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ėk
ij 分子 i, j 間の相互作用力による分子 i

の運動エネルギー変化

ėk
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第 1章 緒言

第1章 緒言

1.1 研究背景
1.1.1 濡れ現象

濡れ現象は我々人間の日常生活，自然，様々な科学・工学分野などの至る所に存在している．特
に，濡れ性を決定するうえで重要な固体・気体・液体の三相が交わる接触線の振る舞いに対する
理解とそれに基づく現象制御が重要視されてきている [1–4]．
マクロスケールの平衡状態の接触線にはたらく力のつり合い式として，1805年に次のYoungの

式 [5] が定式化されて以降，濡れ現象は広く研究の対象として扱われてきた．

γSL − γSV + γLVcosθ = 0 (1.1)

ここで γSL，γSV，γLVは各々固体–液体 (SL)，固体–気体 (SV)，気体–液体 (LV)の界面張力であ
り，θは固体–液体の接触面と気体–液体の接触面のなす液体側の角度として定義される接触角を表
す．接触角は濡れ性の指標として用いられ，これが小さいときは濡れがよい表面として表現され
る．Youngの式が定式化されたのは熱力学の成立以前 [6]であり，もともとは接触線に対する各界
面張力の固体表面接線方向の力のつり合いに基づいたものであったが，近年では力学的な力のつ
り合いではなく熱力学的な観点から再定義されている．また，接触線の詳細な振る舞いを捉える
ために，先行薄膜 [1,7]，線張力 [8–10]やミクロな接触角 [11]といったモデルが導入されたが，固
液界面張力 γSL，固気界面張力 γSVといった固体に対する界面張力の計測は非常に困難なために，
このモデルを実験的に検証することは難しい．
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第 1章 緒言

1.1.2 ミクロスケールの静的濡れ

微視的観点から初めて表面張力の統計力学に基づいた理論的枠組みを構築したのはKirkwoodと
Buff [12]であり，1980年代以降の計算機による数値解析の発展とともに，分子動力学解析 (MD)を
用いたミクロスケールの濡れ解析が行われるようになった [13–36]．その先駆けとして，Nijmeijer

ら [14]は平滑な固体壁面上の Lennerd-Jones(LJ)流体の膜を用いたMD解析から固液・気液の界
面張力を，力学的手法と呼ばれる方法で算出することで，Youngの式 (1.1)がミクロスケールで適
用可能なことを示唆した．
著者を含む研究では，MDを用いて熱力学的手法および力学的手法と呼ばれるふたつの手法を用

いて，固液界面張力 γSL，固気界面張力 γSVを算出することでYoungの式がミクロスケールで成
立することが示された [36–38]. 熱力学的手法とは，熱力学積分という手法により界面自由エネル
ギー変化を計算するもので [25–27]，それに対して力学的手法とは，界面に作用する応力の積分を
界面張力に関連付けるBakkerの式 [39] によって界面張力を計算するもので，これによってミクロ
スケールの接触線を含む検査体積に対する力のつり合いは図 1.1のようになり最終的には，Young

の式に帰結することが示せる．詳細は付録Aで紹介する．
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第 1章 緒言

Fig. 1.1 Schematic of the force balance on a control volume including static contact line.

(partly from Yamaguchi, Y., Kusudo, H., Omori, T., J. Chem. Phys., 150 (2019), 044701;

licensed under CCBY.)
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1.1.3 ミクロスケールの動的濡れ

静的濡れに対して，動的に移動する接触線は動的接触線と呼ばれる．動的な濡れ広がりや，そ
の接触線の移動の過程では，静的な場合とは異なり，前進・後退という効果が現れることが知ら
れており，現在まで多くの研究が行われてきた [1, 40–52] ．歴史的には，流体力学においては固
体表面上にすべりなし境界条件を課すことが多かったが，そのような境界条件では接触線が動か
ないために，その近傍で特異点が表れるという問題があった [53]．詳細は本項で後述するが，こ
のような動的接触線問題に対して多くのモデル [1,46–49]が提案されているものの，静的接触線近
傍では生じない動的接触線に対する抵抗力，すなわち流体内部の粘性応力や固体壁面から受ける
摩擦力の取り扱いが難しく，動的接触角の問題は，流体力学の未解明問題のひとつとされている．
例えば，Qian [48,49]による，一般化Navier境界条件 (GNBC)を用いたモデルは，固体表面での
流体のすべりを許容，すなわち，すべり境界条件を認めた上で，接触線を含む検査体積に対する
力学的な釣り合いの式，すなわち運動量保存則に基づいて構築されており，検査体積に作用する
Laplace圧，各界面張力，粘性応力および固液の摩擦力がつり合うとしている．つまり，このモデ
ルによると，固液摩擦と粘性応力が前進・後退の接触角の差異を引き起こしているとされる． ま
た，GNBCを境界条件として適用した先行研究もあり，ここでもたしかに，前進・後退の接触角
の変化が引き起こされることが示されている [54]．しかし，微視的に見れば，本来は，固体壁面
はポテンシャルの場を与えるものであり，それによって，固体表面近傍の流体は層構造を形成し，
そのような領域でさらに粘性や固液の摩擦の効果が複合することになる．そこで 本研究では，連
続体の運動量保存則に整合するかたちで動的接触線近傍での応力の分布を計算することで，この
Qianのモデルを Navier-Stokes方程式という連続体の支配方程式の境界条件として与える際の問
題点について議論する．
また，この運動量保存則に基づいたモデルに対して，エネルギーに基づいたモデルも提案され

ている．接触線近傍で分子が移動する際の活性化エネルギーに基づいたBlakeら [46,47,51,52,55]

のMolecular Kinetic Theory (MKT)では，接触線に対する抵抗力の仕事によって，接触線を移
動する分子の活性化エネルギーが実質的に変化して，接触線の速度が決定されると考えられてい
るが，接触線とは微視的にはどの範囲を示すのか，接触線に対する抵抗力とは何なのか，等の疑
問が数多く残る．この反応速度論的なモデルに対して，de Gennesら [1]は，接触線での粘性散逸
が接触線に対する抵抗力の仕事とつり合うとしているモデルを提案しているが，こちらも同様の
疑問が残る．加えて，いずれのモデルも接触線の極近傍に異なる物理を持ち込むことで，すべり
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なし境界条件を課した場合の特異点の問題を回避していると言える．本研究のひとつの論点とし
て，図 1.2に示すように，MKTや de Gennesのモデルのように動的接触線をエネルギー的な観点
からモデリングするならば，まずは，接触線近傍で生じている散逸エネルギーといった，熱流体
場の詳細を明らかにするべきだと考えた．
いずれにしても，ここで示したように，既存の動的濡れモデルは，つり合い，すなわち，運動

量保存則やエネルギー保存則に基づいたモデルとなっている．分子動力学法でこれらのモデルの
成立について議論するためには，動的接触線を有する系，すなわち，動的な流れがある系での保
存則を満たすかたちで，応力や熱流束などを定義する方法論が必要となる．

de Gennes    : viscous dissipation

Blake           : activation energy

 not only at CL etc.

stress & heat flow analysis

receding CL

 many unclear points

advancing CL

microscopic effect were ignored

some models were proposed...but...

=fCL・UCL

θdfCL
�SL�SV

�LV

Solid

LiquidVapor

Dynamic CL

UCL
fCL : resistance
UCL: CL speed

�    : interfacial tension
θd   : dynamical CA

fCL

Where to define 

dynamic CA?

Fig. 1.2 Side view of the molecular simulation system used in the present study and the

dynamic wetting models based on the point of view of energy.
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第 1章 緒言

動的接触線における力学的モデル

ここでは，接触線のミクロの運動力学を取り扱った例として，Qianら [49] の研究を取り上げ
る．この研究では，Generalized Navier Boundary Condition (GNBC)と呼ばれる動的に移動す
る接触線に対するモデルが導入されているが，これは接触線を含まない二相系で提案されている
Navier Boundary Condition (NBC) の一般化である．このNBCは固液間で速度すべりを有する
場合のモデルであり，次式で表現される．

τw = βuslip (1.2)

ここで，τw，β，uslipはそれぞれ壁面にはたらく単位面積当たりのせん断力，固液摩擦係数，固体
に対する液体の相対速度（すべり速度）である．これは，すべり速度 uslipとすべりによって生じ
る抵抗力 τwが，比例係数 βによって線形関係で結ばれることを意味する．ここで流体がNewton

流体であると仮定し，液体のせん断応力 τ が固液境界においても粘性係数 µ，液体のせん断速度
∂ux
∂z を用いて，

τ = µ
∂ux
∂z

(1.3)

と表せるとすれば，粘性法則の成立する境界における粘性応力と，壁面にはたらく単位面積当た
りのせん断力とつり合うため，固液界面における液体に対する力の釣り合いが次式で書ける．

βuslip = µ
∂ux
∂z

|z=zboundary (1.4)

先行研究 [56]では，液体のせん断速度のオーダーが 109 s−1程度以下であればNBCが成立すると
報告されている．

Qianら [49] は，これを拡張するかたちで，液体内部の応力が壁面に沿って均一でない一般的な
境界における境界条件として，壁面接線方向応力 τdxxを用いて次式のGNBCを提案した．

βuslip = ∂x

∫ zT

zB

τdxx(x, z)dz + τdzx(x, zT) (1.5)

次に，このGNBCを xに関して積分することで，図 1.3に示す接触線を含む検査体積に対する
水平方向の力の釣り合いを考える．なお，接触線から充分に離れた界面の境界条件が，NBCとみ
なせる二相の境界の領域，すなわち固液，固気界面とみなせる領域に，検査面の右面および左面
を設定するとする．流体の内部の応力が検査体積に与える力と式 (1.2)の壁面からの摩擦がつり合

9
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Fig. 1.3 Schematic of force balance on control volume including dynamic contact line (DCL).

うことを考えると，定常状態において，移流の影響が無視できる程度に小さいならば，次式が成
立する．∫ xR

xL

βuslipdx =

∫ zT

zB

−τdxx(xL, z)dz +

∫ zT

zB

τdxx(xR, z)dz +

∫ xR

xL

τdzx(x, zT)dx (1.6)

ただし，β及び uslipは xに関する関数となっていることに注意が必要である．
次にせん断応力 τdzx(x, z)を気液界面張力による Young応力 τYzx(x, z)と粘性応力 τvzx(x, z)の和

で次式のように表されるとする．

τdzx(x, z) = τYzx(x, z) + τvzx(x, z) (1.7)

ここで二次元に一般化した粘性応力 τvzx(x, z)は速度勾配テンソルによって

τvzx(x, z) = µ

(
∂ux(x, z)

∂z
+

∂uz(x, z)

∂x

)
(1.8)

10
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Fig. 1.4 Schematic of macroscopic force balance on control volume including dynamic contact

line.

と表されるとする．この式を式 (1.6)に代入し，付録Aの式 (A.19)と同様に整理すると∫ xR

xL

βuslipdx

= −(γdSV − γS0) + (γdSL − γS0) + γLVcosθ′d − (pint − pext)(zT − zB) +

∫ xR

xL

τvzx(x, zT)dx

= −γdSV + γdSL + γLVcosθ′d − (pint − pext)(zT − zB) +

∫ xR

xL

τvzx(x, zT)dx (1.9)

と，積分形で書ける．ここで付録Aの式 (A.13)，(A.14)の Bakkerの式を動的界面に拡張し，そ
れにより算出される動的界面の界面張力を各々γdSL，γdSVとした．また，θ′dは検査面上面における
気液界面の接触角である．上式は，検査体積に対する固液・固気・気液界面張力と Laplace圧が
固液摩擦と検査面上面での粘性応力の差とつり合うことを意味する．Qianらはここで接触線に対
して，固体壁面の影響を受けないとしたマクロの釣り合い式を立て，気液界面を外挿することで
固体壁面上での接触角 θdを見積もった．具体的には図 1.4に示す通り，検査体積に対して粘性応
力と Laplace圧と気液界面張力のみはたらくとして，式 (1.9)右辺の第 3項以降を次式のように与
えた．

γLVcosθ′d − (pint − pext)(zT − zB) +

∫ xR

xL

τvzx(x, zT)dx = γLVcosθd +

∫ xR

xL

τvzx(x, zB)dx (1.10)

11
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さらに，NBCにおける γdSL，γdSVが静止平衡系の γSL，γSVと一致するとして整理すると∫ xR

xL

βuslipdx−
∫ xR

xL

τvzx(x, zB)dx = γSL − γSV + γLVcosθd (1.11)

となる．この式 (1.11)に Youngの式 (A.21)を代入することで，次式の固液摩擦と粘性応力と静
的接触角 θsと動的接触角 θdの関係を導いた．∫ xR

xL

βuslipdx−
∫ xR

xL

τvzx(x, zB)dx = γLV (cosθd − cosθs) (1.12)

de Gennesのモデル

動的接触線に作用する固体からの摩擦力と流体内部の粘性応力の合力を，動的接触線に対する
抵抗力 fCLと表現すれば，式 (1.11)は

fCL = γSL − γSV + γLVcosθd (1.13)

と表すことができる．
マクロスケールにおいては，de Gennes [1]によって，動的接触角が非常に小さい条件 (θd ≪ 1)

における濡れ広がり挙動を再現するようなモデルが提案されている．このモデルでは，液体部が
完全なくさび形で濡れ広がり，その際の液体内部の粘性散逸と速度 UCLで移動する動的接触線に
対する抵抗力 fCLによる仕事 fCLUCLが等しくなると仮定している．まず，θd ≪ 1としているた
め液体部は接触線近傍では十分に薄い液膜であり，液膜の厚み zsが接触線からの距離 xとしたと
きに

zs = xtanθd (1.14)

で表されるとする．ここで，壁面接線方向にのみ速度成分を持つとみなすと，液体中の速度分布
は二次関数で与えられる．その際，気液界面では粘性応力がはたらかない，すなわち z = zsで速
度勾配がゼロ，固体壁面ではすべりがない，すなわち z = 0で速度ゼロという境界条件を設定す
ると，速度分布は次式で表される．

u(x, z) =
3UCL

2z2s
z(z − 2zs) (1.15)

12
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なお，ここで液体部の平均速度が接触線の移動速度 UCLと一致するとした．さて，液体内部で生
じる粘性発熱は粘性係数を µとして次式が成り立つとする．∫ L

a
dx

∫ zs

0
dzµ

(
∂u(x, z)

∂z

)2

=
3µlU2

CL

tanθd
(1.16)

すべりなしの境界条件を課した際には，動的接触線でその速度勾配が発散する，すなわち特異点
を持つという問題があるが，このモデルでは接触線近傍は積分範囲から除外しており，xの積分範
囲下端の aは分子サイズを，上端 Lは現在取り扱っている液滴サイズを意味し，lは

l ≡
∫ L

a
dx

1

x
= ln

(
L

a

)
(1.17)

で定義される無次元係数である [57,58]．さて，θd ≪ 1より，tanθd ∼ θdと出来るので，式 (1.16)

の粘性発熱と動的接触線に対する界面張力の合力による仕事，すなわち抵抗力 fCLによる仕事の
逆符号−fCLUCLが等しくなるとすると，

−fCLUCL =
3µlU2

CL

θd
(1.18)

となり，これに式 (1.13)，(1.1)を代入することで次式の濡れ広がり速度 UCLと動的接触角 θdの
関係式が得られる．

UCL =
γLV
6µl

θd(θ2d − θ2s ) (1.19)

なお，θd ≪ 1より cosθd ∼ 1− θ2d
2 と，同様に静的接触角についても θs ≪ 1として，cosθs ∼ 1− θ2s

2

とした．これはHoffmannの実験 [59]で得られる結果を良く再現する．

Molecular Kinetic Theory

Blakeら [46]は，固体壁面上にはポテンシャル的に安定な吸着サイトが無数に存在し，そのよう
な吸着サイトから別の吸着サイトへ分子がジャンプすることによって，接触線の移動が生じると
する化学的かつ微視的なモデルであるMolecular Kinetic Theory (MKT) を提案した．まず，吸
着サイトと吸着サイトの距離を λ，接触線が前進する方向の分子のジャンプの頻度を k+，後退方
向側のものを k−とする．この理論では，正味の分子ジャンプ頻度を knet = k+ − k−として，分

13
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子の平均速度，すなわち接触線の速度 UCLを次式で定義する．

UCL = knetλ = (k+ − k−)λ (1.20)

ここでマクロには接触線が静止している，すなわちUCL = 0の場合であっても，実際には熱ゆらぎが
あるため，分子はひとつの吸着サイトで静止しているのではなく，それらの間を頻度k+ = k− = k0W

でジャンプするような運動をしていて，正味の分子の移動量はゼロ，すなわち knet = 0となり，マ
クロには接触線は静的な状態に保たれる．一方，動的濡れ過程においては，接触線にはたらく力
によってそのつり合いが崩れ，気相側もしくは液相側に移動する分子が多くなり，結果として接
触線が前進または後退する．さて，k+，k−は絶対反応速度論によりそれぞれ，

k+ =
kBT

h

Z∗

Z+
exp

(
−ϵ+

kBT

)
(1.21)

k− =
kBT

h

Z∗

Z− exp

(
−ϵ−

kBT

)
(1.22)

で与えられる．なお，ϵ+，ϵ−は各過程で必要となる活性化エネルギー，Z∗は活性化状態での分
配関数，Z+，Z− は各々の過程の反応前の分配関数を表し，h，kB，T は各々プランク定数，ボ
ルツマン定数，温度である．上述の通り静的接触線において正味の頻度は knet = 0となるため，
k+ = k− = k0Wの関係を用いて

k0W =
kBT

h

Z∗

Z+
exp

(
−ϵ+

kBT

)
(1.23)

=
kBT

h

Z∗

Z− exp

(
−ϵ−

kBT

)
(1.24)

となる．ここで，動的接触線にはたらく抵抗力の単位移動距離，単位接触線長さ，単位時間あた
りの仕事W = γLV(cosθd − cosθs)が系に加わることで，分子のジャンプ頻度 k+，k−は次式に変
化する．

k+ =
kBT

h

Z∗

Z+
exp

(
W/∆n− ϵ+

kBT

)
(1.25)

k− =
kBT

h

Z∗

Z− exp

(
−W/∆n− ϵ−

kBT

)
(1.26)
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なお，∆nは接触線領域に存在する壁面上の安定な位置の単位面積あたりの数を表し，式 (1.24)を
代入すると，接触線の速度は

UCL = knetλ = (k+ − k−)λ

= k0Wλexp

(
W/∆n

kBT

)
− k0Wλexp

(
−W/∆n

kBT

)
= k0Wλsinh

(
W/∆n

kBT

)
= k0Wλsinh

(
γLV(cosθs − cosθd)

∆nkBT

)
(1.27)

と書ける．MKTでは，結局は，動的接触線にはたらく抵抗力の仕事が，接触線が移動する際の分
子のジャンプに必要なエネルギーとつり合うと解釈できる．
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1.1.4 分子動力学法における局所の応力について

一般的に，微視的 (ミクロ)な分子は連続体を取り扱う巨視的観点とは異なり各々速度を有して
おり，局所平衡を仮定すればそれらの平均値および分散が各々巨視的な速度 uおよび温度に対応
する．速度分布関数（VDF）の時間発展に関するBoltzmann方程式を取り扱う分子気体力学では，
巨視的な速度に対する相対的な分子速度で応力や熱流束を定義する．これはすなわち，例えば応力
については，全運動量流束を巨視的な移流の項と応力の項に分離していることになっている．MD

による解析の確立以前に，Irving と Kirkwood (IK) [60]は，位相空間上の分布関数の時間発展を
記述した Liouvilleの定理に基づき，分子間相互作用力に支配される微視的な分子をデルタ関数で
表現することで，分子運動に寄与する項と分子間相互作用力に寄与する項のふたつからなる局所
の点の応力を，Taylor展開の形式で定義した．

MDの解析の確立後には [61,62]，この IKの応力を時間および空間に対して平均化したものは，
均一なバルク系の圧力 (応力の逆符号)の計算に用いられるビリアル定理によるものと一致するこ
とが示された．さて，MD計算における局所的な応力については，Tsai [63]が準一次元系内の平面
に作用する平均応力の算出方法を提案し，さらにThompsonら [64]はこの手法を拡張し球状の液
滴の表面張力の解析を行った．これらのどちらの場合でも，巨視的には静止した系でMD計算中に
検査面や球面を通過する分子の移動による運動量流束や分子間相互作用力を積分することで局所
の応力を定義している．このような面上で応力を定義する手法は検査面の方法 (Method-of-Plane，
MoP) [65]やHardy応力 [66]と呼ばれ，準一次元の平衡MDでは，任意の検査体積に対してこれ
により求めた応力は力のつり合いの関係を満たす，すなわち運動量保存則を満たす．さらにこの
MoPは準二次元系においても，静止平衡系ならば運動量保存則に整合するかたちで定義でき，例
えば付録Aのような液滴の接触線を含む検査体積に対する運動量保存則から，ナノスケールの静
的濡れ現象の解析が可能となる [36]．この面上で応力を定義するMoPに対して，体積平均の方
法 (VA) [67]でも局所の応力を定義することができる [67–75] ．しかし VAでは検査体積の表面
を通過する流束が原理的に計算できないため，VAによる応力は一般的には連続体の保存則に整
合しないが，界面張力を求める際の応力の積分を直接計算することが可能であるという利点もあ
る [3, 34, 35, 39,69,74,76]．
さて，連続体の保存則に基づいた解析を行うためには，面上で流束を定義するMoPが有用であ

るが，巨視的に流れのある系（u ̸= 0）においては，検査体積の表面の局所の流速uを定義する必
要があり，それにより初めて連続体の保存則に整合するかたちで応力や熱流束などが定義できる．
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つまりは，例えば動的接触線を有する準二次元系などの複雑な流れのある系で連続体の保存則に
基づいた解析を行う際には，局所の巨視的 (マクロ)な量を有限の面積の検査面上で定義する必要
があるということである．

1.2 研究目的
静的濡れについては流れ場が誘起されないため，接触線を含む検査体積に対する力のつり合い

はYoungの式に帰結することが示されている．それに対して動的濡れについては，対応するもの
として，動的接触線近傍に誘起される流れ場によって粘性応力と流体と固体の間で摩擦力が生じ，
それらが各界面張力とつり合うという力学的モデルであるQianのモデルが提案されている．すな
わち，動的接触線近傍に誘起される壁面からの摩擦力と粘性応力によって前進・後退の動的接触
角の差異を引き起こしていると考えられている．この力学的なアプローチ以外に，エネルギー的
な観点から提案された動的濡れ現象のモデルもいくつかあるが，それらはミクロな効果を，保存
則の観点から詳細に考慮したものというよりは，むしろ，現象論的なものと考えられる．
そこで，本研究では，図 1.2上部に示すような計算系を用いて，動的接触線近傍に誘起される応

力分布や熱流束分布をMDで計算することで，既存の動的濡れモデルを連続体の支配方程式の境
界条件として与えることや，本来はミクロスケールの効果を含む動的濡れ現象を境界条件として
取り扱うことの妥当性について議論する．その際の応力や熱流束の分布を計算する際には，連続体
の各種保存則と整合するかたちで検査面上で各種物理量を定義する必要があるので，静止平衡系
で検査面上で応力を計算する手法の検査面の方法 (Method-of-Plane)を速度分布関数を用いて拡
張し，巨視的な流れ場を有する系内部の局所の検査面で応力や熱流束を計算する手法を確立する．

1.3 本論文の構成
本論文は本章を含む全六章から成る．第二章では本研究で用いる分子動力学法について説明し，

第三章では分子動力学計算系において熱流体場，すなわち有限の面積の検査面上の密度・速度・応
力・熱流束を算出する方法を導出し，第四章でその妥当性を簡単な準一次元定常の Couette流系
で検証する．第五章では定常な動的接触線を有する準二次元系の熱流体場を算出し，動的接触線
近傍で誘起される発熱・吸熱現象を解明する．

17



第 2章 分子動力学法

第2章 分子動力学法

2.1 運動方程式と数値積分法
分子動力学法は，系を構成する分子の運動方程式を時間について離散化し，数値的に解くこと

で分子の運動を追跡していく方法である．本研究では，流体分子として用いたアルゴン分子，お
よび壁面原子はいずれも回転の自由度を持たない質点として扱い，Newtonの運動方程式により運
動を表した．分子 i (= 1, 2, · · · , N)の重心の位置ベクトルを ri，分子 iに作用する力を Fiとする
と，Newtonの運動方程式は次のように書ける．

mi
d2ri

dt2
= Fi (2.1)

ここで，miは分子 iの質量，tは時刻である．Fiには分子間の相互作用によって生じる力や，重力
のように物体力として加わる力などが全て含まれる．これらの力が riを変数とするポテンシャル
関数Φ(r1, r2, · · · , rN ) のみから導かれるとし，Fi, r

iの α (= x, y, z)方向成分をそれぞれ Fiα, r
i
α

と書くと
Fiα = − ∂Φ

∂riα
(2.2)

で表される．全分子について式 (2.2)を数値的に積分することにより，時刻 tにおける分子の位置
riを計算する．本研究では，数値積分のアルゴリズムとして，運動方程式の差分展開に以下の速
度 Verlet 法 [77]を用いた．

ri(t + ∆t) = ri(t) + ∆t

[
vi(t) +

Fi(t)

2mi
∆t

]
(2.3)

vi(t + ∆t) = vi(t) + ∆t · Fi(t) + Fi(t + ∆t)

2mi
(2.4)

ただし，∆tは時間刻みであり，viは分子 iの速度ベクトルであり，本研究では時間刻みは∆t=5 fs

とした．速度 Verlet法では時刻 tにおける分子の位置 ri(t)，速度 vi(t)，力 Fi(t)を式 (2.3)に代
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入し，時刻 t + ∆tにおける分子の位置 ri(t + ∆t)を求める．その新しい分子の位置 ri(t + ∆t)を
式 (2.2)に代入し力 Fi(t + ∆t)を求めて，式 (2.4)より時刻 t + ∆tの速度 vi(t + ∆t)を求める．
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2.2 分子モデルおよびポテンシャル関数
分子動力学法において，相互作用ポテンシャル関数は計算の良否に大きく関係しており，様々な

物質や構造について提案されている．本研究では，接触線の物理的な描像を明らかにするために，
流体分子間，および流体–壁面原子間のポテンシャル関数として単純流体間の van der Waals 力を
表現するのに広く用いられている Lennard-Jones (L-J)ポテンシャルを用いた．また，壁面原子
間のポテンシャル関数には簡潔なモデルとして harmonic ポテンシャルを用いた．

2.2.1 流体分子のモデル

本研究では，単原子分子であるアルゴン分子を模擬した流体分子を質点として取り扱う．またそ
の分子間の相互作用は式 (2.5)に示す，質点 i, j間の距離 rij の関数となる L-Jポテンシャル ΦL-J

に後に述べる補正項を加えたものを用いた．

ΦL-J(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(2.5)

ここで，σij は ΦL-Jがゼロになる分子間距離，εij は L-J ポテンシャル曲線の井戸の深さを表す．
流体分子 (アルゴン分子)の質量も含めた各パラメータを表 2.1に示す．なお，σij , εij の値を適切
に無次元化することで，計算結果をアルゴンに限らず L-J分子系の振る舞いとして一般化するこ
とが可能である．
なお本研究では 2.4.1項に示す通り，式 (2.5)の L-Jポテンシャルにカットオフを含めた式 (2.19)

を，相互作用ポテンシャルとした．

Table 2.1 Mass and potential parameters for argon molecules.

mf [kg] σf-f [nm] εf-f [J]

6.642 × 10−26 0.340 1.67 × 10−21
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2.2.2 壁面原子のモデル

固体壁面には最近接原子間のみに，次式で表される harmonic ポテンシャル Φhを仮定した．

Φh(rij) =
1

2
k(rij − r0)

2 (2.6)

ここで，kはバネ定数，r0は最近接原子間距離を表す．なお本研究では白金原子を模したものを壁
面原子と仮定しており，壁面原子の質量も含めた各パラメータには白金のものを参考に表 2.2に
示すものを用いた．

Table 2.2 Mass and potential parameters for wall molecules.

mwall [kg] k [N/m] r0 [nm]

3.239 × 10−25 46.8 0.277

本研究では壁面原子の結晶構造に面心立方格子構造 (fcc)を用いて，(100)面，(001)面が各々x

軸，z軸方向を向くように配置した．また 2.3.1項で述べる通り，壁面原子のうち再外層となる層
の原子の相対位置を固定し，再外層から２層目のみに Langevin熱浴法による温度制御を行った．

2.2.3 流体分子と壁面分子間の相互作用

流体分子と壁面原子の間には，式 (2.5)で表される L-J ポテンシャルによる相互作用がはたらく
と仮定した．ただし，L-Jポテンシャルパラメータ σf-wについては，Lorentz-Berthelot混合則 [78]

に従って決定した．この混合則では，L-J ポテンシャルで表現される二つの質点A，Bについて，
同種類の質点間，すなわちA同士，B同士のL-Jパラメータ σ, εがそれぞれ σAA，εAA，σBB，εBB

で表されるとすると，A，B間の σAB，εABは経験的に

σAB =
1

2
(σAA + σBB) (2.7)

εAB =
√
εAA εBB (2.8)

で与えられる．本研究では壁面分子の σw-w，εw-wを表 2.3に示す値とした．なお σw-wは白金の
van der Waals 直径とした．また L-Jポテンシャルパラメータ εf-wは，式 (2.8)により得られる基
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準値 ε0f-wに ηを乗じて，次のように定めた．

εf-w = ηε0f-w (2.9)

ε0f-w =
√
εf-f εw-w (2.10)

このパラメータ ηの値を設定することで，平衡状態での接触角の操作ができるが [36]，本研究で
は η = 0.5で固定した．この値を用いたとき，温度が 85 Kで静止平衡状態にある壁面上のアルゴ
ン液滴の接触角は約 57◦となる．

Table 2.3 L-J potential parameters for wall atoms to determine the inter-molecular interaction

parameters based on the Lorentz-Berthelot mixing rules.

σw-w [nm] εw-w [J]

0.350 1.00 × 10−21
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2.3 温度
分子動力学法において温度 T は統計力学的に定義される．系全体の並進運動を除いた自由度 νの

系における運動エネルギーの総和をEKとするとき，温度 T は，Boltzmann定数 kB (= 1.38066×

10−23 J/K) を用いて，
1

2
νkBT = EK (2.11)

で表され，平衡状態では平均的に自由度毎に均等に運動エネルギーが分配される．例えば系が質
量mの単一の単原子分子で構成され，さらに全方向に周期境界条件が課される場合，分子 iの重
心の速度を vi，分子の総数をN とすると，並進運動による運動エネルギーEKは次のようになる．

EK =
1

2

〈
N∑
i=1

m|vi − v|2
〉

(2.12)

ただし，⟨⟩はアンサンブル平均を意味し vは系全体の並進速度で，

v =
1

N

N∑
i=1

vi (2.13)

で与えられる．ここで，分子 1個あたりの並進の自由度は 3なので，全体の並進を除いた自由度
νは 3N − 3となり，並進運動に基づく温度 T は次式で与えられる．

T =
2

3(N − 1)kB
EK =

1

3(N − 1)kB

〈
N∑
i=1

m|vi − v|2
〉

(2.14)

以下では本研究で用いたシミュレーションにおける，温度の制御方法について述べる．

2.3.1 Langevin 方程式と Langevin 熱浴法

壁面を用いて温度制御をする方法として Langevin 熱浴法 [79]がある．質量mの分子の１次元
の運動について，分子にはたらく力を Ftotalとすると，運動方程式は

m
dv

dt
= Ftotal(t) (2.15)

となる．本来であれば Ftotalはほかの分子との相互作用で記述されるが，ここでは粗視化して考
え，Ftotalは分子の速度に比例する抵抗力 −αdv(t) と周囲の分子との衝突に起因するランダム力
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R(t)からなるとする．ここで αd は摩擦係数である．また，R(t)は分子の位置，速度と相関がな
いものとする．このとき運動方程式は

m
dv

dt
= −αdv + R(t) (2.16)

となる．これを Langevin 方程式と呼ぶ．
ここで，次のような標準偏差 σRに従う値をランダム力R(t)とすると，温度 Tsetの熱浴が表現

できる．

σ2
R =

2αdkBTset

∆t
(2.17)

なお，分母にMDの時間刻み∆tがあるが，これにより，無限小の時間間隔で与えられたランダム
力の力積と，時間刻み∆tの間に一定のランダム力が与えられたときの力積が等しくなる． また
摩擦係数 αdは白金のDebye温度 TDを用いると，

αd =
πmkBTD

6h̄
(2.18)

と表せ [80]，設定が必要なパラメーターは TDだけとなる．ここで h̄は換算 Planck定数で，πは
円周率である．
本研究では，図 2.1のように多層の固体壁面に対し，最下層の壁面原子を座標系に固定し，下か

ら２層目の原子に対して Langevin熱浴法による温度制御を行いランダム力と速度に比例した抵抗
を与えた．また，TDの値として白金のDebye温度 240 Kを用いた [81]．
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fixed atoms

thermostatted

 atoms

R(t)
R(t)

Fig. 2.1 Temperature control of solid wall with the Langevin method.
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2.4 計算の高速化
2.4.1 カットオフ

L-J ポテンシャルは，相互作用が分子間距離の増加に対して −6乗で急激に減少し， L-J パラ
メータ σij の 3倍程度では無視できるほどに小さくなる．そこで本研究では，計算時間の短縮のた
め，分子間距離がある一定のカットオフ距離 rc以上となった場合に分子間相互作用をゼロにする
カットオフを導入した．これにより生じるポテンシャル関数とその勾配の不連続を補正するため
に，カットオフ距離 rcの位置でポテンシャルエネルギーとその勾配がゼロになるように二次の補
正項を加えると，式 (2.5)で表される L-J ポテンシャルは次のようになる．

ΦL-J(rij) = 4εij Θ(rc − rij)

{(
σij
rij

)12

−
(
σij
rij

)6

+

[
6

(
σij
rc

)12

− 3

(
σij
rc

)6
](

rij
rc

)2

−

[
7

(
σij
rc

)12

− 4

(
σij
rc

)6
]}

(2.19)

ここで，Θ(r)は次式で表される Heaviside の階段関数であり，式 (2.19)においては，rij > rcで
相互作用が 0となる．

Θ(r) =

0, r < 0

1, r ≥ 0

(2.20)

なお，本研究ではカットオフ距離はL-Jポテンシャルパラメータ σijを用いて次のように定めた．

rc = 3.5 × σij (2.21)
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2.4.2 Book-Keeping法

2.4.1 項で述べたカットオフを導入しても，1ステップ毎にすべての粒子間距離を計算して相
互作用の有無を判断していると，それだけで計算時間を浪費する．そこで本研究では粒子登録法
(book-keeping method) [78]を用いて計算時間の短縮を行った．この方法は，図 2.2のように，カッ
トオフ距離 rcの外側に一定幅 rmarの領域を設け，最初に rc + rmarの領域内で粒子間相互作用の
候補を示す粒子対のリストを作成し，このリストにあるものについてのみカットオフ距離 rcで相
互作用の計算を行うというものである．ただし，図 2.2に示すように，計算の進行にともない，リ
ストに無い粒子対間の距離が rcより小さくなると不都合が生じる．そのため，リストを作成した
時点からの各粒子の移動量を計算し，その最大値が rmar/2を超えた場合にリストの更新を行うよ
うにした．なお，本研究では rmar = 0.5 nmとして計算を行った．

in  list and 

calculated

in  list but

not calculated not in  list 

rc rmar

rcrmar /2

rmar /2

Fig. 2.2 Concept of the book-keeping method.
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2.5 境界条件
液体のマクロ的な性質について調べるために分子シミュレーションを行う場合は，できるだけ

多数の分子を扱うのが望ましいが，実際には計算機性能の制約から取り扱うことのできる分子の
数に限りがある．そこで分子動力学法では，一部の領域 (セル)についてのみ計算を行い，セルと
外部の境界面には適当な境界条件を与えることによって，限られた分子数で系を表現する．以下
では，本研究で使用する周期境界条件について述べる．

2.5.1 周期境界条件

基本セルと呼ばれる計算領域の周りに，基本セルと全く同じ構造のイメージセルと呼ばれる仮
想領域が周期的に繰り返されるような境界条件を，周期境界条件という．図 2.3に，二次元の場合
における周期境界条件の概略を示す．運動方程式は基本セル内の分子について解くが，分子には
たらく力や相互作用のエネルギーを計算する際には，周辺のイメージセルにある分子からの影響
も考慮する．ただし，ポテンシャルに対してカットオフを導入する場合，異なるセル内の同一分
子からの相互作用の重複をさけるために，セルの一辺はカットオフ距離の 2倍の 2rcより長く設定
する必要がある．また周期境界条件を用いることで，界面の無いバルク系や，準一次元，準二次
元系などを容易に模擬することができる．
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g

Fig. 2.3 Schematic of periodic boundary condition.
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分子動力学法 (MD)で巨視的な流れ場を解析する際，瞬間的には，連続体ではなく離散的に存
在する分子の微視的 (ミクロ)なふるまいを平均化する必要がある．また，平均化することで得ら
れる巨視的 (マクロ)な流れ場において，応力テンソルや熱流束の分布が重要な役割を担う．例え
ば連続体を仮定する流体力学では，構成方程式によって応力テンソルが決定され，流体の局所の
加速度は，その応力の勾配を含むかたちで決定される．これに対してMDで取り扱うミクロな系
では，分子の動きは分子間相互作用力によって決定され，応力テンソルや熱流束は分子の動きと
分子間相互作用力により定義される．本章では，マクロの流体力学で用いられる保存則すなわち，
連続体の保存則に矛盾しない形で，分子動力学解析において応力や熱流束を定義する手法を提案
する．

3.1 連続体の保存則
まず，連続体力学で用いられる，質量保存則，運動量保存則，エネルギー保存則を考える．位

置 xと時刻 tの関数として与えられる密度を ρ(x, t)，速度を u(x, t)とすれば，連続体の質量保存
則は次式で書ける．

∂ρ

∂t
+

∂ρuk
∂xk

= 0 (3.1)

ここで xkおよび ukは各々位置と速度の k方向成分であり，また添え字 kに関して Einsteinの総
和規約を適用した．左辺第 2項は移流による項である．この式 (3.1)は元々，任意の閉曲面 Sに囲
まれる検査体積 V に対する質量保存則∫∫∫

V
dV

∂ρ

∂t
= −

∫∫
S

dSρuknk (3.2)
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と等価である．ここで nkは微小面 dSの外向きの単位法線ベクトルの k成分である．式 (3.2)は，
体積 V 内の質量変化は，その表面 S を通過する質量流束によってもたらされることを意味する．
式 (3.2)の右辺についてGaussの発散定理を適用すると∫∫

S
dSρuknk =

∫∫∫
V

dV
∂ρuk
∂xk

(3.3)

となり，式 (3.2)は任意の体積 V に対して次式が成り立つ．∫∫∫
V

dV

(
∂ρ

∂t
+

∂ρuk
∂xk

)
= 0 (3.4)

同様に連続体の運動量保存則は，

∂ρul
∂t

+
∂ρuluk
∂xk

=
∂τkl
∂xk

+ ρF ext
l (3.5)

で与えられる．ただし，τkl は k方向に法線ベクトルを有する面上で l方向に作用する応力成分，
F ext
l は単位質量当たりの外力の l方向成分である．この運動量保存則も質量保存則と同様に，任
意の閉曲面 Sに囲まれる検査体積 V に対する運動量保存則∫∫∫

V
dV

∂ρul
∂t

= −
∫∫

S
dSρuluknk +

∫∫
S

dSτklnk +

∫∫∫
V

dV ρFl (3.6)

と等価であり，体積 V 内の運動量変化は，表面 Sを通過する流体の巨視的な運動量の流束 ρuluk

および，応力 τklと体積力である外力 ρFlによる力積に起因する運動量変化によりもたらされるこ
とを意味する．以降，本研究では，流体の移流による運動量の流束 ρuluk を移流項と呼ぶ．ここ
で，式 (3.6)の巨視的な運動量保存則では，全運動量流束 τkl − ρuluk について，右辺第 1項の移
流項 ρulukおよび第 2項の応力 τklが分離されていることに留意する必要がある．
さらに連続体のエネルギー保存則は次式で与えられる．

∂ρe

∂t
+

∂ρeuk
∂xk

+
∂JQk

∂xk
− ∂τklul

∂xk
= ρF ext

k uk (3.7)

ここで eは流体の持つ全エネルギー，すなわち流体の運動エネルギー 1
2ρ|u|

2と内部エネルギーの
和を表し，JQk

は熱流束ベクトルの k成分を意味する．この式も任意の閉曲面 Sに囲まれる検査
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体積 V に関するエネルギー保存則∫∫∫
V

dV
∂ρe

∂t
= −

∫∫
S

dSρeuknk −
∫∫

S
dSJQk

nk +

∫∫
S

dSτklulnk +

∫∫∫
V

dV ρF ext
k uk (3.8)

と等価であり，体積V 内のエネルギー変化は，表面Sを通過するエネルギー流束 ρeuk+JQk
−τklul

と体積 V に作用する外力仕事 ρF ext
k uk によりもたらされることを意味する．ここでも同様に，式

(3.8)の巨視的なエネルギー保存則では，エネルギー流束 ρeuk + JQk
− τklulが右辺第 1項のエネ

ルギーの移流項 ρeukおよび，右辺第 2項の熱流束 JQk
と，右辺第 3項の応力仕事 τklul に分離さ

れていることに留意する必要がある．

3.2 検査面の方法 (Method-of-Plane)

ここでは簡単のために，単原子分子からなる単成分の流体についてのみ取り扱い，検査面上で
巨視量をデカルト座標系で定義する検査面の方法（Method-of-Plane，以降MoPと略記）という
手法を紹介する．以降，前節で用いた総和規約は，特に断りのない限りは用いない．

3.2.1 MoPによる流束

分子動力学法では，式 (3.2)，(3.6)，(3.8)の各種保存則の右辺に対応する質量流束，運動量流
束，エネルギー流束を定義する方法を図 3.1に示すように定式化できる [82,83]．まず，前節 3.1の
連続体の場合と同様に検査体積内の質量変化が検査体積の表面を通過する質量流束によりもたら
されることを考えれば，k方向の法線ベクトルを有する検査面 Skを通過する分子による質量流束
ρuk(Sk, t)は

ρuk(Sk, t) =
1

Skδt

〈
crossing Sk∑
i∈fluid,δt

mvik∣∣vik∣∣
〉

(3.9)

と定義される．ここで ⟨⟩はアンサンブル平均を，∑crossing Sk
i∈fluid,δt は δt間に検査面 Sk を通過する分

子についての総和を，m,vikは分子の質量および k方向速度を， vik
|vik|
は分子の通過する向きを意味

する．
次に，検査面 Skを通過する運動量流束 ρukul − τkl(Sk, t)は分子の運動と相互作用力による微視
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i

i

j

(a) kinetic contribution (b) intermolecular force contribution

inside insideoutside outside

(ⅠⅠⅠ) energy flux

ek ek

(ⅠⅠ) momentum flux

(Ⅰ) mass flux

Fig. 3.1 Schematic of the definitions of (a) kinetic contribution and (b) intermolecular force

contribution of (I) mass flux, (II) momentum flux and (III) energy flux.
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的な運動量流束によって

ρukul − τkl(Sk, t) ≡
1

Skδt

〈
crossingSk∑
i∈fluid,δt

mivil
vik∣∣vik∣∣
〉

+
1

Sk

〈
across Sk∑
(i,j)∈fluid

F ij
l

rijk
|rijk |

〉
(3.10)

と定義される [36,65]. ここで，F ij
l は位置 riにある流体分子 iが位置 rj の流体分子 jから受ける

相互作用力ベクトル F ij の l方向成分を，rijk は相対位置ベクトル rij ≡ rj − riの k成分を表す．
分子間相互作用力の力線は分子間を結ぶ直線であるという IKの力線の定義 [60, 75]に基づいて，
総和∑across Sk

(i,j)∈fluidは検査面 Skと交差するすべての相互作用力の力線に対して取られ， rijk
|rijk |
はその相

互作用力の作用する向きを意味している．ここで応力も，運動量流束と同様に

τkl = τkinkl + τ intkl (3.11)

と分子運動寄与項（kinetic）τkinkl と相互作用寄与項（interaction）τ intkl に分けられるとする．この
とき，式 (3.10)右辺第 2項は次のように応力の相互作用寄与項と直接結びつけられる．

τ intkl (Sk, t) ≡ − 1

Sk

〈
across Sk∑
(i,j)∈fluid

F ij
l

rijk
|rijk |

〉
(3.12)

一方，式 (3.10)の右辺第 1項は

τkinkl (Sk, t) − ρukul ≡ − 1

Skδt

〈
crossingSk∑
i∈fluid,δt

mivil
vik∣∣vik∣∣
〉

(3.13)

と応力の分子運動寄与項 τkinkl と移流項 ρukulの差と等しくなる．
さて，従来のMoPはu = 0の静止平衡系に対して応力計算を行うものであったため，式 (3.13)

がそのまま応力の分子運動寄与項とできた．しかし，巨視的な流れを有する系については，移流
項 ρukulがゼロでない値を持ち，この場合は適切な応力の定義とはならない．そこで次項では，検
査面上の移流項をMoP により算出することで，連続体の保存則の表式と整合する応力の定義方法
を考える．
また，固体-流体間の相互作用力についても，式 (3.13) のように流体間相互作用力と同様に∑across Sk

(i,j)∈fluid の総和に含めることも可能ではあるが，本研究では，Rowlinsonや Schofieldの定式
化 [84,85]にならい，流体間相互作用力は流体の応力テンソルに寄与し，固体-流体間相互作用力は

34



第 3章 熱流体場の算出方法

流体から見た外力とみなし，式 (3.6)の表式に合わせるかたちで体積力として取り扱う [36,37,86]．
なお，分子間相互作用力寄与項について多成分系や多原子分子を含む計算系では，異種の分子間
相互作用力や分子内の拘束力 [87]などの取り扱いが難しく，その際には保存則を満たすように適
切にそれらの力を取り扱う必要がある [88]．
さて，エネルギー流束についても，運動量流束と同様に分子運動寄与項と分子間相互作用力寄

与項の二種類に分けて次式で定義する．

ρeuk + JQk − τklul ≡ lim
δt→0

1

Skδt

〈
crossingSk∑
i∈fluid,δt

ei
vik∣∣vik∣∣
〉

+
1

Sk

〈
across Sk∑

i ̸=j

qij
rijk
|rijk |

〉
(3.14)

ここで左辺第 3項の応力仕事 τklulは応力テンソルと速度ベクトルの内積であるので，添え字 lに
関して総和規約を適用している．また，eiは分子 iのもつ全エネルギーを意味し，次式で定義され，

ei ≡ 1

2
m|vi|2 +

∑
i ̸=j

1

2
Φij (3.15)

分子の持つ運動エネルギーと相互作用ポテンシャルの和を表す．なお，Φij は分子 iおよび分子 j

の間の相互作用ポテンシャルエネルギーであり，式 (3.15)ではそれが各々の分子に等しく分配さ
れるとしている [83,89]. 式 (3.14)右辺第 2項は相互作用力により分子間を移動するエネルギーを
表し，qij は相互作用力により分子 iから分子 jに輸送されるエネルギーを表す．具体的には，分
子 i, j間の相互作用ポテンシャルの変化 Φ̇ij は，分子 jによる相互作用力による分子 iの運動エネ
ルギー変化 ėk

ij，および分子 iによる相互作用力による分子 j の運動エネルギー変化 ėk
ji とつり

合うとして，次式の i, j間のエネルギー保存則を考える．

Φ̇ij + ėk
ij + ėk

ji = 0 (3.16)

ここで ėk
ij および ėk

jiの運動エネルギー変化は相互作用力による仕事であり，次のように書き換
えることができる．

ėk
ij = F ij · vi (3.17)

ėk
ji = F ji · vj (3.18)

よって，分子 iから分子 jへのエネルギーの移動 qij は，分子 ij間のポテンシャルエネルギーの変
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化 Φ̇ij と，分子 jの相互作用力による運動エネルギー変化 ėk
jiを用いて

qij = ėk
ji +

1

2
Φ̇ij

= ėk
ji +

1

2

(
−ėk

ij − ėk
ji
)

=
1

2

(
ėk

ji − ėk
ij
)

=
1

2

(
F ji · vj − F ij · vi

)
=

1

2
F ji ·

(
vj + vi

)
(3.19)

となる．ここで最右辺の式変形で，作用反作用の法則に基づいて F ij = −F jiとした．なお，式
(3.14)右辺第 1項の分子間ポテンシャルや，右辺第 2項の相互作用力によるエネルギーの移動につ
いては，流体分子間だけでなく固体–流体分子間相互作用によるものも同様の式で計算が可能であ
る．本研究では，流体内部に生じるエネルギーの流束を，流体間のエネルギー流束 J f

Tと，固体–

流体間のエネルギー流束 J fw
T に分けて次式のように定義する．

J f
Tk ≡ lim

δt→0

1

Skδt

〈
crossingSk∑
i∈fluid,δt

eif
vik∣∣vik∣∣
〉

+
1

Sk

〈
across Sk∑
(i,j)∈fluid

qij
rijk
|rijk |

〉
(3.20)

J fw
Tk ≡ lim

δt→0

1

Skδt

〈
crossingSk∑
i∈fluid,δt

eifw
vik∣∣vik∣∣
〉

+
1

Sk

〈
across Sk∑

i∈fluid,j∈solid
qij

rijk
|rijk |

〉
(3.21)

ここで eifは，流体分子の持つ運動エネルギー eikin と流体間相互作用ポテンシャル eiff の和であり，
各々次式で定義される．

eikin ≡ 1

2
m|vi|2 (3.22)

eiff ≡
∑

j( ̸=i)∈fluid

1

2
Φij (3.23)

eif ≡ eikin + eiff (3.24)

この流体分子の持つ運動エネルギー eikinは，温度に関連付けられる熱力学的運動エネルギーだけ
でなく，流体の巨視的な運動エネルギー 1

2ρ|u|
2との和に関連付けられるものである．また，eifwは
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流体–固体間相互作用ポテンシャルであり，次式で表される．

eifw ≡
∑

j∈solid

1

2
Φij (3.25)

なお，これらのエネルギー流束は分子動力学法により計算されるものであり，これと対応する巨
視的なエネルギー流束は，式 (3.8)に従うかたちで各々次式となる．

J f
Tk = ρefuk + J f

Qk − τklul (3.26)

∇ · J fw
T = ∇ · ρefwu + ∇ · J fw

Q − ρF ext · u (3.27)

ここで efwは，単位質量当たりの固体-流体間ポテンシャルを，efは流体の内部エネルギーと巨視
的な運動エネルギーの和を表す．
次項では本項で示した微視的な質量流束を密度と速度に，微視的な運動量流束を応力と移流の

項に，微視的なエネルギー流束をエネルギーの移流と応力仕事と熱流束に分離することを考える．
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3.2.2 速度分布関数に基づくMoPの定式化および応力の算出方法

微視的な分子は巨視的観点とは異なり各々速度を有しており，それらの平均値および分散が各々
巨視的速度uおよび温度に対応する．また，たとえ巨視的には静止，すなわちu = 0だとしても，
微視的には分子の移動が存在し，それに伴う運動量やエネルギーの輸送により応力や熱流束の分子
運動寄与項が定義される．そのため，速度分布関数（velocity distribution function，以下VDF）
の時間発展に関するBoltzmann方程式を取り扱う分子気体力学では，例えば応力については，巨
視的速度に対する相対的な分子速度で応力を定義することで，分子の輸送による運動量流束を応
力と移流項に分離する．ここでは，検査面を通過する分子の輸送に着目して，ミクロとマクロの
変数の間に成立する関係式をVDFに基づいて導出する．まず，VDFを f(x,v, t)として次式で局
所の密度 ρ(x, t)を定義する．

ρ(x, t) =

∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞

−∞
dvzf(x,v, t)

≡
∫∫∫ ∞

−∞
dvf(x,v, t) (3.28)

ここで，∫∞
−∞ dvx

∫∞
−∞ dvy

∫∞
−∞ dvz を

∫∫∫∞
−∞ dv と略記した．次に，分子 iが離散的に持つ微視的変

数 ξiと，VDFに関連づけられる連続体的な場の微視的変数 ξ(x,v, t)を関連付ける方程式を示す．
微小な時間間隔 δtの間に検査面 Sk を通過する分子の持つ単位質量当たりの離散的な微視的変

数 ξiの総和は，それに対応した連続的な微視的変数 ξ(x,v, t)を用いて次式で関連付けられる．

lim
δt→0

〈
crossing Sk∑
i∈fluid,δt

mξi

〉
≡ lim

δt→0

∫∫∫ ∞

−∞
dv

∫ |vk|δt

0
dxkSkf(x,v, t)ξ(x,v, t) (3.29)

左辺について，⟨⟩はアンサンブル平均を，mは分子の質量を意味し，また，右辺は，図 3.2のよ
うな時間間隔 δtの間に面 Sk を通過することのできる分子の存在する範囲，すなわち高さ |vk| δt

の斜円柱に対する体積平均を意味する．ここで，極限 limδt→0 によって，平均化する体積内での
f(x,v, t)および連続体的な微視的変数 ξ(x,v, t)が一定値の f(Sk,v, t) および ξ(Sk,v, t)で各々書
き換えられるとすると，再右辺の位置 xkに関する積分が，

lim
δt→0

∫ |vk|δt

0
dxkSkf(x,v, t)ξ(x,v, t) = lim

δt→0
Skf(Sk,v, t)ξ(Sk,v, t) |vk| δt (3.30)
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Fig. 3.2 Concept of the connection between discrete microscopic molecular variable ξi and a

continuous microscopic field value ξ(x,v, t).

となるので，式 (3.29)は次のように整理することができる．

∫∫∫ ∞

−∞
dvf(Sk,v, t)ξ(Sk,v, t) |vk| = lim

δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

mξi

〉
(3.31)

この離散的な微視的変数 ξiと連続体的な微視的変数 ξ(Sk,v, t)の関係式により，検査面 Skに関し
て平均化された巨視的な変数を計算することができる．まず，式 (3.31)の ξ(Sk,v, t) と ξiに各々
1

|vk| および
1

|vik|
を代入し，式 (3.28)を用いることで，

ρ(Sk, t) = lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

m∣∣vik∣∣
〉

(3.32)

として検査面 Skで平均化された密度 ρ(Sk, t)が求まる．ただし，vikは分子 iの k方向の速度成分
である．同様にマクロの質量流束 ρulは速度分布関数を用いて，

ρul(x, t) =

∫∫∫ ∞

−∞
dvf(x,v, t)vl (3.33)

と定義されるので，式 (3.31)の ξ(Sk,v, t) と ξiに各々 vl
|vk| および

vil
|vik|
を代入することで，

ρul(Sk, t) = lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

mvil∣∣vik∣∣
〉

(3.34)
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のように，k 方向に法線ベクトルをもつ検査面 Sk を通過する分子を用いて，l 方向の質量流束
ρul(Sk, t)が求まる．ここで式 (3.32)と (3.34)より，マクロの流速 ulが次式で求まる．

ul(Sk, t) =
ρul(Sk, t)

ρ(Sk, t)
= lim

δt→0

〈
crossing Sk∑
i∈fluid,δt

mvil∣∣vik∣∣
〉

〈
crossing Sk∑
i∈fluid,δt

m∣∣vik∣∣
〉 (3.35)

分子の運動による運動量流束が，応力の分子運動寄与項から移流項を除いたものに対応するこ
とを確認するために，ここでも同様に分子気体力学の定義に従うかたちでMoP形式を導出する．
さて，応力の分子運動寄与項 τkinkl については分子気体力学では，

τkinkl (x, t) = −
∫∫∫ ∞

−∞
dvf(x,v, t) (vk − uk(x, t)) (vl − ul(x, t)) (3.36)

と定義される．ここで密度，質量流束と同様に，式 (3.31)の ξ(Sk,v, t)と ξiに各々− (vk−uk)(vl−ul)
|vk|

および− (vik−uk)(v
i
l−ul)

|vik|
を代入すると，

τkinkl (Sk, t) = lim
δt→0

− 1

Skδt

〈
crossing Sk∑
i∈fluid,δt

m
(
vik − uk(Sk, t)

) (
vil − ul(Sk, t)

)∣∣vik∣∣
〉

= lim
δt→0

(
− 1

Skδt

〈
crossing Sk∑
i∈fluid,δt

mvikv
i
l∣∣vik∣∣
〉

+ ul(Sk, t)
1

Skδt

〈
crossing Sk∑
i∈fluid,δt

mvik∣∣vik∣∣
〉

+ uk(Sk, t)
1

Skδt

〈
crossing Sk∑
i∈fluid,δt

mvil∣∣vik∣∣
〉

− ukul(Sk, t)
1

Skδt

〈
crossing Sk∑
i∈fluid,δt

m∣∣vik∣∣
〉)

= lim
δt→0

(
− 1

Skδt

〈
crossing Sk∑
i∈fluid,δt

mvikv
i
l∣∣vik∣∣
〉

+ ulρuk(Sk, t) + ukρul(Sk, t) − ukulρ(Sk, t)

= − lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

mvikv
i
l∣∣vik∣∣
〉

+ ρuluk(Sk, t) (3.37)

となり，応力の分子運動寄与項が求められる．ただし，式 (3.37)の変形で式 (3.32)，(3.34) を用
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いた．また，式 (3.37)の最右辺第 2項は式 (3.32),(3.35)を用いて

ρuluk(Sk, t) =
ρul(Sk, t) · ρuk(Sk, t)

ρ(Sk, t)
(3.38)

として求めることができ，これは式 (3.6)の運動量保存則の移流項に対応するものである．式 (3.37)

の両辺から移流項 ρuluk(Sk, t)を引くことで

τkinkl (Sk, t) − ρuluk(Sk, t) = − lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

mvikv
i
l∣∣vik∣∣
〉

(3.39)

となり，分子の運動による運動量流束が，左辺の応力から移流項を除いたものに対応することが
わかる．分子動力学法では，ミクロな運動量流束の分子運動寄与項 τkl − ρulukをシミュレーショ
ン中に保存しておき，計算後に移流項 ρuluk を加えることで，次のように応力の分子運動寄与項
τkinkl が求まる．

τkinkl (Sk, t) =
[
τkinkl (Sk, t) − ρuluk(Sk, t)

]
+ ρuluk(Sk, t) (3.40)

よって，最終的にはさらに式 (3.12)を加えることで応力が

τkl(Sk, t) = τkinkl (Sk, t) + τ intkl (Sk, t) (3.41)

と計算できる．分子動力学法で各種保存則に則った解析を行う際には，シミュレーション中は分
子の振る舞いに起因する微視的な流束を計算し，後処理として速度，移流項，応力などの巨視量
が求まる．連続体の質量・運動量保存則の変数と，ミクロな流束の関係を後述の熱流束と合わせ
て表 3.1にまとめて示す．
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3.2.3 MoPによる熱流束計算

熱流束に関しても，式 (3.14)のエネルギー流束をシミュレーション中に計算し，後処理としてエ
ネルギーの移流の項 ρeuk や応力仕事 τklulを計算することで，最終的に熱流束が求められる．こ
こではまず，エネルギーの移流の項 ρeuk(Sk, t)の算出方法について考える．流体の持つ単位体積
当たりのエネルギー ρe(Sk, t)は，面をまたいで移動する分子 iの持つエネルギー eiをMoPによ
り平均化すればよいので，式 (3.31)の ξiに ei

|vik|
を代入することで次式により求まる．

ρe(Sk, t) = lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

ei∣∣vik∣∣
〉

(3.42)

これと同様に，式 (3.22)，(3.23)，(3.24)，(3.25)の流体分子の持つ運動エネルギー eikin，の流体間
相互作用ポテンシャル eiff，さらにそれらの和 eif，および流体–固体間相互作用ポテンシャル eifwも
これらの分子の持つエネルギーをMoPにより平均化，すなわち式 (3.31)の ξiに eikin

|vik|
， eiff

|vik|
， eifw

|vik|

を代入すれば，次のように巨視的な流体のエネルギーが求まる．

ρekin(Sk, t) = lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

eikin∣∣vik∣∣
〉

(3.43)

ρeff(Sk, t) = lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

eiff∣∣vik∣∣
〉

(3.44)

ρef(Sk, t) = ρekin(Sk, t) + ρeff(Sk, t) (3.45)

ρefw(Sk, t) = lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

eifw∣∣vik∣∣
〉

(3.46)

これに式 (3.35)で求まるSkでの流速uk(Sk, t)をかけることで，エネルギーの移流の項ρefuk(Sk, t)，
ρefwuk(Sk, t) が求まる．また，式 (3.14)左辺第 2項の応力仕事 τklul(Sk, t)は，前項により求まる
応力 τklと流速 ulの内積，すなわち，

τklul(Sk, t) = τkxux(Sk, t) + τkyuy(Sk, t) + τkzuz(Sk, t) (3.47)

と，面に作用する応力仕事として計算できる．
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これらを式 (3.26)に代入することで，MoPによる流体間の熱流束 J f
Qkは次式のように求まる．

J f
Qk = J f

Tk − ρefuk + τklul (3.48)

この流体内部の熱流束を整理すると，最終的には

J f
Qk = lim

δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

(
1

2
m|vi − u|2

vik − uk∣∣vik∣∣ + eiff
vik − uk∣∣vik∣∣

)〉

+
1

Sk

〈
across Sk∑
(i,j)∈fluid

1

2
F ji ·

[(
vj − u

)
+
(
vi − u

)] rijk
|rijk |

〉
(3.49)

となり，この式において，分子の速度はすべて平均流速からの相対速度で取り扱われていること
がわかる．
流体–流体間の熱流束に対して，流体–固体間の熱流束では流体–固体間相互作用力が体積力F ext

として取り扱われるので，単位体積当たりの流体が固体に奪われる熱として，式 (3.27)と同様に
発散を伴って次式で求まる．

∇ · J fw
Q = ∇ · JT

fw −∇ · ρefwu + ρF ext · uVA (3.50)

ここで外力 F extが体積力として取り扱われるため，本研究では外力の内積の対象となる速度も同
様に局所の体積の体積平均速度 uVAを採用する．
なお，本研究では検査体積 V 内の流体と固体の熱流を取り扱うので，熱流解析の際には上式を

体積分することになる．その際，体積力F extを含む項以外はすべて検査体積の表面 S上で値が定
義できるので，Gaussの発散定理を用いて，Einsteinの総和規約で表現すると，次式になる．∫∫∫

V
dV∇ · J fw

Q =

∫∫∫
V

dV∇ · J fw
T −

∫∫∫
V

dV∇ · ρefwu +

∫∫∫
V

dV ρF ext · uVA

=

∫∫
S

dSJ fw
Tknk −

∫∫
S

dSρefwuknk +

∫∫∫
V

dV ρF ext · uVA (3.51)

つまり体積 V 内の流体が固体に与えたエネルギー流量∇·J fw
T から，移流によるエネルギー流量と

外力仕事を取り除くことで，体積 V 内の流体から固体に流出した熱の流量∇ · J fw
Q が求まる．前

項の質量・運動量保存則の場合と同様に，分子動力学法でエネルギー保存則に則った解析を行う
際にはシミュレーション中は微視的なエネルギー流束を計算し，後処理として熱流束などの巨視
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量が求まる．
連続体のエネルギー保存則の変数と，微視的な分子の振る舞いに起因する流束の関係を表 3.1に

まとめて示す．
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Table 3.1 Microscopic expressions for the calculation of the corresponding macroscopic prop-

erties of conservation laws defined as the average on bin face Sk in steady-state systems. The

top six properties can be directly calculated from steady-state systems through the MoP proce-

dure, whereas the others below are derived from the six. ( partly from Kusudo, H., Omori, T.,

Yamaguchi, Y., J. Chem. Phys., 155 (2021), 184103; licensed under CCBY.)

Macroscopic property Microscopic expression Corresponding equation(s)

ρ(Sk, t) lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

m∣∣vik∣∣
〉

Eq. (3.32)

ρul(Sk, t) lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

mvil∣∣vik∣∣
〉

Eq. (3.34)

τ intkl (Sk, t) − 1

Sk

〈
across Sk∑
(i,j)∈fluid

F ij
l

rijk
|rijk |

〉
Eq. (3.12)

τkinkl (Sk, t) − ρuluk(Sk, t) − lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

mvikv
i
l∣∣vik∣∣
〉

Eq. (3.39)

ρef(Sk, t) lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

eif∣∣vik∣∣
〉

Eq. (3.45)

J f
Tk(Sk, t) lim

δt→0

1

Skδt

〈
crossingSk∑
i∈fluid,δt

eif
vik∣∣vik∣∣
〉

+
1

Sk

〈
across Sk∑
(i,j)∈fluid

qij
rijk
|rijk |

〉
Eq. (3.20)

ul =
ρul
ρ

- Eq. (3.35)

ρuluk - Eq. (3.38)

τkinkl =
(
τkinkl − ρuluk

)
+ ρuluk - Eq. (3.40)

τkl = τkinkl + τ intkl - Eq. (3.41)

ρefuk - -

τklul - -

J f
Qk = J f

Tk − ρefuk + τklul - Eq. (3.48)
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3.2.4 MoPの計算時に採用する分子速度

本章で導出したMethod-of-Planeの極限 δt(→ 0)は，実際にはMD計算における時間刻み∆t

で置き換えられる．これに伴い次のふたつの仮定を認める必要がある．

1. 時間∆tの間の分子の移動距離 |v|∆tに対し，その範囲内での速度分布関数 f(x,v, t)の変化
は無視できるほど小さい．

2. 面を通過する際の分子速度 vik，vil はMDの時間積分の位置の更新に基づいて適切に決定さ
れる．

MoPの分子の通過速度の向きから計算する質量流束と，実際の分子の位置の更新から計算した質
量流束を一致させるために，本研究では，検査面を通過する前後の分子 iの位置 ri(t)と ri(t+ ∆t)

を用いて，vi ≡ ri(t+∆t)−ri(t)
∆t をMoPでの通過速度として採用している．

式 (3.39) は極限 δt(→ 0) を∆tで置き換えても，検査面 Skを通過するすべての分子の運動量の
総和を取るので，分子運動寄与項については，MoPの検査面で構成された閉じた面からなる検査
体積に対する運動量保存則について何も矛盾しない．
一方，τkinkl (Sk, t) − ρuluk(Sk, t) から τkinkl (Sk, t) を分離する際に用いる移流項 ρuluk(Sk, t) につ

いてはMoP以外の定義も可能であり，一見，τkinkl (Sk, t)は一意的に決定されないように思われる．
しかし質量流束については，式 (3.34) で l = kとすれば，検査面に直交する質量流束は単純に検査
面を通過する質量を，その向き vik/|vik|に従って計算することになるので，厳密に質量保存則を満
たす．つまり式 (3.38)の移流項 ρuluk(Sk, t)について，式 (3.34)で定義される質量流束 ρul(Sk, t)，
ρuk(Sk, t)を用いることで，質量保存則と運動量保存則を両方同時に満たすような一意的な定義が
可能である．
次に，式 (3.14)のエネルギー流束の分子間相互作用寄与項では，相互作用力による仕事で変化

する分子の運動エネルギー変化が力と速度の内積で表されるということに基づいて，式 (3.19)の
ように分子間のエネルギーの移動を表現した．分子動力学法では時間を離散化して分子の運動を
解くので，その際にどのような分子間力や分子速度を採用するかは注意が必要がある．例えば本
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研究で用いている速度Verlet法では，時刻 tと t + ∆tでの分子 iの運動エネルギー変化は

1

2
m|vi(t + ∆t)|2 − 1

2
m|vi(t)|2 =

1

2
m

∣∣∣∣vi(t) + ∆t · Fi(t) + Fi(t + ∆t)

2m

∣∣∣∣2 − 1

2
m|vi(t)|2

=

[
vi(t) +

∆t

2

Fi(t) + Fi(t + ∆t)

2m

]
·
[
Fi(t) + Fi(t + ∆t)

2

]
(3.52)

となる．これは時刻 t+ ∆t
2 における運動エネルギー ekinの時間微分が，時刻 t+ ∆t

2 の力と速度の
内積で表されると解釈できる．これに従って本研究では，エネルギー流束の相互作用寄与項を計
算する際には，分子の速度 viは

vi

(
t +

∆t

2

)
= vi(t) +

∆t

2
· Fi(t) + Fi(t + ∆t)

2m
(3.53)

と，分子 i, j間の相互作用力は

F ij

(
t +

∆t

2

)
=

F ij(t) + F ij(t + ∆t)

2
(3.54)

として式 (3.20)，(3.21)で用いる分子 i, j間のエネルギーの移動 qij を，式 (3.19)に従うかたちで，

qij = ėk
ji +

1

2
Φ̇ij

=
1

2
F ji

(
t +

∆t

2

)
·
[
vj

(
t +

∆t

2

)
+ vi

(
t +

∆t

2

)]
(3.55)

として計算する．

3.2.5 先行研究との差異

同様のMoP形式での密度，質量流束，および応力の表式はDaivisら [90]によって提案されて
いる．この先行研究は周期境界条件下の準一次元系を仮定した検査体積内の運動量の時間微分に
対して Fourier変換をすることで求めたものとなっており，無限の面積を有する検査面上の応力の
計算を可能にするもので，準二次元系や三次元系閉曲面により囲まれる任意の検査体積において
保存則をみたす局所の応力の算出法ではない．これに対して本研究で提案する手法では，速度分布
関数に基づくことで有限の面積を有する検査面上で平均化された巨視量をMDにより抽出するこ
とを可能にするため，一次元だけでなく二次元，さらには三次元においても適用可能である．本
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研究では速度分布関数を間接的に用いて巨視量の算出をするので，有限の面積を有する検査面 Sk

における密度の面平均や，検査面の法線方向の速度 uk だけでなく接線方向の速度 ul の算出も可
能となる利点がある．これについては次章でも議論する．
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本章では，図 4.1(a)に示す単純流体である Lennard-Jones流体からなる準一次元の Couette流
系において，密度，速度場，応力，熱流束分布を前章で導出したMethod-of-Plane (MoP)を用い
て計算することで，本研究で提案する手法の検証を行う．その際，計算系は巨視的には定常であ
るとして，MoPのアンサンブル平均 ⟨⟩を時間平均で置き換えて計算を行う．

4.1 応力解析
Couette流系を実現するにあたって，まず，図 4.1(a)に示すように x, y軸方向に周期境界を課し，

さらに各々1600個の壁面原子からなるせん断をかけない物理的・化学的に均一なふたつの fcc(100)

壁面で 4000個のアルゴンを模擬した流体分子を挟み，MDの時間刻みは∆t=5 fsとした．次に，壁
面の最外層の壁面原子については運動方程式を解かず，最外層から二層目の壁面原子を Langevin

熱浴法により 100 Kに温度制御し，さらに上側の壁面をピストンとして作用させて 4 MPaに圧
力制御し，一度目の緩和として，10 ns間の緩和計算により静止平衡の固液二相系を実現した．次
に，二度目の緩和として，引き続き上側壁面をピストンとして 4 MPaに圧力制御し，さらに上下
壁面を各々x軸方向速度 100 m/sおよび−100 m/sで動かし，10 ns間の緩和計算をした．本研究
では，移流項 ρuuが無視できない場合を取り扱うために，多少極端なせん断を課している．ピス
トンとして作用させている上側壁面の位置は，熱揺らぎの影響で，MD計算中は常に揺らいでい
るため，ある瞬間的な位置に壁面を固定すると，制御圧力からかなり外れることがある．そこで
本研究では，上側壁面を二回目の緩和計算中の平均位置に固定することで，定常非平衡の準一次
元 Couette流系を実現した．その際の圧力は 3.61 MPaとなった．
本研究では，この定常非平衡系の準一次元 Couette流系の密度，速度，移流項，応力を 200 ns

の時間平均により計算することでMoPの検証を行った．その際，Lennard-Jonesポテンシャルパ
ラメータ σf-f = 0.34 nmを流体分子の衝突直径と捉え，空間解像度がそれの半分程度であれば流
れの詳細が解析できると考え，zx平面上で∆z = 0.150 nmおよび∆x = 0.145 nm間隔に系を格
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子状に分割することで得られる x，z-方向に法線ベクトルを有する長方形の検査面 Sx, Sz を用い
てMoPの計算を行った．なお，計算系が準一次元とみなせることをふまえて，同一の z座標を有
する検査面で求まる値は平均化した．また，比較のために，計算系を z方向に 0.15 nm間隔で分
割することで得られる検査体積を用いた体積平均 (VA)により，密度と速度の分布を計算した．

4.1.1 密度と速度の分布

MoPと VAにより求めた密度および x方向の速度成分 uxの分布を図 4.1(b)に示す．これらの
巨視量は，MoPを用いた計算では，Sxおよび Sz のどちらの面でも求めることができるが，ここ
では Sxでの計算結果のみを示している．図 4.1(b)より，全体的にMoPはVAの結果を良く再現
しており，このスケールではMoPとVAの結果は重なって見える．密度分布に関しては，固体壁
面近傍で形成される層構造の吸着層を除いて，バルク部では概ね一定となるが，完全には一定とは
ならない．これは約 16 nmという狭い空間で上下の速度差が約 200 m/sという非常に高いせん断
を課していることにより，液体内部で粘性発熱が生じることによって温度が一定とならず分布を持
つためである．この点については次節の熱流解析にて議論する．また，速度分布に関しては，固体
壁面近傍を除いて，その傾き，すなわちせん断速度は一定値であることがわかる．これは吸着層
を有する固体壁面近傍を除いて，粘性係数が一定値とみなせるためだと考えられる．次に，MoP

と VAの差を計算したものを図 4.1(c)に示す．MoPと VAの密度の計算結果の差は 10 kg/m3以
下，すなわち液体バルクの密度に対して 1 %程度以下であり，速度の計算結果の差も 0.5 m/s以
下であり，MoPによりVAと整合性のとれた密度および巨視的速度の計算が可能であることがわ
かる．

50



第 4章 準一次元 Couette流系

3.917 nm 3.917 nm

(a) Couette-type 
      flow system

(b) density & velocity distributions (c) difference betw. MoP & VA

x

y

z

~
1

6
.5

3
 n

m

velocity, ux [m/s] difference in velocity, ux     � ux  [m/s]MoP VA

-80 -40 0 40 80 -1 0 1

density, ρ [kg/m3] difference in density, ρMoP � ρVA [kg/m3]

0 1000 2000 -10 0 10

ρVA

ux
MoP

ux
VA

ρMoP

p
o

si
ti

o
n

, 
z 

[n
m

]

-5

0

5

Fig. 4.1 (a) Quasi-1D Couette-type flow system of a Lennard-Jones liquid confined between

two solid walls. (b) Distributions of density ρ and velocity ux calculated by the proposed

Method-of-Plane (MoP) and the volume average (VA). Solid and dashed lines denote the results

of MoP and VA, respectively, while the two lines almost overlap in this scale. (c) Difference

between the MoP and the VA regarding density ρMoP− ρVA and velocity uMoP
x −uVAx with their

error bars depicted with semi-transparent areas around the average. (Kusudo, H., Omori, T.,

Yamaguchi, Y., J. Chem. Phys., 155 (2021), 184103; licensed under CCBY.)
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4.1.2 移流項と応力の分布

MoPにより求めた応力および移流項，τzz(≡ τ intzz + τkinzz )，τxx − ρuxux[≡ τ intxx + (τkinxx − ρuxux)]

および ρuxuxの分布を図 4.2(a)に示す．ここで，τzz と τxx − ρuxux[≡ τ intxx + (τkinxx − ρuxux)] は
表 3.1の式 (3.39)と式 (3.12)により直接計算することができ，ρuxuxは密度と速度から求められ
る．また，現在の準一次元系では，z方向速度は系全体で uz = 0となり移流項は無視できるため，
τzz − ρuzuz を τzz としている．ここで，式 (3.12)の τ intkl の計算は，マクロな流れのない静止平衡
系の場合と全く同じである．
この図 4.2(a)に示した τxx − ρuxuxは，従来のMoPを無思慮に適用した場合に応力として算出

されてしまうものに相当するが，これは壁から離れたバルク部においても一定値を取ることはな
く，また，τzzとも異なるため，移流項 ρuxuxを適切に取り除く必要があることがわかる．次に図
4.2(b)に，移流項を取り除いた応力テンソルの各成分 τxx, τzz, τzx および τxz の分布を示す．な
お τzz, τzxは Sz面で，それ以外のものは Sx面で平均化されたものである．ここで，τzz, τzx およ
び τxz に対応する移流項 ρuzuz, ρuzux および ρuxuz には uz = 0が含まれるため無視できるが，
τxxは移流項を適切に取り除く必要があり，式 (3.40)の通り，τxx − ρuxuxに移流項 ρuxuxを足す
ことで求めた．固体壁面から十分離れたバルク部では τxx = τzz および τzx = τxz が満たされ，こ
れは層流の Couette流の解と矛盾しない．また，バルク部の −τxx(= −τzz)の値は壁面が受ける
圧力 3.61 MPaと一致する．なお，壁面接線方向応力 τxxは壁面近傍では一定値を取らず変動して
いるが，これは静止平衡系での応力解析でもみられるもので，図 4.1(b)の密度分布と対応したも
のであり，静止平衡系においては固液界面張力と直接関連付けられる．一方，壁面法線方向応力
τzzは，固液の相互作用力が外力として作用する壁面近傍以外では一定値を取る．これは本研究で
は，流体–固体間相互作用力は応力ではなく外力として扱っているためであり，図 4.3(a)に示すよ
うに，固体表面を下面とし，固体からの相互作用力が及ばない位置を上面とするような検査体積
を考えると，下の面を通る流体分子は存在しないため，下の面に応力は作用しないが，外力は検
査体積に作用し，それが上面に作用する応力と釣り合う．また，横の面に作用するせん断応力は
互いに相殺するため，外力と上の面に作用する応力がつり合う．同様に，応力テンソルの非対角
項であるせん断応力 τzx(= τxz)も，図 4.3(b)に示すようなつり合いから，固体からの摩擦力をう
ける壁面近傍以外では一定値を取る．
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(a) Diagonal stress components & advection term (b) Stress components
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Fig. 4.2 Distributions of (a) the diagonal stress component τzz(Sz)(≡ τ intzz + τkinzz ), advection

term ρuxux(Sx) and τxx(Sx) − ρuxux(Sx)[≡ τ intxx + (τkinxx − ρuxux)], and (b) diagonal and off-

diagonal stress components τxx(Sx), τzz(Sz), τzx(Sz) and τxz(Sx). (Kusudo, H., Omori, T.,

Yamaguchi, Y., J. Chem. Phys., 155 (2021), 184103; licensed under CCBY.)
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Fig. 4.3 Schematic of (a) lateral and (b) horizontal force balance on the CV with setting the

bottom face at solid surface and the top face sufficiently away from the solid surface.
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4.1.3 検査面接線方向の速度の計算

一般的な流れ，すなわちuk ̸= 0およびul ̸= 0(l ̸= k)の場合に，式 (3.39)の τkinkl (Sk)−ρukul(Sk)

から適切に応力項の分離をするためには，検査面 Sk に対して法線方向の速度 uk(Sk)だけでなく
接線方向の速度成分 ul(Sk)を計算する必要がある．そこで，図 4.1(b),(c)では Sxで平均化された
密度 ρ(Sx)および巨視的速度 ux(Sx)の分布を示したが，それに対してここでは，Sxおよび Sz で
平均化された密度 ρ，質量流束 ρux，速度 uxを比較する．まず，式 (3.32)に k = xおよび k = z

を各々代入することで，ρ(Sx)および ρ(Sz)を，式 (3.34)に k = x，l = xおよび k = z，l = x

を各々代入することで ρux(Sx)および ρux(Sz)を計算する．そして，式 (3.35)の通り，質量流束
を密度で割ることによって ux(Sx) = ρux(Sx)

ρ(Sx)
および ux(Sz) = ρux(Sz)

ρ(Sz)
が求まる．なお，現在取り

扱っているような uz = 0の準一次元系では，式 (3.40)の応力を分離する際に，τkinzz ，τkinzx ，τkinxz

に限っては，対応する移流項 ρuzuz，ρuzux，ρuxuz はすべて uz = 0を含むため，これらを求め
るうえでは，uxの計算は実際には不要である．
図 4.4(a)に密度分布 ρ(Sx)および ρ(Sz)を，(b)に質量流束 ρux(Sx)および ρux(Sz)を，(c)に

それらにより求まる巨視的速度 ux(Sx)および ux(Sz)を示す．なお，Sxで平均化された値と Szで
平均化された値は，それぞれの面の中心点で出力したため，∆z/2だけずれて出力されている．こ
の図より，異なる法線ベクトルを有する面で計算された密度，質量流束，速度はよく対応してい
ることがわかり，これは移流項テンソル ρuuの非対角項の適切な分離が可能であることを示唆す
る．また，壁面近傍では面 Sx，Sz で計算された値が整合していないように見えるが，これは Sz

は層構造に平行な面で平均化をすることに対して，Sx面は層構造をまたぐかたちで垂直方向の面
で平均化をしているためである．本研究で提案するMoPは速度分布関数VDFに基づくものなの
で，このように，検査面の法線方向の速度成分だけでなく，接線方向成分の抽出が可能となる．
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(Kusudo, H., Omori, T., Yamaguchi, Y., J. Chem. Phys., 155 (2021), 184103; licensed under

CCBY.)
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4.2 熱流の解析
本節では前節の準一次元 Couette流系を用いて，Method-of-Planeによる流体内部の熱流の解

析を行う．ここでは簡単のために，計算系を z方向に 0.15 nm間隔で分割することで現れる，xy

平面と平行な検査面 Sz を用いてMoPの計算を行い，熱流の算出を行った．

4.2.1 Couette流系の温度・熱流束分布

ここでは流体内部に生じる熱流束を，流体間の熱流束 J f
Qz と流体–固体間の熱流 dJ fw

Qz

dz に分けて
各々計算する．まず流体間の熱流束 J f

Qz については，式 (3.48)に従って，流体間のエネルギー流
束 J f

Tz = J f
Qz + ρefuz − τzxux からエネルギーの移流の項 ρefuz を引き，応力仕事の項 τzxuxを足

すことで求まる．これらの項を式 (3.26)に対応するかたちで図 4.5に示す．
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Fig. 4.5 Distributions of (a) energy flux J f
Tz,(b) energy advection term ρefuz, (c) stress work

(τ · u)z and (d)heat flux J f
Qz in fluid due to fluid in Couette-flow system.

ここで取り扱っている系は準一次元の定常系なので，エネルギー流束は常に一定値を取るはず
であり，図 4.5(a)の流体間のエネルギー流束 J f

Tz は実際に，固体壁面から十分遠いバルク部では
常に一定となっていることがわかる．なお，現在は定常の上下対称の準一次元系であるため，バ
ルク部でのエネルギー流束は 0となっている．一方，固体壁面近傍で値が変化しているのは，流
体に対するエネルギー保存は流体内部のエネルギー流束だけでなく，固体壁面から流体に流れる

56



第 4章 準一次元 Couette流系

エネルギー流束を考慮して初めて成立するためである．図 4.5(b)のエネルギーの移流の項は ρefuz

は全域でゼロとなっているが，これは計算系が準一次元系であるために uz = 0となるためである．
このように ρefuz = 0となる場合でも，流体の持つエネルギー ef = ekin + effはMoPにより算出
可能であり，そのうちの，流体分子のもつ運動エネルギー eikinを平均化したものが図 4.6左であ
る．ここで分子の持つ運動エネルギー eikinをMoPにより平均化する際，次のように流体のもつ巨
視的な運動エネルギーと温度に関連付けられる熱エネルギーに分離することができる．

ρekin(Sk, t) = lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

eikin∣∣vik∣∣
〉

= lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

1

2
m|vi|2 1∣∣vik∣∣

〉

= lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

1

2
m
(
|vi − u|2 + 2u · vi − u · u

) 1∣∣vik∣∣
〉

= lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

1

2
m|vi − u|2 1∣∣vik∣∣

〉

+ lim
δt→0

1

Skδt

〈
crossing Sk∑
i∈fluid,δt

1

2
m
(
2u · vi − u · u

) 1∣∣vik∣∣
〉

=
3

2

ρkBT (Sk, t)

m
+

1

2
ρ|u(Sk, t)|2 (4.1)

なお，式 (3.32)，(3.34)を変形に用いた．これから図 4.6の中央に示す流体の持つ巨視的な運動エ
ネルギーを除くことで，図 4.6右に示す熱エネルギー，すなわち温度に対応するものが求まり，こ
の系において，中心で温度が高くなっていることがわかる．この温度の変化により，バルク部で
あっても液体の密度が一定ではなく，その結果，図 4.7に示す式 (3.44)の流体間相互作用ポテン
シャルによるエネルギー effもバルク部で一定値とはならない．
また，流体–固体間相互作用エネルギー efwも同様に (3.46)から求めることができる．これを図

4.7に示す．流体–固体間相互作用エネルギー efwは固体壁面近傍でのみ値を持つことがわかる．
準一次元系では uy = 0，uz = 0であるため，図 4.5(c)の応力仕事の項は結局

(τ · u)z = τzxux(Sz, t) + τzyuy(Sz, t) + τzzuz(Sz, t) = τzxux(Sz, t) (4.2)
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となる．さらにバルクでは，図 4.2(b)で示したようにせん断応力 τzxは一定値を取り，図 4.1(b)

で示したように uxの傾きもおおよそ一定となる．そのため，応力仕事の項も同様に，固体壁面か
ら十分遠いバルク部では傾きがおおよそ一定となる．なお，計算系の中心では対称性から ux = 0

となるため応力仕事も同様に中心で 0となっている．このようにして図 4.5(d)の流体間の熱流束
J f
Qz が求めることができ，固体壁面から十分遠いバルク部ではその傾きは一定となっている．こ
れは Couette流系では速度分布が線形であるために流体内部での粘性発熱が一定値をとるためで
ある．ここで定常準一次元Couette流系のバルクにおける式 (3.7)のエネルギー保存則は，時間微
分の項がゼロ，壁面法線方向速度 uz = 0となるので次式で書ける．

∂JQz

∂z
− ∂τzxux

∂z
= 0 (4.3)

ここでNewtonの粘性法則 τzx = µ∂ux
∂xz
を認め，Couette流系の速度分布が線形となると仮定すれ

ば，熱流束の発散は

∂JQz

∂z
=

∂τzxux
∂z

= µ

(
∂ux
∂z

)2

(4.4)

となりバルク部では一定の粘性発熱が生じ，それにより傾きが一定の熱流束が誘起されていると
考えられる．なお，粘性係数 µは一定値として取り扱った．
次に，流体–固体間の熱流の算出を行う．式 (3.51)のように流体が固体から受ける外力を体積力

として取り扱うことに伴い，熱流束も発散の形式，つまり，検査体積内の流体が固体に奪われた熱
∇·J fw

Q というかたちで流体–固体間の熱流を取り扱う必要がある．その際，式 (3.51)のように流体–

固体間のエネルギー流束 J fw
Tzやエネルギーの移流の項 ρefwuzは検査体積の表面を通過する流束を

面積分することになる．本節では計算系を z方向に 0.15 nm間隔で分割した際に現れる xy平面を
MoPの検査面としているので，式 (3.50)の各項はすべて∆x×∆y×∆z = 3.917×3.917×0.150 nm3

の局所の検査体積での平均値として取り扱う．
まず，流体が固体に奪われるエネルギー流量∇ ·J fw

T =
dJ fw

Tz
dz を図 4.8(a)に示す．流体–固体間の

エネルギー流束は流体–固体間の相互作用によるものなので，固液界面の近傍でのみ値を有し，上
下壁面の相互作用が及ぶ範囲で各々zに関して積分をすることで上下の固液界面を通過するエネル
ギー流束を各々計算することができる．現在取り扱っているような上下対称な定常系ならば，それ
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dz in fluid due to solid wall in a Couette-flow system.

は，エネルギー保存則と対称性から，上下の界面を通過するエネルギー流束は各々ゼロとなる．同
様に流体–固体間のエネルギーの移流の項∇· ρefwu = dρefwuz

dz および外力仕事 ρF ·uVA = ρFxu
VA
x

を各々図 4.8(b)および (c)に示す．図 4.5(b)の場合と同様に，流体は z方向に速度を持たず uz = 0

なので固液のエネルギーの移流も全域でゼロとなる．最後に図 4.8(d)に流体が固体に奪われる熱
流量∇ · J fw

Q =
dJ fw

Qz

dz を示す．
dJ fw

Qz

dz は固液界面近傍で正の値を持っているので流体は固体壁面に熱
を奪われている，すなわち流体内部の粘性発熱や固液界面の摩擦熱を固体壁面に設定した熱浴で
吸い込むことで定常状態が実現されていることがわかる．
ここで流体–固体間の熱流 dJ fw

Qz

dz を zに関して積分をすれば，流体–固体間の熱流束 J fw
Qzを定義す

ることができる．具体的には，系の中心 (z=0)といった固液界面から十分遠い固液の相互作用が
及ばないため場所では, 固液の熱流束をゼロとして考えて，上下の固液界面に向かって dJ fw

Qz

dz を積
分することで

J fw
Qz(z) =

∫ z

z=0
dz

dJ fw
Qz

dz
, (4.5)

として流体–固体間の熱流束 J fw
Qz(z)の分布が得られる．このようにして求めた流体–固体間の熱流

束と流体間の熱流束の和を，流体内部に生じる熱流束 JQz = J f
Qz + J fw

Qzとして図 4.9に示す．この
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図から，流体内部に生じる熱流束は固液界面の極近傍までおおよそ線形であることがわかり，そ
の時の温度の分布も同図に示すと二次関数のようになることがわかった．熱流束が温度勾配に熱
伝導率 λで比例するという Fourierの法則を認め，なおかつ，その熱伝導率は定数と仮定すれば，
式 (4.4)は

∂JQz

∂z
= µ

(
∂ux
∂z

)2

∂

∂z

(
−λ

∂T

z

)
= µ

(
∂ux
∂z

)2

∂2T

∂z2
= −µ

λ

(
∂ux
∂z

)2

= const. (4.6)

となり，温度の二階微分が定数となるので図 4.9の温度分布に矛盾しない．また，図 4.9に示した
固液のエネルギー流束と流体内部のエネルギー流束の和 JTz = J f

Tz + J fw
Tz は全域で 0となり，定

常一次元の系ではエネルギー流束は一定値を取ることがわかる．
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Fig. 4.9 　 Distributions of (red solid line) heat flux, (black solid line) energy flux and (blue

dashed line) temperature in a Couette-flow system.
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前節で取り扱った準一次元Couette 流系に対して，ここでは図 5.1上段に示す固気液三相の動的
接触線を有する準二次元系において，Method-of-Planeを用いて，定常な動的接触線近傍に誘起さ
れる応力分布や熱流を解き明かしていく．基本的な計算条件は前章の準一次元の Couette流系と
同じで，まず x, y方向に周期境界条件を課し，20000 個のアルゴン分子を模擬した Lennard-Jones

粒子をおよそ 10.4 nmの幅で設置された各々16000個の壁面原子からなる制御温度 85 Kのふたつ
の壁面で挟む．その結果，まず壁面によるせん断を課さない条件において，温度 85 Kで平衡状態
にある静的な接触線を有する準二次元の気液界面が形成され，その接触角は 57◦となった．さら
にこの平衡状態から，上下の壁面の最外層を x方向に各々±10 m/sで動かし，10 nsの緩和計算を
することで，上下非対称な気液界面を有する定常なせん断流を誘起した．ここで，応力解析，熱
流解析のどちらでもMoPの計算には∆x=0.150 nm，∆z=0.149 nm の間隔に系を格子状に分割
して得られる検査面を用いている．その際，前章と同様に，計算系は巨視的には定常であるとし
て，MoPのアンサンブル平均 ⟨⟩を時間平均で置き換えて計算を行う．

5.1 応力解析
ここでは図 5.1上段に示す準二次元系を用いて，動的接触線近傍に形成される密度分布，流れ場

や応力分布をMoPにより計算する．その際の巨視量の計算には 500 nsの時間平均を用いた．

5.1.1 動的接触線近傍の密度・速度・応力分布

まず x方向に法線ベクトルを有する検査面 Sxで計算した密度 ρ(Sx)および，気相を除いた部分
の速度 ux(Sx)，uz(Sz)からなる速度ベクトルと，z 方向に法線ベクトルを有する検査面 Sz で計
算したせん断応力 τzx(Sz)を図 5.1中段に示す．ここで系の対称性から，密度 ρ(Sx)およびせん断
応力 τzx(Sz)は，流体の重心に関して各々半分の部分だけ出力している．まず，固液界面に層状の
密度場が形成されていることがわかるが，これは吸着層と呼ばれるものである．また，気液界面
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の形状は静的接触線のもの [36,86]とは異なり，固体壁面から十分に離れた場所でも曲率が一定で
はない，つまり上下非対称な気液界面を形成している．ここで固気界面側から固液界面側に壁面
が進んでくるような接触線は前進接触線，その逆のものは後退接触線と呼ばれるものであり，気
液界面が上下非対称になっていることで，前進・後退の接触角の差異が現れていることがわかる．
また，液体内部では時計回りのキャタピラー型の流れ場が形成されていることがわかり，さらに
粘性によって液体バルク部のせん断応力 τzx(Sz)は一定値を取らず不均一となっている．また，気
液界面近傍では，気液界面張力の影響により，気液界面接線方向に引っ張り方向の応力成分がせ
ん断応力 τzx(Sz)に現れている．
最後に，応力テンソルの対角成分 τxx(Sx)，τzz(Sz)を図 5.1下段に示す．これらもせん断応力と

同様に，気液界面近傍では気液界面張力によって引っ張り方向の力が作用していることがわかる．
また，固液界面近傍では，密度吸着層によって τxx(Sx)も層構造になっているが，これは静的な液
滴においても確認できるものであり，先述のようにBakkerの式によって固液界面張力に関連付け
られる [36]．図 5.2に τxx(Sx)のカラーバーを変更したものを示す．この図から，吸着層の密度の
高いところでは τxx(Sx)は負，すなわち流体は界面接線方向に圧縮されていて，一方，層と層の間
の密度の低いところでは流体は引っ張られている．また，壁面法線方向の応力 τzz(Sz)には固液界
面張力の影響は陽には含まれないため，気液界面から十分遠い部分では τzz(Sz)は液体の圧力と関
連付けられることになる．それによると液体内部の圧力もまた不均一な場を形成しており，これ
は，粘性の影響や次節で述べる温度分布によるものであると考えられる． このように動的接触線
近傍では，たとえバルク部であっても，不均一な圧力場を形成しているため，第 1章で紹介した
Qian [49]のモデルのように，検査体積の表面に作用する力を界面張力に置き換えるのは簡単では
ない．この点については本章の最終項 5.3で議論する．
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Fig. 5.1 Top: quasi-2D Couette-type flow system of a Lennard-Jones liquid confined between

two solid walls. Middle: distributions of density ρ(Sx), velocity u, and off-diagonal stress

component τzx(Sz). Black arrows denote the macroscopic velocity calculated by the proposed

Method of Plane. The rectangle set around the contact line shown in magenta is the control

volume, for which mass conservation is checked in Table 5.1. Bottom: distributions of diagonal

stress components τxx(Sx) and τzz(Sz). (Kusudo, H., Omori, T., Yamaguchi, Y., J. Chem.

Phys., 155 (2021), 184103; licensed under CCBY.)
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静的接触線近傍の密度・速度・応力分布

ここでは，比較のために静的接触線近傍の応力解析の結果を示す．基本的な計算条件は図 5.1の
計算系の壁面速度を 0 m/sとすることで，静的接触線を有する静止平衡系を誘起している．図 5.3

に 100 nsの時間平均を用いた密度，応力の分布を示す．動的接触線の場合とは異なり，気液界面
は上下対称となっているが，これは粘性応力が液体内部に誘起されないためである．例えばせん断
応力 τzxは動的接触線の場合とは異なり, 液体内部ではゼロになっている．また，主応力 τxx，τzz

も同様に，動的接触線の場合とは異なり，バルクで一定値になっている．このように静止平衡系で
はバルク部の圧力が一定値に定まるので，応力分布と界面張力を関連付ける Bakkerの式 [39]が
適用でき，静的接触線を含む検査体積に対する力のつり合いはYoungの式に帰結する [36]．
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Fig. 5.3 Top: distributions of density ρ(Sx) and off-diagonal stress component τzx(Sz), bottom:

distributions of diagonal stress components τxx(Sx) and τzz(Sz) in the static system with wall

speed at 0 m/s.
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5.1.2 液体内部に生じる粘性の影響

位置 xにある流体が下側壁面から受ける単位面積当たりの−x方向の摩擦力 τwを

τw = −
∫ z=0

zBS

dzρF ext
x (x, z) (5.1)

と定義し，z = 0におけるせん断応力 τzx(x, z = 0)を図 5.4上部に示す．ここで zBS は流体分子
の到達できる下限の位置より低く，かつ，固体壁面より高い位置 zBS = −5.1 nmに設定した．上
述したように，せん断応力には気液界面張力の影響だけでなく，粘性応力の影響が表れているこ
とが，中心部の値を見るとわかる．図 1.3のGNBCの模式図に対応するかたちで，図 5.4下部に
接触線を含む検査体積と，系の中央部で接触線を含まない検査体積に対する力のつり合いの模式
図を示す．中心部の検査体積には，上面にはせん断応力 τzx(x, z = 0)（＝粘性応力 τvzx）が，左右
の面には液体内部の圧力と固液界面張力が作用し，これらが下側壁面から受ける摩擦力 τwとつり
合っている．系の中心付近では，左右の面に作用する圧力と界面張力が各々等しいとすると，結
局，上面に作用するせん断応力と固液間の摩擦力がつり合うことになり，系の中心部ではそれら
はつり合っていることがわかる．一方，接触線を含む検査体積については，上面には気液界面張力
と粘性応力の合力のせん断応力が，左面には気体部の圧力および固気界面張力が，右面には液体
内部の圧力と固液界面張力が作用し，これらが下側壁面から受ける摩擦力 τwとつり合っている．
つまり，詳細は 1.1.3節の動的濡れモデルにて紹介したが，動的濡れ現象を界面張力と接触線に作
用する抵抗力という表式で整理する際に，式 (1.12)のように，抵抗力は流体に作用する摩擦力と
粘性応力の差で表現される．そのような表式をする際には，式 (1.7)のように，界面張力に由来す
る応力と粘性応力を分離する必要があるが，これは現状の分子動力学法では原理的に極めて難し
い．付録 Bに，Newtonの粘性法則を仮定することで，粘性応力の算出を試みた計算結果を示す．
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5.1.3 MoPによる保存則の成立

図 5.1で示した密度や速度はすべてMoPにより定義したものだが，テクニカルには隣り合う局
所の体積において体積平均 (VA)の方法によって計算した密度・速度を，内挿補間して面上の値を
定義することも可能である．しかし，局所の検査体積の表面が密度が不均一な場所に設定されてい
る場合は，そのように補間した密度や速度を用いても，質量保存則を厳密には満たさなくなる．こ
れを示すため，ここでは，質量流束をMoPとVAによる補間の 2通りで計算し，図 5.1中段にマゼ
ンタで示した動的接触線を囲む長方形の検査体積に対する質量保存則を取り扱い，MoPの優位性
を示す．ここで検査体積CVの左右の面は各々xL=32.3 nm，xR=39.2 nmに，下面は系の中心線
zB=0 nm，上面は流体分子の到達できる上限の位置より高い zT=5.1 nmに設定した [36–38,86,91]．
このような設定の場合，検査体積上面を通過する流体分子は存在しないことをふまえて，次式で
定義される左右下面を通過する質量流量

ṁL ≡
∫ zT

zB

dzρ(xL, z)ux(xL, z) (5.2)

ṁR ≡
∫ zT

zB

dzρ(xR, z)ux(xR, z) (5.3)

および
ṁB ≡

∫ xR

xL

dxρ(x, zB)uz(x, zB) (5.4)

を各々MoPとVAにより求めた．MoPの計算では，図 5.5にマゼンタで示した検査体積の表面を
検査面として求まる密度 ρ と速度 u を用いて式 (5.2)-(5.4) の数値積分をするのに対して，VAの
計算では，MoPの検査面を挟む形で隣り合うふたつの局所体積（∆z × ∆x = 0.149 × 0.150 nm2

図 5.5の青い四角)で各々体積平均 (VA)した分子の運動量の平均値を内挿したものを面上の質量
流束として，それを式 (5.2)-(5.4)の数値積分をする．このVAの補間による質量流束は結局，CV

の左右の面については，zx平面での底面積が∆z × ∆x = 0.149 × 0.300 nm2 となる体積に対す
る平均値，CVの下面については，zx平面での底面積が ∆z × ∆x = 0.298 × 0.150 nm2 となる
体積に対する平均値を計算していることになる．ここで検査体積 CV内の質量変化が表面を通過
する質量流量とつり合うという式 (3.2)の質量保存則に基づいて，検査体積から流出する質量流量
ṁR − ṁL − ṁB を検査体積内の質量変化，すなわち時間微分の項

ṀCV ≡
∫∫

CV dV ρ(x, tend) −
∫∫

CV dV ρ(x, tinit)

tend − tinit
(5.5)
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Fig. 5.5 VA bin volumes shown in dark blue around the control volume (CV) shown in magenta

(identical to the CV in Fig. 5.1). The mass flux on the CV face were obtained by the interpolation

of the values of adjacent VA bin volumes and compared with the mass flux calculated by the

MoP on the bin face shown in magenta. (Kusudo, H., Omori, T., Yamaguchi, Y., J. Chem.

Phys., 155 (2021), 184103; licensed under CCBY.)

と比べる．ここで ∫∫CV dV は検査体積 CVに対する体積分を表し，右辺はサンプリング間隔の最
初 tinitと最後 tendでの検査体積内の流体分子数の差を意味する．なお，巨視的には定常状態であっ
ても，ṀCV は厳密にはゼロとはならないことがある．これはMDの時間経過とともに接触線は微
視的に熱揺らぎで移動 [41,51] していることで，サンプリング間隔の最初と最後で，検査体積内の
流体分子数が必ずしも一致しないことと，液体部分の重心の補正を行っていることによる．なお，
この重心の補正を行わなければ，検査体積に対する質量保存則が厳密に成立するが，その場合は，
検査体積に対する接触線や液体の重心の相対位置が時間によって変化する可能性がある．
設定した検査体積CVの左右下面を通過する質量流量について，MoPとVAにより求めた結果

を各々表 5.1 に示す．なお，時間平均として設定した 500 nsは，現在のMoPや VAのセルサイ
ズに対して十分長いとは言えず誤差はかなり大きいが，式 (5.5)の時間微分項は厳密にMoPによ
る質量流量とつり合い，質量保存則に整合する．それとは対照的に，現在の有限サイズの局所の
体積から計算した VAによる質量流量では質量保存則を満たすことはできない．特にこの VAと
MoPの質量流量の不一致は，いまの場合は，検査体積CVの左面で確認でき，これは気液界面に
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よる強い不均一性によるものである．すなわち，検査面法線方向に強い不均一性があると，VAで
は適切に質量流量を表現できないことを表している．一方，CVの右面や下面は気相，つまりそこ
まで強い不均一性のない場所に設定されているため，MoPとVAはおおむね一致している．この
MoPとVAの不一致はVAで用いる局所の体積のサイズを極限まで小さくすれば解決できること
にはなるが，運動量やエネルギーの保存則を見積もる際には，分子間相互作用力寄与項を考慮す
る必要があり，それには相互作用力の力線と局所の検査体積の交わる距離を計算する必要が生じ，
そのような計算は非常に高負荷であり，現実的とは言えず，面上で平均操作を行うMoPを使う方
が簡単であり，また，連続体の保存則，すなわち流体力学の方程式系に則したものとなる．

Table 5.1 Mass flow rates ṁL, ṁR and ṁB respectively on the left, right and bottom faces of

the control volume (CV) and the time derivative of the mass ṀCV in the CV shown in magenta

in the middle panel of Fig. 5.1. (Kusudo, H., Omori, T., Yamaguchi, Y., J. Chem. Phys., 155

(2021), 184103; licensed under CCBY.)

propertya MoP VA

ṁL 4.3 ± 1.8 6.0 ± 1.8

ṁR 5.5 ± 0.3 5.5 ± 0.2

ṁB 0.8 ± 0.2 0.8 ± 0.2

ṁR − ṁL − ṁB
b 0.5 ± 1.9 −1.3 ± 1.8

−ṀCV - 0.5 ± 1.8

adefined by Eqs. (5.2)-(5.5), all in unit of ×10−7 kg/m ·s.
bmass flux on the top face at the fluid-solid interface is zero.
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5.2 熱流の解析
本節では前節と同じ定常な動的接触線を有する準二次元系を用いて，Method-of-Planeによる

流体内部の熱流束の解析を行う．熱流の解析は応力解析に比べて計算負荷が非常に大きくなるた
め，ここでは応力解析の場合とは異なり 400 nsの時間平均による計算結果を示す．また，MoPの
空間刻みは応力解析の場合と同じに設定した．

5.2.1 動的接触線近傍の温度・熱流束分布

MoPにより計算した流体間のエネルギー流束 J f
T，エネルギーの移流の項 ρefu，応力仕事 τ ·u

と流体内部の熱流束 J f
Qを図 5.6に示す．この図より，今回の系では流体間のエネルギー流束 J f

T

のほとんどがエネルギーの移流の項 ρefuであることがわかり，今回の計算条件の場合，式 (3.48)

から計算される熱流束はそれらと比べるとかなり小さい値となっている．本研究で誘起される温
度勾配が小さい影響もあるが，流れ場を有する液体内部の熱流束を求める際にはかなり大きな値
同士の差を計算することになり，適切な熱流束の値を得るには非常に長時間の平均時間を要する
ことがわかる．
さらに図 5.6 と同様に，局所の体積内の流体から固体へ流出する単位体積当たりのエネルギー

流量∇ · J fw
T ，エネルギーの移流の項の発散∇ · ρefwu，外力仕事 ρF ext · uVA および流体から固

体に流出する熱流∇ · J fw
Q を図 5.7に示す．これらは固体–流体の相互作用によるものであるため，

どの項も固体壁面の極近傍でのみゼロでない値を持つことがわかる．そこで，下側の固体壁面の
極近傍でのより詳細な分布を図 5.8に示す．第一吸着層の流体分子は固体壁面からの相互作用力に
よって壁面接線方向に仕事を受ける，すなわちエネルギーを受け取るため，∇ · J fw

T < 0となる．
一方，図 5.1の流れ場からわかるように，接触線付近では流体は壁面法線方向の速度を持ってい
て，第一吸着層より上の場所では，接触線付近における流体分子の上下の運動によるエネルギー
流が支配的となるため，前進接触線付近では∇ · J fw

T > 0で，後退接触線付近では∇ · J fw
T < 0と

なっている．外力仕事 ρF ext ·uVAについても，接触線付近では，せん断力による仕事よりも，前
進，後退接触線付近の流体が各々固体壁面に近づく，遠ざかることが支配的になっていることが
わかる．マクロには多くの場合，固体壁面は単なる境界条件として取り扱うものだが，ミクロに
はポテンシャル場を及ぼすものであるため，固体–流体間ではこのように，複雑なエネルギーの授
受が行われていることがわかる．
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Fig. 5.6 Distributions of fluid-fluid energy flux J f
T, energy advection ρefu, stress work τ · u

and heat flux J f
Q from top to bottom panels regarding the (left) x- and (right) z-direction

components. Note that the color map range for the top four is different from that for the

bottom four.
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Fig. 5.7 Whole distributions of the divergence of fluid-wall energy flux ∇·J fw
T , energy advection
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Fig. 5.8 Enlarged distributions of the divergence of fluid-wall energy flux ∇ · J fw
T , energy

advection ∇· ρefwu, external force work ρF ext ·uVA and heat flux ∇·J fw
Q near the bottom wall.
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5.2.2 発熱・吸熱量の定式化

ここでは，計算系の下部を前進接触線を含む検査体積，後退接触線を含む検査体積，接触線を含
まない検査体積の三つの検査体積に分割して，最終的には図 5.9(a)に示すように各々の検査体積
の表面を通過する熱流束から，各検査体積での発熱・吸熱量を定量化することを行う．エネルギー
流束や応力仕事の項については，付録 Dに示す．まず，温度と熱流束の分布を重ねて図 5.9(a)に
示す．これにより前進接触線ではバルク部に比べて温度が上昇し，それに対して後退接触線では
温度が下降，つまり前進・後退の接触線で各々発熱・吸熱し，その間に誘起される温度勾配によっ
て前進接触線から後退接触線に熱が流れていることがわかる．さらに，図 5.9(a)にマゼンタで示
す前進接触線を含む検査体積，後退接触線を含む検査体積，接触線を含まない検査体積の三つの
検査体積を用いて，各々の発熱・吸熱量を見積もることを考える．まず，各検査体積の表面を通過
する熱流を図 5.9(a)に，奥行き長さで除した次元 mW/mで示す．ここで厳密には検査体積の左
右面を通過する固体–流体間の熱流 J fw

Q が存在するが，図を簡略化するために，固体–流体間の熱
流はすべて検査体積下面の矢印として表記した．単位時間当たりの検査体積 CV内で生じる定常
な発熱・吸熱量 Q̇CVは，定常であることとエネルギーの湧き出しがないことに基づいて検査体積
CVの表面 Sを通過する定常な熱流束の面積分

Q̇CV =

∫
S

dSJQknk (5.6)

で定義されるとした．この式によって計算した発熱・吸熱量も図 5.9(a)の各検査体積の中に示す．
図 5.9(a)より，後退接触線では吸熱しており，それに対して前進接触線では発熱することがわかっ
た．また，それらの絶対値は同程度である．一方，接触線を含まない中心部の検査体積では液体
内部で生じる粘性によって発熱していて [1]，その値は接触線で生じる発熱・吸熱量の半分程度で
あることから，動的接触”線”では粘性発熱とは異なるメカニズムで発熱や吸熱が起きていること
がわかる．
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Fig. 5.9 Surface integral of (a) heat flux and (b) energy advection on the surface of three
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middle: between the left and right CVs. The top panel shows the heat flux field (black arrow)

and temperature distribution. The heat production/reduction terms in each CV are shown in
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5.2.3 流線に沿った界面の変化による疑似的な潜熱

まず，相変化に伴う凝縮熱や蒸発熱は，流体分子が液相と気相の間を移動する際の内部エネル
ギー変化に相当するものである．この動的接触線近傍では，これと同様に，定常な流線に沿って
内部エネルギーが変化することにより疑似的に潜熱のようなものが生じていると考えられる．
図 5.9(b)にエネルギーの移流の項を示す．これより，動的接触線での発熱・吸熱量は，主に図

5.9(b)のエネルギーの移流の項によるものであることがわかる．このエネルギーの移流の項の面
積分 ∫

S
dSρeuknk (5.7)

は検査体積に流入する流体と流出する流体のもつエネルギーの差にあたる．ここで固液のポテンシャ
ルを考慮した内部エネルギー eintは，流体の持つエネルギーから巨視的な運動エネルギー 1

2ρ|u|
2

を引くことで次式で定義される．

eint =

(
ekin −

1

2
ρ|u|2

)
+ eff + efw (5.8)

このように定義した内部エネルギー eintを流れ場に重ねて図 5.10に示す．この図より，接触線近
傍では流れ場に沿って内部エネルギーが変化することになるのが確認でき，そのような場所で流
体は発熱，または吸熱している．つまり前進接触線では，固気界面と気液界面の領域から，主に
固液界面の領域に流体が移動する過程で，固体からの外場による内部エネルギーの変化に伴って
発熱し，後退接触線では，固液界面の領域から，主に固気界面と気液界面の領域に流体が移動す
る過程で，固体からの外場による内部エネルギーの変化に伴って吸熱していると考えられる．ま
た，この動的接触線近傍での流線に沿った内部エネルギー変化に伴う発熱・吸熱現象は，ここで
取り扱った濡れの良い壁面上でのみ起きるわけではなく，付録 Cにように濡れの悪い壁面上でも
同様に生じる．
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5.3 既存の動的濡れモデルに関する議論
前節までは，各種保存則に整合するかたちで応力と熱流の分子動力学解析を行った．本節では，

それらの解析結果に基づき，既存の動的濡れモデルについて議論する．

5.3.1 Qianのモデルの場合

本項では，準二次元の動的接触線に対する応力解析に基づいて，Qianのモデルについて議論す
る． Qianのモデルでは，動的接触線を含む検査体積内の流体に作用する粘性応力および固体から
作用する摩擦力が，各界面張力とつり合うとしていた． つまりは， Qianのモデルは，検査体積
の各面に作用する力が，界面張力や粘性応力に置き換えられるという前提に立つことで，連続体
の方程式系の境界条件を与えるものであった．これの実現性について，特に，以下の三項目につ
いて，議論する．

1. 粘性応力の分離

2. 動的な界面張力の定義

3. 固液摩擦係数の取り扱い

まず，本研究で提案するMethod-of-Planeでは，マクロの保存則に整合するかたちで応力を定
義したが，図 5.4の通り，応力は，界面張力の効果と粘性の効果の和として得られるものであり，
そのような分離は現状の分子動力学法の枠組みではきわめて難しい． 接触線や界面から十分遠い
バルク部については，Newtonの粘性法則が成立する可能性が付録Bから示唆されているため，そ
のような場所では粘性応力の分離が出来る可能性がある．しかし，Navier-Stokesの方程式といっ
た，連続体の方程式の境界条件を与えるという意味では，バルク部の粘性応力も重要ではあるが，
それ以上に，接触角を決定する要因のひとつである，動的接触線の極近傍の粘性応力の算出が必
要となる．つまりは，バルク部ではない界面や接触線の近傍における粘性応力と界面張力の分離
が求められるが，そのような，密度が勾配を持つところで局所の粘性係数を決定する明確な方法
論はなく，そもそもNewtonの粘性法則が成立するのかすらもわからない．
次に動的な界面張力の定義について議論する．まず，静的接触線については，それを含む検査体

積の表面に作用する応力分布を，付録 AのBakkerの式を用いることによって，バルクの圧力と界
面張力に置き換えていた [36]．これに対して，動的接触線の近傍でも同様に，Bakkerの式を用い

79



第 5章 準二次元の動的接触線系

て固体―流体界面における界面張力を置き換えたいが，適切に粘性の効果を除去しなければならな
い．しかし，そのような界面で現れる吸着層と呼ばれる密度に層構造が現れる領域では，Newton

の粘性法則が適用できないという報告もある [40]．そこで，ひとつの解決策として，流れの影響
しない方向の主応力を用いて，界面張力を計算することも考えられる．具体的には，本研究で用
いる計算系は準二次元系なので，流れのない奥行き方向（図 5.1中では y-方向）の応力には粘性
の影響は含められないので，それを用いることで，動的接触線近傍での局所の固体―流体界面張
力が定義できる可能性がある．なお，注意すべき点として，動的接触線近傍では，上述の粘性応
力の影響により，バルク部の圧力は一定値を取らないため，やはり，Bakkerの式を直接的に用い
た動的な界面張力の定義は難しい．しかし，動的接触角という境界条件を与えるという意味では，
実用的には，動的接触線から十分遠い，粘性の影響が無視できる場所での界面張力を採用すれば
よい．
さて，動的接触角という境界条件を与えるのには，ここまでに述べた粘性応力の分布，各界面

張力に加えて，流体が固体壁面からうける摩擦力の分布が必要であり，これについて Qianらは，
第 1章で紹介した Navier境界条件に従い，この摩擦力を，摩擦係数とすべり速度の積で与えた．
このすべり速度を，連続体の境界条件における流体速度に基づいて決定出来れば，簡単に境界条
件が設定できるが，図 5.8からわかるように，固体―流体間の摩擦力は主に第一吸着層の流体分子
にはたらく固体―流体間相互作用力によるものである．つまり，すべり速度は固体壁面の極近傍，
すなわち，例えば第一吸着層で定義するのが妥当であり，さらに，その摩擦係数は分布を持つこ
とになる．
このように，Navier-Stokes方程式の境界条件に動的濡れ現象のミクロスケールの効果を組み込

む際には，その境界位置の設定，およびその境界での粘性応力の分布の抽出，さらにその境界の
外側の壁面の極近傍の流体の速度によって摩擦力が決定されており，それによって境界における
動的接触角が決まることになるが，これらすべてを矛盾なく接続しうる境界条件が決められるか
は現段階では明らかではない．

5.3.2 de Gennesのモデルの場合

de Gennesによるモデルでは，動的接触線近傍での粘性散逸と，動的接触線に対する抵抗力に
よる仕事がつり合うとしていた．まず，前節の結果から，動的接触線では，粘性散逸による発熱
だけでなく，疑似的な潜熱による発熱および吸熱が生じていることがわかったため，その影響の
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大小は未だ不明ではあるが，その効果も考慮に入れるべきだと考えられる．
また，Qianのモデルにも関連する話だが，ミクロスケールの力のつり合いを，固体からの摩擦

力と粘性応力と界面張力のつり合いに置き換えるためには，接触線を含む検査体積を十分大きく
設定する必要がある．これは，検査体積の上面にバルクが存在するような条件でないと，検査体
積に対する水平方向の力の分布と界面張力を関連づける Bakkerの式が適用できないためである．
つまりは，ミクロには界面は厚みを持ち，それより遠い部分で接触角を定義しなければ，抵抗力
を，fCL = γLV(cosθd − cosθs)と置き換えることはできない．また，抵抗力は分布を有さず接触線
のみに作用するとして，接触線の速度 UCLを用いて，図 1.2にあるように，抵抗力による仕事を
fCLUCL としているが，ミクロスケールには速度も抵抗力も分布を有しているため，積分の形式
で，設定した検査体積に作用する仕事を定義するべきである．

5.3.3 Molecular Kinetic Theoryのモデルの場合

BlakeらによるMolecular Kinetic Theory(MKT)では，固体壁面上の吸着サイトを，流体分子
がジャンプすることで移動すると捉え，その分子のジャンプの方向と頻度によって，結局は，接触
線の移動速度が決定されるとしていた．その際，接触線に作用する抵抗力の単位移動距離に対す
る仕事がすべて，接触線での流体分子のジャンプに寄与するとして，分子がジャンプする頻度を
求めていた．そして最終的には，その仕事を，W = γLV(cosθd − cosθs)と置き換えることによっ
て，動的接触線の速度と動的接触角を関連付けていた．de Gennesのモデルの場合と同様に，そ
のような関係の成立するような検査体積を，あえて接触線と呼ぶのならば，抵抗力の仕事を気液
界面張力に関連付けることができる．しかし，そのような場合は，流体分子の固体壁面上の吸着
サイトのジャンプではなく，流体分子の，液体から気体側への相変化，あるいは，気体側から液
体側への相変化と捉えるべきである．しかし，本研究の結果からもわかる通り，接触線近傍では，
流線に沿って界面が変化，すなわち 3つの界面の間を二次元的に移動する分子について，取り扱
わなければいけなくなり，さらに，ミクロスケールには界面は厚みを持つため，非常に複雑なモ
デルとなり，現実的ではない．
本研究では，接触線近傍での発熱・吸熱量を抽出することに成功しているため，MKTで取り扱

う流体分子の移動に要する活性化エネルギーが抽出できるかのように思えるが，これは，接触線
近傍における分子の移動による，生成エンタルピーの総量をみていることになっているため，直
接的に関連付けることは難しい．しかし，動的接触線近傍のひとつの分子に着目し，その分子の
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動きとそれに伴う分子の持つ内部エネルギー変化等を解析することで，MKTで取り扱う活性化エ
ネルギーに相当するものが抽出できる可能性はある．
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第6章 結言

流体力学では固体表面上ですべりなし境界条件を前提とするものが多く，それに基づいて動的
接触線を含む流れ場を解くと，接触線において特異点が生じるという問題があった．それを回避
する動的濡れモデルはいくつかあるが，ミクロな効果を保存則の観点から詳細に考慮したものと
いうよりは，現象論的なものであった．またさらに，そもそも動的濡れ現象は境界条件として表
現することが出来るのかという疑問すらある．そこで本研究では，そのような問題意識をもって，
動的濡れ現象を連続体のシミュレーションに組み込む際の問題提起を行った． その際，ミクロス
ケールの動的濡れ現象の解析として，Lennard-Jones流体を用いて，固気液の接触線が動的に移
動する際の，動的接触線近傍に誘起される応力や熱流の分布を分子動力学法で計算した．それに
基づいて，Qianによる力学的なモデル，de Gennesによる粘性発熱に基づいたモデル，Blakeに
よる反応速度論的なモデル，といった既存の動的濡れモデルに対する問題提起を行った．その際，
ミクロな効果を保存則の観点から詳細に検証を行う必要があったので， 連続体の各種保存則と整
合するかたちで各種物理量を定義する必要があった．
まず，第 2章では，本研究で取り扱う分子動力学法の基本的な方法論について述べ，第 3章では，

通常は静止平衡系で検査面上で応力を計算する手法である検査面の方法 (Method-of-Plane，MoP)

を拡張することで，上述の各種保存則に整合するかたちで各種物理量を定義する手法を提案した．
その際，巨視的な速度分布関数と，微視的な分子の検査面の通過を関連付けることで，面上で平
均化された巨視的な物理量と微視的な物理量の間に成立する関係式を導出した．密度は単位体積
当たりの質量であるため，通常は体積平均により計算するが，この関係式により，分子動力学系
における局所の検査面上での平均密度の算出が可能となった．これにより，質量流束を密度で割
ることで検査面上の平均速度も求まり，連鎖的に移流項，応力，熱流束が求まる．このような方
法論で， 密度，速度，応力，熱流束などの連続体の保存則の基本的な変数を，有限の面積を有す
る検査面を通過する分子から計算する方法を提案した．
第 4章では，第 3章で提案したMoPを数値計算によって検証するために，準一次元Couette 流

系内部の応力・熱流を計算した．まず，密度，速度をMoPにより計算し，体積平均 (VA)により
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求めたものと一致することを確認した．また，流体内部の応力を算出し，適切に移流項の抽出が
出来ていることを確認した．次に，Couette流系内部に誘起される熱流束をMoPにより計算し，
それがマクロの流体力学の Couette流系の解と矛盾しないことを確認した．
第 5章では，既存の動的濡れモデルに対する問題提起を行うため，液滴をふたつの壁で挟み，そ

れらの壁に一定の速度差を与えることで，固気液三相の動的接触線を有する定常な準二次元系を
再現し，前進，後退接触角に差異が表れることを示した．また，MoPを用いて熱流体場を計算し
た結果，得られた応力分布から，界面近傍には界面張力の影響が表れ，液体バルク部には静止平
衡系では現れない粘性応力が現れることがわかった．本研究で提案するMoPでは，連続体の保存
則に整合するかたちで応力を定義したが，分子動力学法では応力は，界面張力の効果と粘性の効
果の和として得られるものであり，その分離は現状の分子動力学法の枠組みではきわめて困難で
ある．また，これ以外にも，バルクの圧力が一定値を取らないことによる，動的な界面張力の定
義の難しさ，すべりと摩擦の関連付けの難しさなどのため，動的接触線を含む検査体積内の流体
に作用する粘性応力および固体から作用する摩擦力が，各界面張力とつり合うとするQianのモデ
ルに基づいて，動的接触角を決定するのは難しい．
動的接触線近傍の熱流の解析から，液体バルク部では粘性発熱をしていることに対して，前進

および後退接触線では各々発熱および吸熱していることがわかった．これは，接触線近傍の流体
が，界面間を移動することに，すなわち，流れ場に沿って内部エネルギー変化していることによ
る疑似的な潜熱によるものだった．de Gennesのモデルでは，動的接触線近傍での粘性散逸と，動
的接触線に対する抵抗力による仕事がつり合うとしていたが，このような接触線近傍で生じる疑
似的な潜熱の効果も考慮すべきである．また，BlakeによるMolecular Kinetic Theoryでは，固
体壁面上の吸着サイトを，流体分子がジャンプすることで移動すると捉え，その分子のジャンプ
の方向と頻度によって，結局は，接触線の移動速度が決定されるとしていた．しかし，本研究の
結果から，接触線近傍では，流線に沿って界面が変化，すなわち 3 つの界面の間を二次元的に移
動する分子について，取り扱わなければいけなくなり，非常に複雑なモデルとなってしまう．さ
らに，微視的には界面は厚みを持つため，このようなモデリングは現実的ではない．
以上に述べたように，本研究では，流れを有する定常のMD系において，閉じた検査面で囲ま

れる任意の検査体積に対して連続体の質量，運動量，エネルギーの保存則に整合するかたちで，検
査面に対する応力，熱流束の場を抽出する枠組みを提案した．また，これに基づき，定常な動的
接触線近傍の詳細な応力および熱流の二次元分布を抽出することに成功した．これにより，分子
動力学系に特有なものとして現れる性質，すなわち局所的な粘性，および界面張力と粘性応力の
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分離の困難さ，固体が流体に対して形成するポテンシャル場を定常な流線が通過する際に現れる
疑似的な潜熱の存在を明らかにし，動的濡れ現象を境界条件として表現することに対して問題提
起をした．動的接触線の挙動を高精度で予測する上では，既存のモデルを再考し，これらの効果
の影響を明確にする必要があるが，本研究により，流体力学の方程式系に現れる応力および熱流
の詳細を知ることが可能となったため，それに近づくことが期待される．またここで提案した手
法は，一次元および二次元だけでなく三次元においても適用可能なものであり，さらに，動的接
触線の挙動のみならず，ナノ多孔質内の流れなど，ナノスケールの空間， 構造の近傍の流れの解
析にも適用可能であり，これらの系についての解析を行うことで，ナノスケールの流れの理解が
進むことが予想される．
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付 録A 濡れの理論

A.1 界面の理論
界面 (interface)とは，一般にある均一な液体や固体の相が他の均一な相と接している境界のこ

とを指す．この境界のある領域では一般には物理量が連続的に変化し，マクロには不連続的に変
化するとみなされることが多い．特に，均一相の一方が固体もしくは液体で，他の均一相が気体
もしくは真空の場合，界面を表面 (surface)という．

A.1.1 界面張力および表面張力

図 A.1に示すような気相と液相の界面を想定し，液相を構成する分子についてエネルギー的な
視点から考える．液体内部のバルク (bulk)領域に存在する分子は，その周囲に等方的に分子が存
在し，それぞれの分子と相互作用を及ぼしあうことでエネルギー的に安定している．一方で界面
付近に存在する分子は，液体内部に存在する分子に比べ相互作用を及ぼしあう分子の数が少ない
ため，一般には液体内部に存在する分子よりもポテンシャルエネルギーが高い状態にある．その
ため，気液界面の分子はエネルギー的に不利な状態にあるので，界面のエネルギーをできるだけ
小さくする，すなわち界面の面積を小さくする向きに力がはたらく．この気液界面を収縮させよ
うとする単位長さあたりの力 γLVを気液界面張力と呼ぶ．また，この気液界面張力を，界面を単
位面積増大させるのに必要とする自由エネルギーと考えれば，温度 T，体積 V，および分子数N

一定で次式が成立する．
γLV =

(
∂F

∂A

)
N,V,T

(A.1)

ただし，Aは界面の面積，F はHelmholtz の自由エネルギーであり，内部エネルギー U，エント
ロピー S を用いて次式で与えられる．

F = U − TS (A.2)
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で与えられる．前述した界面，表面の定義より，気液界面張力は液体の表面張力とも表される．ま
た，固気界面における界面張力 γSV，固液界面における界面張力 γSLについても気液界面張力と
同様に考えられる．

surface

vapor

liquid

Fig. A.1 Schematic of the interaction force between molecules at surface and in interior of

liquid.
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第 A章 濡れの理論

A.1.2 Bakkerの式

図 A.2に気液界面張力と応力分布を接続する思考実験の図を示す．ここでは，気液界面につい
て，界面を物理量が法線方向に不連続に変化する境界面でなく，厚みを持ち，物理量が連続的に
変化する領域と考える．ただし，外力は考えない．通常，静止平衡状態にある液体のバルク部で
は応力テンソルが等方的，すなわち任意の面に対して垂直にはたらき，またその値は一定となる
が，密度の勾配がある二相の境界近傍においては，静止平衡状態でも等方的ではなくなる．
応力は 2 階のテンソルとして表され 3次元において 9つの成分を有するが，対称性を考慮する

と，独立なものは τxx，τyy，τzz，τxy，τyz，τzx の 6 成分であり，図A.2の系では，静止平衡条件
から τxy = τyz = τzx = 0 であり，さらに界面接線方向の対称性から τxx = τyy となる．系を準一
次元系とみなせば，応力テンソルのゼロでない成分 τxx = τyyと τzz はいずれも zのみの関数にな
る．また，界面に対して法線方向の圧力は力のつり合いを考えると，それは全域で一定かつバル
ク部の応力 τbulkの逆符号と一致する．これをふまえて，界面に対して接線方向の圧力 pT，法線
方向の圧力 pN を用いてこれらの成分を次のように表せる．

τxx = τyy = −pT(z) (A.3)

τbulk = −pN (A.4)

これを前提に図A.2に示すように等温準静的に上方のピストンを体積∆V だけ押し下げ，同時
に気液界面に接したピストンを∆x動かすことによって，気体部と液体部の体積をそれぞれ変え
ずに気液界面の面積のみを変化させる思考実験を取り扱う [39]．
系の奥行方向の長さを lとすると，ふたつのピストンの移動により気体と液体各々の体積は変化

しないことから，

∆V = l∆x

∫ zT

zB

dz (A.5)

である．このときの系のHelmholtzの自由エネルギー変化∆F を考えると，これは等温準静的過
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程において，ふたつのピストンが各々系に加えた仕事に相当するので，次のように与えられる．

∆F = pN∆V − l∆x

∫ zT

zB

pT(z)dz

= l∆x

∫ zT

zB

[pN − pT(z)] dz (A.6)

これが気液界面の増加に伴う界面エネルギー変化に等しいとすれば，次式 (A.7)が成立する．な
お図A.2下部の液体界面の増減は考えない．

∆F = γLVl∆x (A.7)

式 (A.6)，(A.7)から∆F を消去し，圧力を応力で書き直すと，次の関係が得られる．

γLV =

∫ zT

zB

[
τxx(z) − τbulk

]
dz (A.8)

これを平面的な気液界面に対するBakkerの式と呼ぶ．なお，応力が等方的にみなせるバルク領域
では被積分関数はゼロになるので，積分範囲の両端を各相のバルク部にとれば γLVは一定値に定
まる．また，力学的と呼びながらも自由エネルギーの概念が持ち込まれているようにも見えるが,

∆x → 0の極限に対する仮想仕事を考え，かつ変化が及ぶ部分が気液界面のみであるということ，
すなわちBakkerの式では，界面に作用するミクロな力の分布とマクロな界面張力を接続している
ことになるため，力学的という扱いとなる.

なお，MDシミュレーションでは，全方向に周期境界条件を用いることで，蒸気相と平衡状態に
ある準 1次元的な液膜を容易に形成することができる．この液膜の垂直方向を zとするとき，こ
の系は液膜と蒸気膜が z方向に周期的に連なるものとなり，ユニットセルにはふたつの気液界面
が存在する．この系において，液膜法線方向の応力 τzzは全域で一定となるのに対し，上記のふた
つの界面近傍においてのみ，液膜接線方向の法線応力 τxx(= τyy)と τzz の間に非等方性が現れる．
したがって，十分に液膜，および蒸気膜の厚みがあり，界面から離れた部分に等方的な液相，お
よび蒸気相のバルクが形成されている系においては，仮にユニットセルの上端と下端を各々0，lz

とすれば，
2γ =

∫ lz

0
[τxx(z) − τzz]dz (A.9)
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�x

liquid

pistonN

pistonTpT

zT

zB

xy

z

Fig. A.2 　 Thought experiment for the derivation of Bakker’s equation of a flat liquid-vapor

interface.

が成り立つ．したがって，接線方向の応力の空間平均を

τxx ≡ 1

lz

∫ lz

0
τxx(z)dz (A.10)

などと定義すると，
γ =

lz
2

[τxx − τzz] (A.11)

となり，形式的には，応力の空間分布を求めずとも，系の応力の平均値のみから表面張力が求まるこ
とになる．なお，系の対称性から，上式の τxxの代わりに τyy，あるいはそれらの平均 (τxx +τyy)/2

を用いることも可能である．この方法は，MDで表面張力を用いる際によく用いられるが，上述
のように，等方的な気相，液相のバルクが形成されることが適用の前提となることには注意する
必要がある.
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次にこの思考実験を図 A.3に示す固液界面に拡張する．この場合は図 A.3に示すように固液界
面接線方向に動くピストン pistonTは，界面を横切るのではなく，界面の流体側のみを動く．液体
の密度が全域で一定とすると，積分範囲の下端 zBを流体分子の存在する下限の位置にとれば，式
(A.5)が成立するので，そのような位置に zBを定義する．このときのピストン由来の Helmholtz

の自由エネルギーの変化∆F は，液体の密度を一定とすると，式 (A.6)と同様に表される．一方，
このピストンに対する操作により固液界面が増えると，すなわち同時に，真空に対する固体界面
が減ることになるので，界面張力由来の Helmholtzの自由エネルギー変化は，固液界面張力 γSL

と真空に対する固体の界面張力 γS0を用いて次のように表される．

∆F = γSLl∆x− γS0l∆x (A.12)

式 (A.6)，(A.12)より平面的な固液界面に対する Bakkerの式が導かれる．

γSL − γS0 =

∫ zT

zB

[
τxx(z) − τbulk

]
dz (A.13)

同様に平面的な固気界面に対するBakkerの式は，固気界面張力 γSVと真空に対する固体の界面張
力 γS0を用いて次のようになる．

γSV − γS0 =

∫ zT

zB

[
τxx(z) − τbulk

]
dz (A.14)
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�x

pistonN

pN

pT pistonT

liquid

solid

xy

z

zT

zB

Fig. A.3 Thought experiment for the derivation of Bakker’s equation of a flat solid-liquid

interface.
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Young-Laplaceの式

ここでは界面が曲率を有する系に対して，力の釣り合いより界面張力とバルク圧力の関係式で
あるYoung-Laplaceの式を，図A.4に示す概念図より考える．図A.4の (a)は半径Rの準二次元
液滴であり，この液滴の断面における力の釣り合いを考える．このとき，図 A.4の (b)では外圧
pextと断面に作用する内圧 pintと気液界面張力 γLVが力学的につり合うことになる．
ここで界面に厚みはないと仮定すると，内圧 pintは液滴内部で一定となるので，奥行方向の単

位長さあたりの力の釣り合いより

2Rpext + 2γLV = 2Rpint (A.15)

となり次式に示すYoung-Laplaceの式が導かれる．

pint − pext =
γLV
R

(A.16)

これは逆に言えば，平衡状態において γLVが一定でなければ，曲率 1/Rが一定でなくなること
を意味する．

R

pext pextpext pint

R

�LV

�LV

liquid liquid

vapor vapor

(a) : 2D droplet. (b) : force balance of 2D droplet.

Fig. A.4 Schematic for the Young-Laplace equation in a quasi-2D system.
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A.2 接触線の理論
A.2.1 静的接触線における力学的モデル

均一壁面上の静的接触線と濡れ性の不連続線を有する壁面上でピン止めされた静的接触線の概略
図を各々図A.5(a)および (b)に示す．均一壁面上の流体は壁面から壁面接線方向に平均的に力を受
けない [36]のに対して，濡れ性の不連続線付近の流体は壁面接線方向にピニング力を受ける [86]．

Fig. A.5 Schematic of static contact lines: (a) on homogeneous wall and (b) on inhomogeneous

wall which induces the pinning force (red arrow) on fluid. Black dotted denote the contour of

potential between wall atom and fluid molecule. Black and red circles denote the wall atom

of lyophilic and lyophobic, and blue ones denote fluid molecule. Magenta arrows denote the

interactions between fluid and wall molecules.

Fig. A.6 Schematic of force balance on control volume including contact lines: (a) static

contact line on homogeneous wall and (b) static pinned contact line on inhomogeneous wall.
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これを踏まえてこれらの静的接触線を含む検査体積を図 A.6に示すように設定し，その検査体
積にはたらく力のつり合いを整理することで，接触線に対するつり合い式を定式化することがで
き，図 A.6(a)の場合では Youngの式に帰結する．図 A.6(a)では，濡れ性が均一な壁面上での接
触線について扱っているので，検査体積内部の流体に対して壁面からはたらく水平方向の力は平
均的にはゼロである．そのため，検査体積に対する水平方向の力のつり合いは流体内部の応力 τ

のみで成立し，∫ zT

zB

−τxx(xL, z)dz +

∫ zT

zB

τxx(xR, z)dz +

∫ xR

xL

τzx(x, zT)dx = 0 (A.17)

と書ける．ここで第１項，第２項の被積分項に気体，液体のバルク部の圧力 pext，pintをそれぞれ
定数として加算し，その寄与を改めて除くと，次式が得られる．

−
∫ zT

zB

[τxx(xL, z) + pext] dz +

∫ zT

zB

[τxx(xR, z) + pint] dz

+

∫ xR

xL

τzx(x, zT)dx− (pint − pext)(zT − zB) = 0 (A.18)

いま x = xLにおいては固気平衡状態にあるので界面垂直方向の釣り合いより，pext = −τbulk(xL)

と置き換えられる．同様に x = xRにおいて固液は pint = −τbulk(xR)と置き換えられる．これに
より式 (A.18)の第１項，第２項について，各々式 (A.14)，(A.13)の Bakkerの式と対応付けられ
る．また，ここで式 (A.18)の左辺第 3項のせん断応力の積分について考えるために，固体壁面の
影響を受けない液滴を仮想的に考える．その仮想液滴の中心の z座標 zOで z面に平行な下面と，
それと平行な z = zT に位置する上面と，各々気相液相部に存在する左面および右面により構成
される検査体積に対する水平方向の力のつり合いを考えることによって，式 (A.18)の左辺第 3項
のせん断応力の積分は，結局 Laplace圧の積分で置き換えることができる．ここで，Laplace圧を
Young-Laplceの式を用いて変形すると，幾何学的条件より，結局，式 (A.18)の左辺第 3項のせん
断応力の積分は，図A.6(a)の検査体積の上面にはたらく気液界面張力の水平方向の力に変形でき
るので，検査体積上面に対して気液界面がなす角を θ′とすると，次式のように展開できる．

−(γSV − γS0) + (γSL − γS0) + γLVcosθ′ − (pint − pext)(zT − zB) = 0 (A.19)

上式は，固液・固気・気液界面張力が検査体積に対する Laplace圧とつり合うことを意味する．い
ま，静止平衡系を取り扱っているので，固体の影響を受けない部分の気液界面の曲率は一定であ
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第 A章 濡れの理論

り，その界面を固体面まで曲率一定の条件のもと外挿した際の固体面と気液界面のなす液体側の
角を接触角 θと定義する．また，曲率が一定である範囲の気液界面の曲率中心の z軸座標を zOと
すると，上式第 4項はYoung-Laplaceの式 (A.16)を代入することで以下の通り展開できる．

(pint − pext)(zT − zB) = γLV
zT − zB

R

= γLV

(
zT − zO

R
− zB − zO

R

)
= γLV

(
cosθ′ − cosθ

)
(A.20)

この式 (A.20)を式 (A.19)に代入することで，次式のYoungの式が導かれる．

γSL − γSV + γLVcosθ = 0 (A.21)

次に，図A.6(a)の均一壁面とは異なり，濡れ性の不連続線で流体が壁面から力を受ける図A.6(b)

のピニングされた静的接触線について紹介する．図A.6(b)の検査体積に対する力の釣り合いを考
えると，壁面からのピニング力を考慮する必要がある．奥行方向の単位長さあたりのピニング力
を ζpinとすると，力のつり合いは次式によってあらわされる．∫ zT

zB

−τxx(xL, z)dz +

∫ zT

zB

τxx(xR, z)dz +

∫ xR

xL

τzx(x, zT)dx + ζpin = 0 (A.22)

ただし，ピニング力 ζpinは図A.6(b)中の x方向を正とした．この式の左辺第 4項以外の部分は式
(A.17)と同様であり，結局Youngの式に帰着できるので，ピニングされた接触線に対するつり合
い式は

γSL − γSV + γLVcosθ + ζpin = 0 (A.23)

と書ける．
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付 録B 粘性応力の抽出

本付録では，本研究で取り扱う流体内部において粘性法則が成立すると仮定して，第 5章の図
5.1から粘性応力を取り除くことに取り組む．まず，液体バルク部の粘性係数 µを計算するため
に，第 4章で用いた計算系の制御圧力を 1 MPa，壁面速度を 10 m/s，制御温度を図 5.1の動的接
触線系と同様の 85 Kとする．その際の速度とせん断応力 τzx(Sz)の分布を図 B.1に示す．ここで
Newtonの粘性法則

τzx = µ
∂ux
∂z

(B.1)

より，粘性係数は µ=0.221 mPa·sと求まった．この粘性係数を用いて，図 5.1の準二次元系のせ
ん断応力の粘性応力

τvzx(Sz) = µ

[
∂uz
∂x

+
∂uz
∂x

]
(B.2)

を計算したものを，図B.2に示す．その際の速度勾配 ∂ux
∂z の計算は，検査面 Szに隣接するふたつ

の局所の検査体積に対する速度の体積平均の値の差を，∂uz
∂x の計算は，検査面 Sxの上下の検査面

におけるMoPによる速度の差を用いて数値微分により定義した．このように，本章で示す粘性応
力の定義位置は，その速度勾配の定義位置と対応しないが，なお，粘性係数を一定値として与え
ているため，気液界面付近や気相での値は適切なものとは言えない．液体内部の粘性応力を抽出
が行えていることを示すために，せん断応力から粘性応力を引いた τzx − τvzxを加えて図B.2に示
す．液体バルク部では一定値でゼロとなっているため，Newtonの粘性法則がCouette流のような
準一次元流れ場だけではなく，本研究で用いている準二次元系においても成立することを示唆し
ている．また，壁面近傍の吸着層においても粘性応力の算出が行えているように見えるが，吸着
層では密度は一定値ではないため，Newtonの粘性法則は成立するのか，また，どのように局所の
粘性係数を与えるべきか等の検討が必要である．
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Fig. B.1 Distributions of shear stress plus friction force (black) and velocity (red) in quasi-1D

Couette-flow system with control temperature at 85 K.
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付 録C 疎液壁上の動的接触線近傍での発熱・吸
熱現象

本付録では，第 5章の準二次元系の濡れ性を悪くした際にも，第 5.2.3項の動的接触線近傍で
発熱・吸熱現象が生じることを示す．具体的には，第 5章の固体–流体間相互作用パラメータを
η = 0.2に変更し，壁面速度も 60 m/sとして，それ以外の計算条件はすべて同じとした．このよ
うな固体–流体間相互作用パラメータの場合，85 Kの静的接触角は 130◦となる [36]．
密度分布に速度場を重ねて示したものを図 C.1上段に，温度分布に流体間の熱流束場を重ねて

示したものを図 C.1下段に示す．第 5章では壁面速度を 10 m/sとしていたのに比べ，ここでは
60 m/sとしているため，液体バルク部の温度が上昇し，それに伴い密度は下がっていることがわ
かる．また，定性的ではあるが，流体内部の速度の上昇に伴い，単位時間当たりの内部エネルギー
変化量が増えることで，動的接触線近傍での温度の変化量も増大したことがわかる．
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第 C章 疎液壁上の動的接触線近傍での発熱・吸熱現象
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付 録D 動的接触線近傍のエネルギー保存

ここでは，計算系の下部を前進接触線を含む検査体積，後退接触線を含む検査体積，接触線を
含まない検査体積の三つの検査体積に分割して，最終的には図D.1最下段に示すように各々の検
査体積の表面を通過する熱流束から，各検査体積での発熱・吸熱量を定量化することを行う．ま
ずは流体間のエネルギー流束 J f

Tと固体–流体間のエネルギー流束 J fw
T を用いて求まる，各検査体

積表面を通過するエネルギー流量を図 D.1上段に示す．ここで厳密には検査体積の左右面を通過
する固体–流体間のエネルギー流束 J fw

T が存在するが，図を簡略化するために，固体–流体間のエ
ネルギー流量はすべて検査体積下面の矢印として表記した．ここで検査体積から単位時間に流出
するエネルギー量は ∫

S
dSJTknk =

∫
S

dSJ f
Tknk +

∫
S

dSJ fw
Tknk (D.1)

で積分することによって見積もることができる．それを奥行き長さで除したものを図D.1上段の
各CVの内側にmW/mの単位で示す．ここで式 (3.8)のエネルギー保存則は成立するはずで，定
常ならばこの積分はゼロになるはずである．しかし，これは前節の表 5.1の質量保存と同様に，接
触線が熱揺らぎによって移動することによって式 (3.8)の時間微分の項が値を持つためにゼロには
ならない．次に，応力仕事および外力仕事の項と，エネルギーの移流の項を図 D.1に示す．この
ようにして，図D.1最下段の熱流が求められる．
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第 D章 動的接触線近傍のエネルギー保存

Fig. D.1 Surface integral of energy flux, energy advection, stress work, and heat flux on

the surface of three CVs; Left: surrounding the receding contact line, right: surrounding the

advancing contact line, middle: between the ledt and right CVs. The top panel shows the heat

flux (black arrow) and temperature distribution. The heat produce/reduce terms in each CV

are shown in the CV center.
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