-processing so as to remove noises from the input. The main part 

of the proposed method is composed of respiration monitoring and body movements detection, 
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each of which utilizes image processing and signal processing techniques in order. Details of 

these processes will be written below.  

 

Figure 0-1: Proposed method. 

3.2 Respiration Monitoring 

The proposed respiration monitoring method contains an automatic detection of ROI by finding 

the highest temperature point and the largest portion of the high-temperature area and a 
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breathing motion detection. The temperature information is used to find the area of the breath 

while the breathing motion corresponds to the airflow and body movements presented by 

breathing. The respiration signals are extracted by integrated automatic ROI detection and 

breathing motion detection. Then the signal processing is applied to calculate the respiratory 

rate. 

3.2.1 Automatic ROI Selection 

We employ an ROI detection to limit the observation area, extracting important information to 

raise the accuracy of the respiratory estimation. Determining a suitable ROI position with 

proper size is also important. In a real sleep monitoring environment, it is not easy to detect a 

face or nostrils as an ROI because of the uncontrolled sleep posture, and the fixed camera 

position may make a face that does not appear in the camera view on some occasions. Besides, 

when the subject changes the sleep posture, ROI should be updated to the new location for 

which some research applied a tracking algorithm. The tracking algorithm works well with an 

apparent object but sometimes fails to track the nose or mouth in a sleeping posture. We 

propose an ROI detection on the thermal image in a sleeping position that does not require a 

tracking algorithm. Two different ROI detections are considered in this section, 1) the highest 

temperature point detection and 2) the largest portion of high-temperature area detection. 

The highest temperature point detection 

The highest temperature point is detected by using minMaxLoc, a function of the OpenCV 

[109] libraries that return the minimum and maximum intensities found in an image with their 

(G, ') coordinates. It is assumed that the maximum pixel intensities of the thermal image refer 

to a human's heat signature that is not covered by a blanket. The maximum pixel intensities 

found in the image correspond to the highest temperature of the body. We set the pixel to the 

center of the observation area. Then we draw a rectangle around the pixel, with the size of the 

square S × 	S pixels depending on the original frame resolution. In [14], the authors compared 

the ROI size of 10 × 	10, 25 × 	25, 50 × 	50, 100 × 100, and 150 × 150 pixels. They found 

that the size of the ROIs for respiratory rate estimation is usually smaller than that for heart 

rate estimation. Therefore, in this study, we consider the three different ROIh sizes as 10 × 	10, 

25 × 25, and 50 × 50, as shown in Figure 3.2. The result of empirical research has shown that 

the 50 × 	50  pixels provided the highest accuracy in accordance with the original frame 

resolution of 640 × 	480. 
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Figure 0-2: The sample of three different ROIh sizes as 10× 10, 25×25, and 50×50 (red point 

indicates the highest temperature point). 

 

The largest portion of high-temperature area detection 

Assuming that the human skin area indicates high temperature than other parts, the largest 

portion of the high-temperature area is detected by using the thresholding method. 

Thresholding is the method of segmenting the object from the background, finding the 

thresholds to segment the image into regions. This method is based on a threshold value to turn 

a grayscale image into a binary image. The suitable threshold value needs to be determined, 

and then the image can be segmented by comparing the pixel properties with these thresholds 

value. If the image intensity D(G, ') is less than the threshold value, the image pixel is replaced 

by a black or white pixel if the image intensity is greater than the threshold value. 

The threshold image d(G, ') can be defined as (3.1) [110]: 

d(G, ') = 	 y
1		Z[	D(G, ') ≥ 	{|

0		Z[	D(G, ') < 	{|
    ( 0.1 ) 

To determine the threshold value {|, we coordinated empirical research with varying values 

among 128, 144, 160, 176, 192, 208, and 224. It was confirmed that the {| value 176 is the 

one that yielded the best results in all the performed tests.  

Figure 3.3 (a) shows the segmentation of the input image with the thresholding method. Then, 

we used the findContours function of the OpenCV library to find the location of white regions 

that return the outlines corresponding to each of the white blobs on the binary image. The 

bounding box is drawn around those contours (see Figure 3.3 (b). Finally, we find the most 

prominent contour and bounding box around that contour, as shown in Figure 3.3 (c). In this 

study, we selected the biggest box as ROIt. 
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Figure 0-3: (a) All contours, (b) bounding rectangles around all contours, and (c) bounding 

rectangle around the most prominent contour. 

Then ROIh and ROIt are cropped to extract signals Xs([) and XA([) by computing the average 

of pixel values (3.2) within each ROI of each frame, where C(G, ', [) is the pixel value of the 

thermal image at pixel (G, ') in the video frame [ , S∗	is the vector of pixel coordinates in 

ROIh or ROIt, and \∗ is its number. 

X∗([) = 	
b

a∗

∑ C(G, ', [)U,V∈�∗
       ( 0.2 ) 

 

3.2.2 Breathing Motion Detection 

Breathing motion detection applies a subtraction method for detecting the motion by 

calculating the difference between two frames. Specifically, the absolute difference for all 

pixels between the current frame D(G, ', [) and the frame one second before  D(G, ', [ − X) is 

calculated (3.3): 

Ä(G, ', [) = 	 |D(G, ', [) − D(G, ', [ − X)|,    ( 0.3 ) 

where X is the frame rate.  

Then, we extract portions of the moved area by using thresholding, erosion, and dilation 

operations. Parameters used in these operations are 5 for thresholding pixel value difference 

and 5 × 5 kernel for opening (i.e., erosion and dilation). Next, bounding boxes are determined 

by finding contours by filtering out small movements as noise. Finally, the number of bounding 

boxes is counted as the metric of breathing motion (BM), as shown in Figure 3.4. 
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Figure 0-4 The bounding boxes around the breathing motion. 

3.2.3 Respiration Signal Analysis 

There are three respiration signals extracted by using ROIs based on temperature detection and 

breathing motion detection. Steps to estimate the respiration signals are described as follows. 

The respiration signals can be extracted by detecting the chest movements, breathing airflow, 

and the temperature change around the nostrils. However, a specific method does not always 

detect the above phenomena in sleep monitoring due to the fixed camera position. An 

independent subject posture may make the region out from the camera view. In such a case, an 

alternative method for respiration detection is required. We assume that respiration can be 

detected by mixing the temperature change of ROIs and breathing motion. Therefore, we 

combine three signals by employing the root mean square (RMS) to calculate the average of 

the respiration signals as (3.4). 

01X^Z$%&Z.\	XZd\%eX = 	√0ÇD&J + 0ÇDℎJ + ÄEJ    ( 0.4 )  

The 3rd order Butterworth bandpass filter [111] with a lower cutoff frequency of 0.05 Hz and 

a higher cutoff frequency of 1.5 Hz was applied to the respiratory signals. The frequency bound 

is equivalent to 3-90 bpm, based on the typical RR for an adult person (12-20 bpm) and 

monitoring the abnormal RR that is less than 12 bpm and higher than 20 bpm.  

The SG filter is a least-square polynomial filter that reduces noises while retaining the shape 

and height of waveform peaks [112]. Here, the SG filter was used to smooth the signal after 

the bandpass filter. The SG filter's output increased the precision of the data without distorting 

the signal tendency. There are two parameters of the SG filter, including window length and 
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the filter order, which closely relate to the filter’s performance. In this study, we tested the 

parameters and selected the optimal values to get the best-filtered signal, i.e., the window 

length of 51 and the polynomial order at 3rd were used. The result of the SG filter still includes 

small peaks, and thus a moving average is calculated to detect only the desired peaks and ignore 

small ones. 

The fusion signal in Figure 3.5 (a) was smoothed by the SG filter and moving average 

calculation (see Figure 3.5 (b)), and then the number of peaks was counted. Figure 3.5 (c) 

depicts the peaks detection of the experiment signal, followed by the peak detection of the 

reference signal in Figure 3.5 (d), which are assumed to reflect the number of breaths. The 

findpeaks function is used with adjusting its width to 10 based on empirical research. 

The number of peaks is calculated as breaths per minute (bpm) for each 60 seconds slice of 

input video (1020 samples at 17 fps) and was compared with the reference RR. For 

performance comparison, the accuracy of the RR estimation was tested using the RMSE 

defined as (3.5). 
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where S is the total number of the slices, and G
Ü

6Uáand G
Ü

76à represent the experimented and 

reference RR values obtained for slice. 

 

Figure 0-5: (a) Sample of fusion signal, (b) filtered and smoothed signals, (c) peak detection 

of experiment signal, and (d) peak detection of the reference signal. 
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3.3 Body Movement Detection 

This process aims to determine more significant action than the respiration representing a big 

movement like limb movement, head movement, and full position change during sleep. First, 

an absolute difference image Ää(G, ', [)  between adjust two thermal images D(G, ', [) and 

D(G, ', [ − 1) is obtained by 	Ää(G, ', [) = 	 |D(G, ', [) − D(G, ', [ − 1)	| Then, we binarize the 

difference image by thresholding method.  

In the same manner as the breathing motion detection, we extract portions of the moved area 

by erosion and dilation operations. While using 35 for the thresholding value in order to detect 

large body movements, the same parameters are used for erosion and dilation. Then, we apply 

the findContour function to examine whether those are a portion of the moved area. If any 

contour is found, the body movement signal is set to 1. An example output of the body 

movement is shown in Figure 3.6. 

 

Figure 0-6: Sample output of the body movements detection. 

 

 

3.4 Experimental Results 

This section analyzes the signal gathered in two experiments. Experiment (1) is the respiration 

monitoring, and experiment (2) is the body movements detection during sleep. The results were 

compared with the reference signals obtained by the Go Direct Respiration Belt. 

We assessed the performance of our proposed non-contact monitoring of respiration and body 

movement detection under natural sleep environments. During the experiments, the thermal 

videos were captured using a portable thermal camera (Seek Thermal Compact PRO for 
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iPhone) attached to a smartphone and fixed on a tripod in front of a participant located at 

approximately 100 cm. The camera was set at the proper position so that the upper body of a 

participant was apparent in the camera's field of view. The Seek Thermal Compact PRO is a 

highly portable thermal imaging camera with a wide, 32-degree field of view. This thermal 

camera has a resolution of 640 x 480 pixels and detects infrared wavelengths in the spectral 

range of 7.5 to 14 Microns. The camera's emissivity was set to 0.97, as this is suitable for 

human skin temperature measurement. Besides, the videos were recorded at 17 frames per 

second (fps). The Go Direct Respiration Belt was used as a reference to collect human 

respiratory effort and respiratory rate from a force sensor and an adjustable nylon strap around 

the chest during respiration. The measuring parameters were set to 10 samples/s, and the 

duration was approximately 5,400 seconds. Figure 3.7 illustrates an environment setup. 

 

Figure 0-7: Environmental setup. 

 

The data were collected on different days, from multiple camera positions with volunteers 

wearing different clothes. The experiments were conducted under real-life conditions, and 

volunteers were invited to record in their rooms while they were sleeping. They placed a 

respiratory belt around their ribs and mounted a thermal camera on a tripod by themselves 

before they went to bed. Sixteen healthy people with ages between 25 years old and 37 years 

old (29.88 ± 3.26 years old), ten females and six males, with heights between 151 cm and 180 

cm (162.63 ±  7.37 cm), with weights between 47 kg and 78 kg (57.38 ± 9.28 kg), and body 

Thermal video monitoring 

Respiratory Belt Smartphone

Seek Thermal
Camera

Ground truth Collection
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mass index (BMI) between 18.65 kg/m2 and 27.64 kg/m2 (21.64 ±  2.98 kg/m2) volunteered 

for this experiment.  

Breathing Pattern Monitoring 

The breathing pattern signal is obtained from ROIh, ROIt, and breathing motion. There are two 

ROIs shown in Figure 3.8 that were identified for every frame. The red rectangle is the 

bounding box around the highest temperature point; the blue rectangle is the significant portion 

of the high-temperature area. The ROIh locates on the subject's skin, preferably at the highest 

body temperature point, has a smaller size. The most oversized box is detected by the 

thresholding method as the ROIt. The size of detected ROIt is dependent on the contour area. 

Then ROIh and ROIt are cropped to extract the signal by computing the average pixel values 

within each ROI of each frame. 

 

Figure 0-8 : The sample result of selected ROI. 

 

Table 3.2 summarizes the results obtained for all subjects, including respiratory rate estimation 

and body movement detection. The respiratory rate estimated by our proposed method was 
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compared with the reference signal obtained by the respiratory belt. The RMSE was calculated 

by considering all the breaths in each signal collected during the experiment minute-by-minute. 

The average respiratory rate in the overall subjects is 14.78 ± 1.93 bpm in the reference signal 

and 14.47 ± 0.60 bpm with the proposed approach. The standard deviation of RMSE for the 

respiratory rate of all subjects is 0.75 bpm, and the average is 1.82 bpm. The small RMSE 

indicates that the proposed approach is robust for the subject’s variation. As for body 

movement detection, we counted the number of movements, the number of frames including 

body movement, and the total duration of body movements. 

Table 0.2 The result of respiratory rate estimation. 

Subjects 
All 

duration(secs) 

Respiratory rate (bpm)  Body movements  

Reference 

RR 

Experiment 

RR 
RMSE 

#Moveme

nts 

#Frames Duration 

(secs) 

Degree 

S01 5371.05 12.71 14.05 1.56 14 269 15.69 1.12 

S02 5397.94 13.69 14.22 1.11 15 199 11.65 0.78 

S03 5379.37 16.75 14.78 2.20 7 63 3.69 0.53 

S04 5192.31 12.23 13.37 2.00 35 642 37.86 1.08 

S05 5212.78 17.62 14.39 3.32 9 200 11.72 1.30 

S06 5200.51 16.45 14.48 2.23 9 214 12.53 1.39 

S07 5332.39 14.38 14.36 1.47 16 218 12.80 0.80 

S08 3495.39 14.65 14.29 1.18 15 749 43.48 2.90 

S09 5407.22 12.17 14.60 2.68 0 3 0.17 0.00 

S10 4520.26 14.91 14.79 0.75 5 91 5.33 1.07 

S11 5346.70 13.12 13.76 1.25 16 417 24.42 1.53 

S12 5361.45 13.25 15.37 2.35 7 140 8.20 1.17 

S13 5399.74 18.61 15.99 2.79 5 20 1.17 0.23 

S14 5380.52 15.15 14.32 1.49 16 535 31.14 1.95 

S15 5315.23 16.32 14.40 1.99 12 225 13.19 1.10 

S16 4287.12 14.43 14.41 0.72 6 250 14.51 2.42 

Mean 
 

14.78 14.47 1.82    1.21 

STD 
 

1.93 0.60 0.75    0.74 

 

Movements in PLMD occur repetitive and rhythmic every 20 - 40 seconds, which generally 

incur a slight movement of limb or head in a short duration while sleeping. In contrast, 
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significant movements or position changes can take a long time. Therefore, the number of body 

movements every 40 seconds is counted to check the symptoms of PLMD. We also calculated 

the degree of body movements by dividing the movement period by the number of movements, 

which is assumed to be closely related to sleep quality. Figure 3.9 shows the respiratory rate 

and body movements of S01-S16. A blue bar represents an observed body movement. In case 

of observing movements several times in the beginning, it is considered that a subject had a 

difficulty in falling asleep, e.g. subject 04 shows the body movements at the beginning as a 

long time (50 minutes). Normal sleep for adults means that they fall asleep within 10 to 20 

minutes after climbing into bed (sleep latency) [113]. Respiratory rates of the reference and the 

experiment were plotted `x' and `o', respectively. The blue column represents the histogram of 

body movements every 40 seconds. From this figure, we can confirm that there were no regular 

and repetitive body movements for all subjects during experiments, which is the typical 

phenomenon of PLMD. 

Respiratory Rate Body Movements 
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Respiratory Rate Body Movements 
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Respiratory Rate Body Movements 
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Respiratory Rate Body Movements 

  

  

  

Figure 0-9: The result of respiratory rate estimation and body movements detection. 

 

3.5 Summary 

This chapter has proposed an approach for non-contact respiration monitoring and body 

movements detection in a natural sleep environment using a thermal camera. The thermal 

camera can handle many viewing angles, which enables easy installation in the bedroom. We 

have to overcome specific challenges to acquire non-contact respiration data from participants 

in their natural sleep environment when the lights were turned off, and they were covered by a 

blanket. Thermal video sleep monitoring can be performed in a dark environment to settle 

privacy concerns. The participants were asked to set up the system and perform a recording by 

themselves at their homes.  
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The proposed approach employs automatic detection of the ROIs, which is used to acquire the 

respiration signal and detection of the body movements of the participant based on image 

processing on the continuous thermal image. The signals were obtained for each frame with 

the process of normalization and smoothing. Then, we computed the number of breathing and 

counted the number of body movements. The approach has been validated using a respiratory 

belt as a reference signal. We evaluate respiration monitoring performance and body 

movements detection in different rooms with 16 participants who have independent sleep 

postures. Our results show that the proposed approach successfully estimated the RR with its 

RMSE of 1.82 ± 0.75 bpm. The performed experiments confirmed that a thermal camera is 

easy to use for respiration monitoring and body movements during sleeping within various 

environments. This study has limitations as the portable thermal camera is attached to the 

smartphone to record the thermal video, making the experiment duration depend on the 

smartphone battery.   



 

Chapter 4 
User Acceptance of Respiration 
Monitoring Used Thermal Camera 
 

 

This chapter explores the user acceptance of the participants using a thermal camera to monitor 

their sleeping by themselves in their own bedroom. Here we applied a UTAUT model to 

measure the technology acceptance in terms of the Effort Expectancy (EE) of using a thermal 

camera to monitor sleep respiration. The EE is a metric for a technology that represents 

simpleness with reference to the needed effort for using a system. 

4.1 Introduction 

The use of information technology in healthcare systems has promoted healthcare quality and 

access to healthcare services leading to a noticeable reduction in medical errors and costs. 

However, attention to information technology acceptance is required when implementing any 

healthcare applications. There are barriers to using new technology in healthcare applications 

observed in human-computer interaction issues like user acceptance. The most dominant IT 

theories providing proper models for understanding the success and failure of IT applications 

appear to be Innovation Diffusion Theory (IDT) [114], Theory of Planned Behavior (TPB) 

[115], Model of PC Utilization (MPCU) [116], the Unified Theory of Acceptance and Use of 

Technology (UTAUT) [117] and the Technology Acceptance Model (TAM) [118].   

TAM was designed to predict information technology acceptance and usage on the job. There 

are two core constructs: Perceived Usefulness (PU) and Perceived Ease of Use (PEOU). PU is 
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the "degree to which a person believes that using a particular system would enhance his or her 

job performance". On the other hand, PEOU is "the degree to which a person believes that 

using a particular system would be free of effort" [118], i.e., physical and mental efforts as well 

as ease of learning. TAM provides a direct relationship between acceptance of the technology, 

the technology’s perceived usability, and ease of use.  

Next, regarding the theories of information technology, UTAUT is widely applied model to 

describe the consumer acceptability of a technology. Venkatesh et al. formulated the UTAUT 

as shown in Figure 4.1 that proposed four behavioral intention correlations to the use of 

technologies [117]. First is Performance Expectancy (PE): “the degree to which an individual 

believes that using the system will help him or her attain gains in job performance”. The second 

is Effort Expectancy (EE): “the degree of ease associated with the use of the system”. The third 

correlate is Social Influence (SI): “the degree to which an individual perceives that important 

others believe he or she should use the new system”. Finally, the fourth correlate is Facilitating 

Conditions (FC): “the degree to which an individual believes that an organizational and 

technical infrastructure exists to support the use of the system”. The variables of gender, age, 

experience, and voluntariness of use moderate the key relationships in the model. The UTAUT 

model explained 69% of the intention to use IT (technology acceptance).   

 

Figure 0-1: UTAUT Model [117].  

Table 0.1 The ease of use definitions and scales of each model. 

Performance
Expectancy

Effort 
Expectancy

Social 
Influence

Facilitatiing
Conditions

Gender Age Experience Voluntariness of Use

Behavioral
Intention Use Behavior
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Constructs Definition Items Used in Estimation 

Perceived ease of 

use (TAM/TAM2) 

[118] 

The degree to 

which a person 

believes that 

using a particular 

system would be 

free of effort 

1. Learning to operate the system would be easy for me. 

2. I would find it easy to get the system to do what I 

want it to do. 

3. My interaction with the system would be clear and 

understandable. 

4. I would find the system to be flexible to interact with. 

5. It would be easy for me to become skillful at using 

the system. 

6. I would find the system easy to use. 

Complexity 

(MPCU) [119] 

The degree to 

which a system is 

perceived as 

relatively difficult 

to understand and 

use 

1. Using the system takes too much time from my 

normal duties. 

2. Working with the system is so complicated, it is 

difficult to understand what is going on. 

3. Using the system involves too much time doing 

mechanical operations (e.g., data input). 

4. It takes too long to learn how to use the system to 

make it worth the effort. 

Ease of use (IDT) 

[120] 

The degree to 

which using an 

innovation is 

perceived as 

being difficult to 

use 

1. My interaction with the system is clear and 

understandable. 

2. I believe that it is easy to get the system to do what I 

want it to do. 

3. Overall, I believe that the system is easy to use. 

4. Learning to operate the system is easy for me. 

Effort expectancy 

(UTAUT) [117] 

The degree of 

ease associated 

with the use of the 

system 

EOU3: My interaction with the system would be clear 

and understandable.  

EOU5: It would be easy for me to become skillful at 

using the system. 

EOU6: I would find the system easy to use. 

EU4:    Learning to operate the system is easy for me. 

 

Our study is on respiratory monitoring that combines the area of information systems, computer 

science, and healthcare. This system is available for patient monitoring, which can be set at 

home, utilizing a video camera to collect the patient's respiratory rate and body movement 
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during sleeping. Thus, to explore the health information technology acceptance of using the 

thermal camera to monitor respiration during sleeping, we consider the PU and PEOU based 

on the TAM and UTAUT models in health information technology acceptance of professional 

heath technology users. Many research has been tested in the context of healthcare  [121]–

[125]. Some studies found that PU and PEOU significantly impact technology adoption 

attitudes [124], [125]. However, the other studies found that only PU is a significant 

determinant of attitude and intention, but PEOU is not [121]–[123], [126]. Their results show 

that PU has positive effects on the usage of health information technology. Though previous 

studies focus on professional heath technology, the consumer health technology acceptance 

behavior is less discussed. Ease of use context is usually considered in the consumer health 

technology acceptance behavior. Therefore, we focus on the ease of use when the participants 

use thermal imaging to monitor their sleeping at home. Ease of use is a significant influence 

on the intention to use technology that constructs from the existing model as perceived ease of 

use (TAM/TAM2), Complexity (MPCU), and ease of use (IDT). There is a substantial 

similarity among constructs, definitions, and measurement scales see Table 4.1. Therefore, this 

study investigates the effort expectancy affecting usage behaviors using a thermal camera to 

monitor users during their sleep. 

4.2 Data Collection 

A survey was used to test the hypotheses with sixteen volunteers who used our respiratory 

monitoring system. We provided the devices (camera, smartphone, tripod, respiratory belt) to 

the volunteers to set up the system and record themselves at their homes before going to bed. 

It can handle many viewing angles, which makes installation in the bedroom easy. The thermal 

camera is used to obtain respiratory information and body movements in natural sleep 

environments such as a dark room to settle privacy concerns. Since the users closed the lighting, 

the acquired video images differed in their overall brightness. Nevertheless, the video recording 

process is carried out with the same settings following the instruction.   

The scaled items for effort expectancy were adapted from the UTAUT model shown in Table 

4.2. The scales are slightly modified to suit the context of the use of the thermal camera. Each 

item is measured using a five-point Likert-type scale, ranging from “strongly disagree” (1) to 

“strongly agree” (5). Demographic data about gender and age were collected to describe the 
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sample characteristics. Data were collected using an online survey method developed by 

Google Form. 

Table 0.2 Scale items for estimate the effort expectancy. 

Items 
SA 
(5) 

A 
(4) 

US 
(3) 

DA 
(2) 

SDA 
(1) 

Learning how to use a thermal camera is easy for me.      

My interaction with the thermal camera is clear and understandable.      

I find the thermal camera easy to use.      

It is easy for me to become skillful at using a thermal camera.      

 

4.3 Results  

All 16 completed questionnaires are returned, i.e. 100% response rate. The detailed sample 

characteristics are described in Table 4.3. 

Table 0.3  Descriptive statistics of respondents’ characteristics. 

Measurement  Items Frequency  % 

Gender Female 
Male 

10 
6 

62.50 
37.50 

Age ≥ 25 < 30 years 
≥ 30 < 35 yesrs 
≥ 35 years 

9 
5 
2 

56.25 
31.25 
12.50 

 

Table 0.4 Effort Expectancy of Using Thermal Camera to Monitor Sleeping. 

Items Response (%) 
SA A US DA SDA Mean SD 

EE1 56.25 25.00 18.75 0.00 0.00 4.38 0.19 
EE2 37.50 43.75 18.75 0.00 0.00 4.19 0.15 
EE3 56.25 31.25 12.50 0.00 0.00 4.44 0.19 
EE4 43.75 37.50 18.75 0.00 0.00 4.25 0.15 

Overall 48.44 34.38 17.19 0.00 0.00 4.38 0.19 
Note: SA = Strongly Agreed (5), A = Agreed (4), S = Unsure (3), DA = Disagreed (2), SDA= 
Strongly Disagreed (1), M = Mean, SD = Standard Deviation 

Table 4.4 shows participants’ responses for items associated with their levels of satisfaction 

with using the thermal video to monitor sleeping. The results show that 82.81% of the 
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participants were satisfied with using the thermal camera in this monitoring (mean = 4.38; 

standard deviation, SD = 0.22). It is clarified that the use of thermal video to monitor sleeping 

promises it’s easy to use. 

4.4 Conclusion  

This study concerns the consumer of health technology acceptance behavior in using the 

thermal camera for monitoring respiratory while sleeping at home. This system is useful for 

the consumer by providing potential prediction and risk reduction of serious illness. Nowadays, 

the respiratory monitoring system was developed through video monitoring without any device 

attached to the body, while privacy is an important issue, especially in the sleep environment. 

The respiratory monitoring system offers valuable functionalities. To improve the 

practicability of the respiratory monitoring system, the system must be developed by 

considering users’ actual needs, technology adoption, convenience, etc. Thus, an acceptance 

of the respiratory monitoring system from the users’ perspective should be necessarily 

evaluated. Therefore, we estimated the ease of use from users’ perspective by measuring the 

effort expectancy based on the UTAUT model, which indicates the intention to use. The result 

shows that the participants are satisfied with using the thermal camera to monitor their 

respiratory while sleeping at home.



 

Chapter 5 
Conclusion 
 

 

In this dissertation, non-contact respiratory monitoring in sleeping posture using a smartphone 

camera and thermal camera has been introduced. The goals are (i) to determine the accuracy 

of respiratory rate estimation by comparing with ground truth data, (ii) to identify the factors 

that influence respiratory information extraction, (iii) to provide the prototype development of 

the non-contact system, and (iv) to discuss the factors that affect the health information 

technology acceptance. The content goes from the respiratory monitoring in sleep position 

using a smartphone camera to capture the high frame rate video and the ordinary video, through 

the using the thermal camera to capture in the natural sleep environment and ends at the 

estimation of use acceptance when using the thermal camera for monitoring their respiratory 

in the actual situation.  

5.1 Conclusion 

Chapter 2 discussed the use of a smartphone camera at a high frame rate to record video in a 

sleeping position, which is the beginning of the research study. The environment is set in the 

visible room for this experiment, and the blanket does not cover the subjects. The smartphone 

camera is set on the tripod to capture breath movement around the waist and shoulder area of 

the subjects in a lie on the side of sleeping positions at a 240 fps of frame rate. There are two 

issues to estimate the respiratory in the sleeping position. The first issue is the ROI selection 

which is significantly related to the respiratory. The ROI with its size of 50 x50 pixels is placed 

around the waist or shoulder of the subjects that also contain a background view to observe the 

body movement. Then used the Gaussian blur filter to reduce the noise within that ROI. Besides, 

the MOSSE tracker has been applied to track the selected ROI movement.



 
The second issue is the respiratory signal extraction that is calculated from the intensity value 

within the ROI of each frame. When obtaining the signal, the Butterworth with a low pass and 

Filtfilt filter was applied to. The Fast Fourier Transform was used to find the suitable window 

length to the Savitzky-Golay filter. The last step was to use the Findpeaks function to count the 

number of breaths. The results demonstrated the high accuracy of respiratory estimation and 

confirmed that the accuracy depends on the location and size of the ROI. In other words, the 

region of interest location is a significant point to detect breathing movement. Moreover, the 

background view affects the accuracy of the breathing rate estimation. The white and no pattern 

of background is recommended in this study.

Regarding the effect from the background view and the clothing pattern, we experimented 

again with the ordinary video at 30 fps. We used a black blanket to cover the subject and set 

the experiment in a room with no background pattern. In the second experiment, we proposed 

an automatic ROI selection to measure the respiratory rate and its patterns using the ordinary 

video. This study demonstrated that the respiratory rate could be assessed successfully using a 

smartphone camera to capture the chest or abdomen's breathing movement under a blanket in 

lying on the back and lying on the side positions. Our automatic ROI selection method uses 

motion detection based on the differences between two frames to detect the respiratory 

movement in the video. We used the average of the pixels in the region to estimate the 

respiratory rate and its patterns. The experimental results showed that the respiratory rates were 

successfully measured at different sleeping positions, with its RMSE of 0.47 (lying on the back), 

1.60 (lying on the side), and 1.18 as an average. Under a controlled environment, linear 

regression analysis showed that the measured respiratory signal had a relatively good 

relationship with a ground truth signal, with a determination coefficient of 0.914. The 

suggestion is that the small region provides the most accurate respiratory rate estimation among 

camera-based approaches. This work's limitation is noise caused by lip-smacking, eye 

movement, and body movement while sleeping. These are uncontrolled movements would be 

detected by the difference between frames, which degraded the performance. In the future, we 

will extend our automatic ROI selection to comply with a variety of sleeping positions with 

properly updating the ROI location. 

In Chapter 3, we coordinated the experiment based on thermal video with the blanket in real-

life conditions, implying an uncontrolled sleep posture, darkness, and subjects covered with a 

blanket. The automatic ROI extraction by temperature detection and breathing motion 
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detection based on image processing are integrated to obtain the respiration signals. A signal 

processing technique was used to estimate respiration and body movement information from a 

sequence of thermal videos. The proposed approach has been tested on 16 volunteers, for which 

video recordings were carried out by themselves. The participants were also asked to wear the 

Go Direct respiratory belt for capturing reference data. The result revealed that our proposed 

respiratory estimation system obtains RMSE of 1.82 ± 0.75 bpm.  

Chapter 4 tested the user technology acceptance from the user’s perspective when using the 

thermal camera to monitor the respiratory during sleeping at home. The effort expectancy was 

evaluated based on the UTAUT model by participants who participated in the experiment in 

chapter 3. The result shows that they were satisfied with the ease of using our proposed system.  

This dissertation has studied the non-contact respiratory monitoring in the sleeping position 

using cameras. The challenge is automatic to specify the region of interest in sleeping positions 

in uncontrolled posture while sleeping. The study starts with the fundamental of the 

conventional approach to image processing and proposed solutions. Next, the non-contact 

respiratory and sleep monitoring in the actual environment has been addressed by using the 

thermal camera. However, because the participants in the study did not have respiratory 

problems, only the respiratory estimation accuracy can be provided based on ROI detection. In 

future work, we will focus on monitoring a patient who has irregular breathing. Another 

element of our future work is continuing to develop the automatic optimization of the 

thresholding value. The other limitations of the proposed method, such as a variation of room 

temperature, the type of bed cover, blanket, and night sweats (neck or face) in subjects, rapid 

eye movement (REM) stage, and heart rate, provide ideas for addressing these issues in future 

studies. 

5.2 Future Work 

The proposed approach to monitoring respiration in sleeping positions is carried out in several 

test scenarios to test the system's reliability in measuring RR, for example, using various kinds 

of bed covers or blankets. Thermal video can be performed in a dark environment to settle 

privacy concerns. Moreover, using thermal cameras is a part of non-contact monitoring to 

support current telemedicine technology and provides a hygienic aspect for users in the 

COVID-19 pandemic. There are no components attached to the body to minimize contact 
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between users. Therefore, the results obtained through the course of this research should be 

viable for practical use, especially in the post-pandemic era. 

However, the participants in this study are healthy; therefore, no exploration with the person 

who has an abnormal respiratory. We will explore experimenting with applying the thermal 

camera to patients with broader subject demographics who have respiration conditions as a 

disorder for future work.  

There also remains a room for developing more sophisticated algorithms to raise the detection 

quality. The future algorithm should be able to distinguish apneas from gross body motion, 

usable during day and nighttime, independent of skin visibility and body tracking.  

Because the video duration has been recorded at approximately 1.30 hours depending on the 

smartphone's battery life when using the smartphone's portable thermal camera, the whole night 

monitoring using a thermal camera will also be examined in the future.  

Furthermore, the automatic determination and adjustment of the threshold value used to detect 

the observed area and motion detection are to be considered. Classification of movements as 

breath movements or body movements may contribute to raising detection performance.
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