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Throughout this dissertation, we consider high-fidelity 3D shape recovery from

images, which is a fundamental problem in the computer vision field and required in

various applications such as cultural heritage archives, film creation, and virtual reality.

Photometric stereo is the most promising candidate for this purpose due to its ability

of shape estimation in a per-pixel manner. It takes a set of images taken by a static

camera under varying, known distant illuminations as input and recovers a scene’s

shape in the form of surface normal orientation by disentangling the interplay of a

surface normal and reflectance in the image formation. Traditional photometric stereo

assumes the Lambertian reflectance and convex surfaces, which deviate from real-world

observations, thus introducing errors in surface normal estimates. This dissertation

proposes photometric stereo methods for non-Lambertian, general reflectances and

convex/non-convex surfaces with simple searching strategies that give a guarantee of

reaching the globally optimal solution within the bound of an objective.

First, we address the photometric stereo problem for spatially varying, general

reflectances. Unlike previous methods that are mostly based on continuous local op-

timization, we cast the problem as a discrete hypothesis-and-test search problem over

the discretized space of surface normals. While a naïve search requires a significant

amount of time, we show that the expensive computation block can be precomputed

in a scene-independent manner, resulting in accelerated inference for new scenes. It

allows us to perform a full search over the finely discretized space of surface normals
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to determine the globally optimal surface normal for each scene point. We show that

our method can accurately estimate surface normals of scenes with spatially varying

reflectances in a reasonable amount of time.

Second, we propose the first nearest neighbor search-based photometric stereo,

named Discrete Search Photometric Stereo (DSPS), for a scene with spatially vary-

ing, general reflectances. We show that the photometric stereo problem for general

reflectances can be turned into a well-known nearest neighbor search problem over a

set of appearance exemplars; a set of synthetic appearances generated from all possi-

ble pairs of finely discretized surface normals and reflectances. We demonstrate that

the proposed method e�ciently and accurately estimates both surface normals and

reflectances, powered by advanced nearest neighbor search methods.

Third, we address the photometric stereo problem for a general scene with spa-

tially varying, general reflectances and non-convex surfaces. Since the accuracy of

our DSPS is determined by the coverage of the appearance exemplars, an augmen-

tation of the appearance exemplars directly improves the surface normal estimation.

We, therefore, introduce general appearance exemplars that take into account non-

convex surfaces and more diverse reflectances than existing appearance exemplars.

Our general appearance exemplars can be easily plugged into DSPS and improve the

surface normal estimation accuracy, particularly in non-convex regions. Furthermore,

our general appearance exemplars allow us to estimate a convexity (convex or non-

convex) of a surface and incorporate benefits of di�erent photometric stereo methods

using the knowledge of the estimated convexity. We show that our DSPS with general

appearance exemplars can accurately estimate surface normals on both convex and

non-convex surfaces with diverse reflectances. We also demonstrate that incorporat-

ing di�erent photometric stereo methods based on the estimated convexity provides

more accurate surface normal estimates than either.



Contents

Contents vii

List of Figures xi

List of Tables xvii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Chapter organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 E�cient Exemplar-based Photometric Stereo with Scene-

independent Precomputation 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Model-based photometric stereo . . . . . . . . . . . . . . . . . . 12

2.2.2 Learning-based photometric stereo . . . . . . . . . . . . . . . . 12

2.2.3 Example-based photometric stereo . . . . . . . . . . . . . . . . 13

2.3 Scene-independent precomputation for exemplar-based photometric

stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Image formation and problem statement . . . . . . . . . . . . . 14

2.3.2 Hypothesis-and-test strategy . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Scene-independent precomputation . . . . . . . . . . . . . . . . 18



viii Contents

2.3.4 Dimensionality reduction of sampled appearance matrix . . . . . 18

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 E�ciency of surface normal estimation . . . . . . . . . . . . . . 22

2.4.2 Accuracy of surface normal estimation . . . . . . . . . . . . . . 22

2.4.3 Choice of dimension M Õ for noisy data . . . . . . . . . . . . . . 26

2.4.4 Surface normal discretization . . . . . . . . . . . . . . . . . . . 26

2.4.5 Light direction discretization . . . . . . . . . . . . . . . . . . . . 29

2.4.6 Precomputation cost . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Nearest Neighbor Search-based Photometric Stereo 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Example-based photometric stereo . . . . . . . . . . . . . . . . 35

3.2.2 Learning-based photometric stereo . . . . . . . . . . . . . . . . 37

3.3 Discrete search photometric stereo . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Image formation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 From photometric stereo to nearest neighbor search . . . . . . . 40

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.3 E�ciency of surface normal estimation . . . . . . . . . . . . . . 45

3.4.4 Accuracy of surface normal estimation . . . . . . . . . . . . . . 46

3.4.5 Robustness to image corruptions . . . . . . . . . . . . . . . . . 55

3.4.6 Analysis of appearance tensor . . . . . . . . . . . . . . . . . . . 56

3.4.7 Precomputation cost . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.8 Relighting quality . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



Contents ix

4 General Appearance Exemplars for Nearest Neighbor Search-based

Photometric Stereo 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Analytic BRDF models . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Measured BRDF datasets . . . . . . . . . . . . . . . . . . . . . 68

4.2.3 Dataset for learning photometric stereo . . . . . . . . . . . . . . 68

4.3 General appearance exemplars . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 BRDF augmentation . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Non-convex appearance exemplars . . . . . . . . . . . . . . . . . 70

4.3.3 General appearance exemplar . . . . . . . . . . . . . . . . . . . 72

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.2 Accuracy of surface normal estimation . . . . . . . . . . . . . . 74

4.4.3 Combining photometric stereo methods based on the knowledge

of estimated convexity . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.4 Ablation study of shape and BRDF augmentation . . . . . . . . 83

4.4.5 Computation cost . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Conclusion 89

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.1 Photometric stereo for general reflectances by hypothesis-and-

test search with scene-independent precomputation . . . . . . . 90

5.1.2 Photometric stereo for general reflectances by nearest neighbor

search over appearance exemplars . . . . . . . . . . . . . . . . . 90

5.1.3 General appearance exemplars for nearest neighbor search-based

photometric stereo . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Enrichment of measured BRDF . . . . . . . . . . . . . . . . . . 92



x Contents

5.2.2 Nearest neighbor search specific to photometric stereo . . . . . . 92

5.2.3 Analysis of optimal light configuration . . . . . . . . . . . . . . 93

5.2.4 Extension to multi-view photometric stereo . . . . . . . . . . . . 93

5.2.5 Photometric stereo in more practical scenarios . . . . . . . . . . 93

References 95



List of Figures

1.1 Overview of photometric stereo. Given multiple images of an object

taken from a static camera under known, varying lightings, photometric

stereo recovers the shape of an object in the form of surface normals.

A three dimensional surface normal is often visualized by RGB color

coding. A sphere’s surface normal map is attached to see the coding. . 3

1.2 A picture of our approach with a pseudo example. Previous methods

that explore the optimal solution by performing a non-convex opti-

mization over a continuous space of loss function (left), which is often

trapped in local minima. In contrast, our approach first discretizes a

space of loss function and then performs a discrete search over all dis-

cretized points (right). With this approach, our method can always find

the globally optimal surface normal within the bound of discretized space. 4

2.1 An overview of our Hypothesis-and-Test Search Photometric Stereo

(HaTS-PS) proposed in this chapter. We hypothesize a surface normal

and test whether it can explain the target measurements. By conduct-

ing the hypothesis-and-test for all possible surface normals, our method

is able to find a globally optimal surface normal. . . . . . . . . . . . . 10



xii List of Figures

2.2 Starting from the appearance tensor T that represents appearances for

a comprehensive set of light directions, surface normals, and BRDFs,

we slice out a sampled appearance matrix Di for a set of known light

directions and a hypothesized surface normal ni. The column space

of Di is the space of appearances over all possible materials for the

hypothesized normal under the known light directions. . . . . . . . . . 16

2.3 Geometric interpretation of the measurement reconstruction error. The

reconstruction error of measurements ÎZimÎ2
2 can be seen as distance

between the measurement vector m and the subspace spanned by Di

in the LÕ-dimensional space �. . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Example images rendered with 100 MERL BRDFs. The MERL BRDFs

consists of various materials, from soft di�use to hard specular materials. 20

2.5 Ten variants of light distributions for the MERL sphere dataset. These

light distributions are generated by uniform or equi-angular sampling

on the sphere [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Computation time of our HaTS-PS and HS17 [2] for a single pixel on

a CPU. The experiments are performed on the MERL sphere dataset

with light configuration 10 sets. . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Mean angular errors of our method and the baseline methods for each

MERL shere data with 100 lights. . . . . . . . . . . . . . . . . . . . . . 25

2.8 Angular error maps and estimated surface normal maps for BALL,

BEAR, BUDDHA, and CAT objects in the DiLiGenT dataset [3]. . . . 27

2.9 Angular error maps and estimated surface normal maps for COW,

GOBLET, HARVEST, POT1, POT2, and READING objects in the

DiLiGenT dataset [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.10 Mean angular error of estimated surface normals with varying M Õ on

noisy MERL sphere dataset under five light configuration sets. µ and

⁄ are parameters for controlling the magnitude of signal-independent

and signal-dependent noises. . . . . . . . . . . . . . . . . . . . . . . . . 29



List of Figures xiii

3.1 An overview of ours DSPS proposed in this chapter. We estimate a

surface normal and BRDF by a discrete search over the discretized

space of surface normals and BRDFs. The problem can be solved by

any nearest neighbor search method, which reduces an estimation cost

dramatically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Slice of the appearance tensor T that represents appearances for a com-

prehensive set of light directions, surface normals, and BRDFs. Given

a set of known light directions, we can slice out all possible appearance

vectors dij. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Minimal ¸2 distance between m and sdij. The optimal scaling param-

eter sú scales the vector dij to the point closest to m. . . . . . . . . . 40

3.4 Ground truth surface normals and example images of PrincipledPS

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 (a) CPU computation time of our methods, HaTS-PS, and HS17 [2] for

a single pixel. (b) GPU computation time of our methods, CNN-PS [4],

and PS-FCN+N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Mean angular errors of our method and the baseline methods for each

MERL sphere data with 100 lights. . . . . . . . . . . . . . . . . . . . . 48

3.7 Angular error maps and estimated surface normal maps for BALL,

BEAR, BUDDHA, and CAT objects in the DiLiGenT dataset [3] with

all the 96 lights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Angular error maps and estimated surface normal maps for COW,

GOBLET, HARVEST, POT1, POT2, and READING objects in the

DiLiGenT dataset [3] with all the 96 lights. . . . . . . . . . . . . . . . . 53

3.9 Visual relation between angular errors and image reconstruction errors.

For each object in the DiLiGenT dataset, we show angular error maps

(above) and image reconstruction error maps (below). . . . . . . . . . . 54



xiv List of Figures

3.10 Di�erence in the angular error maps between DSPS-E with MERL

BRDF bases and MERL & Principled BSDF bases. Blue color indi-

cates that the MERL only BRDF bases work better than the MERL &

Principled BSDF bases and red color indicates the opposite. . . . . . . 57

3.11 Relationship between the accuracy of surface normal estimation and the

number of BRDFs in the appearance tensor in DSPS. This experiment

uses the MERL sphere dataset with 100 lights. The solid line shows

the mean angular error of the ten trials, and the colored area shows the

maximum and minimum angular errors of the trials. . . . . . . . . . . . 58

3.12 (a) Mean angular errors and (b) Computation time of our methods

with varying number of surface normal candidates. This experiment is

performed on the MERL sphere dataset with 100 lights. . . . . . . . . . 59

3.13 Precomputation time of our methods on a CPU and GPU for varying

light configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.14 Cumulative histograms of the relighting and reconstruction errors for all

the pixels in the MERL sphere dataset. Relighting errors are calculated

from the estimated surface normals and BRDFs in 10 and 100 lights cases. 63

3.15 Visual comparison of relighting results for our method and HS17 [2]. We

performed the relighting with 251 novel lights using the surface normals

and BRDFs estimated from just 10 lighting directions. . . . . . . . . . 64

4.1 Examples of randomly generated non-convex shapes combined with

multiple corrupted primitive shapes. . . . . . . . . . . . . . . . . . . . . 70

4.2 Non-convex appearance exemplar extraction. The red masked pix-

els show non-convex surfaces (i.e., a�ected by cast shadows or inter-

reflections) extracted by our thresholding under the DiLiGenT’s 96

lightings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Angular error maps and estimated surface normal maps for the specular

and metallic SPHERE scenes in the CyclesPSTest dataset. . . . . . . . 76



List of Figures xv

4.4 Angular error maps and estimated surface normal maps for the specular

and metallic TURTLE scenes in the CyclesPSTest dataset. . . . . . . . 78

4.5 From left to right, an example image, estimated convexity, and di�er-

ence in angular errors between DSPS-E and DSPS-E+ for each scene.

In the estimated convexity maps, green indicates pixels estimated as

convex surfaces, and yellow indicates pixels estimated as non-convex

surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Angular error maps and estimated surface normal maps for BALL,

BEAR, BUDDHA, and CAT objects in the DiLiGenT dataset [3] with

all the 96 lights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Angular error maps and estimated surface normal maps for COW,

GOBLET, HARVEST, POT1, POT2, and READING objects in the

DiLiGenT dataset [3] with all the 96 lights. . . . . . . . . . . . . . . . . 82

4.8 An example image, estimated convexity map, and di�erence in angular

errors between DSPS-E and DSPS-E+ for each object in the DiLiGenT

dataset. In the estimated convexity maps, green indicates pixels es-

timated as convex surfaces, and yellow indicates pixels estimated as

non-convex surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 (a) CPU estimation time of our methods for a single pixel. (b) GPU

computation time of our methods for a single pixel. . . . . . . . . . . . 86

4.10 (a) CPU precomputation time of our methods. (b) GPU precomputa-

tion time of our methods. . . . . . . . . . . . . . . . . . . . . . . . . . 86





List of Tables

2.1 Comparisons on the MERL sphere dataset with ten light configuration

sets. Numbers represent averages and standard deviations of angular

errors over all pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Comparisons on the DiLiGenT dataset. Numbers in the table represent

mean angular errors in degrees. . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Mean angular errors for estimated surface normals in degrees for varying

numbers of surface normal candidates. The experiment is performed on

the MERL sphere dataset with 100 lights. . . . . . . . . . . . . . . . . 30

2.4 Computation time of our method in milliseconds for varying numbers of

surface normal candidates. The experiment is performed on the MERL

sphere dataset with 100 lights, and the computation time is calculated

by taking average over all MERL sphere’s pixels. . . . . . . . . . . . . . 30

2.5 Increases of angular errors due to discretized lights. As pre-defined light

directions in the appearance tensor we used 20001 directions created in

the same way as the surface normal candidates. The numbers represent

the increase of mean angular error in degrees on the MERL sphere dataset. 31

2.6 Precomputation time in seconds for varying number of lights. These

precomputation time is measured in a typical case of 20001 surface

normal candidates, 100 BRDF bases, and 100 light directions. . . . . . 31

3.1 Comparison of exemplar-based photometric stereo methods and their

properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



xviii List of Tables

3.2 Hyper-parameters for HNSW and IVFADC. . . . . . . . . . . . . . . . 45

3.3 Comparisons on the MERL sphere dataset with ten light configuration

sets. Numbers represent averages and standard deviations of angular

errors over 100 MERL spheres. . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Comparisons on the PrincipledPS dataset. Numbers represent averages

of angular errors over eight scenes, i.e., two materials and four textures. 49

3.5 Comparisons on the DiLiGenT dataset with 96 and 10 lights. Numbers

in the table above are mean angular errors in degrees. Numbers in

the table below are averages and standard deviations of mean angular

errors over 20 datasets with di�erent light distributions. . . . . . . . . . 50

3.6 Mean angular errors and standard deviations (mean angular er-

ror/standard deviation) on the corrupted MERL sphere datasets with

100 lights. Numbers are in degrees obtained from 100 MERL spheres. . 56

3.7 Our DSPS-E with di�erent BRDF candidates. We use Disney’s princi-

pled BSDF [5], Oren-Nayar [6], Blinn-Phong [7], and Cook-Torrance [8].

The experiments are performed on the DiLiGenT dataset. . . . . . . . 57

3.8 Increases of angular errors due to discretized lights. As pre-defined light

directions in the appearance tensor we used 20001 directions created in

the same way as the surface normal candidates. The numbers represent

the increase of mean angular error in degrees on the MERL sphere dataset. 59

4.1 Comparisons on the SPHERE and TURTLE scenes from the CyclesP-

STest dataset. Numbers represent averages and standard deviations of

angular errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Comparisons on the DiLiGenT dataset with 96 and 10 lights. Numbers

in the table above are mean angular errors in degrees. Numbers in

the table below are averages and standard deviations of mean angular

errors over 20 datasets with di�erent light distributions. . . . . . . . . . 79



List of Tables xix

4.3 Evaluation of combining di�erent photometric stereo methods using the

knowledge of estimated convexity on the DiLiGent dataset. We show

the results in 96 lights and 10 lights cases. For the 96 lights case, we

adopt estimated surface normals of DSPS-E+ and CNN-PS for pixels

estimated as “convex” and “non-convex,” respectively. For the 10 lights

case, we adopt estimated surface normals of DSPS-E+ and PS-FCN+N

for pixels estimated as “convex” and “non-convex,” respectively. . . . . 84

4.4 Ablation study of the BRDF and shape augmentation for appearance

exemplars. Numbers represent mean angular errors on the DiLiGenT

dataset. The baseline is DSPS-E with appearance exemplars con-

structed from 100 MERL BRDFs and convex shapes. We observe ac-

curacies of DSPS-E’s surface normal estimation when introducing aug-

mented BRDFs and non-convex shapes to the original appearance ex-

emplars, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85





Chapter 1

Introduction

1.1 Background

Computer vision techniques aim to derive meaningful information from visual data

(images or videos) beyond a set of pixel intensities to understand a scene as humans

do. Shape recovery from multiple images is a fundamental computer vision technique

and plays a lot of roles in the real world. For example, shape recovery of a product such

as a furniture improves the experience of online shopping by putting the product in

which we want to place it virtually using augmented reality. In recent years, recovered

shape and reflectance of an actor are used for the creation of more realistic films [9–11].

More recently, recovered city-scale shape and appearance are expected to be used for

training of self-driving artificial intelligence [12–14]. In the field of agriculture, the

recovered shape of crops is being used to analyze the condition of the crops, which

enables harvesting at the best timing without human e�orts [15, 16].

Shape recovery from multiple images can be roughly categorized into geometric

and photometric approaches. The geometric approach first finds corresponding scene

points across images captured from di�erent viewpoints, then the 3D positions of the

scene points can be estimated by performing triangulation. Representative methods of

the geometric approach are stereoscopic photography [17], where the shape of a scene

is recovered using two cameras like human eyes, and structure from motion [18, 19],
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which assumes two or more viewpoints. The geometric approach works under natural

illumination; therefore, it has been widely implemented in common devices such as

smartphones. However, the geometric approach only estimates a coarse 3D shape

due to the di�culty of correspondence matching, particularly when a target scene has

smooth surfaces with less textures.

In contrast, the photometric approach achieves high-fidelity shape recovery. Scene

appearances are caused by the interplays between shape (surface normal orientation),

reflectance, and lighting. The photometric approach typically restricts lighting con-

ditions and disentangles the interplays to estimate an object’s shape. Photometric

stereo is a representative method of the photometric approach, which estimates an

object’s shape in the form of surface normal orientation using dozens or hundreds of

images captured from a static camera under known, varying lightings (Fig. 1.1). Since

all images are captured from an identical view point, the correspondence matching is

unnecessary for photometric stereo. Therefore, photometric stereo is able to produce

per-pixel surface normals regardless of the smoothness and texture of a target scene.

Lastly, a full shape is recovered by integrating the estimated surface normals.

An important challenge in photometric stereo is a stable surface normal estimation

for general reflectances. Since photometric stereo disentangles the interplays between

surface normal and reflectance, the accuracy of surface normal estimation depends

on scene’s reflectance property. Traditional photometric stereo methods [20, 21] as-

sume the Lambertian reflectance; however, it is deviated from most reflectances in

the real world, thus, introducing large errors in surface normal estimates. While

recent methods use sophisticated reflectance models to handle non-Lambertian re-

flectances [22, 23], they are necessary to optimize surface normal and reflectance pa-

rameters simultaneously and generally encounter an issue of non-convex optimization.

Another challenge in photometric stereo is a surface normal estimation robust to

global illumination e�ects. The global illumination e�ects such as cast shadows and

inter-reflections cannot be described in a per-pixel manner and are di�cult to be

modeled for general scenes; therefore, they are ignored in most photometric stereo
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Photometric stereo setup
(Fixed camera & multiple lights) Images Sphere’s surface normal map to confirm 

the color-coding of surface normals

Estimated surface normal map

Fig. 1.1 Overview of photometric stereo. Given multiple images of an object taken
from a static camera under known, varying lightings, photometric stereo recovers the
shape of an object in the form of surface normals. A three dimensional surface normal
is often visualized by RGB color coding. A sphere’s surface normal map is attached
to see the coding.

methods, although they appear in many objects in the real world. In recent years,

learning-based methods [4, 24] achieve a robust surface normal estimation on this

challenge; however, they interestingly degrade on surfaces without global illumination

e�ects, where classical methods work well.

This dissertation addresses both challenges, general reflectances and global illumi-

nations. The photometric stereo problem is typically formulated as a minimization

problem of a loss function with surface normal and reflectance parameters. Previous

methods treat the surface normal and reflectance parameters as continuous quanti-

ties and optimize them to minimize a loss. However, the loss function is often highly

non-convex as shown in the left figure in Fig. 1.2; therefore, they are often trapped

in local minima, leading to undesirable surface normal estimates. To overcome this

issue, this dissertation proposes to treat surface normal and reflectance parameters as

(1) discrete and continuous quantities, respectively, (2) both discrete quantities. In

the first proposal, we present that a continuous optimization of reflectance parameters

with a fixed, discretized surface normal becomes a well-posed problem; hence, we can
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Fig. 1.2 A picture of our approach with a pseudo example. Previous methods that ex-
plore the optimal solution by performing a non-convex optimization over a continuous
space of loss function (left), which is often trapped in local minima. In contrast, our
approach first discretizes a space of loss function and then performs a discrete search
over all discretized points (right). With this approach, our method can always find
the globally optimal surface normal within the bound of discretized space.

find the globally optimal surface normal and reflectance parameters by performing a

discrete search over all possible discretized surface normals. In the second proposal,

we can naturally find the globally optimal surface normal and reflectance parameters

by performing a discrete search over all possible surface normals and reflectances as

shown in the right figure in Fig. 1.2. We present that this discrete search can be turned

into the well-known nearest neighbor search problem; therefore, it can be performed

in a highly e�cient manner using advanced nearest neighbor search methods. While

the discrete reflectance representation loses the expressions compared to the continu-

ous one, our method with the discrete reflectance representation exhibits comparable

accuracy with our method with the continuous one. Lastly, by extending the loss

space considering global illumination e�ects (i.e., cast shadows and inter-reflections),

our method gains robustness to the global illumination e�ects while maintaining the

accuracy on surfaces without global illumination e�ects.
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1.2 Contributions

The main contributions of this dissertation can be summarized as follows:

• a search-based photometric stereo method for general reflectances. Instead of

treating surface normals to be estimated as a continuous quantity, we finely dis-

cretize the space of surface normals and search for the best surface normal. To

alleviate an issue of computing cost in a full search, we developed a precom-

putation method that performs expensive computations in a scene-independent

manner prior to the inference for a new scene.

• the first nearest neighbor search-based photometric stereo method for general

reflectances. By treating reflectances as a discrete quantity in addition to surface

normals, we formulate the photometric stereo problem as a well known nearest

neighbor search problem over a set of appearance exemplars; a set of synthetic

appearances generated from all possible pairs of finely discretized surface normals

and reflectances. Our method achieves the state-of-the-art accuracy on convex

surfaces with diverse materials.

• a set of general appearance exemplars to broaden the applicability of our near-

est neighbor search-based photometric stereo to more diverse reflectances and

non-convex surfaces. We build a new set of appearance exemplars by extending

existing ones that only consider a limited number of reflectances and convex

shapes. Our general appearance exemplars improve the accuracy of surface nor-

mal estimation on general surfaces and allow us to estimate a convexity of a

surface. The knowledge of estimated convexity also allows us to apply di�erent

photometric stereo methods to convex and non-convex surfaces, respectively,

leading to further accuracy.
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1.3 Chapter organization

This dissertation introduces two accurate and e�cient search-based photometric stereo

methods for general reflectances and one dataset to broaden the applicability of nearest

neighbor search-based photometric stereo to more diverse reflectances and non-convex

surfaces. The remainder of this dissertation is organized as follows.

Chapter 2 This chapter addresses the problem of estimating surface normals of a

scene with spatially varying, general reflectances observed by a static camera under

varying, known, distant illumination. In this chapter, we propose Hypothesis-and-Test

Search Photometric Stereo (HaTS-PS). Unlike previous methods that are mostly based

on continuous local optimization, we cast the problem as a discrete hypothesis-and-test

search problem over the discretized space of surface normals. While a naïve search

requires a significant amount of time, we show that the expensive computation block

can be precomputed in a scene-independent manner, resulting in accelerated inference

for new scenes. It allows us to perform a full search over the finely discretized space

of surface normals to determine the globally optimal surface normal for each scene

point. We show that our method can accurately estimate surface normals of scenes

with spatially varying reflectances in a reasonable amount of time.

Chapter 3 This chapter also addresses the photometric stereo problem for a scene

with spatially varying, general reflectances. In this chapter, we propose Discrete Search

Photometric Stereo (DSPS). While HaTS-PS employ a continuous reflectance model,

DSPS treats reflectances as a discrete quantity as well as surface normals. Unlike pre-

vious methods that rely on continuous optimization over non-convex objective func-

tions to estimate a shape and reflectance, the proposed method casts the problem as

a discrete search over a set of appearance exemplars; a set of synthetic appearances

generated from all possible pairs of finely discretized surface normals and reflectances.

We show that the proposed discrete search approach leads to e�cient and accurate

estimation of surface normals and reflectances, powered by advanced nearest neighbor
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search methods.

Chapter 4 This chapter addresses the photometric stereo problem for a general

scene with spatially varying diverse reflectances and non-convex surfaces. Since the

accuracy of our DSPS is determined by the coverage of the appearance exemplars,

the augmentation of the appearance exemplars directly improves the surface normal

estimation. In this chapter, we introduce general appearance exemplars that take into

account non-convex surfaces and more diverse reflectances than existing appearance

exemplars. Our general appearance exemplars can be easily plugged into DSPS and

improve the surface normal estimation accuracy, particularly in non-convex regions.

Furthermore, our general appearance exemplars allow us to estimate a convexity (con-

vex or non-convex) of a surface and incorporate the benefits of di�erent photometric

stereo using the knowledge of the estimated convexity. We show that our DSPS with

general appearance exemplars can accurately estimate surface normals on both convex

and non-convex surfaces with diverse reflectances. We also demonstrate that incorpo-

rating di�erent photometric stereo methods based on the estimated convexity provides

more accurate surface normal estimates than either.

Chapter 5 This chapter concludes this dissertation by summarizing the proposed

methods and dataset and discussing potential future research directions.





Chapter 2

E�cient Exemplar-based

Photometric Stereo with

Scene-independent Precomputation

2.1 Introduction

Photometric stereo recovers fine surface details in the form of surface normals from

images taken by a static camera under varying lightings. While traditional photomet-

ric stereo methods [20, 21] assume Lambertian reflectance or simplified parametric

reflectance models, it is understood that their deviation from real-world reflectances

introduces errors in surface normal estimates. In the past, other studies [25–29] used

more sophisticated reflectance models for more accurate surface normal recovery; how-

ever, they generally encounter an issue of non-convex optimization in determining the

surface normals. The problem is rooted in the fact that these methods frame the

estimation problem as a continuous optimization problem.

In this chapter, we cast surface normal estimation as a discrete hypothesis-and-test

search problem; thus, we call our method Hypothesis-and-Test Search Photometric

Stereo (HaTS-PS). Instead of treating surface normals to be estimated as a continuous

quantity, our method finely discretizes the space of surface normals and finds the
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Test

BRDFs & known lights

…

Hypothesize

…

Surface normal
candidates

Target scene- and -

Fig. 2.1 An overview of our Hypothesis-and-Test Search Photometric Stereo (HaTS-
PS) proposed in this chapter. We hypothesize a surface normal and test whether it
can explain the target measurements. By conducting the hypothesis-and-test for all
possible surface normals, our method is able to find a globally optimal surface normal.

best surface normal by a hypothesis-and-test search. Since a surface normal vector

has only two degrees of freedom (a unit 3D vector) represented by its azimuth and

elevation angles in a hemisphere, discretization results in a relatively small number

of surface normal candidates. For example, even if we discretize the angles in one-

degree intervals, it results in 32, 400 = 360 ◊ 90 normal candidates. HaTS-PS uses

each surface normal candidate as hypothesis and tests its suitability to the measured

intensities of a targe scene as illustrated in Fig. 2.1. In this manner, HaTS-PS searches

for the globally optimal surface normal from all (discretized) possible ones.

To alleviate the issue of computing cost in our discrete search, we developed a

precomputation method that performs expensive computations in a scene-independent

manner prior to the inference for a new scene. To deal with a diverse set of reflectances,

we use a non-parametric, discrete table of appearances, whose axes are the space of

surface normals, light directions, and bidirectional reflectance distribution functions

(BRDFs), for a fixed viewing direction. The table of appearances, which we call an

appearance tensor, can contain an arbitrary number of BRDFs, and importantly, the



2.2 Related work 11

number of reference BRDFs considered in the appearance tensor does not influence

the computation time during inference.

Our HaTS-PS is motivated by the success of example-based [30] and virtual

exemplar-based [2] methods. The example-based method introduces a reference ob-

ject having known shape and the identical material with a target object into a target

scene. A surface normal is recovered by searching for appearances in the reference

object that correspond to the target object’s ones. In contrast, our method do not

require placing a reference object in the scene. The virtual exemplar-based method

and our HaTS-PS shares a basic strategy for surface normal estimation; however, the

virtual exemplar-based method performs a continuous local search using a non-convex

objective function to reduce their huge computation cost, which eliminates the guar-

antee of finding the optimal solution. In contrast, our precomputation enables an

e�cient exhaustive search, which allows us to find a globally optimal surface normal

within the bounds of our objective function.

The chief contributions of this chapter are twofold. First, we propose a discrete

hypothesis-and-test search strategy for photometric stereo. By finely discretizing the

space of surface normals, our method finds the globally optimal surface normal through

exhaustive search. Second, we show that expensive computation can be performed

prior to the surface normal estimation, allowing the global hypothesis-and-test search

to work in a reasonable amount of time. We assess the accuracy of the proposed

method using both synthetic and real-world data and show its favorable performance

in determining surface normals of a scene. In particular, the proposed method achieves

a stable estimate, i.e., superior average/variance of mean angular error over a diverse

set of materials.

2.2 Related work

Photometric stereo methods for diverse materials can be roughly divided into three

categories; model-based, learning-based, and example-based approaches. In the fol-
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lowing, we discuss the corresponding related works.

2.2.1 Model-based photometric stereo

A model-based approach uses parametric expressions for BRDFs, and the model pa-

rameters including the surface normal are estimated, typically, by optimizing them to

well explain measured intensities of a target scene. Key for the model-based approach

is the choice of a parametric BRDF model. Woodham’s original work [20] assumed

Lambertian reflectance, which allows using convex least-squares optimization to deter-

mine surface normals and albedos. Parametric modeling of non-Lambertian BRDFs

is actively studied, particularly in the graphics community. For example, the Blinn-

Phong model [22], the Torrance-Sparrow model [23], the Ward model [31], the specular

spike model [32, 33], and a microfacet BRDF with ellipsoidal normal distributions [29]

have been developed. However, each of these models is limited to a class of materi-

als, and such models are highly nonlinear, resulting in non-convex photometric stereo

problems. Thus, some recent methods use a bivariate function instead. For represent-

ing low-frequency reflectances, Shi et al. [27] use a bi-polynomial function and Ikehata

and Aizawa [28] use a sum of lobes with unknown center directions. Although these

model-based methods can be used in a relatively wide range of materials, there are

always problematic materials, especially metallic materials are hard to be modeled by

a simple function such as a bivariate function.

2.2.2 Learning-based photometric stereo

Recently, deep learning-based photometric stereo methods have been proposed. They

learn a mapping from measured intensities under known lightings to surface normals

using a neural network [4, 24, 34–36]. Santo et al. [34] proposed the first learning-

based method to estimate a surface normal from a fixed number measured intensities

under known lightings. Chen et al. [24] and Ikehata [4] introduced network architec-

tures being applicable to arbitrary number of lightings, which inspire many follow-up
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works [35, 37, 38]. Their networks are trained with synthetic datasets containing var-

ious shapes and materials since it is di�cult to collect huge training dataset for the

photometric stereo task. For example, Santo et al. [39] and Chen et al. [40] created

their training datasets by rendering the Blobby [41] and Sculpture [42] shape datasets

with 100 BRDFs from the MERL dataset [43]. Ikehata [4] also created a dataset by

rendering fifteen objects with Disney’s principled bidirectional scattering distribution

function (BSDF) [5]. While the learning-based methods showed promising results on

various scenes owing to the networks being trained with diverse shapes and materials,

they surprisingly su�er from simple convex surfaces and di�use materials that can be

well fitted by traditional methods [38].

2.2.3 Example-based photometric stereo

Example-based photometric stereo relies on the concept of orientation-consistency [30],

i.e., two surfaces with the same surface normal and BRDF will have the same appear-

ance under the same illumination. An early work along this direction is found in Horn

and Ikeuchi [44]. In the example-based approach, a reference object with known sur-

face normals is placed in a target scene. Further, the BRDF of the reference object

is assumed to be the same as that of the target object. Then, a surface normal is

recovered for each point of the target object by searching the corresponding pixel in-

tensity of the reference object that best matches the target’s appearance. To relax the

assumption of identical BRDF between reference and target, Hertzmann and Seitz [30]

introduced two reference objects, a di�use and a specular sphere, placed in the target

scene, and approximate the target BRDF by a non-negative linear combination of

the reference BRDFs. Although this method makes example-based photometric stereo

applicable to more diverse materials, it is still inaccurate to approximate a diverse set

of materials by a linear combination of two BRDFs. In addition, in many practical

applications it is undesirable to place reference objects in a target scene.

Hui and Sankaranarayanan [2] introduced virtual exemplar-based method that

performs example-based photometric stereo without actually introducing reference
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objects into a target scene. They render virtual reference spheres under the target

scene illumination with MERL BRDFs [43] and assume that the target BRDF lies in

the non-negative span of the MERL BRDFs. In the virtual exemplar-based method,

however, there are many time-consuming processes such as rendering virtual spheres,

an iterative optimization for solving a non-negative least squares problem, and search-

ing over all possible surface normals. To reduce the computation cost, they proposed

an e�cient search algorithm which however eliminates the guarantee of finding the

optimal solution.

Our method shares the assumption that the target BRDF can be represented by a

combination of several reference BRDFs. However, we cast the problem as a discrete

hypothesis-and-test search problem, which gives a guarantee of reaching the globally

optimal solution within the bound of the objective function. Additionally, our method

enables search for all surface normal candidates in a reasonable amount of time owing

to an e�cient precomputation.

2.3 Scene-independent precomputation for

exemplar-based photometric stereo

Starting from an image formation and problem statement, this section describes our

HaTS-PS that casts the photometric stereo problem as a discrete search where the

space of surface normals is discretized. We hypothesize a surface normal and test

whether it satisfies the image formation model introduced in Sec. 2.3.1. By conducting

this hypothesis-and-test for all possible surface normals, our method is able to find a

globally optimal surface normal.

2.3.1 Image formation and problem statement

Suppose a surface point with a unit surface normal n œ S2 µ R3 is illuminated by

an incoming directional light l œ S2, without ambient lighting or global illumination
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e�ects such as cast shadows or inter-reflections. When this surface point is observed

by a camera with linear response, the measured intensity m œ R+ can be written as

m Ã fl(n, l) max(n€
l, 0), (2.1)

where fl(n, l) : S2 ◊ S2 æ R+ is a general isotropic bidirectional reflectance distribu-

tion function (BRDF) and max(n€
l, 0) is a function, which returns the largest value

in inputs, representing a shadow caused when a surface normal is not facing a light

source.

In calibrated photometric stereo, a static camera records multiple, say LÕ, measure-

ments {m1, . . . mLÕ} for each surface point under various light directions {l1, . . . lLÕ}.

Then, Eq. (2.1) can be written in matrix form as

Q

cccca

m1
...

mLÕ

R

ddddb

¸ ˚˙ ˝
m

Ã

Q

cccca

max(n€l1, 0) 0
. . .

0 max(n€lLÕ , 0)

R

ddddb

¸ ˚˙ ˝
E

Q

cccca

fl(n, l1)
...

fl(n, lLÕ)

R

ddddb

¸ ˚˙ ˝
fl

, (2.2)

where m is a measurement vector, E is a diagonal irradiance matrix, and fl is a

reflectance vector. We model the reflectance fl by a linear combination of BRDF

basis vectors in a similar manner to Hertzmann et al. [30], and Hui and Sankara-

narayanan [2]. By stacking M known BRDF basis vectors in a BRDF basis matrix B,

fl can be written as

fl =

Q

ccccca

fl1(n, l1) . . . flM(n, l1)
... . . . ...

fl1(n, lLÕ) . . . flM(n, lLÕ)

R

dddddb

¸ ˚˙ ˝
B

c, (2.3)

where c = [c1, . . . , cM ]€ is a BRDF coe�cient vector. With this, the image formation

model can be simplified to

m = EBc def= Dc, (2.4)
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Fig. 2.2 Starting from the appearance tensor T that represents appearances for a
comprehensive set of light directions, surface normals, and BRDFs, we slice out a
sampled appearance matrix Di for a set of known light directions and a hypothesized
surface normal ni. The column space of Di is the space of appearances over all possible
materials for the hypothesized normal under the known light directions.

where D(= EB) œ RLÕ◊M
+ .

Problem statement Our goal is to find the optimal surface normal n and BRDF

coe�cients c for each surface point, given observations m and associated light direc-

tions {l1, . . . lLÕ} based on the model of Eq. (2.4).

2.3.2 Hypothesis-and-test strategy

We tackle the problem stated above by hypothesis-and-test photometric stereo (HaTS-

PS) that hypothesizes a surface normal, tests whether it satisfies Eq. (2.4), and repeats

these steps for all possible surface normals to find the optimal surface normal. Let

N = {ni | i = 1, . . . , N} be the discretized space of surface normals, which we call

the set of surface normal candidates. We prepare a tensor representation for diverse

appearances whose axes are (1) surface normals, (2) light directions, and (3) BRDFs.

Suppose the spaces of surface normals and light directions are discretized into N and
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L bins, respectively, and there are M distinct BRDFs. Then, the appearance tensor

T can be defined as T œ RN◊L◊M
+ (see the left of Fig. 2.2).

For simplicity, let us assume that the appearance tensor contains the actual light

directions of the observed scene. If we hypothesize a certain surface normal ni œ N

for a scene point, using LÕ Æ L known light directions of the observed scene, we can

slice a sampled appearance matrix Di œ RLÕ◊M
+ from the appearance tensor T along

the hypothesized surface normal ni and a set of LÕ known light directions as illustrated

in Fig. 2.2. Using Di instead of D, Eq. (2.4) becomes

m ƒ Dic. (2.5)

For the overdetermined case LÕ > M , the least-squares solution for the BRDF coe�-

cients c that best explains the measurements is

ci =
1
D

€
i Di

2≠1
D

€
i m = D

†
im, (2.6)

where D
†
i is the pseudo-inverse of Di. The estimated BRDF coe�cients ci are least-

squares optimal for the hypothesized normal ni and the space of sampled appearances

Di. We can test the validity of the hypothesized ni by evaluating the ¸2 measurement

reconstruction error as

ei = Îm ≠ DiciÎ2
2 . (2.7)

Therefore, the optimal surface normal n
ú can be found as the minimizer of the following

objective

n
ú = niú , iú = argmin

iœ{1,...,N}
ei. (2.8)

A naïve implementation may require a significant computational e�ort for solving this

problem. We thus introduce an e�cient scene-independent precomputation strategy

in the next section.
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Fig. 2.3 Geometric interpretation of the measurement reconstruction error. The re-
construction error of measurements ÎZimÎ2

2 can be seen as distance between the mea-
surement vector m and the subspace spanned by Di in the LÕ-dimensional space �.

2.3.3 Scene-independent precomputation

The reconstruction error ei in Eq. (2.7) can be further simplified as

ei = Îm ≠ DiciÎ2
2 =

...m ≠ DiD
†
im

...
2

2
(2.9)

=
...
1
I ≠ DiD

†
i

2
m

...
2

2
def= ÎZimÎ2

2 . (2.10)

As long as the lighting and BRDF bases are fixed, Zi(= I ≠ DiD
†
i ) œ RLÕ◊LÕ is uniquely

determined given a surface normal hypothesis ni. We, thus, can precompute a set of

{Zi} for all surface normal candidates in N . At inference time, we simply need to

assess the magnitude of Zim for all i.

This precomputation happens only once and the result can be used for any new

scene with the same lighting.

2.3.4 Dimensionality reduction of sampled appearance ma-

trix

Equation (2.8) is only a necessary condition for finding correct surface normal solu-

tion. When the sampled appearance matrix Di has fewer rows than columns or when

m œ ran (Di) œ RLÕ◊M (Di’s range) for all Di, there exist greater than or equal to one

BRDF coe�cient vectors ci that make all reconstruction errors {ei} zero.



2.4 Experiments 19

As illustrated in Fig. 2.3, a measurement vector m exists in an LÕ-dimensional

space �. The column vectors of Di span a rank (Di)-dimensional subspace in �, and

the measurement reconstructions Dici = DiD
†
im reside in this subspace. Thus, the

reconstruction error ÎZimÎ2
2 can be seen as the distance between the measurement

vector m and the subspace spanned by Di. From this perspective, if rank (Di) = LÕ,

the columns of Di span the entire � and the reconstruction error becomes always zero

regardless of the correctness of the surface normal hypothesis ni.

To avoid this, we shrink the subspace spanned by each Di by reducing the rank

of Di to M Õ(< LÕ). Specifically, we replace Di with its first M Õ left singular vectors

U
Õ
i œ RLÕ◊M Õ obtained through SVD. With this, Zi can be precomputed in a simpler

form as

Zi = I ≠ U
Õ
iU

Õ†
i = I ≠ U

Õ
iU

Õ€
i (2.11)

due to the orthogonality of each singular vector.

We empirically found that the proper value of M Õ is related to the noise level in

the observations. In Sec. 2.4.3, we examine the accuracy of surface normal estimation

with varying M Õ and discuss the choices for M Õ.

2.4 Experiments

This section describes the results of experiments with synthetic and real-world data.

We further discuss the computation time, the e�ect of dimensionality reduction and

the discretization of the space of light directions. We begin with describing the con-

struction of the appearance tensor, the synthetic and real-world datasets, and baseline

methods that we use for evaluation.

Appearence tensor: The appearance tensor is constructed from three components;

BRDFs, surface normals, and light directions. For BRDFs, we used the MERL BRDF

database [43] that consists of 100 distinct BRDFs including di�use, specular, and
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Fig. 2.4 Example images rendered with 100 MERL BRDFs. The MERL BRDFs con-
sists of various materials, from soft di�use to hard specular materials.

metallic materials as shown in Fig. 2.4. We discretized the surface normal on the

unit hemisphere [1] and obtained 20001 surface normal candidates with nearly 0.5¶

intervals. In all experiments of this chapter, we assume that the appearance tensor

contains the known light directions. In Sec. 2.4.5, we discuss how the surface normal

estimation accuracy is a�ected by the discretization of light directions.

MERL sphere dataset: The MERL sphere dataset consists of 100 synthetic sphere

scenes rendered with the 100 MERL BRDFs [43]. We rendered the images un-

der ten lighting environments consisting of LÕ = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

uniformly distributed light sources shown in Fig. 2.5. Image resolution was set to

100 ◊ 100, yielding 7860 valid pixels. We also created a noisy MERL sphere dataset

by adding signal-independent and signal-dependent noise [45] to the MERL sphere

dataset. The noise model is m̃ = m + (µ + ⁄
Ô

m)X where m̃ and m are image sig-

nals with and without noise, µ and ⁄ are weighting factors for signal-independent and

signal-dependent noise, respectively, and X is a N (0, 1)-distributed random variable.

Real-world benchmark: We took an existing real-world dataset, the DiLiGenT

dataset [3], which contains 10 real objects of general reflectance illuminated from 96

di�erent known directions. Each object data has tens of thousands of valid pixels. This

dataset provides ground truth surface normal maps for all objects measured by high-

precision laser scanning, enabling a quantitative evaluation. For the BEAR object we

discarded the first 20 images where a part of measurements is corrupted as pointed
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10 lights 20 lights 30 lights 40 lights 50 lights

60 lights 70 lights 80 lights 90 lights 100 lights

Fig. 2.5 Ten variants of light distributions for the MERL sphere dataset. These light
distributions are generated by uniform or equi-angular sampling on the sphere [1].

out by Ikehata [4].

Baselines: As baselines we used Lambertian photometric stereo (LPS) [20], a model-

based method ST14 [27], the virtual exemplar-based method HS17 [2], the unsuper-

vised learning (i.e., neural inverse rendering)-based method NIR-PS [46], the super-

vised learning methods PX-NET [35], PS-FCN+N [24], WJ20 [47], CNN-PS [4], and

SPLINE-Net [38]. For a fair comparison in computation time, we reimplemented HS17

in Python based on the authors’ MATLAB implementation. We solve the non-negative

least-squares sub-problem in HS17 using scipy.optimize.nnls from the SciPy pack-

age [48] resulting in the authors’ implementation speedup without any accuracy drop.

We implemented the coarse-to-fine search they proposed for e�cient surface normal

estimation following their original implementation. Since PS-FCN+N is trained on a

dataset with MERL BRDFs, for fear of data leakage we omit PS-FCN+N in the exper-

iments on the MERL sphere dataset. While the published, pre-trained SPLINE-Net

model has been trained specifically for 10 lights, it works well for other small numbers

of light sources. Therefore, we show SPLINE-Net’s scores for cases other than 10 lights

for reference. Further, for testing with the MERL sphere dataset, although PX-NET,
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PS-FCN+N, and WJ20 include the target material in their pre-trained models, we list

their scores for reference.

2.4.1 E�ciency of surface normal estimation

For inference, our method evaluates the reconstruction error ÎZimÎ2
2 in Eq. (2.10) for

each surface normal candidate ni œ N . All matrices Zi are precomputed; therefore, at

inference time we only need to evaluate the reconstruction error of each ni and find the

minimizer. The dimension of matrix Zi œ RLÕ◊LÕ only depends on the number of lights

LÕ, but not the number of materials. The computation is highly parallelizable, e.g.,

by pixel-wise or surface normal candidate-wise parallelization. Note that our method

is executable on common CPUs because the matrices Zi only require a small amount

of memory. For example, matrices Zi stored in 64-bit floating point numbers for a

typical setting, where N = 20001, M = 100, L = 100, only require 3.1 GB storage

space.

This experiment shows a comparison of computation time with the existing

exemplar-based method. We use the MERL sphere dataset with the ten light sets.

We measured the computation time of our method and the existing exemplar-based

method HS17 [2] on an Intel® Xeon® Gold 6148 CPU @ 2.40 GHz with 40 cores. We

performed pixel-wise parallelization. Figure 2.6 shows the computation time for a

single pixel on the CPU, averaged over all MERL spheres for each light configuration

(number and distribution shown in Fig. 2.5). Our method achieves 2–5 times faster

surface normal estimation than HS17.

2.4.2 Accuracy of surface normal estimation

We estimated surface normals on synthetic and real datasets to confirm that our

method works with diverse scenes. We evaluate the accuracy of surface normal es-

timation by “mean angular error” that is an average of angular errors of estimated

surface normals over all pixels. The angular error is calculated by cos≠1
1
n

€
gtnest

2
,
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Fig. 2.6 Computation time of our HaTS-PS and HS17 [2] for a single pixel on a CPU.
The experiments are performed on the MERL sphere dataset with light configuration
10 sets.

where ngt and nest are ground truth and estimated surface normals, respectively.

MERL sphere: We compared our method and the baseline methods using the

MERL sphere dataset. Since there is no global illumination in the MERL sphere

dataset, we can evaluate only the ability of our method to adapt to diverse materi-

als. For the materials in our method and HS17, we applied a leave-one-out scheme,

testing them on one MERL BRDF while constructing the appearance tensor from the

remaining 99 BRDFs so that the appearance tensor does not contain the target BRDF.

Table 2.1 shows the averages and standard deviations of angular errors over all

pixels in the MERL sphere dataset for the ten light configuration sets. The small

averages and standard deviations show that our method stably yield small errors in

all light configurations when compared with the baseline methods. While HS17 also

achieves competitive accuracy, it is around 2–5 times slower than our method as shown

previously. Incidentally, NIR-PS yields large angular errors in this experiment. We

observed that NIR-PS has extremely large errors for several materials, which a�ect

the averaged scores. We show mean angular errors of our method and several baseline
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Table 2.1 Comparisons on the MERL sphere dataset with ten light configuration sets.
Numbers represent averages and standard deviations of angular errors over all pixels.

#lights 10 20 30 40 50 60 70 80 90 100

E
xe

m
pl

ar
-

ba
se

d Ours 4.2/6.6 2.5/3.6 2.2/3.0 2.1/2.9 2.0/2.8 1.9/2.7 1.9/2.7 1.9/2.6 1.8/2.7 1.8/2.7

HS17 3.6/5.2 2.2/3.3 1.9/2.8 1.8/2.6 1.7/2.5 1.6/2.4 1.6/2.4 1.7/3.5 1.6/2.4 1.6/2.4

Le
ar

ni
ng

-
ba

se
d

PX-NETa 13.4/14.3 11.0/14.3 9.3/12.8 9.7/12.9 3.5/7.2 3.4/7.4 3.4/7.9 3.5/8.2 3.5/8.3 3.5/8.5

PS-FCN+Na 4.5/4.6 2.7/2.6 2.7/2.5 3.0/2.7 3.1/2.7 3.2/2.9 3.4/3.0 3.4/3.0 3.6/3.1 3.7/3.2

WJ20a 3.7/4.2 3.3/3.5 3.2/3.3 3.2/3.4 3.3/3.3 3.2/3.3 3.3/3.3 3.3/3.3 3.3/3.4 3.3/3.2

SPLINE-Net 13.0/20.0 9.3/16.1 10.2/13.1 15.9/18.4 27.5/28.8 38.8/33.8 45.5/34.8 49.0/33.7 51.4/32.9 50.0/31.5

CNN-PSb 33.6/23.9 6.2/6.4 4.7/5.7 4.0/5.3 3.7/5.2 3.2/4.6 3.0/4.2 2.9/4.3 2.6/3.9 2.5/3.8

NIR-PS 21.7/44.8 15.6/36.3 18.0/40.8 15.2/37.0 18.9/42.5 16.0/38.5 14.8/35.7 14.4/34.2 13.7/33.5 14.6/34.3

M
od

el
-

ba
se

d ST14 15.5/9.9 11.5/15.6 10.9/13.7 10.9/13.9 9.8/13.4 5.5/8.1 2.7/4.4 1.7/3.1 1.4/2.6 1.2/2.3

LPS 13.6/9.9 13.0/9.4 12.8/9.4 12.7/9.3 12.7/9.3 12.6/9.3 12.6/9.4 12.6/9.4 12.6/9.4 12.6/9.4

a Training dataset of PX-NET, PS-FCN+N, and WJ20 include target materials.

b CNN-PS is trained with 50-100 lights.

methods for each material on the MERL sphere datasets with 100 lights in Fig. 2.7.

DiLiGenT: We show quantitative results on the real-world dataset DiLiGenT in

Tab. 2.2, where we compare our method with the baseline methods including very

recent methods such as PX-NET and WJ20 in terms of mean angular error. Our

method demonstrate comparable or better accuracy compared to the exemplar-based

methods, although showing a degradation compared to the learning-based methods.

This is considered to be due to factors not modeled in our method, namely cast

shadows or inter-reflections.

Figures 2.8 and 2.9 show visual comparisons between our method and the baseline

methods. Our method causes a large angular error in pixels where cast shadows or

inter-reflections are likely to occur. However, in convex parts our method outperforms

the learning-based methods and estimates the surface normals well, e.g., the BALL

object or the body of BEAR and CAT objects.
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Table 2.2 Comparisons on the DiLiGenT dataset. Numbers in the table represent
mean angular errors in degrees.

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING Avg.

E
xe

m
pl

ar
-

ba
se

d Ours 1.6 5.9 13.1 6.1 9.2 11.0 18.7 6.6 7.2 15.0 9.4

HS17 1.5 6.2 13.9 6.4 9.2 10.8 18.8 7.0 7.9 15.3 9.7

Le
ar

ni
ng

-
ba

se
d

PX-NET 2.0 3.5 7.6 4.3 4.7 6.7 13.3 4.9 5.0 9.8 6.2

PS-FCN+N 2.6 5.4 7.5 4.7 6.7 7.8 12.4 5.9 7.2 10.9 7.1

WJ20 1.8 4.1 6.1 4.7 6.3 7.2 13.3 6.5 6.4 10.0 6.6

CNN-PS 2.1 4.2 8.1 4.4 7.9 7.4 13.8 5.4 6.4 12.1 7.2

NIR-PS 1.6 6.1 11.0 5.6 5.8 11.2 22.0 6.5 8.5 11.3 9.0

M
od

el
-

ba
se

d ST14 1.8 5.1 10.7 6.1 13.8 10.2 25.6 6.5 8.7 13.0 10.2

LPS 4.2 8.5 14.9 8.4 25.6 18.5 30.6 8.9 14.6 20.0 15.4

2.4.3 Choice of dimension M Õ
for noisy data

We empirically observed that M Õ is related to our method’s robustness against noise.

Thus, we determine an optimal M Õ by a validation using the noisy MERL sphere

dataset.

We applied a leave-one-out scheme, testing it on one MERL BRDF while con-

structing the appearance tensor from the remaining 99 BRDFs. We test varying

M Õ = {2, 3, 4, 5, 7, 10} and varying noise µ/⁄ = {5/30, 30/5, 30/30} under five light

configuration sets, i.e., 20, 40, 60, 80, 100 lights.

Figure 2.10 shows mean angular errors of estimated surface normals in degrees.

In most of configurations, M Õ = 3 produces the lowest angular errors among the

candidates of M Õ, indicating that M Õ = 3 is the most robust to noise. For this reason,

we applied M Õ = 3 in all experiments of this chapter.

2.4.4 Surface normal discretization

Tables 2.3 and 2.4 show mean angular error and computation time for varying numbers

of surface normal candidates on the MERL sphere dataset with 100 lights. Throughout
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Fig. 2.8 Angular error maps and estimated surface normal maps for BALL, BEAR,
BUDDHA, and CAT objects in the DiLiGenT dataset [3].
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Fig. 2.9 Angular error maps and estimated surface normal maps for COW, GOBLET,
HARVEST, POT1, POT2, and READING objects in the DiLiGenT dataset [3].
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Fig. 2.10 Mean angular error of estimated surface normals with varying M Õ on noisy
MERL sphere dataset under five light configuration sets. µ and ⁄ are parameters for
controlling the magnitude of signal-independent and signal-dependent noises.

this chapter we chose 20001 surface normal candidates because it balances accuracy

and computation time well. For accurate surface normal estimation, 20001 or denser

surface normal candidates are recommended. However, the choice of surface normal

candidate discretization coarseness depends on the use case and a coarser discretization

may be acceptable when fast inference is required.

2.4.5 Light direction discretization

In all experiments so far, we assumed that the appearance tensor T contains the

light directions of the experiment at hand. In practice, the appearance tensor rarely

contains all of the experiment’s light directions and we should use pre-defined light
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Table 2.3 Mean angular errors for estimated surface normals in degrees for varying
numbers of surface normal candidates. The experiment is performed on the MERL
sphere dataset with 100 lights.

number of surface normal candidates N

1001 2001 3001 5001 10001 20001 30001 40001

2.82 2.39 2.21 2.06 1.91 1.83 1.80 1.78

Table 2.4 Computation time of our method in milliseconds for varying numbers of
surface normal candidates. The experiment is performed on the MERL sphere dataset
with 100 lights, and the computation time is calculated by taking average over all
MERL sphere’s pixels.

number of surface normal candidates N

1001 2001 3001 5001 10001 20001 30001 40001

1.09 1.72 2.42 4.46 9.43 18.9 28.0 35.7

directions closest to known light directions instead. Here, we examine how the surface

normal estimation accuracy is a�ected by the discretization of light directions.

As pre-defined light directions in the appearance tensor, we used 20001 discretized

directions created in the same manner with the surface normal candidates. When a set

of known light directions is given, we can slice out a sampled appearance matrix/vector

for a hypothesized surface normal and the set of light directions that are closest to

the known light direction in terms of cosine distance. We can then follow the same

estimation process used so far. We performed such an experiment on the MERL sphere

dataset with ten types of light configurations.

Table 2.5 shows the increases of mean angular errors (i.e., ones shown in Tab. 2.1)

due to the light discretization on the MERL sphere dataset. We observe that the

increases are generally small (< 0.1¶), which suggests that it is acceptable to prepare

an appearance tensor T for su�ciently finely discretized light directions and sample

appearance matrices {Di} for light directions closest to target scene’s ones. Hence,

there is no need to calculate appearance matrices for each light configuration.
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Table 2.5 Increases of angular errors due to discretized lights. As pre-defined light
directions in the appearance tensor we used 20001 directions created in the same way
as the surface normal candidates. The numbers represent the increase of mean angular
error in degrees on the MERL sphere dataset.

number of lights

10 20 30 40 50 60 70 80 90 100

0.02 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

Table 2.6 Precomputation time in seconds for varying number of lights. These pre-
computation time is measured in a typical case of 20001 surface normal candidates,
100 BRDF bases, and 100 light directions.

number of lights

10 20 30 40 50 60 70 80 90 100

10 14 12 14 14 16 18 21 29 31

2.4.6 Precomputation cost

Our method achieves e�cient surface normal estimation by precomputation of

Zi œ RLÕ◊LÕ from an appearance matrix Di œ RLÕ◊M that is performed only once for

a light configuration. Table 2.6 shows the precomputation time of our method for

varying number of lights. It shows that our method only requires tens of seconds for

the precomputation. We consider that this precomputation cost is worth paying for

the e�cient surface normal estimation, especially when performing photometric stereo

for multiple subjects under an identical light configuration.

2.5 Conclusion

In this chapter, we have presented a photometric stereo method based on discrete

hypothesis-and-test search. The proposed method can work with a diverse set of

appearances that are represented in an appearance tensor and can determine surface

normals of a scene with spatially varying general BRDFs. By putting most of the
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computation into a precomputation step, we enabled a full search over all surface

normal candidates, leading to a solution guaranteed to be optimal within the bounds

of the objective function and the discretization. This approach is also supported by

the fact that with the continuing increase of computation power, memory size, and

the availability of many-core processors, the applicability of the full search strategy is

expanding. We are interested in seeing more applications along the direction.



Chapter 3

Nearest Neighbor Search-based

Photometric Stereo

3.1 Introduction

Photometric stereo aims at recovering surface normals and bidirectional reflectance

distribution functions (BRDFs) from image measurements taken by a static camera

under varying and known distant lights. Today, Lambertian photometric stereo [20] is

already well understood; however, non-Lambertian photometric stereo still remains a

di�cult problem, and there have been various approaches in the past. Recent search-

based (a.k.a. exemplar-based) methods including our HaTS-PS presented in Chapter 2

estimate accurate surface normals on non-Lambertian surfaces at the cost of an ex-

haustive search over finely discretized surface normals. While HaTS-PS reduces the

estimation time by a precomputation strategy, a faster estimation is required in several

scenarios, such as on high-resolution images. Unlike existing search-based methods us-

ing continuous BRDF models, we treat BRDFs in a discrete manner as well as surface

normal. It turns the photometric stereo problem into the well-known nearest neigh-

bor search problem; hence the estimation time is dramatically saved using advanced

nearest neighbor search methods. Although the discrete BRDF model only represents

less diverse materials than continuous ones, surprisingly, our method exhibits com-
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Discretized
surface normals Discretized BRDFs

Appearance exemplars

×

︙

Input images

Query

Fig. 3.1 An overview of ours DSPS proposed in this chapter. We estimate a surface
normal and BRDF by a discrete search over the discretized space of surface normals
and BRDFs. The problem can be solved by any nearest neighbor search method,
which reduces an estimation cost dramatically.

parable or high accuracy in determining surface normals to exemplar-based methods

with continuous BRDF models.

This chapter presents Discrete Search Photometric Stereo (DSPS), in which the

non-Lambertian photometric stereo problem is turned into a discrete search over a

finely-discretized space of surface normals and BRDFs. The discretized space is formed

by appearance exemplars; a set of synthetic appearances corresponding to all possible

pairs of discretized surface normals and BRDFs. Given known light directions and the

associated image measurements, our method resamples the discretized space and per-

forms a nearest neighbor search over the resampled space to determine surface normal

and BRDF in a per-pixel manner as shown in Fig. 3.1. Similar to other search-

based photometric stereo methods [2, 30, 49], DSPS is built upon the observation

that appearance exemplars having similar surface normals and BRDFs are naturally
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similar [30, 44]. Unlike other search-based methods, our DSPS fully discretizes con-

tinuous surface normals and BRDFs and performs a discrete search without relying

on continuous optimization. This allows us to leverage many methods for e�cient

exact/approximate nearest neighbor search [50–53].

Naturally, the accuracy of DSPS depends on the granularity of the discretization

of surface normals and BRDFs, and also on the number of BRDF samples contained

in the space. Although our experiments show that DSPS already yields favorable

accuracy for diverse materials, it has the potential of becoming even more powerful as

processing power and BRDF datasets grow further.

In summary, the key features of our DSPS are:

Simplicity: Discrete search is conceptually simple and intuitive, and its behavior is

well understood.

E�ciency: DSPS benefits from advances in fast nearest neighbor search algorithms.

Accuracy: Discrete search over the finely-discretized space leads to a stable and

accurate estimation of both surface normals and BRDFs. Since DSPS operates in a

per-pixel manner, it naturally handles spatially-varying BRDFs.

3.2 Related work

This section describes previous non-Lambertian photometric stereo and their relation

to our methods. Modern non-Lambertian photometric stereo can be roughly catego-

rized into model-based, example-based, and learning-based methods. Here, we review

the example-based and learning-based methods. See Sec. 2.2 for the model-based

methods.

3.2.1 Example-based photometric stereo

Early work on example-based photometric stereo relies on the concept of orientation

consistency [30], i.e., two surfaces with the same surface normal and BRDF will have

the same appearance under the same illumination. Another work along this direc-
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tion is found in Horn and Ikeuchi [44]. In these methods, a reference object with

known surface normals is placed in a target scene and the reference object’s BRDF

is assumed to be the same as the target object’s. A surface normal is recovered for

each point of the target object by searching the corresponding pixel intensity of the

reference object that best matches the target’s appearance. To relax the assumption

of identical BRDF between reference and target, Hertzmann and Seitz [30] introduced

two reference objects, di�use and specular spheres, placed in the target scene. They

approximate the target BRDF by a non-negative linear combination of the reference

BRDFs.

Hui and Sankaranarayanan [2] introduced virtual exemplar-based photometric

stereo that performs example-based photometric stereo without actually introducing

reference objects in the target scene. They render virtual exemplars of appearances

under the target scene illumination with the MERL BRDFs [43] and assume that the

target BRDF lies in the non-negative span of the MERL BRDFs. In their method,

there are time-consuming processes such as rendering virtual exemplars, an iterative

optimization for solving a non-negative least-squares problem, and searching over all

possible surface normals. To reduce the computation cost, they proposed an e�cient

search algorithm which, however, eliminates the guarantee of finding the optimal so-

lution.

Our DSPS is categorized as an exemplar-based (or example-based) method that

does not require reference objects. Unlike virtual exemplar-based methods, our DSPS

allows the exhaustive discrete search that guarantees to reach the globally optimal so-

lution within the bounds of the objective function. Moreover, unlike virtual exemplar-

based method and hypothesis-and-test search photometric stereo (HaTS-PS) presented

in Chapter 2 that treat BRDFs as a continuous quantity, our DSPS treats BRDFs in

a discrete manner as well as surface normals, which makes the surface normal esti-

mation problem similar to classic nearest-neighbor search. This allows using any fast

nearest-neighbor search method for e�ciency without sacrificing accuracy. The dif-

ferences among exemplar-based photometric stereo methods, including HaTS-PS, are
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Table 3.1 Comparison of exemplar-based photometric stereo methods and their prop-
erties.

Hertzmann & Seitz [30] Hui & Sankaranarayanan [2] HaTS-PS
(Chapter 2) our DSPS

surface normal
representation discrete (example-based) discrete to continuous discrete

BRDF
representation

continuous (non-negative
linear combinations)

continuous (non-negative
linear combinations)

continuous (linear
combination) discrete

solution
method

iterative non-negative least
squares

iterative non-negative least
squares

closed-form least
squares

nearest neighbor
search

setting

Virtual world Real world

Target

Real world

Target
Diffuse & specular

examples Appearance exemplars

Virtual world Real world

Target

Real world

Target
Diffuse & specular

examples Virtual exemplars

summarized in Tab. 3.1.

3.2.2 Learning-based photometric stereo

Recently, deep learning-based photometric stereo methods have been proposed. They

learn a mapping from measured intensities under known illuminations to surface nor-

mals using a neural network [24, 28, 34–36]. These methods show strong results on

various scenes due to the network being trained with diverse shapes and materials.

In particular, learning-based methods e�ectively deal with global illumination e�ects,

such as cast shadows and inter-reflections, which are di�cult for model-based and

exemplar-based methods, by including such e�ects in the training data. Santo et

al. [34] and Chen et al. [24] created a training dataset by rendering the Blobby [41]

and Sculpture [42] shape datasets with 100 MERL BRDFs [43]. Ikehata [4] also intro-

duced a training dataset, called CyclesPS dataset, containing several objects rendered

with a diverse set of materials from Disney’s principled BSDFs [5] with global illu-

mination e�ects. Logothetis et al. [35] proposed a per-pixel data generation strategy

considering global illumination e�ects to simplify and speed up the rendering. Typical
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learning-based methods su�er from sparse light configurations, which is subsequently

addressed by some recent papers [37, 38, 54]. Wang et al. [47] also addressed surface

normal recovery under sparse lightings using monotonicity of isotropic reflectance and

a special lighting setup with a collocated light. Beside learning-based methods in

supervised settings, Taniai and Maehara [46] proposed an unsupervised method that

minimizes the reconstruction loss between input and re-rendered images.

Our DSPS, which uses nearest-neighbor search, can be considered to be a learning-

based method as it is a “lazy learner” that memorizes the entire training dataset. An

advantage of nearest neighbor search is the simplicity of the training compared to

deep learning methods. Much like the growth in datasets in various machine learning

tasks such as image classification [55–57], it is expected that datasets for photometric

stereo will also grow. Therefore, we consider that it may raise issues in stable learning

for neural networks, such as the issue of training on a biased dataset [58, 59]. In

contrast, nearest neighbor search is less a�ected by biases in training datasets since it

only requires that training datasets contain data similar to an input query.

3.3 Discrete search photometric stereo

This section describes how the photometric stereo problem is turned into a nearest

neighbor search problem. Starting from the image formation definition, we introduce

the first nearest neighbor search-based photometric stereo.

3.3.1 Image formation

Suppose a surface point with a unit surface normal n œ S2 µ R3 is illuminated by

a directional light l œ S2, without ambient lighting or global illumination. When the

surface point is observed by a fixed camera with linear response, the measured intensity

m œ R+ can be written as

m Ã fl(n, l) max(n€
l, 0), (3.1)
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Fig. 3.2 Slice of the appearance tensor T that represents appearances for a compre-
hensive set of light directions, surface normals, and BRDFs. Given a set of known
light directions, we can slice out all possible appearance vectors dij.

where fl(n, l) : S2 ◊ S2 æ R+ is a BRDF.

In calibrated photometric stereo, a camera records multiple, say LÕ, measurements

(m1, . . . mLÕ) for each surface point under various light directions (l1, . . . lLÕ). Then,

Eq. (3.1) can be written in a vector form as

Q

ccccca

m1
...

mLÕ

R

dddddb

¸ ˚˙ ˝
m

Ã

Q

ccccca

fl(n, l1) max(n€
l1, 0)

...

fl(n, lLÕ) max(n€
lLÕ , 0)

R

dddddb

¸ ˚˙ ˝
d

, (3.2)

where m is a measurement vector, d is an appearance vector with a fixed scale. Our

goal is to find the optimal surface normal n and BRDF fl(·) for each surface point,

given measurements m and associated light directions (l1, . . . lLÕ) based on the model

of Eq. (3.2).
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Fig. 3.3 Minimal ¸2 distance between m and sdij. The optimal scaling parameter sú

scales the vector dij to the point closest to m.

3.3.2 From photometric stereo to nearest neighbor search

Let N = {ni | i = 1, . . . , N} and B = {flj(·) | j = 1, . . . , M} be sets of discretized sur-

face normals and BRDFs, which we call surface normal candidates and BRDF candi-

dates, respectively. The surface normal candidates are generated by discretizing the

angular direction over hemisphere, while the BRDF candidates are based on a set of

measured BRDFs or discretizing an analytic BRDF model. We use the appearance

tensor T œ RN◊L◊M
+ to represent the appearance for all combinations of the surface

normal candidates N , BRDF candidates B, and discretized L incoming light direc-

tions.

Given a certain combination of surface normal ni and BRDF flj(·) under a set of LÕ

known light directions, we can slice out a synthetic appearance vector dij as illustrated

in Fig. 3.2. The synthetic appearance vector dij can be obtained for all possible pairs

of the surface normal candidates {ni} and BRDF candidates {flj}; thus, we can form

a set of synthetic measurement vectors A = {dij | i = 1, . . . , N ; j = 1, . . . , M}, which

we call appearance exemplars.

If the set of appearance exemplars A is large enough, the actual measurement

vector m from a scene point can be well approximated by an element of A as

m ƒ sdij, (3.3)

where s is an unknown scaling in Eq. (3.2). Under this assumption, the optimal
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indices of the surface normal candidate iú and BRDF candidate jú can be found as

the minimizer of the following objective:

iú, jú = argmin
i,j

Îm ≠ sdijÎ2
2 . (3.4)

As illustrated in Fig. 3.3, the optimal scaling parameter sú should scale the dij to the

point closest to m; therefore, the objective can be written in a parameter-free form

by eliminating the (unknown) optimal scaling sú as

Îm ≠ sú
dijÎ2

2 = ÎmÎ2
2

3
1 ≠

1
m̃

€
d̃ij

22
4

, (3.5)

where m̃ and d̃ij are normalized m and dij, respectively. Consequently, our objective

is transformed to

argmin
i,j

Îm ≠ sdijÎ2
2 … argmax

i,j
m̃

€
d̃ij, (3.6)

because ÎmÎ2
2 = const., and 0 Æ m̃

€
d̃ij Æ 1 derived from the non-negativity of both

vectors. Lastly, with the fact of
...m̃ ≠ d̃ij

...
2

2
= 2 ≠ 2m̃

€
d̃ij, our objective becomes

argmax
i,j

m̃
€

d̃ij … argmin
i,j

...m̃ ≠ d̃ij

...
2

2
. (3.7)

Therefore, our final objective can be written concisely as

iú, jú = argmin
i,j

...m̃ ≠ d̃ij

...
2

2
. (3.8)

This objective is equivalent to the nearest neighbor search problem with the Euclidean

distance; hence, we can rely on any exact or approximate nearest neighbor search

method to minimize it. This yields the optimal surface normal n
ú = niú and BRDF

flú(·) = fljú(·).
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3.4 Experiments

This section describes experiments on our DSPS’s accuracy and computational e�-

ciency using synthetic and real-world data. We also show comparisons with recent

photometric stereo methods.

3.4.1 Preparation

Appearance tensor: The appearance tensor is constructed from three components;

BRDFs, surface normals, and light directions. For BRDFs, we used the MERL BRDF

database [43] which consists of 100 distinct BRDFs including di�use, specular, and

metallic materials. We discretized the surface normal with equi-angular sampling

from the unit hemisphere [1] and obtained 20001 surface normal candidates with nearly

0.5¶ intervals. In all experiments of this paper, we assume that the appearance tensor

contains the known light directions. In Sec. 3.4.6, we discuss how the surface normal

estimation accuracy is a�ected by the discretization of light directions.

MERL sphere dataset: The MERL sphere dataset consists of 100 synthetic sphere

scenes rendered with the 100 MERL BRDFs [43]. We rendered the images under

ten lighting environments consisting of {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} uniformly

distributed light sources. Image resolution was set to 100 ◊ 100, yielding 7860 valid

pixels.

PrincipledPS dataset: To quantitatively evaluate our method on varying sets of

BRDFs, textures, and shapes, we rendered a synthetic dataset including PLANAR,

BUNNY, DRAGON, and ARMADILLO shapes with the Principled BSDFs [5]. We

call this dataset as PrincipledPS. For each shape, we prepared two materials, Specular

and Metallic, as defined by Ikehata [4], four spatially varying textures, and sparse

and dense (10 and 100) light configurations, totally, 64 scenes. Figure 3.4 shows the

ground truth surface normal maps and example images of the PrincipledPS dataset.
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Fig. 3.4 Ground truth surface normals and example images of PrincipledPS dataset.

Real-world dataset: We use an existing real-world dataset, the DiLiGenT

dataset [3], which contains 10 real objects of general reflectance illuminated from

96 di�erent known directions. This dataset provides the ground truth surface normal

maps for all objects measured by high-precision laser scanning that can be used for

quantitative evaluation. For the BEAR object we discarded the first 20 images where

a part of measurements is corrupted as pointed out by Ikehata [4]. In addition to the

original dataset, for testing sparse light cases, we prepared 20 datasets, each containing

10 randomly selected images.

Baselines: As baselines we used Lambertian photometric stereo (LPS) [20], the

model-based method ST14 [27], the virtual exemplar-based method HS17 [2],

hypothesis-and-test search (HaTS-PS) presented in Chapter 2, the unsupervised learn-

ing (i.e., neural inverse rendering)-based method NIR-PS [46], the supervised learning

methods PX-NET [35], PS-FCN+N [24], WJ20 [47], CNN-PS [4], and SPLINE-Net [38].

For a fair comparison in computation time, we reimplemented HS17 in Python based
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on the authors’ MATLAB implementation. We solve the non-negative least-squares

sub-problem in HS17 using scipy.optimize.nnls from the SciPy package [48] resulting

in the authors’ implementation speedup without any accuracy drop. We implemented

the coarse-to-fine search they proposed for e�cient surface normal estimation following

their original implementation. While the published, pre-trained SPLINE-Net model

has been trained specifically for 10 lights, it works well for other small numbers of light

sources. Therefore, we show SPLINE-Net’s scores for cases other than 10 lights for

reference in this paper. For testing with the MERL sphere dataset, although PX-NET,

PS-FCN+N, and WJ20 include the target material in their pre-trained models, we list

their scores for reference. Also for testing with the PrincipledPS dataset, although

PX-NET, CNN-PS, and SPLINE-Net include the target material in their pre-trained

models, we list their scores for reference.

3.4.2 Implementation

Our DSPS can benefit from any exact or approximate nearest-neighbor search method

based on ¸2 distance (e.g., [50, 51, 60–64]) implemented in modern libraries [48, 63,

65, 66]. In our experiments, we used a simple linear search algorithm implemented in

FAISS [65] as an exact method. As an approximate method, we adopted a combination

of an inverted file system with asymmetric distance computation (IVFADC) [52] and

a hierarchical navigable small worlds (HNSW) indexing structure [53] implemented

in FAISS [65]. The HNSW and IVFADC require to set their hyper-parameters listed

in Tab. 3.2. In all the experiments of this chapter, we used 32, 1000, 8, and 8 for

HNSW_M, nlist, nbits_per_idx, and nprobe, respectively. For the hyper-parameter

M_sub, we have to use a di�erent value in each experiment depending on the number

of lights due to its requirements1. For all experiments on the MERL sphere and

PrincipledPS dataset, we used M_sub= 10. On the DiLiGenT dataset, we used

M_sub= 5, 19, 24 for the 10, 76, and 96 lights, respectively.

In the following, we denote DSPS with exact and approximate nearest neighbor
1See the wiki of the FAISS for details.
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Table 3.2 Hyper-parameters for HNSW and IVFADC.

HNSW_M The number of neighbors in HNSW
nlist The number of cells for space partitioning in IVFADC

M_sub The number of sub-vector in IVFADC
nbits_per_idx Bits per sub-vector in IVFADC

nprobe The number of probes at query time in IVFADC

search as DSPS-E and DSPS-A, respectively. Both DSPS-E and DSPS-A using

FAISS can be performed on either a CPU or a GPU.

3.4.3 E�ciency of surface normal estimation

This section shows comparisons of computation time with the baseline methods run-

ning on CPU and/or GPU. We use the MERL sphere dataset with the ten light sets.

We measured the computation time of DSPS-E, DSPS-A, HaTS-PS, and HS17 [2] on

a CPU. We also measured the computation time of DSPS-E, DSPS-A, CNN-PS [4],

and PS-FCN+N on a GPU. In this section, we eliminate the results of ine�cient it-

erative methods, ST14 and NIR-PS, and the extension of CNN-PS, i.e., PX-NET

and SPLINE-Net, that are always slower than CNN-PS. We used 40 cores of an

Intel® Xeon® Gold 6148 CPU @ 2.40 GHz and NVIDIA TITAN X GPU. On the

CPU we performed pixel-wise parallelization. Note that our methods are executable

on common CPUs and GPUs because the sampled appearance matrix only requires a

small amount of memory. For example, sampled appearance matrices stored in 64-bit

floating point numbers for a typical setting, where N = 20001, M = 100, L = 100,

only require 3.1 GB storage space.

Figure 3.5a shows the computation time for a single pixel on the CPU, averaged

over all MERL spheres for each light configuration. DSPS-A is 3–4 orders of magni-

tude faster than HS17 while DSPS-E are around one order of magnitude faster than

HS17. Figure 3.5b shows the computation time for a single pixel on the GPU. DSPS-E

and DSPS-A are accelerated one order of magnitude using the GPU. While typical

exemplar-based methods are computationally expensive, our methods achieve compa-
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Fig. 3.5 (a) CPU computation time of our methods, HaTS-PS, and HS17 [2] for a single
pixel. (b) GPU computation time of our methods, CNN-PS [4], and PS-FCN+N.

rable or faster inference than the learning-based methods using feed-forward networks.

3.4.4 Accuracy of surface normal estimation

We estimated surface normals on synthetic and real datasets to confirm that our

methods work with diverse scenes.

MERL sphere: We compared our methods and the baseline methods using the

MERL sphere dataset. For the materials in our method, HaTS-PS, and HS17, we

applied a leave-one-out scheme, testing them on one MERL BRDF while constructing

the appearance tensor from the remaining 99 BRDFs so that the appearance tensor

does not contain the target BRDF.

Table 3.3 shows the averages and standard deviations of angular errors over all

pixels in the MERL sphere dataset for the ten light configuration sets. The small

averages and standard deviations show that our methods stably yield small errors in

all light configurations when compared with the baseline methods. The stable and

high accuracy for diverse materials of our methods is confirmed in Fig. 3.6, showing
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Table 3.3 Comparisons on the MERL sphere dataset with ten light configuration sets.
Numbers represent averages and standard deviations of angular errors over 100 MERL
spheres.

#lights 10 20 30 40 50 60 70 80 90 100

E
xe

m
pl

ar
-

ba
se

d

DSPS-E 3.0/4.3 2.2/3.1 2.0/2.8 1.9/2.6 1.8/2.5 1.8/2.4 1.7/2.4 1.7/2.4 1.7/2.4 1.7/2.4

DSPS-A 3.0/4.3 2.3/3.1 2.1/2.8 2.1/2.7 2.0/2.5 2.0/2.5 2.0/2.5 2.0/2.5 2.0/2.5 2.0/2.5

HaTS-PS 4.2/6.6 2.5/3.6 2.2/3.0 2.1/2.9 2.0/2.8 1.9/2.7 1.9/2.7 1.9/2.6 1.8/2.7 1.8/2.7

HS17 3.6/5.2 2.2/3.3 1.9/2.8 1.8/2.6 1.7/2.5 1.6/2.4 1.6/2.4 1.7/3.5 1.6/2.4 1.6/2.4

Le
ar

ni
ng

-
ba

se
d

PX-NETa 13.4/14.3 11.0/14.3 9.3/12.8 9.7/12.9 3.5/7.2 3.4/7.4 3.4/7.9 3.5/8.2 3.5/8.3 3.5/8.5

PS-FCN+Na 4.5/4.6 2.7/2.6 2.7/2.5 3.0/2.7 3.1/2.7 3.2/2.9 3.4/3.0 3.4/3.0 3.6/3.1 3.7/3.2

WJ20a 3.7/4.2 3.3/3.5 3.2/3.3 3.2/3.4 3.3/3.3 3.2/3.3 3.3/3.3 3.3/3.3 3.3/3.4 3.3/3.2

SPLINE-Net 13.0/20.0 9.3/16.1 10.2/13.1 15.9/18.4 27.5/28.8 38.8/33.8 45.5/34.8 49.0/33.7 51.4/32.9 50.0/31.5

CNN-PSb 33.6/23.9 6.2/6.4 4.7/5.7 4.0/5.3 3.7/5.2 3.2/4.6 3.0/4.2 2.9/4.3 2.6/3.9 2.5/3.8

NIR-PS 21.7/44.8 15.6/36.3 18.0/40.8 15.2/37.0 18.9/42.5 16.0/38.5 14.8/35.7 14.4/34.2 13.7/33.5 14.6/34.3

M
od

el
-

ba
se

d ST14 15.5/9.9 11.5/15.6 10.9/13.7 10.9/13.9 9.8/13.4 5.5/8.1 2.7/4.4 1.7/3.1 1.4/2.6 1.2/2.3

LPS 13.6/9.9 13.0/9.4 12.8/9.4 12.7/9.3 12.7/9.3 12.6/9.3 12.6/9.4 12.6/9.4 12.6/9.4 12.6/9.4

a Training dataset of PX-NET, PS-FCN+N, and WJ20 include target materials.
b CNN-PS is trained with 50-100 lights.

mean angular errors of our method and several baseline methods for each material in

the 100 lights case. While HS17 also achieves competitive accuracy, it is more than

three orders of magnitude slower than DSPS-A as shown previously. Our methods

achieve remarkably stable surface normal estimation in the few lights case such as ten

lights. It is a benefit of treating BRDFs in a discrete manner instead of a continuous

manner that tends to be over-fit to the measurements in a few light cases. Incidentally,

NIR-PS yields large angular errors in this experiment. We observed that NIR-PS has

extremely large errors for several materials as shown in Fig. 3.6, which a�ect the

averaged scores.

PrincipledPS: We conducted quantitative evaluation on the PrincipledPS dataset.

While training datasets of PX-NET, CNN-PS, and SPLINE-Net are also rendered with

the Principled BSDFs and therefore may include the target materials, their scores are

shown as reference.

Table 3.4 shows averages of angular errors over eight scenes (i.e., all combinations
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Table 3.4 Comparisons on the PrincipledPS dataset. Numbers represent averages of
angular errors over eight scenes, i.e., two materials and four textures.

10 lights 100 lights

PLANAR ARMADILLO BUNNY DRAGON Avg. PLANAR ARMADILLO BUNNY DRAGON Avg.

E
xe

m
pl

ar
-

ba
se

d

DSPS-E 1.5 3.6 3.5 3.6 3.0 1.0 3.4 3.1 3.2 2.7
DSPS-A 1.5 3.6 3.5 3.6 3.0 1.6 3.6 3.5 3.4 3.0

HaTS-PS 15.9 4.0 4.0 4.1 7.0 1.1 2.7 2.6 2.7 2.3
HS17 1.6 3.9 3.7 3.8 3.3 1.2 2.4 2.2 2.3 2.0

Le
ar

ni
ng

-
ba

se
d

PX-NETa 10.6 4.8 5.3 5.0 6.4 1.2 1.4 1.4 1.5 1.4
PS-FCN+N 6.9 5.1 4.8 5.4 5.6 2.9 3.6 3.5 3.8 3.4

WJ20 4.9 3.6 3.5 3.6 3.9 2.3 2.9 2.7 2.9 2.7
SPLINE-Neta 9.2 6.2 6.4 6.4 7.0 33.8 41.3 45.4 42.0 40.6

CNN-PSab 28.7 30.3 34.2 30.5 30.9 4.9 1.8 2.0 1.9 2.6
NIR-PS 48.0 2.9 2.5 3.1 14.1 41.0 2.9 2.6 2.8 12.3

M
od

el
-

ba
se

d ST14 15.0 12.2 12.7 11.3 12.8 1.6 7.0 2.5 7.2 4.6
LPS 13.7 10.2 10.4 9.3 10.9 13.4 8.2 8.3 7.5 9.4

a Training dataset of PX-NET, CNN-PS, and SPLINE-Net may include target materials.
b CNN-PS is trained with 50-100 lights.

of two materials and four textures) for each shape and number of lights. The results on

the PrincipledPS dataset also show that our DSPS achieves accurate and stable surface

normal estimation for diverse materials in both sparse and dense lighting cases. In the

sparse lighting case, DSPS has a higher accuracy than HaTS-PS. This is because DSPS

treats BRDFs in a discrete manner, while HaTS-PS treats them in a continuous manner

that tends to be over-fit to the measurements, particularly in sparse lighting case. In

contrast, HaTS-PS is more accurate than DSPS in the dense lighting case since the

continuous BRDF model can represent more diverse materials than the discrete BRDF

model of DSPS and the over-fitting of the continuous BRDF model rarely happen if

the number of lights is large. PS-FCN+N and WJ20 also yield promising results;

however, the di�erent behavior than ours is observed especially when few lights on the

PLANAR, which is an extreme shape but often appears in the real-world. One possible

reason for the di�erence is that PS-FCN+N and WJ20 use patch-based processing, i.e.,

their surface normal estimates depend on not only local appearances but also global

appearances. Therefore, the accuracy of patch-based methods slightly degrades on

scenes with non-informative global appearances.
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Table 3.5 Comparisons on the DiLiGenT dataset with 96 and 10 lights. Numbers
in the table above are mean angular errors in degrees. Numbers in the table below
are averages and standard deviations of mean angular errors over 20 datasets with
di�erent light distributions.

96 lights

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING Avg.

E
xe

m
pl

ar
-

ba
se

d

DSPS-E 1.3 6.3 14.0 6.8 7.8 11.5 17.4 7.3 7.4 15.2 9.5
DSPS-A 1.4 6.4 14.2 6.8 8.0 11.7 17.5 7.4 7.4 15.3 9.6

HaTS-PS 1.6 5.9 13.1 6.1 9.2 11.0 18.7 6.6 7.2 15.0 9.4
HS17 1.5 6.2 13.9 6.4 9.2 10.8 18.8 7.0 7.9 15.3 9.7

Le
ar

ni
ng

-
ba

se
d

PX-NET 2.0 3.5 7.6 4.3 4.7 6.7 13.3 4.9 5.0 9.8 6.2
PS-FCN+N 2.6 5.4 7.5 4.7 6.7 7.8 12.4 5.9 7.2 10.9 7.1

WJ20 1.8 4.1 6.1 4.7 6.3 7.2 13.3 6.5 6.4 10.0 6.6
CNN-PS 2.1 4.2 8.1 4.4 7.9 7.4 13.8 5.4 6.4 12.1 7.2
NIR-PS 1.6 6.1 11.0 5.6 5.8 11.2 22.0 6.5 8.5 11.3 9.0

M
od

el
-

ba
se

d ST14 1.8 5.1 10.7 6.1 13.8 10.2 25.6 6.5 8.7 13.0 10.2
LPS 4.2 8.5 14.9 8.4 25.6 18.5 30.6 8.9 14.6 20.0 15.4

10 lights

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING Avg.

E
xe

m
pl

ar
-

ba
se

d

DSPS-E 2.4/0.5 7.7/0.7 16.1/0.8 8.0/0.4 10.5/0.6 14.0/0.6 20.9/0.6 8.8/0.4 9.8/0.7 18.1/1.1 11.6

DSPS-A 2.5/0.5 7.7/0.7 16.0/0.8 8.0/0.4 10.6/0.6 14.0/0.6 20.9/0.6 8.8/0.4 9.9/0.7 18.0/1.1 11.6

HaTS-PS 4.2/1.2 7.9/0.7 16.7/1.4 8.5/1.0 12.4/1.2 15.2/1.3 24.2/0.8 9.3/0.8 11.7/1.7 21.1/1.6 13.1

HS17 3.8/0.9 8.1/0.8 16.3/1.0 8.5/0.6 12.9/1.1 14.1/0.7 22.0/0.7 9.2/0.6 11.1/1.0 18.2/1.3 12.4

Le
ar

ni
ng

-
ba

se
d

PX-NETa 2.3/0.4 4.7/0.3 9.6/0.5 6.3/0.4 7.3/0.6 9.6/0.9 16.2/0.7 7.0/0.4 7.8/1.1 13.5/0.8 8.4

PS-FCN+N 4.3/1.0 6.8/0.8 9.7/0.8 6.3/0.6 12.2/1.3 10.5/0.8 17.5/1.0 7.7/0.6 10.0/1.2 13.0/1.1 9.8

SPLINE-Net 5.1/1.0 5.9/0.6 10.7/1.0 7.9/0.9 9.0/1.1 10.7/1.2 19.2/1.0 9.4/0.8 12.5/1.4 15.3/0.8 10.6

CNN-PSb 10.2/5.5 14.2/4.8 15.0/4.3 12.4/5.8 13.9/1.8 15.5/2.8 20.3/2.6 12.9/4.8 14.9/3.6 16.4/3.5 14.6

NIR-PS 1.6/0.2 5.9/0.6 10.9/0.8 6.2/0.4 13.3/6.5 16.8/10.0 28.5/4.1 8.0/4.6 8.9/1.0 15.3/4.7 11.5

M
od

el
-

ba
se

d ST14 5.7/0.6 10.0/0.4 16.4/0.7 9.6/0.5 26.3/0.8 20.0/0.9 31.0/0.7 10.2/0.4 16.2/1.0 19.7/1.3 16.5

LPS 4.6/0.5 9.0/0.4 15.9/0.7 9.2/0.4 26.6/0.7 19.7/0.9 31.4/0.6 9.6/0.4 15.6/1.0 20.2/1.4 16.2

a A model specific to few lights is used.
b CNN-PS is trained with 50-100 lights.
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DiLiGenT: We show quantitative results on the real-world dataset DiLiGenT with

96 and 10 lights in Tab. 3.5, where we compare our methods with the baseline meth-

ods in terms of mean angular error. Figures 3.7 and 3.8 show visual comparisons

between our methods and the baseline methods in 96 lights case. Our DSPS methods

demonstrate comparable or better accuracy compared to the exemplar-based methods,

although showing a slight degradation compared to the learning-based methods.

For the scenes with 96 lights, DSPS-E achieves the best score on the BALL object

having fully convex surfaces. The same trend of high accuracy on convex regions

can be observed in other scenes, e.g., the body of the COW object and the arm of

the READING object in Fig. 3.8. Although our DSPS accurately estimates surface

normals on convex surfaces, HaTS-PS achieves further accuracy at several pixels (e.g.,

the body of BEAR, BUDDHA, and CAT in Fig. 3.7). This is due to the di�erence

in the BRDF models, namely continuous or discrete model. HaTS-PS employs a

continuous BRDF model that can represent more diverse materials than the discrete

model employed in DSPS; therefore, HaTS-PS can estimate better surface normals

than DSPS.

For the scenes with 10 lights, our methods achieve comparable accuracy to the

learning-based methods. The standard deviations of our DSPS tend to be small com-

pared to the baselines, which suggest that DSPS is insusceptible to the light distribu-

tions. This robustness is preferable since it is hard to know which light distribution is

the best for each method in practice.

Overall, we observe our DSPS shows comparable or better accuracies compared

to the existing exemplar-based methods. For convex shapes, where the global illumi-

nation e�ects can be mostly negligible, the accuracy by our method can further be

better than the learning-based methods; this tendency is especially pronounced when

few lights (e.g., 10 lights).

Reliability of surface normal estimates: In practical applications, it is impor-

tant to know the reliability of estimated surface normals. When the measurement
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Fig. 3.7 Angular error maps and estimated surface normal maps for BALL, BEAR,
BUDDHA, and CAT objects in the DiLiGenT dataset [3] with all the 96 lights.
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Fig. 3.8 Angular error maps and estimated surface normal maps for COW, GOBLET,
HARVEST, POT1, POT2, and READING objects in the DiLiGenT dataset [3] with
all the 96 lights.
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0.2+

0
BALL BEAR COW HARVEST POT1

BUDDHA CAT GOBLET POT2 READING

Fig. 3.9 Visual relation between angular errors and image reconstruction errors. For
each object in the DiLiGenT dataset, we show angular error maps (above) and image
reconstruction error maps (below).

vector is far from any appearance exemplars, it can be considered unstable estima-

tion; therefore, we can assess the reliability via the nearest neighbor search process.

Indeed, we can observe that larger image reconstruction errors, which can be calcu-

lated with Eq. (3.8), tend to correspond to higher angular errors as shown in Fig. 3.9.

In particular, we can observe large angular errors and image reconstruction errors at

pixels that can be considered a�ected by global illuminations (e.g., the neck of BEAR

and CAT). Therefore, we can find such pixels with unreliable surface normal estimates

by our method and may use other photometric stereo method such as learning-based

method for more reliable surface normal estimation.
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3.4.5 Robustness to image corruptions

We examine the robustness of our methods and baseline methods against common cor-

ruptions of photometric stereo images, camera noise, ambient light, and saturation.

We prepared evaluation datasets by applying such corruptions to the MERL sphere

dataset with 100 lights. We simulated the camera noise by adding signal-independent

and signal-dependent noise [45] to images in the same manner as previous work [27];

m̃ = m + (µ + ⁄
Ô

m)X, where m̃ and m are image signals with and without noise,

µ and ⁄ are weighting factors for signal-independent and signal-dependent noise, re-

spectively, and X is a N (0, 1)-distributed random variable. For the ambient light and

saturation, we followed dataset generation process of PX-NET [35]. To simulate the

ambient light, we added n
€

vX to images, where n is a surface normal, v is a view-

ing direction, and X is a U(0, 0.001)-distributed random variable and constant over a

single scene. To simulate the saturation of pixel intensity, we clipped the top 5% of

pixel intensities with the highest values in the half of the images.

Table 3.6 shows mean angular errors and standard deviations for each corrupted

data. The results suggest that exemplar-based methods including ours, HaTS-PS, and

HS17 are robust to uniform and small perturbations of measurements (i.e., camera

noise and ambient light) compared to learning-based and model-based methods. For

partial and relatively large corruption (i.e., saturation), every method is generally

robust. In particular, ST14 is almost una�ected by the saturation since they eliminate

large measurement values as outliers.

The robustness of exemplar-based methods can be explained by interpreting the

exemplar-based approach as space partitioning along the surface normal candidates.

They can be considered as separating the whole LÕ-dimensional measurement vector

space to N subspaces, each of which corresponds to one of the surface normal candi-

dates. Here, each subspace has a spatial margin to its neighboring subspaces, which

yields robustness to measurement perturbations caused by corruptions.
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Table 3.6 Mean angular errors and standard deviations (mean angular error/standard
deviation) on the corrupted MERL sphere datasets with 100 lights. Numbers are in
degrees obtained from 100 MERL spheres.

No noise Camera noise Ambient light Saturation

DSPS-E 1.7/2.4 2.4/4.7 7.7/15.9 2.8/4.1
DSPS-A 2.0/2.5 2.8/4.8 7.9/15.6 3.0/4.1

HaTS-PS 1.8/2.7 2.7/5.2 7.7/16.1 2.6/3.2
HS17 1.6/2.4 2.4/4.7 7.7/15.9 2.6/3.8

CNN-PS 2.5/3.8 6.2/14.0 8.9/18.8 2.6/3.8
ST14 1.2/2.3 22.9/13.3 34.5/33.7 1.2/2.3

3.4.6 Analysis of appearance tensor

The appearance tensor is constructed from three components; BRDFs, surface nor-

mals, and light directions. In the experiments so far, we used the appearance tensor

with 100 MERL BRDFs, 20001 surface normals, and exact light directions of a target

scene.

This section analyzes the e�ect of varying appearance tensors on the quality of

surface normal estimation.

Appearance tensor with non-MERL BRDFs: We investigate whether BRDF

bases from synthetic non-MERL BRDFs improve our method. Here, we use Disney’s

Principled BSDFs [5], Oren-Nayar [6], Blinn-Phong [7], and Cook-Torrance [8] BRDF

models for the appearance tensor. We discretize material parameters for each BRDF

model and prepare 162 bases from Principled BSDFs, 100 bases from Oren-Nayar

BRDF, 11 bases from Blinn-Phong BRDF, and 54 bases from Cook-Torrance BRDF.

Table 3.7 shows mean angular errors of our DSPS-E with di�erent BRDF bases on

the DiLiGenT dataset. The results suggest that the additional synthetic BRDF bases

do not contribute to the quality of surface normal estimation on the real data. It is

visually confirmed by Fig. 3.10, which shows the di�erence in the angular error maps

between DSPS-E with MERL BRDF bases and that with MERL & Principled BSDF

bases. This trend is consistent in DSPS-E with other BRDF bases. We consider that
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Table 3.7 Our DSPS-E with di�erent BRDF candidates. We use Disney’s principled
BSDF [5], Oren-Nayar [6], Blinn-Phong [7], and Cook-Torrance [8]. The experiments
are performed on the DiLiGenT dataset.

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING Avg.

MERL 1.3 6.3 14.0 6.8 7.8 11.5 17.4 7.3 7.4 15.2 9.5
Principled 1.4 6.4 14.8 7.8 7.7 13.4 18.6 8.3 9.6 16.0 10.4

MERL & Principled 1.4 6.4 14.3 7.1 7.3 11.5 17.5 7.8 7.4 15.5 9.6
MERL & Oren-Nayar 1.4 6.5 14.2 6.8 7.8 11.5 17.5 7.4 7.4 15.3 9.6

MERL & Blinn-Phong 1.3 6.6 15.4 7.4 8.5 12.4 17.7 7.7 7.9 17.4 10.2
MERL & Cook-Torrance 1.3 6.4 14.3 7.0 7.8 11.9 17.3 7.4 7.6 15.5 9.7

BALL BEAR BUDDHA CAT COW

MERL&
Principled better

0�

MERL better

GOBLET HARVEST POT1 POT2 READING

Fig. 3.10 Di�erence in the angular error maps between DSPS-E with MERL BRDF
bases and MERL & Principled BSDF bases. Blue color indicates that the MERL only
BRDF bases work better than the MERL & Principled BSDF bases and red color
indicates the opposite.

it is because the analytic BRDFs still deviate from real-world BRDFs even though

they add more diversity to our appearance tensor. Hence, we conclude to recommend

using only the MERL BRDFs for the appearance tensor.

Varying number of BRDFs: The experimental results so far show that our DSPS

is consistently comparable or better than HaTS-PS in terms of e�ciency and accuracy.

However, it is of interest to see how the accuracy of DSPS varies when the number



58 Nearest Neighbor Search-based Photometric Stereo

10 20 30 40 50 60 70 80 90

Number of BRDFs M

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
an

gu
la

r
er

ro
r

[d
eg

.]

Fig. 3.11 Relationship between the accuracy of surface normal estimation and the
number of BRDFs in the appearance tensor in DSPS. This experiment uses the MERL
sphere dataset with 100 lights. The solid line shows the mean angular error of the ten
trials, and the colored area shows the maximum and minimum angular errors of the
trials.

of BRDFs of the appearance tensor is limited since DSPS treats BRDFs in a discrete

manner. Therefore, we validate this using the MERL sphere dataset with 100 lights.

For each BRDF of the test data, we randomly sample BRDFs from the remaining

99 MERL BRDFs, run DSPS, and repeat them ten times for obtaining the average

accuracy.

Figure 3.11 shows the relationship between the accuracy of surface normal esti-

mation and the number of BRDFs in the appearance tensor. Naturally, the angular

error of estimated surface normals becomes smaller as the number of BRDFs increases.

The result suggests that 30 BRDFs or more give promising surface normal estimation,

around 2¶ in average, around 3¶ at worst. The reason why DSPS with such small

number of BRDFs successfully works is that the Eq. (3.3) only needs to be approxi-

mately satisfied for a good surface normal estimation, and that is su�cient as long as

the nearest exemplar has a surface normal close to the true one.

Surface normal discretization: The accuracy and e�ciency of our DSPS and

HaTS-PS are naturally a�ected by the granularity of the surface normal discretization.
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Fig. 3.12 (a) Mean angular errors and (b) Computation time of our methods with
varying number of surface normal candidates. This experiment is performed on the
MERL sphere dataset with 100 lights.

Table 3.8 Increases of angular errors due to discretized lights. As pre-defined light
directions in the appearance tensor we used 20001 directions created in the same way
as the surface normal candidates. The numbers represent the increase of mean angular
error in degrees on the MERL sphere dataset.

Number of lights

10 20 30 40 50 60 70 80 90 100

DSPS-E 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01

DSPS-A 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Figure 3.12 shows mean angular error and computation time for a single pixel with

varying numbers of surface normal candidates. This experiments are performed on

the MERL sphere dataset with 100 lights. Throughout this chapter we chose 20001

surface normal candidates because it balances accuracy and computation time well.

For accurate surface normal estimation, 20001 or denser surface normal candidates

are recommended. However, the choice of surface normal candidate discretization

coarseness depends on the use case and a coarser discretization may be acceptable

when fast inference is required.
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Light direction discretization: In all experiments so far, we assumed that the ap-

pearance tensor contains the light directions of the experiment at hand. In practice,

the appearance tensor rarely contains all of the experiment’s light directions and we

should use pre-defined light directions closest to known light directions instead. Here,

we examine how the surface normal estimation accuracy is a�ected by the discretiza-

tion of light directions.

As pre-defined light directions in the appearance tensor, we used 20001 discretized

directions created in the same manner with the surface normal candidates. When a

set of known light directions is given, we can slice out a sampled appearance vector for

a surface normal, BRDF and the set of light directions that are closest to the known

light direction in terms of cosine distance. We can then follow the same estimation

process used so far. We performed an experiment on the MERL sphere dataset with

ten types of light configurations.

Table 3.8 shows the increases of angular errors due to discretized lights on the

MERL sphere dataset. We observe that the increases are generally small (< 0.1¶),

which suggests that it is acceptable to prepare an appearance tensor for su�ciently

finely discretized light directions and there is no need to calculate a new appearance

tensor for each light configuration.

3.4.7 Precomputation cost

Nearest neighbor search methods used in our DSPS need precomputation/pretraining

for each light configuration to enable e�cient search. This section investigates the

costs of precomputation on the CPUs and GPUs used in Sec. 3.4.3.

Figure 3.13 shows the precomputation times of our methods on a CPU and GPU

for varying light configurations. This result shows that our methods only require tens

of seconds or less. We consider that this cost that is only paid once for each light

configuration is worth paying for the e�cient inference shown in Figs 3.5a and b.
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Fig. 3.13 Precomputation time of our methods on a CPU and GPU for varying light
configurations.

3.4.8 Relighting quality

Relighting is a practical application that uses per-pixel surface normals and BRDFs

recovered by the photometric stereo, which renders a recovered scene with novel illu-

minations. Also, evaluating relighting quality can assess the accuracy of both surface

normal and BRDF estimations. Here, we evaluate the relighting quality by the re-

lighting error erelit defined as

erelit =
.....

mrelit

ÎmrelitÎ2
≠ drelit

ÎdrelitÎ2

.....
2

, drelit =

Q

ccccca

flú(nú, l̂1) max(nú€
l̂1, 0)

...

flú(nú, l̂L̂) max(nú€
l̂L̂, 0)

R

dddddb
, (3.9)

where mrelit is a ground truth measurement vector under novel illuminations

L̂ = {̂l1, . . . , l̂L̂} unused for surface normal and BRDF recovery and drelit is relit scene’s

appearances using estimated surface normal n
ú and BRDF flú(·) under novel illumi-
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nations L̂. In addition, we analyze the degree of over-fitting by treating the image

reconstruction and relighting error as training and test errors, respectively. For this,

we relit the MERL spheres with 251 uniformly distributed lights using the estimated

surface normals and BRDFs for 10 and 100 lights cases. We used an existing exemplar-

based method (HS17 [2]) as a baseline.

Figure 3.14 shows cumulative histograms of the relighting errors and image re-

construction errors for all pixels in the MERL sphere dataset. Our method produces

smaller relighting errors than HS17 in the case of 10 lights. This suggests that our

method estimates both the surface normals and the BRDFs more accurately than

HS17. The superiority of our method can be also visually confirmed in Fig. 3.15.

Moreover, for the case 100 lights, our method achieves relighting errors competitive

to HS17.

Compared to our method, HS17 produces small reconstruction errors and large

relighting errors, especially in the case of 10 lights. This can be viewed as an evidence

of over-fitting at several pixels since HS17 adopts a linear combination of BRDF candi-

dates to explain the target measurements. In contrast, our method avoids over-fitting

by using only a single BRDF candidate to approximate the target measurements. This

results in a stable estimation of both surface normals and BRDFs.

3.5 Conclusion

In this chapter, we have presented Discrete Search Photometric Stereo (DSPS), which

reduces the photometric stereo problem to the well-known nearest neighbor search

problem. DSPS can stably recover surface normals of a scene with spatially vary-

ing general BRDFs in various light configurations. Using advanced nearest neighbor

search methods enabled full search over all surface normal candidates, leading to a

solution guaranteed to be optimal within the bounds of the objective function and the

discretization.

Experiments on synthetic and real-world datasets showed that our DSPS has com-
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Fig. 3.14 Cumulative histograms of the relighting and reconstruction errors for all
the pixels in the MERL sphere dataset. Relighting errors are calculated from the
estimated surface normals and BRDFs in 10 and 100 lights cases.

parable accuracy to the state-of-the-art exemplar-based photometric stereo methods

while achieving 100–1000◊ acceleration. In addition, we experimentally observed that

our DSPS is robust to imaging noise compared to model-based and learning-based

methods. Since it is hard to entirely avoid imaging noise in real-world experiments,

DSPS is one of the best choices for stable surface normal estimation.

While our DSPS showed promising surface normal estimation, it was limited to

convex surfaces since the appearance exemplars only consider convex surfaces and do

not consider global illumination e�ects that are likely to occur in non-convex surfaces.

We leave the extension of DSPS to non-convex surfaces as future work, which is

addressed in Chapter 4.
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Ground truth Ours (E) HS17 [2]

Fig. 3.15 Visual comparison of relighting results for our method and HS17 [2]. We
performed the relighting with 251 novel lights using the surface normals and BRDFs
estimated from just 10 lighting directions.



Chapter 4

General Appearance Exemplars for

Nearest Neighbor Search-based

Photometric Stereo

4.1 Introduction

Photometric stereo recovers fine surface details in the form of surface normals from

images taken by a static camera under varying lightings. Traditional photometric

stereo methods [20] assume Lambertian reflectance, which deviates from real-world

reflectances, thus introducing errors in surface normal estimates. Discrete search pho-

tometric stereo (DSPS) proposed in Chapter 3 achieves accurate surface normal esti-

mation for diverse reflectances by a discrete search for the appearances closest to target

scene’s ones over a set of appearance exemplars. However, the applicability is limited

by the coverage of the appearance exemplars; namely, if target scene’s appearances are

distant from any appearance exemplar, the estimation should be unreliable. Indeed,

the accuracy of DSPS is degraded at non-convex surfaces due to global illumination

e�ects such as cast shadows and inter-reflections that are not considered in the set

of appearance exemplars used in Chapter 3. We, therefore, extend the applicability

of DSPS by augmenting the set of appearance exemplars with more reflectances and
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global illumination e�ects.

This chapter introduces a set of general appearance exemplars to broaden the ap-

plicability of the DSPS to non-convex surfaces and more diverse materials. We design

the general appearance exemplars to have real reflectances and not be restricted to a

specific class of shapes. For real reflectances, we use actually measured bidirectional

reflectance distribution function (BRDF) database. A limited number of BRDFs are

only available, specifically 100 in the MERL BRDF database [43]; therefore, we aug-

ment the measured BRDFs while maintaining its realistic reflectance property. For

non-convex surfaces not restricted to a specific class of shapes, we use a large scale

shape dataset containing randomly corrupted primitive shapes (e.g., cubes, ellipsoids,

cylinders).

To maintain the favorable accuracy of the DSPS on convex surfaces, we build con-

vex and non-convex appearance exemplars in a respective manner. The convex appear-

ance exemplars are rendered with finely discretized surface normals and augmented

BRDFs. While the non-convex appearance exemplars containing global illumination

e�ects can be obtained by rendering non-convex shapes, it also includes convex ap-

pearance exemplars, resulting in a redundant dataset if convex appearance exemplars

are combined. Therefore, we extract only purely non-convex appearance exemplars

with our metric. Our general appearance exemplars constructed from pure convex

and non-convex appearance exemplars allow us to estimate a convexity (convex or

non-convex) of a surface in addition to a surface normal and BRDF. The knowledge

of convexity further allows us to apply di�erent photometric stereo methods to convex

and non-convex surfaces.

Our general appearance exemplars are motivated by the success of training datasets

for learning-based photometric stereo methods [4, 24]. Recent learning-based meth-

ods achieve robust surface normal estimation for non-convex surfaces and diverse

reflectances using neural networks being trained with datasets containing diverse

convex/non-convex shapes and materials. However, the CyclesPS dataset proposed

by Ikehata [4] is constructed from only fifteen 3D models and Disney’s Principled
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BSDFs [5] that is unsuitable for photometric stereo as shown in Chapter 3. The train-

ing dataset proposed by Chen et al. [24] is constructed from ten shapes of Blobby

dataset [41] and eight shapes of Sculpture dataset [42] and 100 measured BRDFs [43].

In contrast, we construct the general appearance exemplars using more than a hundred

randomly generated shapes and augmented measured BRDFs.

We assess the validity of our general appearance exemplars on the DSPS using

synthetic and real-world datasets. We also analyze the e�ects of measured BRDF

and shape augmentation, respectively. Lastly, we present that combining di�erent

photometric stereo methods using the knowledge of estimated convexity improves the

accuracy from both methods.

4.2 Related work

We first review representative BRDF representations, analytic BRDF and measured

BRDF. We then describe datasets for training learning-based photometric stereo meth-

ods and their relation to our work.

4.2.1 Analytic BRDF models

Analytic BRDF models aim to reproduce real-world reflectances by analytical for-

mulas. The Lambertian model and more generalized Oren-Nayar model [6] are early

analytic models for di�use reflectances. The specular reflectance is much more compli-

cated to describe, and a lot of analytic models are proposed. Early specular models are

derived based on empirical observations, e.g., Phong [67], Blinn-Phong [7], Ward [68],

and Lafortune [69] models. More recently, physically-based microfacet models [8, 70–

73] are introduced to better represent the roughness at a fine scale. Generally, real-

world reflectances are approximated by combining di�use and specular models. For

example, Disney’s principled BSDF [5] incorporates several analytic models to repre-

sent di�use, specular, and metallic reflectances with a single model [5]. These analytic

models are successful in rendering realistic scenes; however, they are still deviated
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from real reflectance behaviors and introduce errors in photometry vision applications

such as photometric stereo.

4.2.2 Measured BRDF datasets

In contrast to analytic BRDF models, measured BRDFs are always real. The MERL

BRDF dataset [43] is the first large-scale measured BRDF dataset, which contains

densely sampled 100 real-world isotropic materials, from di�use materials to hard

specular materials. UTIA dataset [74] consists of 150 anisotropic BRDFs. Recently,

Dupuy and Jakob [75] proposed an adaptive BRDF parameterization and e�cient

sampling technique and measured 51 isotropic and 11 anisotropic BRDFs. However,

the UTIA dataset and adaptively sampled BRDF dataset only contain sparse mea-

surements, which do not fit the photometric stereo application. Therefore, we use the

MERL BRDF dataset and augment it for more diversity.

4.2.3 Dataset for learning photometric stereo

Recent learning-based photometric stereo using neural networks are trained with syn-

thetic datasets. Santo et al. [34] and Li et al. [37] built their training datasets by

rendering ten shapes in the Blobby shape dataset [41] with the 100 MERL BRDFs.

Chen et al. [24] employed ten shapes in the Blobby shape dataset and eight shapes

in the Sculpture dataset [42] and the MERL BRDFs to create their training dataset,

which is also used in several following learning-based methods [47, 54]. Ikehata [4]

proposed the CyclesPS dataset [28] to train their network, which is constructed from

fifteen scenes rendered with Disney’s principled BSDF [5]. The CyclesPS dataset

is also used in SPLINE-Net [38]. Logothetis et al. [35] first generate a set of direct

reflectance components with the Disney’s principled BSDF and MERL BRDFs. To in-

crease the realism of their dataset, they manually simulate the e�ects of cast shadows,

inter-reflections, surface discontinuities, ambient lights, noises, and pixel saturations

in their proposed manner. While these datasets enable learning neural networks for
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the photometric stereo, they rely on unrealistic analytic BRDFs or a limited class of

shapes. We, therefore, design our general appearance exemplars to have more diverse,

real BRDFs and various shapes not limited to a specific class.

4.3 General appearance exemplars

This section presents our new set of appearance exemplars, called general appearance

exemplars. Our DSPS presented in Chapter 3 demonstrates promising surface normal

and BRDF estimation, especially on convex surfaces. However, existing appearance

exemplars used in Chapter 3 only consider convex surfaces and 100 BRDFs, thus,

introducing errors on non-convex surfaces or some problematic materials (see the ex-

periment on the DiLiGenT dataset in Sec. 3.4.4). Therefore, we extend the appearance

exemplars with respect to BRDF and shape in the following sections and build general

appearance exemplars.

4.3.1 BRDF augmentation

The appearance exemplars used in DSPS are rendered with the MERL BRDFs [43],

which are representative measured BRDFs and well-known as it successfully works on

the photometric stereo task. However, the MERL BRDFs only contain 100 materials

that are a limited set for addressing diverse reflectances. To overcome this issue, we

augment the MERL BRDFs while maintaining its realistic reflectance property.

Let B = {fli(·) | i = 1, . . . , 100} be a set of the MERL BRDFs. We simply gen-

erate a new BRDF by linearly combining randomly selected two MERL BRDFs as

flÕ
j(·) = flp(·) + flq(·), where p, q œ [1, 100], p ”= q. Repeating this step M Õ Æ 100C2 times

and generate an additional set of BRDFs BÕ = {flÕ
j(·) | j = 1, . . . , M Õ}. Lastly, a set of

M Õ + 100 BRDFs can be obtained as B fi BÕ.

This BRDF augmentation is motivated by a success of a BRDF model that lin-

early combines multiple BRDFs [2, 25, 30, 49]. They often impose non-negativity and

sparsity on the coe�cients of the linear combination to avoid generating unrealistic



70

General Appearance Exemplars for Nearest Neighbor Search-based Photometric
Stereo

Fig. 4.1 Examples of randomly generated non-convex shapes combined with multiple
corrupted primitive shapes.

BRDFs. These constraints are naturally satisfied in our BRDF augmentation. While

a linear combination with random coe�cients can generate more diverse BRDFs than

a simple additive model, it runs a risk of increasing the noise of measured BRDFs, and

the simple additive model can generate huge number of new BRDFs, 100C2 = 4950 at

most. Therefore, we conclude to use the simple additive model of two BRDFs.

4.3.2 Non-convex appearance exemplars

The appearance exemplars used in DSPS only consider convex surfaces without global

illumination e�ects such as cast shadows and inter-reflections. It largely degrades the

accuracy of DSPS on non-convex surfaces, where global illuminations are likely caused.

We then aim to create an additional set of appearance exemplars considering global

illumination e�ects, which we call non-convex appearance exemplars.

We first generate diverse and random non-convex shapes. For this purpose, we
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generate primitive shapes (e.g., cubes, ellipsoids, and cylinders) with random param-

eters and apply random corruptions by following Xu’s method [76] originally used for

relighting task. Then, we construct a large set of non-convex shapes by combining

multiple corrupted primitive shapes after random translations and rotations. The ex-

amples of the generated non-convex shapes are illustrated in Fig. 4.1. Non-convex

appearance exemplars can be obtained by rendering the generated non-convex shapes

with diverse BRDFs; however, it also contains appearance exemplars not a�ected by

global illumination e�ects, resulting in a redundant set of appearance exemplars if

convex appearance exemplars are combined. To reduce the redundancy of the appear-

ance exemplars, we extract only appearance exemplars a�ected by global illuminations

with scale invariant thresholding.

We render non-convex shapes with and without global illuminations, which pro-

vides appearance vectors dw and dwo for an identical scene point. If the scene point

in the rendered images is a�ected by global illuminations, dw must be di�erent from

dwo. We then find an appearance vector a�ected by global illuminations using the

following thresholding:

max (|(dw ≠ dwo) £ (dwo + ‘)|) > ·, (4.1)

where · and ‘ is a threshold and a small value to prevent zero-division, £ indicates an

element-wise division, max(·) is a function taking the maximum value of a vector, and

| · | is a function taking absolute values of vector’s elements. This thresholding is invari-

ant to a scale of an appearance vector that depends on a setting of rendering software

and material, and a constant · works well on every scene. With this thresholding, we

extract only appearance vectors a�ected by global illuminations from rendered images

as shown in Fig. 4.2 and define them as non-convex appearance exemplars. Through-

out the experiments in this chapter, we use · = 0.1 and ‘ = 0.001. We manually

found that reasonable appearance exemplars can be extracted with · = 0.1 as shown

in Fig. 4.2. · less than 0.1 always leads to a more accurate surface normal estimation
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Fig. 4.2 Non-convex appearance exemplar extraction. The red masked pixels show
non-convex surfaces (i.e., a�ected by cast shadows or inter-reflections) extracted by
our thresholding under the DiLiGenT’s 96 lightings.

at the cost of additional computation.

4.3.3 General appearance exemplar

We build a set of general appearance exemplars by combining convex and non-convex

appearance exemplars. The appearance exemplars are constructed from three com-

ponents; surface normals, BRDFs, and light directions. We create convex appearance

exemplars with finely discretized 20001 surface normals and 500 BRDFs, where 100

BRDFs are the MERL BRDFs and the remaining 400 BRDFs are augmented ones as

described in Sec. 4.3.1. For non-convex appearance exemplars, we render 500 non-

convex shapes with the same 500 BRDFs as the convex appearance exemplars and

extract pure non-convex appearance exemplars. Both convex and non-convex appear-

ance exemplars contain uniformly sampled 5000 light directions. Given a target scene,



4.4 Experiments 73

we use appearance exemplars corresponding to the pre-defined light directions closest

to the target scene’s ones. Note that we only pull non-convex appearance exemplars

a�ected by global illuminations using binary flags indicating whether appearances are

a�ected by global illuminations or not.

Convexity estimation: A set of general appearance exemplars allows us to esti-

mate convexity of a surface using convexity labels indicating whether an appearance

exemplar is a�ected by global illuminations or not. Since our sets of convex and non-

convex appearance exemplars only contains appearances for convex and non-convex

surfaces, respectively, the convexity label can be obtained from which set the appear-

ance exemplar belongs to. Thus, DSPS with our general appearance exemplars pro-

vides surface normal, BRDF, and convexity estimates. In the following experiments,

we show that the surface normal estimation can be improved by applying di�erent

photometric stereo methods to convex and non-convex surfaces.

4.4 Experiments

This section describes improvements of DSPS by our general appearance exemplars

and comparison to recent photometric stereo methods using synthetic and real-world

datasets. We further discuss combining di�erent photometric stereo methods using

the knowledge of estimated convexity.

4.4.1 Preparation

CyclesPSTest dataset: CyclesPSTest dataset [4] is a synthetic dataset consisting

of three objects (SPHERE, TURTLE, and PAPERBOWL), two types of materials

(specular and metallic), and two types of illuminations (17 and 305 lights), yielding

12 scenes. In the following experiment, we use SPHERE and TURTLE scenes for the

evaluation since the PAPERBOWL shape is too extreme. Each scene is rendered with

spatially varying principled BSDFs [5].
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Real-world dataset: We use an existing real-world dataset, the DiLiGenT

dataset [3], which contains 10 real objects of general reflectance illuminated from

96 di�erent known directions. This dataset provides the ground truth surface normal

maps for all objects measured by high-precision laser scanning that can be used for

quantitative evaluation. For the BEAR object we discarded the first 20 images where

a part of measurements is corrupted as pointed out by Ikehata [4]. In addition to the

original dataset, for testing sparse light cases, we prepared 20 datasets, each containing

10 randomly selected images.

Baselines: As baselines we used Lambertian photometric stereo (LPS) [20], model-

based method ST14 [27], virtual exemplar-based method HS17 [2], hypothesis-and-test

search method HaTS-PS presented in Chapter 2, discrete search photometric stereo

(DSPS) with exact and approximated nearest neighbor search DSPS-E and DSPS-

A, unsupervised learning (i.e., neural inverse rendering)-based method NIR-PS [46],

supervised learning-based methods PX-NET [35], PS-FCN+N [24], WJ20 [47], CNN-

PS [4], and SPLINE-Net [38]. While the published, pre-trained SPLINE-Net model

has been trained specifically for 10 lights, it works well for other small numbers of

light sources. Therefore, we show SPLINE-Net’s scores for cases other than 10 lights

for reference in this chapter. Further, for testing with the CyclesPSTest dataset,

although training dataset of PX-NET includes the target material, we list their scores

for reference.

Throughout the experiments, we denote DSPS-E and DSPS-A with our general

appearance exemplars as DSPS-E+ and DSPS-A+, respectively.

4.4.2 Accuracy of surface normal estimation

We estimated surface normals on synthetic and real datasets containing diverse re-

flectances and non-convex shapes to confirm that our general appearance exemplars

work on diverse scenes.
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CyclesPSTest: We conducted quantitative evaluation on the CyclesPSTest dataset.

While training dataset of PX-NET is also rendered with the principled BSDFs as with

the CyclesPSTest and therefore may include the target materials, their scores are

shown as reference.

Table 4.1 shows averages and standard deviations of angular errors on the eight

scenes (i.e., two objects, two materials, two lightings). Figures 4.3 and 4.4 illustrate

the visual results of angular error maps and estimated surface normal maps. For spec-

ular material, our general appearance exemplars remarkably improve the accuracy of

DSPS on non-convex surfaces (TURTLE scenes) while maintaining the accuracy on

convex surfaces (SPHERE scenes). For metallic material, using our general appear-

ance exemplars slightly degrades the accuracy of DSPS on convex surfaces. Here, we

show the estimated convexity (convex or non-convex) and di�erence in angular errors

between DSPS-E and DSPS-E+ for each scene in Fig. 4.5. This visualization indicates

that surfaces whose accuracy are degraded by general appearance exemplars tend to

be incorrectly estimated as “non-convex”, and this trend appears on metallic surfaces

more than on specular surfaces. It suggests that a possibility of extremely similar ap-

pearances in the sense of ¸2 distance can be generated from di�erent surface normals

when considering diverse materials and global illuminations, which is a possible reason

of the slight degradation on metallic convex surfaces. We further discuss this issue

even in the following experiments.

DiLiGenT: We show quantitative results on the real-world dataset DiLiGenT in

Tab. 4.2, where we compare our methods with the baseline methods in terms of mean

angular error. Figures 4.6 and 4.7 shows visual comparisons between our methods and

the baseline methods.

For the scenes with 96 lights, our general appearance exemplars improve the ac-

curacy of DSPS on convex surfaces such as the BALL, the body of CAT, and POT1

owing to the BRDF augmentation and achieve the best score on the BALL object. The

accuracy on non-convex surfaces is also largely improved using the general appearance
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Fig. 4.3 Angular error maps and estimated surface normal maps for the specular and
metallic SPHERE scenes in the CyclesPSTest dataset.
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Table 4.1 Comparisons on the SPHERE and TURTLE scenes from the CyclesPSTest
dataset. Numbers represent averages and standard deviations of angular errors.

SPHERE TURTLE
17 lights 305 lights 17 lights 305 lights

Specular Metallic Specular Metallic Specular Metallic Specular Metallic

E
xe

m
pl

ar
-

ba
se

d

DSPS-E+ 1.8/2.2 4.1/5.0 1.4/1.8 2.5/3.9 7.9/11.4 15.5/23.0 8.5/12.4 12.1/21.6
DSPS-A+ 1.8/2.2 4.2/5.1 1.5/1.9 2.8/4.3 8.0/11.5 15.5/22.9 8.6/12.5 12.3/21.7

DSPS-E 1.8/2.1 3.6/4.2 1.5/2.0 2.2/2.8 17.8/21.1 15.7/22.4 13.9/18.7 12.4/21.5
DSPS-A 1.8/2.1 3.7/4.3 1.5/2.0 2.4/3.0 17.4/20.6 15.8/22.3 13.9/18.5 12.7/21.7

HaTS-PS 1.6/1.9 4.0/5.1 1.4/1.9 3.2/4.2 17.3/20.0 16.2/22.4 14.1/19.4 13.6/22.4
HS17 1.7/2.4 4.3/5.6 1.3/2.0 2.6/3.4 17.8/20.4 16.1/22.0 14.1/18.6 12.8/21.4

Le
ar

ni
ng

-
ba

se
d

PX-NETa 2.6/2.6 9.5/11.5 0.5/1.5 6.6/13.0 7.4/9.5 16.6/19.5 3.3/6.5 11.4/18.7
PS-FCN+N 3.1/2.7 6.9/3.8 3.4/2.5 5.7/3.9 10.7/11.6 14.5/16.1 10.4/10.8 12.9/13.9

WJ20 2.4/2.6 5.6/4.1 3.0/2.7 5.1/3.9 7.8/10.2 13.1/16.2 7.1/8.8 11.5/14.1
SPLINE-Net 2.7/1.8 4.1/4.2 24.1/16.5 29.3/19.8 6.1/8.1 11.7/19.3 24.8/16.1 33.0/19.8

CNN-PSb 3.3/2.8 9.0/7.7 0.9/1.0 1.4/1.4 9.9/11.7 17.8/18.1 3.2/4.9 5.7/11.9
NIR-PSc 1.6/2.1 10.3/10.8 - - 13.4/14.8 24.2/18.5 - -

M
od

el
-

ba
se

d ST14 4.4/8.3 23.5/13.7 0.2/1.5 6.1/10.2 17.7/17.9 32.0/18.4 29.5/26.3 28.5/25.7
LPS 10.1/7.5 17.4/9.7 10.1/8.3 16.5/9.3 19.0/16.4 26.0/17.7 18.8/16.1 24.3/17.2

a Training data of PX-NET include target materials.
b CNN-PS is trained with 50-100 lights.
c We could not execute NIR-PS with 305 lights as it exceeded the memory of an NVIDIA Quadro RTX 8000 with 48 GB.

exemplars on the most of objects without sacrificing the accuracy on convex surfaces.

Meanwhile, using the general appearance exemplars degrades the accuracy on the

COW object. In Fig. 4.8, we illustrate the di�erence in angular errors between DSPS-E

and DSPS-E+ and estimated convexity map for each object in the DiLiGenT dataset.

As shown in Fig. 4.8, the angular errors at several pixels on the COW object are

increased by using the general appearance exemplars, particularly at pixels that are

considered to be convex surfaces but tend to be estimated as “non-convex”. Consider-

ing the COW object has metallic material at most pixels, this observation is consistent

with the result on the CyclesPSTest dataset. It suggests a possibility of ambiguity of

photometric stereo problem on metallic surfaces when it considers global illuminations.

For the scenes with 10 lights, the general appearance exemplars promote DSPS

to the comparable level with the learning-based methods. Our general appearance
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Fig. 4.4 Angular error maps and estimated surface normal maps for the specular and
metallic TURTLE scenes in the CyclesPSTest dataset.

exemplars successfully improve the accuracy on the non-convex objects from DSPS

even in the few lights case except for the COW object.

4.4.3 Combining photometric stereo methods based on the

knowledge of estimated convexity

We demonstrate that surface normal estimation can be improved by taking advantages

of di�erent photometric stereo methods based on the knowledge of estimated convexity.

Our DSPS-E+ achieves highly accurate surface normal estimation on convex surfaces
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Table 4.2 Comparisons on the DiLiGenT dataset with 96 and 10 lights. Numbers
in the table above are mean angular errors in degrees. Numbers in the table below
are averages and standard deviations of mean angular errors over 20 datasets with
di�erent light distributions.

96 lights

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING Avg.

E
xe

m
pl

ar
-

ba
se

d

DSPS-E+ 1.2 4.6 8.4 4.9 9.2 8.7 16.2 5.6 6.2 12.6 7.8
DSPS-A+ 1.3 4.6 8.5 5.0 9.2 8.9 16.3 5.6 6.4 12.9 7.9

DSPS-E 1.3 6.3 14.0 6.8 7.8 11.5 17.4 7.3 7.4 15.2 9.5
DSPS-A 1.4 6.4 14.2 6.8 8.0 11.7 17.5 7.4 7.4 15.3 9.6

HaTS-PS 1.6 5.9 13.1 6.1 9.2 11.0 18.7 6.6 7.2 15.0 9.4
HS17 1.5 6.2 13.9 6.4 9.2 10.8 18.8 7.0 7.9 15.3 9.7

Le
ar

ni
ng

-
ba

se
d

PX-NET 2.0 3.5 7.6 4.3 4.7 6.7 13.3 4.9 5.0 9.8 6.2
PS-FCN+N 2.6 5.4 7.5 4.7 6.7 7.8 12.4 5.9 7.2 10.9 7.1

WJ20 1.8 4.1 6.1 4.7 6.3 7.2 13.3 6.5 6.4 10.0 6.6
CNN-PS 2.1 4.2 8.1 4.4 7.9 7.4 13.8 5.4 6.4 12.1 7.2
NIR-PS 1.6 6.1 11.0 5.6 5.8 11.2 22.0 6.5 8.5 11.3 9.0

M
od

el
-

ba
se

d ST14 1.8 5.1 10.7 6.1 13.8 10.2 25.6 6.5 8.7 13.0 10.2
LPS 4.2 8.5 14.9 8.4 25.6 18.5 30.6 8.9 14.6 20.0 15.4

10 lights

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING Avg.

E
xe

m
pl

ar
-

ba
se

d

DSPS-E+ 3.0/0.8 5.3/0.2 10.1/0.6 6.6/0.6 12.5/0.6 11.2/0.7 19.9/0.7 7.2/0.4 9.2/0.9 15.1/0.9 10.0

DSPS-A+ 2.9/0.7 5.4/0.2 10.2/0.6 6.5/0.5 12.4/0.6 11.3/0.7 19.9/0.6 7.1/0.4 9.2/0.9 15.1/0.9 10.0

DSPS-E 2.4/0.5 7.7/0.7 16.1/0.8 8.0/0.4 10.5/0.6 14.0/0.6 20.9/0.6 8.8/0.4 9.8/0.7 18.1/1.1 11.6

DSPS-A 2.5/0.5 7.7/0.7 16.0/0.8 8.0/0.4 10.6/0.6 14.0/0.6 20.9/0.6 8.8/0.4 9.9/0.7 18.0/1.1 11.6

HaTS-PS 4.2/1.2 7.9/0.7 16.7/1.4 8.5/1.0 12.4/1.2 15.2/1.3 24.2/0.8 9.3/0.8 11.7/1.7 21.1/1.6 13.1

HS17 3.8/0.9 8.1/0.8 16.3/1.0 8.5/0.6 12.9/1.1 14.1/0.7 22.0/0.7 9.2/0.6 11.1/1.0 18.2/1.3 12.4

Le
ar

ni
ng

-
ba

se
d

PX-NETa 2.3/0.4 4.7/0.3 9.6/0.5 6.3/0.4 7.3/0.6 9.6/0.9 16.2/0.7 7.0/0.4 7.8/1.1 13.5/0.8 8.4

PS-FCN+N 4.3/1.0 6.8/0.8 9.7/0.8 6.3/0.6 12.2/1.3 10.5/0.8 17.5/1.0 7.7/0.6 10.0/1.2 13.0/1.1 9.8

SPLINE-Net 5.1/1.0 5.9/0.6 10.7/1.0 7.9/0.9 9.0/1.1 10.7/1.2 19.2/1.0 9.4/0.8 12.5/1.4 15.3/0.8 10.6

CNN-PSb 10.2/5.5 14.2/4.8 15.0/4.3 12.4/5.8 13.9/1.8 15.5/2.8 20.3/2.6 12.9/4.8 14.9/3.6 16.4/3.5 14.6

NIR-PS 1.6/0.2 5.9/0.6 10.9/0.8 6.2/0.4 13.3/6.5 16.8/10.0 28.5/4.1 8.0/4.6 8.9/1.0 15.3/4.7 11.5

M
od

el
-

ba
se

d ST14 5.7/0.6 10.0/0.4 16.4/0.7 9.6/0.5 26.3/0.8 20.0/0.9 31.0/0.7 10.2/0.4 16.2/1.0 19.7/1.3 16.5

LPS 4.6/0.5 9.0/0.4 15.9/0.7 9.2/0.4 26.6/0.7 19.7/0.9 31.4/0.6 9.6/0.4 15.6/1.0 20.2/1.4 16.2

a A model specific to few lights is used.
b CNN-PS is trained with 50-100 lights.
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Fig. 4.5 From left to right, an example image, estimated convexity, and di�erence in
angular errors between DSPS-E and DSPS-E+ for each scene. In the estimated con-
vexity maps, green indicates pixels estimated as convex surfaces, and yellow indicates
pixels estimated as non-convex surfaces.

with diverse materials. In contrast, the accuracy on non-convex surfaces is slightly

inferior to learning-based methods, while it is largely improved by introducing the

general appearance exemplars. Therefore, we adopt estimated surface normals of

DSPS-E+ and a learning-based method for pixels estimated as “convex” and “non-

convex,” respectively.

Table 4.3 shows quantitative results on the DiLiGenT dataset with 96 and 10

lights. For 96 and 10 lights cases, we select CNN-PS and PS-FCN+N as learning-

based methods. At most objects, the combined results are more accurate than either.

The combined results achieve both high accuracy at convex surfaces (e.g., BALL) like

DSPS and robustness to global illumination e�ects like learning-based methods. This

result may motivate us to develop a photometric stereo method specific to non-convex

surfaces and combine with DSPS in the future.
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Fig. 4.6 Angular error maps and estimated surface normal maps for BALL, BEAR,
BUDDHA, and CAT objects in the DiLiGenT dataset [3] with all the 96 lights.
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Fig. 4.7 Angular error maps and estimated surface normal maps for COW, GOBLET,
HARVEST, POT1, POT2, and READING objects in the DiLiGenT dataset [3] with
all the 96 lights.
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BUDDHA CAT GOBLET POT2 READING

Fig. 4.8 An example image, estimated convexity map, and di�erence in angular errors
between DSPS-E and DSPS-E+ for each object in the DiLiGenT dataset. In the
estimated convexity maps, green indicates pixels estimated as convex surfaces, and
yellow indicates pixels estimated as non-convex surfaces.

4.4.4 Ablation study of shape and BRDF augmentation

We verify the e�ectiveness of the additional components for appearance exemplars,

augmented BRDFs and non-convex shapes, in the surface normal estimation. We use
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Table 4.3 Evaluation of combining di�erent photometric stereo methods using the
knowledge of estimated convexity on the DiLiGent dataset. We show the results
in 96 lights and 10 lights cases. For the 96 lights case, we adopt estimated surface
normals of DSPS-E+ and CNN-PS for pixels estimated as “convex” and “non-convex,”
respectively. For the 10 lights case, we adopt estimated surface normals of DSPS-E+
and PS-FCN+N for pixels estimated as “convex” and “non-convex,” respectively.

96 lights

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING Avg.

DSPS-E+ 1.2 4.6 8.4 4.9 9.2 8.7 16.2 5.6 6.2 12.6 7.8
CNN-PS 2.1 4.2 8.1 4.4 7.9 7.4 13.8 5.4 6.4 12.1 7.2

Combined 1.2 4.2 8.1 4.2 6.5 7.4 14.0 5.0 5.9 11.7 6.8

10 lights

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING Avg.

DSPS-E+ 3.0 5.3 10.1 6.6 12.5 11.2 19.9 7.2 9.2 15.1 10.0
PS-FCN+N 4.3 6.8 9.7 6.3 12.2 10.5 17.5 7.7 10.0 13.0 9.8
Combined 2.9 5.4 9.3 5.6 9.8 9.8 16.7 6.5 8.4 12.7 8.7

DSPS-E with appearance exemplars constructed from 100 MERL BRDFs and convex

shapes as the baseline and show the e�ect of each BRDF and shape augmentation,

respectively.

Table 4.4 shows the ablation study of the BRDF and shape augmentation for

appearance exemplars on the DiLiGenT dataset. This study indicates that the BRDF

augmentation improves the accuracy on all the objects. While the improvements

by the BRDF augmentation are limited in the averaged score since it is e�ective

only for convex surfaces, the e�ect is more remarkable when combining with the

shape augmentation. The shape augmentation largely improves the surface normal

estimation on the almost all objects since the original appearance exemplars do not

consider global illumination e�ects at all. However, the shape augmentation introduces

a degradation on the COW object. This implies a possibility that considering global

illumination e�ects incurs an ambiguity in surface normal estimation at a certain

material under the DiLiGenT lightings. While it is di�cult to be concluded here, this

observation should be analyzed more in the future.
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Table 4.4 Ablation study of the BRDF and shape augmentation for appearance exem-
plars. Numbers represent mean angular errors on the DiLiGenT dataset. The baseline
is DSPS-E with appearance exemplars constructed from 100 MERL BRDFs and convex
shapes. We observe accuracies of DSPS-E’s surface normal estimation when introduc-
ing augmented BRDFs and non-convex shapes to the original appearance exemplars,
respectively.

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING Avg.

DSPS-E 1.3 6.3 14.0 6.8 7.8 11.5 17.4 7.3 7.4 15.2 9.5
+BRDF aug. 1.3 6.2 13.8 6.6 7.7 11.0 17.2 6.9 7.0 15.1 9.3
+shape aug. 1.3 4.8 8.9 5.2 8.6 9.3 17.3 6.3 6.3 13.0 8.1

DSPS-E+ 1.2 4.6 8.4 4.9 9.2 8.7 16.2 5.6 6.2 12.6 7.8

4.4.5 Computation cost

This section examines the computation costs of our DSPS-E+ and DSPS-A+ for sur-

face normal estimation and precomputation (i.e., training for nearest neighbor search

method) on CPU and GPU. We measure the computation cost on the DiLiGenT

dataset with varying number of lights. For each number of lights, we prepared 10

datasets, each containing randomly selected images from all the 96 images. The com-

putation cost is calculated by taking average over the 10 datasets. We used 40 cores

of an Intel® Xeon® Gold 6148 CPU @ 2.40 GHz and NVIDIA TITAN X GPU. On the

CPU we performed pixel-wise parallelization.

Figure 4.9 shows computation time of surface normal estimation for a single pixel

on the CPU and GPU. The estimation costs of DSPS-A and DSPS-A+ are surpris-

ingly comparable owing to the e�cient nearest neighbor search algorithm. DSPS-E+

requires around one order of magnitude larger estimation cost than DSPS-E due to

the additional appearance exemplars. We consider that this additional cost is worth

paying for the improvements of surface normal estimation shown in Tab. 4.2 or 4.3,

while DSPS-E is still a strong option to use if most regions of a target scene are convex.

Figure 4.10 shows precomputation time on the CPU and GPU. Both DSPS-E+ and

DSPS-A+ naturally require additional precomputation cost to DSPS-E and DSPS-A.

However, the precomputation is required only once for a light configuration and takes
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Fig. 4.9 (a) CPU estimation time of our methods for a single pixel. (b) GPU compu-
tation time of our methods for a single pixel.
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Fig. 4.10 (a) CPU precomputation time of our methods. (b) GPU precomputation
time of our methods.

only several tens seconds at most; therefore, we consider that the precomputation

costs are acceptable in most scenarios.
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4.5 Conclusion

In this chapter, we have presented general appearance exemplars, which cover both

convex and non-convex surfaces and diverse materials beyond available measured

BRDFs. Incorporating the general appearance exemplars improves the surface normal

estimation of DSPS on both convex and non-convex surfaces. Furthermore, the gen-

eral appearance exemplars also allow us to estimate a convexity of a surface (convex

or non-convex), which leads to further improvement in surface normal estimation by

applying di�erent photometric stereo methods to convex and non-convex surfaces.

Experiments on the synthetic and real-world datasets showed that DSPS with

our general appearance exemplars achieves the state-of-the-art accuracy for convex

surfaces and comparable accuracy to the learning-based methods even for non-convex

surfaces. Combining DSPS and a learning-based method based on the estimated

convexity successfully takes advantage of each method and produces better surface

normal estimates than either.

The experimental results raise a possibility of ambiguity in the photometric stereo

problem for general reflectances and shapes. Specifically, in the experiments on the

CyclesPS and DiLiGenT dataset, we observe the possibility of ambiguity on metallic-

like materials when it considers global illuminations. A theoretical or experimental

analysis of the ambiguity is a potential future work, and we believe that it connects to

a discussion of the optimal and minimal light configuration for a general photometric

stereo problem.





Chapter 5

Conclusion

5.1 Summary

Photometric stereo is a computer vision technique for shape recovery from images,

which is able to estimate high-fidelity shape in the form of surface normals. While a

traditional photometric stereo method only considers the Lambertian reflectance and

direct illumination, in these years, it is time to address the photometric stereo problem

for general BRDFs with global illumination e�ects.

This dissertation focused on the photometric stereo problem for a surface with

general BRDFs and global illumination e�ects. To tackle this problem, we have pro-

posed two novel solutions that perform a discrete search over finely discretized surface

normals (and BRDFs). Our discrete search approach successfully achieved an accu-

rate, stable, and e�cient surface normal estimation for general BRDFs. Moreover,

we have proposed to extend the search space by augmenting BRDFs and introducing

global illumination e�ects, which provide further accuracy on surfaces with more di-

verse BRDFs and global illuminations. All these e�orts greatly improve the quality of

photometric stereo in terms of accuracy and stability and provide analyzability owing

to their simple and intuitive behaviors.
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5.1.1 Photometric stereo for general reflectances by

hypothesis-and-test search with scene-independent

precomputation

In Chapter 2, we proposed a photometric stereo method based on a hypothesis-and-

test strategy, which we call HaTS-PS. HaTS-PS introduces a concept of an appearance

tensor that represents a diverse set of appearances constructed from comprehensive

surface normals, light directions, and BRDFs. HaTS-PS hypothesizes a surface nor-

mal, tests the hypothesized surface normal whether it can explain a target measure-

ments, and repeats these steps for all possible surface normal candidates to find the

globally optimal surface normal within the bounds of our objective and discretiza-

tion. While a naïve hypothesis-and-test search requires a large amount of time, we

enabled it in a reasonable amount of time by putting the expensive computation

into a scene-independent precomputation step. Experiments on both synthetic and

real-world datasets showed that HaTS-PS can accurately and stably estimate surface

normals on convex surfaces with diverse materials in a reasonable amount of time.

5.1.2 Photometric stereo for general reflectances by nearest

neighbor search over appearance exemplars

In Chapter 3, we proposed the first nearest neighbor search-based photometric stereo,

which we call Discrete Search Photometric Stereo (DSPS). In contrast to the HaTS-

PS that treats BRDFs in a continuous manner, DSPS treats BRDFs in a discrete

manner. Owing to this, the photometric stereo problem can be turned into a well-

known nearest neighbor search problem. As a result, DSPS can benefit from advances

in fast nearest neighbor search algorithms, leading to highly e�cient surface normal

estimation with the guarantee of finding the optimal solution within the bounds of

the objective function.

Experiments on both synthetic and real-world datasets showed that our DSPS

achieves state-of-the-art accuracy on convex surfaces and 100–10000◊ acceleration
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from existing exemplar-based methods. In addition, we experimentally observed that

our DSPS is robust to imaging noise compared to model-based and learning-based

methods. Since it is hard to entirely avoid imaging noise in real-world experiments,

DSPS is one of the best choices for stable surface normal estimation.

5.1.3 General appearance exemplars for nearest neighbor

search-based photometric stereo

In Chapter 4, we proposed a set of general appearance exemplars, which is extended

from the existing appearance exemplars that only consider a limited number of BRDFs

and convex surfaces. We introduced an additional set of appearance exemplars with

augmented BRDFs based on real BRDFs and global illumination e�ects caused at non-

convex surfaces. Incorporating the general appearance exemplars with DSPS greatly

improves the surface normal estimation on both convex and non-convex surfaces from

DSPS with appearance exemplars only considering a limited number of BRDFs and

convex surfaces presented in Chapter 3. The general appearance exemplars also allow

us to estimate the convexity of surfaces (convex or non-convex), which enables applying

di�erent methods to convex and non-convex surfaces for further accuracy.

Experiments on synthetic and real-world datasets showed that DSPS with our gen-

eral appearance exemplars achieves the state-of-the-art accuracy on convex surfaces

and comparable accuracy to learning-based methods on non-convex surfaces. Com-

bining DSPS and a learning-based method using the knowledge of estimated convexity

successfully takes advantage of each method and produces higher accuracy in surface

normal estimation than either.

5.2 Future directions

Throughout this dissertation, we have conducted a lot of experiments and observed

potential issues as well as advantages of our methods. This dissertation is concluded

by discussing several open problems and potential future directions.



92 Conclusion

5.2.1 Enrichment of measured BRDF

This dissertation presented novel exemplar-based methods to the photometric stereo

problem, which require a set of real BRDF data. The photometric stereo task is

highly sensitive to corruptions in BRDF data and requires highly accurate and dense

BRDF measuring. Indeed, most BRDF databases [74, 75] aim to be used for rendering

good-looking scenes under natural environment lightings (i.e., much more light sources

than the photometric stereo setup). Therefore, most BRDF databases tolerate noisy

and sparse BRDF measurements. In our survey, a BRDF database that satisfies

the requirements is only the MERL BRDF database [43] containing 100 BRDFs that

is the densest BRDFs and measured with care to avoid noises (e.g., they take 330

high dynamic range pictures and remove lowest and highest 25% of the values to

reduce the noise in the measurements). While our methods with the MERL BRDFs

can produce promising surface normal estimates for diverse materials, more BRDFs,

especially specular or metallic materials, are always preferable and should contribute

to further accuracy. A recent measured BRDF database [75] is acquired by an e�cient

sampling, resulting in sparser BRDF samples compared to the MERL BRDFs, and it

did not work well for the photometric stereo task. To sum up, measuring much more

BRDF samples by densely sampling or an adaptive sampling that does not degrade

the accuracy of photometric stereo is a potential future work.

5.2.2 Nearest neighbor search specific to photometric stereo

Our DSPS uses nearest neighbor search methods developed for a general purpose.

Appearance exemplars in the context of photometric stereo have several features such

as non-negativity, labels of surface normal and BRDF, and corrupted appearances due

to global illumination e�ects that are preferred to be neglected. A potential future

direction is developing a new nearest neighbor search method to achieve more e�cient

and accurate surface normal estimation by explicitly considering such photometric

stereo specific features.
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5.2.3 Analysis of optimal light configuration

In recent years, photometric stereo methods including ours are getting more accu-

rate, for instance, on the DiLiGenT benchmark dataset captured under 96 lightings.

Although more lightings must lead to further accuracy in surface normal estimation,

much more lights are not practical due to physical constraints. We then need to con-

sider the optimal lighting distribution for a fixed number of lights, e.g., 96 lights.

A previous work [77] analyzes the optimal configuration in Lambertian photometric

stereo; however, there is no theoretical or experimental analysis of the optimal light

configuration for general photometric stereo. Therefore, a methodology of analyzing

the optimal light configuration in a general setting is still an open problem and should

be important in practice.

5.2.4 Extension to multi-view photometric stereo

While this dissertation focuses on single-view photometric stereo, multi-view photo-

metric stereo [78–81] is also actively studied. Compared to the single-view photometric

stereo, the multi-view photometric stereo can recover the entire shape of objects, which

is desired in several scenarios. Theoretically speaking, the exemplar-based approach

can be extended into the multi-view photometric stereo by adding a viewing direction

axis to the appearance tensor if the correspondence matching across images taken by

di�erent viewing directions can be supposed to be nearly perfect. In practice, erroneous

correspondence matching is inevitable in real-world scenarios; therefore, a potential

future work is developing an exemplar-based method for the multi-view photometric

stereo that is robust to inaccurate correspondence matching.

5.2.5 Photometric stereo in more practical scenarios

Throughout this dissertation, we assume distant lightings and an orthographic pro-

jection camera to make the problem tractable. Since these assumptions cannot be

strictly held in practice, a relaxation of these assumptions is an important future
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work. In fact, photometric stereo methods with nearby lights [82–86] or a perspec-

tive camera [87–90] are proposed. However, they generally encounter a non-convex

optimization problem when considering non-Lambertian surfaces; therefore, they as-

sume Lambertian or a limited class of BRDF models. While a full-search strategy, as

proposed in this dissertation, is e�ective on such a non-convex optimization problem,

the full-search strategy for the near-light or perspective camera setup is expected to

require a tremendous amount of computation time.

We also assume a direction and intensity of each light are calibrated in this disserta-

tion. While an accurate light calibration can be performed by sophisticated calibration

methods [91–96], it is desired to reduce the calibration e�orts in more practical sce-

narios. Uncalibrated photometric stereo [97–99] realizes surface normal estimation

without knowing light directions and even intensities; however, it is challenging to ex-

tend the exemplar-based approach to an uncalibrated manner due to its large degree

of freedom. Instead, we believe that the exemplar-based approach can be extended to

a photometric stereo with special light placements such as symmetric-light and ring-

light [100–104] that only requires a prior of relative light placements. This setup only

introduces a few degrees of freedom to the exemplar-based approach in addition.
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