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0. Introduction

In this paper, we shall be interested in studying defining equations of
algebraic curves X over @, which are uniformized by arithmetic Fuchsian groups
T.

It is well known that one can take the modular equation of level N, denoted
by ®y(x, y), as a defining equation of the modular curve X,(N). This equation
is very important, because it plays an essential role in complex multiplication
theory over imaginary quadratic fields. Moreover it reflects a property of
Xo(V) as the coarse moduli space of generalized elliptic curves E with a cyclic
subgroup of order N. However, in case of carrying out numerical calculations,
it is difficult to treat the modular equation. The reason is that its degree and
coefficients are fairly large. For example,

Dy, y) = & +1°—’y*+ 243 31ay(x+y) —2*- 3*- 53(aP+5%) 4 3¢+ 5°-4027xy
+28.37.55(x+y)—22.3%.5° |
Dy, ¥) = &yt —ay —22.33. 9907y (x*+ ) +23- 32- 31aPy*(x+y)+
25. 32 53(3 -4 %) 1216 35. 5317+ 263xy (-1 y) -+ 2- 3¢- 13193 -
6367x%y*—2% 56229730y 4 2% 3% 58P+ y%) + 2% - 33 5%(x+-y)
(cf. [8D).

Therefore it seems meaningful to give more convenient equations which can
be treated easily and whose degrees and coefficients are as small as possible.
Suppose now that X is of genus two. Then the field @(X), consisting of
rational functions on X defined over @, is isomorphic to an algebraic function
field Q(x, ), where the relation between x and y is y*=f(x) and f(T)EQ[T] is a
separable polynomial of degree 5 or 6. We call the equation y’=f(x) a normal
form of X. In [2], Fricke determined normal forms of modular curves Xy(23),
X(29), X,(31), which are sufficiently simple to treat easily from our viewpoint.
In this article, we will give the most efficient method for determining a normal
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form of the curve X of genus 2, using only Fourier coeflicients of cusp forms
of weight 2 with respect to the Fuchsian group I'. In the case of T'=T"y(p)
or T'*(p) with p prime, we can calculate Fourier coefficients by using theta
series derived from ideals of a maximal order of a quaternion algebra (cf.[4]).
Therefore, for modular curves X (p) or X*(p) of genus 2, we can explicitly
determine their normal forms. Let y*=g(x) be a normal form of X(p) or
X*(p) which is obtained by our method. Then a remarkable fact is that the
polynomial g(T') always belongs to Z[T] and its discriminant is divisible only
by 2 and p.

The content of this paper is as follows. In section 1 we give a table of
normal forms of some modular curves of genus 2 which are derived from our
algorithm. In section 2 we give an algorithm for calculating a normal form of
certain curves of genus 2. More precisely, let X be a compact Riemann sur-
face of genus 2 which is uniformized by a Fuchsian group of the first kind T" with
700 as its cusp. Then we can determine a normal form of X only from Fourier
coefficients obtained by expanding a basis of S,(T") around ico. In section 3
we review a work of Eichler [4] and give a table of Fourier coefficients calculat-
ed by Pizer’s algorithm [11].

I wish to express my sincere thanks to Y. Sato who helped me to compute
theta series, and Professor K. Hashimoto whose suggestions and encouragements
were valuable.

1. Results for modular curves of genus 2 of prime level

In the following table, we give normal forms of modular curves of genus
2, which are obtained by our method (cf. section 2). 'The data necessary to
obtain these results will be given in section 3.

Table 1.
normal form «? =g(x). ” :liscrinﬁnant
of g(T).
Xo(23) w?=a%—8x" + 2x* + 267 — 112+ 10x—7. 212.236,
Xo(29) W=t a1 L 20 48 b By —T. 212.299,
Xo(31) 1vz=,\'f’—8x5+()x4+le“—l1.\‘2-—14«\'—“3. 2‘2»31“7.4“
Xo(37) wz=.\'6+8x5—20.\‘4+28.\~3—24.\'3-.|-12.\'~4... 212.373,
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X*(67) wl=.§;—4x5:(;‘;—6x3+9x2— 14x +9. 212672,

X*(73) w?=xf — 415 4 6x* + 203 — 1522+ 10x + 1. 212.732,

XH103) | w?=a®— 100* 42207 — 1937 + 6+ 1. 212103,
X*(107) 107 = 88 — 4T 10x% — 1847 4 1742 — 10x+ 1. 212.1072, o
X*(167) wz=.v6—4.\-5+2x“-2.n-~‘—3x2+§;:§.> o 2‘2-‘1672.
X*(191) u'2=.\'f‘+2x4+é.\v'3+Sx2—()x+L o 212.1912,

RemaRrk 1.1.  Our results for Xy(23), X,(29), X,(31) coincide with those
given in [5]. (In the case of X(23) and X(31), replace x by x—1).

ReEmMARK 1.2.  We can explain the exponent of each prime factor of the dis-
criminant of g(7) by a theory of T. Saito (cf. [12]). Roughly speaking, this
number explains a gap between the model over Z defined by w*=g(x) and the
minimal regular model.

2. An algorithm for determining a normal form

Let T" be a Fuchsian group of the first kind such that 7co isincluded in the
set of its cusps. Therefore there exists a unique positive real number # such

el B (<) Wmez).

Let X be a compact Riemann surface which is uniformized by T', and g the
genus of X7'. We assume that g>2.

Let fi=3algl, -+, f,— 3 aqi be a basis of SyT), where SyT) denotes the

C-vector space of cusp forms of weight 2 with respect to T, g,,:exp(Z;zi%), and

2 is a parameter on the complex upper-half plane . Put k=Q(a!V, ---, a}®|
j=1). 'The next lemma is well known.

Lemma 2.1. Let Q' be the sheaf of holomorphic 1-forms. Then the fol-
lowing map ¥ is an isomorphism from Sy(T") to HY(X{", Q') :

W SyT). HY(Xy, Q)

i 2;:" f(z)dz

Let F be the field of meromorphic modular functions with respect to T’
whose Fourier expansions with respect to ¢, have coeflicients in k. Then we
have the following lemma.
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Lemma 2.2.

(1) F is an algebraic function field of one variable with a constant field k.

(2) The rational function field C(X {*) of X¢" is generated by F and C. There-
fore X' has a model defined over k.

RemMARK 2.3. (1) is true for any subfield F' of C(X{") and any subfield
k' of C such that:

(1) FSF'.

(2) F’ and C are linearly disjoint over &’.

Proof of Lemma 2.2.
(1) Note that F and C are linearly disjoint over k. Indeed, let g, =+,

be elements of C whichr are linearly independent over k. Suppose Em 1;8:=0
i=1
with g; in F.  Let g;=3] ¢;.gi with ¢;,€k. Then 33 p,c;,=0 over for every n,

so that ¢;,—0 for all 7 and %, hence gy=---=g,=0. We choose and fix an ele-
ment » of F\k which is clearly transcendental over C. Applying Proposition
28.9 in [7], we see that F and C(u) are linearly disjoint over k(x). Hence,

[F: k(u)] < [C(XT): C(u)]<oo.

This completes the proof oi (1).

(2) We will separate into two cases.

Case 1: X7{"is not hyperelliptic.
In this case the canonical linear system | K| of X" is very ample. This implies
that C(X¥)=C(fo/f1, =+, felf1). Obviously we see that f;/fiEF(2<j<g).
Therefore C(X{") is generated by F and C.

Case 2: X{is hyperelliptic.
In this case we see that [C(XT"): C(fo/fy, -+, f¢/f1)]=2 and the genus of C(f,/f,,
-+, fglf1) is zero. 'Therefore there exists an element v of C(f,/f,, -+, f,/f;) such
that C(fy/fy, =, [/ f))=C(v).
Obviously v €{F, C>, where {F, C)> denotes the subfield of C(X{") generated by
Fand C. Since C(X{") is a quadratic extension of C(v), there exists an element
w of C(X{") satisfying conditions:

(1) C(Xt)=C(v,w).

(2) the relation between v and w is w?*=f(v) and f(T)EC[T] is a separa-

ble polynomial.

It follows that d—vEH"(X t, Q'). So there exists an element (¢, *++, ¢,) of C*
w
such that

d 2ni 271
—wv— =q Zz fi(z)dz A+, Tmfg(z)dz .
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Since dqh=—2—Z—i g»dz, we obtain that

ﬂ = CIMth'i'"“l"Cg fg(z) dqh .
w G qn

Hence we have

1

N o (O A 1 T A
dv dv

Since v €<F, C), we easily see that

g fi(2)dg, E<F, C> for j=1, -, g
dﬂZ} 2 b ) .

Therefore we have we<{F, C>. Thus C(X{") is generated by F and C.

Let Xr denote an irreducible non-singular projective curve defined over k&
which corresponds to the algebraic function field F. By lemma 2.2, Xy is
a model of X defined over k.

Lemma 2.4. Let ico denote the point of X which is represented by ioo.
Then i € Xp(k).

Proof. We define the map v: F\{0} —— Z by
g = g a,q1(@y, F0) 1 —> n, .
2%

Then v is the valuation of F which corresponds to 7oo and its residue field is
k. Therefore we see that 7co is a k-rational point of Xr.

Lemma 2.5.

coefficients of the
WY (H(Xp, Q) = {fES,T) | gs-expansion of f; .
belong to k
Proof. Put Sy(T"),= {f ES,(T")| coeflicients of the g,-expansion of f belong

to k}. Since the degree of a canonical divisor of X{" is 2g-2, an element of
H'(X%, Q') with a zero of order more than 2g-2 at i is zero. So (a{?, -,
asy 1), -+, (@, -+, affl ), which are vectors of k*#7'CC?! are linearly inde-
pendent over C. Therefore there exist 1</ <---</,<2g—1 such that

For any element h:kzzlb,,qi of Sy(T");, we have h:é ¢;f;, where ¢, €C(1<i<g).
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(aﬁ) ......... a}ﬂ [C} } [th
-_a.glg) ......... a.(l? (‘:g b.,g .
Therefore we have ¢; &k (1<i<g), which implies that dim¢ Sy(I")=dim, Sy(T"),.

On the other hand, let k(Xy) denote the rational function field of Xr. Then
we have k(Xp)=F by the definition of Xr. Any element &€ H’Xr, Q') has an

expression

In particular, we have

o= x-dy(x,VER(XY)) .

By k(Xp)=F, we have w:édjqi-dqh (d;Ek). Let f be an element of S,(T") such

that ¥(f)=w. Then clearly f&ES,(T");. So we have ¥ (H(Xp, 0')) S Sy(T),.
By comparing the dimensions over k, we have

\P-I(HO(XP, Ql)) - SZ(F)k .
Until the end of this section, we assume that the genus of X is two. We

can normalize fi, f, in the following forms:

(1) if 7o is a Weierstrass point of Xp, then

fi= 2 agi (a+0), f,= E bigi (b,+0)
(2) if {oo is not a Weierstrass point of Xy, then

L= 2‘11911 (4 *0), fo= Ebl‘lhb¢0)

From now on, we assume that f;(i=1, 2) is a basis of Sy(T"), which is normalized
as above. Here put x=f,/f,. Then xEk(Xy) and k(Xr) is a quadratic extension
over k(x). So there exists an element y of A(Xy) unique up to a constant multi-
ple such that:

(1) R(Xr)=k(,y).
(2.6){(2) the relation between x and y is y*=f(x) and f(T) Ek[T] is a separable
polynomial.

We see that the degree of f(7T') is equal to 5 or 6 by Hurwitz formula, because
the genus of X1 is two By the definition, x has a pole of order 2 (resp. 1) at
ioo if foo is a Weierstrass point (resp. otherwise). Hence the degree of f(T) is
equal to 5 (resp.6) if 7co is a Weierstrass point (resp. otherwise).

Main Theorem. Let T" be a Fuchsian group of the first kind which has i oo
as its cusp. We assume that the compact Riemann surface X§' uniformized by T
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is of genus 2. Let fi= P! a,qi(a,, +0) and f2=12” b,gi(b.,#0) be Fourier expan-
i=e =e,

stons of a basis of Sy(T") at ioo, where

(3, 1) (if ioo is a Weierstrass point)

(e, ) = (2, 1) (otherwise)

Put k=Q(a;,b;| j=1). Let Xy be the model of X1' defined over k, which
is determined in Lemma 2.2.

(1) If ioo is a Weierstrass point, then we can determine a normal form of Xy
from {as, a,, -+, a3, by, by, +++, by}

(2) If ico is not a Weierstrass point, then we can determine a normal form
of Xr from {a,, as, -+, as, by, by, -+, by} .

RemARK 2.7. The proof of Main Theorem gives an algorithm for determin-
ing a normal form of Xr.

Proof of Main Theorem (An algorithm for determining a normal form).
Let x=f,/f, and y be as in (2.6). Then we have

be2+ be2+1 qn -+ be2+29i2:+ .
ae1+ ael+1 an _l_ ae1+2 qi —l_ o

X = qiz‘el

We put x=gj2™ 1 )3 c:gi-  Then we get the following claim.
=0

Claim 1. For any integer 1=0, ¢; can be determined by {a.,, a, 1, ***, @, 4,
beys beyirs +* buyii} - In particular, c;=b,,a; ! +0.
For 1<k<6, we put xk—qﬁf mek. 2 c¥qi, where c¢i"=c¢,;. Then we see that ¢{*

can be determined by {c,, - ,c,}. Hence we get the following claim.
Claim 2: For any integers 1>0 and 1<k<6, ¢ can be determined by

k
{aq; Goyt1s *** 5 Aoyl b(’z) br2+1) Tty bez—H} . In Partzmlar C( )_CO:FO-

Since (z;l’i fi(2)dz, 2—;1’1 fi#)dz) is a basis of HY(Xp,Q) and % (+0)e
y

H'(Xp, ), there exists (s, £) (=(0, 0)) €&* such that

L~ o 2 fodatr 22 paya.

Yy

27t

2m fi(2)dz has a zero at 70, and = 2(2)dz does not have a zero

We see that

at 700, On the other hand, dx has a zero at 7co. Therefore ¢ must be zero,
y

Le.
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2.8) dx 2’” (2)dz .
y

Put w=ysy and g(T)=s*f(T), where f(T) is as in (2.6). Then obviously k(Xp)=
k(x, w) and w?=g(x). By (2.8), we have '

dx _ 2mi fi(x)dz .
w h

Hence we obtain

dx — d(coq;;z-el+Clq§2—el+1—|—czqiz'e1+2+...)
271'1 ( )d (aelq}ezl—1—|-ae1+lq1etl+ --.)dqh

w =

= {ellea—e)giz" 1 +-ci(e,—e+1)gie™ 1+ -} dg,
(@@t Gy gin++++)dg,,

— gz ce—e)t+a(e—e+1)g,+---
ae1+ae1+IQh+ael+2qh+

Put w’=gj‘2"% f]o d,gi. 'Then it is easy to see that d,(V/>0) are determined by
1=

{a.,, @1y ***s Bets €y €15+ €1} . Therefore we get the following claim.
Claim 3: For any integer 1>0, d, can be determined by {a,,, a, 1, -+, @41,
bez.v bez+lx S be2+l} .
Here we will separate into two cases.
Case 1: 7o is a Weierstrass point of X.
In this case we have (e}, 5)=(3, 1), so e,—e,=—2.
Put g(T)=u,T°4+u,T*++-+u;. Now we calculate the Fourier expansion of

g(x) with respect to g,.
(%) = ugi™® 2 cgh+ugi® 2 cOgh+ugi® 2 ¢t gi

+usgit 20(2)%‘!—”4% Zc(l)qh—i—us

= @i et - A (e i) g o A (et
+ 650+ 1pe§) gh A+ A (e +uie 8 - ue
st g+ -+ (e - uyc§? +1,e ¥ - uges? +
uy§V) g+ oo A (oD 18P Ul uyc P -
u, S +ug) g+ -}

Comparing both sides of w?=g(x), we obtain following equations:
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uct® = d,
Ut +uct? = d,,
P+ e+ 10e? = d,,
e 1§ +unet +uscl? = d
et +unct? +upe$ el Huel) = dy,
uoCt? + ek 1ot 413?80 +-us = dy .

2.9)

Thus by claim 2 and claim 3, it follows that {u,, #,, -+, #;} can be determined
by {as, a,, +++, a3, by, by, +++, by} . Therefore we obtain a normal form w?=g(x).

Case 2: 7o is not a Weierstrass point.

Put g(T)=v,T°+v,T°+--+v. Then we have

8(%) = gi*{oecl? + (v, +0,66”) @i+ (vt +0,c8 +
0pe) g+ (00e8” 01687 +05610 +-05e) i+
(06682 + 0168 + 0,680 + 0560 +0,eP)gh+
(0o + 01687+ 0y + 038V 0,0 4-05e8") g
(2068”4 01687 0,68 - 0365 +-0,e87 - v5el)
+v6)gh+}-

Hence we obtain following equations:

Vet = dy,
voc(z“’—l—vlc“)—}-vzc&“) d,,
(2.10) {vg VP 0,687 Fv,ciV vyt = dy,
T S N N =70 R L s A A
0600 40168 0,680 + 035+ 0,080+ 05l =dy
V80 40,687+ 0,65+ 0368 0,687 - v5ct+vs = ds .

Thus by claim 2 and claim 3, it follows that {o,, v), -+, v¢} can be determined
by {a,, as, ***, ag, by, by, +++, b;}. Therefore we obtain a normal form w?=g(x).

3. The basis problem for modular forms

We want to apply the above algorithm to the case of modular curves of
genus 2 with respect to the congruence subgroup of piime level p. For this
purpose, we review the special case of weight 2 in Eichler’s work [4] in this sec-
tion. Let A be a definite quaternion algebra over @, and D the discriminant of
A. We fix a square-free positive integer H prime to D.

DeFINITION 3.1. We say that O is an order of level H if the following
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properties are satisfied:
(1) O is an order of 2.
(2) For all prime numbers p which divide D, O, is a maximal order of

A,, where 0,=0Q,Z, and A,=ARQ (R,
(3) For all p|H, O, is isomorphic to {(;c 3)](1, bc,dEZ,}.

(4) For all other p, O, is isomorphic to M,(Z,), the ring of 2X 2 matrices
over Z,.

Let O be an order of level H in ¥, and I}, -++, I, be a complete set of repre-
sentatives of the distinct left O-ideal classes. Put O, ={a€W|[;a<1;} (1< j<h),
which is called a right order of I;, and let ¢; denote the number of units of O;.
Note that & (; is a unit if and only if N(u)=1, where N denotes the reduced
norm of A. Thus ¢, is just the number of times the positive definite quadratic
form N(x), x€0;, represents 1 and hence e; is finite. For any positive integer

n, put b,-j(n)z—l-X#{aEI}‘Ii lN(a)an%E%))}, where # denotes the number
e; i
of elements, and N(I) denotes the norm of the ideal 1. Moreover, put b; j(()):i,
€

J

DeFINITION 3.2. Let notations be as above. The Brandt matrices B(n;
D, H) for n>0 are defined as /X h matrices (b;;(n)).

Then the following proposition was proved by Eichler [4, Chap. 2, §6,
Corollary 1].

Proposition 3.3. The Brandt matrices B(n; D, H) can be simultaneouslv
reduced to

0
B'(n;D,H) :
O )
Qevevererananans 0 b(n)

where B'(n; D, H) is an (h—1) X (h—1) matrix, and b(n) is the number of integral
left O-ideals of norm n.

Put B(z; D, H):gB’(n; D, H) exp(2zinz) and let its (7, /)-component be
0:;(2), i.e. ©(2; D, H)=(0,,(z)). Let 6(D, H) be the C-vector space spanned by
{0;;(2)|11<4,j<h}. For any positive integer &, let O(D, H)*={0(kz)|0(z)<
0(D,H)}. Put

ab —
TW(N) = {( b )€ SLA2)|¢=0 (mod N)} :
¢

Then the following theorem was proved by Eichler [4, Chap. 4, §1, The-
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orem].

Theorem 3.4. Let N be a square-free positive integer and N=p,---p, a de-
composition of N into a product of distinct primes p,. Let S,(T'o(N)) be the C-
vector space of cusp forms of weight 2 with respect to To(N). Then we have

SyTo(N)) = 0(pr, p2ps- 0,)DO(Ds, s+ 0,)DO(P2, P+ P,)"
@...@klpg 0(p” l)k

REMARK 3.5. In the above theorem, 6(p,, ps-:p,) PO (P2 s £,)1D D
31 6(p,, 1)k is the subspace spanned by old forms with respect to T'(V).

k“’l'“pr 1

Under the assumption that we can find an order of level H, and in the case
of D=p with a prime number p, Pizer found an algorithm for calculating the
Brandt matrices {B(n; p, H)},so in [11]. On the other hand, we can explicitly
write a basis over Z of an order of level 1 (a maximal order). Therefore in the
case of N=p, we can calculate coefficients of the g-expansion of some basis of
Sy(Ty(p)). Let p be a prime number such that the genus of X,(p)is 2. Then
by the genus formula of X,(p), we have p=23, 29, 31, 37. By using Pizer’s algo-
rithm in the case of D=p (p=23,29, 31, 37) and H=1, we obtain the table 2
which gives coefficients of the g-expansion of some basis fi, f, of Sy(Ty(p)).

Table 2.

fi= @-20— ¢*+2°+ ¢°+297-2¢%+ .
S5(I4(23))

fr=q¢ - -4 ~2¢°+2¢" 4

fi= @- -2 +2¢°+2¢7+ ¢*+ -
S,(T(29))

fr=q - ¢*— ¢ — ¢*+2¢ +oo

fi= -2+ ¢ —2¢°+2¢" —2¢%+ -
Sy(Te(31))

fr=q — ¢*+ ¢ =2¢%-3¢" 4

fi= @+2°-2+ ¢°=34¢° +o
S,(T'6(37))

fr=a  + -2 -q At
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By our algorithm stated in section 2, we get a normal form of Xy(p) (p=
23,29, 31, 37) only from the data of table 2. For a positive integer N, let IT"*(V)
be the normalizer of T(IN) in SL,(R) and X*(N) the modular curve over @
which is uniformized by T*(IN). Let p be a prime number such that the genus
of X*(p)is 2. Then by [9, §5, Corollary 2.7], we have p=67, 73, 103, 107, 167,
191. Moreover we can calculate coefficients of the g-expansion of some basis
fir f2 of Sy(T*(p)) (p=67, 73, 103, 107, 167, 191) because a element of Sy(I'™*(p))
is a element of S,(T'(p)) which is fixed by the main involution w, induced by the

matrix (_2 (1)) More precisely, let 0;;|[w,] denote the action of w, to 6,;.
Then by [11, §4, Theorem 9.1], we have

Table 3.

fi= - -3¢ +3q7 +4¢° +---
S,(I'*(67))

fr=q¢  —3¢*-3¢*-3¢°+ ¢°+4q’ 4o

fi= - ¢+ ¢ ¢ 4o
S5,(T*(73))

fr=¢ + I+ ¢ —3¢5— ¢ 4o

fi= & -3¢*— ¢’ +4g° 4
S(I*(103))

fi=a - ¢-3¢"-3"° - ¢ 4o

fi= @=@= "= ¢°— ¢"+2¢"-2¢° 4+
S,(T*(107))

fe=a  =2¢— ¢*-2¢°~ ¢°~ ¢’ +o

= ¢-¢- ¢ + ¢ —2¢%+ .
S,(T*(167))

fr=¢ - &= 4= ¢~ -2 +oen

h= & - = ¢ —¢°~ ¢’ -2¢" +-
S,(I'*(191))

fi=¢ - @-d-¢ - qd—- ¢+
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(0:51[w,]) = —B'(p; , 1) 23'(1”?, 1) exp(2zinz) .

Therefore if we put

then 0%;€ S,(Ty(p)) and 6%; | [w,]=6";.

(01) = (Lia—=B'(p; 2, 1))23'(11;1’, 1) exp(2zinz) ,

Thus we have an element of Sy(T'y(p))

which is fixed by w,, and we can calculate coefficients of the g-expansion of it.
Thus we get the table 3, from which we obtain normal forms of X*(p) as de-
scribed in section 1.

(1]
(2]
(3]
(4]

(5]
(6]
(7]
(8]
(9]

(10]
[11]

(12]
(13]

[14]

[15]
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