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ABSTRACT

In this thesis, a theoretical study is presented based on the first-principles

calculation of four main topics on the controllable mass-gapped Dirac cone

(MGDC) mechanism of graphene using spin-dependent potentials in graphene-

based magnetic junctions. Using a specific stacking configuration design at

the interface of graphene sandwiching with magnetic materials, MGDC of

graphene can be open and close depending on the magnetic alignment of the

upper and lower magnetic materials. A systematic study within spin-polarized

generalized-gradient approximation on the interface is presented to understand

the influence of physical and chemical properties at the interface that affect

the optimum control of MGDC of graphene and its efficiency as a spintronic

device. By understanding the origin and characteristics of controllable MGDC

of graphene, a successful graphene-based magnetic junction device with high

spintronic performance can be created.

At the beginning of this thesis (chapter 1), the introduction to magnetic

junctions, their development, and the recent consideration of 2D materials-

based magnetic junctions for spintronic devices is presented. The problems

that need to be solved, the aims of the research, and the strategy for address-

ing the problem are also presented. Afterward, the theoretical basis of the

computational method used in the research and the physics of graphene and

its characters in magnetic junction is discussed in chapter 2. Next, Chapter 3

presents the theoretical framework of the considered design and the computa-

tional approach strategy in the simulation.

In the first study (Chapter 4), Ni(111)/graphene/Ni(111) magnetic junc-

tion is proposed. Ni(111) slabs are used due to their similar structures to

graphene, that is, having the smallest lattice mismatch among transition met-

als. In this proposed system, the MGDC of graphene can be controlled using

the magnetic alignment of the Ni slabs. When the magnetic moments of the

upper and lower Ni(111) slabs have an antiparallel configuration (APC), the

MGDC is open. However, when the magnetic moments of the upper and

lower Ni(111) slabs have parallel configuration (PC), the MGDC is closed.

This unique characteristic is because the most stable arrangement of the

Ni/graphene/Ni heterostructure occurs when Ni atoms of the upper and lower

Ni(111) slabs at the interfaces are hybridized with different graphene sublat-

tices. In other words, Ni atoms from the lower Ni(111) slab hybridized with
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C atoms in sublattice A (i.e., CA), and Ni atoms from the upper Ni(111) slab

hybridized with C atoms in sublattice B (i.e., CB). Although the C atoms

of graphene bond with the Ni atoms, this unique hybridization preserves the

equipotential between sublattices A and B. Meanwhile, a magnetic moment

is induced on the graphene layer by charge transfer from the Ni to C atoms.

Therefore, the induced magnetic moments of the CA and CB atoms depended

on the magnetic alignment of the Ni(111) slabs. Moreover, the induced mag-

netic moments between CA and CB atoms exhibit antiferromagnetic and fer-

romagnetic orders when the APC and PC states are considered, respectively.

This characteristic implies that the pseudospin between sublattices A and B

can be controlled to preserve or break the chiral symmetry, making the MGDC

controllable.

In the second study (Chapter 5), a theoretical study is presented on the

in-plane conductance of graphene partially sandwiched between Ni(111) nanos-

tructures with a width of 12.08 Å. The investigation of the proposed system is

conducted to understand the effectiveness of a controllable MGDC of graphene

on its in-plane conductance to realize a high magnetoresistance (MR) ratio.

The APC and PC states of the upper and lower Ni(111) structures are consid-

ered. First-principles quantum transport calculations, which coupled density

functional theory (DFT) with the non-equilibrium Green’s function, were per-

formed. In the sandwiched part, the MGDC of the graphene was controlled

using a pseudospin by changing the magnetic alignment of the Ni(111) nanos-

tructures, in which the mechanism is the same as explained in Chapter 4. Upon

considering the APC of Ni(111) nanostructures, the transmission probability

calculation of the in-plane conductance of graphene shows a gap-like trans-

mission at E − EF = 0.2 and 0.65 eV from pd-hybridization and controllable

MGDC of graphene, respectively. In the PC, the transmission probability cal-

culation showed a profile similar to the pristine graphene. High and colossal

in-plane MR ratios of 284% and 3100% were observed at E − EF = 0.65 and

0.2 eV, respectively. A higher MR ratio beyond 3100% was expected at E−EF
= 0.65 eV when the width of the Ni(111) nanostructures on the nanometer

scale.

The MR changes beyond the charge neutrality point can be overcome by

several methods-one of them is by introducing a gate voltage. Thus, the hBN

layer can be introduced between the graphene layer and the Ni slabs to opti-

mize the controllability of graphene’s Fermi energy while keeping the perfor-

mance of MGDC controllability. The controllable induced magnetic moment
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on graphene is replaced through charge transfer to magnetic proximity effect.

The van der Waals interactions between graphene and hBN layers led to easy

controllability of graphene Fermi energy by using gate voltage. However, prior

to further investigation on the effectivity of proximity effect on controlling

MGDC of graphene, understanding how the Ni(111) surface state as evanes-

cent wave work on graphene created magnetic proximity effect is necessary.

In the third study (Chapter 6), a theoretical study is conducted to under-

stand the origin of the magnetic proximity effect in 2D material which was

sandwiched with ferromagnetic metal. In this study, a Ni/nhBN/Ni magnetic

junctions was considered. First, a study on Ni/2hBN/Ni magnetic junctions

showed that the Ni’s surface state (111) becomes the main contribution to the

tunneling transmission of the electrons when electrons flow from one Ni slab

to another through two hBN layers. When the number of hBN is increased to

three, the Ni(111) slabs’ surface state still survives, giving a magnetic proxim-

ity effect on middle hBN. However, the magnetic proximity effect on middle

hBN is weak enough since the d2
z-orbital of the Ni(111) surface state works on

unfilled pz-orbital of B atoms. However, the d2
z-orbital of the Ni(111) surface

state works significantly on the graphene layer since it works on π-orbital of

graphene. Further study to understand the effectivity of proximity effect on

controlling MGDC of graphene is discussed in the next chapter.

In the fourth study (Chapter 7), a study is performed on the role of

Ni/hBN slab-graphene interface of Ni/hBN-graphene-hBN/Ni magnetic junc-

tion in controlling MGDC of graphene via magnetic proximity effect. The

spin-polarized DFT calculation was performed on 12 possible stacking con-

figurations for APC and PC of Ni slabs’ magnetic alignment. The 12 stack-

ing configurations can be categorized into three groups based on the relative

total energy, corresponding to van der Waals’ interaction between hBN and

graphene. In group I, the magnetic proximity effect of B atoms on graphene

causes the opening and closing MGDC with a small gap size when N atoms are

placed on top or below the hollow site of graphene. In group II, when the prox-

imity effect of the Ni(111) surface state as evanescent wave acts on C atoms,

both the APC and PC states have one-spin channel with a prominent size of

mass-gapped, whereas the other does not. In group III, the MGDC is open

with a significant gap size in the APC state and close in the PC state when

the asymmetric arrangement of N atoms on different sublattices of graphene

is considered. The unique characteristics of graphene’s MGDC control, de-

pending on the stacking configuration, can be proposed as a device where
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a controllable MGDC is tuned using mechanical motion. Spin-mechatronics

device can be realized by proposing a device that can move the upper and

lower Ni(111)/hBN slabs translationally. Afterward, the investigation of the

several possible barriers between Ni(111) slabs and graphene beside hBN was

considered.

Finally, the complete understanding of controlling MGDC of graphene

through various approaches is summarized in chapter 8. The results become a

foundation for realizing a spintronic device based on graphene in-plane conduc-

tance. Furthermore, the new findings show the high performance of graphene-

based magnetic junction spintronic devices and functionality beyond the con-

ventional spintronic device.

Keywords: graphene; magnetic junctions; in-plane conductance; magnetore-

sistance; mass-gapped Dirac cone
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Figure 1: The flow of studies that are presented in this thesis.
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Chapter 1

INTRODUCTION

1.1 Spintronic Technology through Magnetic

Junctions

1.1.1 Magnetic Junctions

Spin-electronics, or so-called spintronics, is a research field that focuses on

the manipulation of spin-up and spin-down populations of electrons in solid

materials. Manipulating spin polarization to generate inequality in the number

of spin-up and spin-down electrons, resulting in a spin current, is the main aim

of spintronics materials or devices. A typical way to polarize electron spins

is to use a ferromagnetic electrode in electrical contact with a medium where

spin-polarized electrons accumulate. The accumulation rate strongly depends

on the relaxation or flip of spins, driving the polarization back toward the

equilibrium state. The magnetic junctions (MJs) between the ferromagnetic

materials with a medium where spin-polarized electrons are accumulated are

essential for developing spintronic devices because of their capability to fulfill

the high demand for applications based on a spin configuration. These MJs

can be categorized into two types based on their mechanism of function.

The first is an MJ with a structure comprising ultrathin nonmagnetic-

metal materials sandwiched by ferromagnetic materials, and the current-in-

plane (CIP) geometry is considered. This structure is called a ”spin-valve.” In a

spin-valve structure, the current flows along with the layers, and the electrodes

are located on one side of the structure, as shown in Fig. 1.1(a). The Albert

Fert groups from the University of Paris-Sud, France, and Peter Grünberg

from Forschungszentrum Jülich, Germany, introduced this structure in 1988

[1,2]. The practical significance of this experimental discovery was recognized
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Figure 1.1: magnetic junction in (a) current-in-plane geometry, so-called spin-valve
structure, and (b) current-perpendicular-to-plane geometry, so-called magnetic junc-
tions.

by the Nobel Prize in Physics awarded to Fert and Grünberg in 2007. This

structure is proven important as hard-drive magnetic read heads and magnetic

sensors [3]. On the other hand, the second structure is the so-called magnetic

tunnel junction (MTJ). MTJ is a structure comprising an ultrathin layer of a

nonmagnetic insulator sandwiched by ferromagnetic materials. In MTJ, the

current-perpendicular-to-plane (CPP) configuration is considered, where the

current is passed perpendicular to the layers. The electrodes are located on

different sides of the superlattice. Thus, the ultrathin insulator leads to the

tunneling of electrons through the barrier when a bias voltage is applied to

the upper and lower ferromagnetic electrodes, as shown in Fig. 1.1(b). This

device structure was introduced by Julliere in 1975 [4] and by Maekawa and

Gafvert in 1982 [5]. Nowadays, this structure is used in memory storage and

logic devices [6–11].

Both spin-valve and MTJ have the same functionality, where the conduc-

tance through the device corresponds to the magnetic alignment of the fer-

romagnetic layer. In both spin-valve and MTJ, one ferromagnetic layer has

a fixed magnetic orientation. In comparison, another one has a controllable

magnetic alignment, resulting in two configurations of magnetic alignment be-

tween two ferromagnetic layers, parallel configuration (PC) and antiparallel

configuration (APC). In the PC state, the conductance through the device is

high, whereas in the APC state, the conductance is low. However, spin-valve

and MTJ have different origins for creating high and low conductance when

PC and APC states are considered.

Since the CIP scheme is considered in the spin-valve structure, the elec-

trodes were attached to the free-layer ferromagnetic layer, as shown in figure
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Figure 1.2: Two electronic states in spin-valve structure: (a) low resistance when
PC state is considered and (b) high resistance when APC state is considered.

1.1(a). Fig. 1.2 shows that when the PC state is considered, the spin-up elec-

trons (spin antiparallel to the magnetization) can travel through the sandwich

nearly unscattered, providing a conductivity shortcut and low resistance. In

contrast, in the APC state, both spin-up and spin-down electrons collide in

either the upper or lower ferromagnetic layer, providing higher overall resis-

tance.

On the other hand, in MTJ, the electrodes were placed on both the upper

and lower ferromagnetic layers, creating a CPP scheme. Figure 1.3 shows that

when the PC state is considered, a large number of electrons with minority

(majority) spin from the lower ferromagnetic layer tunneling through the bar-

rier are accepted by a large number of unfilled states of minority (majority)

spin of the upper ferromagnetic layer. As a result, the conductance will be

high. In the APC state, however, the identity of majority and minority spin

is reversed, which causes only a few numbers of the majority spin electrons of

the lower ferromagnetic layer tunnel to the upper ferromagnetic layer and be

accepted by a large number of unfilled states of the minority spin, and vice

versa.

The two different mechanisms of spin filtering in spin-valve and MTJ lead

to different performance efficiencies, where MTJ has a higher magnetoresis-

tance (MR) ratio than spin-valve. An example is the Co10Cu90 junction. At

a temperature of 4.2 K, when the CIP geometry was considered, the highest

MR ratio, as high as 80%, was observed by variating the thickness of Cu. In

contrast, an MR ratio as high as 125% was observed when the CPP geome-

try was considered. When the temperature is increased to room temperature
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Figure 1.3: Two electronic states on magnetic tunnel junction structure: (a) low
resistance when the PC state is considered and (b) high resistance when the APC
state is considered.

(300 K), the MR ratios for the CIP and CPP geometries are 20% and 80%,

respectively [12,13].

1.1.2 The Development of Spintronics Devices

Due to its efficiency in achieving a high performance by having a high

MR ratio, the MTJ device has been continuously studied. So far, the major

competition for improvement the MTJ performance is to achieve a higher

level of tunneling MR (TMR) ratio. Fully understanding the nature of the

properties of this device is essential to enable successful design and application.

A critical point that determines the performance of the MTJ is its tunnel

barrier. As explained in the previous subsection, the TMR effect was initially

discovered by Michel Jullière from the University of Rennes, France, in 1975.

At that time, Ge-O was used as a tunnel barrier in Fe/Ge-O/Co-junctions. At

a temperature of 4.2 K, the TMR ratio was approximately 14% [4]. The next

important finding occurred in 1991 when Terunobu Miyazaki from Tohoku
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Figure 1.4: The development of MTJs. Taken from [21]

University, Japan, found a TMR ratio of 2.7% at room temperature. Later,

in 1994, Miyazaki found a TMR ratio of 18% on Fe/Al2O3/Fe MTJ [14], and

Jagadeesh Moodera found a TMR ratio of 11.8% when CoFe and Co electrodes

replaced iron electrodes [15]. The highest effect observed with Al2O3 insulators

were approximately 70% at 300K, as shown in Fig 1.4.

Due to the limit found on amorphous Al2O3 tunnel barriers, starting from

2000, tunnel barriers of crystalline magnesium oxide (MgO) were investigated.

In 2001, Butler theoretically predicted that using iron as the ferromagnet and

MgO as the insulator, the tunnel MR can reach several thousand percent [16].

The same year, Bowen et al. were the first to report experiments showing a

significant TMR in an MgO-based MTJ by considering the Fe/MgO/FeCo(001)

junction [17]. In 2004, Parkin and Yuasa made Fe/MgO/Fe junctions that

reach over 200% TMR at room temperature [18,19]. In 2008, the effects of up

to 604% at room temperature and more than 1100% at 4.2 K were observed in

CoFeB/MgO/CoFeB MTJs by Ikeda and Ohno groups of Tohoku University

in Japan [20]. The development of MTJs to achieve a high TMR ratio is

summarized in Fig. 1.4.
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1.1.3 2D Materials-based Spintronics Devices

A critical application of MJs is as a memory device. Thus, the density

of MJs in a device becomes important because of its relation to the memory

capacity of the device. Increasing the density of the MJ can be done by down-

scaling its size. To downscale the device while retaining a high transmission,

it is essential to reduce the barrier thickness. However, when this is realized,

TMR can be reduced to 55% due to uncontrollable defects in the MgO tunnel

barrier [22].

On the other hand, in the early 2000s, a one-atomic-thickness material

called graphene was introduced. Graphene, a carbon-based 2D material with

extraordinary in-plane charge mobility [23], has attracted interest as an ideal

material for application in microelectronics [24, 25] and sensing [26]. Exper-

imentally, graphene is synthesized by chemical vapor deposition and yields

well-ordered 3m symmetry on the substrate surface [27, 28]. Its interesting

tunable transport properties and unique magnetic response, as well as its

weak spin-orbit coupling and long spin scattering length [29], make graphene

a prospective material for spintronics devices.

The low dimensionality of graphene was expected to solve the downscaling

problem of MTJs. Recently, graphene has been examined for the nonmagnetic

spacers in CPP MTJs. One example is Ni/graphene/Ni MTJ. Owing to its

structure, which is similar to that of graphene (the smallest lattice mismatch),

the Ni/graphene junction can be synthesized easily through various methods

[30–40]. Further, the Ni/graphene/Ni MTJ successfully shows the change in

the MR ratio due to an external magnetic field. However, a small TMR ratio

was found [30–40]. Further investigation was conducted using hexagonal boron

nitride (hBN), an insulating one-atomic-thickness material, but a satisfactory

result has not been achieved yet [41–43]. The recent experimental development

of graphene and hBN used as a tunnel barrier in MTJ is shown in Fig. 1.6.

On the other hand, a theoretical study was done to investigate Ni/nhBN/Ni

magnetic junctions with n is the number of hBN layers [44]. The study sug-

gests that the highest TMR ratio, as high as 60%, was reached when the

number of hBN layers was two. Once the number of hBN layers increases,

the TMR ratio is reduced significantly, as shown in Figure 1.5(a). Further

investigation was done by inserting a graphene layer into the insulator barrier,

creating Ni/hBN/nGr/Ni with n as the graphene layer number. The calcula-

tion results show that the optimum TMR ratio as high as 100% was reached

when five graphene layers were considered. When the number of the graphene
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Figure 1.5: The calculated conductance and TMR ratio of (a) Ni/nhBN/Ni and
(b)Ni/hBN/nGr/Ni (taken from [44]). The proposed spintronics device of graphene
act as a bridge between two Ni electrodes (taken from [45]).

layer is increased further, the TMR ratio was kept at 100%, as shown in Figure

1.5(b). Another theoretical study introduced a new strategy to obtain high

performance on 2D materials-based spintronic devices; graphene was used as

a bridge between ferromagnetic materials to get optimum magnetoresistance

ratio, as shown in Figure. The idea came from the fact that graphene has

a long spin scattering length [29]. One the example is Ni/Gr—Gr—Gr/Ni

device, which is shown in Figure 1.5(c). Nickel electrodes were used as ferro-

magnetic materials [45]. By injecting selective spin electrons from the left Ni

electrode into graphene, which connects two ferromagnetic as a bridge, a spin

valve device was expected to be created by interchanging the left and right

electrodes to have APC and PC states. The results show that a maximum

110% magnetoresistance ratio was observed on the device. Those two theoret-

ical studies above gave an insight into the unknown properties and strategies

that have not been utilized to get the best performance of 2D materials-based

spintronics devices.

From another perspective, the chemical and physical interactions between
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Figure 1.6: The development of 2D materials-based MTJs. Taken from [54]

graphene or hBN with the ferromagnetic layer are interesting and can be fur-

ther developed. When graphene is grown on top of the transition metal, trans-

port properties of graphene can be sensitively tuned [46,47]. Further, graphene

gives a unique magnetic response by growing on top of the ferromagnetic ma-

terial [46, 48–53]. Therefore, graphene was still expected to give a unique

characteristic as MTJ and to have a new device mechanism that could not be

found in the conventional one. However, a new strategy and further systematic

investigation to unlock hidden properties in graphene-based MJs are necessary

to successfully realize a spintronics device based on graphene.

1.2 Strategy and Aim

This thesis proposes an in-plane MR (IMR) scheme of graphene in a sand-

wich structure of monolayer graphene with ferromagnetic slabs, instead of

considering the TMR scheme. In other words, instead of investigating the MR

effect from CPP geometry, the CIP geometry of the MR effect was considered

on graphene due to the magnetic alignment of the upper and lower ferro-

magnetic materials, i.e., APC and PC. The Ni(111) slab was considered to

sandwich graphene, owing to its structure, which is similar to that of graphene

(having small lattice mismatch). In chapter 3, it will be explained in detail

that the consideration of investigating the IMR properties of a graphene-based

spin-valve has something to do with the controllability of the spin-dependent

Dirac cone of graphene.

This study aims to propose a successful design of a graphene-based spin-

valve as a spintronic device having a high MR ratio. To achieve the aim of the
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study, the study stages have been proposed:

1. In the first stage, an investigation was considered to explore graphene’s

magnetic properties and electronic structure in the Ni/graphene/Ni spin-

valve structure. The study emphasized graphene’s induced magnetic mo-

ment properties and Dirac cone characteristics due to its response to the

upper and lower Ni slabs’ antiparallel or parallel magnetic configuration.

A density functional theory (DFT) spin-polarized generalized-gradient

approximation (spin-GGA) calculation was done. A band structure cal-

culation and spin-charge density mapping were done to show the indica-

tion of graphene in-plane conductivity change by observing the change

in the Dirac cone characteristic.

2. In the second stage, since the controllable mass-gapped Dirac cone

(MGDC) of graphene was found on the Ni/graphene/Ni spin-valve struc-

ture (explained in chapter 4), further investigation was conducted to un-

derstand the effectiveness of MGDC in creating a high MR ratio. For

that purpose, first-principles quantum transport calculations, which cou-

pled DFT with the nonequilibrium Green’s function, were performed.

3. After that, in the final stage, optimization to create a successful design of

a graphene-based spin-valve structure spintronics device was performed.

The optimization was needed for realization of the actual device and for

ensuring a performance comparable to that predicted in this theoreti-

cal study. The chemical bonding between the Ni slabs and graphene in

Ni/graphene/Ni needs to be perfect to get control on graphene’s MGDC.

This perfect surface can be realized experimentally; however, it is rela-

tively difficult. Thus, to avoid a complete change in the IMR of graphene

due to a defect at the Ni/graphene interface, a barrier is necessary to

maintain the graphene Dirac cone, although some defect occurs on the

Ni surface. Furthermore, by introducing the barrier between Ni slabs

and graphene, an easier controllability of graphene’s Fermi energy will

be expected. In this thesis hBN layer is introduced as a barrier between

Ni slabs and graphene. In this stage, an investigation was conducted

to understand whether graphene’s MGDC is still controllable after the

barrier was introduced.

All the results provided a key leading aspect for realizing a successful graphene-

based spin-valve device.
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1.3 Thesis Organization

This thesis consists of nine chapters. Chapter 1 introduces MJs, graphene-

based MJs, and the proposed strategy to achieve high-performance graphene-

based spintronics devices. Chapter 2 introduces the literature review on the

theory behind the atomistic modeling techniques, conductance simulation, and

the Dirac cone of graphene. Chapter 3 presents the theoretical framework

of our consideration design and the computational approach strategy in the

simulation. The results and discussions presented in chapters 4-7 in this thesis

are an integration of published studies (Chapters 4-6) [55–57] and those under

review (Chapters 7) in international journals. The details of each chapter are

as follows:

• In chapter 4, Ni(111)/graphene/Ni(111) MJ investigation is proposed

through DFT spin-GGA calculations. From the calculation, it was

predicted that in the Ni(111)/graphene/Ni(111) system, the MGDC of

graphene could be controlled using the magnetic alignment of the Ni

slabs. When the magnetic moments of the upper and lower Ni(111)

slabs have an APC state, the MGDC is open. However, when the mag-

netic moments of the upper and lower Ni(111) slabs have a PC state,

the MGDC is closed. This characteristic implies that the pseudospin

between sublattices A and B can be controlled to preserve or break the

chiral symmetry, making the MGDC controllable. This chapter discusses

the origin of the controllable chiral symmetry perseverance of graphene

due to Ni slabs’ magnetic alignment in detail.

• In chapter 5, a theoretical study is presented on the in-plane conduc-

tance of graphene partially sandwiched between Ni(111) nanostructures

with a width of 12.08 Å. The investigation of the proposed system is

conducted to understand the effectiveness of a controllable MGDC of

graphene, which was explained in the previous chapter, on its in-plane

conductance to realize a high MR ratio. First-principles quantum trans-

port calculations, which coupled DFT with the nonequilibrium Green’s

function, were performed. The results predicted that a colossal MR ratio

beyond 3100% was expected when the width of the Ni(111) nanostruc-

tures was at the nanometer scale.

• In chapter 6, a theoretical study is conducted to understand the origin

of the magnetic proximity effect in Ni/nhBN/Ni MTJs, which is the
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main contribution to the CPP tunneling conductance of the MTJ. First,

a study on Ni/2hBN/Ni MJs showed that the Ni’s surface state (111)

becomes the main contribution to the tunneling transmission of the elec-

trons when electrons flow from one Ni slab to another through two hBN

layers. When the number of hBNs is increased to three, the Ni(111)

slabs’ surface state still survives, resulting in a magnetic proximity effect

on the middle hBN. However, the magnetic proximity effect on the mid-

dle hBN is weak since the dz-orbital of the Ni(111) surface state works

on the unfilled pz-orbital of B atoms. However, when the middle hBN

is replaced with graphene, creating an Ni/hBN-graphene-hBN/Ni junc-

tion, the dz-orbital of the Ni(111) surface state works significantly on the

graphene layer, since it works on the π-orbital of graphene. The role of

the proximity effect in controlling the MGDC of graphene is discussed

in the next chapter.

• In chapter 7, a study is performed on the role of the Ni/hBN slab-

graphene interface of the Ni/hBN-graphene-hBN/Ni MJ in controlling

the MGDC of graphene via the magnetic proximity effect. The spin-

polarized DFT calculation was performed on 12 possible stacking con-

figurations for the APC and PC of Ni slabs’ magnetic alignment. The

12 stacking configurations can be categorized into three groups based

on the relative total energy, corresponding to van der Waals’ interaction

between hBN and graphene. In group I, the magnetic proximity effect

of B atoms on graphene causes the opening and closing of MGDC with

a small gap size when N atoms are placed on top or below the hollow

site of graphene. In group II, when the proximity effect of the Ni(111)

surface state as an evanescent wave acts on C atoms, both the APC and

PC states have a spin channel with a prominent size of mass-gapped,

whereas the other does not. In group III, the MGDC is open with a

significant gap size in the APC state and close in the PC state, when the

asymmetric arrangement of N atoms on different sublattices of graphene

is considered. The unique characteristics of graphene’s MGDC control,

depending on the stacking configuration, can be proposed as a device

where a controllable MGDC is tuned using mechanical motion. A spin-

mechatronics device can be realized by proposing a device that can move

the upper and lower Ni(111)/hBN slabs translationally.

Finally, the thesis summary is presented in chapter 8.
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Chapter 2

Theoretical Basis

2.1 Review on Many-Body Schrödinger Equa-

tion

2.1.1 Many-Body Schrödinger Equation

In this section, improvement of the quantum theory from a single-particle

description in the external potential to the quantum many-body theory for ma-

terials is introduced. From the basic quantum theory, the quantum mechanical

wavefunction contains all the information of a given system, and that informa-

tion can be obtained by solving a Schrödinger equation. The time-independent

Schrödinger equation can be expressed as follows:

(T̂ + V̂ )ψ = Eψ (2.1)

where T̂ , V̂ , and E are kinetic energy, potential energy, and total energy of

the given system, respectively.

The realistic and useful theory of materials is developed by describing sys-

tems with many electrons and nuclei. The many-body wavefunction needs to

be introduced, which depends on the positions of each nucleus and electrons

in the system. The wavefunction of the system which has N electrons with

coordinates r1, r2, · · · , rN and M nuclei with coordinates R1,R2, · · · ,RM can

be expressed as follows:

Ψ = Ψ(r1, r2, · · · , rN ; R1,R2, · · · ,RM). (2.2)

By using the many-body wavefunction, the single-particle Schrödinger equa-

tion at eq.2.1 can be transformed to the many-body Schrödinger , which is
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written as follows:

ĤΨ(r1, r2, · · · , rN ; R1,R2, · · · ,RM) = EΨ(r1, r2, · · · , rN ; R1,R2, · · · ,RM)

(2.3)

where Ĥ is Hamiltonian that consists of kinetic and potential energies.

In many applications, the total electronic charge density, which means the

probability of finding any electron at position r, becomes the interest. The

electron density, n(r), is expressed as follows:

n(r) = N

∫
|Ψ(r, r2, · · · , rN ; R1, · · · ,RM)|2dr2 . . . drNdR1 . . .RM , (2.4)

and if the many-body wavefunction is normalized into unity within the system,

it gives

∫
|Ψ(r, r2, · · · , rN ; R1, · · · ,RM)|2dr2 . . . drNdR1 . . .RM = 1. (2.5)

The combination of eq.2.4 and eq.2.5 leads to the fact that the integral of the

electronic charge density throughout the whole system yields the number of

electrons. It is mathematically written as follows:∫
n(r)dr = N. (2.6)

The many-body wavefunction and the many-body Schrödinger equation

have been introduced. Now, let us move on to the Hamiltonian of materials.

At first, let us consider the kinetic energy of materials. Similar to the previous

discussion, we consider N electrons and M nuclei. Thus, we should write down

the kinetic energy for all electrons and all nuclei as follows:

T̂ = −
N∑
i=1

~2

2me

∇2
i −

N∑
I=1

~2

2MI

∇2
I (2.7)

where M1,M2, . . . are the masses of the nuclei, and me is the mass of an

electron. Next, we need to consider the potential energy of materials. The

potential energy of materials consists of three terms, namely, potential energy

from Coulomb repulsion between electrons, Coulomb repulsion between two

nuclei, and Coulomb attraction between an electron and a nucleus. Each of
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the terms could be written as follows:

V̂ee =
1

2

∑
i 6=j

e2

4πε0

1

|ri − rj|
, (2.8)

V̂nn =
1

2

∑
I 6=J

e2

4πε0

ZIZJ
|Ri −Rj|

, (2.9)

V̂en = −
∑
i,I

e2

4πε0

ZI
|ri −RI |

, (2.10)

where V̂ee, V̂nn, and V̂en are potential energy of electron–electron, nuclei–nuclei,

and electron–nuclei interactions, respectively. ZI and ZJ denote the atomic

numbers; e, the electron charge; and ε0, the permittivity of vacuum. Finally, by

substituting the Hamiltonian of materials into many-body Schrödinger equa-

tion, the Schrödinger equation for materials is given as follows:

[
−

N∑
i=1

~2

2me

∇2
i −

N∑
I=1

~2

2MI

∇2
I +

1

2

∑
i 6=j

e2

4πε0

1

|ri − rj|

+
1

2

∑
I 6=J

e2

4πε0

ZIZJ
|Ri −Rj|

−
∑
i,I

e2

4πε0

ZI
|ri −RI |

]
Ψ = EtotΨ (2.11)

By converting the units into Hartree atomic units (~ = me = e = 1), the

many-body Schrödinger equation for materials acquires the following elegant

form:

[
−

N∑
i

∇2
i

2
−

N∑
I

∇2
I

2MI

−
∑
i,I

ZI
|ri −RI |

+
1

2

∑
i 6=j

1

|ri − rj|

+
1

2

∑
I 6=J

ZIZJ
|Ri −Rj|

]
Ψ = EtotΨ. (2.12)

Eq.2.12 is too general because it describes almost everything, and it is too

complex to be solved analytically, except for some simple cases like hydrogen-

like atoms. At this stage, it is necessary to adopt a good approximation method

to the Hamiltonian and the many-body wavefunction, so that the equation can

be solved within a reasonable time and a computational cost while keeping the

important and correct physics.

The forces on both the electrons and ions are of the same order of mag-
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nitude; their momenta are also comparable. However, since the ions are so

massive compared with the electrons, the kinetic energy of the ions is much

smaller than that of the electrons. Therefore, we can consider MI = ∞ in

eq.2.12. This consideration implies the negligence of the kinetic energy of the

nuclei in eq.2.12, whereas the Coulomb repulsion between nuclei is simply con-

stant. This idea forms the basis of the Born–Oppenheimer approximation [58].

Now, let us apply the Born–Oppenheimer approximation to eq.2.12. First,

for the convenience, we separate a constant from the Coulomb repulsion be-

tween nuclei from the expression by defining

E = Etot −
1

2

∑
I 6=J

ZIZJ
|Ri −Rj|

. (2.13)

By using this definition and omitting the kinetic energy of the nuclei, it allows

us to rewrite eq.2.12 as follows:

[
−

N∑
i

∇2
i

2
−
∑
i,I

ZI
|ri −RI |

+
1

2

∑
i 6=j

1

|ri − rj|

]
Ψ = EtotΨ. (2.14)

where the nuclear coordinates, RI can be regarded as external parameters.

Thus, we can consider the wavefunction, Ψ, only as a function of the electron

coordinates, if we substitute into eq.2.14 the following definition:

Vn(r) = −
∑
I

ZI
|r−RI |

(2.15)

which indicates the Coulomb potential of the nuclei experienced by the elec-

trons. By using the definition, eq.2.14 can be written as follows:[
−

N∑
i

∇2
i

2
−
∑
i

Vn(ri) +
1

2

∑
i 6=j

1

|ri − rj|

]
Ψ = EtotΨ. (2.16)

This equation is the fundamental equation of the electronic structure theory.

In the next sections, we will discuss the techniques to solve this Schrödinger

equation.

2.1.2 Slater Determinant

The identical particles, i.e. particles characterized by the same quantum

numbers such as mass, charge, and spin, are in principle indistinguishable.
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Before going into further to solve eq.2.16, we should consider the fact that

electrons are indistinguishable particles. If we suppose that two coordinates in

an N -particle wavefunction are interchanged, it yields the same physical state,

and the corresponding wavefunction will be different from the original one only

by a simple prefactor λ. Using this procedure twice, we have an equality,

Ψ(r1, ..., rj, ..., rk, ..., rN) = λΨ(r1, ..., rk, ..., rj, ..., rN)

= λ2Ψ(r1, ..., rj, ..., rk, ..., rN). (2.17)

Because electrons are fermions, it means that they need to fulfill the Pauli

exclusion principle, where the many body-body wavefunction, Ψ, must change

the sign if the variable of any two electrons is changed. Therefore, the prefactor

λ for the fermion case is λ = −1 for fermions, which yields

Ψ(r1, ..., rj, ..., rk, ..., rN) = −Ψ(r1, ..., rk, ..., rj, ..., rN). (2.18)

Now, we want to change our expression of the N -particle wavefunction

Ψ(r1, r2, ..., rN) into a linear superposition of product states containing N fac-

tors of single-particle basis states. First, from an arbitrary N -particle state

Ψ(r1, r2, ..., rN), we form the (N − 1)-particle function Aν1(r2, ..., rN) by pro-

jecting it onto the basis state ψν1(r1)

Aν1(r2, . . . , rN) ≡
∫
dr1ψ

∗
ν1

(r1)Ψ(r1, r2, . . . , rN) (2.19)

Then, it can be inverted by multiplying with ψν1(r̃1) and summing over ν1,

∑
ν1

ψν1(r̃1)Aν1(r2, . . . , rN) =
∑
ν1

ψν1(r̃1)

∫
dr1ψ

∗
ν1

(r1)Ψ(r1, r2, . . . , rN)

=

∫
dr1

[∑
ν1

ψ∗ν1(r1)ψν1(r̃1)

]
Ψ(r1, r2, . . . , rN)

=

∫
dr1δ(r̃1 − r1)Ψ(r1, r2, . . . , rN)

= Ψ(r̃1, r2, . . . , rN)

Ψ(r̃1, r2, . . . , rN) =
∑
ν1

ψν1(r̃1)Aν1(r2, . . . , rN)

(2.20)
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Now, we analogously define Aν1,ν2(r3, . . . , rN) from Aν1(r2, . . . , rN):

Aν1,ν2(r3, . . . , rN) ≡
∫
dr2ψ

∗
ν2

(r2)Aν1(r2, . . . , rN). (2.21)

and by doing so, it will lead to

Ψ(r̃1, r̃2, r3, . . . , rN) =
∑
ν1,ν2

ψν1(r̃1)ψν2(r̃2)Aν1,ν2(r3, . . . , rN) (2.22)

We can continue all the way through r̃N (and then writing r instead of r̃.

Finally, we end up with

Ψ(r1, r2, . . . , rN) =
∑

ν1,...,νN

Aν1,ν2,...,νNψν1(r1)ψν2(r2) . . . ψνN (rN) (2.23)

where Aν1,ν2,...,νN is just a complex number. However, from our discussion on in-

distinguishable particle of fermions, the aforementioned product is not a phys-

ically useful basis because the coordinates have to appear anti-symmetrically.

Then, to solve the problem, the fermionic anti-symmetrization operator Ŝ− is

introduced to the product state and defined by the following determinants:

Ŝ−ψν1(r1)ψν2(r2) . . . ψνN (rN)

=

∣∣∣∣∣∣∣∣∣∣
ψν1(r1) ψν1(r2) . . . ψν1(rN)

ψν2(r1) ψν2(r2) . . . ψν2(rN)
...

...
. . .

...

ψνN (r1) ψνN (r2) . . . ψνN (rN)

∣∣∣∣∣∣∣∣∣∣
−

=
∑
p∈SN

( N∏
j=1

ψνj(rp(j))

)
sign(p)

(2.24)

which in physics are denoted as Slater determinants. Then, by using the sym-

metrized basis states gets, ψ(r1, r2, ..., rN) is replaced by the following equation

Ψ(r1, r2, . . . , rN) =
∑

ν1,...,νN

Bν1,ν2,...,νN Ŝ−ψν1(r1)ψν2(r2) . . . ψνN (rN) (2.25)

18 Osaka University



2.1.3 Mean-Field Approximation

We understand that each many-body wavefunction is expanded in a series

of Slater determinants. We also need to simplify our Hamiltonian in eq.2.16,

because the Schrödinger equation in eq.2.16 is still too complex, which needs

high computational cost to be solved in the exact manner. At first, we need

to make an approximation so that the problem becomes much simpler with-

out omitting any important physics. The Coulomb interaction term between

electrons is the most time-consuming and needs high computational cost for

the calculation. Approximation is performed to reduce the complexity of the

calculation. The Coulomb interaction between electrons cannot be neglected

because it is in the same order with the other terms. However, we can instead

maintain a single-particle description and take the Coulomb repulsion into

account in an approximate form. This approximation is so-called mean-field

approximation.

Let us consider a distribution of electronic charge, n(r), in classical elec-

trostatic point of view as

n(r) =
∑
i

|φi|2 (2.26)

which generates an electric potential ϕ(r) through Poisson’s equation:

∇2ϕ(r) = 4πn(r). (2.27)

The potential energy of electron, which is immersed in this electric potential,

is VH(r) = −ϕ(r), which is the well-known Hartree potential. The Hartree

potential satisfies Poisson’s equation as follows:

∇2VH(r) = 4πn(r). (2.28)

The formal solution of this equation is

VH(r) =

∫
dr′

n(r′)

|r− r′|
, (2.29)

which means that each element of volume dr′ has a charge dQ = −n(r′)dr′.

This charge generates a Coulomb potential at point r given by dQ/|r− r′|.
Thus, the fundamental equation of the electronic structure theory, which

is shown in eq.2.16, can be simplified by taking the Hartree potential into

account as
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[
−

N∑
i

∇2
i

2
−
∑
i

Vn(ri) + VH(r)

]
Ψ = EtotΨ. (2.30)

This kind of approach, which simplifies the Coulomb repulsion so that the

single-particle description is still maintained, is a kind of mean-field approxi-

mation. It needs to be noted that eq.2.30, eq.2.28, and eq.2.26 must be solved

simultaneously by using the self-consistent field method, which was introduced

by Hartree in 1928.

2.1.4 Hartree–Fock Equations

In the mean-field approximation, because electrons are assumed not to

interact via the Coulomb repulsion, the many-body wavefunction is written as

a Slater determinant, and the single-particle wavefunctions can be obtained

by solving a simpler single-particle Schrödinger equation, which is presented

in eq.2.30. Now, let us consider the fact that electrons do interact indeed.

However, this interaction is not too strong; thus, the solution can still be

written in a Slater determinant form.

We start from deriving the solution of the case of two electrons to keep

formalism as simple as possible. The Schrödinger equation for the two-electron

system is given by

[
H0(r1) +H0(r2) +

1

|r1 − r2|

]
Ψ = EΨ, (2.31)

where

H0(r) = −1

2
∇2 + Vn(r), (2.32)

while the Slater determinant for the two-electron system is given by

Ψ(r1, r2) =
1√
2

[
ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1)

]
(2.33)

where we need to determine ψ1 and ψ2, so that eq.2.33 is the solution of eq.2.31

with the lowest energy, E0. At first, to find ψ1 and ψ2, which minimize the total

energy, we write E as an explicit functional of the wavefunctions as follows:
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E =

∫
dr1dr2Ψ∗

[
H0(r1) +H0(r2) +

1

|r− r′|

]
Ψ

E =

∫
dr1dr2Ψ∗H0(r1)Ψ +

∫
dr1dr2Ψ∗H0(r2)Ψ +

∫
dr1dr2Ψ∗

1

|r1 − r2|
Ψ

= 〈ψ1|H0|ψ1〉 〈ψ2|ψ2〉+ 〈ψ2|H0|ψ2〉 〈ψ1|ψ1〉 − 〈ψ1|H0|ψ2〉 〈ψ2|ψ1〉

− 〈ψ2|H0|ψ1〉 〈ψ1|ψ2〉+

∫
dr1dr2

|ψ1(r1)|2|ψ2(r2)|2

|r1 − r2|

−
∫

dr1dr2
ψ∗1(r1)ψ∗2(r2)ψ1(r2)ψ2(r1)

|r1 − r2|
.

(2.34)

Eq.2.34 can be simplified, if the functions ψ1(r) and ψ2(r) are required to be

orthonormal, which corresponds to the following conditions:

〈ψ1|ψ1〉 = 〈ψ2|ψ2〉 = 1, and 〈ψ1|ψ2〉 = 〈ψ2|ψ1〉 = 0. (2.35)

These conditions make sure that the trial function is nicely normalized. By

substituting eq.2.35 into eq.2.34, we have energy E as a functional of ψ1 and

ψ2, E = E[ψ1, ψ2] as follows:

E[ψ1, ψ2] =

∫
drψ∗1(r)H0(r)ψ1(r) +

∫
drψ∗2(r)H0(r)ψ2(r)

+

∫
dr1dr2

ψ∗1(r1)ψ∗2(r2)ψ1(r1)ψ2(r2)

|r1 − r2|

−
∫

dr1dr2
ψ∗1(r1)ψ∗2(r2)ψ1(r2)ψ2(r1)

|r1 − r2|
.

(2.36)

The functions ψ1 and ψ2, which minimize this functional, can be obtained by

requiring that the functional derivative of E with respect to ψ1 (or ψ2) be

equal to zero:

δE

δψ1

= 0,
δE

δψ2

= 0. (2.37)

The minimization process requires that the functions need to satisfy the con-

straints in eq.2.35; thus, the Lagrange multipliers method is used to effectively

deal with the constraints. First, we introduce a new functional, which incor-

porates the constraints:
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L[ψ1, ψ2, λ11, . . . , λ22] = E[ψ1, ψ2]−
∑
ij

λij[〈ψ1|ψj〉 − δij], (2.38)

where the constants λij are called Lagrange multipliers. In Lagrange’s method,

the constrained minimization problem defined in eq.2.35 and eq.2.37 is replaced

by unconstrained minimization problem as follows:

δL

δψi
= 0, i = 1, 2,

δL

δλij
= 0, i, j = 1, 2. (2.39)

Before performing the derivation, there is a remark that needs to be considered

to make the derivation simpler. The derivatives with respect to ψi and ψ∗i are

not independent; however, it can effectively be treated like that. This crafty

point is related to the fact that the Hamiltonian is Hermitian. Therefore, for

the sake of convenience, instead of evaluating the derivatives with respect to

ψi, the derivatives with respect to ψ∗i is used. Thus, the functional derivatives

of eq.2.38 can be obtained as follows:

δL

δψ∗1
= H0(r)ψ1(r) +

∫
dr′
|ψ2(r′)|2

|r− r′|
ψ1(r)

−
∫

dr′
ψ∗2(r′)ψ2(r)

|r− r′|
ψ1(r′)− λ11ψ1(r)− λ12ψ2(r) = 0,

δL

δψ∗2
= H0(r)ψ2(r) +

∫
dr′
|ψ1(r′)|2

|r− r′|
ψ2(r)

−
∫

dr′
ψ∗1(r′)ψ1(r)

|r− r′|
ψ2(r′)− λ21ψ1(r)− λ22ψ2(r) = 0,

δL

δλij
= δij − 〈ψi|ψj〉 = 0 for any i, j = 1, 2.

(2.40)

Finally, we have the same form of fundamental equation of the electronic struc-

ture theory as follows:

[
− ∇

2

2
− Vn(r) + VH(r)

]
ψ1(r) +

∫
dr′VX(r, r′)ψ1(r′) = λ11ψ1(r)− λ12ψ2(r)[

− ∇
2

2
− Vn(r) + VH(r)

]
ψ2(r) +

∫
dr′VX(r, r′)ψ2(r′) = λ21ψ1(r)− λ22ψ2(r)

(2.41)
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where VH(r) and VX(r, r′) are the Hartree potential and the Fock-exchange

potential, respectively. Both of them are expressed as follows:

VH(r) =
∑
j

∫
dr′
|ψj(r′)|2

|r− r′|
, VX(r, r′) = −

∑
j

ψ∗j (r
′)ψj(r)

|r− r′|
for j = 1, 2.

(2.42)

The final step is to eliminate the Lagrange multiplier term. Because the Hamil-

tonian is Hermitian and so do the Lagrange multipliers, elimination of the

Lagrange multipliers can be achieved by using unitary transformation, which

diagonalizes Lagrange multipliers as follows:

S

(
λ11 λ12

λ21 λ22

)
S−1 =

(
ε1 0

0 ε2

)
. (2.43)

Consequently, now we define new wavefunctions, φ1 and φ2, as follows:

φi =
∑
j

Sijψj. (2.44)

Thus, we can write eq.2.41 as

[
− ∇

2

2
− Vn(r) + VH(r)

]
φ1(r) +

∫
dr′VX(r, r′)φ1(r′) = ε1φ1(r),[

− ∇
2

2
− Vn(r) + VH(r)

]
φ1(r) +

∫
dr′VX(r, r′)φ2(r′) = ε2φ2(r).

(2.45)

Finally, we generalize the Hartree–Fock equation for the case of the N -electrons

system as follows:

[
− ∇

2

2
− Vn(r) + VH(r)

]
φi(r) +

∫
dr′VX(r, r′)φi(r

′) = εiφi(r). (2.46)

Here, we show that we change our approximation from classical in the mean-

field approximation into quantum electrons in the Hartree–Fock equation. The

Fock-exchange potential VX arises precisely from Pauli’s exclusion principle

and prevent two electrons from occupying the same quantum state. However,

the potential VX is nonlocal, and its evaluation involves an integration over

the additional variable r′. This problem significantly complicates the practical
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solution of the Hartree–Fock equations.

2.2 Density Functional Theory

2.2.1 Hohenberg–Kohn theorem

In section 2.1.4, we explained that any change in E must be associated with

changes in the many-body wavefunction, Ψ. Therefore, we explicitly expressed

E as a functional of Ψ as follows:

E = F [Ψ]. (2.47)

Hohenberg–Kohn in 1964 stated (also known as the Hohenberg–Kohn theo-

rem): in the ground state, i.e. E is in the lowest possible energy of the system,

E become a functional of the electron density.

E = F [n]. (2.48)

The Hohenberg–Kohn theorem is based on the following three premises:

• In any quantum state, the total energy is a functional of the many-body

wavefunction, which is explicitly expressed in eq.2.47.

• In any quantum state, the external potential, Vn, uniquely determines

the many-body wavefunction: Vn → Ψ.

• In the ground state, the electron density uniquely determines the external

potential of the nuclei, Vn: n→ Vn.

By combining the three premises, we can conclude that in the ground state,

the density uniquely determines the total energy: n→ Vn → Ψ→ E which is

refer to Hohenberg-Kohn theorem in eq.2.48.

Now, let us prove the validity of those premises. The first premise can be

proven from the explanation in the previous section. The second premise means

that if the atomic position is changed, the potential energy Vn also changes,

then the different many-body wavefunctions are obtained. This premise is

rather intuitive because different Vn will give different Hamiltonians, which

leads to different solutions. Thus, this premise requires a careful proof, which is

possible by considering that all scalar potentials appearing in the Hamiltonian

are Coulomb potentials. Lastly, the last premise is not intuitive, but it can be

mathematically proven.
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However, before proving this premise, it is better to introduce the concept

of variational principle. The concept of variational principle states that the

energy expectation value of any state is larger or equal to the ground state.

To understand the concept, let us first consider the Schrödinger equation for

N electrons as

HΦ = E0Φ, (2.49)

where Φ is the ground state of the system, and E0 is the ground-state energy.

Now, let us consider a trial state, Ψ, with the expectation of the energy defined

as

E[Ψ] =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

, (2.50)

where 〈Ψ|H|Ψ〉 =
∫

Ψ∗HΨdτ with τ = (r1, σ1, · · · , rN , σN). The variational

principle states that

E[Ψ] ≥ E0. (2.51)

By using the previous definition, we can rewrite the equation as

∫
Ψ∗HΨdτ ≥ E0

∫
Ψ∗TΨTdτ∫ (∑

j

a∗juj ∗
)(∑

i

Eiaiui

)
dτ ≥ E0

∫ (∑
j

a∗juj ∗
)(∑

i

aiui

)
dτ

∑
ij

a∗jaiEi

∫
uj ∗ uidτ ≥ E0

∑
ij

a∗jai

∫
uj ∗ uidτ∑

ij

a∗jaiEiδij ≥ E0

∑
ij

a∗jaiδij∑
i

Ei|ai|2 ≥ E0

∑
i

|ai|2

(2.52)

which proves that

ET =

∫
Ψ∗HΨdτ∫
Ψ∗TΨTdτ

≥ E0. (2.53)

Now, by using the concept variational principle, we prove the last premise.

To make the proving easier, let us introduce the symbolic notation for the

kinetic and Coulomb energies in eq.2.16:
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T = −
∑
i

1

2
∇2
i , Vee =

1

2

∑
i 6=j

1

|ri − rj|
. (2.54)

Thus, we can write the total energy as

E = 〈Ψ|
∑
i

Vn(ri)|Ψ〉+ 〈Ψ|T + Vee|Ψ〉 (2.55)

By using the relation between the wavefunction and electron density, we obtain

E =

∫
dr n(r)Vn(r) + 〈Ψ|T + Vee|Ψ〉 . (2.56)

Now, consider two different potentials, Vn(r) and V ′n(r), where Vn(r) 6= V ′n(r).

Suppose Vn(r) and V ′n(r) lead to the same density n. Let E and Ψ be the

ground-state energy and wavefunction of potential Vn, respectively. From the

two previous premises, each potential has a unique ground-state energy and

wavefunction, Vn → Ψ → E, so E ′ and Ψ′ become the ground-state energy

and wavefunction of potential V ′n, respectively. Because Ψ is not the ground

state of V ′n, we have

∫
dr n(r)V ′n(r) + 〈Ψ|T + Vee|Ψ〉 > E ′∫

dr n(r)V ′n(r) + E −
∫

dr n(r)Vn(r) > E ′

E − E ′ >
∫

dr n(r)[Vn(r)− V ′n(r)]. (2.57)

Now, we can apply similar logic as above for the case of Vn resulting

E ′ − E >

∫
dr n(r)[V ′n(r)− Vn(r)]. (2.58)

Finally, if we add the last two equations, we will have 0 > 0, which is obviously

contradicting. Therefore, the assumption of two different potentials, Vn(r) 6=
V ′n(r), resulting in the same ground-state density n must be false. This proves

the last premise and completes the proof for the Hohenberg theorem.

2.2.2 The Exchange-Correlation Term

The Hohenberg–Kohn theorem states that the total energy of many elec-

trons in their ground state is a functional of electron density; however, the

functional itself has not yet been constructed by this theorem. If we try to
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find a hint from the Hohenberg–Kohn theorem, the functional can be written

as

F [n] =

∫
dr n(r)Vn(r) + 〈Ψ[n]|T + Vee|Ψ[n]〉 . (2.59)

The first term of the functional is already explicitly dependent on the density,

whereas the second (kinetic energy) and third (Coulomb energy) terms are still

implicitly dependent on the density. The idea proposed by Kohn and Sham

in 1965 was to split the implicit terms to be the kinetic and Coulomb energies

of independent electron additional with extra term so-called exchange and

correlation energy, EXC in which everything that is left out is into accounts:

E = F [n] =

∫
dr n(r)Vn(r)−

∑
i

∫
drφ′i(r)

∇2

2
φi(r)

+
1

2

∫ ∫
drdr′

n(r)n(r′)

|r− r′|
+ EXC [n]. (2.60)

At this stage, we introduce exchange-correlation energy as an approximate

functional, e.g. ELDA
XC , to take further steps.

To introduce the Kohn–Sham equation, we need to construct an accurate

exchange and correlation functional EXC [n]. The simplest way to construct

EXC [n] is by using the concept of the homogeneous gas electron model. This

model is created with the assumption that the energy of the electron density in

small volume at the r (local density electron) is given by the homogeneous elec-

tron gas at the density. The exchange-correlation energy constructed by this

assumption is called local density approximation (LDA) exchange-correlation

energy. The exchange-correlation energy functional is written adding up each

contribution from exchange (Ex) and correlation energy (EC). In LDA, Ex is

defined by Dirac as

Ex = −3

4

(
3

π

) 1
3
∫
V

n4/3(r)dr (2.61)

In contrast to the exchange energy, it is not possible to analytically de-

termine the correlation energy. Correlation energy is possible to determine

by calculating the correlation energy for the simple model by directly solv-

ing the many-particle Schrödinger equation using the stochastic numerical

method [59]. The correlation energy Ec can thus be extracted from analytical

estimation or numerical data by removing the known kinetic, Hartree, and
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exchange contribution from the calculated total energies. Nowadays, the most

accurate Ec is given by the data obtained using the quantum Monte Carlo

calculation. Not only does the LDA approximation work for materials with

slowly varying or homogeneous electron densities but also practically demon-

strates surprisingly accurate results for a wide range of ionic, covalent, and

metallic materials.

An alternative, slightly more sophisticated approximation is the General-

ized Gradient Approximation(GGA), which estimates the contribution of each

volume element to the exchange-correlation based on the magnitude and gra-

dient of the electron density within that element. The exchange correlation

for GGA can be written as follows:

EGGA
XC [n↑, n↓] =

∫
d3rf(n↑, n↓,∇n↑,∇n↓). (2.62)

The GGA exchange-correlation energy is suitable for describing 3D metals, 3D

semiconductors, strong metallic ferromagnets, molecules, and molecular solids

without π − π stacking.

2.2.3 The Kohn–Sham Equation

In the last section, we have introduced some forms of EXC [n], each of

which is represented by an explicit functional of n(r). This means that the

functional derivatives of EXC [n] are given in computations. In the density

functional theory, the function n(r) that minimizes the total energy, E, is the

ground-state density n0, which can be expressed as follows:

δE

δn(r)
=

δ

δn(r)

[∫
dr n(r)Vn(r)−

∑
i

∫
drφ′i(r)

∇2

2
φi(r)

+
1

2

∫ ∫
drdr′

n(r)n(r′)

|r− r′|
+ EXC [n]

]∣∣∣∣
n0

= 0. (2.63)

Now, we find the same minimization problem as that in the derivation of the

Hartree–Fock equation. By using similar process, we can find an equation for

the wavefunction φi(r). By applying the chain rule to the E with respect to

any of ψ∗i , we obtain

δE

δψ∗i
=
δE

δn

δn

δψ∗i
=
δE

δn
ψi, (2.64)
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Eq.2.63 and 2.64 state that the Kohn–Sham orbitals must satisfy the following

condition:

δE

δψ∗i
= 0. (2.65)

As we already know, the Kohn–Sham wavefunctions must satisfy the orthonor-

mality:

〈ψi|ψj〉 = δij. (2.66)

Thus, we have Eq.2.65 and 2.66 as the two constraints that must be satisfied.

The existence of these constraints causes the minimization process to be done

effectively by using the Lagrange multipliers (δij) method [60]. Hence, we first

introduce Lagrange functional as follows:

L = E −
∑
ij

λij[〈ψi|ψj〉 − δij], (2.67)

and looking for the extrema of this functional, we find

δL

δψ∗i
= 0 −→ δE

δψ∗i
=
∑
ij

λijψj(r). (2.68)

From this, we can use Eq.2.64 and 2.2.2 to evaluate the functional derivative,
δE
δψ∗i

. Thus, we obtain

− ∇
2

2
ψi(r) +

δ

δn

{
1

2

∫ ∫
drdr′

n(r)n(r′)

|r− r′|
+

∫
Vext(r)n(r)dr + EXC [n]

}
ψi(r)

=
∑
j

λijψj(r),

(2.69)

where the second term needs to be simplified by using the definition of func-

tional derivative. Thus, the first term of the second term in Eq.2.69 can be

simplified by firstly denoting it as EH [n]:

EH [n] =
1

2

∫ ∫
drdr′

n(r)n(r′)

|r− r′|
, (2.70)

where H denotes Hartree. By using the definition of the functional derivative,
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∫
δEH [n]

δn
(r)g(r) dr =

[
d

dε
VH [n(r) + εg(r)]

]
ε=0

=

[
d

dε

(
1

2

∫ ∫
drdr′

[n(r) + εg(r)][n(r′) + εg(r)]

|r− r′|

)]
=

1

2

∫ ∫
n(r′)g(r)

|r− r′|
drdr′ +

1

2

∫ ∫
n(r)g(r′)

|r− r′|
drdr′,

(2.71)

in which the first term is equal to the second term in the last Eq.2.71 because

r and r′ are interchangeable. Thus, we obtain

∫
δEH [n]

δn
(r)g(r) dr =

∫ (∫
dr′

n(r′)

|r− r′|

)
g(r)dr, (2.72)

and the functional derivative of EH with respect to n(r) is

δEH [n]

δn(r)
=

∫
dr′

n(r′)

|r− r′|
. (2.73)

The middle term of the second term in Eq.2.69 can be simplified in the same

way as the first term by firstly denoting it as Eext[n]:

Eext[n] =
δ

δn(r)

[∫
Vext(r)n(r)dr

]
, (2.74)

and applying the definition in Eq.2.72,

∫
δEext[n]

δn
(r)g(r) dr =

[
d

dε
Eext[n+ εg]

]
ε=0

=

[
d

dε

∫
[n(r) + εg(r)]Vext(r)dr

]
ε=0

=

∫
Vext(r)g(r)dr.

(2.75)

Thus, from Eq.2.75, we obtain

δEext[n]

δn(r)
= Vext. (2.76)

Therefore, Eq.2.69 can now be expressed as
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[
− ∇

2

2
+ Vext(r) +

∫
dr′

n(r′)

|r− r′|
+
δEXC
δn(r)

]
ψi(r) =

∑
j

λijψj(r). (2.77)

The third and fourth terms inside the square brackets are the Hartree potential,

VH(r), and the exchange and correlation potentials, VXC(r), respectively. The

explicit form of VXC is given by Ex and a functional form of EC , e.g. EGGA
XC ,

determined in each simulation. Eq. 2.77 can also be written as

Heffψi(r) =

[
− ∇

2

2
+ Veff (r)

]
ψi(r) =

∑
j

λijψj(r).

Veff (r = Vext(r) + VH(r) + VXC(r),

(2.78)

which shows the single-particle Schrödinger equation with one-electron Hamil-

tonian Heff as a Hermitian operator and effective potential Veff as a local

operator. Thus, λij is a Hermitian matrix and can be diagonalized by a uni-

tary transformation of the Kohn–Sham wavefunctions. Finally, by introducing

the new wavefunctions, φi(r), and the eigen values,εi, the Kohn–Sham equa-

tions could be written as[
− 1

2
∇2 + Veff (r)

]
φi(r) = εiφi(r). (2.79)

2.2.4 Extension to Spin-Polarized DFT

For the case of magnetic system, we shall introduce energy functionals

considering the spin density as a relevant secondary order parameter. Let us

introduce the scalar electronic density and magnetization density as follows:

n(r) = n↑(r) + n↓(r) (2.80)

m(r) = gµB(n↑(r)− n↓(r)) (2.81)

↑(↓) are up(down) spin direction. The spin density can also be represented in

terms of spin-up and spin-down orbital, φσ(r) as follows:

nσ(r) =
∑
i

|φσ(r)|2 (2.82)
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where σ =↑, ↓ with the Kohn–Sham equation can be rewritten as[
− 1

2
∇2 + V σ

eff (r)

]
φiσ(r) = εiσφiσ(r), (2.83)

where the effective potential can be written as

V σ
eff (r) =

∫
n(r)

|r− r′|
dr +

δEGGA
XC [n↑(r), n↓(r)]

δnσ(r)
+ Vext(r) + µB(r) (2.84)

The last term on the left side is so-called effective magnetic field with BXC(r)

as exchange and correlation magnetic field.

2.2.5 Ultrasoft Pseudopotential

In early 1990, David Vanderbilt developed for the first time a new approach

for the construction of pseudopotential, namely, ultrasoft pseudopotential [61].

The valence electron density is defined as follows:

nv(r) =
∑
n,k

φnk ∗ (r)φnk(r) +
∑
i,j

ρijQji(r), (2.85)

where

Qji(r) = ψi ∗ (r)ψj(r)− φi ∗ (r)φj(r), (2.86)

ρij =
∑
n,k

〈βi|φnk〉 〈φnk|βj〉 . (2.87)

Eq.2.86 shows an augmentation function containing ψi(r) and ψi(r), which

are the ultrasoft and electron wavefunctions, respectively. The difference be-

tween the charge density of many electrons and pseudo wavefunctions is called

augmentation charges.

Here, the ultra (pseudo) wavefunction obeys the orthonormality condition by

defining a nonlocal operator S as follows:

〈φ|S|φ〉 = δij. (2.88)

2.2.6 Monkhorst–Pack Scheme

To optimize the calculation, a special set of k-points in the Brillouin zone

has to be carefully selected. In this study, the Monkhorst–Pack scheme is

implemented as a scheme with an efficient means to generate k-points with
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some good accuracy. In this method, three integers q along the coordinates is

used as the number of the special k-points. By using these integers, a sequence

of numbers is generated as follows:

ur =
2r − q − 1

2q
(r = 1, 2, 3, 4, ..., q). (2.89)

By using ur, q
3 distinct points, uniformly distributed in the Brillouin zone,

can be obtained by defining

kj,k,l = ujb1 + ukb2 + ulb3 (2.90)

where b1, b2, b3 are the reciprocal lattice vectors.

2.3 Theory of Electronic States in Graphene

2.3.1 Bloch Theorem

In the crystal, the Kohn–Sham effective potential for an electron, Veff (r),

has periodicity

Veff (r + R) = Veff (r) (2.91)

where R is a translation vector of the crystal lattice. It means that the crystal

offers the translational symmetry. In quantum mechanics, translation by the

lattice vector R can be expressed by the following operator.

ŜR = exp

(
1

~
p̂ ·R

)
= exp(R · ∇). (2.92)

This operator generates a unitary transformation if it is operated to a state

vector that possesses a real momentum. We can understand the operation of

operator Ŝ by explicitly operating it to the following wavefunction:

ψ(r) =
∑
G

CG exp(iG · r). (2.93)

which results in
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ŜRψ(r) =
∑
G

CG exp(R · ∇) exp(iG · r)

=
∑
G

CG(R · ∇) exp(iG · r)

=
∑
G

CG(iR ·G) exp(iG · r)

=
∑
G

CG exp(iR ·G) exp(iG · r)

=
∑
G

CG exp(iG · (r + R))

= ψ(r + R)

(2.94)

where G is the wave vector. After the translation operation by operator ŜR,

the function is shifted by R. If we recall effective Hamiltonian for the electronic

system in the crystal as

Ĥeff = −1

2
∇2 + Veff (r), (2.95)

and applied translation operator, we can obtain the following operation:

ŜRĤeffφn,k,σ(r) = exp(R · ∇)

{
− 1

2
∇2 + Veff (r)

}
φ(r)n,k,σ

=

{
− 1

2
∇2 + Veff (r + R)

}
φn,k,σ(r + R)

=

{
− 1

2
∇2 + Veff (r + R)

}
ŜRφn,k,σ(r).

(2.96)

By using Eq.2.91, we can have the following operator identity:

ŜRĤeff Ŝ
−1
R = −1

2
∇2 + Veff (r + R)

= −1

2
∇2 + Veff (r)

= Ĥeff .

(2.97)

Therefore, we conclude that Ĥeff is invariant under the translational transfor-

mation ŜR. Both operators follow the commutation relation

[ŜR, Ĥeff ] = 0, (2.98)
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which means that ŜR and Ĥeff are commutable.

Recall the Kohn–Sham equation, which is written in eq.2.79. By operating

the translational operator ŜR on both sides, we can find the following relation:

ŜRĤeffφn,k,σ(r) = ŜRεn,kφn,k,σ(r)

Ĥeff ŜRφn,k,σ(r) = εn,kŜRφn,k,σ(r)

Ĥeffφn,k,σ(r + R) = εn,kφn,k,σ(r + R),

(2.99)

which is showing that φn,k,σ(r + R) is an eigenstate with the eigenvalue εn,k.

For the case without degeneracy, φn,k,σ(r + R) has to be identical to φn,k,σ(r),

except for an overall phase. By using this rule, we construct the so-called

Bloch function.

The phase difference between φn,k,σ(r + R) and φn,k,σ(r) can be explicitly

written by introducing a phase factor exp(ik · r), so that we have the following

relation:

φn,k,σ(r + R) = exp(ik ·R)φn,k,σ(r). (2.100)

Bloch’s theorem states that the solutions of the one-electron equation can be

written as a product of a plane wave and a periodic function. By introducing

periodic function un,k,σ(r) as

un,σ(r) = exp(−ik · r)φn,k,σ(r) (2.101)

where its periodicity can be easily proven as

un,σ(r + R) = exp(−ik · r− ik ·R)φn,k,σ(r + R)

= exp(−ik · r− ik ·R) exp(ik ·R)φn,k,σ(r)

= exp(−ik · r)φn,k,σ(r)

= un,σ(r).

(2.102)

We can finally get another form of the Bloch function, which is given as follows:

φn,k,σ(r) = exp(ik · r)un,σ(r) (2.103)

For the case of degeneracy, by introducing a unitary transformation, the same

function form like eq.2.103 is concluded.

By performing Fourier transformation on the Bloch function, we can obtain
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the Wannier functions. The Wannier functions are localized functions that

span the same space as the eigenstates of a band or a group of bands. Using

the Bloch function solution of materials φn,k,σ(r), the corresponding Wannier

orbitals around a lattice point ri can be expressed as follows:

φn,σ(r− ri) =
1√
N

∑
k

exp(ik · ri)φn,k,σ(r). (2.104)

A set of φn,k,σ(r) gives an orthonormal complete set as follows:∫
d3rφ∗n,k,σ(r)φn′,k′,σ′(r) = δn,n′δk,k′δσ,σ′ , (2.105)

while a set of φn,σ(r− ri) gives an orthonormal complete set as follows:

∫
d3rφ∗n,σ(r− ri)φn,σ(r− rj) =

1

N

∑
k,k′

exp(ik · ri − ik′ · rj)∫
d3rφ∗n,k,σ(r)φn,k′,σ(r)

=
1

N

∑
k,k′

exp(ik · ri − ik′ · rj)δk,k′

=
1

N

∑
k

exp(ik · (ri − rj))

= δri,rj

(2.106)

2.3.2 Tight-Binding Model

In a crystal, an electron is typically bound tightly to one particular atom

with some energy E, which is less than the potential barrier between atoms.

However, because the wavefunctions of two atoms in the lattice will have some

overlap, there is always the possibility that an electron can tunnel through the

potential barrier and hop from one atom to another.

The tight-binding approximation deals with the case in which the overlap

of the atomic wavefunction is sufficient to require correction to the picture of

isolated atoms, but not so much as to render the atomic description completely

irrelevant. This approximation is most useful for describing an energy band

that arises from partially filled d-orbitals of transition metal atoms or for

describing an insulator in solid.

The idea behind the tight-binding model is the ability to tunnel between

atoms is favored by the electron because the more extensive space available to
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it causes its energy to become lower. The precise amount by which the energy

is lowered depends on the nature of the crystal. If an electron tunnels from

crystal lattice site i to site j, its energy changes by an amount of −tij. This

tunneling effect is equivalent (in the second quantization language) to electron

annihilation at site i and creation at site j, so the portion of the Hamiltonian

dealing with tunneling can be written as

Ĥ = −
∑
i,j

tij

(
c†iσcjσ +H.c.

)
(2.107)

where c†i and cj are the fermion creation and annihilation operators, whereas σ

denotes the electron spin. The tij value decreases along with the separation of

two atoms. To simplify the model, we can assume that electron only hopping

to the neighboring atoms. Thus, tij = 0 for all other atom pairs beside the

neighboring atoms. Then, the above equation becomes

Ĥ = −
∑
i,γ

(
ti,i+γc

†
ici+γ +H.c.

)
(2.108)

where γ is the nearest-neighbor site and the sum over γ means to sum over

atoms close to i. To diagonalize equation 2.108, we can apply Fourier trans-

forms to creation and annihilation operators.

cj =
1√
N

∑
k

eik·rick (2.109)

c†i =
1√
N

∑
q

e−iq·ric†q (2.110)

Therefore, equation 2.108 becomes

Ĥ = −
∑
i,γ

ti,i+γ
1√
N

∑
q

e−iq·ric†q
1√
N

∑
k

eik·(ri+rγ)ck

= − 1

N

∑
i,γ

∑
k,q

ti,i+γe
irl·(k−q)eik·rγc†qck (2.111)

Since

1

N

∑
l

eirl·(k−q) = δk,q (2.112)

our equation becomes
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Ĥ = −
∑
τ

∑
k

ti,i+γe
ik·rγc†kck (2.113)

2.3.3 Effective Mass Theory

Using the orthonormal set of Bloch function and Wannier orbital from the

previous section, we can define a set of creation and annihilation operators,

c†i,σ and ci,σ as well as c†n,k,σ and cn,k,σ. In the single-band case, we have the

following relation:

ci,σ =
1√
N

∑
k

exp(−ik · ri)cn,k,σ, cn,k,σ =
1√
N

∑
ri

exp(ik · ri)ci,σ,

c†i,σ =
1√
N

∑
k

exp(ik · ri)c†n,k,σ, c†n,k,σ =
1√
N

∑
ri

exp(−ik · ri)c†i,σ.

(2.114)

Now, let us consider the second quantization form of the effective Hamiltonian

operator, which can be defined as

Ĥeff =
∑
k,σ

εn,kc
†
n,k,σcn,k,σ. (2.115)

the Hamiltonian can be proved by applying it to a trial state of single-particle

|n,k, σ〉 ≡ c†n,k,σ |0〉 as follows:

Ĥeff |n,k, σ〉 =
∑
m,k′,σ′

εm,k′c
†
m,k′,σ′

cm,k′,σ′c
†
n,k,σ |0〉

=
∑
m,k′,σ′

εm,k′c
†
m,k′,σ′

(
{cm,k′,σ′ , c†n,k,σ} − c

†
n,k,σcm,k′,σ′

)
|0〉

=
∑
m,k′,σ′

εm,k′

(
δm,nδk,k′δσ,σ′c

†
m,k′,σ′

|0〉 − c†
m,k′,σ′

c†n,k,σcm,k′,σ′ |0〉
)

= εn,kc
†
n,k,σ |0〉

Ĥeff |n,k, σ〉 = εn,k |n,k, σ〉 .
(2.116)

The above expression shows the Schrödinger equation in the second quantiza-

tion form. By using relation in eq.2.114, the effective Hamiltonian operator

could be expressed as follows:
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Ĥeff =
1

N

∑
k,σ

εn,k
∑
ri

exp(−ik · ri)c†i,σ
∑
rj

exp(ik · rj)cj,σ

=
∑
i,j,σ

ti,jc
†
i,σcj,σ,

(2.117)

where ti,j is the transfer integral, which is express as

ti,j =
1

N

∑
k

= exp

(
− ik · (ri − rj)

)
εn,k. (2.118)

To be noted in this derivation, we restrict our consideration only for the n-th

band. The band lower than the n-th band is assumed to be filled with electrons,

whereas the band higher than the n-th band is assumed to be empty.

To simplify the discussion, let us consider the cubic lattice with lattice con-

stant a and sample length L. Here, we take the infinite length limit, which is

so-called continuum limit, where the lattice constant a is small enough com-

pared with the scale of whole sample (a → 0), the number of lattice point N

is large enough to have a microscopic sample (L → ∞), and the size of the

sample is fixed as R = La = const.. Before we continue deriving the effec-

tive Hamiltonian into effective continuum Hamiltonian, let us define several

mathematical definitions from the continuum limit to simplify the derivation.

First, we introduce continuous variable ri and kj as

ri = (ani1, ani2, ani3), (2.119)

kj =

(
∆kmj1,∆kmj2,∆kmj3

)
, (2.120)

where the latter equation can be reexpressed by defining ∆k = 2π
La

,

kj =

(
2π

R
mj1,

2π

R
mj2,

2π

R
mj3

)
. (2.121)

Because we take the limit of a → 0 and considering the sufficiently large R,

we can define the differentials dr and dk as

dr = a, dk =
2π

R
, (2.122)

leading to the range of r and k as
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r ∈ [0, R]3, k ∈ [−∞,∞]3. (2.123)

Now, we start the derivation of the integral equation by eq.2.106

1

N

∑
k

exp

(
ik · (ri − rj)

)
= δri,rj . (2.124)

From our previous definition on continuum limit, we note that N = L3 =

(R/a)3. Using the definition in eq.2.122 and identifying the summation as an

integral, we have

(
a

R

)3∑
k

exp

(
ik · (ri − rj)

)
=

(
a

2π

)3(
2π

R

)3∑
k

exp

(
ik · (ri − rj)

)
=

(
a

2π

)3 ∫
d3k exp

(
ik · (ri − rj)

)
= δri,rj . (2.125)

By identifying δri,rj as δ(r− r′), we can obtain

∫
d3k exp

(
ik · (r− r′)

)
=

(
2π

a

)3

δ(r− r′). (2.126)

Similarly, if we consider the following equation,

1

N

∑
r

exp

(
i(k− k′) · r

)
= δk,k′ , (2.127)

By using the continuum limit definition and identifying the summation as an

integral, we can obtain

(
a

R

)3∑
r

exp

(
i(k − k′) · r

)
=

(
1

R

)3 ∫
d3r exp

(
i(k − k′) · r

)
= δk,k′ .

(2.128)

by identifying δk,k′ as δ(k− k′), we have∫
d3r exp

(
i(k− k′) · r

)
= R3δ(k− k′). (2.129)

Now, by using the definition in eq.2.125 and 2.128, we have two following

expressions:
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∫
d3rδ(r− r′) =

∫
d3r

(
a

2π

)3 ∫
d3k exp

(
ik · (r− r′)

)
=

∫
d3k

(
a

2π

)3[ ∫
d3r exp(ik · r)

]
exp(−ik · r′)

=

∫
d3k

(
a

2π

)3

R3δk,0 exp(−ik · r′)

=

(
2π

R

)3(
a

2π

)3

R3
∑
k

δk,0

∫
d3rδ(r− r′) = a3 (2.130)

∫
d3kδk,k′ =

∫
d3k

(
1

R

)3 ∫
d3r exp

(
i(k− k′) · r

)
=

(
1

R

)3 ∫
d3r

[ ∫
d3k exp(ik · r)

]
exp(ik′ · r)

=

(
1

R

)3 ∫
d3r

(
2π

a

)3

δr,0 exp(ik′ · r)

=

(
1

R

)3(
2π

a

)3

a3
∑
r

δr,0

∫
d3kδ(k− k′) =

(
2π

R

)3

. (2.131)

By using the range of r and k in eq.2.123, the integral in eq.2.126, 2.129, 2.130,

and 2.131 can be completed as follows:

∫ R

0

d3r exp

(
i(k− k′) · r

)
= R3δ(k− k′),

∫ ∞
−∞

d3kδ(k− k′) =

(
2π

R

)3

∫ ∞
−∞

d3k exp

(
ik · (r− r′)

)
=

(
2π

a

)3

δ(r− r′),

∫ R

0

d3rδ(r− r′) = a3.

(2.132)

Finally, let us define field operators using the Bloch functions as

ψ†σ(r) =

(
R

2π

)3 ∫ ∞
−∞

d3k exp(ik · r)c†k·σ, (2.133)
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c†k·σ =
1

(aR)3/2

∫ R

0

d3r exp(−ik · r)ψ†σ(r) (2.134)

Now, we start our derivation of effective continuum Hamiltonian. For the

sake of simplicity, we consider a simple cubic structure taking into account that

the transfer term comes only from the nearest neighbor. The band dispersion

of such a system is given by

εn,k = −2t
∑
i=x,y,z

cos(aki) ' ta2
∑
i=x,y,z

k2
i + const.. (2.135)

By only keeping the second expression of the expansion, we have the effective

Hamiltonian.

Ĥ =
∑
k,σ

εn,kc
†
k,σck,σ '

(
R

2π

)3 ∫ ∞
−∞

c†k,σ

(
ta2

∑
i=x,y,z

k2
i

)
ck,σ. (2.136)

Rewriting the equation in the field operator, we obtain the following expression:

42 Osaka University



Ĥ =

(
R

2π

)3
1

a3R3

∫ R

0

d3r

∫ R

0

d3r′
∫ ∞
−∞

d3k exp(ik · r)ψ†σ(r)(
ta2

∑
i=x,y,z

k2
i

)
exp(−ik · r′)ψσ(r′)

=
t

a(2π)3

∫ R

0

d3r

∫ R

0

d3r′
∫ ∞
−∞

d3kψ†σ(r)ψσ(r′) exp(ik · r)(
−
∑
i=x,y,z

∇2
r′

)
exp(−ik · r′),

=
t

a(2π)3

∫ R

0

d3r

∫ R

0

d3r′ψ†σ(r)ψσ(r′)

(
−
∑
i=x,y,z

∇2
r′

)
∫ ∞
−∞

d3k exp(ik · (r− r′)),

=
t

a(2π)3

(
2π

a

)3 ∫ R

0

d3r

∫ R

0

d3r′ψ†σ(r)ψσ(r′)

(
−
∑
i=x,y,z

∇2
r′

)
δ(r− r′)

=
t

a(2π)3

(
2π

a

)3

a3

∫ R

0

d3rψ†σ(r)

(
−
∑
i=x,y,z

∇2
r

)
ψσ(r)

=
t

a

∫ R

0

d3rψ†σ(r)

(
−
∑
i=x,y,z

∇2
r

)
ψσ(r)

=

∫ R

0

d3rψ†σ(r)

(
− ~2

2m∗

∑
i=x,y,z

∇2
r

)
ψσ(r),

(2.137)

where m∗ is the effective mass, which can be explicitly described as

m∗ =
~2a

2t
. (2.138)

In general, the effective mass is a tensor; thus, the general effective Hamiltonian

is described as

Ĥ =

∫ R

0

d3r lim
r→r′

∑
i,j=x,y,z

∇iψ
†
σ(r)

(
+

~2

2m∗

)
∇′jψσ(r′). (2.139)

2.3.4 Stoner Model

Ferromagnetism can be described in the strong correlation regime, in which

the electron–electron repulsion is considered. The stoner model is a mean-field

approach in the Hubbard model, in which the exchange splitting in the band
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energy is derived from the Hubbard interaction.

Now, let us consider the Hubbard model with 1 < Ne < N , where Ne and

N denote the number of electrons and the number of atomic sites, respectively.

The Hamiltonian of the Hubbard model can be expressed as follows:

HU = Uni↑ni↓, (2.140)

where U denotes the Hubbard parameter, and ni,σ with σ =↑, ↓ is the oc-

cupation number operator. We can define the occupation number operator

as

niσ ≡ 〈niσ〉+ (niσ − 〈niσ〉)

≡ 〈niσ〉+ δniσ.
(2.141)

By using this definition, the occupation number in Hubbard Hamiltonian can

be expressed as

ni↑ni↓ = (〈ni↑〉+ δni↑)(〈ni↓〉+ δni↓)

= 〈ni↑〉 〈ni↓〉+ 〈ni↑〉 δni↓ + 〈ni↓〉 δni↑ + δni↑δni↓

= 〈ni↑〉 〈ni↓〉+ 〈ni↑〉 (ni↓ − 〈ni↓〉) + 〈ni↓〉 (ni↑ − 〈ni↑〉) + δni↑δni↓

= 〈ni↑〉ni↓ + ni↑ 〈ni↓〉 − 〈ni↑〉 〈ni↓〉+ δni↑δni↓.

(2.142)

The mean-field theory for the Hubbard model is given by neglecting the fluctu-

ation (correlation) part, which is described in the last term. Thus, the Hubbard

Hamiltonian can be written as

Uni↑ni↓ ' U(〈ni↑〉ni↓ + ni↑ 〈ni↓〉 − 〈ni↑〉 〈ni↓〉). (2.143)

Let us introduce electron density and spin density as

n ≡ 〈ni↑〉+ 〈ni↓〉 , (2.144)

m ≡ 〈ni↑〉 − 〈ni↓〉 . (2.145)

By using simple algebra, we can rewrite eq.2.143 as
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Uni↑ni↓ ' U(〈ni↑〉ni↓ + ni↑ 〈ni↓〉 − 〈ni↑〉 〈ni↓〉),

=
U

2
(〈ni↑〉ni↓ + ni↑ 〈ni↓〉) +

U

2
(〈ni↑〉ni↓ + ni↑ 〈ni↓〉)− U 〈ni↑〉 〈ni↓〉

=
U

2
(〈ni↑〉ni↓ + ni↑ 〈ni↓〉+ 〈ni↑〉ni↑ + 〈ni↓〉ni↓)

+
U

2
(〈ni↑〉ni↓ + ni↑ 〈ni↓〉 − 〈ni↑〉ni↑ − 〈ni↓〉ni↓)− U 〈ni↑〉 〈ni↓〉

=
U

2
(〈ni↑〉+ 〈ni↓〉)(ni↑ + ni↓)− (〈ni↑〉 − 〈ni↓〉)(ni↑ − ni↓)

− U 〈ni↑〉 〈ni↓〉

' U

2
n(ni↑ + ni↓)−

U

2
m(ni↑ − ni↓)− U 〈ni↑〉 〈ni↓〉 .

(2.146)

If we consider the Hamiltonian in the matrix form, it can be written as

HU =
∑
i,σ

(
c†i,↑ c†i↓

)(U
2

(n−m) 0

0 U
2

(n+m)

)(
ci,↑

ci↓

)
−U 〈ni↑〉 〈ni↓〉 . (2.147)

Next, by employing the decoupling approach, we have the effective mean-field

Hamiltonian as follows:

HMF =
∑
k,σ

εkc
†
kσckσ + U

∑
i,σ

〈niσ〉niσ − UN. (2.148)

The energy of a mean-field solution defined by

|ΨMF 〉 =
∏
εk<ε↑

c†k↑
∏
εk′<ε↓

c†k↓ (2.149)

with a total spin of Sz = 1
2
mN is given by

E(Sz) = 〈ΨMF |HMF |ΨMF 〉

=
∑
σ

∑
εk<εσ

εk +
1

4
NU(n2 −m2),

(2.150)

where the first term representing the kinetic energy increases when m > 0,

whereas the second interaction term decreases with the exchange for m > 0.
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2.3.5 Dirac Hamiltonian of Graphene

A carbon atom has six electrons with the electronic configuration in the

ground state 1s22s22p2, which means that two electrons fill the inner shell 1s

and the other four occupy the outer shell of the 2s and 2p orbitals. Because

the 2p orbitals, which consist of 2px, 2py, and 2pz, have roughly 4eV higher

energy compared with the 2s orbitals, it is energetically favorable to distribute

2 electrons in the 2s orbital and the other 2 in the 2p orbitals. However, in

the presence of other atoms, it is favorable to excite one electron from the 2s

orbital to the 2p orbitals so that the covalent bond can be formed with the

other atoms.

Graphene is made of carbon atoms. In graphene, the electron in 1s2 is

strongly bounded and regarded as core electrons, whereas the other four are

regarded as valence electrons. Therefore, two electrons fill the inner shell 1s,

whereas the other electrons fill the outer shell of the 2s and 2p orbitals. To

make a covalent bond between carbon atoms in graphene, one electron from the

2s orbital tends to excite to the 2pz orbital. The 2s orbital superposes with the

2px and 2py orbitals and hybridizes to carry out the so-called sp2 hybridization.

Due to this hybridization, the energy level of the 2p orbitals (2px, 2py, and

2pz) are degenerated with the 2s orbital. The hybridization also forms the σ

bonds with other three carbon atoms, in which those bonds have high stability,

leading to the formation of a honeycomb lattice and causing the graphene to

become a strong material. Meanwhile, the 2pz orbital is delocalized on the

whole graphene layer, which allows conduction of an electrical current. The

electronic structure of graphene can be very well described with a tight-binding

approximation.

Figure 2.1 presents the crystal structure of graphene, also known as the

“honeycomb” structure. It is classified as a two-dimensional hexagonal lattice

with two basis atoms per unit cell where, from the figure, the gray shade

indicates the unit cell of graphene, or a two-dimensional hexagonal lattice

with two sublattices, one for each basis atom, customarily called the A and B

sublattices. The two bases are located r0 ≈ 1.42Å apart, which corresponds

to the C–C bond length in graphene. a1 and a2 are the lattice basis vectors.

Both have the same magnitude of a = r0

√
3 ≈ 2.46Å. The third lattice basis

vector, a3, only exists in graphite, with the magnitude of twice the interlayer

spacing between graphene layers c ≈ 3.4Å. In the vector notation, the lattice

basis vectors can be expressed as follows:
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Figure 2.1: Structure crystal of graphene in the real space

a1 = (−3

2
a,

√
3

2
a),

a2 = (
3

2
a,

√
3

2
a),

(2.151)

while the two reciprocal lattice vectors can be expressed as follows:

b1 = (−2π

3a
,

2π√
3a

),

b2 = (
2π

3a
,

2π√
3a

),
(2.152)

The vectors ~τ1, ~τ2, and ~τ3 are the nearest-neighbor vectors, which connect

each site on sublattice A to its three nearest neighbors in sublattice B and vice

versa. In the vector notation, these nearest-neighbor vectors can be expressed

as follows:

~τ1 =
a

2
(−1,

√
3),

~τ2 =
a

2
(−1,−

√
3),

~τ3 = a(1, 0)

(2.153)
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Now, we assume that the electron in the pz orbital of carbon atoms in

graphene can only hop to their nearest neighbors. The carbon atoms in

graphene have three nearest-neigbhors, which are three carbon atoms for both

sublattice A and sublattice B; therefore, the hopping parameters for both sub-

lattices are the same, tij = −t. Using the formalism of the second quantization,

the Hamiltonian for graphene within the tight-binding approximation in the

real space can be written as follows:

Ĥ = −t
∑

<i,j>,σ

(c†A,j+τi,σcB,j,σ + c†B,j+τi,σcA,j,σ). (2.154)

Here, t is the nearest-neighbor hopping parameter (in units of eV), c†A,j+τi,σ
is the creation operator for the 2pz electrons with spin σ on site j + τi in

sublattice A, cA,j,σ is the annihilation operator for 2pz electrons with spin σ on

site j in sublattice A, c†B,j+δi,σ is the creation operator for 2pz electrons with

spin σ on site j + τi in sublattice B, and cB,j,σ is the annihilation operator for

2pz electrons with spin σ on site j in sublattice B.

Because of the periodicity of the graphene crystal structure, equation 2.154

can be Fourier-transformed into the momentum space simplified by using equa-

tion 2.109, 2.110, and 2.112 as follows:

Ĥ = −t
∑
k,σ

(∑
i

eik·τi

)
(c†A,k,σcB,k,σ + c†B,k,σcA,k,σ) (2.155)

By transforming equation 2.155 into matrix form, the tight-binding Hamilto-

nian of graphene becomes

Ĥ =
∑
k,σ

(
c†A,k,σ c†B,k,σ

)( 0 ε∗k
εk 0

)(
cA,k,σ

cB,k,σ

)
(2.156)

where εk is given by

εk = −t
[
eikxa + e−i

kxa
2
−i
√
3ky
2

a + e−i
kx
2
a+i

√
3ky
2

a

]
(2.157)

By diagonalizing the Hamiltonian, we have

H =
∑
k,σ

(E−k c
†
vkσcvkσ + E+

k c
†
ckσcckσ) (2.158)

with the eigenvalues:
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E±k = ±t

√
3 + 2 cos

(
3

2
kxa+

√
3

2
kya

)
+ 2 cos

(
3

2
kxa−

√
3

2
kya

)
+ 2 cos (

√
3kya).

(2.159)

Thus, we have the conduction band E+ and the valence band E− where at

each k-point, we only have two bands.

Two special high-symmetry points, K and K′, shown in fig.2.1, can be

mathematically written as follows:

K =
2

3
b2 −

1

3
b1 =

(
2π

3a
,

2π

3
√

3a

)
, (2.160)

K′ =
1

3
b2 −

2

3
b1 =

(
2π

3a
,− 2π

3
√

3a

)
. (2.161)

For k = K + k′ with |k′| � π
a
,

E±k = ±t

√
3 + 2 cos

(
3

2
kxa+

√
3

2
kya

)
+ 2 cos

(
3

2
kxa−

√
3

2
kya

)
+ 2 cos (

√
3kya)

= ±t
√

9

4
(k′x)

2a2 +
9

4
(k′y)

2a2

= ±3

2
t|k′|a.

(2.162)

A similar assumption is also applicable for the K′ point. Meanwhile, for k = K

and k = K′, E±K = E±
K′

= 0, showing that there is no gap at the K and K′.

These results indicate that the energy bands form two circular cones around

these two k-points, connected one with the other at their extreme. This energy

band is called the Dirac cone. Due to these cones, the electrons in the graphene

behave in a peculiar manner, and they all have the same velocity and absolutely

no inertia. It is as if they have no mass, similar to what the theory of relativity

predicts for a particle traveling at the speed of light, except that the velocity

is about 1/300 of the light velocity.

Now, we want to take the continuum limit into graphene and make an

effective continuum Hamiltonian from it. At first, let us start from eq.2.157,

where for k = K + k′ with |k′| � π
a
; we have

49 Osaka University



Figure 2.2: energy bands of graphene

−1

t
εk = exp

(
ia

(
2π

3a
+ k′x

))
+ exp

(
− i
{
a

2

(
2π

3a
+ k′x

)
+

√
3a

2

(
2π

3
√

3a
+ k′y

)})
+ exp

(
− i
{
a

2

(
2π

3a
+ k′x

)
−
√

3a

2

(
2π

3
√

3a
+ k′y

)})
= −3

2

1

i
ω(k′x − k′y).

(2.163)

Here, we have ω = exp(2/pii/3). Next, let us introduce a gauge trans-

formation as c†B,k,σ = ω−1c†B,k,σ from which we define another operator d†a,η,σ

as

d†A,R,σ(k′) = c†A,K+k,σ, d†B,R,σ(k′) = c†B,K+k,σ

d†A,L,σ(k′) = c†A,K+k,σ, d†B,L,σ(k′) = c†B,K+k,σ

(2.164)

where from here, we have two flavors; R (L) denotes the k near K (K′).

Because we can make k′ a continuum variable, we can assume that d†a,η,σ is a

continuum Dirac field. From it, we can have an effective Hamiltonian density

H = H/(the number of unit cells) for |k′| � π
a

as
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H =
3t

2i

∑
η,σ

∫
d2k

(2π2)

(
d†A,η,σ(k) d†B,η,σ(k)

)( 0 kx − iky
kx − iky 0

)(
dA,η,σ(k)

dB,η,σ(k)

)
,

(2.165)

where η = R,L denotes the flavor. From the equation, we have the k-

dependent submatrix of the Hamiltonian as

Hk =

(
0 kx − iky

kx + iky 0

)
= ~σ · k. (2.166)

2.3.6 Bandgap Opening on the Graphene Dirac Cone

From the previous section, the Dirac cone of graphene comes from the

chiral symmetry of graphene in which the equipotential between carbon atoms

in sublattice A and sublattice B is preserved. In the presence of potential

difference 2∆ between the A and B sites, the chiral symmetry is broken, and

the Hamiltonian becomes

Hk =

(
∆ kx − iky

kx + iky −∆

)
(2.167)

This kind of potential asymmetry can arise when graphene grows on the top

of a certain substrate where the covalent bond is formed between the graphene

and the substrate. One of the cases is when graphene grown on a SiC substrate

resulting band gap of 250 meV [62]. By using a similar approach as above,

taking the k-points near to the K and K′ points, the energy band becomes

E±k = ±
√∣∣k2

∣∣+ ∆2, (2.168)

resulting mass gap opens in the Dirac cone.

In the case of graphene on the top of the magnetic substrate such as nickel

(Ni), the covalent bonds are formed between the dz2 orbital of Ni atoms with

the pz orbital of carbon atoms either in sublattice A or sublattice B. This

covalent bond leads to the potential asymmetry between sublattices A and B,

opening the mass gap of the graphene Dirac cone. Furthermore, due to the

covalent bonds, the charge transfer occurs from the Ni to C atoms, inducing a

magnetic moment on the carbon atom. The magnetic moment of the C atoms

that form a covalent bond with the Ni atoms have opposite direction with the

magnetic moment of the Ni atoms. It originates from the interaction between
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Figure 2.3: Band structure of graphene on the top Ni substrate.

the dz2 orbital of the Ni atoms and the pz orbital of the C atoms, resulting

in the formation of the bonding and antibonding states. In the case of the

majority-spin channel, the bonding and antibonding states are occupied due to

the Stoner gap, and the net effect would be an energy cost. However, the filled

dz2 orbital gains little energy by repelling the empty pz orbital of the C atoms,

resulting in an antiferromagnetism configuration [63]. The magnetic moment

in the carbon atom sublattice A is in the opposite direction of sublattice B

due to the half-filled pz orbital and Pauli’s exclusion principle. This rule is

often found in organic molecules in sp2 hybridization or magnetic alternant

hydrocarbon systems.

The potential difference ∆ in eq.2.167 for the case of graphene growing

on the top of a magnetic substrate comes from the covalent bond and the

opposite direction of the induced magnetic moment on the carbon atoms in

sublattices A and B. Let us introduce the addition of potential energy due to

the bond formation in one of the sublattices as V . On the other hand, we recall

the Stoner model Hamiltonian to describe the potential difference due to the

induced magnetic moment on graphene. Thus, the total effective Hamiltonian

can be described as follows:
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Hk,σ =


VA↑ + I 〈nA↓〉 kx − iky 0 0

kx + iky I 〈nB↓〉 0 0

0 0 VA↓ + I 〈nA↑〉 kx − iky
0 0 kx − iky I 〈nB↑〉

 , (2.169)

where I is a Stoner interatomic exchange parameter. Here, we assume that

the covalent bond is formed between the C atoms in the sublattice A with

the Ni atoms. Both contributions on the potential difference ∆ leading to the

opening mass gap of the Dirac cone and resulting spin-polarized band structure

as shown in figure.2.3. In this thesis, we will present a study on the control of

the opening of mass gap in the Dirac cone and preservation of the Dirac cone

of graphene in graphene-based magnetic junction.
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Chapter 3

COMPUTATIONAL

APPROACHES

3.1 Theoretical Framework

In this thesis, we propose a way to control the opening and closing of

graphene’s mass-gapped Dirac cone (MGDC). The first graphene-based mag-

netic junction proposed is Ni/graphene/Ni nano-spin-valve-structure. This

proposal comes from the fact discussed in the previous section where the

MGDC of graphene is open when graphene is placed on the Ni substrate

due to the formation of the covalent bond by pd-hybridization of pz-orbital

of C atoms and dz2-orbital of Ni atoms. The pd-hybridization occurs between

Ni atoms and C atoms of either sublattice A or B leading to the potential

difference between sublattice A and B, resulting in broken chiral symmetry

of graphene. Thus, if a Ni/graphene/Ni nano-spin-valve structure where Ni

atoms of the upper and lower Ni slabs at the interfaces are hybridized with

different graphene sublattices is considered, the chiral symmetry could be pre-

served. In other words, Ni atoms from the lower Ni(111) slab hybridized with

C atoms in sublattice A (i.e., CA), and Ni atoms from the upper Ni(111) slab

hybridized with C atoms in sublattice B (i.e., CB), thus no potential differ-

ence between sublattice A and B which comes from chemical bonding to be

expected. Although the C atoms of graphene bond with the Ni atoms, this

unique hybridization preserves the equipotential between sublattices A and B.

Therefore, we can modify eq.2.169 as follows
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Hk,σ =


VA↑ + I 〈nA↓〉 kx − iky 0 0

kx + iky VB↑ + I 〈nB↓〉 0 0

0 0 VA↓ + I 〈nA↑〉 kx − iky
0 0 kx + iky VB↓ + I 〈nB↑〉

 ,

(3.1)

where VAσ = VBσ. Since, in the Gr-Ni system, the induced magnetic moment

appears on graphene due to charge transfer from Ni atoms to C atoms, we ex-

pect similar phenomena for our case. However, here we have two ferromagnetic

slabs, which are upper and lower Ni slabs, where two different magnetic align-

ments can occur between upper and lower Ni, i.e., parallel and antiparallel

alignments.

In the case of the antiparallel configuration (APC), the induced magnetic

moment occurs in CA and CB with the alignment corresponding to Ni slabs

with which the C atoms form bonding. For the example, the lower (upper) Ni

slab has the upward (downward) direction of magnetic alignment and forms

a covalent bond with C atoms of sublattice A (B). Thus, CA and CB have

magnetic moments, which are the same in their magnitude but in the opposite

direction. Therefore, for antiparallel alignment, we have the following relation:

mA = −mB → 〈nA↓〉 = 〈nB↑〉 > 〈nA↑〉 = 〈nB↓〉 . (3.2)

The inequality above implies the broken chiral symmetry of graphene. Thus,

opening MGDC of graphene is to be expected. However, the band dispersion

of graphene is not spin-polarized due to an equivalent amount of the moment

size for both upward and downward directions.

Meanwhile, in the case of parallel alignment, both upper and lower Ni slabs

have the same direction of magnetic alignment. Thus, by supposing both upper

and lower Ni slabs have magnetic alignment in the upward direction, we have

the following relation:

mA = mB → 〈nA↓〉 = 〈nB↓〉 > 〈nA↑〉 = 〈nB↑〉 . (3.3)

The inequality above implies perseverance of the chiral symmetry of graphene.

However, the Dirac cone of graphene is spin-polarized due to the net spin polar-

ization. Thus, a closing graphene’s MGDC with spin-polarized bandstructure

is expected.
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A similar explanation is expected for Ni/hBN-graphene-hBN/Ni and Ni/X-

graphene-X/Ni (with X = H, O, P, S, F, N) nano-spin-valve structure. How-

ever, chemical bonding was not created between Ni and graphene for those

two nano-spin-valve structures. Therefore, instead of inducing the magnetic

moment of graphene through charge transfer as proposed in Ni/graphene/Ni,

the induced magnetic moment is introduced through the magnetic proximity

effect. The surface state of dz2-orbital of Ni atoms at the interface works on

the pz-orbital of C atoms or π-orbital of graphene. By changing the potential

which comes from chemical bonding Vησ into proximity effect of Ni surface

state acts on C atoms νησ, the matrix in Eq. 3.1 can be rewritten as follows:

Hk,σ =


νA↑ + I 〈nA↓〉 kx − iky 0 0

kx + iky νB↑ + I 〈nB↓〉 0 0

0 0 νA↓ + I 〈nA↑〉 kx − iky
0 0 kx + iky νB↓ + I 〈nB↑〉

 ,

(3.4)

represents the effective Hamiltonian of graphene in Ni/hBN-graphene-hBN/Ni

and Ni/X-gr-X/Ni nano-spin-valve structure.

Transmission probability calculation was done on Ni/graphene/Ni nano-

spin-valve structure to understand the efficiency of controllable graphene’s

MGDC to its IMR ratio. The spin-dependent current was calculated using the

Landauer-Buttiker given by:

I↑(↓) =
e

h

∫ ∞
min∞

T ↑(↓)(E)
[
fL(E, µ)− fR(E, µ)

]
dE (3.5)

where fL(E, µ)
(
fR(E, µ)

)
is the right (left) moving electron injected from the

left (right) lead in the form of the Fermi–Dirac function. µL
(
µR
)

denotes the

chemical potentials of the left (right) electrodes. Since zero-bias voltage was

considered, thus µL = µR = EF . In addition, the ballistic transmission T as

a function of energy E is described with respect to the Green’s function form

as

T ↑(↓)(E) = Tr
{[

ΓLG
RΓRG

A
}

(3.6)

where ΓL(ΓR)is the coupling matrix of the left (right) electrode, GR(GA) is the

retarded (advanced) Green’s functions of the central region.

On the other hand, for the case of calculation of transmission probability
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Figure 3.1: Model crystal structures of Ni/graphene/Ni systems. In the left panel
(a), the top view of the graphene is depicted. While the proposed model crystal
structures of the 3-layer Ni/graphene/3-layer Ni are shown in the (b) AA-stacking
structure, (c) BA-stacking structure, and (d) B’A-stacking structure, where the
stacking sequences from the graphene to the upper Ni slab are different from one
another.

when CPP geometry is considered in chapter 6, the transmission matrix is

described as follows:

T (E) =
∑
k‖

∑
i,j

Ti,j(k‖, E), (3.7)

where Ti,j(k‖, E) is the probability of electrons with energy E and momentum

k to move from the i-th Bloch state to the j-th Bloch state. T (E) is obtained

by summing over the 2D Brillouin zone and all incoming-outcoming states.

Finally, the MR ratio can be calculated by including the difference between

the current in the APC and PC states and then dividing it by the current in

the APC state as follows:

MR ratio =
IPC − IAPC

IAPC
× 100%. (3.8)

The computational approach and the structure model for each spin-valve

structure will be explained in detail in the next section. The parameter and

configuration for calculating transmission probability will also be introduced

in the next section.
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3.2 Model and Computational Strategy

3.2.1 Model of Ni/graphene/Ni spin-valve structure

The DFT-spin-GGA calculations were done using the Quantum

ESPRESSO package [64]. Previous study reported that the original Perdew–

Burke–Ernzerhof (PBE) [65] functional determines wrongly the interlayer dis-

tance between the graphene and the nickel layer at the interfaces in the most

stable structure of Ni/graphene system [66]. Therefore, the revised Perdew–

Burke–Ernzerhof functional, called the PBEsol [67] functional within the gen-

eralized gradient approximation (GGA), was used due to its consistency with

experimental results in determining the interlayer distance. Ultrasoft pseu-

dopotentials [61] were used to describe the electron–ion interaction. A kinetic

energy cutoff of 50 Ry was used for wavefunctions to obtain a good convergence

calculation. Since an appropriate k-point grid determined the convergence of

the total energy calculation in this system, a k-point grid of 24×24×1 was

used for all calculations.

The adsorption of the graphene layer on the top of Ni(111) has four pos-

sible structural stacking arrangements: (i) top/fcc-stacking–carbon atoms of

graphene are placed on top of the first and third layers of Ni(111), (ii) top/hcp

stacking–carbon atoms of graphene are placed on top of the first and second

layers of Ni(111), (iii) hollow-stacking–carbon atoms of graphene are placed on

top of the second and third layers of Ni(111), while the hollow site of graphene

is placed on top of the first layer of Ni(111), (iv) bridge-stacking–bridge-site

between two carbon atoms is placed on top of the first layer of Ni(111) [68,69].

The consistency of the PBEsol functional in determining the most sta-

ble stacking arrangement and the interlayer distance between graphene and

Ni(111) slab was verified by calculating the total energy of the Ni/graphene

system using the four different stacking arrangements and compare the inter-

layer distance of the lowest total energy structure with previous experimental

and theoretical studies. The result demonstrated that the top/fcc-stacking was

the lowest energy state in comparison with the top/hcp-, hollow-, and bridge-

stacking by 25.9, 122.0, and 226.4 meV, respectively. Meanwhile, the interlayer

distance between graphene and Ni(111) slab of top/fcc-stacking was 2.08 Å.

This result is in agreement with previous experimental and theoretical studies

which reported top/fcc-stacking as the most stable structure with interlayer

distance ∼ 0.21 nm [66,68–70]. However, although the top/fcc-stacking is the

most preferable structure, the difference between top/fcc and top/hcp is small
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enough to allow both configurations to occur.

Furthermore, the necessity of using van der Walls interaction in the cal-

culation was verified by calculating the interlayer distance of the most stable

structure, i.e., top/fcc-stacking, and comparing it with the calculation done

without the inclusion of the van der Walls interaction. It was found that the

interlayer distance difference was only 0.02 Å, where the interlayer distances

with the van der Walls interaction was 2.10 Å. Although the interlayer dis-

tance with the inclusion of the van der Walls interaction was closest to the

previous experimental studies, the small interlayer distance difference implies

that the bonding between the nickel slab and graphene mainly comes from pd

hybridization. Therefore, the contribution of the van der Walls interaction is

omitted in this study, and the main focus is placed on the covalent bond that

comes from the pd hybridization of nickel atoms with carbon atoms.

The precise stacking arrangement of the Ni/graphene/Ni system has not

yet been fully understood; the stacking of the Ni overlayer (slab) above the

graphene must be verified. Since a relevant atomic configuration should usually

be energetically lower than the others, this study proposes three different ar-

rangements of structural stacking for the upper part of the Ni/graphene inter-

face, while top/fcc-stacking is determined for the lower part of the Ni/graphene

by considering the most stable structural arrangement as shown in Fig. 3.1.

The three different stacking arrangements are (i) AA-stacking, for which the

first (third) layer of the upper Ni slab is placed on top of the A-site (B-site)

carbon atoms of graphene, (ii) B’A-stacking, for which the first (second) layer

of the upper Ni slab is placed on top of the B-site (A-site) carbon atoms of

graphene, and (iii) BA-stacking, for which the second (third) layer of the upper

Ni slab is placed on top of the B-site (A-site) carbon atoms of graphene.

In the model structure, a vacuum space of at least 30 Å was inserted

to avoid spurious interactions between the slab replicas. At first, the case

of a three-layer nickel sandwich graphene layer was investigated. Then, the

thickness of the nickel layers was varied from 1 to 6. To understand the mag-

netic configuration of the system, two initial magnetic configurations were set

between the two nickel slabs: (i) anti-parallel configuration, for which the to-

tal magnetic moment of the upper and lower nickel slabs have an anti-parallel

alignment, and (ii) parallel configuration, for which the total magnetic moment

of the upper and lower nickel slabs have a parallel alignment. The total ener-

gies of the in-plane and out-of-plane magnetization directions were compared

by adopting the noncollinear magnetism calculation with spin–orbit interac-
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Figure 3.2: Proposed system of graphene where the middle part is sandwiched by
Ni(111) nanostructures. The most stable stacking arrangement from our previous
study was considered24. The graphene is used as a buffer and electrode.

tion terms. The in-plane magnetization direction was found to have an energy

lower by only 1 meV. However, since this study considers the functionality of

in-plane conductance switching of graphene depending on the external mag-

netic field, the out-of-plane magnetization direction was chosen so that the

anti-parallel and parallel of the Ni slabs could be controlled easily.

3.2.2 Model of Ni/graphene/Ni nano-spin-valve struc-

ture for IMR Calculation

For the calculation of in-plane conductance of graphene which is repre-

sented by transmission probability, Ni(111) nanostructures with three Ni atoms

layer thickness and an atomic-scale width of ∼ 12.08 Å was considered, as

shown in Figure 3.2. The three Ni atoms layer thickness of Ni (111) nanostruc-

tures is considered because later in chapter 4, it suggests that three Ni atoms

layer thickness is representable enough for thicker Ni(111) nanostructure by

exhibiting same physics at the interface. The finite size width of ∼ 12.08 Å for

Ni(111) nanostructures was considered for understanding the effectiveness of

the in-plane magnetoresistance of graphene created from the Ni/graphene/Ni

magnetic junctions. Wider Ni(111) nanostructure, e.g., width in nanometer
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scale, is expected to exhibit high performance. Here, graphene was used as

the buffer layer and electrodes in the calculation. The most stable stacking

arrangement which has determined later in chapter 4 is considered, where Ni

atoms at the interfaces of the lower and upper Ni(111) slabs hybridized with C

atoms in sublattices A and B, respectively. Both APC and PC were considered

for Ni(111) nanostructures.

A spin-polarized plane-wave-based DFT calculations were performed using

the Quantum ESPRESSO package [64] to obtain the structural equilibrium and

spin-charge density properties of the proposed system. Furthermore, we de-

scribed the electron–ion interaction using a revised Perdew–Burke–Ernzerhof

functional for a densely packed solid surface (i.e., PBESol functional) [67] and

ultrasoft pseudopotentials [61] within the generalized gradient approximation

(GGA). From the result of studies in chapter 4, the PBESol pseudopotential

is essential to successfully achieve the interlayer distance between Ni slabs and

graphene, which is consistent regardless the thickness of Ni slabs and agrees

with experimental study. This interlayer distance at the interface is important

because it determine the electronic state at the interface. The atomic posi-

tions were relaxed, with a total force tolerance of 0.001 eV/Å. A 45 × 45 × 1

Monkhorst–Pack k-mesh was used for calculations. First-principles quantum

transport calculations, which coupled DFT with the nonequilibrium Green’s

function, were performed using the Siesta and Transiesta packages [71–74] to

calculate the transport properties at a zero-bias voltage.

For the transmission probability calculation, the PBESol functional and

Troullier–Martins pseudopotential [75] were used within GGA. A double-zeta

plus polarization basis set [76–78] was employed, and the temperature was set

to 300 K. A perpendicular k-point of 1 × 901 with respect to the transmis-

sion direction was considered to obtain a good accuracy for the transmission

probability.

3.2.3 Model of Ni/nhBN/Ni and Ni/hBN–graphene–

hBN/Ni magnetic junctions

After successfully controlling the graphene’s MGDC and getting colossal

IMR ratio as discussed later in chapter 4 and 5, respectively, optimization to

create a successful design of a graphene-based spin-valve structure spintronics

device need to be performed. The optimization was needed for realization of

the actual device and for ensuring a performance comparable to that predicted

in this theoretical study. The chemical bonding between the Ni slabs and
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Figure 3.3: Side view of the supercell of Ni(111)/3hBN/Ni(111) (as representa-
tive of few-layer hBN MTJ) and Ni(111)/hBN-Gr-hBN/Ni(111) used to represent
the scattering region and lead corresponding to model calculation for transmission
probability calculation.

graphene in Ni/graphene/Ni needs to be perfect to get control on graphene’s

MGDC. This perfect surface can be realized experimentally; however, it is rel-

atively difficult. Thus, to avoid a complete change in the IMR of graphene

due to a defect at the Ni/graphene interface, a barrier is necessary to maintain

the graphene Dirac cone, although some defect occurs on the Ni surface. Fur-

thermore, the barrier will also optimize the controllability of graphene’s Fermi

energy.

For the above purpose, hBN layer can be introduced between the graphene

layer and Ni slabs. However, when the hBN layer is introduced between Ni

slabs and graphene, the controllable induced magnetic moment on graphene

replaced from through charge transfer to through magnetic proximity effect.

Thus, a theoretical study is conducted to understand the origin of the magnetic

proximity effect. At first, Ni/nhBN/Ni magnetic junctions were investigated

with n = 2, 3, 4, and 5. After that, the investigation was done on Ni/hBN-

graphene-hBN/Ni magnetic junction.

For the investigation, spin-polarized plane wave-based density functional

theory (DFT) calculations were performed using the Quantum ESPRESSO

package [64, 79]. A revised Perdew-Burke-Ernzerhof (PBE) functional for a
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densely packed solid surface, called the PBESol functional [67], as well as ul-

trasoft pseudopotentials [61], within the generalized gradient approximation

(GGA) were used to describe the electron-ion interaction. A kinetic energy

cut-off of 50 Ry was used for the wavefunctions to reach a good conver-

gence calculation. Since adopting an appropriate k-point grid can result in

the convergence of the total energy calculation in this system, a k-point grid

of 24×24×1 was chosen for all calculations. Furthermore, the effect of the van

der Waals interactions on the electronic structures was included by applying

the most recent and accurate DFT-D3 corrections [80]. Taking into account

the van der Waals interactions in the DFT calculations, the average interlayer

distance of Ni-hBN and hBN-hBN are 2.05 Å and 3.13 Å, respectively. These

results are close to experimental values, which is 1.87 ± 0.12 Å for Ni-hBN

distance in hBN/Ni system [81] and 3.33 Å for hBN-hBN distance in hBN

bulk [82].

The ballistic transmission probability calculations were performed using

the Landauer-Buttiker formalism [83, 84]. The left lead, right lead, and scat-

terer regions were considered in the model calculation, as shown in Fig. 3.3

Ni(111) was considered for the left and right leads to reduce the computa-

tional cost without neglecting any important physics. However, the use of

Au(111) as a lead carrying normal input/output currents for the Ni/nhBN/Ni

and Ni/hBN-Gr-hBN/Ni structure would be expected in an actual device. The

transmission probability calculations were performed using the PWCOND [85]

module of the Quantum ESPRESSO software. A perpendicular k-point of 50

× 50 with respect to the transmission direction was considered to obtain good

accuracy of the transmission probability. The PWCOND module calculates

the transmission probability at zero temperature.

3.2.4 Model of Ni/hBN-graphene-hBN/Ni spin-valve

structure for investigating the possibility on con-

trolling MGDC

After understanding the origin of proximity effect on the 2D materials

tunnel barrier, further study was performed to understand the effectivity of

proximity effect on controlling MGDC of graphene. Fig. 3.4 shows a graphene

layer sandwiched with hBN and followed by Ni(111) slabs in this theoretical

study. The most stable stacking configuration between Ni(111) and hBN was

considered, with Ni atoms at the interface hybridizing with N atoms of hBN
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Figure 3.4: The proposed twelve stacking configuration of Ni(111)/hBN-Gr-
hBN/Ni(111) with the stacking arrangement name.

and Ni (111) having a top-FCC stacking arrangement with the nearest Ni layer

to hBN placed directly on the N-atoms site, the next Ni layer (second nearest

Ni to hBN) placed on the hollow site of hBN, and the farthest Ni layer placed

on the B-atoms site. As shown in Fig. 3.4, 12 possible stacking configurations

between hBN layers and graphene are considered. C1 and C2 represent the

carbon atoms in sublattices A and B, respectively. Here, the aC1x–bC2y in

Fig. 3.4 is the formula to explain the stacking configuration between the upper

hBN, graphene, and lower hBN. The a (x) and b (y) symbols represent the

upper (lower) hBN site, which is located directly above (below) C1 and C2,

respectively. The H, B, and N represent the hollow, Boron, and Nitrogen site of

hBN. For example, HC1B-BC2H means the upper (lower) hBN has the hollow

site (B atoms) of hBN right above (below) the C1 and B atoms (hollow site)

right above (below) the C2. Both APC and PC were considered for the upper

and lower Ni(111) slabs.

The spin-polarized DFT calculations were performed using the SIESTA

package [71, 72] to obtain the structural equilibrium, spin-charge density

mapping, magnetic properties, band structures and local density of states

(LDOS). Furthermore, we described the electron-ion interaction using a revised
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Perdew–Burke–Ernzerhof (PBE) functional for a densely packed solid sur-

face (i.e., PBESol functional) [67] and Troullier–Martins pseudopotential [75]

within the generalized gradient approximation. A double-zeta and polariza-

tion basis set [76–78] was employed. The atomic positions were relaxed, with

a force tolerance of 0.001 eV/Å. A 121 × 121 × 1 Monkhorst–Pack k-mesh

was used for calculations. Mesh Cut-off of 800 Ry was used during the calcula-

tions. Furthermore, the van der Waals interactions between hBN and graphene

is included by applying a dispersion potential of the Grimme type [86]
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Chapter 4

Controllable Mass-gapped

Dirac-cone of Graphene in

Ni/Graphene/Ni Magnetic

Junctions

4.1 Introduction

This chapter presents a theoretical study on the possible control of graphene

MGDC in Ni/graphene/Ni nano-spin-valve structure through the magnetic

alignment control, i.e., anti-parallel and parallel configuration, between the up-

per and lower Ni slabs. The controllability of the spin-dependent Dirac states

in this hybrid structure was studied through graphene’s magnetic properties

and electronic structure. The spin-dependent charge density and magnetic

moment of a Ni/graphene/Ni nanostructure and a band structure calculation

were done to show the change in the Dirac cone characteristic.

4.2 Total energy and magnetic properties

The total energies of the Ni/graphene/Ni system for each of the stack-

ing arrangements were considered in order to understand which of the three

different stacking arrangements was the most energetically stable. Table 4.1

shows the total energy difference of 3-layer Ni/graphene/3-layer Ni relative to

the lowest energy state for AA-stacking, B’A-stacking, and BA-stacking in the

anti-parallel and parallel configurations. Among the three different stacking ar-

rangements, B’A-stacking has the highest energy, both in the anti-parallel and
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Table 4.1: Total energy difference for various stacking arrangements of
3Ni/graphene/3Ni. The total energy is expressed in meV relative to the ground
state (highlighted in bold font). APC(PC) refers to the antiparallel (parallel) mag-
netic alignments between the upper and lower nickel slabs

Magnetic Total Energy (meV)
Configuration AA-stacking B’A-stacking BA-stacking

APC 70.1 156.4 0.0
PC 75.6 154.0 10.5

parallel spin configurations. The highest energy state comes from the weak-

ened bonds of the graphene layer with an upper Ni(111) slab. The weakened

bond can be verified by observing the interlayer distance of the B’A stacking

structure shown in Table 4.2.

Previous experimental and theoretical studies of graphene growth on top of

Ni(111) slabs suggest that the bonding occurs between an A-site carbon atom

and the nickel atom closest to it. Indeed, the interlayer distance from the

graphene to the nearest Ni(111) slab was concluded to be ∼ 0.21 nm [68–70].

In the case of the 3-layer Ni/graphene/3-layer Ni nanostructure in the B’A-

stacking arrangement, the distance between the graphene layer and upper

Ni(111) slabs becomes 3.28Å (or 3.26Å) for the anti-parallel (parallel) con-

figuration, although the interlayer distance between the graphene layer and

Ni(111) underlayer is 2.07 Å. This fact also indicates an anti-bonding charac-

teristic because of the considerable increase in the interlayer distance from the

typical distance of approximately 2.1Å.

Furthermore, by comparing the bonding characteristics of the graphene

and upper Ni(111) slabs in both the AA-stacking and BA-stacking structures

with the anti-bonding nature of the B’A-stacking structure, it can be inferred

that the construction of pd hybridization and chemical bonding between the

carbon atoms in the graphene layer with the nickel atoms at the interface

mainly come from the hybridization of the dz2 orbital of nickel atoms with the

pz orbital of carbon atoms. Therefore, stacking the nickel layer on top of either

sublattice A or sublattice B of carbon atoms in the graphene produces a stable

Ni/graphene/Ni nanostructure.

Comparing the stable structures of the 3-layer Ni/graphene/3-layer Ni, it

was found that BA-stacking has a slightly smaller interlayer distance than AA-

stacking, indicating that BA-stacking has a stronger pd hybridization than

AA-stacking. This difference shows that BA-stacking has the lowest energy

among the three stacking arrangements. The strong pd hybridization between
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Table 4.2: Interlayer distance between the Ni(111) slabs with graphene for three dif-
ferent stacking arrangements. APC(PC) refers to the antiparallel (parallel) magnetic
alignment between the upper and lower nickel slabs

Interlayer distance (Å)
Layer AA-stacking B’A-stacking BA-stacking

APC PC APC PC APC PC
Graphene-Upper Ni slab 2.18 2.20 3.28 3.26 2.07 2.07
Graphene-Lower Ni slab 2.18 2.20 2.07 2.07 2.07 2.07

a carbon atom of the graphene layer with the upper or lower Ni(111) layer at

the interface of BA-stacking leads to a charge transfer from the nickel layers

to the graphene.

Further investigation on the most stable structure, BA-stacking, was done

by comparing two possible structure arrangements of the second and third layer

namely, B(top-hcp)A-stacking–the second (third) layer of upper Ni(111) slab

on top of hollow- (B-) site of graphene (the initial proposed structure of BA-

stacking) and B(top-fcc)A-stacking–the second (third) layer of upper Ni(111)

slab on the top of B- (hollow-) site of graphene. The result showed that

B(top/hcp)A-stacking has higher energy by 13.5 meV compare to B(top/fcc)

stacking. Although B(top/fcc) stacking has lower energy than B(top/hcp)A-

stacking, the difference was considerably small enough to allow both config-

urations to occur. It implied that the small different might not change the

physical properties of the whole system.

Within the BA-stacking structure, the total energy of the anti-parallel con-

figuration was lower than that of the parallel configuration by 10.5 meV. The

anti-parallel configuration, which has a more stable energy state than the par-

allel configuration, is in agreement with experimental data reported by Mandal

et al. [39]. This total energy difference mainly comes from the magnetic con-

figuration within the graphene layer.

Spin–charge density mapping was created to understand the spin orienta-

tion of each atom in the 3-layer Ni/graphene/3-layer Ni. In Fig.4.1, the AFM

configuration of the carbon atoms within the graphene layer, when the mag-

netic configuration between the upper and lower nickel slabs was anti-parallel,

is shown. When the magnetic configuration between the upper and lower nickel

slabs is parallel, a ferromagnetic (FM) configuration, which has a higher energy

than AFM configuration, occurs within the graphene layer. AFM configura-

tion is realized as the most stable state, except when an external magnetic

field stabilizes FM configuration.
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Figure 4.1: Spin-charge density of the 3-layer Ni/graphene/3-layer Ni in the (a)
anti-parallel configuration (isovalue=0.00170) and (b) parallel configuration (iso-
value=0.00168). The charge density in red represents spin-up electron density and
that in blue represents spin-down electron density.

The different magnetic configurations of the carbon atoms in the sublat-

tices A and B within the graphene layer comes from the magnetic interaction

between the Ni layer and graphene. Carbon atoms in graphene tend to have

an anti-parallel spin configuration with the neighboring nickel atoms. This

rule is the most relevant rule for the energetics of Ni/graphene/Ni structures.

As a result of the spin anti-parallel, i.e., locally anti-ferromagnetic, alignment

between each pair of Ni and carbon atoms, AFM (FM) configurations in the

graphene plane happens for the anti-parallel (parallel) configuration of Ni slabs.

The local AFM configuration between a carbon atom and nickel atom will be

considered in the subsequent sections by analyzing the hybridization nature of

electron orbitals.

In the present model, the upper Ni(111) slab was fixed in a spin-up config-

uration, whereas the lower slab could be controlled to have either a spin-up or

spin-down configuration. The nickel atoms on the upper Ni/graphene interface

hybridized with carbon atoms on sublattice B, and since the upper Ni(111) slab

was fixed to have a spin-up alignment, the carbon atoms on the sublattice B of

graphene had the spin-down configuration. By contrast, the lower Ni(111) slab

was hybridized with carbon atoms in the sublattice A. Since the lower Ni(111)

slab can be controlled between the spin-up and spin-down configurations, the

induced magnetic moment of the carbon atoms in sublattice A can also be
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Table 4.3: Magnetic moment for each atom of 3Ni/graphene/3Ni. AFM(FM) refers
to the antiparallel (parallel) magnetic alignment between the upper and lower nickel
slabs.

Atom Magnetic Moment (µB)
AFM configuration FM configuration

C (sub-lattice A) 0.0126 -0.0048
C (sub-lattice B) -0.0128 -0.0047
Ni(top)-first layer 0.2898 0.2645

Ni(top)-second layer 0.6150 0.5958
Ni(top)-third layer 0.6785 0.6732

Ni(bottom)-first layer -0.2770 0.2815
Ni(bottom)-second layer -0.6213 0.6050
Ni(bottom)-third layer -0.6763 0.6670

controlled.

The carbon atoms of sublattices A and B in graphene tend to have an

antiferromagnetic (AFM) configuration due to the half-filled pz orbital and

Pauli’s exclusion principle. This rule is often found in organic molecules in

sp2 hybridization or magnetic alternant hydro-carbon systems [87, 88]. The

spin configuration of AFM is often considered as a realization of the spin-

density-wave. Due to the nature of graphene, the carbon atoms of another

sublattice will have the opposite alignment with the carbon atoms hybridizing

with the nickel atoms. Therefore, the lowest energy state was found to be the

anti-parallel configuration.

Interestingly, in the parallel configuration, FM spin alignment appears

within the graphene layer. However, the appearance of the FM configura-

tion within graphene, where the spin moment has the opposite direction to

the Ni layers, was unexpected. In the case of the Ni/graphene interface, i.e.,

graphene on a Ni substrate, carbon atoms are placed in two different sites, A

and B, where one of the sites were hybridized with Ni layer and the another not.

The magnetic moment of carbon atoms that were not hybridized with Ni layer,

which has a parallel spin to the nickel slab, was higher than the hybridized one,

where the antiferromagnetic configuration in graphene appears as a whole. It

implied that the Ni(111) slab and unhybridized carbon atoms had a stronger

magnetic interaction. Oppositely, the FM configuration within graphene of

Ni/graphene/Ni system implied another conclusion that the induced magnetic

moment at the hybridized carbon atoms had a stronger magnetic interaction

with the Ni(111) slabs than the unhybridized carbon atom. It was because the

direction of the magnetic moment was reversed in the unhybridized carbon
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Table 4.4: Total energy differences between various numbers of the nickel layer in
the BA-stacking arrangement. The total energy is expressed in meV relative to the
ground state (highlighted in bold font). APC(PC) refers to the antiparallel (parallel)
magnetic alignment between the upper and lower nickel slabs.

Number of Nickel Layers Total Energy (meV)
APC PC

1 total energy same (non-magnetic)
2 0.0 9.9
3 0.0 10.4
4 0.0 1.3
5 0.0 7.6
6 0.0 6.1

atoms. Therefore, a stronger magnetic interaction and the anti-parallel config-

uration between the hybridized carbon atom and the Ni layer were concluded.

The magnetic configuration, which is initiated by the magnetic interaction

of carbon and nickel atoms at the interface, within the graphene layer leads to

the tunable magnetic moment configuration between the carbon atoms in sub-

lattices A and B of graphene. The tunable induced magnetic moment between

the AFM and FM configurations provides a new insight into the electronic

structure of graphene, since the previous studies have only reported that the

induced magnetic moment of graphene is either in the AFM configuration [89]

or FM configuration [90]. An additional remarkable point is that the total

energy difference between the anti-parallel and parallel configurations is in the

order of meV, which implies that the magnetic configuration change does not

require an extremely high external magnetic field.

The total energy was calculated for various thicknesses to show the con-

sistency of the most stable magnetic configuration and the orientation of the

Ni/graphene/Ni nanostructure’s magnetic moment. Table 4.4 shows the total

energy for all variations of the number of Ni layers from 1 to 6 in the anti-

parallel and parallel configurations. For the 1-layer Ni structure at both sides

of the graphene, the lowest state is a non-magnetic state. The variation of

the number of Ni layers from 2 to 6 implies that the anti-parallel configura-

tion has the lowest energy, although the total energy difference between the

anti-parallel and parallel configurations is different for each number of lay-

ers. The charge-spin density mapping also shows the magnetic configuration

of Ni/graphene/Ni.
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Figure 4.2: Electronic band structure of 1-layer Ni/graphene/1-layer Ni in a non-
magnetic state. The black dashed line is the band structure of pristine graphene, to
be used as reference. The Dirac cone characteristic can be seen around the K-point
high-symmetry and near the Fermi energy as well as around -4 eV.

4.3 Analysis of electron orbitals for

Ni/graphene/Ni with 1-layer Ni slabs

As shown in the last section, in the case of 1-layer Ni growth on both sides

of graphene, the Ni/graphene/ Ni nanostructure becomes non-magnetic. The

non-magnetic property of the 1-layer Ni/graphene/1-layer Ni occurred due to

the charge transfer from the dz2 orbital of Ni atoms within 1-layer Ni to the pz

orbital of carbon atoms, either for sublattices A or B within graphene, which

fully filled the pz orbitals of the carbon atoms and caused the net magnetic

moment to become zero.

The electronic band structure of 1-layer Ni/graphene/1-layer Ni is shown

in Fig. 4.2. This band structure implies relevant orbital natures in

Ni/graphene/Ni structures. Here, every band around the Fermi level was char-

acterized.

Eight bands from Ni 3d branches can be seen just below the Fermi level at

EF = 0, i.e., at the Γ point. Other two bands of 3d go down to approximately

-5eV or below. This energy is even below the top of the sp2-σ bands appearing

at -3 eV. At the Γ point, the π band of graphene, which has an energy of around

-7.5eV in the pristine graphene, is rather stabilized. This is attributed to the

pd hybridization. Since the flat graphene becomes deformed with staggered

modification, the orbital nature of π becomes a little closer to that of the sp3-
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hybridized orbital. This is the secondary reason why such an apparent drop is

observed in the π band. Roughly speaking, the eight 3d bands of Ni run nearly

horizontally across the whole Brillouin zone. Meanwhile, the remaining two

branches coming from the dz2 bands suffer strongly from the pd hybridization.

Local Wannier orbitals of pz and dz2 symmetries were defined at each carbon

site and nickel atom, respectively. These orbitals are represented by φpz ,η(r−
Ri) and ϕz2,ζ(r−Ri). Here, the orbitals are defined for each unit cell indexed

by i. The vector Ri represents the position of the i-th unit cell. The index η

denotes the sublattice site A or B of graphene. ζ denotes the sublattice sites

for the upper and lower Ni layers. However, by limiting the argument to the

BA-stacking, ζ is identified as η, since every Ni atom is just on (or below) a

carbon atom at the A (or B) site. Therefore, it is enough to consider simplified

notations φi,pz ,η and ϕi,z2,η.

For graphene, the Dirac points appear at the special points of K and K’.

Since the three-fold rotational symmetry, glide-reflection symmetry, and chiral

symmetry of the original graphene is preserved for the AB stacking of the

1-layer Ni/graphene/1-layer Ni, the Dirac point is maintained in this hybrid

structure. More precisely, Dirac cones were doubled in the band structure

of Fig. 4.2. At the K point, around E − EF ∼ -4eV, there are lower Dirac

cones. There are also more upper Dirac cones above the Fermi level. The lower

(upper) cone consists of the bonding (anti-bonding) level of φi,pz ,η and ϕi,z2,η.

The orbital energy of pz is much lower than that of nickel dz2 . Therefore,

the charge transfer is from nickel to carbon. The magnetic moment of carbon

is not easily induced in this sense. The anti-bonding nature of the upper

Dirac cone close to the Fermi level is important for the induced magnetism of

graphene attached to nickel slubs.

Here, it should be noted that the effective potential at each sublattice is

the same as the effective potential for the non-magnetic solution as far as the

Ni /graphene/Ni system maintains the structural symmetry. Topologically,

the arrangement of the effective Wannier orbital φ̃i,η,± for both the upper and

lower Dirac cones is the honeycomb lattice. Therefore, no gap opening happens

for two Dirac cones in Fig. 4.2.

When spin–density distribution causes a staggered contribution in a spin-

dependent effective potential, a gap opening phenomenon occurs. This point

is relevant for the discussion in the next section.
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4.4 Effect of magnetic configuration on the

electronic structure and in-plane conduc-

tance

The appearance of the induced magnetic moment on graphene and strong

pd hybridization between the nickel and carbon atoms on graphene cause the

Dirac cone characteristics of the graphene band structure to change.

The opening gap of the Dirac cone has been reported by previous theoret-

ical studies of the Ni/graphene interface, where the gap size between the spin

majority and spin minority channels is different due to the induced magnetic

moment difference between sublattices A (carbon atoms with pd hybridization

with nickel atoms) and B. The magnetic moment of carbon atoms can be also

expressed as the spin–charge density difference between spin-up and spin-down

(n↑(r)− n↓(r)). The charge density difference between spin-up and spin-down

is proportional to the Stoner gap formed on the energy level difference between

spin-up and spin-down. In the Ni/graphene interface case, the magnetic mo-

ment of carbon atoms on sublattice A is smaller than that of sublattice B; the

Stoner gap in the carbon atoms on sublattice A is also smaller compare to that

of sublattice B.

A relevant question here is whether not the Ni/graphene/Ni structures

show any qualitatively different features from a single Ni/graphene interface.

.

Figure 4.3 shows the band structure of 3-Ni layer /graphene/3-Ni layer spin-

valve-like structure. The strong hybridization between the carbon pz orbital

with nickel dz2 on the top and bottom is shown as the creation of bonding and

anti-bonding Dirac cones and several level anti-crossing points in the band

structure. Although the band structure of the carbon pz orbital changes quite

significantly, the characteristics of Dirac cones on high symmetry K-points can

still be recognized for both the anti-parallel and parallel configurations. Here,

two Dirac cones are seen near the Fermi energy and around -4eV below the

Fermi energy.

For the case of anti-parallel configuration, Table 4.3 shows that the induced

magnetic moment of the carbon atoms on sublattice A is in the opposite con-

figuration to that on sublattice B. The magnetic moment of carbon atoms on

sublattice A has a spin-up configuration, which means that the spin-up charge

density is higher than the spin-down charge density (nA↓), while carbon atoms

on sublattice B have the opposite configuration.
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Figure 4.3: 3-layer Ni/graphene/3-layer Ni band structure in the anti-parallel con-
figuration for the (a) spin majority channel and (b) spin minority channel, and in
parallel configuration for the (c) spin majority channel and (d) spin minority chan-
nel. The black dashed line is the band structure of the pristine graphene to be
used as reference. The Dirac cone characteristic can be seen around the K-point
high-symmetry and near the Fermi energy.

An integrated spin-charge density nη,↑, and nη,↓ was introduced, where η is

either A or B. The value of nη,σ is assumed to be obtained by integrating nσ(r)

within an ionic radius of the carbon atom, where σ =↑ or ↓. Table 4.3 also

shows that the magnetic moment between the carbon atoms on sublattices A

and B are comparably equal in the anti-parallel configuration. Therefore,

nA,↓ = nB,↑ > nA,↑ = nB,↓.

The spin-GGA effective potential has a contribution approximately propor-

tional to the spin moment, or the spin density, nη,↑−nη,↓. This spin-dependent

potential is lowered for the majority spin when the local spin density is given

by the majority, while the minority spin feels higher energy. In other words,

the energy of the up-electron decreases when the up-spin density increases, but

increases when the down-spin density increases around the given point.

Therefore, the up-spin and down-spin suffer from different effective po-

tentials veff,σ(r) in the anti-parallel configuration. Taking a spin-dependent

Wannier function, φ̃i,η,−,σ(r), created similar to that in the last section, a sim-

ple rule can be derived for an averaged spin-dependent contribution for the
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potential 〈φ̃i,η,−,σ|v̄eff,σ|φ̃i,η,−,σ〉 with respect to the Wannier basis.

〈φ̃i,A,−,↑|v̄eff,↑|φ̃i,A,−,↑〉 > 〈φ̃i,B,−,↑|v̄eff,↑|φ̃i,B,−,↑〉, (4.1)

〈φ̃i,A,−,↓|v̄eff,↓|φ̃i,A,−,↓〉 < 〈φ̃i,B,−,↓|v̄eff,↓|φ̃i,B,−,↓〉, (4.2)

〈φ̃i,A,−,↑|v̄eff,↑|φ̃i,A,−,↑〉 = 〈φ̃i,B,−,↓|v̄eff,↓|φ̃i,B,−,↓〉, (4.3)

〈φ̃i,B,−,↑|v̄eff,↑|φ̃i,B,−,↑〉, = 〈φ̃i,A,−,↓|v̄eff,↓|φ̃i,A,−,↓〉. (4.4)

Eqs. (4.1) and (4.2) conclude that a gap opens at the Dirac point due to the

broken chiral symmetry. From Eqs. (4.3) and (4.4), it can be said that the gap

size is the same for both the up and down spins. Therefore, the Stoner gap

size formed on the spin majority and minority channels are equal, as shown in

Fig. 4.3(a) and (b).

Consider a realistic device by taking the attachment of pristine graphene as

leads of the Ni/graphene/Ni structure. From this perspective, the momentum

of electron in the graphene layer can be conserved by considering the specular

reflection effect on the edge of the Ni layer. Looking closely at the K-point

near the Dirac cone, separation of Dirac bands from the Ni S-band in the first

Brillouin zone happens. Assume that the edge of the Ni layer perpendicular to

the current path is periodic, sharply cut with no impurities, and the specular

reflection of electron on graphene occurs. If the wavefunction of electron is

larger than the atomic distance between the nickel on the edge perpendicular

to the current path, the momentum of the Dirac band electrons will conserve.

In contrast, Fig. 4.3(c) and (d) show the band structure of 3-layer

Ni/graphene/ 3-layer Ni in the parallel configuration, where it satisfied an

equality and inequality as follows

〈φ̃i,A,−,↑|v̄eff,↑|φ̃i,A,−,↑〉 = 〈φ̃i,B,−,↑|v̄eff,↑|φ̃i,B,−,↑〉, (4.5)

〈φ̃i,A,−,↓|v̄eff,↓|φ̃i,A,−,↓〉 = 〈φ̃i,B,−,↓|v̄eff,↓|φ̃i,B,−,↓〉, (4.6)

〈φ̃i,A,−,↑|v̄eff,↑|φ̃i,A,−,↑〉 > 〈φ̃i,A,−,↓|v̄eff,↓|φ̃i,A,−,↓〉, (4.7)

Although the Dirac cone still survives, the energy level between the Dirac cone

on the spin majority channel is lower than the Dirac cone on the spin minority

channel because of the characteristics of the ferromagnetic material. Note that

the above discussion does not directly reveal the relations between the orbital

energies of the Wannier basis. This is because the orbital energy is determined

by the whole character of veff,(r), where the majority spin gains energy by the

large spin moment at the Ni atoms.

77 Osaka University



Figure 4.4: Bandstructure of 2-layer Ni/graphene/2-layer Ni in the (a) anti-parallel
configuration and (b) parallel configuration; and 4-layer Ni/graphene/4-layer Ni
in the (c) anti-parallel configuration and (d) parallel configuration. In (a), (b),
(c), and (d), red represents the spin-majority channel, whereas blue represents the
spin-minority channel. The black dashed line is the bandstructure of the pristine
graphene, taken as a reference.

The opened gap of the Dirac electrons at the high symmetry K-point in the

spin-majority and -minority channels for the anti-parallel spin configuration

implies an increase of resistance on the in-plane conductance of the graphene

layer compared to the pristine graphene. In contrast, the survival of the Dirac

cone for the parallel magnetic configuration of the Ni(111) layers implies that

the in-plane conductance via the K-point contribution will give lower resistivity

compared to that in the anti-parallel spin configuration.

Since the anti-parallel configuration is the lowest state, we can start from

the high resistance state having the opened gap at the Dirac cone. Using

an external magnetic field, the spin moment direction can be reversed. In

the parallel configuration, the gap is closed in both majority and minority

channels. Thus, the structure can act as a field-induced switch for the electron

current.

In case of unbalanced spin moments below and above the Graphene layer,

the applied field may reverse one of the spin directions, maintaining the other

stronger spin moment undisturbed. After switching off the field, the system can

return to an energetically stabler anti-parallel spin configuration than the par-
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Figure 4.5: Scattering region of Ni/Graphene/Ni nano-spin-valve-like structure cre-
ated on the part of a graphene plane.

allel configuration. Alternatively, even when a residual spin moment remains

for the zero fields, the weakly locked moment can be reversed by applying a

magnetic field in the opposite direction. This controllability is essential to

consider an application of this system.

The opening gap of the Dirac cone in the anti-parallel configuration and the

survival of the Dirac cone in the parallel configuration are consistent for 2-layer

and 4-layer nickel, as shown in figure 4.4. For the number of Ni layers more than

four, the band-structure becomes extremely complex, making recognizing the

Dirac cone characteristics difficult. However, owing to a preserved symmetry,

we can expect the same physics.

4.5 Discussion on the possible application for

spin-electronic device

To start the discussion on the possible application for spin-electronic device,

a junction system is proposed here. Figure 4.5 shows a Ni/Graphene/Ni nano-

spin-valve-like structure created on the part of a graphene plane. The local Ni

structures above and below graphene are optimized by DFT simulations. This

magnetic region gives scattering of electron waves. Pristine graphene parts

at both sides are used as the electrodes. Through the one-dimensional device

structure, we consider a current path from the left to right electrodes for both

spins.

As shown in Fig. 4.5, the edges of the Ni(111) layers are atomically sharp.
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In case of a long Ni part in the perpendicular direction for the current path,

the specular reflection/transmission for electron waves can be obtained. The

Dirac cone characteristic is dependent on the Ni spin configuration. There-

fore, change in the in-plane conductance along the graphene layer across the

scattering region is expected.

The Fermi energy (the chemical potential) can be slightly shifted from the

charge neutrality point. Note that, in the anti-parallel spin configuration, net

spin current is not observed even when the current path is via the Ni(111) lay-

ers; in contrast, in the parallel configuration, the spin-majority and -minority

channels created by Ni structures have different scattering processes. In the

graphene layer, a closed gap phenomenon is observed, which allows the spin

majority channel for the spin alignment to be less resistive than in the anti-

parallel spin configuration. In addition, owing to the spin blockade effect for

current paths via the Ni(111) layers, a stronger conduction is observed for a

selective spin direction only. Thus, we can easily create a spin-current switch-

ing.

At low temperatures, when coherent transmission becomes dominant for

the current conduction, where a lateral element of the momentum along the

edge is conserved, the spin filtering phenomenon is expected to be enhanced.

Consider a wider Ni(111) layer region along the one-dimensional conduction

path. Dirac electrons tunnel via states in the window opened in the Bril-

louin zone around the K-point. In the anti-parallel configuration, when only

coherent tunneling paths along the structure determine the transmission prob-

ability, the current conduction is effectively blocked. This is because the gap

is open and the Dirac electrons are blocked. Since transmission probability

depends on the electronic structure at the scattering region, we can conclude a

spin-configuration dependent tunneling phenomenon in this junction structure.

This effect will lead to a spin filtering effect of electron current in the graphene

electrode. In the anti-parallel configuration, this junction system also leads to

a spin Hall effect [91] owing to the spin–orbit interaction originating in the Ni

layers.

The opened gap structure at the Ni(111)/graphene/Ni(111) interface sug-

gests a moment-direction-dependent characteristic for the lateral conductance

with a perpendicular current path. In this conventional use for a Ni-based spin

valve, the gap opening effect should be considered properly. The determination

of the transmission probability is future work for the present study.
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4.6 Summary

In this study, DFT (spin-GGA) calculation on 3-layer Ni/graphene/3-layer

Ni shows that among the three stacking arrangements, the BA-stacking is the

stablest stacking structure, and within BA-stacking, the anti-parallel config-

uration of upper and lower Ni(111) slabs has lower energy than the parallel

configuration. This finding is in agreement with the previous experimental

study. The two magnetic arrangements of Ni(111) slabs affect the configura-

tion of the induced magnetic moment of graphene.

In case of the anti-parallel configuration between Ni(111) slabs, carbon

atom sublattices A and B of graphene have an AFM configuration. By con-

trast, in case of the parallel configuration between two Ni(111) slabs, the con-

figuration of sublattices A and B of graphene have an FM configuration. The

AFM configuration of graphene’s carbon atoms leads to the gap opening on

the Dirac cone of the graphene bandstructure; meanwhile, the FM configura-

tion bandstructure shows the survival of the Dirac cone both for spin-majority

and -minority channels.

The opening and survival of the Dirac cone will affect the in-plane con-

ductance of graphene in which the open gap Dirac cone configuration will

have a higher resistance than the close gap Dirac cone configuration. Further

conductivity calculation must be conducted to understand how much does the

opening and closing of the gap due to induced magnetic moment on graphene’s

carbon atoms affect the conductivity of the graphene layer.
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Chapter 5

Colossal In-plane

Magnetoresistance Ratio of

Graphene Sandwiched with Ni

Nanostructures

5.1 Introduction

This chapter presents a theoretical study on the in-plane conductance and

magnetoresistance of graphene partially sandwiched between Ni(111) nanos-

tructures. Here, investigation was done on the effectiveness of a controllable

Dirac cone on graphene conductance to realize a high MR ratio. For that

purpose, a system consisting of Ni(111) nanostructures with a finite size and

atomic-scale width of 12.08 Å sandwiched the middle part of graphene was pro-

posed. Both the APC and PC states of the upper and lower Ni(111) structures

are considered. First-principles quantum transport calculations, which cou-

pled density functional theory (DFT) with the nonequilibrium Green’s func-

tion, were performed. Our calculation results observed a high and colossal

in-plane MR ratio of graphene about 284% and 3100%. A higher MR ratio

beyond 3100% can be obtained when the width of the Ni(111) structures on a

nanometer scale are considered.
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Figure 5.1: Spin-charge density mapping of the proposed system when the Ni(111)
nanostructures are in (a) PC and (b) APC states (red: spin-up charge density; blue:
spin-down charge density).

5.2 Characteristics of Induced Magnetic Mo-

ment of Graphene

We investigated the characteristics of the induced magnetic moment on

graphene, which is sandwiched between the Ni(111) nanostructures. Particu-

larly we focused on the boundaries between the bare and sandwiched graphene.

Mapping of the spin-charge density, as shown in Figure 5.1, indicates that the

magnetic moment was induced only on graphene sandwiched by Ni(111) nanos-

tructures up to the boundaries. However, the details of the induced magnetic

moment profile, shown in Figure 5.2, indicate that the magnetic moment was

damped to a small value on the bare graphene part near the boundaries for a

few C atoms before reaching zero. This damping corresponds to wave function

matching at the boundaries between sandwiched and bare graphene.

The C atoms of the bare graphene far from the boundaries have no induced

magnetic moment, as shown in Figure 5.1 and Figure 5.2. Here, the Dirac cone

of the graphene is similar to that of the pristine graphene because the chiral

symmetry was preserved: nAσ = nBσ with σ =↑ or ↓. Meanwhile, the sand-

wiched graphene has an induced magnetic moment depending on the magnetic

alignment of the Ni(111) nanostructures. For the Ni(111) nanostructures in

APC state, Figure 5.2(a) indicates that the induced magnetic moments on

the CA and CB atoms of the sandwiched graphene have an antiferromagnetic

order. Thus,

nA↓ = nB↑ > nA↑ = nB↓, (5.1)

which implies that the chiral symmetry is broken, and the mass gap of the Dirac
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cone is open. However, for Ni(111) nanostructures in PC state, the induced

magnetic moments in the CA and CB atoms of the sandwiched graphene have

the same magnetic orientation and almost the same value (Figure 5.2(b). Thus,

nA↑ = nB↑ > nA↓ = nB↓, (5.2)

This means that the equipotential between the CA and CB preserves the Dirac

cone. However, due to the induced magnetic moment on sandwiched graphene,

the Dirac cone on the spin majority channel is lower than that on the spin

minority channel, which is a characteristic of ferromagnetic materials.

The magnetic moment characteristics of the CA and CB atoms in the sand-

wiched graphene agree with the findings of a previous chapter 4. Interest-

ingly, the characteristics of the induced magnetic moments in the sandwiched

graphene part were different in the APC and PC states. In the APC state,

the amplitude of the induced magnetic moment decreased from the center of

the sandwiched graphene to the boundary direction. The magnetic moment

amplitude of the C atoms at the center of the sandwiched graphene agrees

well with the magnetic moment of the C atoms of Ni/graphene/Ni MTJ (a

Ni/graphene/Ni system with periodic boundary conditions on the x- and y-

axes), which is ∼ 0.04 µB. This means that the decrease in the magnetic

moment amplitude along the boundary direction corresponds to the charac-

teristics found in the finite size of the Ni nanostructures. From the struc-

ture of the system, this decrease is attributed to the coordination of Ni(111)

nanostructures, which compresses their shape toward the center but main-

tains their bond with C atoms at the interfaces. An edged shape was formed

on the Ni(111) nanostructures at the boundaries, which increases the lattice

mismatch between the Ni layer at the interfaces and the graphene layer, and

in turn, decreases the charge transfer from Ni atoms to C atoms. Thus, the

reduced charge transfer from the Ni atoms to the C atoms at the interface

decreases the induced magnetic moment on the C atoms. Since the lattice

mismatch increases along the direction of the boundary, the induced mag-

netic moment also decreases along the same direction. However, the profile

of the induced magnetic moment on sandwiched graphene is unique in PC.

The induced magnetic moment initially decreases from the center of the sand-

wich to the boundaries. However, it then increases even higher than that

of the center part before finally decreasing again near the boundaries. The

magnetic moment of the C atoms in the center of the sandwiched graphene

was approximately equal to the induced magnetic moment of the C atoms of
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Figure 5.2: The induced magnetic moment of graphene of the proposed system when
the Ni(111) nanostructures are in (a) APC and (b) PC states.

the Ni/graphene/Ni MTJ, which was ∼ 0.022 µB. Furthermore, the decrease

in the induced magnetic moment on the neighboring C atoms, which shifted

from the center of the sandwich graphene to the boundary, corresponds to

the increasing lattice mismatch, similar to the case of APC. Additionally, the

amplitude of the magnetic moment on the C atoms increased even more than

that in the center part at the boundaries due to the reduction in the antifer-

romagnetic configuration between sublattices A and B near the boundary. In

the periodic system of Ni/graphene/Ni MTJ, we obtained higher amplitude

of the induced magnetic moment of C atoms in APC is higher than that in

PC since the carbon atoms of sublattices A and B in graphene had to have

an antiferromagnetic (AFM) configuration because of the half-filled pz-orbital

and Pauli’s exclusion principle. This rule is often found in organic molecules in

sp2-hybridization or magnetic alternant hydrocarbon systems [88]. The con-

tribution of the antiferromagnetic alignment between the hybridized C and Ni

atoms near the boundaries is more dominant than that of the AFM alignment

between the C atom sublattices A and B, leading to the increased induced

magnetic moment. Finally, at the boundaries, the induced magnetic moment

of the C atoms in the sandwiched part decreases again, indicating increased

lattice mismatch.

These changes in the induced magnetic moment on sandwiched graphene

affect the Dirac cone and mass-gapped Dirac-cone characteristics. For the

Ni(111) nanostructures in the APC, the decreasing induced magnetic moment
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Figure 5.3: The transmission probability of graphene from the proposed system
when Ni(111) nanostructures in PC state.

of the sandwiched graphene toward the boundary reduces the size of the mass-

gapped Dirac cone. This implies that the Dirac cone mass-gapped is smaller

at the boundaries of the sandwiched graphene than at the center. For Ni(111)

nanostructures in the PC state, the changes in the induced magnetic moment

affect the size of the Stoner gap between the spin majority and spin minority

channels. These characteristics are discussed in detail in the next section.

5.3 Colossal In-Plane Magnetoresistance of

Graphene

Figure 5.3 and Figure 5.4(c) show the transmission probability of electrons

through sandwiched graphene from our proposed system when the Ni(111)

nanostructures are in the PC and APC states, respectively. When the Ni(111)

nanostructures were in the PC state, the transmission probability profile for

the proposed system is similar to that of the pristine graphene, as shown

in Figure 5.3. The typical transmission probability of the pristine graphene

originates from the Dirac cone of graphene, where the transmission probability

results in zero conductance at the Fermi energy and increases linearly with

energy. The slight increase in the total transmission probability comes from

spin-up electrons that transmit through graphene and Ni(111) nanostructures.

Thus, spin-up electrons have a higher transmission probability than the spin-
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Figure 5.4: (a) The local density of states (LDOS) of graphene in Ni/graphene/Ni
MTJ, (b) projected density of states (PDOS) of CA and Ni at interface hybridized
with CA, and (c) the transmission probability of graphene from the proposed system
when Ni(111) nanostructure in APC state.

down electrons.

Further, a profile similar to that of the pristine graphene was observed when

the Ni (111) nanostructures were in the APC state, as shown in Figure 5.4(c).

However, a unique gap-like transmission probability was found at E − EF =

0.18 − 0.22 eV and 0.58 − 0.78 eV , with its lowest transmission probability

at E − EF = 0.2 and 0.65 eV , respectively, To understand the origin of the

gap-like transmission, local density of states (LDOS) and projected density

of states (PDOS) calculations were performed on the Ni/graphene/Ni MTJ,

which represents the sandwiched part of the proposed system. The LDOS of

graphene, shown in Figure 5.4(a), suggests that the Dirac-cone-like density

of states (DOS) which was observed at E − EF = 0.2 eV corresponds to the
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gap-like transmission probability found at E − EF = 0.2 eV . This relation

was observed in the spin majority and minority channel. This Dirac-cone-like

DOS is originated from the hybridization between dz2-orbital of Ni atoms at

the interface and pz-orbital of C atoms (Figure 5.4(b)). The Dirac-cone-like

DOS profile at E − EF = 0.2 eV, which was observed in LDOS of graphene,

was also found in both the PDOS of pz-orbital of CA atoms and dz2-orbital

of Ni atoms below CA atoms, implying the characteristics of hybridization

(Figure. 5(b)).

The gap-like transmission probability at E−EF = 0.65 eV results from the

opening mass-gapped Dirac cone of graphene (Figure 5.4(a)). However, com-

pared to the mass-gapped Dirac cone of graphene shown in Figure 5.4(a), the

width of the transmission probability gap of the proposed system is smaller.

Furthermore, the transmission probability at E−EF = 0.65 eV is considerably

high, unlike the LDOS of graphene in Figure 5.4(a); the DOS at E−EF = 0.65

eV is almost zero similar to DOS at E−EF = 0.2 eV. This difference is because

the induced magnetic moment differs between the C atoms at the boundaries

and center of the sandwiched graphene, thereby leading to different mass-

gapped size and a parabolic transmission probability gap with smaller gap size.

Moreover, the small width of Ni (111) nanostructure does not optimize the in-

duced magnetic moment on graphene and a constant value is not achieved,

thereby resulting considerably high conductance at E − EF = 0.65 eV. How-

ever, this also implies that, when a width of Ni(111) nanostructures is consid-

ered in the nanometer scale, the transmission probability at E − EF = 0.65

eV will be as low as at E − EF = 0.2 eV.

By comparing the transmission probability of electrons of the Ni(111)

nanostructures in APC and PC states, a high and colossal in-plane MR ratio

of up to 3100% and 284% was observed at E −EF = 0.2 and 0.65 eV, respec-

tively(Figure 5.5(a)). Applying a gate voltage to the proposed system shifts

the Fermi energy39,40 to E − EF = 0.2 eV resulting in a colossal in-plane

MR ratio (Figure. 6(b)). Interestingly, this high in-plane MR ratio can be

achieved just by sandwiching graphene with Ni(111) nanostructures with an

atom-scale width of 12.08 Å. By increasing the width of Ni(111) nanostructure

to the nanometer scale, a colossal MR ratio of > 3100% can be expected at

E−EF = 0.65 eV because in APC state the gap-like transmission will be nearly

zero similar to that at E−EF = 0.2 eV; however, the transmission probability

is higher than that at E − EF = 0.2 eV when PC state is considered.
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Figure 5.5: (a) The comparison of transmission probability of graphene from the
proposed system between APC and PC states. (b) The configuration of gate voltage
on the proposed system to shifting the Fermi energy.
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5.4 Summary

In this study, we investigated the in-plane conductance of graphene, where

the Ni(111) nanostructures with a width of 12.08 Åis sandwiched in the center

of the graphene. Both the APC and PC states of the Ni(111) nanostructures

were considered. The induced magnetic moment was observed on the sand-

wiched graphene and could be controlled using the magnetic alignment of the

Ni(111) nanostructures. When APC (PC) state is considered, we observed

that the carbon atoms of sublattices A and B of the sandwiched graphene had

an antiferromagnetic (ferromagnetic) order. Both spin configurations lead to a

controllable mass-gapped Dirac cone in the sandwiched graphene. The mass-

gapped Dirac cone is open (closed) for APC (PC) state due to the modulated

(equi-) potential between the CA and CB of the sandwiched graphene.

When the Ni(111) nanostructures were in the PC state, the transmission

probability of the proposed system produces a profile similar to that of the pris-

tine graphene. Furthermore, a slight increase in the total transmission prob-

ability was observed from spin-up electrons that transmit through graphene

and the Ni(111) nanostructures. Thus, spin-up electrons have a higher trans-

mission probability than the spin-down electrons.

However, for the Ni (111) nanostructures in the APC state, a unique gap-

like transmission probability was observed from E − EF =0.18-0.22 eV and

0.58-0.78 eV with the lowest transmission probability at E−EF =0.2 and 0.65

eV, respectively. The gap-like transmission probability at E − EF =0.2 eV

comes from the Dirac-cone-like DOS shown in the local density of sandwiched

graphene due to the hybridization property between the dz2-orbital of Ni atoms

at the interface and pz-orbital of C atoms. On the other hand, the gap-like

transmission probability at E − EF =0.65 eV comes from the opening mass-

gapped Dirac cone of graphene. However, the gap-like transmission probability

was smaller than that found in the LDOS of graphene in Ni/graphene/Ni MTJ.

This is because the induced magnetic moment decayed from the center part of

the sandwiched graphene toward the boundary, leading to a parabolic shape

for the transmission probability gap.

Finally, high and colossal in-plane MR ratios of up to 3100% and 284%

were observed at E − EF = 0.2 and 0.65 eV. By applying a gate voltage,

the Fermi energy can be controlled resulting in a colossal in-plane MR ratio.

Furthermore, by increasing the width of the Ni(111) nanostructure to the

nanometer scale, a colossal MR ratio ¿3100% can be expected because the

gap-like transmission is nearly zero at E−EF = 0.65 eV in the APC state but
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having higher the transmission probability than that at E − EF = 0.2 eV in

the PC state.
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Chapter 6

The Importance of Proximity

Effect in 2D Materials-based

Magnetic Junctions and Its

Relation to Tunneling

Magnetoresistance

6.1 Introduction

A successful control on the graphene’s MGDC and getting colossal IMR

ratio has been discussed previously in chapter 4 and 5, respectively. Thus, an

optimization to create a successful design of a graphene-based spin-valve struc-

ture spintronics device need to be performed. The optimization was needed

for realization of the actual device and for ensuring a performance comparable

to that predicted in this theoretical study. The chemical bonding between the

Ni slabs and graphene in Ni/graphene/Ni needs to be perfect to get control on

graphene’s MGDC. This perfect surface can be realized experimentally; how-

ever, it is relatively difficult. Thus, to avoid a complete change in the IMR of

graphene due to a defect at the Ni/graphene interface, a barrier is necessary

to maintain the graphene Dirac cone, although some defect occurs on the Ni

surface. Furthermore, when the chemical bonding between Ni and graphene

lead to difficult control of graphene’s Fermi Energy. By creating the barrier,

an easier controllability of graphene’s Fermi energy will be expected, as shown

in Fig. 6.1 . Prior to further investigation on the effectivity of proximity ef-

fect on controlling MGDC of graphene, understanding how the Ni(111) surface
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state as evanescent wave work on graphene created magnetic proximity effect

is necessary.

Prior to further investigation on the effectivity of proximity effect on con-

trolling MGDC of graphene, understanding how the Ni(111) surface state as

evanescent wave work on graphene created magnetic proximity effect is neces-

sary. In this chapter, a theoretical study is conducted to understand the origin

of the magnetic proximity effect in 2D material which was sandwiched with

ferromagnetic metal. In this study, a Ni/nhBN/Ni magnetic junctions with

n = 2, 3, 4, and 5 were considered. The study will shows that the proximity

effect has a close relation to the tunneling transport of Ni/nhBN/Ni magnetic

junctions when CPP scheme is considered. The study will also answer the

reason why the TMR ration of 2D materials-based MTJ is reducing when the

thinkness of 2D materials is increased and why 2D materials-based MTJ give

such a low TMR ratio.

At first, a study on Ni/2hBN/Ni magnetic junctions will show that the

Ni’s surface state (111) is the main contribution to the tunneling transmission

of the electrons when electrons flow from one Ni slab to another through two

hBN layers. When the number of hBN is increased to three, the Ni(111) slabs’

surface state still survives, giving a magnetic proximity effect on middle hBN.

However, the magnetic proximity effect on middle hBN is weak enough since

the dz2-orbital of the Ni(111) surface state works on unfilled pz-orbital of B

atoms. However, the dz2-orbital of the Ni(111) surface state works significantly

on the graphene layer since it works on π-orbital of graphene. Further study

was performed to understand the effectivity of proximity effect on controlling

MGDC of graphene.

6.2 Transmission Mechanism of Ni/hBN/Ni

MTJs with Different Numbers of hBN

Layers

The pd-hybridizations at both the upper and lower interfaces between the

Ni slabs and hBN stabilize the system. This chemical property between Ni and

hBN is also based on the unique electron transmission phenomenon appearing

in hBN-based junctions. A large amount of evidence supporting this idea is

presented below.

Fig. 6.2 shows the TMR ratio of 2D material-based MTJs as a function
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Figure 6.1: The possible charges response when electric field is introduced to the
chemical bonding-based interface found in Ni/graphene/Ni MJ (left) and van der
Waals-based interface found in Ni/hBN-graphene-hBN/Ni MJ (right).

of the number of 2D material layers as an insulator barrier. The black line

shows the TMR values, which were taken at the Fermi energy, namely the

zero-bias limit, for various numbers of hBN layers. The TMR ratio profile

is in good agreement with a previous theoretical study [44] and is consistent

with several experimental studies [54]. When a double-hBN layer with two

stacked hBN planes (2hBN) is considered as a tunnel barrier, the TMR ratio

increases compared with a monolayer of hBN. This increase was due to the

difference in the transmission process of the electrons. When a monolayer

of hBN is considered as a tunnel barrier, due to pd-hybridizations from both

upper and lower Ni slabs coupled with N atoms, charge transfer occurs, leading

to the hBN layer becoming metallic [92]. Thus, the propagating wave electrons

become the dominant contributor to the transmission between the two Ni(111)

electrodes.

In addition, when 2hBN is used as a tunnel barrier, because of the weak

van der Waals interaction between the two hBN layers, electrons are transmit-

ted through the tunnel barrier via the Ni(111) surface state at the interface.

This transmission process can be observed from the transmission probability

profile of the Ni/2hBN/Ni system, as shown in Fig. 6.3(a). In the case of the

Ni/hBN/Ni MTJ, the high transmission peak in the minority spin channel,

which is observed when the system in the PC state is located at the Fermi

energy [92]. However, for the Ni/2hBN/Ni MTJ, as shown in Fig. 6.3(a),
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Figure 6.2: The TMR ratio vs the number of 2D materials layers as tunnel barrier at
two different energies; E −EF =0 eV (the zero-bias limit) and 0.34 eV (the highest
peak of spin-down electrons transmission probability in PC state started from n =
3).

the high transmission peak in the minority spin channel is shifted toward an

energy higher than the Fermi energy by 0.28 eV.

On the other hand, the local density of states (LDOS) of hBN at the

interfaces in Fig. 6.3(b) shows newly created states at the insulator gap of

hBN. Furthermore, the LDOS of those states shows a correlation with the

profile of the transmission probability of the system, whereby an increase in

the density of states at an energy higher than the Fermi energy in the spin

minority channel corresponds to a high transmission peak in the spin minority

channel. Therefore, these states are the dominant contributors to electron

transmission through the insulator barrier. The projected band structure in

Fig. 6.3(c) shows that these states originate from the Ni(111) surface state

with major d-components. The high transmission peak observed at an energy

higher than the Fermi energy in the spin minority channel corresponds to the

dz2-orbital of Ni(111) at the interfaces that hybridize with the pz-orbital of the

N atoms. Simultaneously, the flat and broad states in Fig. 6.3(b) correspond

to the s-orbital of Ni(111) at the interface. The relatively larger components in

the dz2-orbitals compared with the pz-orbitals suggest that the wavefunction

is indeed in a tunnel regime, where 2hBN behaves as a potential barrier for

the Ni d-electrons.

When the number of hBN layers is increased further, for example, 3hBN,

the contribution from these surface states at the Fermi energy is quenched.

The surface states of Ni(111), which are derived from the s-orbital of the sys-
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Figure 6.3: (a) The transmission probability of Ni/2hBN/Ni, (b) The spin- charge
density mapping (red color represent spin-up charge density mapping) and LDOS
of 2hBN insulator barrier in Ni/2hBN/Ni system in PC state, (c) The projected
bandstructure of Ni/2hBN/Ni for spin minority channel.

tem with more than two hBN layers, became weaker around the Fermi energy,

as shown in Fig. 6.4(b). This quenching leads to a decrease in the transmis-

sion probability of electrons in the spin minority channel of the PC state at the

Fermi energy, which is approximately equivalent to the transmission probabil-

ity of electrons in the APC state, as shown in Fig. 6.4(a) . This result reduces

the TMR ratio of the system at the Fermi energy, which is lower than that

observed for Ni/2hBN/Ni. Furthermore, when the number of hBN layers is

further increased to 4hBN and 5hBN, a monotonic decrease in the TMR ratio

with respect to the increasing number of hBN layers is expected just around

the Fermi energy.
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Figure 6.4: (a) The transmission probability of Ni/3hBN/Ni and (b) The spin charge
density mapping of Ni/3hBN/Ni in PC state (red color represent spin-up charge
density mapping) and LDOS of 3hBN insulator barrier in Ni/3hBN/Ni system in
PC state.

6.3 High Transmission Magnetoresistance on

the Excited State and Influence of the

Proximity Effect

In the last section, the presence of a peak in the transmission probability

is discussed. As shown in Fig. 6.3 and Fig. 6.4, The high transmission peak

of electrons in the spin minority channel, when the MTJ is in the PC state,

was observed at an energy slightly higher than Fermi energy (E − EF =0.28

eV for Ni/2hBN/Ni and E − EF =0.34 eV for Ni/3hBN/Ni). Interestingly,

this high transmission peak of electrons is still present upon further increasing

the number of hBN layers. From the transmission probability of electrons of

Ni/nhBN/Ni with n = 4 and 5, the peak of the high transmission probability

of electrons in the spin minority channel, when the MTJ is in the PC state,

was also observed at an energy of 0.34 eV higher than the Fermi energy, as

shown in Fig. 6.4 (a) and (c), which is the same as Ni/3hBN/Ni. Interestingly,

it was found that, at E − EF =0.34 eV for Ni/nhBN/Ni with n = 1 – 4, a

high and increasing TMR ratio is observed, but decrease when n = 5 as shown

by red line in Fig. 6.2. To understand this behavior, further investigation was

performed on the electronic state of the insulator barrier for the Ni/nhBN/Ni

system with n = 4 and 5.
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Figure 6.5: (a) The transmission probability of Ni/4hBN/Ni, (b) The charge density
mapping of Ni/4hBN/Ni (red color represent spin-up charge density mapping) and
the LDOS of 4hBN insulator barrier of Ni/4hBN/Ni system in PC state, (c) The
transmission probability of Ni/5hBN/Ni, and (d) The charge density mapping of
Ni/5hBN/Ni (red color represent spin- up charge density mapping) and the LDOS
of 5hBN insulator barrier of Ni/5hBN/Ni system in PC state (insert: magnified
LDOS of middle hBN of Ni/5hBN/Ni system).

The LDOS of the hBN layer in the insulator barrier for the Ni/nhBN/Ni

system with n = 4 and 5 are shown in Fig. 6.5 (b) and (d), respectively.

Looking on the LDOS of hBN in insulator barrier for n = 3, 4, and 5, a typical

behavior corresponding to the presence of the magnetic proximity effect, which

is the penetration depth of the spin polarization of a magnetic metal (Ni) into a

nonmagnetic material (hBN), is observed. This proximity effect, which causes

an evanescent wave, or a dumping mode inside hBN, is found as an LDOS of

hBN layer, at E − EF =0.34 eV , gradually decrease when hBN become far

from interface. However, the LDOS at E−EF =0.34 eV still survives even for

middle hBN in the Ni/5hBN/Ni system. Sharp dumping is observed because

the proximity effect of dz2 acts on the pz orbital of B, which is unoccupied.
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At an energy close to the Fermi energy, because the energy gap of hBN does

exist, no real propagating modes in the hBN slab are expected. On the other

hand, at E−EF =0.34 eV , because a small LDOS is still observed through all

hBN in the tunnel barrier, propagating modes in the hBN slab are expected.

Thus, for the case of Ni/nhBN/Ni with n > 2, the proximity effect becomes

the main contribution for the transmission of electron with energy around 0.34

eV through the hBN tunnel barrier

This tunneling behavior causes an interesting filtering effect. When the

energy range is 0.34 eV higher than the Fermi energy, in the PC state, the

minor-spin channel exhibits a high transmission probability. In contrast, for

the major-spin channel, the transmission is significantly reduced. The high

transmission for the minor-spin channel originates from the d-orbital nature,

because a large pd-hybridization causes a spin-split LDOS with a large peak at

the corresponding energy. Thus, except for the d channel, a lower transmission

can only be expected. Therefore, the major spin component exhibited reduced

transmission. As a result, the ratio of the minority-spin transmission and

majority-spin transmission should become more prominent as n increases. This

large transmission probability is found only when a parallel-spin configuration

is selected, with the pd-hybridization occurring on both sides of the hBN.

In the case of APC, a blocking behavior was observed. An optimum block-

ing behavior was observed when 4hBN or more was used as an insulator barrier.

On Ni/3hBN/Ni, in the APC state, the spin majority and spin minority still

show a small transmission probability (but still higher than the transmission

probability of spin majority in the PC state). This result is due to the fact

that the middle hBN is not spin polarized owing to the opposite proximity

effect acting on it from the lower and upper Ni/hBN interfaces. Thus, the

blocking behavior is not perfect and leads to a small number of electrons pass-

ing through the insulator barrier for both the spin minority and majority.

However, in the case of Ni/4hBN/Ni, two middle hBN have oppositely spin

polarized each other, making the blocking behavior much stronger and result-

ing in a lower electron transmission probability for both spin majority and

minority, which shows similar transmission probability value as spin majority

in the PC state. Together with electrons high transmission of spin minority

channel in PC state, as a result, the TMR ratio also becomes significant at a

sharp LDOS position of 0.34 eV above the Fermi energy.

When adding more hBN as an insulator barrier to 5hBN, the transmission

probability at an energy of 0.34 eV is reduced, as shown by the red line in
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Figure 6.6: (a) The transmission probability of Ni/hBN-Gr-hBN/Ni and (b) The
spin charge density mapping of Ni/hBN-Gr-hBN/Ni (red color represent spin-up
charge density mapping) and LDOS of hBN-Gr-hBN insulator barrier of Ni/hBN-
Gr-hBN/Ni system in PC state.

Fig. 6.2. This is because, although the blocking effect has become stronger

since 4hBN is used as an insulator barrier, when 5hBN is considered, the

proximity effect found in the middle hBN becomes weaker. This is clearly

shown in Fig. 6.5(d), where the LDOS of the middle hBN at E − EF =0.34

eV become much smaller than that of the middle-interface and interface hBN.

This smaller LDOS leads to a significant reduction in the peak transmission of

minority spin electrons in the PC state compared to that in the Ni/4hBN/Ni

system. Therefore, the TMR ratio was reduced and became smaller than that

of the Ni/4hBN/Ni system.

Interestingly, the effect of proximity can be magnified when the hBN layer

is replaced with a graphene layer. For example, by replacing the unhybridized

hBN layer of the Ni/3hBN/Ni MTJ with graphene, Ni/hBN-Gr-hBN/Ni was

formed, as shown in Fig. 6.6 (b). The interface connection from Ni to hBN was

found very similar between Ni/3hBN/Ni and Ni/hBN-Gr-hBN/Ni junctions,

since Ni-N interlayer distance is 2.05 Å for both of junctions. The LDOS of

the hBN-Gr-hBN insulator barrier is shown in Fig. 6.6 (b). The LDOS of

hBN at the interface in Fig. 6.6 (b)is very similar to that of the upper (or

lower) hBN in Ni/3hBN/Ni. However, there is a clear difference in the LDOS

of graphene from the middle hBN of Ni/3hBN/Ni. Fig. 6.6(b) shows a 6-times

higher electronic density of states on graphene at E −EF =0.34 eV compared

to the center hBN in Ni/3hBN/Ni MTJ for the spin-down channel. Thus,

these states lead to a higher transmission probability for the corresponding
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energy. As shown in Fig. 6.6 (a), a high magnetoresistance ratio of 1200%

was observed for the Ni/hBN-Gr-hBN/Ni MTJ at E−EF =0.34 eV . This high

magnetoresistance ratio is higher than that of the Ni/4hBN/Ni MTJ, as shown

in Fig. 6.2 but has a similar thickness to Ni/3hBN/Ni. The high performance

and unique characteristics of the Ni/hBN-Gr-hBN/Ni MTJ could provide novel

functionalities, such as optically induced MTJs, which are introduced in the

following section.

6.4 Proposed Design and Mechanism of Opti-

cally Induced MTJs

The proposed idea of using a Ni/hBN-Gr-hBN/Ni MTJ as an optically in-

duced MTJ is shown in Fig. 7. The process of reading and writing data in

memory using light irradiation was considered here. For the writing process, as

discussed in a previous study, optical demagnetization using a circularly polar-

ized femtosecond or sub-picosecond laser and field-assisted magnetic switch-

ing can change the magnetic orientation of the free Ni(111) ferromagnetic

layer [93]. The high performance and unique characteristics of the Ni/hBN-

Gr-hBN/Ni MTJ are primarily used in the reading process. Two Au elec-

trodes were used to flow the current into the proposed MTJ device. A small

bias voltage was applied. First, the current flowed from the Au electrode to

the transparent electrode on top of the Ni/hBN-Gr-hBN/Ni MTJ. Without

any light irradiation onto the system, the reading process cannot be optimally

carried out because the current passing through the MTJ is relatively small in

both APC and PC states. This is because at the Fermi energy, the electron

transmission for the APC and PC states is low, as explained in the previous

section. Reading conditions 1 and 2 are shown in Fig. 7 (b). When linearly

polarized light, for example, infrared or visible light, is used on the upper Ni

slabs to excite electrons below the Fermi energy to an energy of 0.34 eV higher

than the Fermi energy, the optimal reading process is observed. The condition

3. Fig. 7 (b) shows that a high transmission occurs in the PC state, resulting

in the flow of current through the MTJ towards the lower Au electrode. In

addition, condition 4 shows that the MTJ is in the APC state, thus explaining

the observed low transmission.
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Figure 6.7: (a) The writing and (b) the reading process of Ni/hBN-Gr-hBN/Ni
proposed MTJ device with light irradiation.

6.5 Summary

The Ni/nhBN/Ni MTJs were investigated by increasing the number of hBN

layers in the tunnel barrier. Owing to the electron transmission through the

surface states, an increasing TMR ratio was observed when considering 2hBN

as the tunnel barrier compared with the case of a monolayer hBN. However,

a monotonic decrease in TMR was observed when more than two hBN layers

were considered. This behavior is attributed to the quenched surface states of

Ni(111) at the Fermi energy, which occur at the insulator gap of hBN.

On the other hand, it was found that the Ni/nhBN/Ni MTJ exhibited a

slight shift in the highest transmission peak toward an energy higher than the

Fermi energy. This result is attributed to electron transmission through Ni dz2

which hybridized with N pz. Interestingly, a high and increasing TMR ratio
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was observed at the energy where the high transmission peak was located.

These results are due to the proximity effect of the unhybridized hBN layer.

The effect of proximity can be magnified when the hBN layer is replaced with

a graphene layer. When Ni/3hBN/Ni was considered and the unhybridized

hBN layer in Ni/3hBN/Ni was replaced with a graphene layer, a stronger

proximity effect became evident through the higher electronic density of states

at the corresponding energy for the LDOS of graphene. Thus, these states

lead to a higher transmission probability for the corresponding energy. A high

magnetoresistance ratio of 1200% was observed for the Ni/hBN-Gr-hBN/Ni

MTJ at an energy of 0.34 eV.

The high performance and unique characteristics of this Ni/hBN-Gr-

hBN/Ni MTJ make it possible to exploit a novel device functionality, namely,

that of an optically induced MTJ. The process of reading and writing in the

proposed MTJ is expected to be conducted by light irradiation. Optical de-

magnetization and field-assisted magnetic switching are expected to change

the magnetic orientation of the free Ni(111) ferromagnetic layer. This process

represents the writing process of the proposed device. On the other hand,

the unique characteristics of the Ni/hBN-Gr-hBN/Ni MTJ would mainly con-

tribute to the reading process. The linear polarization of light was applied to

induce the transmission to occur at energies higher than the Fermi energy by

0.34 eV. This process was used to read the magnetic alignment of the Ni/hBN-

Gr-hBN/Ni MTJ.
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Chapter 7

Effect of interface on the

graphene Dirac cone control in

a Ni/hBN-graphene-hBN/Ni

magnetic junction

7.1 Introduction

After understanding the origin of proximity effect on the 2D materials

tunnel barrier in the previous chapter 6, further study was performed to un-

derstand the effectivity of proximity effect on controlling MGDC of graphene.

In this chapter, a study in which the magnetic proximity effect of the Ni

surface state was used to control the pseudospin of graphene is presented.

This study presents a theoretical study on the Ni/hBN–Graphene interface of

Ni/hBN–Gr–hBN/Ni system in controlling mass gapped Dirac cone (MGDC)

of graphene. The MGDC of graphene is controlled through its pseudospin

term, similar to the previous Ni/graphene/Ni system which has been dis-

cussed in chapter 4. However, in this study, the magnetic proximity effect

controlled the potential of graphene’s carbon atom sublattice A (C1) and B

(C2). The graphene layer was sandwiched between monolayer hBN and fol-

lowed by Ni(111) nanostructures to introduce the magnetic proximity effect

on the graphene layer. At the interface, 12 stacking configurations of hBN

layers and graphene were considered. The calculation was performed when

Ni(111) slabs were both in APC and PC state. In this study, we investigate

the influence of Ni(111) ’s surface state as an evanescent wave that works

on different sites of graphene on the electronic structure of graphene. Our
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Figure 7.1: The relative total energy respect to lowest energy for all proposed stack-
ing configuration and its classification into three groups.

results suggested that the 12 stacking configurations can be categorized into

three groups, each corresponding to van der Waals interaction between hBN

and graphene based on the relative total energy. Each group shows unique

characteristics in controlling graphene mass gapped. The magnetic proximity

effect and weak hybridization from the Ni(111) surface state as an evanescent

wave plays a major role in determining the characteristics of MGDC. Finally,

a device that can move the upper and lower Ni(111)/hBN slabs translation-

ally is proposed as a possible application of the Ni/hBN–Gr–hBN/Ni magnetic

junctions as a spin-mechatronics device.

7.2 Total energy and magnetic properties of

Ni/hBN–graphene–hBN/Ni

Fig. 7.1 shows the relative total energy of all 12 stacking configurations in

the APC and PC states to the lowest total energy. The lowest total energy

was shown by the HC1B–BC2H stacking configuration. From Fig. 7.1, based

on the relative total energy range to the lowest energy, the 12 stacking con-

figurations can be classified into three categories. The first category (group I)

is the stacking configurations with a relative total energy range of 0–2 meV.

This category consists of HC1H–BC2B and HC1B–BC2H stacking configura-

tions. The second category (group II) is the stacking configurations with a

relative total energy range of 55–65 meV, i.e., HC1N–BC2H, BC1B–NC2H,

HC1H–NC2B, and HC1B–NC2N. Finally, the third category (group III) is the

stacking configurations with a relative total energy range of 100–130 meV, i.e.,

NC1N–HC2H, NC1N–BC2B, HC1B–NC2N, HC1N–NC2H, BC1N–NC2B, and
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Table 7.1: The interlayer distance between upper/lower hBN with graphene for all
stacking configurations.

HC1N–NC2B. The stacking configurations are classified into three groups cor-

responding to van der Waals bonding interactions between hBN and graphene

layers.

Tabel 7.1 shows the interlayer distance between the hBN and graphene for

both upper and lower hBN. Tabel 7.1 shows that group I, has the shortest

interlayer distance between hBN and graphene compared to other groups, al-

though it has the lowest relative total energy range. This is because of the

interaction between the localized electron density of hBN on N atoms and the

π-orbital of graphene. The van der Waals bonding between hBN and graphene

is the strongest when N atoms are not placed on the top or below the C atoms

of graphene because the repulsive electron screening interaction between C

atoms of graphene and N atoms of hBN was reduced. Furthermore, when N

atoms of hBN are placed on the top or below C atoms of graphene, the relative

total energy increases. This increase because the repulsive electron screening
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Figure 7.2: Spin charge density mapping of Ni/hBN-Gr-hBN/Ni magnetic junctions
in (a)HC1B-BC2H, (b)BC1B-NC2H, and (c)BC1N-NC2B stacking configurations
for APC and PC states. (Red color represent spin-up charge density and blue color
represent spin-down charge density)

interaction becomes stronger and leads to the weaker van der Waals bonding,

resulting in a bigger interlayer distance between hBN and graphene layers. The

interlayer distance of the stacking configuration in group II, is shown in Tabel

7.1. When one of the hBN layers (either lower or upper) placed the N atoms

on the top or below C atoms, the interlayer distance between that hBN and

graphene became greater than group I. When both upper and lower hBN layers

place the N atoms on the top and below the C atoms of graphene, as shown

in group III, the relative total energy increases even more. The increase in the

relative energy corresponds to the bigger interlayer distance between hBN and

graphene. This result agrees with the study on hBN–graphene–hBN stacking

in previous shapter 6. However, in this case, the charge transfer from Ni atoms

at the interface to N atoms of hBN results in additional electron screening at

the interface. It strengthens the electron screening repulsion between hBN

and graphene, categorizing the 12 stacking configurations into three groups

becomes more clearer than in the previous study.

Furthermore, the total energy difference between the APC and PC states

is relatively small for all 12 stacking configurations. Suggesting that the mag-

netic coupling between two Ni slabs is relatively weak. Fig. 3 shows the spin-

charge density mapping for each group represented by BC1H–HC2B (group

I), BC1B–NC2H (group II), and BC1N–NC2B (group III). The induced mag-

netic moment occurred on hBN layers is consistent with the studies discussed

in chapter 6 in which the hybridized N atoms have induced magnetic mo-

ment with the same spin direction as Ni atoms. This characteristic is true for

all stacking configurations. For the case of graphene, the induced magnetic
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Table 7.2: The induced magnetic moment on C atoms in sublattice A (C1) and
sublattice B (C2) of graphene in both APC and PC states.

moment is unclear (Fig. 7.2). However, Table 7.2 shows that a small but non-

negligible induced magnetic moment was observed on graphene. Interestingly,

the induced magnetic moment on graphene is based on the stacking config-

uration. Therefore, the total energy difference between APC and PC states

might come from the induced magnetic moment configuration, which occurs

on C atoms of graphene layers due to the proximity effect of Ni surface states.

Table 7.2 shows the induced magnetic moment on C atoms in sublattice A

(C1) and sublattice B (C2). For group I, the proximity effect only works on

π-orbital of graphene since the Ni atoms at interface hybridized with N atoms

of hBN and N atoms was placed on top and below of hollow site of graphene.

This means that the Ni surface state as the evanescent wave does not directly

affect the spin-charge density of C atoms. Therefore, when the PC state is

considered, a small but non-negligible induced magnetic moment on C atoms

is observed, as shown in Table 7.2. However, there is a slightly different char-

acteristic between HC1H–BC2B and HC1B–BC2H stacking configurations. In

HC1H–BC2B, the magnetic moment of C2 atoms is higher than that of C1

atoms. This resulted from B atoms being located on top and below C2 atoms

and the induced magnetic moment on B atoms slightly induced a magnetic

moment on C2 atoms by giving an additional 0.001 µB higher than that of C1

atoms. This reason also explains the equal magnetic moment on HC1B–BC2H
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since upper and lower B atoms are located below or above different graphene

sublattices. However, when the APC state is considered, different behavior of

induced magnetic moment between HC1H–BC2B and HC1B–BC2H stacking

configurations is observed. In both stacking configurations, since the position

of N atoms of upper and lower hBN is symmetric to graphene, the proximity ef-

fect is canceled out on the π-orbital of graphene. For the case of HC1H–BC2B,

the induced magnetic moment, which comes from B atoms proximity effect, is

also canceled out since both upper and lower the B atoms are located above

and below C2 atoms. However, for the case of HC1B–BC2H, since B atoms

are located on different sublattices, thus a small induced magnetic moment of

0.001 µB is observed on C1 and C2 with having antiferromagnetic order.

When the stacking configuration of group II is considered, one of two hBN

layers, either the lower or upper, has the N atoms, which hybridized with

Ni atoms at the interface, placed in line with C atoms. Here, the proximity

effect from one of the hBN/Ni slabs perturbs the electrons of C atoms directly.

When the PC state is considered a larger induced magnetic moment on C atoms

affected by the surface state of hybridized Ni was observed compared to that

found in the stacking configuration of group I. In the case of APC state, since

the position of N atoms is not symmetric, i.e., one placed on the top/below of

C atoms and another placed on top and below hollow site, an obvious induced

magnetic moment on graphene was observed. The antiferromagnetic (AFM)

order on the induced magnetic moment of C1 and C2 but having the same

amplitude comes from the half-filled pz-orbital and Pauli exclusion principles

are often found in organic molecules in sp2 hybridization or magnetic alternant

hydrocarbon system [88]

For the stacking configuration in group III, the induced magnetic moment

on graphene depends on the position of N atoms in the upper and lower hBN,

i.e., symmetric or asymmetric. In group III, the N atoms of hBN layers were

placed on top and below of C atoms. Thus, it is considered symmetric when

N atoms of the upper and lower hBN layer agrees one-C atom of graphene.

However, it is considered asymmetric when N atoms of the upper and lower

hBN layer agree with different sublattices of C atoms, e.g., upper hBN in

line with C1 and lower hBN in line with C2. The most significant induced

magnetic moment was observed upon symmetric stacking configurations and

PC state compared with other stacking configurations. The proximity effect

from the Ni slabs upper and lower were summed up on one of the C atoms and

created an antiferromagnetic order of induced magnetic moment between C1
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and C2 atoms. However, when the APC state was considered, the proximity

effect from upper and lower Ni slabs canceled out, resulting in zero induced

magnetic moment on graphene. When asymmetric stacking configurations

were considered, the induced magnetic moment of graphene is also significant

when the system is in the APC state. This characteristic comes from the

proximity effect of upper and lower Ni slabs working on different C atoms of

graphene. Since the upper and lower Ni slabs have an opposite direction and

graphene prefers to have antiferromagnetic order; thus, the induced magnetic

moment of C1 and C2 atoms reinforce each other. However, when the system

is in a PC state, the proximity effect creates ferromagnetic order induced

magnetic moment on C atoms, but near to zero since the effect is reduced due

to the antiferromagnetic nature of C atoms of graphene.

7.3 Controllable Dirac cone of graphene due

to tunable pseudospin term of graphene

Table 7.3 shows the predicted spin-charge density nη,σ) where η is either

C1 or C2 and σ is either spin-up (↑) or spin-down (↓). The value of nη,σ is

assumed to be determined by integrating nσ(r) within an ionic radius of the

carbon atom. This spin-charge density contributes to determining the poten-

tial of C1 and C2 atoms, corresponding to Dirac cone perseverance. Both

HC1H–BC2B and HC1B–BC2H stacking configurations have N atoms above

and below the hollow site of the graphene layer for the group I stack con-

figurations. However, where HC1H–BC2B (HC1B–BC2H) are symmetrically

positioned (asymmetrically), the location of B atoms is different. This differ-

ence affects the spin-charge density on C1 and C2. In HC1H–BC2B stacking

configuration, since upper and lower B atoms are located on top and below of

C2 atoms, a modulated spin-charge density between C1 and C2 is expected.

From Table 7.3, it shows that upon the system in APC state,

nC2,↑ = nC2,↓ > nC1,↑ = nC1,↓. (7.1)

The difference found between nC2,σ and nC1,σ comes from the van der Waals

interaction between the C2 and B atoms. From Equation 7.1, the potentials

between C1 and C2 atoms are modulated, resulting in an open gapped Dirac

cone, as shown in Fig. 7.3(a). Since the spin-charge density difference between

spin-up and spin-down electrons is the same, thus the band structure of spin-
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Table 7.3: The integrated spin-charge density of C1 and C2 in APC and PC states for HC1H-BC2B and HC1B-BC2H stacking configurations.

Table 7.4: The integrated spin-charge density of C1 and C2 in APC and PC states for HC1N-BC2H, BC1B-NC2H, HC1H-NC2B and HC1B-
BC2N stacking configurations.
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Table 7.5: The integrated spin-charge density of C1 and C2 in APC and PC states for NC1N-HC2H, NC1N-BC2B, HC1B-NC2N, HC1N-NC2H,
BC1N-NC2B and HC1N-NC2B stacking configurations.
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majority and minority channels is overlapped. However, when the PC state is

considered,

nC2,↑ > nC2,↓ > nC1,↑ > nC1,↓. (7.2)

showing induced magnetic moment was observed on C1 and C2 atoms. Equa-

tion 7.2 indicates that the potentials between C1 and C2 atoms are modu-

lated and spin-polarized, resulting in gapped Dirac cone being open and spin-

polarized, as shown in Fig. 7.3(b).

For the case of HC1B–BC2H, in the APC state, the van der Walls interac-

tion between B and C atoms occurs on C1 and C2 atoms. However, a magnetic

moment occurs on C atoms which were induced by the magnetic moment on

B atoms, resulting in modulated spin-charge density as follows:

nC1,↑ = nC2,↓ > nC1,↓ = nC2,↑. (7.3)

Equation 7.3 shows that the potentials between C1 and C2 atoms are modu-

lated, and the spin-charge density difference between spin-up and spin-down

electrons is the same. Therefore, the gapped Dirac cone is open with spin-

majority and minority channel overlap, as shown in Figure. 5(a). However,

in the PC state, unlike the HC1H–BC2B stacking configuration showing the

gapped Dirac cone is open, HC1B–BC2H shows a closed Dirac cone. This

characteristic comes from the asymmetric position of B atoms, which induced

the same magnetic moment on C atoms creating an equivalent spin-charge

density between C1 and C2 as follows:

nC1,↑ = nC2,↑ > nC1,↓ = nC2,↓. (7.4)

Thus, the equipotential was expected, preserving a chiral symmetry creating

a closed gapped Dirac cone. Further, the spin-charge density between spin-

up and spin-down electrons creates the closed Dirac cone polarized, as shown

in Fig. 5(b). Finally, the opening and closing of the gapped Dirac cone on

HC1B–BC2H stacking configuration, which is the most stable one, show the

controllable Dirac cone, which comes from the controllable induced magnetic

moment of graphene. Although the gap found in the APC state is relatively

small, in the following two sections, the influence of weak hybridization between

Ni and C atoms through damped Ni dz2 surface state and C pz is introduced

to widen the gap of the Dirac cone.
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Figure 7.3: The band structure of Ni(111)/hBN-Gr-hBN/Ni(111) in (a) HC1H-
BC2B and (b) HC1B-BC2H stacking configurations in both APC and PC states.(Red
line represent spin majority channel and blue line represent spin minority channel)

7.4 Influence of the surface state of Ni works

directly on C atoms in the gapped Dirac

cone

When the N atoms of one of the hBN layers, either upper or lower hBN

layer, are in the APC or PC state, a different induced magnetic moment is ob-

served between C1 and C2, as shown in Table 7.4. Thus, a MGDC is observed

for both APC and PC state cases, as shown in Fig. 7.4. However, interest-

ingly, the gap size for spin majority and spin minority channels is different

and rather significant. For instance, it can be seen on the band structure of

HC1N–BC2H. For both APC and PC cases, the spin majority channel has a

large bandgap greater than 200 meV, while oppositely, the spin minority has

a bandgap smaller than 100 meV. This characteristic can be explained by re-

ferring to the integrated spin-charge density for the stacking configuration in

group II shown in Table 7.4.

For the case of HC1N–BC2H, when the APC state is considered, the spin-

charge density difference of spin-up electrons is almost three times that of

spin-down electrons. Therefore, the MGDC is more prominent in the spin

majority channel than the spin-minority channel. This significant difference

was also found when the PC state was considered. The high difference in spin-

up electrons resulted from the Ni surface states’ direct influence on C1 atoms.

The lower Ni slab has a spin-up direction of the magnetic moment. Thus, the

C1 has a spin-down direction of an induced magnetic moment since graphene
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Figure 7.4: The band structure of Ni(111)/hBN-Gr-hBN/Ni(111) in (a)HC1N-
BC2H, (b)BC1B-NC2H, (c)HC1H-NC2B and (d)HC1B-BC2N stacking configura-
tions in both APC and PC states.(Red line represent spin majority channel and
blue line represent spin minority channel)

prefers to have antiferromagnetic order with the magnetic moment direction

of Ni slabs, as shown in Table 7.2. The spin-up electron density is suppressed

to be lower than the spin-down electron density, resulting in a big difference

in spin-up electron density between C1 and C2.

7.5 Controllable mas-gapped Dirac-cone

through Ni surface state influence on

C atoms

Both upper and lower Ni slab surface states work on C atoms in group

III stacking configuration. The proximity effect of upper and lower Ni slabs

on the C atom can be categorized into two: symmetrically (asymmetrically),
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in which the surface state works on one-C-atoms sublattice (two different C

atoms sublattice). The NC1N–HC2H, NC1N–BC2B, and HC1B–NC2N are

symmetric, while HC1N–NC2H, BC1N–NC2B, and HC1N–NC2B are catego-

rized as asymmetric. The symmetric and asymmetric influences give different

characteristics on the spin-charge density of graphene; thus, the MGDC.

The symmetric case, e.g., NC1N–HC2H stacking configuration, has zero

induced magnetic moment on graphene in the APC state but larger induced

magnetic moment than group II in PC state. However, although the induced

magnetic moment on graphene is zero in the APC state, Fig. 7.5(a) shows the

mass gapped Dirac in the spin majority and minority channel. This result can

be explained by looking at Table 7.5. The surface state of Ni influences the

spin-charge density of C atoms of graphene, generating different spin-charge

density mapping between C1 and C2, although the magnetic proximity effect is

canceled out on graphene. Since both upper and lower stacking configuration

is symmetric, thus the spin-up and spin-down electron density difference are

the same resulting in overlap MGDC on spin majority and minority channel.

For the case of PC, the induced magnetic moments found in C1 and C2

are different. However, the spin-charge density difference between spin-up and

spin-down electrons is rather different. For instance, it can be seen in the

NC1N–HC2H stacking configuration. It shows that a prominent difference

between C1 and C2 electron density is observed for the spin-down electron

density. However, for the case of spin-up electron density, a small electron

densities difference between C1 and C2 was found instead. This characteristic

comes from the magnetic response of C1 atoms, which tend to have anti-

ferromagnetic order with Ni atoms. Thus, the spin-down charge density of

C1 atoms become larger than the spin-up charge density, while for the C2,

the spin-down electron becomes smaller. Thus, the MGDC for spin majority

channel is slightly open, while the MGDC in spin minority channel is promi-

nent and bigger than group II, as shown in Fig. 7.5(a). This characteristic is

found for all the stacking configurations in group III, which has the asymmetric

influence of the proximity effect.

However, for the asymmetric influence of the proximity effect, a similar

characteristic as our previous study is observed.24 When the APC state is con-

sidered, the surface state of upper-lower Ni slabs works on different graphene

sublattices. Thus, different induced magnetic moments on C1 and C2 are ob-

served. This difference led to the chiral symmetry breaking, resulting in mass

gapped open on graphene’s Dirac cone for both spin majority and minority
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Figure 7.5: The band structure of Ni(111)/hBN-Gr-hBN/Ni(111) in (a)NC1N-HC2H, (b)NC1N-BC2B, and (c)HC1B-NC2N stacking config-
urations in both APC and PC states.(Red line represent spin majority channel and blue line represent spin minority channel)
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Figure 7.6: The band structure of Ni(111)/hBN-Gr-hBN/Ni(111) in (a)HC1N-NC2H, (b)BC1N-NC2B, and (c)HC1N-NC2B stacking config-
urations in both APC and PC states.(Red line represent spin majority channel and blue line represent spin minority channel)
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channels, as shown in Fig. 7.6. It is in a rather similar case as found in an

HC1B–BC2H stacking configuration, but the proximity effect is more promi-

nent since it works directly on C atoms. It can be seen from Table 7.5 that

the spin-charge density difference in group III asymmetric is much bigger than

that in HC1B–BC2H.

Interestingly, the gap size is comparable to Ni/graphene/Ni magnetic junc-

tions as discussed in chapter 4. Finally, for the case of PC state, the induced

magnetic moment on C1 and C2 has the same direction and value. Therefore,

a spin-polarized Dirac cone is expected to be observed in Fig. 7.6.

7.6 Possible application on the spin mecha-

tronic valve

The unique characteristics of mass gapped Dirac cone of graphene of

Ni/hBN–Gr–hBN/Ni, which depends on the stacking configuration (that can

be categorized into three), can be proposed as a device where a controllable

MGDC is tuned by using mechanical motion. This is because the van der

Waals interaction between hBN and graphene is weak enough so that the hBN

can be mechanically translated to create another stacking configuration. Re-

cently, tilting two layers of graphene to have particular angle is experimentally

possible, thus, a translation motion can also be expected. Such a device can

be proposed by considering APC state on Ni/hBN–Gr–hBN/Ni with the de-

vice structure which is shown in Fig. 7.7(a). From the most stable stacking

configuration, HC1B–BC2H, the upper slab of Ni/hBN can be shifted to get

BC1B–NC2H stacking configuration. Afterwards the lower Ni/hBN slab can

be shifted to get BC1N–NC2B stacking configuration. The change of in-plane

conductance at energy E − EF =-0.3 eV can be expected by looking on the

LDOS of graphene in Fig. 7.7(b) for spin-majority channel and Fig. 7.7(c)

for spin-minority channel. At E − EF =-0.3 eV, for spin-up electrons, mass

gapped was observed only on BC1N–NC2B stacking configuration, while the

other having stacking configuration does not exhibit mass gapped. However,

for spin-down electrons, both BC1B–NC2H and BC1N–NC2B stacking con-

figurations exhibit mass gapped, while only HC1B–BC2H does not have mass

gapped Dirac cone (MGDC). Therefore, three different non-volatile memory

states can occur by changing the stacking configuration from HC1B–BC2H

to BC1N–NC2B. Further investigation was necessary to comprehend all the

processes and calculate the in-plane transmission probability of the system.
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7.7 Summary

This paper investigated the influence of Ni/hBN–Graphene interface of

Ni/hBN–Gr–hBN/Ni magnetic junctions in controlling MGDC through prox-

imity effect. The 12 possible stacking configurations were proposed. Both

the APC and PC states of the upper and lower Ni slabs were considered for

all the 12 stacking configurations. The 12 possible stacking configurations of

Ni/hBN–Gr–hBN/Ni magnetic junctions can be categorized into three groups

based on the relative total energy to the lowest, which corresponds to the site

of graphene the upper-lower Ni surface state work. The first category (group

I) is the stacking configurations with a relative total energy range of 0–2 meV.

This category consists of HC1B–BC2H, which has the lowest total energy from

the 12 stacking configurations, and HC1H–BC2B stacking configurations. The

second category (group II) is the stacking configurations with a relative total

energy range of 55–65 meV, i.e., HC1N–BC2H, BC1B–NC2H, HC1H–NC2B,

and HC1B–NC2N. Finally, the third category (group III) is the stacking config-

urations with a relative total energy range of 100–130 meV, i.e., NC1N–HC2H,

NC1N–BC2B, HC1B–NC2N, HC1N–NC2H, BC1N-NC2B, and HC1N–NC2B.

In group, I, the position of the upper and lower B atoms determines the

characteristics of mass gapped Dirac-cone of graphene. When it is symmetric,

which is found in a BC1B-HC2H stacking configuration, mas gapped Dirac

cone was found open for both APC and PC states with a gap size less than 50

meV. However, when the position of upper and lower B atoms is asymmetric,

the mas gapped Dirac-cone is open (close) when APC (PC) state is considered.

The gapped mass size found in the APC state is less than 25 meV. This means

the magnetic proximity effect from the B atom can preserve or break the chiral

symmetry of graphene, although the contribution is rather weak.

For group II, the influence of Ni surface state on mass-gapped Dirac cone of

graphene is introduced by either upper or lower Ni slabs, which works directly

on the C1 or C2 atom. This configuration led to the opening of mass-gapped

Dirac cone with one spin majority channel had big mass-gapped while the

other had small mass-gapped for both APC and PC states. The surface state

as an evanescent wave works directly on C atoms, creating bigger mass gaps.

For group III, both upper and lower Ni slabs surface states act on C atoms of

graphene. The proximity, in this case, is categorized into symmetric when the

surface state works only on one sublattice C atoms and the asymmetric when

the surface state works on two different sublattices of C atoms. A prominent

mass gap is observed in the APC state, and the spin majority and minority
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channel overlap for the symmetric one. When the PC state is considered,

one of the spin channels has mass-gapped, larger than group II, while the

other has considerably small mass-gapped. However, a prominent mass-gapped

is observed in the APC state with a spin majority, and a minority channel

overlaps for the asymmetric case. The chiral symmetry is preserved in the PC

state, resulting in a spin-polarized Dirac-cone.

The unique characteristics of each group in controlling the mass-gapped

Dirac cone of graphene can be used for a possible application in the spin-

mechatronics device. By fixing the magnetic junctions in the APC state, mov-

ing the upper and lower Ni/hBN slabs translationally from HC1B–BC2H to

BC1B–NC2H and finally becoming NC1B–BC2N, three different conductance

is expected at energy E−EF =-0.3 eV . Thus, a magnetic junction with three

non-volatile memory states can be realized.
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Figure 7.7: The device structure for the proposed application in controlling Dirac
cone through mechanical motion. The LDOS of graphene for (a) spin-up and
(b) spin-down electrons when Ni/hBN–Gr–hBN/Ni system having HC1B–BC2H,
BC1B–NC2H, and BC1N-NC2B stacking configurations.
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Chapter 8

CONCLUSIONS

The in-plane conductance of graphene is related to its Dirac cone energy

band characteristics, making the electrons in graphene behave peculiarly, hav-

ing the same velocity and no inertia. The Dirac cone of graphene comes from

the perseverance of chiral symmetry of the C atoms in sublattices A and B by

having equal potential between two sublattices. Once the potential difference

arises between C atoms of sublattices A and B, the chiral symmetry will be

broken, and the Dirac cone will create a mass gap. When the Dirac cone of

graphene creates a mass gap, low in-plane conductance of graphene is to be

expected. Starting from the above facts, this thesis suggests a successful de-

sign of a graphene-based spintronic device with high performance by proposing

a perspective of in-plane conductivity change of graphene by controlling the

Dirac cone of graphene in a non-volatile way.

The design proposed in this thesis to control the Dirac cone of graphene

in a non-volatile way is by creating a nano-spin-valve structure of graphene

sandwiched by ferromagnetic metal Ni(111) slabs. In this structure, the con-

trol of the graphene’s Dirac cone characteristics is considered by changing the

magnetic alignment of upper and lower Ni slabs, i.e., antiparallel and parallel

configuration. It was discussed in 4, that the controllable MGDC of graphene

was successfully done. When the magnetic moments of the upper and lower

Ni(111) slabs have an antiparallel configuration (APC), the MGDC is open.

However, the MGDC is closed in parallel configuration (PC). This unique

characteristic is because the most stable arrangement of the Ni/graphene/Ni

heterostructure occurs when Ni atoms of the upper and lower Ni(111) slabs

at the interfaces are hybridized with different graphene sublattices. In other

words, Ni atoms from the lower Ni(111) slab hybridized with C atoms in sub-

lattice A (i.e., CA), and Ni atoms from the upper Ni(111) slab hybridized with
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C atoms in sublattice B (i.e., CB). Although the C atoms of graphene bond

with the Ni atoms, this special hybridization preserves the equipotential be-

tween sublattices A and B. Meanwhile, a magnetic moment is induced on the

graphene layer by charge transfer from the Ni to C atoms. Therefore, the in-

duced magnetic moments of the CA and CB atoms depended on the magnetic

alignment of the Ni(111) slabs. Moreover, the induced magnetic moments in

APC and PC between the CA and CB atoms exhibit antiferromagnetic and

ferromagnetic orders. This characteristic implies that the pseudospin between

sublattices A and B can be controlled to preserve or break the chiral symmetry,

making the MGDC controllable.

After the controllable MGDC of graphene was found, the efficiency of this

control on the in-plane magnetoresistance of graphene was investigated. From

the discussion in chapter 5, the controllable MGDC creates a colossal in-plane

magnetoresistance (IMR) ratio for graphene. When an atomic scale width

of Ni slabs is considered (∼ 12.08 Å) sandwiching some parts of graphene,

a colossal IMR up to 3100% was observed at E − EF=0.2 eV. This colossal

IMR comes from the electronic states created from pd-hybridization between

graphene and Ni slabs. Its characteristics depend on Ni slabs’ magnetic align-

ment; a high (low) density of states is created when the PC (APC) state is

considered. On the other hand, when the nanometer scale width of Ni slabs is

considered, a colossal IMR beyond 3100% was expected at E − EF=0.65 eV,

which corresponds to the controllable MGDC of graphene.

Successful control of the graphene’s MGDC and a colossal IMR ratio have

been discovered. However, an optimization to create a successful graphene-

based spin-valve structure spintronics device needs to be performed. The op-

timization was needed to realize the actual device and ensure a performance

comparable to that predicted in this theoretical study. The chemical bonding

between the Ni slabs and graphene in Ni/graphene/Ni needs to be perfect to

control graphene’s MGDC. This perfect surface can be realized experimen-

tally; however, it is relatively difficult. Thus, to avoid a complete change in

the IMR of graphene due to a defect at the Ni/graphene interface, a barrier

is necessary to maintain the graphene Dirac cone. Furthermore, the chemical

bonding between Ni and graphene leads to difficult control of graphene’s Fermi

Energy. By creating the barrier, easier controllability of graphene’s Fermi en-

ergy will be expected. However, prior to further investigation on the effectivity

of proximity effect on controlling MGDC of graphene, understanding how the

Ni(111) surface state as evanescent wave work on graphene created magnetic
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proximity effect is necessary.

Prior to further investigation on the effectivity of proximity effect on con-

trolling MGDC of graphene, understanding how the Ni(111) surface state acts

as evanescent wave work on graphene created magnetic proximity effect is nec-

essary. A theoretical study was conducted to understand the origin of the

magnetic proximity effect in 2D material, which was sandwiched with ferro-

magnetic metal. the first investigation was done on a Ni/nhBN/Ni magnetic

junctions with n = 2, 3, 4, and 5. The study shows that the magnetic prox-

imity effect on the hBN layer in the insulator barrier originated from the Ni

surface state at the interface, which acts as an evanescent wave works on the

hBN layer. The evanescent wave created a new state at the bandgap of hBN,

creating an induced magnetic moment. This new state at the bandgap of hBN

became the main contribution to the tunneling transport of Ni/nhBN/Ni mag-

netic junctions when the CPP scheme was considered. The study also answers

that the TMR ratio of 2D materials-based MTJ is reduced when the thickness

of 2D materials increases due to the damping nature of the Ni surface state.

The study also answers that 2D materials-based MTJ gives such a low TMR

ratio because the main transmission contribution is from Ni’s surface state.

The pd-hybridization at the interface leads the surface state of Ni to create a

bonding and antibonding nature. Thus, the high MR ratio was not observed

on Fermi energy but rather at energy higher and lower than Fermi energy.

However, the magnetic proximity effect on middle hBN was weak enough since

the d2
z-orbital of the Ni(111) surface state works on the unfilled pz-orbital of B

atoms. Thus, replacing the middle hBN in Ni/3hBN/Ni with graphene, a sig-

nificant induced magnetic moment and proximity state was observed because

the d2
z-orbital of the Ni(111) surface state works on π-orbital of graphene.

After understanding the origin of the proximity effect on the 2D materials

tunnel barrier, further study was performed to understand the effectivity of

proximity effect on controlling MGDC of graphene. The controllable induced

magnetic moment on graphene is replaced through charge transfer to mag-

netic proximity effect. The van der Waals interactions between graphene and

hBN layers led to easy controllability of graphene Fermi energy by using gate

voltage. Furthermore, controlling the induced magnetic moment on graphene

can lead to controllable MGDC size. One of the methods is introducing a

translational mechanical motion of Ni/hBN slabs. This method leads the sys-

tem to exhibit three memory states. It opens the opportunity by creating 2D

materials-based magnetic junctions to have a memory state of more than two
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beyond the conventional magnetic tunnel junctions (MTJs).

Furthermore, it was also discovered that the position of graphene’s MGDC

(above or below Fermi energy) was related to the bonding at the interface

by comparing the position of graphene’s MGDC between Ni/graphene/Ni

and Ni/hBN-graphene-hBN/Ni nano-spin-valve structures. The difference in

charge doping characteristics of graphene’s MGDC was found. In the case

of Ni/graphene/Ni nano-spin-valve structure, the Fermi energy is located be-

low the graphene’s MGDC. This characteristic implies that the graphene is

positively charged doped. However, the position of the Fermi energy below

the MGDC comes from the creation bonding and antibonding state due to pd-

hybridization between C and Ni atoms at the interface. This fact can be proved

by looking at the Fig. 4.2, where the Dirac-cone was observed below and above

Fermi energy, indicating bonding and antibonding states, respectively.

On the other hand, in Ni/hBN-graphene-hBN/Ni case, the Fermi energy

is located above the graphene’s MGDC. This characteristic implies that the

graphene is negatively charged doped. Moreover, unlike Ni/graphene/Ni junc-

tion, Ni/hBN-graphene-hBN/Ni does not have strong pd-hybridization be-

tween C and Ni atoms. Thus, no bonding-antibonding Dirac-cone was observed

on all 12 stacking configurations of Ni/hBN-graphene-hBN/Ni in chapter 7.

This negatively charged graphene originated from electrical polarization on

hBN at the Ni/hBN interface, where the hBN is positively charged. The pos-

itively charged hBN comes from its pyramidal structure at the interface [92].

Due to its pyramidal structure, the B atoms have a negative dipole moment

while N atoms have a positive dipole moment. Since N atoms are much closer

to graphene, thus graphene becomes slightly negatively charged.

Understanding the chemical and physical properties of the interface in

graphene-based magnetic junctions becomes a foundation for realizing a spin-

tronic device based on graphene in-plane conductance. The findings of pos-

sible control of graphene MGDC through two different characteristics of the

interface (chemical bonding and physical bonding) and the observed colos-

sal IMR ratio presented in this thesis become a significant development in

realizing high-performance 2D materials-based spintronic device having high

performance. Furthermore, the new findings on the functionality beyond the

conventional spintronic device open insight into the novel device of spintronic

device.
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