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Throughout this dissertation, we consider high-fidelity 3D shape recovery from
images, which is a fundamental problem in the computer vision field and required in
various applications such as cultural heritage archives, film creation, and virtual reality.
Photometric stereo is the most promising candidate for this purpose due to its ability
of shape estimation in a per-pixel manner. It takes a set of images taken by a static
camera under varying, known distant illuminations as input and recovers a scene’s
shape in the form of surface normal orientation by disentangling the interplay of a
surface normal and reflectance in the image formation. Traditional photometric stereo
assumes the Lambertian reflectance and convex surfaces, which deviate from real-world
observations, thus introducing errors in surface normal estimates. This dissertation
proposes photometric stereo methods for non-Lambertian, general reflectances and
convex /non-convex surfaces with simple searching strategies that give a guarantee of
reaching the globally optimal solution within the bound of an objective.

First, we address the photometric stereo problem for spatially varying, general
reflectances. Unlike previous methods that are mostly based on continuous local op-
timization, we cast the problem as a discrete hypothesis-and-test search problem over
the discretized space of surface normals. While a naive search requires a significant
amount of time, we show that the expensive computation block can be precomputed
in a scene-independent manner, resulting in accelerated inference for new scenes. It

allows us to perform a full search over the finely discretized space of surface normals
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to determine the globally optimal surface normal for each scene point. We show that
our method can accurately estimate surface normals of scenes with spatially varying
reflectances in a reasonable amount of time.

Second, we propose the first nearest neighbor search-based photometric stereo,
named Discrete Search Photometric Stereo (DSPS), for a scene with spatially vary-
ing, general reflectances. We show that the photometric stereo problem for general
reflectances can be turned into a well-known nearest neighbor search problem over a
set of appearance exemplars; a set of synthetic appearances generated from all possi-
ble pairs of finely discretized surface normals and reflectances. We demonstrate that
the proposed method efficiently and accurately estimates both surface normals and
reflectances, powered by advanced nearest neighbor search methods.

Third, we address the photometric stereo problem for a general scene with spa-
tially varying, general reflectances and non-convex surfaces. Since the accuracy of
our DSPS is determined by the coverage of the appearance exemplars, an augmen-
tation of the appearance exemplars directly improves the surface normal estimation.
We, therefore, introduce general appearance exemplars that take into account non-
convex surfaces and more diverse reflectances than existing appearance exemplars.
Our general appearance exemplars can be easily plugged into DSPS and improve the
surface normal estimation accuracy, particularly in non-convex regions. Furthermore,
our general appearance exemplars allow us to estimate a convexity (convex or non-
convex) of a surface and incorporate benefits of different photometric stereo methods
using the knowledge of the estimated convexity. We show that our DSPS with general
appearance exemplars can accurately estimate surface normals on both convex and
non-convex surfaces with diverse reflectances. We also demonstrate that incorporat-
ing different photometric stereo methods based on the estimated convexity provides

more accurate surface normal estimates than either.
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Chapter 1

Introduction

1.1 Background

Computer vision techniques aim to derive meaningful information from visual data
(images or videos) beyond a set of pixel intensities to understand a scene as humans
do. Shape recovery from multiple images is a fundamental computer vision technique
and plays a lot of roles in the real world. For example, shape recovery of a product such
as a furniture improves the experience of online shopping by putting the product in
which we want to place it virtually using augmented reality. In recent years, recovered
shape and reflectance of an actor are used for the creation of more realistic films [9-11].
More recently, recovered city-scale shape and appearance are expected to be used for
training of self-driving artificial intelligence [12-14]. In the field of agriculture, the
recovered shape of crops is being used to analyze the condition of the crops, which
enables harvesting at the best timing without human efforts [15, 16].

Shape recovery from multiple images can be roughly categorized into geometric
and photometric approaches. The geometric approach first finds corresponding scene
points across images captured from different viewpoints, then the 3D positions of the
scene points can be estimated by performing triangulation. Representative methods of
the geometric approach are stereoscopic photography [17], where the shape of a scene

is recovered using two cameras like human eyes, and structure from motion [18, 19],



2 Introduction

which assumes two or more viewpoints. The geometric approach works under natural
illumination; therefore, it has been widely implemented in common devices such as
smartphones. However, the geometric approach only estimates a coarse 3D shape
due to the difficulty of correspondence matching, particularly when a target scene has

smooth surfaces with less textures.

In contrast, the photometric approach achieves high-fidelity shape recovery. Scene
appearances are caused by the interplays between shape (surface normal orientation),
reflectance, and lighting. The photometric approach typically restricts lighting con-
ditions and disentangles the interplays to estimate an object’s shape. Photometric
stereo is a representative method of the photometric approach, which estimates an
object’s shape in the form of surface normal orientation using dozens or hundreds of
images captured from a static camera under known, varying lightings (Fig. 1.1). Since
all images are captured from an identical view point, the correspondence matching is
unnecessary for photometric stereo. Therefore, photometric stereo is able to produce
per-pixel surface normals regardless of the smoothness and texture of a target scene.

Lastly, a full shape is recovered by integrating the estimated surface normals.

An important challenge in photometric stereo is a stable surface normal estimation
for general reflectances. Since photometric stereo disentangles the interplays between
surface normal and reflectance, the accuracy of surface normal estimation depends
on scene’s reflectance property. Traditional photometric stereo methods [20, 21] as-
sume the Lambertian reflectance; however, it is deviated from most reflectances in
the real world, thus, introducing large errors in surface normal estimates. While
recent methods use sophisticated reflectance models to handle non-Lambertian re-
flectances [22, 23|, they are necessary to optimize surface normal and reflectance pa-

rameters simultaneously and generally encounter an issue of non-convex optimization.

Another challenge in photometric stereo is a surface normal estimation robust to
global illumination effects. The global illumination effects such as cast shadows and
inter-reflections cannot be described in a per-pixel manner and are difficult to be

modeled for general scenes; therefore, they are ignored in most photometric stereo



1.1 Background 3

v

Sphere’s surface normal map to confirm
the color-coding of surface normals

Photometric stereo setup
(Fixed camera & multiple lights)

Images

Fig. 1.1 Overview of photometric stereo. Given multiple images of an object taken
from a static camera under known, varying lightings, photometric stereo recovers the
shape of an object in the form of surface normals. A three dimensional surface normal
is often visualized by RGB color coding. A sphere’s surface normal map is attached
to see the coding.

methods, although they appear in many objects in the real world. In recent years,
learning-based methods [4, 24] achieve a robust surface normal estimation on this
challenge; however, they interestingly degrade on surfaces without global illumination

effects, where classical methods work well.

This dissertation addresses both challenges, general reflectances and global illumi-
nations. The photometric stereo problem is typically formulated as a minimization
problem of a loss function with surface normal and reflectance parameters. Previous
methods treat the surface normal and reflectance parameters as continuous quanti-
ties and optimize them to minimize a loss. However, the loss function is often highly
non-convex as shown in the left figure in Fig. 1.2; therefore, they are often trapped
in local minima, leading to undesirable surface normal estimates. To overcome this
issue, this dissertation proposes to treat surface normal and reflectance parameters as
(1) discrete and continuous quantities, respectively, (2) both discrete quantities. In
the first proposal, we present that a continuous optimization of reflectance parameters

with a fixed, discretized surface normal becomes a well-posed problem; hence, we can
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Discretization

loss loss

Surface normal Surface normaj

Fig. 1.2 A picture of our approach with a pseudo example. Previous methods that ex-
plore the optimal solution by performing a non-convex optimization over a continuous
space of loss function (left), which is often trapped in local minima. In contrast, our
approach first discretizes a space of loss function and then performs a discrete search
over all discretized points (right). With this approach, our method can always find
the globally optimal surface normal within the bound of discretized space.

find the globally optimal surface normal and reflectance parameters by performing a
discrete search over all possible discretized surface normals. In the second proposal,
we can naturally find the globally optimal surface normal and reflectance parameters
by performing a discrete search over all possible surface normals and reflectances as
shown in the right figure in Fig. 1.2. We present that this discrete search can be turned
into the well-known nearest neighbor search problem; therefore, it can be performed
in a highly efficient manner using advanced nearest neighbor search methods. While
the discrete reflectance representation loses the expressions compared to the continu-
ous one, our method with the discrete reflectance representation exhibits comparable
accuracy with our method with the continuous one. Lastly, by extending the loss
space considering global illumination effects (i.e., cast shadows and inter-reflections),
our method gains robustness to the global illumination effects while maintaining the

accuracy on surfaces without global illumination effects.
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1.2 Contributions

The main contributions of this dissertation can be summarized as follows:

e a search-based photometric stereo method for general reflectances. Instead of
treating surface normals to be estimated as a continuous quantity, we finely dis-
cretize the space of surface normals and search for the best surface normal. To
alleviate an issue of computing cost in a full search, we developed a precom-
putation method that performs expensive computations in a scene-independent

manner prior to the inference for a new scene.

e the first nearest neighbor search-based photometric stereo method for general
reflectances. By treating reflectances as a discrete quantity in addition to surface
normals, we formulate the photometric stereo problem as a well known nearest
neighbor search problem over a set of appearance exemplars; a set of synthetic
appearances generated from all possible pairs of finely discretized surface normals
and reflectances. Our method achieves the state-of-the-art accuracy on convex

surfaces with diverse materials.

e a set of general appearance exemplars to broaden the applicability of our near-
est neighbor search-based photometric stereo to more diverse reflectances and
non-convex surfaces. We build a new set of appearance exemplars by extending
existing ones that only consider a limited number of reflectances and convex
shapes. Our general appearance exemplars improve the accuracy of surface nor-
mal estimation on general surfaces and allow us to estimate a convexity of a
surface. The knowledge of estimated convexity also allows us to apply different
photometric stereo methods to convex and non-convex surfaces, respectively,

leading to further accuracy.
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1.3 Chapter organization

This dissertation introduces two accurate and efficient search-based photometric stereo
methods for general reflectances and one dataset to broaden the applicability of nearest
neighbor search-based photometric stereo to more diverse reflectances and non-convex

surfaces. The remainder of this dissertation is organized as follows.

Chapter 2 This chapter addresses the problem of estimating surface normals of a
scene with spatially varying, general reflectances observed by a static camera under
varying, known, distant illumination. In this chapter, we propose Hypothesis-and-Test
Search Photometric Stereo (HaTS-PS). Unlike previous methods that are mostly based
on continuous local optimization, we cast the problem as a discrete hypothesis-and-test
search problem over the discretized space of surface normals. While a naive search
requires a significant amount of time, we show that the expensive computation block
can be precomputed in a scene-independent manner, resulting in accelerated inference
for new scenes. It allows us to perform a full search over the finely discretized space
of surface normals to determine the globally optimal surface normal for each scene
point. We show that our method can accurately estimate surface normals of scenes

with spatially varying reflectances in a reasonable amount of time.

Chapter 3 This chapter also addresses the photometric stereo problem for a scene
with spatially varying, general reflectances. In this chapter, we propose Discrete Search
Photometric Stereo (DSPS). While HaTS-PS employ a continuous reflectance model,
DSPS treats reflectances as a discrete quantity as well as surface normals. Unlike pre-
vious methods that rely on continuous optimization over non-convex objective func-
tions to estimate a shape and reflectance, the proposed method casts the problem as
a discrete search over a set of appearance exemplars; a set of synthetic appearances
generated from all possible pairs of finely discretized surface normals and reflectances.
We show that the proposed discrete search approach leads to efficient and accurate

estimation of surface normals and reflectances, powered by advanced nearest neighbor
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search methods.

Chapter 4 This chapter addresses the photometric stereo problem for a general
scene with spatially varying diverse reflectances and non-convex surfaces. Since the
accuracy of our DSPS is determined by the coverage of the appearance exemplars,
the augmentation of the appearance exemplars directly improves the surface normal
estimation. In this chapter, we introduce general appearance exemplars that take into
account non-convex surfaces and more diverse reflectances than existing appearance
exemplars. Our general appearance exemplars can be easily plugged into DSPS and
improve the surface normal estimation accuracy, particularly in non-convex regions.
Furthermore, our general appearance exemplars allow us to estimate a convexity (con-
vex or non-convex) of a surface and incorporate the benefits of different photometric
stereo using the knowledge of the estimated convexity. We show that our DSPS with
general appearance exemplars can accurately estimate surface normals on both convex
and non-convex surfaces with diverse reflectances. We also demonstrate that incorpo-
rating different photometric stereo methods based on the estimated convexity provides

more accurate surface normal estimates than either.

Chapter 5 This chapter concludes this dissertation by summarizing the proposed

methods and dataset and discussing potential future research directions.






Chapter 2

Efficient Exemplar-based
Photometric Stereo with

Scene-independent Precomputation

2.1 Introduction

Photometric stereo recovers fine surface details in the form of surface normals from
images taken by a static camera under varying lightings. While traditional photomet-
ric stereo methods [20, 21] assume Lambertian reflectance or simplified parametric
reflectance models, it is understood that their deviation from real-world reflectances
introduces errors in surface normal estimates. In the past, other studies [25-29] used
more sophisticated reflectance models for more accurate surface normal recovery; how-
ever, they generally encounter an issue of non-convex optimization in determining the
surface normals. The problem is rooted in the fact that these methods frame the
estimation problem as a continuous optimization problem.

In this chapter, we cast surface normal estimation as a discrete hypothesis-and-test
search problem; thus, we call our method Hypothesis-and-Test Search Photometric
Stereo (HaTS-PS). Instead of treating surface normals to be estimated as a continuous

quantity, our method finely discretizes the space of surface normals and finds the
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BRDFs & known lights
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Surface normal Hypothesize - and - Test Target scene
candidates

Fig. 2.1 An overview of our Hypothesis-and-Test Search Photometric Stereo (HaTS-
PS) proposed in this chapter. We hypothesize a surface normal and test whether it
can explain the target measurements. By conducting the hypothesis-and-test for all
possible surface normals, our method is able to find a globally optimal surface normal.

best surface normal by a hypothesis-and-test search. Since a surface normal vector
has only two degrees of freedom (a unit 3D vector) represented by its azimuth and
elevation angles in a hemisphere, discretization results in a relatively small number
of surface normal candidates. For example, even if we discretize the angles in one-
degree intervals, it results in 32,400 = 360 x 90 normal candidates. HaTS-PS uses
each surface normal candidate as hypothesis and tests its suitability to the measured
intensities of a targe scene as illustrated in Fig. 2.1. In this manner, HaTS-PS searches
for the globally optimal surface normal from all (discretized) possible ones.

To alleviate the issue of computing cost in our discrete search, we developed a
precomputation method that performs expensive computations in a scene-independent
manner prior to the inference for a new scene. To deal with a diverse set of reflectances,
we use a non-parametric, discrete table of appearances, whose axes are the space of
surface normals, light directions, and bidirectional reflectance distribution functions
(BRDFs), for a fixed viewing direction. The table of appearances, which we call an

appearance tensor, can contain an arbitrary number of BRDFs, and importantly, the
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number of reference BRDFSs considered in the appearance tensor does not influence
the computation time during inference.

Our HaTS-PS is motivated by the success of example-based [30] and virtual
exemplar-based [2] methods. The example-based method introduces a reference ob-
ject having known shape and the identical material with a target object into a target
scene. A surface normal is recovered by searching for appearances in the reference
object that correspond to the target object’s ones. In contrast, our method do not
require placing a reference object in the scene. The virtual exemplar-based method
and our HaTS-PS shares a basic strategy for surface normal estimation; however, the
virtual exemplar-based method performs a continuous local search using a non-convex
objective function to reduce their huge computation cost, which eliminates the guar-
antee of finding the optimal solution. In contrast, our precomputation enables an
efficient exhaustive search, which allows us to find a globally optimal surface normal
within the bounds of our objective function.

The chief contributions of this chapter are twofold. First, we propose a discrete
hypothesis-and-test search strategy for photometric stereo. By finely discretizing the
space of surface normals, our method finds the globally optimal surface normal through
exhaustive search. Second, we show that expensive computation can be performed
prior to the surface normal estimation, allowing the global hypothesis-and-test search
to work in a reasonable amount of time. We assess the accuracy of the proposed
method using both synthetic and real-world data and show its favorable performance
in determining surface normals of a scene. In particular, the proposed method achieves
a stable estimate, i.e., superior average/variance of mean angular error over a diverse

set of materials.

2.2 Related work

Photometric stereo methods for diverse materials can be roughly divided into three

categories; model-based, learning-based, and example-based approaches. In the fol-
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lowing, we discuss the corresponding related works.

2.2.1 Model-based photometric stereo

A model-based approach uses parametric expressions for BRDFs, and the model pa-
rameters including the surface normal are estimated, typically, by optimizing them to
well explain measured intensities of a target scene. Key for the model-based approach
is the choice of a parametric BRDF model. Woodham’s original work [20] assumed
Lambertian reflectance, which allows using convex least-squares optimization to deter-
mine surface normals and albedos. Parametric modeling of non-Lambertian BRDFs
is actively studied, particularly in the graphics community. For example, the Blinn-
Phong model [22], the Torrance-Sparrow model [23], the Ward model [31], the specular
spike model [32, 33], and a microfacet BRDF with ellipsoidal normal distributions [29]
have been developed. However, each of these models is limited to a class of materi-
als, and such models are highly nonlinear, resulting in non-convex photometric stereo
problems. Thus, some recent methods use a bivariate function instead. For represent-
ing low-frequency reflectances, Shi et al. [27] use a bi-polynomial function and Ikehata
and Aizawa [28] use a sum of lobes with unknown center directions. Although these
model-based methods can be used in a relatively wide range of materials, there are
always problematic materials, especially metallic materials are hard to be modeled by

a simple function such as a bivariate function.

2.2.2 Learning-based photometric stereo

Recently, deep learning-based photometric stereo methods have been proposed. They
learn a mapping from measured intensities under known lightings to surface normals
using a neural network [4, 24, 34-36]. Santo et al. [34] proposed the first learning-
based method to estimate a surface normal from a fixed number measured intensities
under known lightings. Chen et al. [24] and Ikehata [4] introduced network architec-

tures being applicable to arbitrary number of lightings, which inspire many follow-up
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works [35, 37, 38]. Their networks are trained with synthetic datasets containing var-
ious shapes and materials since it is difficult to collect huge training dataset for the
photometric stereo task. For example, Santo et al. [39] and Chen et al. [40] created
their training datasets by rendering the Blobby [41] and Sculpture [42] shape datasets
with 100 BRDFs from the MERL dataset [43]. Tkehata [4] also created a dataset by
rendering fifteen objects with Disney’s principled bidirectional scattering distribution
function (BSDF) [5]. While the learning-based methods showed promising results on
various scenes owing to the networks being trained with diverse shapes and materials,
they surprisingly suffer from simple convex surfaces and diffuse materials that can be

well fitted by traditional methods [38].

2.2.3 Example-based photometric stereo

Example-based photometric stereo relies on the concept of orientation-consistency [30],
i.e., two surfaces with the same surface normal and BRDF will have the same appear-
ance under the same illumination. An early work along this direction is found in Horn
and Ikeuchi [44]. In the example-based approach, a reference object with known sur-
face normals is placed in a target scene. Further, the BRDF of the reference object
is assumed to be the same as that of the target object. Then, a surface normal is
recovered for each point of the target object by searching the corresponding pixel in-
tensity of the reference object that best matches the target’s appearance. To relax the
assumption of identical BRDF between reference and target, Hertzmann and Seitz [30]
introduced two reference objects, a diffuse and a specular sphere, placed in the target
scene, and approximate the target BRDF by a non-negative linear combination of
the reference BRDFs. Although this method makes example-based photometric stereo
applicable to more diverse materials, it is still inaccurate to approximate a diverse set
of materials by a linear combination of two BRDFs. In addition, in many practical
applications it is undesirable to place reference objects in a target scene.

Hui and Sankaranarayanan [2] introduced virtual exemplar-based method that

performs example-based photometric stereo without actually introducing reference
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objects into a target scene. They render virtual reference spheres under the target
scene illumination with MERL BRDFs [43] and assume that the target BRDF lies in
the non-negative span of the MERL BRDFs. In the virtual exemplar-based method,
however, there are many time-consuming processes such as rendering virtual spheres,
an iterative optimization for solving a non-negative least squares problem, and search-
ing over all possible surface normals. To reduce the computation cost, they proposed
an efficient search algorithm which however eliminates the guarantee of finding the
optimal solution.

Our method shares the assumption that the target BRDF can be represented by a
combination of several reference BRDFs. However, we cast the problem as a discrete
hypothesis-and-test search problem, which gives a guarantee of reaching the globally
optimal solution within the bound of the objective function. Additionally, our method
enables search for all surface normal candidates in a reasonable amount of time owing

to an efficient precomputation.

2.3 Scene-independent precomputation for

exemplar-based photometric stereo

Starting from an image formation and problem statement, this section describes our
HaTS-PS that casts the photometric stereo problem as a discrete search where the
space of surface normals is discretized. We hypothesize a surface normal and test
whether it satisfies the image formation model introduced in Sec. 2.3.1. By conducting
this hypothesis-and-test for all possible surface normals, our method is able to find a

globally optimal surface normal.

2.3.1 Image formation and problem statement

Suppose a surface point with a unit surface normal n € 8? C R? is illuminated by

an incoming directional light 1 € 82, without ambient lighting or global illumination
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effects such as cast shadows or inter-reflections. When this surface point is observed

by a camera with linear response, the measured intensity m € R, can be written as
m o p(n,1)max(n'L,0), (2.1)

where p(n,1): 8% x §2 — R, is a general isotropic bidirectional reflectance distribu-
tion function (BRDF) and max(n'1,0) is a function, which returns the largest value
in inputs, representing a shadow caused when a surface normal is not facing a light

source.

In calibrated photometric stereo, a static camera records multiple, say L', measure-
ments {my,...my } for each surface point under various light directions {l;,...1./}.

Then, Eq. (2.1) can be written in matrix form as

my max(n "1y, 0) 0 p(n,ly)
o , (2.2)
mp 0 max(n'1;,0)/ \p(n, 1)
m E P

where m is a measurement vector, E is a diagonal irradiance matrix, and p is a
reflectance vector. We model the reflectance p by a linear combination of BRDF
basis vectors in a similar manner to Hertzmann et al. [30], and Hui and Sankara-
narayanan [2]. By stacking M known BRDF basis vectors in a BRDF basis matrix B,

p can be written as

p(n,Ly) ... pu(nly)
p= : c, (2.3)
pl(na lL’) pM(nalL’)
B
where ¢ = [c1,...,cy]" is a BRDF coefficient vector. With this, the image formation

model can be simplified to

m = EBc & Dc, (2.4)
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Fig. 2.2 Starting from the appearance tensor 7 that represents appearances for a
comprehensive set of light directions, surface normals, and BRDFs, we slice out a
sampled appearance matrix D; for a set of known light directions and a hypothesized
surface normal n;. The column space of D; is the space of appearances over all possible
materials for the hypothesized normal under the known light directions.

where D(= EB) € RY*M,

Problem statement Our goal is to find the optimal surface normal n and BRDF

coefficients ¢ for each surface point, given observations m and associated light direc-

tions {1y, ...1./} based on the model of Eq. (2.4).

2.3.2 Hypothesis-and-test strategy

We tackle the problem stated above by hypothesis-and-test photometric stereo (HaTS-
PS) that hypothesizes a surface normal, tests whether it satisfies Eq. (2.4), and repeats
these steps for all possible surface normals to find the optimal surface normal. Let
N ={n;|i=1,...,N} be the discretized space of surface normals, which we call
the set of surface normal candidates. We prepare a tensor representation for diverse
appearances whose axes are (1) surface normals, (2) light directions, and (3) BRDFs.

Suppose the spaces of surface normals and light directions are discretized into N and



2.3 Scene-independent precomputation for exemplar-based photometric stereo 17

L bins, respectively, and there are M distinct BRDFs. Then, the appearance tensor
T can be defined as T € RY***M (see the left of Fig. 2.2).

For simplicity, let us assume that the appearance tensor contains the actual light
directions of the observed scene. If we hypothesize a certain surface normal n, € N/
for a scene point, using L' < L known light directions of the observed scene, we can
slice a sampled appearance matriz D; € RJLFIXM from the appearance tensor 7 along
the hypothesized surface normal n; and a set of L’ known light directions as illustrated

in Fig. 2.2. Using D; instead of D, Eq. (2.4) becomes
m ~ D;c. (2.5)

For the overdetermined case L' > M, the least-squares solution for the BRDF coeffi-

cients ¢ that best explains the measurements is
-1
¢;=(D/D;) D/m=D/m, (2.6)

where DZT is the pseudo-inverse of D;. The estimated BRDF coefficients c; are least-
squares optimal for the hypothesized normal n; and the space of sampled appearances
D;. We can test the validity of the hypothesized n; by evaluating the ¢, measurement
reconstruction error as

Therefore, the optimal surface normal n* can be found as the minimizer of the following
objective

n* =n;, = argmin e;. (2.8)
ie{1,...,N}

A naive implementation may require a significant computational effort for solving this
problem. We thus introduce an efficient scene-independent precomputation strategy

in the next section.
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Fig. 2.3 Geometric interpretation of the measurement reconstruction error. The re-
. 2 .

construction error of measurements ||Z,m||; can be seen as distance between the mea-

surement vector m and the subspace spanned by D; in the L’-dimensional space €.

2.3.3 Scene-independent precomputation
The reconstruction error e; in Eq. (2.7) can be further simplified as

¢; = |m — Dic;[2 = [m — D,DIm| (2.9)

= [(1-D,D}) m], & |Zom] . (2.10)

As long as the lighting and BRDF bases are fixed, Z;(= 1 — DiDZ) € RY*L is uniquely
determined given a surface normal hypothesis n;. We, thus, can precompute a set of
{Z;} for all surface normal candidates in N. At inference time, we simply need to
assess the magnitude of Z;m for all 7.

This precomputation happens only once and the result can be used for any new

scene with the same lighting.

2.3.4 Dimensionality reduction of sampled appearance ma-
trix

Equation (2.8) is only a necessary condition for finding correct surface normal solu-
tion. When the sampled appearance matrix D; has fewer rows than columns or when
m € ran (D;) € RE*M (D,’s range) for all D;, there exist greater than or equal to one

BRDF coefficient vectors c; that make all reconstruction errors {e;} zero.
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As illustrated in Fig. 2.3, a measurement vector m exists in an L’-dimensional
space 2. The column vectors of D; span a rank (D;)-dimensional subspace in €2, and
the measurement reconstructions D;c; = DZ-DZT- m reside in this subspace. Thus, the
reconstruction error ||Z;m||> can be seen as the distance between the measurement
vector m and the subspace spanned by D;. From this perspective, if rank (D;) = L/,
the columns of D; span the entire 2 and the reconstruction error becomes always zero
regardless of the correctness of the surface normal hypothesis n;.

To avoid this, we shrink the subspace spanned by each D; by reducing the rank
of D; to M'(< L). Specifically, we replace D; with its first M’ left singular vectors
U, e RE M’ obtained through SVD. With this, Z; can be precomputed in a simpler

form as
Z,=1-UU/ =1-UUu" (2.11)

due to the orthogonality of each singular vector.
We empirically found that the proper value of M’ is related to the noise level in
the observations. In Sec. 2.4.3, we examine the accuracy of surface normal estimation

with varying M’ and discuss the choices for M’.

2.4 Experiments

This section describes the results of experiments with synthetic and real-world data.
We further discuss the computation time, the effect of dimensionality reduction and
the discretization of the space of light directions. We begin with describing the con-
struction of the appearance tensor, the synthetic and real-world datasets, and baseline

methods that we use for evaluation.

Appearence tensor: The appearance tensor is constructed from three components;
BRDFs, surface normals, and light directions. For BRDFs, we used the MERL BRDF
database [43] that consists of 100 distinct BRDFs including diffuse, specular, and
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Fig. 2.4 Example images rendered with 100 MERL BRDFs. The MERL BRDFs con-
sists of various materials, from soft diffuse to hard specular materials.

metallic materials as shown in Fig. 2.4. We discretized the surface normal on the
unit hemisphere [1] and obtained 20001 surface normal candidates with nearly 0.5°
intervals. In all experiments of this chapter, we assume that the appearance tensor
contains the known light directions. In Sec. 2.4.5, we discuss how the surface normal

estimation accuracy is affected by the discretization of light directions.

MERL sphere dataset: The MERL sphere dataset consists of 100 synthetic sphere
scenes rendered with the 100 MERL BRDFs [43]. We rendered the images un-
der ten lighting environments consisting of L' = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
uniformly distributed light sources shown in Fig. 2.5. Image resolution was set to
100 x 100, yielding 7860 valid pixels. We also created a noisy MERL sphere dataset
by adding signal-independent and signal-dependent noise [45] to the MERL sphere
dataset. The noise model is m = m + (i + A\/m)X where m and m are image sig-
nals with and without noise, i and A\ are weighting factors for signal-independent and

signal-dependent noise, respectively, and X is a N'(0, 1)-distributed random variable.

Real-world benchmark: We took an existing real-world dataset, the DiLiGenT
dataset [3], which contains 10 real objects of general reflectance illuminated from 96
different known directions. Each object data has tens of thousands of valid pixels. This
dataset provides ground truth surface normal maps for all objects measured by high-
precision laser scanning, enabling a quantitative evaluation. For the BEAR object we

discarded the first 20 images where a part of measurements is corrupted as pointed
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Fig. 2.5 Ten variants of light distributions for the MERL sphere dataset. These light
distributions are generated by uniform or equi-angular sampling on the sphere [1].

out by Ikehata [4].

Baselines: As baselines we used Lambertian photometric stereo (LPS) [20], a model-
based method ST14 [27], the virtual exemplar-based method HS17 [2], the unsuper-
vised learning (i.e., neural inverse rendering)-based method NIR-PS [46], the super-
vised learning methods PX-NET [35], PS-FCN*N [24], WJ20 [47], CNN-PS [4], and
SPLINE-Net [38]. For a fair comparison in computation time, we reimplemented HS17
in Python based on the authors’ MATLAB implementation. We solve the non-negative
least-squares sub-problem in HS17 using scipy.optimize.nnls from the SciPy pack-
age [48] resulting in the authors’ implementation speedup without any accuracy drop.
We implemented the coarse-to-fine search they proposed for efficient surface normal
estimation following their original implementation. Since PS-FCN™YN is trained on a
dataset with MERL BRDFs, for fear of data leakage we omit PS-FCN*Y in the exper-
iments on the MERL sphere dataset. While the published, pre-trained SPLINE-Net
model has been trained specifically for 10 lights, it works well for other small numbers
of light sources. Therefore, we show SPLINE-Net’s scores for cases other than 10 lights
for reference. Further, for testing with the MERL sphere dataset, although PX-NET,
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PS-FCN*N, and WJ20 include the target material in their pre-trained models, we list

their scores for reference.

2.4.1 Efficiency of surface normal estimation

For inference, our method evaluates the reconstruction error ||Z;m||; in Eq. (2.10) for
each surface normal candidate n; € N'. All matrices Z; are precomputed; therefore, at
inference time we only need to evaluate the reconstruction error of each n; and find the
minimizer. The dimension of matrix Z; € RX*Y only depends on the number of lights
L', but not the number of materials. The computation is highly parallelizable, e.g.,
by pixel-wise or surface normal candidate-wise parallelization. Note that our method
is executable on common CPUs because the matrices Z; only require a small amount
of memory. For example, matrices Z; stored in 64-bit floating point numbers for a
typical setting, where N = 20001, M = 100, L = 100, only require 3.1 GB storage
space.

This experiment shows a comparison of computation time with the existing
exemplar-based method. We use the MERL sphere dataset with the ten light sets.
We measured the computation time of our method and the existing exemplar-based
method HS17 [2] on an Intel® Xeon® Gold 6148 CPU @ 2.40 GHz with 40 cores. We
performed pixel-wise parallelization. Figure 2.6 shows the computation time for a
single pixel on the CPU, averaged over all MERL spheres for each light configuration
(number and distribution shown in Fig. 2.5). Our method achieves 2-5 times faster

surface normal estimation than HS17.

2.4.2 Accuracy of surface normal estimation

We estimated surface normals on synthetic and real datasets to confirm that our
method works with diverse scenes. We evaluate the accuracy of surface normal es-
timation by “mean angular error” that is an average of angular errors of estimated

surface normals over all pixels. The angular error is calculated by cos™! (ngtnest),
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Fig. 2.6 Computation time of our HaT'S-PS and HS17 [2] for a single pixel on a CPU.
The experiments are performed on the MERL sphere dataset with light configuration
10 sets.

where ng and neg are ground truth and estimated surface normals, respectively.

MERL sphere: We compared our method and the baseline methods using the
MERL sphere dataset. Since there is no global illumination in the MERL sphere
dataset, we can evaluate only the ability of our method to adapt to diverse materi-
als. For the materials in our method and HS17, we applied a leave-one-out scheme,
testing them on one MERL BRDF while constructing the appearance tensor from the
remaining 99 BRDFs so that the appearance tensor does not contain the target BRDF.

Table 2.1 shows the averages and standard deviations of angular errors over all
pixels in the MERL sphere dataset for the ten light configuration sets. The small
averages and standard deviations show that our method stably yield small errors in
all light configurations when compared with the baseline methods. While HS17 also
achieves competitive accuracy, it is around 2-5 times slower than our method as shown
previously. Incidentally, NIR-PS yields large angular errors in this experiment. We
observed that NIR-PS has extremely large errors for several materials, which affect

the averaged scores. We show mean angular errors of our method and several baseline
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Table 2.1 Comparisons on the MERL sphere dataset with ten light configuration sets.
Numbers represent averages and standard deviations of angular errors over all pixels.

#lights| 10 20 30 40 50 60 70 80 90 100

5o Ours| 42/6.6 25/3.6 22/30 21/29 20/28 19/2.7 19/2.7 19/2.6 18/2.7 1.8/27
22

§~ HS17| 3.6/5.2 2.2/33 1.9/2.8 18/26 1.7/25 16/24 16/24 17/35 16/24 16/2.4

PX-NET“|13.4/14.3 11.0/14.3 9.3/12.8 9.7/12.9 3.5/7.2 3.4/74 34/79 35/82 3.5/83 3.5/85

PS-FCN*Ne| 45/46 2.7/2.6 2.7/25 3.0/27 3.1/27 32/29 34/30 34/30 36/3.1 3.7/3.2

b WI20°| 3.7/42 3.3/35 32/33 32/34 33/33 32/33 3.3/33 3.3/33 3.3/34 3.3/32

& “SPLINE-Net | 13.0/20.0 9.3/16.1 10.2/13.1 15.9/18.4 27.5/28.8 38.8/33.8 45.5/34.8 49.0/33.7 51.4/32.9 50.0/31.5

CNN-PS?(33.6/23.9 6.2/64 4.7/57 4.0/5.3 3.7/52 3.2/46 3.0/42 29/43 26/3.9 2.5/3.8
NIR-PS | 21.7/44.8 15.6/36.3 18.0/40.8 15.2/37.0 18.9/42.5 16.0/38.5 14.8/35.7 14.4/34.2 13.7/33.5 14.6/34.3

ST14| 15.5/9.9 11.5/15.6 10.9/13.7 10.9/13.9 9.8/134 55/8.1 2.7/44 1.7/3.1 1.4/26 12/23
LPS| 13.6/9.9 13.0/94 12.8/94 127/9.3 127/9.3 12.6/9.3 12.6/9.4 12.6/9.4 12.6/9.4 12.6/9.4

Model-
based

@ Training dataset of PX-NET, PS-FCN*N_ and WJ20 include target materials.

b CNN-PS is trained with 50-100 lights.

methods for each material on the MERL sphere datasets with 100 lights in Fig. 2.7.

DiLiGenT: We show quantitative results on the real-world dataset DiLiGenT in
Tab. 2.2, where we compare our method with the baseline methods including very
recent methods such as PX-NET and WJ20 in terms of mean angular error. Our
method demonstrate comparable or better accuracy compared to the exemplar-based
methods, although showing a degradation compared to the learning-based methods.
This is considered to be due to factors not modeled in our method, namely cast

shadows or inter-reflections.

Figures 2.8 and 2.9 show visual comparisons between our method and the baseline
methods. Our method causes a large angular error in pixels where cast shadows or
inter-reflections are likely to occur. However, in convex parts our method outperforms
the learning-based methods and estimates the surface normals well, e.g., the BALL

object or the body of BEAR and CAT objects.
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Fig. 2.7 Mean angular errors of our method and the baseline methods for each MERL shere data with 100 lights.
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Table 2.2 Comparisons on the DiLiGenT dataset. Numbers in the table represent
mean angular errors in degrees.

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING |Avg.

5 Ours| 1.6 5.9 13.1 6.1 9.2 11.0 18.7 6.6 7.2 15.0 9.4
EX
55’ HS17| 1.5 6.2 13.9 6.4 92 10.8 18.8 70 79 15.3 9.7
PX-NET| 2.0 35 7.6 43 47 6.7 13.3 49 5.0 9.8 6.2
, PSFCNTN| 26 54 7.5 47 6.7 7.8 12.4 59 7.2 10.9 7.1
£
R WJ20| 1.8 4.1 6.1 47 6.3 7.2 13.3 65 6.4 10.0 6.6
=
CNN-PS| 21 4.2 8.1 44 79 74 13.8 54 64 12.1 7.2
NIR-PS| 1.6 6.1 11.0 56 5.8 11.2 22.0 6.5 85 11.3 9.0
ok ST14| 18 5.1 10.7 6.1 138 102 25.6 65 87 13.0  |10.2
g <
=7 LPS| 42 85 14.9 84 256 185 30.6 89 14.6 200 |15.4

2.4.3 Choice of dimension M’ for noisy data

We empirically observed that M’ is related to our method’s robustness against noise.
Thus, we determine an optimal M’ by a validation using the noisy MERL sphere
dataset.

We applied a leave-one-out scheme, testing it on one MERL BRDF while con-
structing the appearance tensor from the remaining 99 BRDFs. We test varying
M’ = {2,3,4,5,7,10} and varying noise pu/A = {5/30,30/5,30/30} under five light
configuration sets, i.e., 20, 40, 60, 80, 100 lights.

Figure 2.10 shows mean angular errors of estimated surface normals in degrees.
In most of configurations, M’ = 3 produces the lowest angular errors among the
candidates of M’, indicating that M’ = 3 is the most robust to noise. For this reason,

we applied M’" = 3 in all experiments of this chapter.

2.4.4 Surface normal discretization

Tables 2.3 and 2.4 show mean angular error and computation time for varying numbers

of surface normal candidates on the MERL sphere dataset with 100 lights. Throughout
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Observation
&Ground Ours HS17 PS-FCN+N CNN-PS ST14 LPS
truth

<
usi
A
a
)
aa)

Fig. 2.8 Angular error maps and estimated surface normal maps for BALL, BEAR,
BUDDHA, and CAT objects in the DiLiGenT dataset [3].
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Observation
&Ground Ours HS17 PS-FCN+N CNN-PS ST14 LPS
truth

COW

GOBLET

POT1 HARVEST

POT2

READING

Fig. 2.9 Angular error maps and estimated surface normal maps for COW, GOBLET,
HARVEST, POT1, POT2, and READING objects in the DiLiGenT dataset [3].
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Fig. 2.10 Mean angular error of estimated surface normals with varying M’ on noisy
MERL sphere dataset under five light configuration sets. p and A\ are parameters for
controlling the magnitude of signal-independent and signal-dependent noises.

this chapter we chose 20001 surface normal candidates because it balances accuracy
and computation time well. For accurate surface normal estimation, 20001 or denser
surface normal candidates are recommended. However, the choice of surface normal
candidate discretization coarseness depends on the use case and a coarser discretization

may be acceptable when fast inference is required.

2.4.5 Light direction discretization

In all experiments so far, we assumed that the appearance tensor 7 contains the
light directions of the experiment at hand. In practice, the appearance tensor rarely

contains all of the experiment’s light directions and we should use pre-defined light
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Table 2.3 Mean angular errors for estimated surface normals in degrees for varying
numbers of surface normal candidates. The experiment is performed on the MERL
sphere dataset with 100 lights.

number of surface normal candidates N
1001 2001 3001 5001 10001 20001 30001 40001

282 239 221 206 191 183 1.80 1.78

Table 2.4 Computation time of our method in milliseconds for varying numbers of
surface normal candidates. The experiment is performed on the MERL sphere dataset
with 100 lights, and the computation time is calculated by taking average over all
MERL sphere’s pixels.

number of surface normal candidates N
1001 2001 3001 5001 10001 20001 30001 40001

1.09 1.72 242 446 943 189 28.0 35.7

directions closest to known light directions instead. Here, we examine how the surface

normal estimation accuracy is affected by the discretization of light directions.

As pre-defined light directions in the appearance tensor, we used 20001 discretized
directions created in the same manner with the surface normal candidates. When a set
of known light directions is given, we can slice out a sampled appearance matrix/vector
for a hypothesized surface normal and the set of light directions that are closest to
the known light direction in terms of cosine distance. We can then follow the same
estimation process used so far. We performed such an experiment on the MERL sphere

dataset with ten types of light configurations.

Table 2.5 shows the increases of mean angular errors (i.e., ones shown in Tab. 2.1)
due to the light discretization on the MERL sphere dataset. We observe that the
increases are generally small (< 0.1°), which suggests that it is acceptable to prepare
an appearance tensor T for sufficiently finely discretized light directions and sample
appearance matrices {D;} for light directions closest to target scene’s ones. Hence,

there is no need to calculate appearance matrices for each light configuration.
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Table 2.5 Increases of angular errors due to discretized lights. As pre-defined light
directions in the appearance tensor we used 20001 directions created in the same way
as the surface normal candidates. The numbers represent the increase of mean angular
error in degrees on the MERL sphere dataset.

number of lights
10 20 30 40 50 60 70 80 90 100

0.02 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.01 o0.01

Table 2.6 Precomputation time in seconds for varying number of lights. These pre-
computation time is measured in a typical case of 20001 surface normal candidates,
100 BRDF bases, and 100 light directions.

number of lights
10 20 30 40 50 60 70 80 90 100

10 14 12 14 14 16 18 21 29 31

2.4.6 Precomputation cost

Our method achieves efficient surface normal estimation by precomputation of
Z; € RV from an appearance matrix D; € RY*M that is performed only once for
a light configuration. Table 2.6 shows the precomputation time of our method for
varying number of lights. It shows that our method only requires tens of seconds for
the precomputation. We consider that this precomputation cost is worth paying for
the efficient surface normal estimation, especially when performing photometric stereo

for multiple subjects under an identical light configuration.

2.5 Conclusion

In this chapter, we have presented a photometric stereo method based on discrete
hypothesis-and-test search. The proposed method can work with a diverse set of
appearances that are represented in an appearance tensor and can determine surface

normals of a scene with spatially varying general BRDFs. By putting most of the
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computation into a precomputation step, we enabled a full search over all surface
normal candidates, leading to a solution guaranteed to be optimal within the bounds
of the objective function and the discretization. This approach is also supported by
the fact that with the continuing increase of computation power, memory size, and
the availability of many-core processors, the applicability of the full search strategy is

expanding. We are interested in seeing more applications along the direction.



Chapter 3

Nearest Neighbor Search-based

Photometric Stereo

3.1 Introduction

Photometric stereo aims at recovering surface normals and bidirectional reflectance
distribution functions (BRDFs) from image measurements taken by a static camera
under varying and known distant lights. Today, Lambertian photometric stereo [20] is
already well understood; however, non-Lambertian photometric stereo still remains a
difficult problem, and there have been various approaches in the past. Recent search-
based (a.k.a. exemplar-based) methods including our HaTS-PS presented in Chapter 2
estimate accurate surface normals on non-Lambertian surfaces at the cost of an ex-
haustive search over finely discretized surface normals. While HaTS-PS reduces the
estimation time by a precomputation strategy, a faster estimation is required in several
scenarios, such as on high-resolution images. Unlike existing search-based methods us-
ing continuous BRDF models, we treat BRDFs in a discrete manner as well as surface
normal. It turns the photometric stereo problem into the well-known nearest neigh-
bor search problem; hence the estimation time is dramatically saved using advanced
nearest neighbor search methods. Although the discrete BRDF model only represents

less diverse materials than continuous ones, surprisingly, our method exhibits com-
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Discretized

surface normals Discretized BRDFs Input images

Appearance exemplars

Fig. 3.1 An overview of ours DSPS proposed in this chapter. We estimate a surface
normal and BRDF by a discrete search over the discretized space of surface normals
and BRDFs. The problem can be solved by any nearest neighbor search method,
which reduces an estimation cost dramatically.

parable or high accuracy in determining surface normals to exemplar-based methods

with continuous BRDF models.

This chapter presents Discrete Search Photometric Stereo (DSPS), in which the
non-Lambertian photometric stereo problem is turned into a discrete search over a
finely-discretized space of surface normals and BRDFs. The discretized space is formed
by appearance exemplars; a set of synthetic appearances corresponding to all possible
pairs of discretized surface normals and BRDFs. Given known light directions and the
associated image measurements, our method resamples the discretized space and per-
forms a nearest neighbor search over the resampled space to determine surface normal
and BRDF in a per-pixel manner as shown in Fig. 3.1. Similar to other search-
based photometric stereo methods [2, 30, 49], DSPS is built upon the observation

that appearance exemplars having similar surface normals and BRDFs are naturally
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similar [30, 44]. Unlike other search-based methods, our DSPS fully discretizes con-
tinuous surface normals and BRDFs and performs a discrete search without relying
on continuous optimization. This allows us to leverage many methods for efficient
exact/approximate nearest neighbor search [50-53].

Naturally, the accuracy of DSPS depends on the granularity of the discretization
of surface normals and BRDFs, and also on the number of BRDF samples contained
in the space. Although our experiments show that DSPS already yields favorable
accuracy for diverse materials, it has the potential of becoming even more powerful as
processing power and BRDF datasets grow further.

In summary, the key features of our DSPS are:

Simplicity: Discrete search is conceptually simple and intuitive, and its behavior is
well understood.

Efficiency: DSPS benefits from advances in fast nearest neighbor search algorithms.
Accuracy: Discrete search over the finely-discretized space leads to a stable and
accurate estimation of both surface normals and BRDFs. Since DSPS operates in a

per-pixel manner, it naturally handles spatially-varying BRDFs.

3.2 Related work

This section describes previous non-Lambertian photometric stereo and their relation
to our methods. Modern non-Lambertian photometric stereo can be roughly catego-
rized into model-based, example-based, and learning-based methods. Here, we review
the example-based and learning-based methods. See Sec. 2.2 for the model-based

methods.

3.2.1 Example-based photometric stereo

Early work on example-based photometric stereo relies on the concept of orientation
consistency [30], i.e., two surfaces with the same surface normal and BRDF will have

the same appearance under the same illumination. Another work along this direc-
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tion is found in Horn and Ikeuchi [44]. In these methods, a reference object with
known surface normals is placed in a target scene and the reference object’s BRDF
is assumed to be the same as the target object’s. A surface normal is recovered for
each point of the target object by searching the corresponding pixel intensity of the
reference object that best matches the target’s appearance. To relax the assumption
of identical BRDF between reference and target, Hertzmann and Seitz [30] introduced
two reference objects, diffuse and specular spheres, placed in the target scene. They
approximate the target BRDF by a non-negative linear combination of the reference

BRDFs.

Hui and Sankaranarayanan [2| introduced virtual exemplar-based photometric
stereo that performs example-based photometric stereo without actually introducing
reference objects in the target scene. They render virtual exemplars of appearances
under the target scene illumination with the MERL BRDFs [43] and assume that the
target BRDF lies in the non-negative span of the MERL BRDFs. In their method,
there are time-consuming processes such as rendering virtual exemplars, an iterative
optimization for solving a non-negative least-squares problem, and searching over all
possible surface normals. To reduce the computation cost, they proposed an efficient
search algorithm which, however, eliminates the guarantee of finding the optimal so-

lution.

Our DSPS is categorized as an exemplar-based (or example-based) method that
does not require reference objects. Unlike virtual exemplar-based methods, our DSPS
allows the exhaustive discrete search that guarantees to reach the globally optimal so-
lution within the bounds of the objective function. Moreover, unlike virtual exemplar-
based method and hypothesis-and-test search photometric stereo (HaTS-PS) presented
in Chapter 2 that treat BRDFs as a continuous quantity, our DSPS treats BRDFs in
a discrete manner as well as surface normals, which makes the surface normal esti-
mation problem similar to classic nearest-neighbor search. This allows using any fast
nearest-neighbor search method for efficiency without sacrificing accuracy. The dif-

ferences among exemplar-based photometric stereo methods, including HaTS-PS, are
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Table 3.1 Comparison of exemplar-based photometric stereo methods and their prop-

erties.
. . HaTS-PS
Hertzmann & Seitz [30] Hui & Sankaranarayanan [2] & our DSPS
(Chapter 2)
£ 1 . . . .
surtace norma discrete (example-based) discrete to continuous discrete
representation
BRDF continuous (non-negative continuous (non-negative continuous (linear .
. . S . L o discrete
representation linear combinations) linear combinations) combination)
solution iterative non-negative least iterative non-negative least closed-form least | nearest neighbor
method squares squares squares search
Real world Virtual world Real world

setting O .

Diffuse & specular
examples

Target Virtual exemplars Target

summarized in Tab. 3.1.

3.2.2 Learning-based photometric stereo

Recently, deep learning-based photometric stereo methods have been proposed. They
learn a mapping from measured intensities under known illuminations to surface nor-
mals using a neural network [24, 28, 34-36]. These methods show strong results on
various scenes due to the network being trained with diverse shapes and materials.
In particular, learning-based methods effectively deal with global illumination effects,
such as cast shadows and inter-reflections, which are difficult for model-based and
exemplar-based methods, by including such effects in the training data. Santo et
al. [34] and Chen et al. [24] created a training dataset by rendering the Blobby [41]
and Sculpture [42] shape datasets with 100 MERL BRDFs [43]. Ikehata [4] also intro-
duced a training dataset, called CyclesPS dataset, containing several objects rendered
with a diverse set of materials from Disney’s principled BSDFs [5] with global illu-
mination effects. Logothetis et al. [35] proposed a per-pixel data generation strategy

considering global illumination effects to simplify and speed up the rendering. Typical
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learning-based methods suffer from sparse light configurations, which is subsequently
addressed by some recent papers [37, 38, 54]. Wang et al. [47] also addressed surface
normal recovery under sparse lightings using monotonicity of isotropic reflectance and
a special lighting setup with a collocated light. Beside learning-based methods in
supervised settings, Taniai and Maehara [46] proposed an unsupervised method that
minimizes the reconstruction loss between input and re-rendered images.

Our DSPS, which uses nearest-neighbor search, can be considered to be a learning-
based method as it is a “lazy learner” that memorizes the entire training dataset. An
advantage of nearest neighbor search is the simplicity of the training compared to
deep learning methods. Much like the growth in datasets in various machine learning
tasks such as image classification [55-57], it is expected that datasets for photometric
stereo will also grow. Therefore, we consider that it may raise issues in stable learning
for neural networks, such as the issue of training on a biased dataset [58, 59]. In
contrast, nearest neighbor search is less affected by biases in training datasets since it

only requires that training datasets contain data similar to an input query.

3.3 Discrete search photometric stereo

This section describes how the photometric stereo problem is turned into a nearest
neighbor search problem. Starting from the image formation definition, we introduce

the first nearest neighbor search-based photometric stereo.

3.3.1 Image formation

Suppose a surface point with a unit surface normal n € 8? C R? is illuminated by
a directional light 1 € 82, without ambient lighting or global illumination. When the
surface point is observed by a fixed camera with linear response, the measured intensity

m € R, can be written as

m o p(n,1)max(n'l,0), (3.1)
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surface normal n sliced normal n;
- /
/

light 1 l J )
‘ T -~
.~\\\ ] \\\\\\
.___._. e P
et 8 1 S

BRDF

!
appearance tensor T € RY*L*M  appearance vector d; j €RF

Fig. 3.2 Slice of the appearance tensor 7 that represents appearances for a compre-
hensive set of light directions, surface normals, and BRDFs. Given a set of known
light directions, we can slice out all possible appearance vectors d;;.

where p(n,1): §? x §* — R, is a BRDF.

In calibrated photometric stereo, a camera records multiple, say L', measurements
(my,...my) for each surface point under various light directions (ly,...1;/). Then,

Eq. (3.1) can be written in a vector form as

my p(n,1;) max(n'l, 0)
x ) (3.2)
mr p(n, 1) max(n'lz,0)
m d

where m is a measurement vector, d is an appearance vector with a fixed scale. Our
goal is to find the optimal surface normal n and BRDF p(-) for each surface point,

given measurements m and associated light directions (1;,...1;/) based on the model

of Eq. (3.2).
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lm||mTd;;

Fig. 3.3 Minimal ¢, distance between m and sd,;. The optimal scaling parameter s*
scales the vector d;; to the point closest to m.

3.3.2 From photometric stereo to nearest neighbor search

Let N={n; |i=1,...,N}and B={p;(-) | j =1,..., M} be sets of discretized sur-
face normals and BRDFs, which we call surface normal candidates and BRDF candi-
dates, respectively. The surface normal candidates are generated by discretizing the
angular direction over hemisphere, while the BRDF candidates are based on a set of
measured BRDFs or discretizing an analytic BRDF model. We use the appearance
tensor T € RY*E*M to represent the appearance for all combinations of the surface
normal candidates A/, BRDF candidates B, and discretized L incoming light direc-

tions.

Given a certain combination of surface normal n; and BRDF p;(-) under a set of L'
known light directions, we can slice out a synthetic appearance vector d;; as illustrated
in Fig. 3.2. The synthetic appearance vector d;; can be obtained for all possible pairs
of the surface normal candidates {n;} and BRDF candidates {p,}; thus, we can form
a set of synthetic measurement vectors A ={d;; |i=1,...,N;j=1,..., M}, which
we call appearance exemplars.

If the set of appearance exemplars A is large enough, the actual measurement

vector m from a scene point can be well approximated by an element of A as
m ~ sd;;, (3.3)

where s is an unknown scaling in Eq. (3.2). Under this assumption, the optimal
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indices of the surface normal candidate * and BRDF candidate j* can be found as

the minimizer of the following objective:

i*,j* = argmin ||m — sd;||;. (3.4)
Y]

As illustrated in Fig. 3.3, the optimal scaling parameter s* should scale the d;; to the
point closest to m; therefore, the objective can be written in a parameter-free form

by eliminating the (unknown) optimal scaling s* as
e 2
Jm — s5*dy 3 = 3 (1~ (107dy)"). (35)

where m and Elij are normalized m and d;;, respectively. Consequently, our objective
is transformed to

argmin |m — sd;;|| < argmaxm'd;;, (3.6)
0, 1,J

because ||m]||> = const., and 0 < m'd;; < 1 derived from the non-negativity of both

~ 112 -
vectors. Lastly, with the fact of Hrh —d;; , = 2 — 2m'd;;, our objective becomes

2

argmax m ' d;; < argmin Hrh — dij|, - (3.7)
2% 2%
Therefore, our final objective can be written concisely as
. ok . ~ 3 2
i*,j* = argmin Hm —d;; ) (3.8)

i?j

This objective is equivalent to the nearest neighbor search problem with the Euclidean
distance; hence, we can rely on any exact or approximate nearest neighbor search

method to minimize it. This yields the optimal surface normal n* = n;« and BRDF

pe(-) = pj-()-
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3.4 Experiments

This section describes experiments on our DSPS’s accuracy and computational effi-
ciency using synthetic and real-world data. We also show comparisons with recent

photometric stereo methods.

3.4.1 Preparation

Appearance tensor: The appearance tensor is constructed from three components;
BRDFs, surface normals, and light directions. For BRDFs, we used the MERL BRDF
database [43] which consists of 100 distinct BRDFs including diffuse, specular, and
metallic materials. We discretized the surface normal with equi-angular sampling
from the unit hemisphere [1] and obtained 20001 surface normal candidates with nearly
0.5° intervals. In all experiments of this paper, we assume that the appearance tensor
contains the known light directions. In Sec. 3.4.6, we discuss how the surface normal

estimation accuracy is affected by the discretization of light directions.

MERL sphere dataset: The MERL sphere dataset consists of 100 synthetic sphere
scenes rendered with the 100 MERL BRDFs [43]. We rendered the images under
ten lighting environments consisting of {10, 20, 30,40, 50, 60, 70, 80,90, 100} uniformly
distributed light sources. Image resolution was set to 100 x 100, yielding 7860 valid

pixels.

PrincipledPS dataset: To quantitatively evaluate our method on varying sets of
BRDFs, textures, and shapes, we rendered a synthetic dataset including PLANAR,
BUNNY, DRAGON, and ARMADILLO shapes with the Principled BSDFs [5]. We
call this dataset as PrincipledPS. For each shape, we prepared two materials, Specular
and Metallic, as defined by Tkehata [4], four spatially varying textures, and sparse
and dense (10 and 100) light configurations, totally, 64 scenes. Figure 3.4 shows the

ground truth surface normal maps and example images of the PrincipledPS dataset.
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PLANAR ARMADILLO BUNNY DRAGON
w/ texture 1 w/ texture 2 w/ texture 3 w/ texture 4

. ‘%

N
)

Normal map

Fig. 3.4 Ground truth surface normals and example images of PrincipledPS dataset.

Real-world dataset: We use an existing real-world dataset, the DiLiGenT
dataset [3], which contains 10 real objects of general reflectance illuminated from
96 different known directions. This dataset provides the ground truth surface normal
maps for all objects measured by high-precision laser scanning that can be used for
quantitative evaluation. For the BEAR object we discarded the first 20 images where
a part of measurements is corrupted as pointed out by Ikehata [4]. In addition to the
original dataset, for testing sparse light cases, we prepared 20 datasets, each containing

10 randomly selected images.

Baselines: As baselines we used Lambertian photometric stereo (LPS) [20], the
model-based method ST14 [27], the virtual exemplar-based method HS17 [2],
hypothesis-and-test search (HaTS-PS) presented in Chapter 2, the unsupervised learn-
ing (i.e., neural inverse rendering)-based method NIR-PS [46], the supervised learning
methods PX-NET [35], PS-FCN*+N [24], WJ20 [47], CNN-PS [4], and SPLINE-Net [38].

For a fair comparison in computation time, we reimplemented HS17 in Python based
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on the authors’” MATLAB implementation. We solve the non-negative least-squares
sub-problem in HS17 using scipy.optimize.nnls from the SciPy package [48] resulting
in the authors’ implementation speedup without any accuracy drop. We implemented
the coarse-to-fine search they proposed for efficient surface normal estimation following
their original implementation. While the published, pre-trained SPLINE-Net model
has been trained specifically for 10 lights, it works well for other small numbers of light
sources. Therefore, we show SPLINE-Net’s scores for cases other than 10 lights for
reference in this paper. For testing with the MERL sphere dataset, although PX-NET,
PS-FCNTY, and WJ20 include the target material in their pre-trained models, we list
their scores for reference. Also for testing with the PrincipledPS dataset, although
PX-NET, CNN-PS, and SPLINE-Net include the target material in their pre-trained

models, we list their scores for reference.

3.4.2 Implementation

Our DSPS can benefit from any exact or approximate nearest-neighbor search method
based on ¢, distance (e.g., [50, 51, 60-64]) implemented in modern libraries [48, 63,
65, 66]. In our experiments, we used a simple linear search algorithm implemented in
FAISS [65] as an exact method. As an approximate method, we adopted a combination
of an inverted file system with asymmetric distance computation (IVFADC) [52] and
a hierarchical navigable small worlds (HNSW) indexing structure [53] implemented
in FAISS [65]. The HNSW and IVFADC require to set their hyper-parameters listed
in Tab. 3.2. In all the experiments of this chapter, we used 32, 1000, 8, and 8 for
HNSW __M, nlist, nbits_per_idx, and nprobe, respectively. For the hyper-parameter
M_ sub, we have to use a different value in each experiment depending on the number
of lights due to its requirements'. For all experiments on the MERL sphere and
PrincipledPS dataset, we used M_sub= 10. On the DiLiGenT dataset, we used
M_sub= 5,19, 24 for the 10, 76, and 96 lights, respectively.

In the following, we denote DSPS with exact and approximate nearest neighbor

1See the wiki of the FAISS for details.
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Table 3.2 Hyper-parameters for HNSW and IVFADC.

HNSW_M | The number of neighbors in HNSW
nlist | The number of cells for space partitioning in IVFADC
M _sub | The number of sub-vector in IVFADC
nbits per idx | Bits per sub-vector in IVFADC
nprobe | The number of probes at query time in IVFADC

search as DSPS-E and DSPS-A, respectively. Both DSPS-E and DSPS-A using
FAISS can be performed on either a CPU or a GPU.

3.4.3 Efficiency of surface normal estimation

This section shows comparisons of computation time with the baseline methods run-
ning on CPU and/or GPU. We use the MERL sphere dataset with the ten light sets.
We measured the computation time of DSPS-E; DSPS-A, HaTS-PS, and HS17 [2] on
a CPU. We also measured the computation time of DSPS-E, DSPS-A, CNN-PS [4],
and PS-FCN*YN on a GPU. In this section, we eliminate the results of inefficient it-
erative methods, ST14 and NIR-PS, and the extension of CNN-PS, i.e., PX-NET
and SPLINE-Net, that are always slower than CNN-PS. We used 40 cores of an
Intel® Xeon® Gold 6148 CPU @ 2.40 GHz and NVIDIA TITAN X GPU. On the
CPU we performed pixel-wise parallelization. Note that our methods are executable
on common CPUs and GPUs because the sampled appearance matrix only requires a
small amount of memory. For example, sampled appearance matrices stored in 64-bit
floating point numbers for a typical setting, where N = 20001, M = 100, L = 100,
only require 3.1 GB storage space.

Figure 3.5a shows the computation time for a single pixel on the CPU, averaged
over all MERL spheres for each light configuration. DSPS-A is 3—4 orders of magni-
tude faster than HS17 while DSPS-E are around one order of magnitude faster than
HS17. Figure 3.5b shows the computation time for a single pixel on the GPU. DSPS-E
and DSPS-A are accelerated one order of magnitude using the GPU. While typical

exemplar-based methods are computationally expensive, our methods achieve compa-
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Fig. 3.5 (a) CPU computation time of our methods, HaTS-PS, and HS17 [2] for a single
pixel. (b) GPU computation time of our methods, CNN-PS [4], and PS-FCN*Y.

rable or faster inference than the learning-based methods using feed-forward networks.

3.4.4 Accuracy of surface normal estimation

We estimated surface normals on synthetic and real datasets to confirm that our

methods work with diverse scenes.

MERL sphere: We compared our methods and the baseline methods using the
MERL sphere dataset. For the materials in our method, HaTS-PS, and HS17, we
applied a leave-one-out scheme, testing them on one MERL BRDF while constructing
the appearance tensor from the remaining 99 BRDFs so that the appearance tensor
does not contain the target BRDF.

Table 3.3 shows the averages and standard deviations of angular errors over all
pixels in the MERL sphere dataset for the ten light configuration sets. The small
averages and standard deviations show that our methods stably yield small errors in
all light configurations when compared with the baseline methods. The stable and

high accuracy for diverse materials of our methods is confirmed in Fig. 3.6, showing
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Table 3.3 Comparisons on the MERL sphere dataset with ten light configuration sets.
Numbers represent averages and standard deviations of angular errors over 100 MERL
spheres.

#lights ‘ 10 20 30 40 50 60 70 80 90 100

DSPS-E| 3.0/4.3 22/3.1 20/28 19/26 1.8/25 18/24 17/24 17/24 17/24 1.7/24
DSPS-A| 3.0/43 23/31 21/28 21/2.7 20/25 20/25 20/25 2.0/25 20/25 20/25
HaTS-PS| 4.2/6.6 25/3.6 22/3.0 2.1/29 20/2.8 1.9/2.7 1.9/27 19/26 18/2.7 1.8/2.7
HS17| 3.6/5.2 22/33 19/28 18/26 17/25 16/24 16/24 17/35 16/24 1.6/24

Exemplar-
based

PX-NET“ |13.4/14.3 11.0/14.3 9.3/12.8 9.7/129 3.5/72 34/74 34/79 35/82 35/83 3.5/85
PS-FCN*Ne| 45/46 27/26 27/25 3.0/2.7 3.1/27 32/29 34/30 34/30 36/3.1 3.7/3.2
WJ20°| 3.7/42 3.3/3.5 3.2/3.3 3.2/34 3.3/3.3 32/3.3 33/3.3 33/3.3 33/34 3.3/3.2
SPLINE-Net [13.0/20.0 9.3/16.1 10.2/13.1 15.9/18.4 27.5/28.8 38.8/33.8 45.5/34.8 49.0/33.7 51.4/32.9 50.0/31.5
CNN-PS®[33.6/23.9 6.2/64 47/57 4.0/53 3.7/52 3.2/46 3.0/42 29/43 26/39 25/38
NIR-PS|21.7/44.8 15.6/36.3 18.0/40.8 15.2/37.0 18.9/42.5 16.0/38.5 14.8/35.7 14.4/34.2 13.7/33.5 14.6/34.3

el
o}
17}
<
Q

Learning-

ST14| 15.5/9.9 11.5/15.6 10.9/13.7 10.9/13.9 9.8/134 55/8.1 2.7/44 1.7/31 14/26 1.2/2.3
LPS| 13.6/9.9 13.0/9.4 12.8/9.4 12.7/9.3 127/9.3 12.6/9.3 12.6/9.4 12.6/9.4 12.6/9.4 12.6/9.4

based

Model-

@ Training dataset of PX-NET, PS-FCN*TN and WJ20 include target materials.
® CNN-PS is trained with 50-100 lights.

mean angular errors of our method and several baseline methods for each material in
the 100 lights case. While HS17 also achieves competitive accuracy, it is more than
three orders of magnitude slower than DSPS-A as shown previously. Our methods
achieve remarkably stable surface normal estimation in the few lights case such as ten
lights. It is a benefit of treating BRDFs in a discrete manner instead of a continuous
manner that tends to be over-fit to the measurements in a few light cases. Incidentally,
NIR-PS yields large angular errors in this experiment. We observed that NIR-PS has
extremely large errors for several materials as shown in Fig. 3.6, which affect the

averaged scores.

PrincipledPS: We conducted quantitative evaluation on the PrincipledPS dataset.
While training datasets of PX-NET, CNN-PS, and SPLINE-Net are also rendered with
the Principled BSDFs and therefore may include the target materials, their scores are
shown as reference.

Table 3.4 shows averages of angular errors over eight scenes (i.e., all combinations
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Table 3.4 Comparisons on the PrincipledPS dataset. Numbers represent averages of
angular errors over eight scenes, i.e., two materials and four textures.

\ 10 lights \ 100 lights

‘PLANAR ARMADILLO BUNNY DRAGON‘AVg.‘PLANAR ARMADILLO BUNNY DRAGON | Avg.

. DSPS-E 1.5 3.6 3.5 3.6 3.0 1.0 3.4 3.1 3.2 2.7
3 DSPS-A 1.5 3.6 3.5 3.6 3.0 1.6 3.6 3.5 3.4 3.0
:-c"g é HaTS-PS 15.9 4.0 4.0 4.1 7.0 1.1 2.7 2.6 2.7 2.3
= HS17 1.6 3.9 3.7 3.8 3.3 1.2 2.4 2.2 2.3 2.0
PX-NET* 10.6 4.8 5.3 5.0 6.4 1.2 1.4 1.4 1.5 1.4

, PS-FCN+N 6.9 5.1 4.8 5.4 5.6 2.9 3.6 3.5 3.8 3.4
-§§ WJ20 4.9 3.6 3.5 3.6 3.9 2.3 2.9 2.7 2.9 2.7
E 2 SPLINE-Net® 9.2 6.2 6.4 6.4 7.0 33.8 41.3 45.4 42.0 40.6
CNN-PS* 28.7 30.3 34.2 30.5 30.9 4.9 1.8 2.0 1.9 2.6
NIR-PS 48.0 2.9 2.5 3.1 14.1 41.0 2.9 2.6 2.8 12.3

g-é 3 ST14 15.0 12.2 12.7 11.3 12.8 1.6 7.0 2.5 7.2 4.6
S8 LPS 13.7 10.2 10.4 9.3 10.9 13.4 8.2 8.3 7.5 9.4

@ Training dataset of PX-NET, CNN-PS, and SPLINE-Net may include target materials.
b CNN-PS is trained with 50-100 lights.

of two materials and four textures) for each shape and number of lights. The results on
the PrincipledPS dataset also show that our DSPS achieves accurate and stable surface
normal estimation for diverse materials in both sparse and dense lighting cases. In the
sparse lighting case, DSPS has a higher accuracy than HaTS-PS. This is because DSPS
treats BRDFs in a discrete manner, while HaT'S-PS treats them in a continuous manner
that tends to be over-fit to the measurements, particularly in sparse lighting case. In
contrast, HaTS-PS is more accurate than DSPS in the dense lighting case since the
continuous BRDF model can represent more diverse materials than the discrete BRDF
model of DSPS and the over-fitting of the continuous BRDF model rarely happen if
the number of lights is large. PS-FCN™Y and WJ20 also yield promising results;
however, the different behavior than ours is observed especially when few lights on the
PLANAR, which is an extreme shape but often appears in the real-world. One possible
reason for the difference is that PS-FCN*N and WJ20 use patch-based processing, i.e.,
their surface normal estimates depend on not only local appearances but also global
appearances. Therefore, the accuracy of patch-based methods slightly degrades on

scenes with non-informative global appearances.
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Table 3.5 Comparisons on the DiLiGenT dataset with 96 and 10 lights. Numbers
in the table above are mean angular errors in degrees. Numbers in the table below
are averages and standard deviations of mean angular errors over 20 datasets with
different light distributions.

96 lights

‘BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING | Avg.

, DSPS-E| 1.3 6.3 140 68 7.8 115 17.4 73 74 15.2 9.5
<< DSPS-A| 14 64 142 68 8.0 11.7 175 74 T4 15.3 9.6
g ®w
£5 HaTS-PS| 1.6 5.9 131 61 92 11.0 18.7 66 7.2 15.0 9.4
= HS17| 15 6.2 139 64 9.2 10.8 18.8 70 7.9 15.3 9.7

PX-NET| 20 35 7.6 43 A7 6.7 133 49 50 9.8 6.2

¥ _PS-FCN*N| 26 54 75 47 6.7 7.8 12.4 59 7.2 10.9 7.1
£
£z wWJ20| 1.8 4.1 6.1 47 63 7.2 13.3 65 6.4 10.0 6.6
Q
= ONN-PS| 2.1 42 8.1 44 79 7.4 13.8 54 64 12.1 7.2

NIR-PS| 1.6 6.1 110 56 58 11.2 22.0 65 85 11.3 9.0

il ST14| 1.8 5.1 107 61 138 102 25.6 65 87 13.0  [10.2

s 2 LPS| 42 85 149 84 256 185 30.6 89 146 200 | 154
10 lights

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING | Avg.

DSPS-E| 2.4/0.5 7.7/0.7 16.1/0.8 80/0.4 10.5/0.6 14.0/0.6 20.9/0.6 88/0.4 9.8/0.7 181/1.1 |11.6
DSPS-A| 2.5/0.5 7.7/0.7 16.0/0.8 8.0/0.4 10.6/0.6 14.0/0.6 20.9/0.6 8.8/0.4 9.9/0.7 18.0/1.1 |11.6
HaTS-PS| 4.2/1.2 7.9/0.7 16.7/1.4 85/1.0 12.4/1.2 152/1.3 24.2/0.8 9.3/0.8 11.7/1.7 21.1/1.6 |13.1

HS17| 3.8/0.9 81/0.8 16.3/1.0 85/0.6 12.9/1.1 14.1/0.7 22.0/0.7 9.2/0.6 11.1/1.0 18.2/1.3 |12.4

Exemplar-
based

PX-NET*| 2.3/04 4.7/0.3 9.6/0.5 6.3/0.4 7.3/0.6 9.6/0.9 16.2/0.7 7.0/04 7.8/1.1 13.5/0.8 | 84
PS-FCN+N| 4.3/1.0 6.8/0.8 9.7/0.8 6.3/0.6 122/1.3 10.5/0.8 17.5/1.0 7.7/0.6 10.0/1.2 13.0/1.1 | 9.8

% SPLINE-Net | 5.1/1.0 5.9/0.6 10.7/1.0 7.9/0.9 9.0/1.1 10.7/1.2 19.2/1.0 9.4/0.8 125/1.4 15.3/0.8 |10.6
CNN-PS?|10.2/5.5 14.2/4.8 15.0/4.3 12.4/5.8 13.9/1.8 155/2.8 20.3/2.6 12.9/4.8 14.9/3.6 16.4/35 |14.6
NIR-PS| 1.6/0.2 5.9/0.6 10.9/0.8 6.2/0.4 13.3/65 16.8/10.0 28.5/4.1 8.0/4.6 89/1.0 15.3/47 |11.5

ing-

Learn
based

ST14| 5.7/0.6 10.0/0.4 16.4/0.7 9.6/0.5 26.3/0.8 20.0/0.9 31.0/0.7 10.2/0.4 16.2/1.0 19.7/1.3 |16.5
LPS| 4.6/0.5 9.0/04 15.9/0.7 9.2/04 26.6/0.7 19.7/0.9 31.4/0.6 9.6/04 15.6/1.0 20.2/1.4 |16.2

Todel

el
@
%
<
e}

N

@ A model specific to few lights is used.

b CNN-PS is trained with 50-100 lights.
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DiLiGenT: We show quantitative results on the real-world dataset DiLiGenT with
96 and 10 lights in Tab. 3.5, where we compare our methods with the baseline meth-
ods in terms of mean angular error. Figures 3.7 and 3.8 show visual comparisons
between our methods and the baseline methods in 96 lights case. Our DSPS methods
demonstrate comparable or better accuracy compared to the exemplar-based methods,

although showing a slight degradation compared to the learning-based methods.
For the scenes with 96 lights, DSPS-E achieves the best score on the BALL object

having fully convex surfaces. The same trend of high accuracy on convex regions
can be observed in other scenes, e.g., the body of the COW object and the arm of
the READING object in Fig. 3.8. Although our DSPS accurately estimates surface
normals on convex surfaces, HaTS-PS achieves further accuracy at several pixels (e.g.,
the body of BEAR, BUDDHA, and CAT in Fig. 3.7). This is due to the difference
in the BRDF models, namely continuous or discrete model. HaTS-PS employs a
continuous BRDF model that can represent more diverse materials than the discrete

model employed in DSPS; therefore, HaTS-PS can estimate better surface normals

than DSPS.

For the scenes with 10 lights, our methods achieve comparable accuracy to the
learning-based methods. The standard deviations of our DSPS tend to be small com-
pared to the baselines, which suggest that DSPS is insusceptible to the light distribu-
tions. This robustness is preferable since it is hard to know which light distribution is

the best for each method in practice.

Overall, we observe our DSPS shows comparable or better accuracies compared
to the existing exemplar-based methods. For convex shapes, where the global illumi-
nation effects can be mostly negligible, the accuracy by our method can further be
better than the learning-based methods; this tendency is especially pronounced when

few lights (e.g., 10 lights).

Reliability of surface normal estimates: In practical applications, it is impor-

tant to know the reliability of estimated surface normals. When the measurement
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Fig. 3.7 Angular error maps and estimated surface normal maps for BALL, BEAR,
BUDDHA, and CAT objects in the DiLiGenT dataset [3] with all the 96 lights.
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Fig. 3.8 Angular error maps and estimated surface normal maps for COW, GOBLET,
HARVEST, POT1, POT2, and READING objects in the DiLiGenT dataset [3] with
all the 96 lights.
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BUDDHA CAT GOBLET READING

Fig. 3.9 Visual relation between angular errors and image reconstruction errors. For
each object in the DiLiGenT dataset, we show angular error maps (above) and image
reconstruction error maps (below).

vector is far from any appearance exemplars, it can be considered unstable estima-
tion; therefore, we can assess the reliability via the nearest neighbor search process.
Indeed, we can observe that larger image reconstruction errors, which can be calcu-
lated with Eq. (3.8), tend to correspond to higher angular errors as shown in Fig. 3.9.
In particular, we can observe large angular errors and image reconstruction errors at
pixels that can be considered affected by global illuminations (e.g., the neck of BEAR
and CAT). Therefore, we can find such pixels with unreliable surface normal estimates
by our method and may use other photometric stereo method such as learning-based

method for more reliable surface normal estimation.
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3.4.5 Robustness to image corruptions

We examine the robustness of our methods and baseline methods against common cor-
ruptions of photometric stereo images, camera noise, ambient light, and saturation.
We prepared evaluation datasets by applying such corruptions to the MERL sphere
dataset with 100 lights. We simulated the camera noise by adding signal-independent
and signal-dependent noise [45] to images in the same manner as previous work [27];
m=m+ (u+ A/m)X, where m and m are image signals with and without noise,
1 and A are weighting factors for signal-independent and signal-dependent noise, re-
spectively, and X is a NV(0, 1)-distributed random variable. For the ambient light and
saturation, we followed dataset generation process of PX-NET [35]. To simulate the
ambient light, we added n"vX to images, where n is a surface normal, v is a view-
ing direction, and X is a (0, 0.001)-distributed random variable and constant over a
single scene. To simulate the saturation of pixel intensity, we clipped the top 5% of

pixel intensities with the highest values in the half of the images.

Table 3.6 shows mean angular errors and standard deviations for each corrupted
data. The results suggest that exemplar-based methods including ours, HaTS-PS, and
HS17 are robust to uniform and small perturbations of measurements (i.e., camera
noise and ambient light) compared to learning-based and model-based methods. For
partial and relatively large corruption (i.e., saturation), every method is generally
robust. In particular, ST14 is almost unaffected by the saturation since they eliminate

large measurement values as outliers.

The robustness of exemplar-based methods can be explained by interpreting the
exemplar-based approach as space partitioning along the surface normal candidates.
They can be considered as separating the whole L’-dimensional measurement vector
space to N subspaces, each of which corresponds to one of the surface normal candi-
dates. Here, each subspace has a spatial margin to its neighboring subspaces, which

yields robustness to measurement perturbations caused by corruptions.
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Table 3.6 Mean angular errors and standard deviations (mean angular error/standard
deviation) on the corrupted MERL sphere datasets with 100 lights. Numbers are in
degrees obtained from 100 MERL spheres.

‘No noise Camera noise Ambient light Saturation

DSPS-E| 1.7/24  2.4/4.7 7.7/15.9 2.8/4.1
DSPS-A| 2.0/2.5  2.8/4.8 7.9/15.6 3.0/4.1
HaTS-PS| 1.8/2.7  2.7/5.2 7.7/16.1 2.6/3.2
HS17| 1.6/2.4  2.4/4.7 7.7/15.9 2.6/3.8
CNN-PS| 2.5/3.8  6.2/14.0 8.9/18.8 2.6/3.8
ST14| 1.2/2.3  22.9/13.3 345/33.7  1.2/23

3.4.6 Analysis of appearance tensor

The appearance tensor is constructed from three components; BRDFs, surface nor-
mals, and light directions. In the experiments so far, we used the appearance tensor
with 100 MERL BRDFs, 20001 surface normals, and exact light directions of a target
scene.

This section analyzes the effect of varying appearance tensors on the quality of

surface normal estimation.

Appearance tensor with non-MERL BRDFs: We investigate whether BRDF
bases from synthetic non-MERL BRDFs improve our method. Here, we use Disney’s
Principled BSDFs [5], Oren-Nayar [6], Blinn-Phong [7], and Cook-Torrance [8] BRDF
models for the appearance tensor. We discretize material parameters for each BRDF
model and prepare 162 bases from Principled BSDFs, 100 bases from Oren-Nayar
BRDF, 11 bases from Blinn-Phong BRDF, and 54 bases from Cook-Torrance BRDF.

Table 3.7 shows mean angular errors of our DSPS-E with different BRDF bases on
the DiLiGenT dataset. The results suggest that the additional synthetic BRDF bases
do not contribute to the quality of surface normal estimation on the real data. It is
visually confirmed by Fig. 3.10, which shows the difference in the angular error maps
between DSPS-E with MERL BRDF bases and that with MERL & Principled BSDF
bases. This trend is consistent in DSPS-E with other BRDF bases. We consider that
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Table 3.7 Our DSPS-E with different BRDF candidates. We use Disney’s principled
BSDF [5], Oren-Nayar [6], Blinn-Phong [7], and Cook-Torrance [8]. The experiments
are performed on the DiLiGenT dataset.

‘BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING‘Avg.

MERL| 1.3 6.3 14.0 6.8 7.8 11.5 17.4 7.3 7.4 15.2 9.5

Principled | 1.4 6.4 14.8 78 17 13.4 18.6 8.3 9.6 16.0 10.4

MERL & Principled| 1.4 6.4 14.3 7173 11.5 17.5 7.8 7.4 15.5 9.6
MERL & Oren-Nayar| 1.4 6.5 14.2 6.8 7.8 11.5 17.5 7.4 7.4 15.3 9.6
MERL & Blinn-Phong| 1.3 6.6 15.4 74 85 12.4 17.7 7.7 7.9 17.4 10.2
MERL & Cook-Torrance| 1.3 6.4 14.3 70 7.8 11.9 17.3 7.4 7.6 15.5 9.7

BALL BEAR BUDDHA CAT COW

] MERL&
RN lPrincipIed better

5
-0°

IMERL better

GOBLET HARVEST POT2 READING

% »““‘,,fﬂ
Fig. 3.10 Difference in the angular error maps between DSPS-E with MERL BRDF
bases and MERL & Principled BSDF bases. Blue color indicates that the MERL only

BRDEF bases work better than the MERL & Principled BSDF bases and red color
indicates the opposite.

it is because the analytic BRDFs still deviate from real-world BRDFs even though
they add more diversity to our appearance tensor. Hence, we conclude to recommend

using only the MERL BRDFs for the appearance tensor.

Varying number of BRDFs: The experimental results so far show that our DSPS
is consistently comparable or better than HaT'S-PS in terms of efficiency and accuracy.

However, it is of interest to see how the accuracy of DSPS varies when the number
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Mean angular error [deg.]

10 20 30 40 50 60 70 80 90
Number of BRDFs M
Fig. 3.11 Relationship between the accuracy of surface normal estimation and the
number of BRDFs in the appearance tensor in DSPS. This experiment uses the MERL
sphere dataset with 100 lights. The solid line shows the mean angular error of the ten

trials, and the colored area shows the maximum and minimum angular errors of the
trials.

of BRDFs of the appearance tensor is limited since DSPS treats BRDFs in a discrete
manner. Therefore, we validate this using the MERL sphere dataset with 100 lights.
For each BRDF of the test data, we randomly sample BRDFs from the remaining
99 MERL BRDFs, run DSPS, and repeat them ten times for obtaining the average
accuracy.

Figure 3.11 shows the relationship between the accuracy of surface normal esti-
mation and the number of BRDFs in the appearance tensor. Naturally, the angular
error of estimated surface normals becomes smaller as the number of BRDFs increases.
The result suggests that 30 BRDFs or more give promising surface normal estimation,
around 2° in average, around 3° at worst. The reason why DSPS with such small
number of BRDFs successfully works is that the Eq. (3.3) only needs to be approxi-
mately satisfied for a good surface normal estimation, and that is sufficient as long as

the nearest exemplar has a surface normal close to the true one.

Surface normal discretization: The accuracy and efficiency of our DSPS and

HaTS-PS are naturally affected by the granularity of the surface normal discretization.
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Fig. 3.12 (a) Mean angular errors and (b) Computation time of our methods with
varying number of surface normal candidates. This experiment is performed on the
MERL sphere dataset with 100 lights.

Table 3.8 Increases of angular errors due to discretized lights. As pre-defined light
directions in the appearance tensor we used 20001 directions created in the same way
as the surface normal candidates. The numbers represent the increase of mean angular
error in degrees on the MERL sphere dataset.

Number of lights
10 20 30 40 50 60 Y0 80 90 100

DSPS-E | 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01
DSPS-A | 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Figure 3.12 shows mean angular error and computation time for a single pixel with
varying numbers of surface normal candidates. This experiments are performed on
the MERL sphere dataset with 100 lights. Throughout this chapter we chose 20001
surface normal candidates because it balances accuracy and computation time well.
For accurate surface normal estimation, 20001 or denser surface normal candidates
are recommended. However, the choice of surface normal candidate discretization
coarseness depends on the use case and a coarser discretization may be acceptable

when fast inference is required.
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Light direction discretization: In all experiments so far, we assumed that the ap-
pearance tensor contains the light directions of the experiment at hand. In practice,
the appearance tensor rarely contains all of the experiment’s light directions and we
should use pre-defined light directions closest to known light directions instead. Here,
we examine how the surface normal estimation accuracy is affected by the discretiza-

tion of light directions.

As pre-defined light directions in the appearance tensor, we used 20001 discretized
directions created in the same manner with the surface normal candidates. When a
set of known light directions is given, we can slice out a sampled appearance vector for
a surface normal, BRDF and the set of light directions that are closest to the known
light direction in terms of cosine distance. We can then follow the same estimation
process used so far. We performed an experiment on the MERL sphere dataset with

ten types of light configurations.

Table 3.8 shows the increases of angular errors due to discretized lights on the
MERL sphere dataset. We observe that the increases are generally small (< 0.1°),
which suggests that it is acceptable to prepare an appearance tensor for sufficiently
finely discretized light directions and there is no need to calculate a new appearance

tensor for each light configuration.

3.4.7 Precomputation cost

Nearest neighbor search methods used in our DSPS need precomputation/pretraining
for each light configuration to enable efficient search. This section investigates the

costs of precomputation on the CPUs and GPUs used in Sec. 3.4.3.

Figure 3.13 shows the precomputation times of our methods on a CPU and GPU
for varying light configurations. This result shows that our methods only require tens
of seconds or less. We consider that this cost that is only paid once for each light

configuration is worth paying for the efficient inference shown in Figs 3.5a and b.
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Fig. 3.13 Precomputation time of our methods on a CPU and GPU for varying light
configurations.

3.4.8 Relighting quality

Relighting is a practical application that uses per-pixel surface normals and BRDFs
recovered by the photometric stereo, which renders a recovered scene with novel illu-
minations. Also, evaluating relighting quality can assess the accuracy of both surface
normal and BRDF estimations. Here, we evaluate the relighting quality by the re-

lighting error e,y defined as

p*(n*,1;) max(n*T1;, 0)

) drelit = y (39)
2 . .
p*(n*,1; ) max(n*'1;,0)

Myelit drelit

Myelit, ||2 a ”drelit || 2

erelit = H ||

where myq; is a ground truth measurement vector under novel illuminations
L ={l,...,1;} unused for surface normal and BRDF recovery and d, is relit scene’s

appearances using estimated surface normal n* and BRDF p*(-) under novel illumi-
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nations £. In addition, we analyze the degree of over-fitting by treating the image
reconstruction and relighting error as training and test errors, respectively. For this,
we relit the MERL spheres with 251 uniformly distributed lights using the estimated
surface normals and BRDFs for 10 and 100 lights cases. We used an existing exemplar-
based method (HS17 [2]) as a baseline.

Figure 3.14 shows cumulative histograms of the relighting errors and image re-
construction errors for all pixels in the MERL sphere dataset. Our method produces
smaller relighting errors than HS17 in the case of 10 lights. This suggests that our
method estimates both the surface normals and the BRDFs more accurately than
HS17. The superiority of our method can be also visually confirmed in Fig. 3.15.
Moreover, for the case 100 lights, our method achieves relighting errors competitive
to HS17.

Compared to our method, HS17 produces small reconstruction errors and large
relighting errors, especially in the case of 10 lights. This can be viewed as an evidence
of over-fitting at several pixels since HS17 adopts a linear combination of BRDF candi-
dates to explain the target measurements. In contrast, our method avoids over-fitting
by using only a single BRDF candidate to approximate the target measurements. This

results in a stable estimation of both surface normals and BRDFs.

3.5 Conclusion

In this chapter, we have presented Discrete Search Photometric Stereo (DSPS), which
reduces the photometric stereo problem to the well-known nearest neighbor search
problem. DSPS can stably recover surface normals of a scene with spatially vary-
ing general BRDFs in various light configurations. Using advanced nearest neighbor
search methods enabled full search over all surface normal candidates, leading to a
solution guaranteed to be optimal within the bounds of the objective function and the
discretization.

Experiments on synthetic and real-world datasets showed that our DSPS has com-
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Fig. 3.14 Cumulative histograms of the relighting and reconstruction errors for all
the pixels in the MERL sphere dataset. Relighting errors are calculated from the
estimated surface normals and BRDFs in 10 and 100 lights cases.

parable accuracy to the state-of-the-art exemplar-based photometric stereo methods
while achieving 100-1000x acceleration. In addition, we experimentally observed that
our DSPS is robust to imaging noise compared to model-based and learning-based
methods. Since it is hard to entirely avoid imaging noise in real-world experiments,
DSPS is one of the best choices for stable surface normal estimation.

While our DSPS showed promising surface normal estimation, it was limited to
convex surfaces since the appearance exemplars only consider convex surfaces and do
not consider global illumination effects that are likely to occur in non-convex surfaces.
We leave the extension of DSPS to non-convex surfaces as future work, which is

addressed in Chapter 4.
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Ground truth Ours ( HS17 [2

Fig. 3.15 Visual comparison of relighting results for our method and HS17 [2]. We
performed the relighting with 251 novel lights using the surface normals and BRDFs
estimated from just 10 lighting directions.



Chapter 4

General Appearance Exemplars for
Nearest Neighbor Search-based

Photometric Stereo

4.1 Introduction

Photometric stereo recovers fine surface details in the form of surface normals from
images taken by a static camera under varying lightings. Traditional photometric
stereo methods [20] assume Lambertian reflectance, which deviates from real-world
reflectances, thus introducing errors in surface normal estimates. Discrete search pho-
tometric stereo (DSPS) proposed in Chapter 3 achieves accurate surface normal esti-
mation for diverse reflectances by a discrete search for the appearances closest to target
scene’s ones over a set of appearance exemplars. However, the applicability is limited
by the coverage of the appearance exemplars; namely, if target scene’s appearances are
distant from any appearance exemplar, the estimation should be unreliable. Indeed,
the accuracy of DSPS is degraded at non-convex surfaces due to global illumination
effects such as cast shadows and inter-reflections that are not considered in the set
of appearance exemplars used in Chapter 3. We, therefore, extend the applicability

of DSPS by augmenting the set of appearance exemplars with more reflectances and
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global illumination effects.

This chapter introduces a set of general appearance exemplars to broaden the ap-
plicability of the DSPS to non-convex surfaces and more diverse materials. We design
the general appearance exemplars to have real reflectances and not be restricted to a
specific class of shapes. For real reflectances, we use actually measured bidirectional
reflectance distribution function (BRDF) database. A limited number of BRDFs are
only available, specifically 100 in the MERL BRDF database [43]; therefore, we aug-
ment the measured BRDFs while maintaining its realistic reflectance property. For
non-convex surfaces not restricted to a specific class of shapes, we use a large scale
shape dataset containing randomly corrupted primitive shapes (e.g., cubes, ellipsoids,

cylinders).

To maintain the favorable accuracy of the DSPS on convex surfaces, we build con-
vex and non-convex appearance exemplars in a respective manner. The convex appear-
ance exemplars are rendered with finely discretized surface normals and augmented
BRDEFs. While the non-convex appearance exemplars containing global illumination
effects can be obtained by rendering non-convex shapes, it also includes convex ap-
pearance exemplars, resulting in a redundant dataset if convex appearance exemplars
are combined. Therefore, we extract only purely non-convex appearance exemplars
with our metric. Our general appearance exemplars constructed from pure convex
and non-convex appearance exemplars allow us to estimate a convexity (convex or
non-convex) of a surface in addition to a surface normal and BRDF. The knowledge
of convexity further allows us to apply different photometric stereo methods to convex

and non-convex surfaces.

Our general appearance exemplars are motivated by the success of training datasets
for learning-based photometric stereo methods [4, 24]. Recent learning-based meth-
ods achieve robust surface normal estimation for non-convex surfaces and diverse
reflectances using neural networks being trained with datasets containing diverse
convex/non-convex shapes and materials. However, the CyclesPS dataset proposed

by Ikehata [4] is constructed from only fifteen 3D models and Disney’s Principled
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BSDFs [5] that is unsuitable for photometric stereo as shown in Chapter 3. The train-
ing dataset proposed by Chen et al. [24] is constructed from ten shapes of Blobby
dataset [41] and eight shapes of Sculpture dataset [42] and 100 measured BRDFs [43].
In contrast, we construct the general appearance exemplars using more than a hundred
randomly generated shapes and augmented measured BRDFs.

We assess the validity of our general appearance exemplars on the DSPS using
synthetic and real-world datasets. We also analyze the effects of measured BRDF
and shape augmentation, respectively. Lastly, we present that combining different
photometric stereo methods using the knowledge of estimated convexity improves the

accuracy from both methods.

4.2 Related work

We first review representative BRDF representations, analytic BRDF and measured
BRDF. We then describe datasets for training learning-based photometric stereo meth-

ods and their relation to our work.

4.2.1 Analytic BRDF models

Analytic BRDF models aim to reproduce real-world reflectances by analytical for-
mulas. The Lambertian model and more generalized Oren-Nayar model [6] are early
analytic models for diffuse reflectances. The specular reflectance is much more compli-
cated to describe, and a lot of analytic models are proposed. Early specular models are
derived based on empirical observations, e.g., Phong [67], Blinn-Phong [7], Ward [68],
and Lafortune [69] models. More recently, physically-based microfacet models [8, 70—
73] are introduced to better represent the roughness at a fine scale. Generally, real-
world reflectances are approximated by combining diffuse and specular models. For
example, Disney’s principled BSDF [5] incorporates several analytic models to repre-
sent diffuse, specular, and metallic reflectances with a single model [5]. These analytic

models are successful in rendering realistic scenes; however, they are still deviated
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from real reflectance behaviors and introduce errors in photometry vision applications

such as photometric stereo.

4.2.2 Measured BRDF datasets

In contrast to analytic BRDF models, measured BRDFs are always real. The MERL
BRDF dataset [43] is the first large-scale measured BRDF dataset, which contains
densely sampled 100 real-world isotropic materials, from diffuse materials to hard
specular materials. UTTA dataset [74] consists of 150 anisotropic BRDFs. Recently,
Dupuy and Jakob [75] proposed an adaptive BRDF parameterization and efficient
sampling technique and measured 51 isotropic and 11 anisotropic BRDFs. However,
the UTIA dataset and adaptively sampled BRDF dataset only contain sparse mea-
surements, which do not fit the photometric stereo application. Therefore, we use the

MERL BRDF dataset and augment it for more diversity.

4.2.3 Dataset for learning photometric stereo

Recent learning-based photometric stereo using neural networks are trained with syn-
thetic datasets. Santo et al. [34] and Li et al. [37] built their training datasets by
rendering ten shapes in the Blobby shape dataset [41] with the 100 MERL BRDFs.
Chen et al. [24] employed ten shapes in the Blobby shape dataset and eight shapes
in the Sculpture dataset [42] and the MERL BRDFs to create their training dataset,
which is also used in several following learning-based methods [47, 54]. Ikehata [4]
proposed the CyclesPS dataset [28] to train their network, which is constructed from
fifteen scenes rendered with Disney’s principled BSDF [5]. The CyclesPS dataset
is also used in SPLINE-Net [38]. Logothetis et al. [35] first generate a set of direct
reflectance components with the Disney’s principled BSDF and MERL BRDFs. To in-
crease the realism of their dataset, they manually simulate the effects of cast shadows,
inter-reflections, surface discontinuities, ambient lights, noises, and pixel saturations

in their proposed manner. While these datasets enable learning neural networks for
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the photometric stereo, they rely on unrealistic analytic BRDFs or a limited class of
shapes. We, therefore, design our general appearance exemplars to have more diverse,

real BRDFs and various shapes not limited to a specific class.

4.3 General appearance exemplars

This section presents our new set of appearance exemplars, called general appearance
exemplars. Our DSPS presented in Chapter 3 demonstrates promising surface normal
and BRDF estimation, especially on convex surfaces. However, existing appearance
exemplars used in Chapter 3 only consider convex surfaces and 100 BRDFs, thus,
introducing errors on non-convex surfaces or some problematic materials (see the ex-
periment on the DiLiGenT dataset in Sec. 3.4.4). Therefore, we extend the appearance
exemplars with respect to BRDF and shape in the following sections and build general

appearance exemplars.

4.3.1 BRDF augmentation

The appearance exemplars used in DSPS are rendered with the MERL BRDFs [43],
which are representative measured BRDFs and well-known as it successfully works on
the photometric stereo task. However, the MERL BRDFs only contain 100 materials
that are a limited set for addressing diverse reflectances. To overcome this issue, we
augment the MERL BRDFs while maintaining its realistic reflectance property.

Let B={pi(:)|i=1,...,100} be a set of the MERL BRDFs. We simply gen-
erate a new BRDF by linearly combining randomly selected two MERL BRDFs as
P5(-) = pp(-) + pg(-), where p, g € [1,100],p # q. Repeating this step M < 199Cs times
and generate an additional set of BRDFs B' = {p(:) | j = 1,..., M'}. Lastly, a set of
M’ + 100 BRDFs can be obtained as BU B'.

This BRDF augmentation is motivated by a success of a BRDF model that lin-
early combines multiple BRDFs [2, 25, 30, 49]. They often impose non-negativity and

sparsity on the coefficients of the linear combination to avoid generating unrealistic
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Fig. 4.1 Examples of randomly generated non-convex shapes combined with multiple
corrupted primitive shapes.

BRDFs. These constraints are naturally satisfied in our BRDF augmentation. While
a linear combination with random coefficients can generate more diverse BRDFs than
a simple additive model, it runs a risk of increasing the noise of measured BRDFs, and
the simple additive model can generate huge number of new BRDFs, 150Cy = 4950 at

most. Therefore, we conclude to use the simple additive model of two BRDFs.

4.3.2 Non-convex appearance exemplars

The appearance exemplars used in DSPS only consider convex surfaces without global
illumination effects such as cast shadows and inter-reflections. It largely degrades the
accuracy of DSPS on non-convex surfaces, where global illuminations are likely caused.
We then aim to create an additional set of appearance exemplars considering global
illumination effects, which we call non-convex appearance exemplars.

We first generate diverse and random non-convex shapes. For this purpose, we
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generate primitive shapes (e.g., cubes, ellipsoids, and cylinders) with random param-
eters and apply random corruptions by following Xu’s method [76] originally used for
relighting task. Then, we construct a large set of non-convex shapes by combining
multiple corrupted primitive shapes after random translations and rotations. The ex-
amples of the generated non-convex shapes are illustrated in Fig. 4.1. Non-convex
appearance exemplars can be obtained by rendering the generated non-convex shapes
with diverse BRDFs; however, it also contains appearance exemplars not affected by
global illumination effects, resulting in a redundant set of appearance exemplars if
convex appearance exemplars are combined. To reduce the redundancy of the appear-
ance exemplars, we extract only appearance exemplars affected by global illuminations

with scale invariant thresholding.

We render non-convex shapes with and without global illuminations, which pro-
vides appearance vectors d,, and d,,, for an identical scene point. If the scene point
in the rendered images is affected by global illuminations, d,, must be different from
d.,. We then find an appearance vector affected by global illuminations using the

following thresholding:

max (|(dy — duo) @ (duo + €)]) > 7. (4.1)

where 7 and € is a threshold and a small value to prevent zero-division, @ indicates an
element-wise division, max(-) is a function taking the maximum value of a vector, and
| - | is a function taking absolute values of vector’s elements. This thresholding is invari-
ant to a scale of an appearance vector that depends on a setting of rendering software
and material, and a constant 7 works well on every scene. With this thresholding, we
extract only appearance vectors affected by global illuminations from rendered images
as shown in Fig. 4.2 and define them as non-convex appearance exemplars. Through-
out the experiments in this chapter, we use 7 = 0.1 and ¢ = 0.001. We manually
found that reasonable appearance exemplars can be extracted with 7 = 0.1 as shown

in Fig. 4.2. 7 less than 0.1 always leads to a more accurate surface normal estimation
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Fig. 4.2 Non-convex appearance exemplar extraction. The red masked pixels show
non-convex surfaces (i.e., affected by cast shadows or inter-reflections) extracted by
our thresholding under the DiLiGenT’s 96 lightings.

at the cost of additional computation.

4.3.3 General appearance exemplar

We build a set of general appearance exemplars by combining convex and non-convex
appearance exemplars. The appearance exemplars are constructed from three com-
ponents; surface normals, BRDFs, and light directions. We create convex appearance
exemplars with finely discretized 20001 surface normals and 500 BRDFs, where 100
BRDFs are the MERL BRDFs and the remaining 400 BRDFs are augmented ones as
described in Sec. 4.3.1. For non-convex appearance exemplars, we render 500 non-
convex shapes with the same 500 BRDFs as the convex appearance exemplars and
extract pure non-convex appearance exemplars. Both convex and non-convex appear-

ance exemplars contain uniformly sampled 5000 light directions. Given a target scene,
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we use appearance exemplars corresponding to the pre-defined light directions closest
to the target scene’s ones. Note that we only pull non-convex appearance exemplars
affected by global illuminations using binary flags indicating whether appearances are

affected by global illuminations or not.

Convexity estimation: A set of general appearance exemplars allows us to esti-
mate convexity of a surface using convexity labels indicating whether an appearance
exemplar is affected by global illuminations or not. Since our sets of convex and non-
convex appearance exemplars only contains appearances for convex and non-convex
surfaces, respectively, the convexity label can be obtained from which set the appear-
ance exemplar belongs to. Thus, DSPS with our general appearance exemplars pro-
vides surface normal, BRDF, and convexity estimates. In the following experiments,
we show that the surface normal estimation can be improved by applying different

photometric stereo methods to convex and non-convex surfaces.

4.4 Experiments

This section describes improvements of DSPS by our general appearance exemplars
and comparison to recent photometric stereo methods using synthetic and real-world
datasets. We further discuss combining different photometric stereo methods using

the knowledge of estimated convexity.

4.4.1 Preparation

CyclesPSTest dataset: CyclesPSTest dataset [4] is a synthetic dataset consisting
of three objects (SPHERE, TURTLE, and PAPERBOWL), two types of materials
(specular and metallic), and two types of illuminations (17 and 305 lights), yielding
12 scenes. In the following experiment, we use SPHERE and TURTLE scenes for the
evaluation since the PAPERBOWTL shape is too extreme. Each scene is rendered with
spatially varying principled BSDFs [5].
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Real-world dataset: We use an existing real-world dataset, the DiLiGenT
dataset [3], which contains 10 real objects of general reflectance illuminated from
96 different known directions. This dataset provides the ground truth surface normal
maps for all objects measured by high-precision laser scanning that can be used for
quantitative evaluation. For the BEAR object we discarded the first 20 images where
a part of measurements is corrupted as pointed out by Ikehata [4]. In addition to the
original dataset, for testing sparse light cases, we prepared 20 datasets, each containing

10 randomly selected images.

Baselines: As baselines we used Lambertian photometric stereo (LPS) [20], model-
based method ST14 [27], virtual exemplar-based method HS17 [2], hypothesis-and-test
search method HaTS-PS presented in Chapter 2, discrete search photometric stereo
(DSPS) with exact and approximated nearest neighbor search DSPS-E and DSPS-
A, unsupervised learning (i.e., neural inverse rendering)-based method NIR-PS [46],
supervised learning-based methods PX-NET [35], PS-FCN*N [24], WJ20 [47], CNN-
PS [4], and SPLINE-Net [38]. While the published, pre-trained SPLINE-Net model
has been trained specifically for 10 lights, it works well for other small numbers of
light sources. Therefore, we show SPLINE-Net’s scores for cases other than 10 lights
for reference in this chapter. Further, for testing with the CyclesPSTest dataset,
although training dataset of PX-NET includes the target material, we list their scores

for reference.

Throughout the experiments, we denote DSPS-E and DSPS-A with our general
appearance exemplars as DSPS-E+4 and DSPS-A+, respectively.

4.4.2 Accuracy of surface normal estimation

We estimated surface normals on synthetic and real datasets containing diverse re-
flectances and non-convex shapes to confirm that our general appearance exemplars

work on diverse scenes.
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CyclesPSTest: We conducted quantitative evaluation on the CyclesPSTest dataset.
While training dataset of PX-NET is also rendered with the principled BSDFs as with
the CyclesPSTest and therefore may include the target materials, their scores are

shown as reference.

Table 4.1 shows averages and standard deviations of angular errors on the eight
scenes (i.e., two objects, two materials, two lightings). Figures 4.3 and 4.4 illustrate
the visual results of angular error maps and estimated surface normal maps. For spec-
ular material, our general appearance exemplars remarkably improve the accuracy of
DSPS on non-convex surfaces (TURTLE scenes) while maintaining the accuracy on
convex surfaces (SPHERE scenes). For metallic material, using our general appear-
ance exemplars slightly degrades the accuracy of DSPS on convex surfaces. Here, we
show the estimated convexity (convex or non-convex) and difference in angular errors
between DSPS-E and DSPS-E+ for each scene in Fig. 4.5. This visualization indicates
that surfaces whose accuracy are degraded by general appearance exemplars tend to
be incorrectly estimated as “non-convex”, and this trend appears on metallic surfaces
more than on specular surfaces. It suggests that a possibility of extremely similar ap-
pearances in the sense of {5 distance can be generated from different surface normals
when considering diverse materials and global illuminations, which is a possible reason
of the slight degradation on metallic convex surfaces. We further discuss this issue

even in the following experiments.

DiLiGenT: We show quantitative results on the real-world dataset DiLiGenT in
Tab. 4.2, where we compare our methods with the baseline methods in terms of mean
angular error. Figures 4.6 and 4.7 shows visual comparisons between our methods and
the baseline methods.

For the scenes with 96 lights, our general appearance exemplars improve the ac-
curacy of DSPS on convex surfaces such as the BALL, the body of CAT, and POT1
owing to the BRDF augmentation and achieve the best score on the BALL object. The

accuracy on non-convex surfaces is also largely improved using the general appearance
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Fig. 4.3 Angular error maps and estimated surface normal maps for the specular and
metallic SPHERE scenes in the CyclesPSTest dataset.
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Table 4.1 Comparisons on the SPHERE and TURTLE scenes from the CyclesPSTest
dataset. Numbers represent averages and standard deviations of angular errors.

SPHERE TURTLE
17 lights 305 lights 17 lights 305 lights
Specular Metallic | Specular Metallic | Specular Metallic | Specular ~ Metallic

DSPS-E+| 1.8/2.2 4.1/5.0 | 1.4/1.8 2.5/3.9 | 7.9/11.4 15.5/23.0| 8.5/12.4 12.1/21.6
DSPS-A+| 1.8/22 4.2/51 | 1.5/1.9 28/4.3 | 80/11.5 15.5/22.9| 8.6/12.5 12.3/21.7
DSPS-E| 1.8/21 3.6/4.2 | 1.5/20 2.2/2.8 |17.8/21.1 15.7/22.4|13.9/18.7 12.4/21.5

DSPS-A | 1.8/2.1 3.7/43 | 1.5/2.0  2.4/3.0 |17.4/20.6 15.8/22.3|13.9/18.5 12.7/21.7

HaTS-PS| 1.6/1.9 4.0/5.1 | 1.4/1.9 3.2/4.2 |17.3/20.0 16.2/22.4|14.1/19.4 13.6/22.4
HS17| 1.7/24 43/56 | 1.3/20 2.6/3.4 [17.8/20.4 16.1/22.0|14.1/18.6 12.8/21.4

Exemplar-
based

PX-NET®| 2.6/2.6 9.5/11.5 | 0.5/1.5 6.6/13.0 | 7.4/9.5 16.6/19.5| 3.3/6.5 11.4/18.7
PS-FCN*N| 3.1/27 6.9/3.8 | 3.4/25 5.7/3.9 |10.7/11.6 14.5/16.1|10.4/10.8 12.9/13.9
WJ20| 2.4/2.6 5.6/41 | 3.0/27 5.1/3.9 | 7.8/10.2 13.1/16.2| 7.1/8.8 11.5/14.1
SPLINE-Net | 2.7/1.8  4.1/4.2 [24.1/16.5 29.3/19.8| 6.1/8.1 11.7/19.3|24.8/16.1 33.0/19.8
CNN-PS’| 3.3/2.8 9.0/7.7 | 0.9/1.0 1.4/1.4 |9.9/11.7 17.8/18.1| 3.2/49  5.7/11.9

Learning-
based

NIR-PS¢| 1.6/2.1 10.3/10.8 - - 13.4/14.8 24.2/18.5 - -
:ég ST14| 4.4/8.3 23.5/13.7| 0.2/1.5 6.1/10.2 |17.7/17.9 32.0/18.4|29.5/26.3 28.5/25.7
[*]
s 8 LPS|10.1/7.5 17.4/9.7 | 10.1/8.3 16.5/9.3 |19.0/16.4 26.0/17.7|18.8/16.1 24.3/17.2

@ Training data of PX-NET include target materials.
b ONN-PS is trained with 50-100 lights.
¢ We could not execute NIR-PS with 305 lights as it exceeded the memory of an NVIDIA Quadro RTX 8000 with 48 GB.

exemplars on the most of objects without sacrificing the accuracy on convex surfaces.

Meanwhile, using the general appearance exemplars degrades the accuracy on the
COW object. In Fig. 4.8, we illustrate the difference in angular errors between DSPS-E
and DSPS-E+ and estimated convexity map for each object in the DiLiGenT dataset.
As shown in Fig. 4.8, the angular errors at several pixels on the COW object are
increased by using the general appearance exemplars, particularly at pixels that are
considered to be convex surfaces but tend to be estimated as “non-convex”. Consider-
ing the COW object has metallic material at most pixels, this observation is consistent
with the result on the CyclesPSTest dataset. It suggests a possibility of ambiguity of
photometric stereo problem on metallic surfaces when it considers global illuminations.

For the scenes with 10 lights, the general appearance exemplars promote DSPS

to the comparable level with the learning-based methods. Our general appearance
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Fig. 4.4 Angular error maps and estimated surface normal maps for the specular and
metallic TURTLE scenes in the CyclesPSTest dataset.

17 lights

305 lights

exemplars successfully improve the accuracy on the non-convex objects from DSPS

even in the few lights case except for the COW object.

4.4.3 Combining photometric stereo methods based on the

knowledge of estimated convexity

We demonstrate that surface normal estimation can be improved by taking advantages
of different photometric stereo methods based on the knowledge of estimated convexity.

Our DSPS-E+ achieves highly accurate surface normal estimation on convex surfaces
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Table 4.2 Comparisons on the DiLiGenT dataset with 96 and 10 lights. Numbers
in the table above are mean angular errors in degrees. Numbers in the table below
are averages and standard deviations of mean angular errors over 20 datasets with
different light distributions.

96 lights

‘BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING | Avg.

DSPS-E+| 12 46 84 49 92 8.7 16.2 56 6.2 126 |78

. DSPS-A+| 1.3 46 8.5 50 9.2 8.9 16.3 56 6.4 129 |79

£~ DSPSE| 1.3 63 140 68 78 115 17.4 73 74 152 | 95

55 DSPSA| 14 64 142 68 80 117 175 74 74 153 | 96

% HaTS-PS| 1.6 5.9 131 61 92 110 18.7 6.6 7.2 150 | 94

HS17| 15 6.2 139 64 92 108 18.8 70 7.9 153 | 9.7

PX-NET| 20 35 7.6 43 4T 6.7 13.3 49 5.0 9.8 6.2

b _PSFCN*N| 26 54 7.5 47 6.7 7.8 12.4 59 7.2 109 | 7.1

% I wi20| 1.8 41 6.1 47 6.3 7.2 13.3 65 6.4 100 | 6.6

<" ONN-PS| 21 42 8.1 44 79 7.4 13.8 54 6.4 121 | 7.2

NIR-PS| 1.6 6.1 1.0 56 58 112 92.0 65 85 1.3 |90

k- ST14] 18 5.1 107 61 138  10.2 25.6 65 87 13.0 | 10.2

S & LPS| 42 85 149 84 256 185 30.6 89 146 200 |154
10 lights

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING |Avg.

DSPS-E+ | 3.0/08 5.3/0.2 10.1/0.6 6.6/0.6 12.5/0.6 11.2/0.7 19.9/0.7 7.2/04 9.2/0.9 15.1/0.9 |10.0
DSPS-A+| 2.9/0.7 5.4/0.2 10.2/0.6 6.5/0.5 12.4/0.6 11.3/0.7 19.9/0.6 7.1/0.4 9.2/0.9 15.1/0.9 [10.0
DSPS-E| 2.4/0.5 7.7/0.7 16.1/0.8 8.0/0.4 10.5/0.6 14.0/0.6 20.9/0.6 8.8/0.4 9.8/0.7 18.1/1.1 |11.6
DSPS-A| 2.5/0.5 7.7/0.7 16.0/0.8 8.0/0.4 10.6/0.6 14.0/0.6 20.9/0.6 88/0.4 9.9/0.7 18.0/1.1 |11.6
HaTS-PS|4.2/1.2 7.9/0.7 16.7/1.4 85/1.0 12.4/1.2 152/1.3 242/0.8 9.3/0.8 11.7/1.7 21.1/1.6 |13.1

HS17|3.8/0.9 8.1/0.8 16.3/1.0 85/0.6 12.9/1.1 14.1/0.7 22.0/0.7 9.2/0.6 11.1/1.0 182/1.3 |12.4

Exemplar-
based

PX-NET®| 2.3/04 4.7/0.3 9.6/05 6.3/0.4 7.3/0.6 9.6/0.9 16.2/0.7 7.0/04 7.8/1.1 13.5/0.8 | 84
PS-FCN+N| 4.3/1.0 6.8/0.8 9.7/08 6.3/0.6 122/1.3 10.5/0.8 17.5/1.0 7.7/0.6 10.0/1.2 13.0/1.1 | 9.8
3SPLINE-Net | 5.1/1.0 5.9/0.6 10.7/1.0 7.9/0.9 9.0/1.1 10.7/1.2 19.2/1.0 9.4/0.8 12.5/1.4 15.3/0.8 |10.6
CNN-PS?|10.2/5.5 14.2/48 15.0/4.3 12.4/5.8 13.9/1.8 15.5/2.8 20.3/2.6 12.9/4.8 14.9/3.6 16.4/3.5 |14.6
NIR-PS| 1.6/0.2 5.9/0.6 10.9/0.8 6.2/0.4 13.3/6.5 16.8/10.0 28.5/4.1 8.0/4.6 89/1.0 153/4.7 |11.5

ing-

Learn
based

ST14| 5.7/0.6 10.0/0.4 16.4/0.7 9.6/0.5 26.3/0.8 20.0/0.9 31.0/0.7 10.2/0.4 16.2/1.0 19.7/1.3 |16.5
LPS|4.6/0.5 9.0/04 159/0.7 9.2/04 26.6/0.7 19.7/0.9 31.4/0.6 9.6/04 15.6/1.0 20.2/14 |16.2

Model-
based

¢ A model specific to few lights is used.

b CNN-PS is trained with 50-100 lights.
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Fig. 4.5 From left to right, an example image, estimated convexity, and difference in
angular errors between DSPS-E and DSPS-E+ for each scene. In the estimated con-
vexity maps, green indicates pixels estimated as convex surfaces, and yellow indicates

pixels estimated as non-convex surfaces.

with diverse materials. In contrast, the accuracy on non-convex surfaces is slightly
inferior to learning-based methods, while it is largely improved by introducing the
general appearance exemplars. Therefore, we adopt estimated surface normals of
DSPS-E+ and a learning-based method for pixels estimated as “convex” and “non-

convex,” respectively.

Table 4.3 shows quantitative results on the DiLiGenT dataset with 96 and 10
lights. For 96 and 10 lights cases, we select CNN-PS and PS-FCN*N as learning-
based methods. At most objects, the combined results are more accurate than either.
The combined results achieve both high accuracy at convex surfaces (e.g., BALL) like
DSPS and robustness to global illumination effects like learning-based methods. This
result may motivate us to develop a photometric stereo method specific to non-convex

surfaces and combine with DSPS in the future.
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Fig. 4.6 Angular error maps and estimated surface normal maps for BALL, BEAR,
BUDDHA, and CAT objects in the DiLiGenT dataset [3] with all the 96 lights.
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Fig. 4.7 Angular error maps and estimated surface normal maps for COW, GOBLET,
HARVEST, POT1, POT2, and READING objects in the DiLiGenT dataset [3] with
all the 96 lights.
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DSPS-E
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Fig. 4.8 An example image, estimated convexity map, and difference in angular errors
between DSPS-E and DSPS-E+ for each object in the DiLiGenT dataset. In the
estimated convexity maps, green indicates pixels estimated as convex surfaces, and
yellow indicates pixels estimated as non-convex surfaces.

4.4.4 Ablation study of shape and BRDF augmentation

We verify the effectiveness of the additional components for appearance exemplars,

augmented BRDFs and non-convex shapes, in the surface normal estimation. We use
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Table 4.3 Evaluation of combining different photometric stereo methods using the
knowledge of estimated convexity on the DiLiGent dataset. We show the results
in 96 lights and 10 lights cases. For the 96 lights case, we adopt estimated surface
normals of DSPS-E+ and CNN-PS for pixels estimated as “convex” and “non-convex,”
respectively. For the 10 lights case, we adopt estimated surface normals of DSPS-E+
and PS-FCN*N for pixels estimated as “convex” and “non-convex,” respectively.

96 lights

‘BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING‘Avg.

DSPS-E+| 1.2 4.6 8.4 49 9.2 8.7 16.2 5.6 6.2 12.6 7.8

CNN-PS| 2.1 4.2 8.1 44 79 7.4 13.8 5.4 6.4 12.1 7.2

Combined | 1.2 4.2 8.1 42 6.5 7.4 14.0 5.0 5.9 11.7 6.8
10 lights

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING | Avg.

DSPS-E+| 3.0 5.3 10.1 6.6 12.5 11.2 19.9 7.2 9.2 15.1 10.0
PS-FCN*N| 43 6.8 9.7 6.3 12.2 10.5 17.5 7.7 10.0 13.0 9.8
Combined | 2.9 5.4 9.3 56 9.8 9.8 16.7 6.5 8.4 12.7 8.7

DSPS-E with appearance exemplars constructed from 100 MERL BRDFs and convex
shapes as the baseline and show the effect of each BRDF and shape augmentation,

respectively.

Table 4.4 shows the ablation study of the BRDF and shape augmentation for
appearance exemplars on the DiLiGenT dataset. This study indicates that the BRDF
augmentation improves the accuracy on all the objects. While the improvements
by the BRDF augmentation are limited in the averaged score since it is effective
only for convex surfaces, the effect is more remarkable when combining with the
shape augmentation. The shape augmentation largely improves the surface normal
estimation on the almost all objects since the original appearance exemplars do not
consider global illumination effects at all. However, the shape augmentation introduces
a degradation on the COW object. This implies a possibility that considering global
illumination effects incurs an ambiguity in surface normal estimation at a certain
material under the DiLiGenT lightings. While it is difficult to be concluded here, this

observation should be analyzed more in the future.
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Table 4.4 Ablation study of the BRDF and shape augmentation for appearance exem-
plars. Numbers represent mean angular errors on the DiLiGenT dataset. The baseline
is DSPS-E with appearance exemplars constructed from 100 MERL BRDFs and convex
shapes. We observe accuracies of DSPS-E’s surface normal estimation when introduc-
ing augmented BRDFs and non-convex shapes to the original appearance exemplars,
respectively.

‘BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING‘Avg.

DSPS-E| 1.3 6.3 14.0 6.8 7.8 11.5 17.4 7.3 74 15.2 9.5
+BRDF aug.| 1.3 6.2 13.8 6.6 7.7 11.0 17.2 6.9 7.0 15.1 9.3
+shape aug.| 1.3 4.8 8.9 52 8.6 9.3 17.3 6.3 6.3 13.0 8.1
DSPS-E+| 1.2 4.6 8.4 4.9 9.2 8.7 16.2 5.6 6.2 12.6 7.8

4.4.5 Computation cost

This section examines the computation costs of our DSPS-E+ and DSPS-A+ for sur-
face normal estimation and precomputation (i.e., training for nearest neighbor search
method) on CPU and GPU. We measure the computation cost on the DiLiGenT
dataset with varying number of lights. For each number of lights, we prepared 10
datasets, each containing randomly selected images from all the 96 images. The com-
putation cost is calculated by taking average over the 10 datasets. We used 40 cores
of an Intel® Xeon® Gold 6148 CPU @ 2.40 GHz and NVIDIA TITAN X GPU. On the

CPU we performed pixel-wise parallelization.

Figure 4.9 shows computation time of surface normal estimation for a single pixel
on the CPU and GPU. The estimation costs of DSPS-A and DSPS-A+ are surpris-
ingly comparable owing to the efficient nearest neighbor search algorithm. DSPS-E+
requires around one order of magnitude larger estimation cost than DSPS-E due to
the additional appearance exemplars. We consider that this additional cost is worth
paying for the improvements of surface normal estimation shown in Tab. 4.2 or 4.3,

while DSPS-E is still a strong option to use if most regions of a target scene are convex.

Figure 4.10 shows precomputation time on the CPU and GPU. Both DSPS-E+ and
DSPS-A+ naturally require additional precomputation cost to DSPS-E and DSPS-A.

However, the precomputation is required only once for a light configuration and takes
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Fig. 4.9 (a) CPU estimation time of our methods for a single pixel. (b) GPU compu-
tation time of our methods for a single pixel.
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Fig. 4.10 (a) CPU precomputation time of our methods. (b) GPU precomputation
time of our methods.

only several tens seconds at most; therefore, we consider that the precomputation

costs are acceptable in most scenarios.
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4.5 Conclusion

In this chapter, we have presented general appearance exemplars, which cover both
convex and non-convex surfaces and diverse materials beyond available measured
BRDFs. Incorporating the general appearance exemplars improves the surface normal
estimation of DSPS on both convex and non-convex surfaces. Furthermore, the gen-
eral appearance exemplars also allow us to estimate a convexity of a surface (convex
or non-convex), which leads to further improvement in surface normal estimation by
applying different photometric stereo methods to convex and non-convex surfaces.

Experiments on the synthetic and real-world datasets showed that DSPS with
our general appearance exemplars achieves the state-of-the-art accuracy for convex
surfaces and comparable accuracy to the learning-based methods even for non-convex
surfaces. Combining DSPS and a learning-based method based on the estimated
convexity successfully takes advantage of each method and produces better surface
normal estimates than either.

The experimental results raise a possibility of ambiguity in the photometric stereo
problem for general reflectances and shapes. Specifically, in the experiments on the
CyclesPS and DiLiGenT dataset, we observe the possibility of ambiguity on metallic-
like materials when it considers global illuminations. A theoretical or experimental
analysis of the ambiguity is a potential future work, and we believe that it connects to
a discussion of the optimal and minimal light configuration for a general photometric

stereo problem.






Chapter 5

Conclusion

5.1 Summary

Photometric stereo is a computer vision technique for shape recovery from images,
which is able to estimate high-fidelity shape in the form of surface normals. While a
traditional photometric stereo method only considers the Lambertian reflectance and
direct illumination, in these years, it is time to address the photometric stereo problem

for general BRDFs with global illumination effects.

This dissertation focused on the photometric stereo problem for a surface with
general BRDFs and global illumination effects. To tackle this problem, we have pro-
posed two novel solutions that perform a discrete search over finely discretized surface
normals (and BRDFs). Our discrete search approach successfully achieved an accu-
rate, stable, and efficient surface normal estimation for general BRDFs. Moreover,
we have proposed to extend the search space by augmenting BRDFs and introducing
global illumination effects, which provide further accuracy on surfaces with more di-
verse BRDFs and global illuminations. All these efforts greatly improve the quality of
photometric stereo in terms of accuracy and stability and provide analyzability owing

to their simple and intuitive behaviors.
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5.1.1 Photometric stereo for general reflectances by
hypothesis-and-test search with scene-independent

precomputation

In Chapter 2, we proposed a photometric stereo method based on a hypothesis-and-
test strategy, which we call HaTS-PS. HaTS-PS introduces a concept of an appearance
tensor that represents a diverse set of appearances constructed from comprehensive
surface normals, light directions, and BRDFs. HaTS-PS hypothesizes a surface nor-
mal, tests the hypothesized surface normal whether it can explain a target measure-
ments, and repeats these steps for all possible surface normal candidates to find the
globally optimal surface normal within the bounds of our objective and discretiza-
tion. While a naive hypothesis-and-test search requires a large amount of time, we
enabled it in a reasonable amount of time by putting the expensive computation
into a scene-independent precomputation step. Experiments on both synthetic and
real-world datasets showed that HaTS-PS can accurately and stably estimate surface

normals on convex surfaces with diverse materials in a reasonable amount of time.

5.1.2 Photometric stereo for general reflectances by nearest

neighbor search over appearance exemplars

In Chapter 3, we proposed the first nearest neighbor search-based photometric stereo,
which we call Discrete Search Photometric Stereo (DSPS). In contrast to the HaTS-
PS that treats BRDFs in a continuous manner, DSPS treats BRDFs in a discrete
manner. Owing to this, the photometric stereo problem can be turned into a well-
known nearest neighbor search problem. As a result, DSPS can benefit from advances
in fast nearest neighbor search algorithms, leading to highly efficient surface normal
estimation with the guarantee of finding the optimal solution within the bounds of
the objective function.

Experiments on both synthetic and real-world datasets showed that our DSPS

achieves state-of-the-art accuracy on convex surfaces and 100-10000x acceleration
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from existing exemplar-based methods. In addition, we experimentally observed that
our DSPS is robust to imaging noise compared to model-based and learning-based
methods. Since it is hard to entirely avoid imaging noise in real-world experiments,

DSPS is one of the best choices for stable surface normal estimation.

5.1.3 General appearance exemplars for nearest neighbor

search-based photometric stereo

In Chapter 4, we proposed a set of general appearance exemplars, which is extended
from the existing appearance exemplars that only consider a limited number of BRDFs
and convex surfaces. We introduced an additional set of appearance exemplars with
augmented BRDFs based on real BRDFs and global illumination effects caused at non-
convex surfaces. Incorporating the general appearance exemplars with DSPS greatly
improves the surface normal estimation on both convex and non-convex surfaces from
DSPS with appearance exemplars only considering a limited number of BRDFs and
convex surfaces presented in Chapter 3. The general appearance exemplars also allow
us to estimate the convexity of surfaces (convex or non-convex), which enables applying
different methods to convex and non-convex surfaces for further accuracy.
Experiments on synthetic and real-world datasets showed that DSPS with our gen-
eral appearance exemplars achieves the state-of-the-art accuracy on convex surfaces
and comparable accuracy to learning-based methods on non-convex surfaces. Com-
bining DSPS and a learning-based method using the knowledge of estimated convexity
successfully takes advantage of each method and produces higher accuracy in surface

normal estimation than either.

5.2 Future directions

Throughout this dissertation, we have conducted a lot of experiments and observed
potential issues as well as advantages of our methods. This dissertation is concluded

by discussing several open problems and potential future directions.
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5.2.1 Enrichment of measured BRDF

This dissertation presented novel exemplar-based methods to the photometric stereo
problem, which require a set of real BRDF data. The photometric stereo task is
highly sensitive to corruptions in BRDF data and requires highly accurate and dense
BRDF measuring. Indeed, most BRDF databases [74, 75] aim to be used for rendering
good-looking scenes under natural environment lightings (7.e., much more light sources
than the photometric stereo setup). Therefore, most BRDF databases tolerate noisy
and sparse BRDF measurements. In our survey, a BRDF database that satisfies
the requirements is only the MERL BRDF database [43] containing 100 BRDFs that
is the densest BRDFs and measured with care to avoid noises (e.g., they take 330
high dynamic range pictures and remove lowest and highest 25% of the values to
reduce the noise in the measurements). While our methods with the MERL BRDFs
can produce promising surface normal estimates for diverse materials, more BRDFs,
especially specular or metallic materials, are always preferable and should contribute
to further accuracy. A recent measured BRDF database [75] is acquired by an efficient
sampling, resulting in sparser BRDF samples compared to the MERL BRDFs, and it
did not work well for the photometric stereo task. To sum up, measuring much more
BRDF samples by densely sampling or an adaptive sampling that does not degrade

the accuracy of photometric stereo is a potential future work.

5.2.2 Nearest neighbor search specific to photometric stereo

Our DSPS uses nearest neighbor search methods developed for a general purpose.
Appearance exemplars in the context of photometric stereo have several features such
as non-negativity, labels of surface normal and BRDF, and corrupted appearances due
to global illumination effects that are preferred to be neglected. A potential future
direction is developing a new nearest neighbor search method to achieve more efficient
and accurate surface normal estimation by explicitly considering such photometric

stereo specific features.
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5.2.3 Analysis of optimal light configuration

In recent years, photometric stereo methods including ours are getting more accu-
rate, for instance, on the DiLiGenT benchmark dataset captured under 96 lightings.
Although more lightings must lead to further accuracy in surface normal estimation,
much more lights are not practical due to physical constraints. We then need to con-
sider the optimal lighting distribution for a fixed number of lights, e.g., 96 lights.
A previous work [77] analyzes the optimal configuration in Lambertian photometric
stereo; however, there is no theoretical or experimental analysis of the optimal light
configuration for general photometric stereo. Therefore, a methodology of analyzing
the optimal light configuration in a general setting is still an open problem and should

be important in practice.

5.2.4 Extension to multi-view photometric stereo

While this dissertation focuses on single-view photometric stereo, multi-view photo-
metric stereo [78-81] is also actively studied. Compared to the single-view photometric
stereo, the multi-view photometric stereo can recover the entire shape of objects, which
is desired in several scenarios. Theoretically speaking, the exemplar-based approach
can be extended into the multi-view photometric stereo by adding a viewing direction
axis to the appearance tensor if the correspondence matching across images taken by
different viewing directions can be supposed to be nearly perfect. In practice, erroneous
correspondence matching is inevitable in real-world scenarios; therefore, a potential
future work is developing an exemplar-based method for the multi-view photometric

stereo that is robust to inaccurate correspondence matching.

5.2.5 Photometric stereo in more practical scenarios

Throughout this dissertation, we assume distant lightings and an orthographic pro-
jection camera to make the problem tractable. Since these assumptions cannot be

strictly held in practice, a relaxation of these assumptions is an important future
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work. In fact, photometric stereo methods with nearby lights [82-86] or a perspec-
tive camera [87-90] are proposed. However, they generally encounter a non-convex
optimization problem when considering non-Lambertian surfaces; therefore, they as-
sume Lambertian or a limited class of BRDF models. While a full-search strategy, as
proposed in this dissertation, is effective on such a non-convex optimization problem,
the full-search strategy for the near-light or perspective camera setup is expected to
require a tremendous amount of computation time.

We also assume a direction and intensity of each light are calibrated in this disserta-
tion. While an accurate light calibration can be performed by sophisticated calibration
methods [91-96], it is desired to reduce the calibration efforts in more practical sce-
narios. Uncalibrated photometric stereo [97-99] realizes surface normal estimation
without knowing light directions and even intensities; however, it is challenging to ex-
tend the exemplar-based approach to an uncalibrated manner due to its large degree
of freedom. Instead, we believe that the exemplar-based approach can be extended to
a photometric stereo with special light placements such as symmetric-light and ring-
light [100-104] that only requires a prior of relative light placements. This setup only

introduces a few degrees of freedom to the exemplar-based approach in addition.
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