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1.1 WHEES
1.1.1 FENRK

mhHSIEIF A N HEAER, BR, BaALBE - T¥HREOREIFNCHEELTWS. K
2, TRAVERTRES % 5 A CEEREER - KUK - IIEDO =D 2 AR DIR 2 # TS 5
HIfE v 2 AUCHS S G HIESEEH XN TE TV [1-4].

<7 B R — )VONFEPREEOHEZEAIFRIZIZ 72 5 K Td2 D H0e LT, 1805 FIZRD Young D
X [B] 2ERL XN TURE, BAHHGIE HRONGE e L TiRbh TE .

ysL — Ysv + yrveost = 0 (1.1)

ZZTsL, Ysv, v W& & BERIEAR (SL), EfR-Sk (SV), SUERAE (LV) OREERITH
D, O EEAR-IRAR DR & KA RO IEAE O 72 TR O AL . U TER SN 5 Hfilfh % R
T ERAOENEOEE L L TRV AR, TV v 2Eh S K RH e LTRSS N
%. Young OAMERM XNz DIZBIIZOBIILT B] THD, &b L IdEAIT3 2 8%
7R 1 DEERE AR ST A D DO D BEVIZE SN D TH o =08, EETRHHENETDo
DEWTIER S BNENRBA» OHERIN TS, T, EMROFMRIRSHVEHRZ S
7eiT, JeATERR [0,0), $ERST [R-10] R I 7 a kil (0] 2\ ol TANEA I,
WHREIRS] v, BEISFRAERIT ysv &0 o 2 EHRIT0S 2 SR O FHINEIEE IR EE R 72 D12,
CDETNEFEHRINIHEES 2 Z LI3H L.
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1.1.2 70X —ILOFENEN

WAL D & 918 TEREIR S ORKEH 12 EED N 7= BER IR A 2 HE5E L 72 D& Kirkwood ¥
Buff [I2] TH b, 1980 FALIEDFHEFKIC X 2 REMRTOFE L & bIT, 77 FENIZEMET (MD) %2
AWz 7 a2 7 — LVORIENHTHOIS X 512/ o 7 [13-86]. ZDJEEKITE LT, Nijmeijer
5 () 13 72 EABEH D Lennerd-Jones(LJ) FAADEZ W7z MD @t 22 & B - <O
Hik 1%, JFNFIR I 2 FIETHEET 2 22T, Young O (D) 253 7 0 X7 — )L Cit
FIAJRE R 2 v R L7z,

HEH 2 GUMATIE, MD 2 HWTEUIENTEL XU TFE L N 2 5700 FiEx A
WC, EESRER ] s, FESGAHR sy ZEET 2 2 2T Young ORI 7 0 X7 — LTk
ST A Z e ARENT: B6-8R]. BNIFINFIEEE, BOIEE VWO FRCI D REEHT RV
F-ZEFHET2DDT 2521, FRUSH L THENTFEL X, REICERT 20008 %
SHHERNBEEN T % Bakker D3 [39] 12 Ko THEARNZFIRE T 29 DT, ZhuzkoTIZm
24— L DR T S ORBEREICNTT 2 D2 D EWVIEKIED O & 5127 b K2, Young
ORIIFET 2 Z e 2RE 5. FHNEIER N THNT 5.
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Fig. 1.1 = Schematic of the force balance on a control volume including static contact line.
(partly from Yamaguchi, Y., Kusudo, H., Omori, T., J. Chem. Phys., 150 (2019), 044701,
licensed under CCBY.)
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1.1.3 70X T7—-ILOEMEN

FRIVIRAUSN LT, BIRICREEN 3 2 Al B REATAR & PN 5. BIRYRIROUADI D 2, Z
DEMHF OB E OMMIETIE, FURGE L IXERD, §iE - BB WOIEIBND Z 225
NTED, BIEZTZL OMENTOATER [1,80-62) . BERIE, FEHIZCEWTIEE
RRE LICT AR R UERSEEZRT Z e 2 o708, 20O K5 BERSEMA TR 5 2
BN DIZ, FOEBETRBEEDPENS L WO BELD - 7= [53]. FEMEAETHRRT 25,
D & 5 BEIEEAFRIEICN L TZ K OE L [1,46-29) BIRR SN TV 2 DD, FHIvEAIGL
54 U VBTN 3 2 48511, 3720 B IIRNER O RIS ) S ERBEH 22 53213
B O D 238 L <, Bl OB, MR EORMBIFHEDO O D XT3,
Bl Z1F, Qian [@R,29] 12K 25, —M{k Navier 555t (GNBC) Z W7 U, EEFEERETO
TRDTRD ZFFE, $74bb, IRDEREHFZED T BT, #HiliRz S OMERRITNT
ENRFID EVOR, THROLEFRAFINICESVTHREINTE D, REREICERT 2
Laplace £, & mEN, OB X CEROBEE 2RO ES L LTW5. 2% b, ZOET
M KB, FEREE RIS N2 - B oEMAOERES SR LTS INE. %
7z, GNBC Z85EMe U GHEA LETIHES H D, 22 ThLaig, #i - RBRoEAA
DEHFEHZZNZ ZeARIATWS B UL, MEMCREIUE, Ak, FEikeEmE
BRT YO Y LOHEEZ 2D THD, ZHUT k- T, BERRELEFORKIIEIEEEZEMAL,
ZD X5 IRFHIRT E HITHIMEPEROBEIBOMRBEE ST 5 2 8ilixsd. 22T AT, &
HARDEE R IRFANCEEE T 2 0272 b TEREMEEEFE COICN O ZE R T2 2T, 20
Qian DE 7 /L% Navier-Stokes HTER & W\ 5 H#HE A D IR AR DB RS L TEH 2 2BEDM
RIS OWTHERT 5.

F7z, ZOEHREFANE SOV ZET LI LT, TXLF—IZHEOWEZETLHIREI I
TV, EMERLEE o088 T 2 BEOEEL = 2L F — 12D\ Blake 5 [46,47,51,52, 65]
® Molecular Kinetic Theory (MKT) T, RN 3 25T 0tFIC X o T, HilfRzH
B3 20 TOEH LT AL F—DFEEMNCEIL T, BMEOEENTEINS EEZ LN T
275, PERER 2 IMAANCIZ Y OB R T DD, FEERICN T 2P 2 3R Db, FDLE
M <K 5. ZORIGEERNZET ML T, de Gennes 5 [1] 1%, HEfiliiiCORMERGE
DM T 2 BN OHEL DD ES L L TVWEEFAERELTWED, 2556 dFEAKD
FEMID& 5. MAT, WENOET LD EMEROMILHICRR 2 2R BIATLZ 2T, TR
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BI1E

BRUBRFEEZR L GEOREROMEZEE L TVWE L ER 5. AIROO DDA E L
T, 2R3 & 9512, MKT % de Gennes DETILD X 5 ICHHYEEARRR & = 3L ¥ — 72 8 S
DOHETV YT ER6IE, T, FEMEGEETEL TV RHRT AL -2 \olz, BA
GOFMEHLPICT ENEL L EZ T

WL Td, ZZTRLEES W, BFEOHNENLET VL, S2bEW, Thbb, EH)
BERFARZ I F —RIFACESWZET L RoTWVWE. B TENFETINLDET LD
JRAZIZ DWW Tk S 5 7201213, BN Z2 A3 2R, Tbb, BRI DH 2R TOR
TR/ 075 T, SRR E 2 ERT 2 TERPDE L 5.

s . s s - e s
S L e A e A et

(ks
o :“ - = = =P = = = =p = -
. ¢
a of Lt R0 S S S SRE SR T S ) .
advancing CL ST
- s ° %
. . R - ) . . . [ ey el I a ® N
¢ . e e A e g ATy s sgs e
¢ recedmg CL || Where to define & o e . v
-‘.‘ . dynamic CA? N s e S s @
%” i g Al e s A e i s B ee e %y
2 S P A R e A b A e

7
7

fo = sL + Yveostq — ysv

vy :interfacial tension fcr : resistance
6, :dynamical CA Ugr: CL speed

some models were proposed...but... = Solid
de Gennes : viscous dissipation
% not only at CL etc. _ .
. ot _f CL UCL
Blake : activation energy

% many unclear points

microscopic effect were ignored |:> stress & heat flow analysis

Fig. 1.2 Side view of the molecular simulation system used in the present study and the

dynamic wetting models based on the point of view of energy.
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22T, #iRRO I 7 a0 1E 2D Fo 7l LT, Qlan &5 [@9] OWFFEZED EIF
5. ZODWETIX, Generalized Navier Boundary Condition (GNBC) & M 2 B FEE)§
2 EEMERICIT T 2 ETAREAINTVSA, ZHEEMRLZ ZERV_HRTRESATVS
Navier Boundary Condition (NBC) O—f#{t-TH 5. Z D NBCIZEEH THE TN 2 HT 5
BAEDETNLTHD, XATRHINS.

™ = BuslP (1.2)

ZZT, TV, B, v Z AT NEEMICIE S S AR Y 7 b OB AW, ENREEEMREL, [Eik
WXF IR DOHIHEE (TRDHEE) TH5. ZhuE, TRNDHE P 2 FNDIk>TED
BIGU mV B3, HBIREL 81 & o TRYIEBIRTHEIEN S T e 2 EKR T 5. 2 T TlitlAs Newton
MAETH 2 UEL, RIEDEAWICH 7 HIEWIRFUC BT HREVERE 1, WIEDEAWHEE

e 2N,
Ouy
TEH 0z

RS TR, MRS 255U BT 2 MMES ) &, BEEICIE 7 & < AR Y 72
DOEAKINEDODES o, ERFHEICET 2RI T 2 OHD EVBRRTHIT 5.

(1.3)

Ouy
1

.
BuP = ¥|Z:Zbouﬂdﬂry .

FATHRSL [66]) TlX, RIEOBANEE D A — X —5310° s P EL T THIUINBC DRILT % &
WMEXNTVD

Qian & [9] ¥, THERIEIRT 25725 T, WIKNEBOIG S AEEH IR - TH—TRWV—&I72
BRI B pEREM e LT, BEEEER A6 2, 2 AW TR D GNBC 242K L 7-.

BustP = 9, / (z,2)dz + 73 (2, 27) (1.5)

XiZ, TOGNBC%Z x ICBLTHEATT 5 2T, RIEBITRTHMZ SORERRICNS 2
AKEHHEDHDOFID GWEEZS. 728, HMERD ST ICBEN T S OB RS2, NBC & &
IRE S MHOBEROEE, TabBbE, ESKSREE A% SIS, REROARS X LR
ERET BT 5. TEONERDIS T BBEREICE X %11 &3 (I2) DEEHI: 5 DEEEDDO D &
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Txx <}=

NBC | DCL
) AR

SV without CL SL without CL
z

b solid

Fig. 1.3  Schematic of force balance on control volume including dynamic contact line (DCL).

ST FEZDL L, EHINBIIBNT, BIOPENEMTE 2RI VRS, KDL
AVAC IR

TR . T =T R
/ IBuShpdl‘ — / —T§$($L, z)dz —+ / Tgx(,’ER, Z)dZ + / zj(l', ZT)de (1.6)
XL, ZB

ZB L

2L, SR wIPIE BT 2B o TWD Z L ICERIMETH 5.
R AWIES 14 (2, 2) ZRFTERSIC & % Young J6 A 70 (2, 2) ¥ RMEIE ST 7Y, (2, 2) DA
TRAD LS WTKEIND LT 5.

7o (w,2) = T (2, 2) + Tl (2, 2) (1.7)

2 T RTEC L LIRS T 7Y, (2, 2) RS AR T ¥ Y AMS & 5T

(o) = (2 n) 4 2nd)) (18)

10
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. sallid

Fig. 1.4  Schematic of macroscopic force balance on control volume including dynamic contact
line.

tRINnsed5. ZoXeRX (IH) 1KRAL, B o (BTY) & FRICERET 2

TR X
/ B ushp dz
L

TR
= —(’ng - ’YSO) + (’YgL - 780) + ’)’LVCOS% - (pint - pext)(ZT - 2B) + / T;,z(xv ZT)d33
TL
TR

= _’Yélv + ’Y(SiL + ’YLVCOSGél - (pint - pext)(zT - ZB) + / T;z(xa ZT)da7 (19)

TL

&, AR TEFS. ZZTMEE N (BAD3), (BETd) O Bakker DX ZBIHYFRENICHR L, #
MK DRI BN RAEORAEERENZ & L8, 18y & L. 7, 0 3REE LIBT3
SR moEfmTH 5. EUZE, MEREICNS 2B - FEK - <TEFER ) & Laplace FED
[E R EERE & REH EECORMEICH DAL DD ES T 2EKT 5. Qlan 513 2 T THEAFRITN
LT, ERBEHROFELZTRVWE Lz~ 2Z7e0f ) G0WRZIT, KBHHEEZNMETLZET
[ (ARBEH - C oA 04 2 D o 7. BERIICIIN 2R $@ D, MEREICT L TRPEIG
J1& Laplace £ & KRS HRIDAZ 6 e LT, X (U) HHDOHE 3HMREZXRAD X 5125
Z7z.

TR TR

Top(x, z7)dx = ~yryvcosfy + / T (x, zp)dz  (1.10)

L

Yoveosty — (Dint — Pext) (21 — 2B) + /

L

11



il

FI1IE
X5, NBCIizBIF5 ’YSL, ’YSV DERIEEBTRD g1, Yoy &~ T2 LTI L
TR . TR
/ ﬁuShpdx — / T (2, zB)dz = s, — Ysv + YLveoshy (1.11)
Ty, L,

L 7%, =03k (CI) 12 Young DR (E20) AT 3 2 2T, KO EWERE L kS &
[ryHERS o, b IR 0y OBIREE 7.

TR . TR
/ Bushpdx _ / Tzvx(x7 ZB)dm =YLV (COSHd — COS@S) (112)
xr, an

de Gennes DEFJL

IR AR ICPER 3 2 B A2 © DR & RN ORIEIS T D& 1%, BHIHERARER IS %
BN for, EERBTHUE, 3 (CT) X

JeL = 9sL — Ysv + Yveosty (1.13)

ERTZENTES.

<Y BAT—=MZBEWTIE, de Gennes [1] 12X T, BIRYEANIEFIT/NZI WM (04 < 1)
BT BHRNUEDD EF2EBT 5 X5BRETAPREINTNS. TDETATIE, WK
TR SV TR LD D, ZDOBRDOMRAENE ORMERGE & HE Ucr, THRENT 2 BIFYEATHRIC
A 2N fo, WK BHEH foLUc, BELLK R EREL TS, £73, <1 L TW0Wak
DIRAERIFEMHOL L TR T IR TH D, MIRDIEA 2 D HEMERD & DRz & Lz &
EX

zs = xtanfy (1.14)

TRIND LT D, ZIT, BEHERGANCOARER D 2RO ART L, RIETOEE S
BB TEZ NS, 2O, SISEH TSN 6070, T8bb 2 = 2, TH
EAEAEn, BERBERTIEITXDDBRWN, $805 2 =0 THEELD WS BEREAZHRET
5L, BESMIIRATREIND.

3UcL

2
224

u(zx, z) = 2(z — 22z) (1.15)

12
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B1E

%8, I THRIKED PR EMEROBENEE Ucy, &~ 5 L. T, RAENESTE
U 2 MitEAIRE RS & UTRADMD LD T 5.

L = ou(z, z) 2 3ulUZ;
. J — T CL 1.1
/a dx/o dz ( 0z > tanfy (1.16)

TR L DOEREEEIR LB, BIEMRTZOEELARSFN TS, ThbbiRES
EEEOLYWOREND 20, ZDETILVTIEMT IO HEHEAL SR L TED, « DS H

P TFIRD a l30F¥ 4 X%, bim LIEZBERD o TWAET A XZ2EKRL, 11

I= /aL dx% —n (5) (1.17)

TERINB BRI CTH 2 50,68, XT, <1 &, tanfy ~ 0y L 1K 20T, R (II6)
DRGTEFEE & BRI 2 AR OGN X 2%, TROBENN fo, L2 HFHD
WS —forUcL DY LA RD T DL,

D

3ulUZ
akdkLZJ%ﬁl (1.18)
d
P, CAuzE (Cm), () 2RAT 5 ¥ CRADENELD DR Ue, & B 0y 0
MR ohs.
_ Wy (92 _ 2

Uct = 651 04(605 — 03) (1.19)
B, 03 <1 XD coshg ~1— @ Y, FRRICERIEAAICOWVWTH 0, < 1 2 LT, cosbs ~ 1 — %
¥ L7%. 243 Hoffmann OFEER bY] THRONSHERZRIHEHT 5.

Molecular Kinetic Theory

Blake & [@6] 1%, EAEER LR T > > vy VINICRERE Y A SO EBUCTEEL, 2D XS
RIREY A P OHIOBET A SATTRY v T2k oT, HMFROBENEL 2 L
T 2RI DAY 72 E T LT H % Molecular Kinetic Theory (MKT) Z#2R L7z, %73, &
BAYA FERET A OMREE A, EAERDEIES 2RO FOY ¥ v TOMER kT, %R
MO D% k- 55, ZOMETIE, ERODFI Y Y THELY kyy = kT -k~ & LT, &

13
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H1E A
TOVIPRE, Tib bR D®EE Uy, Z KA TERT 5.
UcL = knetA = (KT — k7)A (1.20)

Z 2TV IZ3HEMERAERIE L TW 3, 372b5 U, = 0DHETHoTH, EFITITED 5 FH
BB, FHEOLDDOWEY A FTEIEL TW2DTERL, TeOMEEE L =k~ = kY
TV Y Y795 X577 B2 LT\, EROTTFOBEIRIEZER, T4D5 ke =08%D, <
7 WA ER ORI R e s . — T, BIRAUBRRICB LT, S s <
KXo TZDOD EVHHAN, SIS U IIHEMCEEIT 20 FH1%Z<RD, #Re LT
MERASATE X 21388 T 5. T, kT, kb~ B RIGEERIC L D 2h2h,

kT Z* —et

+ _ kL —c

kT = 5 7+ eXP <k‘BT) (1.21)

_ kT Z* —€”

km=— 1.22
h Z—eXp<kBT> (1:22)

TEz26N5%. 28, ¢, ¢ BHEBRETHEL R2EEL L F—, Z2° ZIEHIIRETDO S
FCRE%L, ZT, Z— 3& 4 OBBRORISHTO NI EZ LR L, h, kg, T3&LT 7V 7EH, K
Y= VER, RETH 5. Lo b FIEMIRIC B W TIEROEER ket = 0 2725720,
K=k =k, OBREHWT

kT Z* —et
Ky = —=— 1.2
o=t Z+eXp<kBT> (1.23)
kT Z* e
_ L 1.24
h Z—eXp<kBT> (1:24)

L7 3. 2T, BIHRMSICIZT & < HEHLD O BB, BB X | B 2 7
D DHHE W = iy (cosba — cosbs) BRIHMD S LT, DFOY v > THE KT, b 3L
k5 3.

kpT Z* W/An — et
== _ 1.2
k 1 T exp ( T (1.25)
_ kT Z*¥ —W/An — e~
_ < 1.2
k 1 = exp < T ) (1.26)

14
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H1E

2B, An (ZIEMEREBICIFE S 2 B O ZERMEDOBMEED =D ek L, X (

2a) %
AT % &, EAFRD L X

UCL = knet)\ = - k_))\
A A
=k dexp W/ ") - k9 Aexp —W/ "
kgT
A
:k%A$M1<W7 ”>
s — cosbty)
— 19 \sinh (cos i 19
Fyy Asin AnknT (1.27)

rEFB. MKT T, &R, B3 & BT DD, SR B8# 3 209
FOI ¥ Y IR BERIINLF— DD ES LEIRTE 3.

15
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B1E

1.1.4 FFHNFEICSITBR/RADIGICOVT

— RN, WK (2 7 0) RO FIREREZID IS ERNBIR IZER D &4 EHEEZELT
B, BICEHEZRE TIN5 OFEHEE X U0 & 4 ERNZHE u B X CIREICHIE
5. WESMEE (VDF) OREFEICE S % Boltzmann SERZ D % 5 9 F&RESE T,
EARAY 72 10 3 2 N2 0 FEECID IR BWR R 2 €83 5. Zhuddkbb, Bl
WOWVWTIE, SEBRRI Y ERNRBROE L G OEICHH L T\W5 Z2ili>TW\wb. MD
12 & B ENTORENLLIRTIZ, Trving & Kirkwood (IK) [60] 1%, AHZER_E D7 R BEEK D REREIFE R %
FLiR L7z Liouville DEBICED &, 53 FRIMAIEFAINCKEL E 1L 2 MBI 20 T % 7L X BT
KBT 2T, nTFEMCHELGT2H D FEEEERNCHES S 2HD 5700572 2 [T
DEDIES %, Taylor BRHIOEATERL 7-.

MD Dfgtfr DENZITIE [61,62]), D IK D 2R3 & 22N L TR L3 D3,
=7 V7 ZOIES BN OMFFE) OFtEICHVWSNZ LY 7VERICE 25D —HT 5 Z
EAIRENTz. T, MDETRICBT 2 /ARSI OWTIE, Tsai [63] 23HE—RITRADF-H
WAER S 220 OB TEZRZE L, E 512 Thompson & [64] 13 Z OFEZ LR LERIRDHK
THORMEER DI 2 To7z. ThoDEELDEATS, EMRMICIZ#IEL /2% T MD stHEAIC
MERSRAZE® T 259 FOBENC X 2 EHERRCH FRMHEEERIZES 32 2 & TR
DI ZEFRL TS, TD XS %H ETIOHZERT 2 FEIIMRER D /5% (Method-of-Plane,
MoP) [65] % Hardy J& 77 [66] & FHEH, #E—RTTD Pl MD T, EEORERBEICHLTIA
KX D RDEIENEN D2 HEVORGRERL T, TROLEHRMEFAEMZT. 5120
MoP EHEZRITRICBW TS, LR S IEHRARFAICEES T 20 b TERTE, fi
ZINER A O X 5 IR O 2 & ORERIN S 2 EFRARF» S, 7 X7 —L O
MIRNHAR O ATREL 72 5 [36]. ZOME ETIGH%RERT 2 MoP 1T LT, AETFHDN
% (VA) [67) THRFOI N2 EFRT 22 e TES Br-b . Lo L VA TIIMEREO LM
AT 2T DSFEICEHHE T E R W28, VA IZK 2GR E R DR IFRN &
BLRWY, FREERNZRD ZEDICT OBy ZERHTET 2 Z L ARETH L L WHFHEDH
% (3,834,335, 39, 69, 74, [76].

ST, HFARDORFANCHE S W 21T 5 720121, H L THREZERT 2 MoP BEATH
2705, BERNCHEADD 2% (u#0) TBWTIE, MEREOREORDFTOTRE u % EHRT 25
BH D, 2K D YD CHEIEERDRFEANCES T 20 7B TIDTPRIRR R EWERTE 5.
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il

H1E

DFEDIE, BIZITERRARE A 2 XOTR R & OEMER TN D B % R Tk D RIFANC
BN 21T O BRI, BFTOERN (v 7 n) kB2 EROMBEOMER L TERT 2 HE
MHBEWHILTDH5.

1.2 ®HEEMN

FIRIC OV TIIRNGSFR I NNz, il &CRERICNT 21020 Dh &0
& Young DRUTIFET 2 Z 2 AVREIN TV S, ZHUTH L TEINIEILICOWTE, WET 250
¥ LT, BRI A IS X 2 TRAUGIC & - THRIMEIS T & itk & Bk DR CEE 24 T,
%h%ﬁ%ﬁﬁ%ﬁZODA5tmiﬁ%%%?w%@%an®%?wﬁ%%éh1mé ERAS

, BRI G5 I EREE X L 2 BE 2 & D BRI RS HEIG 11T & o THiHE - $2iR OB HEfiL
ﬁ@%%%ﬂgi’bfbék%x%ﬂfhé CDNHWIE T Ta—F LN, TALF -1
BB SIRBESNEHWENHROET LB WL OhH 5, TAoIEI 7 aidBe, 117
HIOBE2 OFFIICE R LIb D WS K hiE, LA, HEMNRbDEEILNS.

Z 2T, RS TIE, M2 ERORT &5 REHEREHWT, BIfEMREEICHER I NS0
R B 31i % MD Tt 3§ % 2 & T, BHFOBINRENE T L2k X AR 0%
REML LTEZ2Z%, ARIEIZ a7 —LOMREZELEHIENRS 2RS4 LT
OIS 2 DL OVTEHEMT 5. TOMEDILIRBTRO N EFHE T 2121, ik
DRFERIFH L BEE T 20075 THRAEM L TREYHERZERT 20ENDH 5 DT, #LTFHER
THEH LT ZEE ST 2 FIEOMEM D% (Method-of-Plane) % #7911 BE % F W CTHA
RU, BEHRNRRENSGEHE T 2 RNEORATOMER TRIPRIRR L H T 2 FIELHLT 5.

1.3 ZAEXDWEK

REIIAREZ ZORRNELLRS. B _ETEAMETHN S DFEIZERICOVWTHIAL,
BB TN TENETERICBO TGS, TR0 bAROEEORER LD - HE - 5
71 - AR 2B S 2 52 EH L, BUETZOZ L2 R LRME—JOTEH O Couette iR
THGELES 2. BAETIIEH BN EZMRZ S 2 0RO 2RI L, BhRykfih
S TRAEE XN 2 FEEA - IRBABIR Z AT 5.
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H2E TENFHE

£28 DFEAOFE

2.1 EFAENCHERDE

DFENFHER, ReWRT 20 ToEBEXzREICOWTHEIRIL L, BEICH
THTOEFHZEN L TV HETH L. A TIE, kT LTHWET VI VDT, B
FOBEAE A3V s EE0 HHE Z 72 R WER E LTk, Newton OEHERIC K D E
BrRL. 5Fi(=1,2,---,N) DELOMERY ML rl, 5FilHEAT 2% F, 255
¢, Newton OEFHERIIRD L5 12FIT 5.

d2,r,i
M = F, (2.1)

TIT, m 30T i0ERE, t 3RATH S, F 23D TROMEEEFICX>THEL 3%, EH
DEIWUETTE LTMb 2N EDPETEENS. IO r ZER L TE2RT ¥ vl
BB o(rl,r?,--- V) OB LEPNDZ L L, F,r D a (=1,y,2) HAKRD % ZHZEN Fy,, 1
eELL

0P

Fio = — o (2.2)

TRIND. BATFIOVWTR (22) ZBUENICED S5 222k D, RZt 2B 20 FONME
' REHET 5. AT, BEESO 7 L) XA LT, EEARER DS BEICLUT O
J& Verlet {% [77) =2 F\7z.

ri(t+ At) = ri(t) + At [vi(t) + gﬁAt} (2.3)
Wit + At) = vi(t) + At 2O +21:;(t + A1) (2.4)

2L, AUFRREIZIATSH D, v 30T i OFEERT ML TH D, KRFFETIERREZI AT At=5 fs
¥ L7z, B Verlet (K TIXREZ t I8 20 FOMLE ri(t), HE vi(t), 1 Ft) 2 (23) 12/
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AL, Bt + ALICBI 29 TONME ri(t + At) ZRD 2. ZOH L WD TONIE ri(t + At) %
K (22) IRA LT Fi(t + At) kDT, K (23) & W Rl t + At DIEE vi(t + At) ZKD 5.
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H2E TENFHE

2.2 DBFETFILSIURTOOvILEH

DFENERCBNT, HEERRT &2 v VBIRIEETREORTICRESBERLTED, kiR
PEPHEEIZOWTIRESIN TV S, AR TIE, HEMEOYFEN 2GR ZIH O 2T 57018,
R FiE, BXCHEBEHEFRORT > v LB e U THMIFAR D van der Waals 11 %
KT 2DIIEHWHNTWS Lennard-Jones (L-J) K7 ¥y b2 W, $7, BEHET
RIDRT > ¥ VEHBIZIIER R E TV & LT harmonic K7 ¥ > v L2 HW\W.

2.2.1 FREDFOETI

AT, BERFODTFTHE TN T 2B LG F2ERe LTIk, $72%2
D FHEOMEAEAEEK (B3) 1R, B, j FOMEHEr; OB 25 L-JRT V> vl Op
WRICHR B MIEHZ A 72 D% vz,

@Lﬂng:4@jkjg>m—<jg>1 (2.5)

ZIT, 04 13 Oy RIS 0 FRIBERE, 6 3 L-J A7 vy rlliio T ORE 2RS
WAEDF (TN TF) DERDEDLE NI A—R 2R NIRRT, BB, 04, DEZEY]
WXL 52 22T, AHEMERZ 7LV VIR T LI D FRORE T LT—MRLT 22
EDA[RETH 5.

R BARMETIEEZNIEIORTED, RED) DL-IJ KTy Mchy b4 7% ED T (219)
%, HEERART Yy e L.

Table 2.1  Mass and potential parameters for argon molecules.

ms [kg] of¢ [nm] eeg [J]
6.642 x 10726 0.340 1.67 x 10721
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28R OTFENFE
2.2.2 EBHEEFOETIL
E BN I3 R R TR A2, KA TR XS harmonic KT > ¥ L &) ZIREL 7-.
1 2
@h(rij) = ik(rij — ’I"o) (26)

ZZT, kIZARER, ro 3RO ERETFRIBHY RS, RBARMETIIASETFEHE LD DXEE
HETFEIRELTED, BHRETOEREDZDZERTX—RIZHEDHDE2SEIZR I
T HDEH W,

Table 2.2  Mass and potential parameters for wall molecules.

Mwan [kg] k [N/m] ro [nm)]
3.239 x 1072° 46.8 0.277

ABFFECIXEE R DAl S S [ DS TS FE (fec) Z FHWT, (100) 1, (001) 3% 4 x
i, zEhATEREC KO IWCHIE L. £E3NIHTANS@ED, BHFEFOS LHNEE 228
DR F O EZEE L, HAED» S 2 EHODAIZ Langevin BIATEIC X 2 RERITZ1T - 7-.

2.2.3 S FLERSFEOMEER

TtED F e BEHE T O, N (E3) TRENS L-J KT ¥ v M K A2HEERIEZ 5L
CARE LTz, 72720, L-J RT Vv 8T R =& g, \IZDWTIE, Lorentz-Berthelot AR [78]
W THRELT. ZOREBAITIE, L-J RF Vv LTEBRINSZ “ODEM A, BIZOWT,
FIFEEOE AR, $2bB AFRT, BETDL-J XF X —R 0, e WENZILoAA, EAA, OBB, €BB
TRINDETHL, A, BHEDoap, eap IFHEBRAVIC

1
OAB = §(UAA + oBB) (2.7)
EAB = +/€AAEBB (2.8)

THEZ6N5. RIFFETIIEEE D T D 0ww, Cww ZREITRTEE LTz, BB oww ZHED
van der Waals BEff2 L7z, FRL-JRT VIR T X =K e, 1F, A ER)ICEDESIZHE
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HfH WTnZRLET, RDESITED.

Ehw = NEL, (2.9)
5?_W = VE&ftféww (210)

TDNRITA—=R ) DEZRET 5 Z LT, FHIRETOEMAORIENT X 257 [36], AIFKET
En=05TEELE. ZOEZHWVWZE X, REH S5 K Tl FirikiEIcH 285m Lo 7 ra
Y HETE DR IA 5T° v e B

Table 2.3  L-J potential parameters for wall atoms to determine the inter-molecular interaction
parameters based on the Lorentz-Berthelot mixing rules.

Ow-w [nm] Ew-w [J]
0.350 1.00 x 10721
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2.3 BE

DFENIEFECBCTRE TR I ENCER SN S, RO NGEES) 2RV BHE v O
RICBI2EH T ALF —OBM%E Ex £ 5L %, RE T, Boltzmann E kg (= 1.38066 x
10723 J/K) ZHWT,

%ykgr::EK (2.11)

TEIN, FEIRE TR FENICHHEESIIFICEIS AL X —pniten s, FIIESRIE
Bm OHE—OHFETIFTHRSN, oI MICARERSMAIREINLHE, 7FiDE
DOREEE v, DFOREE N 32, WEEINIC X 2B T AL X — Eg 3RD X527,

N
1 i 2
Ex = 5 <§_;m|v — 7 > (2.12)

7L, ()BT rHr IR ERL v ISR ERDIERE T,

1L
T = szz (2.13)
i=1
ThHEzon3., 22T, 7 1EDEZYONEOEHHEIXI DT, 2EONEEFRN-HEE
vIZ3N -3 kb, WiEEESHICHESKEE T 3IXATE5EZI6N 3.

r—_ 2% po-__Y 3 o2 2.14
T3(N— ks X7 3(N - kg Z?Mv—w (2.14)

UFTRAMETHWEY I 2L — a B3, BEOHIETIEICOWTIERRS,

2.3.1 Langevin AL & Langevin BAE

BETH % W CIREHIEZ 3 % 1%k LT Langevin BURE [19) 235 2. BEm OO TD 10T
DHEENOWT, TFINI7ESHL NE Foa 35 &, EBIFERIE

dv
— = Fiotal(t 2.15
mdt total (f) ( )

5. RERTHNZL Fiora XIEPDOT T OMHBMEHATRB NS, Z ZTIHHEAELTE
Z, Fiotal &7 T DI IH T 2EHTS —aqu(t) EEAHOS T & OFEIRRT 2 7 > XL
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Rt B2 T3, ZITayg 3EBRHTHS. %72, R(t)IHDTONME, HE L HEZ
WHD T3, Zor xEEHERIZ

d
md—: — —aqu+ R(t) (2.16)

72 %. ZH%E Langevin FTFER & FEX.
ZZT, RD XS REEMERZE op KHESEE T VXL R(E) & T2, RE T DBWADIRE
TE 3.

2O‘d kB Tset
At

7B, 7RI MD OREZIA At 23D 50, Zhuc kb, ER/NOREFFE TSI oz T v X A
T NfEE, KA A At ORNC—ED T Y X ANBEZ N EOTNBENPEFELL KRS, i
PEEAREL ag 1EEHE D Debye {E T W5 ¥,

ok = (2.17)

ﬂ'kaTD
6h

LRE RO, HEDPBERATRA =X =T Tp 721345, T 2T hiIHE Planck 8T, i
MEETH 5.

AREFFETIE, MDD XS ICEEOEMBEICN L, & FEOBEM R % BERICEEL, T
5 2 JEHDJFEFIZ0 LT Langevin BUBTEIC X 2 IREHIEZ TV T ¥ & 477 LEREC A U 7 #5471
2527, £7, Tp DfaL L THED Debye i 240 K ZHW\W7z [81].

ag = (2.18)
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atoms

o Q9 O
R(t) a*e ry  thermostatted
Y Y

fixed atoms

Fig. 2.1 Temperature control of solid wall with the Langevin method.
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|

2.4 FHOEEEL
241 HybZA7

L-J R7 v ud, HAFHRDFREREOBEIMIN LT —6 #TAMITHIL, L-J 7
X =& 0;; DIMERETIIMEATE 218N RS, 2 TTRIFE T, FHRIFHORHED 7
B, TS D 2 —EDH v M A THEHEr. Y R o G FRMEEFERZ Y21 2
Fy NATEREBEALE. CRICEDETLZRT VY v VB ZDOABORESGEZHMIEST 5720
W2, Ay vAZEEEr, ONBETRT VY VAL F =L ZOHENE RIS X DI RO
EEZMZ 2, X ([EH) TREINDS L-J KTV v LERD X512k 5.

By, 5(rij) = 4235 Ore — 1ij) { <:j>12 - <Zj>6
o(52) - () () [ ()]} e

_l’_

ZZT, O(r) 3XRATERENS Heaviside DFEEREETH D, K (09) iITHBWTIE, 75 > re T
MEERD? 0 242 5.

o(r) = (2.20)
7B, ARETIE Ay VA THEHRIL-J RT Vv 8T X =R 0y BFAVTRD XS ITED 2.

re = 3.9 X Oij (2'21)
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2.4.2 Book-Keeping &

2T HTlhRzhy b ATZEALTD, 1 X7y FHICTNTONFRBERZEHHE L TH
HAEFOBRZHML T2, ZARTTHERMZIRE S 5. £ 2 AWM TN 8%
(book-keeping method) [78] Z W CEIERMORMEZITo72. ZOHER, KeE2D X512, Ay
b 7 BB re OAMINE —EME rmar OTEIRE RS, BHNS 1c + Tmar DA CHFRIMEEEH O
BERERTHR ROV A PEERL, ZOVRMIHEHDITONTDAED v b4 7 Hilr. TH
HERADREEZITO> W BDTH 5. 2L, KE2ITRT XL, sHEOETICE 7RV, VU
2 MR T OBEREDS 1o K D/NX K722 e REEIEL 2. 2D/®, VR MEERLT
R h & OBRFOBENREZFEL, ZOBRKIMED rya/2 ZEZTHEITY X POEHZITS X
L7z 2B, KT rmar = 0.5 nm & L CaIEZ1T o 7=,

in list but

not calculated-.. not in list

in list and
calculated O

Fmar / 2

C rmar

Fig. 2.2 Concept of the book-keeping method.
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2.5 EREZH

RO~ 7 o HEEIZOWTHRND 72D T Ialb—2a Y EITHIHEE, TEX5750
ZWOTF 2D DHIEE LA, EERICEFERMREOHIKA SIS ZLDTEZ20TD
BICRD 2D 5. 2 I THFEHHEETIE, —HOHEE (L) IZOWTDAFEZITV, kL E
ANIBOEERENIIE Y RIBASLN R 52 2212k »> T, Bo TR TRERBT . MU
T, AR THAT 2 EAERAZMFICOVWTIANS.

2.5.1 FEHERREM

HAY L EMEN 2T EEROE DI, ERELESLFEIUHEED A XA —J kL IR 2R
REREIDS BRI DR & 5 & 5 EERSEME, FERS v, M3, ZXoBa
BT 2 AR EFOMIE L RS, EEAREREIERLLVNOGFIZOWTHEL D, 7FICiE
7o M EERADO T AN X —2FET 2L, FADA X =V H 55106 DHE
bERT L. L, KTy ML ThHy VA7 R2EAT 285G, B2 1VADE—
T oOHEEHOEER X 572012, LLDO—0dhy b I 7HEED 25D 2r, X D ELFE
TREIREND L. FFAMEREGEEHVS T, REOEN LY RSP, #—RTT, ¥R
TLRBREERGIR T2 N TE 5.
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Fig. 2.3  Schematic of periodic boundary condition.
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E3FE BRAZORELAE

SFENFE (MD) TERNZRRAGZ T3 258, BREE, S cid < Bz
TET 20 FOMMN (I 7 0) REDZEVEVENT 20ENDHS. $iz, FELT 2L THRS
NBEMHN (w27 0) BRABICBWT, BHT ¥ VY ASLRRRO AP EEZ&AEZHS. filx
RERA R RE T 21T, BRTERICX > TIEh T v Y ARRES N, WEKDRAD
MR, ZOINOAEZ ZLhr b THRESNS. TN LTMD THDIELS I 7ukR
T, A TFOHEISFRMEEERINCE > TREI N, 61T ¥ Y ARRIRRIE T FOH % &
STEMHEERNCE D ERINS. AETIE, ~ 70Dk hETHOLNSREFERIT b,
HHHARDREHNC TG LR WET, D FEIIFBITICB TSR R 2 EE T 2 FEZRE
T5.

3.1 EFEDRER

P, EERIE TRV SN, BRG], EIREGH, TILF—REIEER S,
o LI OB LTE 2 SNBEMER p(a, 1), WEE u(w, () & FIUL, HEHEkOERER
HIERACTET 2.

Op | Opuy
ot Oz,

=0 (3.1)

ZI T B u BEANMBYHEED kAR STHY, E72HAF kI LT Einstein O
FRR 0 U7, fe0ss 2 TR IC X BTETH 5. Z ok (BD) 13704, (LRI S 1B
FNDBREMRE V x5 2 EEHRFH

/ / / dva” / / dS pugm (3.2)
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#3FE MG ORHTE

LEMTHS. T Tny EINE AS OHAE DEAERR S PO kKD TH 5. X (B2) 1
%EVW@E%%&M,%@%ﬁs%Luﬁéggmﬁmiof%t%émézt%a%?a
R (B2) DFHLIZDOWT Gauss DFECEHEZHH ST 2 &

/ /S dSpugny, = / / /V dV%’Z’“ (3.3)

720, K E2) IMEEOEE VIS L TR D 32D,

/// av (8” 6%1’“) —0 (3.4)

AR A A D SE B B AR RN,

8pul 6puluk . Gm ext

ot " om  om T (3:5)
THZoNb. 72720, 7 &k ARNSIERAR Y MLV E2E S 5H LT 1L ATNSER S 200180597
FOZHAEE NS D 0NN O L RS TH 5. ZoEBERFA S HRERFH L Fkkic, F
BRI S 1P E N A MERE V o032 #HE &R

/// dvapw _ // dSpujugny + // dSTing + ///V dVpF; (3.6)

CEMTHY, HREV NOEFHIEZIE, RE S ZEiE3 2A0BHNREERREDIRRK pujus
BXY, 0 7 EEENTD 250 pF 2 K 2 TFICER T 2 #EBIEZICED 7635 2
LRERT 5. DR, AT, ORI X 2 EBZEONK puu, ZRRE LR, 22
T, R (B1B) OEHRVEESERFERITCE, SEEETRE 7y — pyug 1I22O0WT, HUE 1 HOR
T pugu, BEOE 2HDIGN 7y DOBESNTWE I ICHETA2REDH 5.

S o IHEAED T AN F —REFANIXATEZ 5N 5.

dpe  Opeuy,  O0Jq,  Ommu o
ot Ozy, oxy, Oz, B 37

ZZTeFARDOF ORI AINF —, TROLFADES T HLF — Jplul> L AT LF —D
MZELL, Jo, BRFHRNRZ LD kRO ZEKRT 2. ZOXSEEOMHEM S ICH XN 2 ME
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BV BT 3 =30 X —{R1FEH

/ / / dvape . / / dSpeusny — / / dSJq, ik + / / dSTuny, + / / / AV pFSty,  (3.8)
S S S |4

YEMTHD, YV WO I LF -2, KH S 23 5 A LF —HE peuy + Jq, — Thw
WV IHERT 200 pFtuy, ICED Db INZ e 2EKRT 5. 22T, R
(B8) D EMIIR T A F —RIFRITIE, 3F =W peuy, + Jq, — T DA 1 HO T 4
¥ — DRI peuy, B LT, GUHE 2HDORGR Jo, &, HILH 3HDRHEE myuy ISBES
NTWBZ BT I2REDD .

3.2 BRE@E®DZAZE (Method-of-Plane)

CCREHEDDIZ, BETFIFH 5722 BT OMEIIONTOAID kv, HEHR LT
EREZ 7T AL NEERTERT 2MERDS{E (Method-of-Plane, LA MoP & &) &5
FEZHNT 5. DI, BIETCHOWRARIERIL, FHICH D O R 0WER DIZAHWZR L.

3.2.1 MoP Ic&BFRE

nYEhFETE, X (B2), BH), BR) OFEREZAOAIIHIGT %ﬁﬁ, HB) R
W, TANVF—REZERT 5 HEZHBEDITRT X5 ICERMLTE S 82,8
HARDIGE LRI ERENOEEZLPREREORE 2 @EiE T 55 i)lljﬁ&\_; Dd7bH
INBZeEEZIL, kITRIDOERRY MLVEET 2MEM S, @B 570 FICK2EHERK
puk(Sk, t) 1%

U]]._,

1 cros%nzg Sk mv,i
puk(Sk:t) = < < Z> (3.9)
Skt iefluid, 5t ||
CEEINDG. ZZTO)R TV Y IR, ngfiggéf’“ WX 6t ISR S Z iS55
FIOWTOMME, mul 3D TOERB XUk HAEEZ, ‘”k‘ 0 F 0BT B A X % R
T5.
Kz, MM Sy %83 2 EENE TR pugwy — 71 (Sk, t) 130T OEE) © AHEAEH 11 X 2811
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(a) kinetic contribution  (b) intermolecular force contribution

inside outside inside outside

J
i <O
e, @*/ e
o =

v

(I) mass flux m - —k e
v}
k

Y oyl

(II) momentum flux My - —]: F/75t fj

EH L

(II1) energy flux e’ I; q” ]fj

EH 7

Fig. 3.1  Schematic of the definitions of (a) kinetic contribution and (b) intermolecular force

contribution of (I) mass flux, (IT) momentum flux and (III) energy flux.
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M7 EE BRI IC L T

1 crossingSy, Ui 1 across Sy, y 7’”
pugu; — T (Sk, t) = ——= m'uj kY4 — F k (3.10)
S0t Z ‘vk} Sk Z

i€fluid, ot (4,5)€fluid | Tk

LEFEENS B6,65. T IT, F7IINE 1D BHIEDT i BOE v OFEST 25T D
WEERNNZ bV F9 oL TaRS %, v SGHNAGEBRZ M rid = — ' O kD ERT.

SFHEMEEERN ORI FRZEIERTD 2 205 IK OHIROER [60, 5] 1IZHENWT,
R et VSR S, £ 568 53 N TORIAERA OB LTIGA, T B2 Of

(4,j)€fluid

HERNIOEHS 2MZ2EKRLTWS. T2 TIoAd, EHERFE L FHIC
T = Th" T (3.11)

7 FEB)E 5 (kinetic) 7)™ L MHESEHFSIH (interaction) 7ii i3t ehs 35, 20
&, X (Bm) A5 2 HIZRD & 5 WO B SIHE BRGSO 5h 5.

1 across Sg, 3 Tij
T (Sk, 1) = — S< >, B > (3.12)
B\ jetua |7k

—7%, A (BI0) 04U 1 HIZ

crossing Sy,
Tit™ (Sks t) — pugw = S5t< > omh ‘ > (3.13)

7
ie€fluid,dt Uk

YISO 5 FEE)E G-I i 2 BIRIE puguy DELFEL LS.

T, WEKRD MoP & u = 0 D IR LTI HEIRZ1TS5 O TH o720, X (B13)
NEDOEFICN O FEHFGHE TEk. LrL, EfRNRRNEZET 2ROV TIE, Bk
H pupuy X B TRWMEZFS, ZOHEIGEYIZIGTDOERE IR LRV, Z I THIHTIE, M
Al _EOBIEEZ MoP Ik W RN 2 2 & C, kD RFMOERR L BEET 2157 DEHRSTIE
BEZD.

F 7, EH-REMOMEERTICOWTS, X (BI3) @ L 5 HiEMMHEEER T & Rk
Zacross Sk DHNCZD 2 2 L BATRETIEH 208, AWK TI, Rowlinson % Schofield ®E =

(4,5)€fluid

b [84,85] 127 5\, AEHEER RGOS 7 > Y Va5 L, BEE-REHEER
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Vit bR sz, R (@ED8) 0FRCADE 2075 TR L LTI %S [36,57,56).
7B, TFEMHEEERANTFEHICOWTERDRLZRTF AT 2 a0t ER TR, BEOSFH
MHEAERIR 2 FHNOHRT) 81 DI D DHE L <, ZOBRIERFRIZ 23 X 512
YN ZBDNEID LS BEDD 5 [83].

ST, TXAF—RHIZOWTH, HEREFHR & [k FEENT5IE e o FRMEEEREF
BIRQ I TR TERT 5.

1 crossingSy, Ui 1 across Si Tij
Jok — = lim — Lk — ik _ 3.14
peuk +JqQk = Thiwy = LM, St < Z e > + S < Z q > (3.14)

icfluid, 5t ’U/Zf‘ i#] Iry!

Z ZCEHE SHDIMESE ryu SN T VIV HERT FLVONETHZDT, IRAFIIZ
B L TR ZEA L TV, £z, 3D Ti0d 22T LF—2EKL, XA TEHRI N,
i1 (2 L

e zim\v\ —1—25(1)] (3.15)
i#]
DTOFOEH T AN F - HEERART Oy LOMERT. B, VDT i BIXUS T
OEOHEMEMART V> 2y LT X AF—TH D, X (BIH) TEZANEL DT FICEL R E
e LTws [83,89]. RN (B1A) AU 2IHIZMH RN XD o FEZBE T 2L ¥ —%
KL, ¢IMEEERANCED DT i o0 T j AN T xLF—2RT. BERNCE, 7
Fi, j BOMBERART V> v VOZEN OV L, 5F j I X2MHEMERANICK 39T i OEE T
LNE¥ -2t e, BRUODT i CXEEERNCE 30T j OBz ¥ -2t eIt oD
Ho5e LT, XRD i, j MO ALF —(RFRIEE X 5.

b+ 60 1 e di = 0 (3.16)

TITeM BEY el ODEFBT I NF —BLIIMHAEER L 2MEFETHD, XD XS IcEXMH
ZABTENTES.

e = F .o (3.17)

et = FIt . ol (3.18)

EoT, BTiDORT i NDIANLF—DOBE) ¢V 1%, DFijEORT Vv LI FXLEF—DE
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% 3% ARG OREH A
oV v, 557 j OMEMEMANC & 2EB T xL¥ -2t 6" 2 VT

g = 6 4 L
2

1 g 3
W 5 (—ei = e")

= e.
1 »
=5 (d" ~ e'k”)
% (Fj’L F’L_] . /Ui)
= %F - (v + ") (3.19)

Y%, I TRAHLORERT, FRAREHDERNCEOWT FI = —Fll e L. 7B, K
(B1a) £ 1 HO TR T o v %, G 2 HOMAEFERINC X % T3 ¥ — DB #Ezo
WU, TR FREZZ TR < BT s FRBEFERIC X 2 H 0 b RO THEDAHE

%. AWFETIE, MAENTICET 2 =1L F—Difiid %, ﬁ%ﬁ@l%w¥~ﬁilrt,ﬂmf
AR O = AL F =R I 1T TRRD LS ICERT 3.

1 crossingSy, Vi
JE = lim —— Z el —k
Tk = 5i550 Siot £ ‘U

. across Sy 7,
1 . rj
(D Y (3.20)
= Sk |r}?
1€fluid,dt (4,7)€fluid
B = Jim — Cm%??Skei ), L M?;ESk ol (3.21)
T = 5100 Seot ot | T '

S
icfluid, 5t k \icfluid jesolid

ZZT ef X, MRS TFOFFOMEH T RV X — ei{in AR EER AR T V> v v 6% DFITH D,
HBARARTERINS.

. 1.
hin = im]'vZ]Q (3.22)
A 1.
1= —_py
b= Y 5@ (3.23)
j(#1)€efluid
¢f = ean + € (3.24)

Z DA FOROEI T A F — el 1F, REICBHEMNT &0 2 B EREE) T 4L X —721)
T2L, WEOEHRNE X LF— Loju? L OMCBEM T o2 bDTHS. £/, el &
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H3E RRERGOBEHAE
FA-ERMEMHEERAT v L TH Y, RATERINS.

i L i
ek, = Z 52" (3.25)
jé€solid
BB, INLOIANF—REIIDFHIHECIDFAEIRZSDTHD, ZheMbT3E
R = 3oL =R, K BR) I Db THEARXR 2 5.

JTn ZZPefuk-+<L5k-7kﬂu (3.26)
VI =V pe™u+ V- J§ — pF™ - u (3.27)

2T M, HMERYSZD OEEIRERERT v v vk, S IIREDOMEB T 2L ¥ — ¥ B
MR EF XN F— D2 KT,

TIETIEAIH TR L MR B BN 2 % & R, MR 2SS 8RR 25 L BHioD
JHIZ, MR AN F —FiR e T 2L X — OB e ISIMER C BAFURIC T 2 2 28 X 5.
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3.2.2 REDHREAKICES < MoP OEX LS LUVRHNDELSZE

MR FIREMNBIREERRDBELHEEZGLTED, Z2ho O PIEB XU THDS 4
EARRHEE u B L CREICNIGT 5. £/, e ZEMMNIEEIE, bbb u=0721LTH,
WARANZIZ D FOBEIEIE L, ZAUTHE S EER L T 3L F — OFXIC X D SRR DO 7T
HEFGIHEPERINS. 2D, HESMEEE (velocity distribution function, LLT VDF)
DRI FERICEI S % Boltzmann RN ZHD & 5 7 FXUEHNFETIE, BIZIZISTICoWTE, B
PRI 03 2 Y72 0 FEETIS I 2 ER T 5 Z 8T, 7 F ORI X 2 EBRITH Z G
NEBTECTBES 2. 22T, BARZE®RT 27 FOMXAICEHLT, 371700
ZROMNZRILT 5 B%R\% VDF IZESWTEHT 5. %9, VDF % f(z,v,t) £ LTXATH
FTDEE p(x,t) BERT 5.

p(a:,t):/ dvx/ dvy/ dv, f(x,v,t)

_ ///_Z dvf(z, v, 1) (3.28)

22T, [ duy [ dvy [T dv. % ([ dv B LT KIS, 9T i HEEREC O M2
B L, VDF ICBIESY 612 MEAI I O MBI AR (2, v, t) % BT 3 AR RS,
W BERIRING ot ORICHIETE Sy, 2EAT 55 T OO MATEHER Y 7= D o e 2 B 4
e DRI, AU U il 12 BT 28 € (, v, 1) 2T CHBER 1T 51 5.

crossing Sy, ' ) |vg | ot
i j : i\ = d d t t 2
&1310 < ey mf > 5151—>m0 ///Oo UA xkskf(:na v, )f(w, v, ) (3 9)

ENZOWT, (E7 oYYy, mIdn FOERRZEKL, £/, A%, MBE20oX
5 72 INFEIEIRR ot DREINCT Sy ZH#H T 2 Z L DTE L0 FOFET S8, TROEEE |vg bt
ORI T 2 B TEE R E® ST 5. 22T, M limg_o IS & oC, THLT 2EEANTO
f(x,v,t) B L CEBARN R MRITER & (x, v, t) B—EMED f(S,v,t) BEU (S, v,t) THAE
Xz oMb T2, BEUDONE x; 1T 287723,

vk |6t

lim dzk Sk f(x,v,t)é(x,v,t) = Uim Sk f(Sk, v, t)E(Sk, v, 1) |ug| 6t (3.30)
at—0 Jo 0t—0
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Fig. 3.2 Concept of the connection between discrete microscopic molecular variable ¢ and a

continuous microscopic field value §(x, v, t).

L RZOT, X (E2) EAD LS ICEKET 3 I LA TES.
crossing Sk '
/// v f (Sk, v, 1)8(Sk, v, 1) [vx] = lim — St < ef; ) m§> (3.31)

T DB 2 BARIIZAR & LBt R IR AR AR £ (S, v, 1) DBARAUC X D, WA S) 12BIL
TEHCEINIERNBRER B T2 e TE 5. 9, R B30) O £(Sk,v,t) & ITE%

i B L RRAL, R (@) 2H0BIET,
1 crossing Sk m
li — .32
p(Sk, ) = lim, 5k5t<ia§m \v,g}> (3:32)

¥ UTHRENR S, THILINIEE p(Sk, t) BRES. 772U, o B9Fi Dk FFDHEERD
TH%. Ak~ 7 o OHEBRK puy G HBEEZE AW,

pui(m, ) = ///_Z dvf(z, v, ) (3.33)

LEFINZDOT, R (BID) O (S, 0,t) & EICBL L BEY L #RATE LT,

v vl

1 crossing Sg mvi
S 1 —L 3.34
(S t) = 5;Lnosk5t< 2 > (334

icfluid, st e
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DE DT, k AFNIERR Y bz b OMEMN S, ZliES 20 F2HWT, | AAOHERIRK
puy (S, t) BKRES. ZZ2 TR (B32) & (B83) &b, 7 vDii# u RN TKE 3.

crossing Sg, i
< 3 mvz>
7
pui(Sk,t) _ . icfluid, 6t v
————= = lim —
p(Sk;t) 6t—0 <Cr0531zng " m >
T
icfluid, ot v

77 FOEENC X 2 EBRFND, WO FEIHFGED) SBTREZERN S DITHIET % 2
Lz R % 712560;, CTH RIS TR EDERITNE S 2275 T MoP IERZEH T 5.
T, IBHO5SFEEESIHE S IOV TR FRIETIETIE,

(3.35)

U[(Sk,t) =

ki 1) — ///_OO dv f (2, v, 1) (05 — (@, 1)) (01 — (1)) (3.36)

LERENG. T OTHE, HEFHRYFAKC, K E3) 0 LSy, v,1) & ¢ ick - elhou)
EJ:U‘—M# ERAT S L,

icfluid, ot

crossing Sk i g crossing Sk i

. 1 mu v, 1 muy,
=dml—gm( 2 T tuGkegs{ D s

- k iefluid, 5t v k iefluid, 5t A

1 crossing S m’uli 1 crossing Sk
+ uk (Sk, )S 50 < > i>—Ukuz(5k,t)W< > }”/@‘>>

iefluid, 5t LA iefluid, 5t

crossing S, ; .
kin T _L g m (UfC — uk(Sk, t)) (Ull — ul(Sk, t))
T (S, t) = 51,:11_{10 { S0t < Z ‘%‘

3

1 crossing Sg, mvi Ui
= o, (_5513 < > | f‘ l > + wpui (Sk, t) + wppui(Sk, t) — wrwip(Sk, t)
k icfluid,ot |k

crossing Sg,

. mval > + pugui(Sk, t) (3.37)

ifluid, 5t |k

lim ——
étlino Sk(gt <

LY, o FEHFGEIKRD LN, 272 L, R (B30 oL T (B32), (B833) H
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Wiz %72, R (B30) ORAUE 2 HIZR (B32),(835) & VT

pui(Sk, t) - puk(Sk, t)
t) =
puug (S, t) (S )

LLTRDZZeaTE, ZHUIR (B0) OEHRFFIOBIIEICHET 2 b0 TH 5. R (B37)
ijiﬂfll’aizﬁﬁ;ﬁ puluk(Sk,t) ’gfgl < Zr7T

(3.38)

1 crossing S} -
73" (Skst) — puug(Sp, t) = — lim —— > i (3.39)
6t—0 Si0t i st |vk‘
1€fluid,

b, T OEENC & B EFRRED, LD OBIREZROZ S DICRIET 3 Z 2
Ohb. FFENFETIE, I 7 aiEEERROT FESFSHEmy — puyupy I 21— 3
VHIRFLTEBE, FHERICBIRE pyuy ZIMZ 2 22T, RO XSSO 5 FEE)E5-IH
TN AR E S,

K (S, 1) = [T,ﬁj;n(sk, £) — purug(Si, t)} + pugu (S, t) (3.40)

XoT, BRIMICIEE 5 1cR (E2) 2% 5 & £ THAA
Tt (ko t) = 730" (Sk 1) + 71 (S, 1) (3.41)

CRIRTE 2. oFENFHETHEEREINCAl - @ 21T 5 BT, a2 —2a vyHidsy
T OIR 2 FEVITEER S 2 M RRKRZFEL, RIOEYE UCRE, BiUHE, ISR EOERE
HRES. dikoHER - HERARFRIOZR YL, I70RiRoOBRERLORARK L &bhE
THRBEDICE LD TRT.
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3.2.3 MoP IC& B HARFRAE

BBl cd, A E@m@) oz X —ififle> Ial—ayfEREL, #UHr LTz
INF —DBTDIH peuy, RIWIMEE ryuy 23R T2 Z 2T, REICETRI KD NS, T
ITEET, TALF—DOBIRDIE peuy(Sy, t) DREFIEICOVWTE X 5. FAORFO BN
LD DT ANF — pe(S, t) &, HEZLVWTHBEIT 29T i DFFOT 3 L¥ — e % MoP IZ &
b g tFhE v, K (B3 D ¢ e?‘ PRAT S22 TRRCEDRES.

vy,

1 crossing Si ei
pe(Sk,t) = lim —— < l> (3.42)
6t—0 Si0t ieﬂzui;l,cst |vk‘

ZhefFtkic, X @E), (B823), (323@), (228) OihD FORFOEB T 3L ¥ — el | DUk

HEMERIRT V> v by, E5IZNE0R e, B & Ok BEREHEERET > > v e, b

IHSDHFOHOTILE —% MoP 12 & b 5k, TbbR (B30) 0 £ 12 ﬁ ﬁ |f7w|
k k k

ZRATHUX, XD XS ICERNBRITRIEKD =L X —23KE 5.

1 crossing Sg ei
kin : kin
peki (S, 1) = lim < > , > (3.43)
050 Spdt \ | i s [0l
1 crossing Sk o
ff : ff
pef(Sy,t) = lim < > . > (3.44)
5=0 Syt iefluid, 5t LA
pe' (S, t) = pe™ (S, t) + pe"(Sk, 1) (3.45)
1 crossing Sk ol
fw : fw
pe " (Sk,t) = lim < Z : > (3.46)
5=0 Syt iefluid, 5t LA

ZiuzR (B333) TKZE 2 S, TOIHE ug(Sk,t) ZHF 5 Z &T, IARILFX —DBIRDIE pefuk(Sk, t),
pefwuk(Sk, t) 75“*? % . i 7’:’2, ﬁ (m) E‘ﬂ% 2 IE@FISjJﬁ:% Tklul(Sk, t) Li, ﬁﬁIEJ: J: D ﬂzi 5
VY] Tkl PR/ %a uj @WE, Thbb,

Teit (Sky t) = Tratta (Sk, ) + Thyty (Sk, t) + Thouz(Sk, 1) (3.47)

&, MEMAT2I0hHEFEE LTRHRTE .
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H3E BRAKRGOEH G
s %R (B28) ICRAT 2 28T, MoP iz & 2 AR OBGTH JE, XKD LS5k 3.
Jor = T — peug, + Ty (3.48)

C OTANERO MK 2 8BS 5 &, RAHINCIZ

1 crossing Sk 1 Ui —u Ui —u
gL — i - i 20k Tk i Tk Tk
Qk af%smt< 2 (fm” W T

1€fluid,dt

1 across S 1 . ' . ri]'
4+ = Z §F9 . [(’U] — u) + (v — u)] (3.49)

S i
¥\ (i) eftuid s

e7zb, ZoREBWT, 7FOREEI TN THIED b OMHEMHEE TR D fbhTwnws Z e
Do b.

TRAR-TRARRE O BRI LT, JRpR—E AR o AR SR Tl ik E AR AR 1 D3RR ) Fext
LT D b s DT, BAKEYD OfENEFHICEDLDNZHL LT, R (B22) LRk
HBEE-> TRRTRE 3.

VI =V JL -V pet™u + pFot . VA (3.50)

TS FEU AR e LTI bt 3728, RHFFETIEANITONEDORR L & 28 E D [F
FRICRFT O UFEO RRESEE VA 2T 5.

BB, R TIEIBREREV NOTRMAE L BEROBIREZED > 0T, BRETOBIE ExXE
WD TEIickhb. 2O, BN F 2 E50HEDANI TN TREBERBORE S - THEIE
FETEX2DT, Gauss DFBCEH % HWT, Einstein ORFNTER T2, XAk 3.

/]/1dVV7wﬁW=:/]/1dVV”Lﬁy—-/]/‘dVV'péwu+—/yy‘deFw“~uVA
|4 \4 \% v
= // dSJ{«V}’an — // dSpe™ung, + /// dV pFet . VA (3.51)
S S 14

DF DRV NOWEDSERICEZ AV F —RE V- JV 56, BiRICk 3 =31 F gL
SIOMEEZIDERS 2 8T, WV Nt o ERICHM L ADHE V- J§ 23R % 5. H
HOHR - HEBERFOEE L RIS, 7 FENIHETI AT —RIFANCH] - @t 217 5
PRrIZIEZT I 2 b= a Y HIIMEN R 2L X —fiRz2it B L, RUE L L TATRKRZ EDER
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BOKRED.
A D T XX —RIFAI DR &, AR50 7 DR 2 FEVITER S 5 FiR OBIfR 2 £ 8112
FHTURT.
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Table 3.1

93

BURIASG OB 1k

Microscopic expressions for the calculation of the corresponding macroscopic prop-

erties of conservation laws defined as the average on bin face S in steady-state systems. The

top six properties can be directly calculated from steady-state systems through the MoP proce-

dure, whereas the others below are derived from the six. ( partly from Kusudo, H., Omori, T.,
155 (2021), 184103; licensed under CCBY.)

Yamaguchi, Y., J. Chem. Phys.,

Macroscopic property

Microscopic expression

Corresponding equation(s)

p(Sk,t)
puy (S t)
i (Sk, )
Th" (ks 1) — purug(Se. )

pef(Sk, t)

J"i‘k(‘skv t)

1 crossing Sk m
lim —— —
5t—0 S0t < Z |v}€‘ >

1 crossing Sk T)’L’Ui
lim —— —L
5t—0 Siot < Z v} >

Sk

— lim

lim ——
5ims0 Sot <

m ——
5is0 Spot <

S
k (4,4)

across Sy ij
1 i7 T
_ E J_k_
F1l i

(4,5)€fluid

crossing S, T
1 Zg F muyv;
6t—0 S0t ‘U“

across Sp ZJ

Eq. (B332)
icfluid,ot

[kl

icfluid, ot

\Tk

1€fluid, it
crossing Sk

D

1€fluid,dt
crossingSy,

v,
(A
Zefi

1€fluid,dt

eﬂuld |

puUl
p
pUIUE
Tkm:(T — puy )+ U,
kl Kl pUUE pUUE
Til = Tkm + rint
pe Fuy
TkIU]

u; =

JQk = JTk pe g + T
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3.2.4 MoP OHERICIRAT 39 FEE

AFECHEM L 72 Method-of-Plane DRER §t(— 0) 1&, FFKZIE MD 5HEICBT 2 RREI%IA At
TEEXHIONS. THUEPONRD ST DDIREZRD ZEND 5.

1. R[] At D D7 OREENIERE |v| At 10 L, Z OHEPFHNTOEE MR f (2, v, t) DEAL
I TZ 2138/,

2. WREAT 3B THE o, o} 12 MD ORI OHE D B SV THYNHE
nz.

MoP O 77 FDEERE DM Z 2 HatA T 2 HEMKR L, EEOSTOMNBOEHH»HEHR LE
Bl E —BEE 57010, ABIETR, METZEET 5A1%05 T i ORE ri(t) ¥ rit+ At)
ERVT, of = T % NoP T osElEE ¥ LTRAIL TV 3.

3 (B339) 13MIR 6t(— 0) 2 At TEZRZTH, MEM S, ZEiET 2T XTONTOEIRED
FMZE 2 DT, 7 FEHFSGHICOWTIX, MoP OMEM TH I N U LTS R 5 ME
RIS 2 EEERFANC DOV T[S FJE LR,

—J5, TSk, t) — pugug (S, t) 26 TSk, t) % BET BRI B BHIE pujug Sy, t) 120
WTIE MoP B DER B AIRETH D, —H, 7505y, 1) ik —EICIE S v & 5 12Bbh 3.
UL LEERFICOWTIE, R B33) Tl=FkF 3L, MEMICERT 2 EEFITHEMICRE
HZmdET 2 HEE, TOME o /|lvl | 1IXEo TEET 2 2812 2DT, MEICHERFRIZ
72 5. 2% b3 (B3R) ORI pujug (Sk, t) 1IZOWT, R (B33) TERSI N2 BRI puy(Sk, t),
pur(Sk, t) THW2 Z & T, BERFR & EESERFRZ W AR 3 & 5 R—ENRERD
AHETH 5.

Xz, X (B@) DL AVF RO T FEMEEFRFSETIE, HEERNCX 2EHETEL
T T ORI ANF—ZD N e EEONFETRENZ LW Z e ikESWT, R (BTY) D
FORXHTHOZAINF—DORBEZRE L. 7TFEAETERMZEELL TrFoEE %
fR< DT, ZOBRIZE D X5 R FHNILH FREZRHAT 20 3FEEPREND 5. HIZIEAR
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FETHWT WS IEE Verlet T, R4t &t + At TODT i DEFH T 3L F -2

Lo S SR DT S S Fi(t)WLFi(t+At)2_} i((2
Sl AP — Sl (57 = Smw!(5) + A - Smlv'(0)
, At F(t) + Fi(t+At)] [Fi(t) + Fi(t + At
S WARE.JUES R 1083 (220
2 2m 2

(3.52)

7%, THUERZt+ 5B 3B TR X — e, ORFRIMS D, FiFlt+ 5L 0H e HED
N TRINZ LERTES. AU > TR TIE, =3 F—inKOMEIEHEFSEE
Y 3BICE, 9T OHE v 1E

u<t+ff>:vqo+‘§-F“”+;gﬁ+A” (3.53)

Y, i, BMOMEEER

F“<r+Ai):PW“y+€U@+Aw (3.54)

¥ LT (8z0), (B20) THW2 5T i,j MO T3 L¥—DBH) ¢V %, X BI) 1> 22725 T,

g = 6+ L
2

_-;ﬁﬂi<t+-€f>~ %ﬂ'<t+-€f>-+vi<t+-€f>] (3.55)

ELTRRET 5.

3.2.5 HITHELDER

[FEkD MoP JEX TOHE, HRMHE, BXIIGHDKKZ Daivis & [90] 1T X o> TREZNT
W5, ZOSEATHIZEIZ RIS T DME—RITR B2 RUE U 7R EARFEN O EE) & O RFE 14 7712
Ff LT Fourier 1% 32 Z 2 TRKD=d D -oTHED, HEOHELZE T 2HMEMH OO
ATRZAREICT 2 DT, HTIOCRPL = JUCRMAMMEIC X D HEN 2 EEOMERBICENT
RIFANZ A7 T RO OFEMETITR V. ZAUTH U TR TRRE T 2 FETIE, HEIM
RIS Z e THIROWEZ A T 2 AR LTIt h-EfREZ MDIC X D35 2
CRAMRRICT 572, —RILLEIT TR ZRIE, SHIRBERILICBVWTHEHARETH 2. K
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2% CLHE A B EE IS H W TCEREBEOBEE 2T 20T, BROMEEZE T 2REH S,
B 2 EEOENER, MEROERT R OMEE vy, 7213 T ERG M OEE v OB B A]
BEL R ARED DB, ZHICOVWTIERETDHERT A.
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FaE #H—NTtCouettenF

ARETIX, Kod(a) 1R THATRIATD % Lennard-Jones kD 5 72 3 ¥E—RITD Couette it
RIZBWT, BE, #HES, 57, BRI ZHE CEH L7z Method-of-Plane (MoP) % W
TR T 22T, AMETRET 2 FEOMALZITS. 20O, dBERBERNICIIERETD
5L LT, MoP D7 »¥ 7N () ZIRHEFTE S TEHHREZ1TS.

4.1 [SHEE

Couette RRZEHT 21X H->T, £, KoD(a) ITRT X DIz, y §F AN JERARER 2R L,
T B2 %1600 A DEEH R T2 5 72 %8 AW Z 213 72 WIIERRY - (LA — 72 372D D fee(100)
BEHIC 4000 fED 7L 3 ¥ 246 U 73R F 2 B4, MD ORRZIAK At=5 fs & Lz, Kic, BE
T D RAVE OB FIC D W CRES N E @03, BIVED & 8 H OB T % Langevin
BUREIC & D 100 K ICHRERIEL, 51 LAloBEHZ R+ e L TEHEET 4 MPa lZJE
HEL, —EHOMEA L LT, 10 ns BOHEMEIRIC X D EFILFE OB —MHRE2FZBE L. X
2, ZEHOBME LT, 5lEfix FHBmEZ LY X b2 LT4 MPa I ENFIEIL, X561 kBT
BETH 2 4% & o T AEREE 100 m/s B X —100 m/s TED L, 10 ns FIOEMNEHEZ Lz, AIHE
TlE, BIE puu DA TERWGEZIMOKS 01T, ZOMHREAMEZRLTWS. B2
Fre UTERZE T2 RABEm O E R, B S o8 c, MDtEHPIEEES VLT
270, H3EWENRMECEELEEST S, SEEN»SrRVNNE e RHE. 22T
ABFECIE, EMEER 2 A H OFAEFH RS OB ICEE T 5 2 8T, EHIEFO%E—X
7 Couette IR EFEH L7z, ZDIEDEINZ 3.61 MPa & 75 /2.

RIFFETIE, ZDEFEIEFHERDUE—IC Couette TLRDEE, HEE, FHIE, JI©H% 200 ns
DR X DEHRE T 2 2 & T MoP OMGEEZIT o7z £ DS, Lennard-Jones ;RT3 v L%
T X =R opp = 0.34 nm B IRAED TOBEEERCRZ, ZEBSER Z MO EoREETHIUINR
NOFFEMDBRTTE 2 EZ, 2o FHET Az =0.150 nm B XU Az = 0.145 nm MR R EAE
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FREZHET 22 THLND 2, - HEIEHRNT VL2 ET 2 RABOBER S,, S, &AW
TMoP OFtBEZITo7%. B, AABERPE-TILLALREL L ZIERAT, FA—0 2 BFEEH
THMEMCRE 2N L. 2, HEODI, FHERE 2 AN 0.15 nm HFE T
g2z oo sMEREL WA (VA) 12X D, BECHRED M 2R L.

4.1.1 HBECREDODTH

MoP & VAIZK D RDLHESL Xz FTRIOHEER T u, D2 K ET(b) ITRT. THbHD
EHREX, MoP ZRWEEIETIE, S, BLUS.DEBLLDETHRDZ LM TELD, T2
T S, TOFEMEDAERLTWS. KED(b) &b, 2AMIC MoP 1& VA O % B Bl
LTEY, ZORT—LTiEMoP & VA DFRIZELR->TRZ 5. BESMEL T, EfREE
R TIER S N2 BREE OISR ZRNT, AL 27Tl —E L 7250, ER/IIT—ELIX
25720, AU 16 nm & W S FRWZERIT T O ZEDHK 200 m/s & W0 S IEFE I EWE AR
FBRLTOVBRZRICKD, BEPEBTHEREDE T 2 Z 2 I X > TRED—E L R S I DM EF
DD THS. ZORICOVWTUIRE OGNS TGRS 5. £/, EWESMICBE LTI, ik
BEMAGEZFRVTC, ZOME, T RbbEANEEEX—EMTHL Zedbhr s, ZHUIREE
2ET DERBEEE G RN T, KRB — Bl ARE 272072 EZ 6N 5. T, MoP
¥ VADEZFHELESDZEKED(C) IZRT. MoP ¥ VA DEEDFEMARDEIZ 10 kg/m> 1L
T, TROBMWEEAL T DEEICNLTL %R EEUTTHD, HEOHERMRDOZED 0.5 m/s
TTHD, MoPIZ& D VA b BEMD L N HEB X CEHIHEEDOFHENARETH 2 Z tavh
5.
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(a) Couette-type (b) density & velocity distributions (c) difference betw. MoP & VA
flow system
velocity, u, [m/s] difference in velocity, uM°"— ¥ [m/s]
80 -1 0 1
LI L B A B
5 ! VAR -
g £ L/
i B L/
M § 0r v/ T MoP _, VA
7 § //IE/ MEAOP 1 _pMoP _pVA
= /o -
F / | MoP
-5 /// l: . ﬁVA £ -
z ,// __‘____.12/7__,_
Q T PSS HN S S SR I IS RS R
X 17 0 1000 2000 -10 0 10
917 nm
3.917 nm density, p [kg/m®] difference in density, pM°F — p¥2 [kg/m?]

Fig. 4.1 (a) Quasi-1D Couette-type flow system of a Lennard-Jones liquid confined between
two solid walls. (b) Distributions of density p and velocity u, calculated by the proposed
Method-of-Plane (MoP) and the volume average (VA). Solid and dashed lines denote the results
of MoP and VA, respectively, while the two lines almost overlap in this scale. (c) Difference
between the MoP and the VA regarding density pM°F — p¥A and velocity uM°F — uY* with their
error bars depicted with semi-transparent areas around the average. (Kusudo, H., Omori, T,
Yamaguchi, Y., J. Chem. Phys., 155 (2021), 184103; licensed under CCBY.)
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4.1.2 BRBCRHDSH

MoP i X D3R5I B X OBIHE, 7..(= 70 + 750 70 — pugug[= 72 + (7K — puguy)]
BEU puguy, DOHERKEA(a) IRT. ZTIZT, T & Tow — pzpz[= T8 4+ (7K — pugu,)] &
Ze1 o (B39) e X ED) ICXDEHZFHET 22D TE, puyu, 1FEELHEILRKD LN
5. £z, BUEOME—RITRTIE, 2 HFEEIEIREETu, =0 LR D BREEHATZ 279,
Ter — PULU, & T, £ LTWA. 22T, R (BI2) D T,icrl‘t DFTEIX, ~ 27 aiiiid i gk
ROGELELFAULTH 3.

O EDA(a) IR L7 Top — pugug 1%, FERD MoP ZEREICHEH L7 Ha 1t & LTHEH
SNTLEI DBDIIMHYET 205, THEEEN SN L ZEICEWT S —EEZHS Z &3k
{, ¥, 7. LB ERZ1D, BIE puyu, ZHEYNTEDBRSBEN D 2 Z e hBbhr b, KITH
B2(b) 12, BIREZID RNZIGHT ¥ Y VDB Tow, Tozy Tow BEL T DAMERT. 72
B Toz, T B S HT, ZALSNDE DX S, HTHIHLSNLBDTHS. TIT, 7o, e B&
O T WIS T 2BIE pusu,, puu, BED pusu, ICIEu, = 0 B3EZENE7-DHMHTE 329,
Tox VGBTIEZ EYNCE D FRSBED D D, X (B20) DHED, 7o — pugu, IHEIE puzu, 28T
Z e TRD, EURBEHE 2 & 0 BENL TNV 7 E T 7 = 7o, BE P 72 = 700 D72 ZN, Z
AUIETRD Couette DL FJE LR, Fiz, NAVTED —140(= —7) OEIZEEIHIZZT 5
FE713.61 MPa & —¥(3 5. 73, BEHEHEIRTFICT] 7 \FBEMNLEE CTIE—EEZ NS TEH L T
W32, ZAUIFHE PR T OISR T A5 20O T, KEd(b) DFEESMEMIGLD
DTHYH, FIFERICB W CIERER) & EREEMN T 6N 5. —T7, BEEERRIT RIS
T2 (&, BEVROMEEAER 12358 UTER T 2 BEE LAV CLE—EEZ LS. ZAUIARMSET
X, WA-EERBEEERDZENTERIANTE LTHR->T0W2 72D THD, Mi3(a) lTRT &
512, FERKEZ THEE U, EE2»SOHEERNBERWEZ EHE § 2 X5 RBEARHE
EZLE, TOHZES AT FIEIFELRVD, TOHIZSINIMEH LRV, s1iE38
BEBICERL, Z2h FHIFERT 280 eHIDES. £, MOEIEHT 2 EAMIGIZ
BWHKR T 270, e LOEIIERT 255320 & 5. ARk, 87> Y L oIEntA
JHTH 2B AMIEH 1.0(= 70.) &, KEI(D) ITRT XS5 LDDEVHS, [EikH,SDEEN% S
VB EEILE LN CIE—EE R EL S .
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(a) Diagonal stress components & advection term (b) Stress components
T T T I T T T I T T T I T T T I T T T I T
EEEEE—— =
5 - -15
7 | I :
T B 3 - TZZ(SZ) T _ ZZ(i}) T
g£0or e TSP SI T — =l 0
a | ] i puqu(Sx) 1 - zx(Sz) ]
g" 1 I T,\’Z(Sx) i
-T- —1-5
1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I—’I— 1 1 I 1 i
10 -6 -4 -2 0 2
diag. stress component, 7..(S.), advection term pu,u.(S,) diag. and off-diag. stress components,
and 7,(S)—puu,(S,) [MPa] TS 7A(S2), 7.(S0), 7(S,) [MPa]

Fig. 42 Distributions of (a) the diagonal stress component 7., (S,)(= 71 + 7KIn) advection
term puguy(S;) and Ty (Se) — pusty(Se)[= 78 + (7Xin

rxr

— pugug)], and (b) diagonal and off-
diagonal stress components 7,4(Sz), 7:2(S2), T22(S:) and 7,,(Sz). (Kusudo, H., Omori, T.,
Yamaguchi, Y., J. Chem. Phys., 155 (2021), 184103; licensed under CCBY.)

(a) lateral force balance (b) horizontal force balance
Tor(2+ 02
== ) Tox(2 +02)
] ,,,,,,,,,,,,,,,,,,, —_—
solid solid
' external external
Tmzl force IT_TZ Trx _ fzm:e ! ﬁ Trx

solid l solid

T..(2) =0

Z

Fig. 4.3  Schematic of (a) lateral and (b) horizontal force balance on the CV with setting the
bottom face at solid surface and the top face sufficiently away from the solid surface.
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4.1.3 BREEERARAOREDFHE

—fRI7EIRN, TRDB up £ 0B XL w £ 0(1 # k) DEFEE, X (B39) O 758 (Sk) — puguy (Sk)
P B YN IS D B 5 5 7= 01213, BATE Sy 1 U TGO R wy(S),) 7213 T <
R AIDREE R 7w (Sy) ZRITHE T 208 H 5. 22T, Ked(b),(c) TS, TEIban
B p(Sy) BLUEEHREE u, (S,) DOMER LI, ZAIH LTI ZITE, S, BXUS, T
LI NEE p, BEIRRK pu,, EE v, ZHERT2. £3, AT ICk=2BLU k=2
EERARANTEIET, p(Sp) BEUp(S,) %2, R@IA)ICk=a, |l=2BLU k=2 l=2
ZELARAT DI LT puy(Sy) BEL puy(S,) ZEtHET 5. 2L T, X (B33) 0@ bh, HEIRK
REECE D Z LI X 5T uy(S,) = 222 35 1 Ry, (S,) = 222052 sk 2. 7233, BIEELD

WoTWa & 5% v, — 00 HE—RERTIE, R () OIS &M MET 3Hc, ki, fkin kin

WKIR- T, XHST 2BMIE puu,, pustug, puzu, (TR Tu, =0%2E50kD, ZHHEKD
%5 ZTIE, uy, DFFFIFERICEIAETDH .

IA(a) 12BN p(S2) BE U p(S,) &, (b) WHEIK pu,(S:) BN pus(S,) Z, (c) I
ZNHIZE D KE 2 EHIGERE u, (S,) BE R u,(S,) Znd. 1B, S, THEILInfEL S, T
FEfbETAEE, ZNENOEHOFDRETHEAILZ729, Az2720dhTHAEhTws. &
DEED, BRLZEMNT MV Z2HTHH TR INLEE, HERK, FEEZIIHELTH
52 ehbrh, THEBHRIET ¥ YL puu OIENAIEDEY) 2 7B FIRETH 5 2 & 2Rk s
5. Flo, BEMGEMETIEE S, S, TAHEINLMEIBELTVWRVWESICARZI 2D, 20t S,
RS I ETRETEI L2 T2 28I LT, S, HdEME L %72 <07 b CTHEE S RDMH
THIELTWE D TH 5. AW TIRET 5 MoP 13HE MBI VDF I2EO DD
T, ZO&51Z, MEMOERGMOEERTIZNT TR, BRI OO AIREL 72 5.
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(a) density (b) mass flux in x-direction (c) velocity in x-direction
I T I T I T I T I T I T

position, z [nm]
o

-5 — p(S)

—pP ux(Sx
- p(Sz) ___pux(Sz)
- _
1 I 1 I I 1 I 1 I 1 I 1 I 1 I 1
0 1000 2000 -1 0 1 -50 0 50
density, mass flux in x-direction, velocity in x-direction,
p(S)r)5 p(Sz) [kg/mS] pux(Sx)’ pux(Sz) [>< 105 kg/mz ¢ S] ux(Sx)v ux(Sz) [m/s]

Fig. 44  Comparison of the time-averaged distributions of the (a) density p (b) mass flux
pu, and (c) velocity u, averaged on z-normal and z-normal bin faces S, and S, respectively.
(Kusudo, H., Omori, T., Yamaguchi, Y., J. Chem. Phys., 155 (2021), 184103; licensed under
CCBY.)
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4.2 BUROER

REITIEXHTEIOUE—RIT Couette iR % AW T, Method-of-Plane 12 & % TRAKAIEE D ZAR D i
175, T TREREDLDIZ, 5HER%Z 2 /7N 0.15 nm HRTHE T2 Z e THN S, xy
SETH & AT RRE S, & HWT MoP OFTEZITV, BUROEHZ{T- 7.

4.2.1 Couette MARDEE - RED

fw
O TIRFANIRICAE U 3 B R, SRR OB JL, & Fik BRI OB S8 1240 T

BLFET 5. FTMABOARHR I, KowTiE, X (B28) it~ T, WMz F—if
;ﬁ J{’z — J(sz + pefuz — TopUg R %I%JV?*@@%@IE pefuz %?I %, JT'I‘:\jJﬁ:%@IE\ TzgUg %E—:l
T TKRES. ZhonEER (B20) IHET 2075 TRIESIIRT.

(a) energy flux (b) energy advection (c) stress work (d) heat flux

T T T T T T T T T T

f

position, z [nm]
o
T
|
T
|
1
|
T
I

{ |

1 L L 1 1 1

-100 0 100 -100 0 100 -100 0 100 -100 0 100
JE MW/ = peli, [MW/ni] — (tfou), =, [MW/m’]  + J&, [MW/ni]

Fig. 4.5 Distributions of (a) energy flux JL_,(b) energy advection term pefu,, (c) stress work
(7 -u), and (d)heat flux Jéz in fluid due to fluid in Couette-flow system.

ZZTHD o TV B RIFE—KTLOEHRZDT, TALF—REITHEIC—EMEEIS 13T
TH D, KaH(a) DT O T 2 F —FH JL 1FEEC, BB &m0 L7 T
BIC—ELRoTVRIedbhd. BB, BIERERD L THMOE—RTRTH 570D, N
NI TOIINF—HEIZ0 L RoTWS. —J, BEERBEEIETENIZILLTVWEDIX, i
AT 2 T L F —(RIFERIANEED T 3L F =R TR <, BAREEED & RIS
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IHRAF—RREER L CTHDTHRIILT 2725TH 5. REH(D) DIFILF—DOBFHDOIEIZ pelu,
BERETEr L RoTWVWaY, ZHIFHERPIE-RITTRTH 2720120, =0LR2LDTH 5.
ZDEXIW pelu, =0 L RBEGETH, TEOFFOZXLF —ef = kv 4 eff 13 MoP 12 X D B
ARETHD, 20560, MESFOLOHEH T A LX — el ZFIYLLDODKEBLETH
5. ZIZTHTFOROEHTALF— el % MoP I & DT 2, XD X5 itk s oE
P EE) = 3oL F — L IREICEEMN I SN BT I X —I7HET 2 2 3 TE 5.

crossmg Sk i
km
zeﬂuld ot Uk ‘

crossmg Sk
1|2 1
=i t< 3o || \>
1€fluid,dt Uk

kin
S t) = li
pe (S, t) = lim <~ Skdt

crossmg Sk

5ta0 Sk5t zeﬂmd 5t ’UZ/,‘
. <cros§1:g Sk 1 | ‘2 1 >
—m 'v —Uu
5t—>0 Skét ichaa.ot 2 ‘vk|
1 crossing Sg, 1 . 1
+lim< Z fm(2u"vl—u-u) .
30 Skt \ | o= 2 |vi |

3 pkﬁBT(S’k, t) 1 2
=_—— < 4 — Sk, t 4.1

DORETORT) | plu(sy, ) (1)

B, N (B32), 33) 2EFICHVWZ. Zhd 5K E8 ORISR TR O RO BN 2 HE) =
INF—ZHRL T, NEBHRIRTRALINLF—, THROBEEICHET2D0KED, Z
DRIZBVT, FOLTRENEGLS R-oTWEZebrd. ZOREOEMICED, "VZEHT
BHoTHMEDEHEES—ETIERL, ZoOME, Mo iorndX (823) oEBHEEERRT >~
A M E BT INFE— T oL ZET—EME 1T 5720,

F 7z, WMA-ERBEEER T 2L E — v S FIBRIC (B28) 22 6RDZ e TE 3. ZhEN
E0RT. AR ERREAE R = 2oL ¥ — N IZEABERLE T O AMEZFO Z L h3bh 5

WE—RITCR Tl uy =0, u, =0 TH27D, KEH(c) DHIMEFEDIHIIHER

(T w); = Togua(S2, 1) + Toyuy(Sz, 1) + To2ux (52, 1) = Tapue (S, 1) (4.2)
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position, z [nm]
o
T

-5} T 1
I ! ! ! ! ! ! ! ! i 1 1 L L ]
40 42 44 0 2 4 38 40 42
ekin peki"/p [k/ke] o %|Uz‘2 [kl/kg] _|_ §M [kJ/kg]
m

Fig. 4.6  Distributions of the MoP average of molecular kinetic energy e, macroscopic kinetic

3 kT

energy %\u|2 and thermal energy 5-E= in a Couette-flow system.

T T T T T T T T T T T T
L 1 T ]
5_ 4 |
T [ i ]
=S

N, - 4+ p
g or T -
o - 1 4
-5+ + 4
: [ — :

1 1 1 1 1 1 1 1 1 1 1 1

-120 -100 -80 -20 0 20

eff = peft /p [k/kg] ™ = pe™ /p[kl/kg]

Fig. 4.7 Distributions of the MoP average of molecular fluid-fluid potential energy eff and
fluid-wall potential energy ef".
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Y5, BNV TIE, KEAD) TRLULEZ XS ICEAWIEN r, E—EEEIRD, Xa1(b)
TRLZEIICu, DEEDBBLZ—ELRE. 20kD, ISHIFEOED RIS, EIARETR
5HMBEBVANLZETIHMEENBBLE—EL 5. BB, AEROTLTEINFELS u, =0
Y25 DB MEEDFRRICHDLTO 2 R-oTWa., D& 5L TKES(d) DA DT
Jo, HIRD B Z e HTE, EREEHS S FAEO AL HBTRZOEEE—E L BR->TWVD. T
AUZ Couette iR TIEEE DT HFRIE T H 5 72D ITRAPNR T OREFR D —ElE £ 572D T
»H3. ZIZTEHEME—IIC Couette TLRD L7 IZBIT 3 (B20) DT 3L —(RIFANE, RERIM
SOENE T, BEEEREAIEE u, =0 282D TRATEHIT 5.

&]QZ _ OTopUy
0z 0z

=0 (4.3)

Z Z T Newton OFGMHER 7., = M?ZZ %R, Couette JiRDEESHHBIRIE L 725 LARETH
X, BUROFEENE

0Jq,  OTau,
9z 0z

2
— (aa“) (1.4
YR D LI ERTIE—EOMMREDNEL, 2K VEES—EOBMEMIFALIN TS L
Erond. kB, MR Id—Ele LTI o7,

Rz, A-EEMOBROREMZTS. X (B5D) O & 5 IRAEDERD 5521 2941 % 5
LTHD S e g, 2R FEROBK, 2D, MEKREANOTAELERICEDN T
V- JE 8D pte b THIA-ERE OB E I D K5 B EAH 5. 2ok, K (B350) O & 51tk
FEAR O T 3L F =K JI 2T 3V F —OBIROHE pe™Vu, IMEFRBORE % BB T 2 iK%
ERED T2 2225, AETIZEERE 2 7N 0.15 nm MR THE L ZBIcEh 2 oy FiHi%
MoP Of#EH E L TW5 DT, R (BH0) DEEITTNT Arx Ayx Az = 3.917x3.917x0.150 nm?
DR OMERFETOFEEE LTI S.

¥, WHEPERCEDNS TR LF— R V.- I = Y5 pRms(a) IORT. HA-EREO
T AF —TRFGTRA- EAEOHEEERIC X 2 b 0ROT, ERAEOEHETOAMEEZEL, k
TEERIOM B M SEH TR 42 KB L TP %23 5 2 & T L TORERMEZ @RS 2 4L
F—RMRERLFHET 2 TES. BUHERDFoTWD X5 EFMFREERLZ I, Zh
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(a) energy flow (b) energy advection (c) external force work (d) heat flow
T T T T
I — Il Il — 1 -
5t 1 1 1
’g‘ |-
g L
N =
£ of 1 ! 1 ]
g1
o [
-5t 1 1 1
1 1 1 1
-1 0 -1 0 -1 0 -1 0 1
fw fw dew
% x10°wim’] = w x10°wWm¥ +  pFrus x10®wim®  + TQZ [x10"® Wim’]
z dz z

fw
Fig. 4.8 Distributions of (a) energy flow I (b) energy advection term

dz
fw

dJ, .
force work pF* YA and (d) heat flow 7% in fluid due to solid wall in a Couette-flow system.

fw
dpfiizw , (¢) external

X, =AU F—RFAI e 5FMED» S, ETORMEZERT 2 = LF—RRIEZAERE RS, [[H
BCHA-ERE O T 3L E — OBROIE V - pefvu = L7 35 X CH S pF - uV = pFulA
ZHEAMER(D) BLL (c) 1ITRT. KEA(b) DHGE LRI, R 2 HASEEZR S v, =0
ROTEED T ANLF —OBRD R TEr LS. REICKIRA) ITEBERICEDI
PR VY = Y Ry YO SRR CIE O - T B O TR RS 5
EEDATV S, F b b TP 0 R 5350 [ S 0D BE A [ B U2 B L 7 AT
Aty Z & TEFRIKRENEHINTVWE Z e 3bh 5.

£ 2Ttk BB Y5 5 ol LS RIS, Ttk BRI OB I B ERT
B2 TEL. BRI, ROFUD (2=0) ¥ W o ZEVERFRHE D & 1533 O ER O A B AEH A
RUER DB CIE, ETROBFHRE YR e LTERT, L FOBERREICHS > T & 2
BITBHILT

wa ? d d‘]f“,; 15
()= [ asE (45

v UTHA- BRI OBIRR I (2) OAARSNSD. D & 512 L TRD 7 ik E AR 0 24
R A OBIROMZ, FIRAEICET 28R Jo. = J5, +J50 £ LTREIITRS. 20
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M2, WANEICEL 2 MR IERAT OIS CEB X ZHIETH 2 e iibh b, 2
DOREDIRED A S FEXKNTRT & ZREBD X 512725 Z e b o Tz, BRI RE AR
REHR X TLHIT 2 & W5 Fourier DIERIZ D, BREHI1D, ZORRERIIER L IRE TR,
X (I3) 13

0Jq.  (duy\”
o "\ oz
0 (0T (0
0z > ) " F oz
O*T Ouy 2
52 = —% < o ) = const. (4.6)

i, BEDO BEMOPERY 3O TREADIRESHICFE LRV, £/, KOE9IRLE
R D T3 F — R & PRAKNEE D T XN X —RROR] Jp, = JE, + I 3T oekh, &
H—RXTORTREIANF —RRE—EBZIDS Z e dbh 5.

temperature, 7' [K]

120 130

I JQZ i

5+ - JTZ 4

[ S ]

Rl ]
S

N L ]

g of .

g B _

[aF L ]

-5+ ]

I M R R TR |

-100 0 100

heat and energy flux in liquid, JQz, JTz[MW/mz]

Fig. 4.9 Distributions of (red solid line) heat flux, (black solid line) energy flux and (blue

dashed line) temperature in a Couette-flow system.
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RITETCHLD - 72#E—T Couette FRRICH LT, Z 2 TRKED FBIORTESKR=AHDOEN
Pl B3 2 U RITRIZEWT, Method-of-Plane % W T, EH BRI 12 FH X
N2 NP BEME R EIAL LTV L. EANRFHESRMIRTEOHE—RILD Couette ik &
FUT, £F 2,y HENSEREREREMZF L, 20000 HD 71T 2501 % Bl L 72 Lennard-Jones
T % B EZ 10.4 nm OIETEE X 41725 4 16000 & O BEH 12> 5 72 2 HilHTRE 85 K D570
DOEEHTHEy. ZORR, FIBEHIC X2 EAMZR I RWEFITBWT, R 85 K TFHREE
2B B EHYIR IR B S 2 EIOTOKIR AT E N, ZOMMIE 5T kot 5
W22 DOFHLREED &, T OBEMORAINE T © T 4 +10 m/s TEID L, 10 ns DFRMETHE %
T2528T, ETIENMASKEAREE T 2 EHREANRERE L. 22T, LN, 2
NI D 5 5Td MoP DFMEICIE Az=0.150 nm, Az=0.149 nm DREFHICHREZ TR E]
LTEonsBERZHNTWS. 2O, BiELFERKC, FAERIEHNIZEETHL L
T, MoP @7 % ¥ 7NV () Z P CTE 212 TitEZ1T 5.

5.1  HfER

RN ED EERIORTECRITRE VT, EIEAOE G ICTER S N 2 B0, Vs
RIS % MoP I X DEMET 2. ZOBOEMREDEFTEIZIE 500 ns DREEEE % W=,

5.1.1 BEMHEEORE « &RE - ISHAH

F5 2 AANSERAR Y PV EE T 2ER S, TitHE LEE p(S,) BXY, KHHERWIZED
DIERE 1, (Se), us(S,) PHRBEENT MLy, 2 HENIERNZ MLVEET 2EM S, Tt
BULIBAMIEH 7,.(S,) ZRIEDHENTRT. 2 TROMMEDL S, BE p(S,) BLUEAR
JoST 7.2(S2) &, MAEOBECHEL TEAFZOESZIHALTVS. £3, ERFEERD
EEGPEREINTVWE by dh, ZUUIREELMEh2d0THS. /2, [EHRHE
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DOFARIIFHRIRE IR O B O [36,86) L I13HR7 D, EEREEH D & T ICBEN 57T S iR —E T
FW, OF ) ETFIEMRRRAEEER L TWa. & 2 CHEG A & 5w f) B
WHEA T B & 5 BT ERAER, 20D b DIXRBEZAIRE FREN b DTH D,
WS ETIEFIC R o TW0d 2 2T, i - BBOHEMADERIBTNTWE Z b5
F7z, WAENTTIEREIREID OF v 27 —BOMNGDBERINTVWE ZeBbrh, I56I
RIS & o TR L 2 3BOB AWIES 7.,(S,) 13— EEEZRS TR~ hoTW3. ¥/, &
WRERLE T, [EAERN OB XD, KA EHEART NG 29k D F OS5 258
AWIEN 7..(S,) ITHA TV S

BRI, WOHT ¥ Y VDA Tre(Ss), T22(5:) ZRET FBUTRT. ZhodbEAMITL
AR, SURARERLHE CIRRIRAE RN X - THl 2R D AR NBERALTWS Z e 23bh 3
F 7z, FERFEER TR, BEGEREIC X 5T 7, (S;) DEMIEICR o TWE DY, ZAUIFFIIRIR
BV THHRTZZ2DTH D, LD X 512 Bakker DRUC & o TR S HEIGR 7 1< BEAT )
B3 [B6]. MBI 730(Sy) DA T —N—ZEHLbDERT. ZOMH»S, WEBDEED
BN E T AT 74, (S,) 1FE, TROBMARIIFRAERSIANCEfINTOT, —7, BEOM
DEEDRNE Z A TREFHRIEE -RONT WS, £z, BEEFERG RO 1., (S,) IS ERA
RN DEBEBIEE ENR W20, KSR, S TN E Tl 7. (S.) kD £ L B
BT ONEZ8I2%%. ZRUCK 2 EBENTOEN S £ —RG2ERLTED, Zh
X, KO ESREH THRNZBEDIFICLZ2DDTHEEZLNS. DX ICEIIHEAR
BT, ZEeZANAVIZETH- TS, NI—RENHZERL TS, HODETHN LK
Qian [@9] DEFAD & 512, MERBOREIIER T 2 1% MR NCE 22 2 OFH T
WV, ZORIDOWTIRAEDRKIELRD Tiltam 3 5.
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FCcC( 100) solid wall, 8 Iayers T=
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Top: quasi-2D Couette-type flow system of a Lennard-Jones liquid confined between
Middle: distributions of density p(S,), velocity w, and off-diagonal stress
component 7,,(S5,). Black arrows denote the macroscopic velocity calculated by the proposed
Method of Plane. The rectangle set around the contact line shown in magenta is the control
volume, for which mass conservation is checked in Table BETl. Bottom: distributions of diagonal
stress components 7,,(S;) and 7,,(S;). (Kusudo, H., Omori, T., Yamaguchi, Y., J. Chem.
Phys., 155 (2021), 184103; licensed under CCBY.)
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Fig. 5.2  Distribution of diagonal stress component 7, (S;). The color bar for stress is changed
from Fig. b
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FBEEARAEOERE - BE - ICHAH

T 2T, HER D7 o IHIHEGE 65 D IS N T OFER 2R s, BARZEHESMFIEIN 1 o
FHRROBEMHEE 2 O m/s £ 352 T, FHIVERIRZE T 25 PR ZARELTWS. KB3
12 100 ns ORI Z W BE, SO0 ERT. BREEMROSE L IXR R D, SRS
FETHRFRE o TS, ZAUIKHEIS I ATRENEICHEES R WDTH S, HIZIXEAM
JoIT o FEIHEAROIGE LR D, WAENTTIEE it o T2, Fiz, FNH 740, Tes
b FERRIC, BINEAROGE L IZER D, N7 T—EHICR>TWD., D& 5 ICERIE R T
FAN T EDENH—EMEITEE 5 DT, JSSinfh e Sk % BEA 1 2 Bakker O [39] 23
FATE, BWEARE & OREREICTT 2 102D HWViE Young ORI T 3 [36).
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Fig. 5.3 Top: distributions of density p(S,) and off-diagonal stress component 7,,(.S. ), bottom:
distributions of diagonal stress components 7,,(S;) and 7,,(S,) in the static system with wall

speed at 0 m/s.
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5.1.2 KAERTPICEL B MEOTE

(L8 2 12D 2tk H T REEE 2> 5320 2 B S 72 D O — TR OERS ™ %

z=0
™V = / dzpF(z, 2) (5.1)

BS
YERL, 2 =0RBIBZEAWIES T.p(r, 2 = 0) #XKBED EIRICRT. Z 2T 2ps &k D T
OFET =2 TROME L DKL, 20, BEEREER XD &EOAE 2ps = —5.1 nm ICFREL L. b
WU7z & 52, BANIGINCIEKIRARRN OFEIZ T TR, MERNTOEENRRI TV Z
Y, HDEROMEE RS L bp s, I3 D GNBC OMRKICHIGT 22725 T, KB6a FHic
iR E S OREREYL, ROPRETHEARE & R WREREICNT 2 102 b GV o
MERT. PLEHOREFRICIE, EICIZEABIEN r.(z, 2 = 0) (SKMWISH 7Y) 25, A
DENIFHRRNE O E S & BRAERIPERA L, T oA MR » 5521 2 BE#S 7 £ o b
BoTW2. ROFUMPATIE, AEOHIIEAT 2E L RARNHELF LWL T DL,
F, EHENCHERT 28 ANICH E EREIOBEE N OD G5 Z8iiikh, ZoFubiicidzhs
BEoODEoTWEZebhd. —FH, HEliReEOREREICOVTIE, EHEICEEIRAEER
RSN DETI OR AWIGTI2Y, FEHEIIESATRO FJ18 & CHESSFEERD, ARk
WE DL & ERAERNIAERA L, Zh o MIBEED 52 2B E S ¥ 2D B 5TV 5.
D% D, FHlE I3 HOBRRNE TS TN L, BIRRAIIS % SR & HEflt i F
T 2841 v B TEAT 2B, R ([C2) D L5112, WHANIFECERT 2 BB L
M oA TREIN S, 20 X5 REXE T3, X () 0 X351, RERINCHKT
267 KMEIEH 2 BT 20BN D 205, THUIBIRD 5 TEI A TR M THEEL
V. {FERBIZ, Newton ORHEEHIZRET 2 2 v T, S HoRHZ2ilA G EER 2R,
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Fig. 5.4 Top: distributions of the interfacial shear force per area 7 and shear stress 7., at
z = 0 and bottom: schematic of the mechanical balance on CVs: one including dynamic contact

line and another set at center.
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5.1.3 MoP IZ& 2 RFDRIL

Bl CRLZEERHEEIIZTRNTMoPIZEDERLLDDRED, 77 =ANMZEBEDES R
FROBRIC BN THRIEFY (VA) D FEIC K o CEHR L% - #E L, WML Tl Lofiz
EFETHILBAMRETHS. L L, RFAMOBMEREORHOHEED NG —LREMCRE ST
A, O XD ICHIB L 2BERLHE R FAWTD, BEAFIZBE ISR 5.
NERT =D, TITE, HERKEEZ MoP ¥ VAIZX 2o 2@ b TiHEL, MeahEkic~t
¥ X TR L 72BN AR Bl R AT O ME A I T 2 & RERIZ B v, MoP O BN
ZRT. 2 TCHMENRE CV O DHEIFS £ 21,=32.3 nm, zr=39.2 nm I, TFHIIRDHLE
2p=0 nm, LHEIIRAES TOREGETE 2 EROME X D @V 20=5.1 nm IZFE L7z [36-38,86,91].
DX BRFEDEE, MERE L2 BB T 2MAED FREELRVI L E35F X T, XXT
EFRIN DA THZ®ET 2 H&iE

mL:/szp(xL,z)ux(xL,z) (5.2)
2B
27
i = [ deplan, 2)usan, 2) (53
B
BIU
mBE/ Rdxp(x,zg)uz(x,zg) (5.4)
@,

%% A4MoP & VAIZ LD KDz, MoP DFtHTIE, MBS IZ~E Y X TR LULEBEREORE %
MERE LTREZEE p L HE v ZHVWTR (B2)-(63) OFMEFES 2 T2 DI LT, VAD
FHETIX, MoP OMEEZHTGETHED &5 32720 RAAEME (Az x Az = 0.149 x 0.150 nm?
B8 OF W) THK & R (VA) Lz FOEBIROFIEEZNFE LD 02 H LOE R
MR LT, zheX (62)-(62) oBEE % T 5. 20 VA Offilic X 2 EERFIGHEE, CV
DEFADHEIZOWTIE, zz FHTOERED Az x Az = 0.149 x 0.300 nm? ¥ 72 3 &I §
% FME, CV O THEIZDOWTIE, 2o FHITORMEMEA Az x Az = 0.298 x 0.150 nm? ¥ 723
RIS 2 FEMEEFE L TWE ik 5. 2 2 TRERE CV NOERZ(LAE % @i
THHEMRLDODED L WVIHK (B2) OHERFANCESWT, MEREY ST 2 HEE
mg — 1y, — g TRERENOERZM, TROLRREMS DIE

— ffCV de(ac, tend) - ffcv dvp(ma tinit)
N tend — tinit

MCV

69



958 WEIUTOEINEMR

MoP bin face

O

WA bin volume

| EEEEINE NN
| EEER NI NN NN EE NN NN

LLLLEL L L T L L L L L]
e s s IEEE NN SN EEEEEEEEEEEEEEEEEEEEEEN]

Fig. 5.5 VA bin volumes shown in dark blue around the control volume (CV) shown in magenta
(identical to the CV in Fig. 6). The mass flux on the CV face were obtained by the interpolation
of the values of adjacent VA bin volumes and compared with the mass flux calculated by the
MoP on the bin face shown in magenta. (Kusudo, H., Omori, T., Yamaguchi, Y., J. Chem.
Phys., 155 (2021), 184103; licensed under CCBY.)

RSB, ZIT [[oy AV BRERE CV IS T 26 0 2R L, 3> 7)) ¥ IHEDR
B tinit & AR tona COMBERBENOTMED TROZEZERT 5. 4B, BEFAMNCTEEKRETH-
Td, Moy BHFEICEER L3RRV eand 3. THEMD ORRE Y & & I HEERIIM
PINCEGE S ECHE) [B1,60) LTW3 Z 2T, 27 U IHRBOR & &% T, MEREND
AT FEILT LS B LrnwI e, MEETOEDLDOMEZIToTWS I LIZL5. 1B,
COELOMIEZITHORFIUR, MERBIINS 2 ERRERDIHEICHKLT 225, ZOHE,
WA AR 0TS 2 AR IR D O DML E 2SR N & o TE(L T 2 A[REMED D 5.

BWE LA AR CV o fifs Tl ZiliEs 2 HR&IREICDOWT, MoP & VAIZ X DR 7A5R
ERARBDIRT. &EB, FEFEEE UTHRE LR 500 ns i%, BHED MoP % VA O34
R L THAEVEIEE A TIREIP R DREWS, K (B3) ORFHMIEHIZEE I MoP 12 X
ZERBErOVAV, BEGRGFANCEST 2. Z2h 3N, BEOERY A XO[ATD
HHEPHFHELL VA ICX 2 ERRBCRERRFNZHZ T3 TERY. FIZZO VAL
MoP OE&HEDO A —EIX, VWEOHAER, MEMKRE CV OLHRTHRTE, ZAUIKURAmEC
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LA L2 DTH . $2D5, MEMERT RN~ ErH L L, VAT
BEVNICHERREZRBTERVWIEZRLTWS. —77, CVOLER FTHEXME, 2Eh2Z
FTHNA DO RVEINIRES N TS D, MoP & VARBBULR—HL TS, 0
MoP & VA OA—FZ VA THW 2 RO FEDOY 4 X2 MR T/had TUIMIRTE S 2
37250, HEEIEP T A LF —DREFIZ RIED 2BiX, o FEHEERNESGHEZEET
LREDDH Y, ZAUIMHEIER I DR & RFTOMREREDO D % il 2 557 S 2 BDEIAE L,
ZD LS BEIRIIFFICEBAFNTH Y, BENLEE AT, HETHIHREELZITS MoP 2577
DB THD, £, EHEORER, ThbbikNEZOFERICHILZbD LS.

Table 5.1  Mass flow rates iy, g and mp respectively on the left, right and bottom faces of
the control volume (CV) and the time derivative of the mass Mcy in the CV shown in magenta

in the middle panel of Fig. B. (Kusudo, H., Omori, T., Yamaguchi, Y., J. Chem. Phys., 155
(2021), 184103; licensed under CCBY.)

property® MoP VA
mi, 43+18 6.0+1.8
MR 55+0.3 55402
mp 0.8+02 08+0.2
mp —rmy, —mp? 0.5+1.9 —13+1.8
—Mey - 0.5+1.8

“defined by Egs. (632)-(63), all in unit of x1077 kg/m -s.
*mass flux on the top face at the fluid-solid interface is zero.

71



958 WEIUTOEINEMR

5.2 BUROER

ARETCIEHIE & [ U E R R BEAiR 2 H 3 2 % Xtk % H\WT, Method-of-Plane 12 & %
RN O BIRR DN 21T 5. BIRDENTIIIC RN IC AN TR EARMMBIEFICRELS RS 12
O, 2 TRISHIENOGE L IX R D 400 ns ORFREEENC X 23HEERERT. £/, MoP O
ZERIZN AN IS I FRAT DS L A CICEGE L 7z,

5.2.1 BIRVEAAEDRE - BURERD 6

MoP 12 &K D EHHE L RAM O T 3L =R JL, THxA X —0BROHE pefu, EHIEFH T u
r APNEOBIR JL 2 EDITRT. ZOKED, SEORTEFARO 3L F iR J;
DIFL AEDBIZINF —DBRDIE pefu TH 2 Z e bh b, SHDFHESGDOEE, R (B2R)
ORI NZBIMREZNS LHARZ DR D/NI VLo TWS. KRR THEIN SR
EARI NI WHEES H 20, MR HE T 2 RENTEOBGREZ KD 2 BIcidr 7k b K& (H
FLOEZEHEST 2 Z kD, BWYZRRRROEZE 2 IITIFE TR ORI 2 E 3 2
Zehbhb.

X HIKER AR, JRAFTORBENOFED & BAATRE T 2 ALY 2D O 3L ¥ —
MEV . -JY, 23X —OBROHEDHEMV - pe™u, HITHE pFt . VA B X WD &
AT 2 R V - I 2B, Th S BERTEOHEERIC L2 b DTH 5720,
C OIS FEFEEMOMUE S TOA LR TRWEZFRDOZ by d. 22T, THOEFKEERmD
MOEGETO K D EEMl7R 0 2 M BER IR T, H—IREE OTRMED TIIEREEE 2 & OMEEMEM I
Ko CREEHAR A EREZIT S, TROBIANAF—EZTED, V- JV <0tk3.
—/7, REDORNSGD SO 5 & 512, HEAMT I T RARIEEERITER A M O BE 2 £ - T
T, HEE LD LOGFTTE, #MiRAHIICB T 2D FO LT oEENC X2 = xLF—
TRHLECLH & 72 5 72, BREEMEREHETIE V- JY > 0T, BEBEMRIHETIE V- JvY <ok
o TW5., ANEE pFt . VA IZo0WTd, HEARAHE T, BANNCE2HEELID D, i
M, BB O FRIEHE & BABEINA DL, ME D5 2 L BXEIICR > TWS 2 LA
brd. < 7miciZZ L oA, FEREEIZE R 2HREMA L LTIRO IS boER, 278
BRT VY UGB RIETDHOTH 279, FER-FREMTEID XS, EHRI LT — DI
ZPTHONT VB ZehBbhrb.
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Fig. 5.6  Distributions of fluid-fluid energy flux J%, energy advection pefu, stress work 7 - u
and heat flux Jé from top to bottom panels regarding the (left) x- and (right) z-direction
components. Note that the color map range for the top four is different from that for the
bottom four.
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Fig. 5.7 Whole distributions of the divergence of fluid-wall energy flux V-J{p‘”, energy advection
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advection V - pefu, external force work pF®t . uVA and heat flux V - J(gw near the bottom wall.



958 WEIUTOEINEMR

5.2.2 HE} - - RASEOFERL

Z 2T, FIERO TERZ A Al 2 S OME A, RBEMEZ S ORERE, iz S
FROVREBEREDO =DOOMAEMRBICTEHI L T, BAERMNIIEKBEY(a) IZRT & 5128 4 DMEKE
DORME W T 2BGRD 6, FMBERETOREA - BT EE(ILT S 2T). = LF—
WRLIEHEEOEICOVWTIE, [ DITRT. $F, B BRHRO i 2 BRTREI(a) I
RY. ZAUT KD ATHEREAR TNV 7 ERICHERTIREDS LR L, Zuch U THRIBHEAR Tk
REDTRE, D% DA - FBOEMIR TR L FE - AL, ZoOMICHEINIBEAEIC K>
THTBE G & BRI BTN TV 2 2 e Ab» 3. X512, MEU() IKwt Y X TR
THEEAR 2 S OMERE, RREMREE SOMERE, EilEz & 2R OBEREO =20
BMBEREZHWT, S4AORA - IREZRED LI 2E X 5. 7, SMEMREORMEZ @il
TR E K ED(a) 12, WTERESTRLAIIE mW/m TRT. 2 CHEIIREHRRED A
2 EE S 2 E R AR OB J§ BEET 2203, KEfilgLs 272012, ER-FRHOR
MEITRTHRERE FHOKREE UTHRIL L2, BAREYS ) ORERE CV NTEL 2 EH
RFER - R Qoy &, EWTH S I L IIAF—DFEH LAV 2 L ICHESWTRE KR
CV O S Zi#ih s 2 EHF B EIRROHETD

QCV—/SdSJank (5.6)

TEHFEND L L. ORI E - TEE LR - AR S K E0(a) OSMAERMO IR
METU(a) & D, BREMETIRRIALTED, 2 L CHESIERTIERIAT 3 = L Avbho
. %7, ZNOOEKAZAEETHS. —F, HARE A4 AOEORE AR A
PHBCAE U BRI & o CREVL TWC 1], 2 ORIEBRE T 1 2 5 - IR 05 FE ¢
BB emb, BIEAE TIEHIERR L ZRR S A =2 A TRAPEASEET NG = b
Hhnsb.
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Fig. 5.9  Surface integral of (a) heat flux and (b) energy advection on the surface of three
CVs; left: surrounding the receding contact line, right: surrounding the advancing contact line,
middle: between the left and right CVs. The top panel shows the heat flux field (black arrow)
and temperature distribution. The heat production/reduction terms in each CV are shown in
the CV center.
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5.2.3 SIS TCFREDE(LIC & B RRURY B

FF, MHEICHE S B ATRBUL, MRS T25WRH & SO 2 B8 3 2 RO NEEz v
F—ZLITHYT2HDTHS. ZOFEMBLHEFE T, ZheFBkC, EFERRHICH T
WEB T AN F =D T2 Z eI X D BRUNCERAD XS5 RDBDOPEL TR EEZILNS.

M BA(b) TR A F—OBROEE/RT. ZHkD, BIVEARTORE - IR, FIIK
EAd(b) DT NF—DBROEIC L2 DDTHZ I hbhrd. ZOTRLE—DBROEDMH

Fo7
/ dSpeugny (5.7)
S

SRERRIC AT 3 Hifk & S 2 FHAD b DT AL F — DD 5. = ZCEEOET > v
A EER LI AN — e &, FHROFEO TV F 5 & EHIRER = 3L % — Lplu)?
2314 2L TRRTEREINS.

1
€int = (ekin - QPIUP) + eff + efw (58>

CDEITERLIZNEBT AL F — ey ZMNBICERQ TR BEIOIIRT. ZOMID, Bk
FHETERNBTI > TN T AL T —DET 2 Z 2 IR Z2DOPHERTE, 20D X5 RGATTHR
HIEFER, FBBWAL TV, D D EEEAME T, BSOS & SRS OEE 5, FiZ
[ S T D B IR DS BI - 2 82T, B 5 DI X 2 NE = x L ¥ — D2k fE- T
FEL, PIEIAIRCIE, BERREOEER, 5, FICEKAME & SRR E OB IRA B E) 3
2BET, EEDSDNFH L BN AT —DEI o TIRAL TR EZONS. &
7o, Z OEIRIEEARRGLELE T OTRBICIA o ToNERT 2L F — 2 ITHE 5 FER - IRBRRE, 22T
D o 72BN DO RVEEH L TOAEE 21T TlERL, RO E S IENOECEER LT
FREICAET 5.
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Fig. 5.10 Distribution of the internal energy of fluid including solid-fluid interaction potential
and the flow field.
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TEE—FRARRE I BT 2 FRERN 2B S X 720, EUNSHEOSRERE LR FIUIR SR
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ZER SRR OERIE L V. L L, BIREMA WS BERENE 525 20O EIRTIE,
SR, BIERRD & 0@, Mtk ENA T = 25T o RmERI 2 HRA TR
XV,

X, B » WS BRI E S X B DX, T2 FTIBNREIS S D0, &5
SRINTIMA T, TAHEREER A 5 51 2 BB O MHBRETH D, THIZDOWVT Qian 513,
95 0 ZETHN L7z Navier BERSEFICHE, TOEE %, BEEGERE STROEEOETE X 7-.
COITNDEER HAROBRREMIC B 2 MEE IO TIERBRIUE, I E RS
HEDFETE 2208, KB 6002 X518, IR DBEEINEF I E— G E DTk s T
21372 o K BRI EERNCE 23D TH B, DF D, TR0 HEIIFE KB OMHTEE,
Thbb, PIZIXE-WEETERT 200 ZYTHD, X512, ZOEBERIIMEZROZ
5.

Z D X512, Navier-Stokes HIERDTEHREMHFICEINENIHRD 2 70 27 — L OREZHAA
IR, ZOBERMEORE, BLOZOEFATOMMEIGTDaMOME, 512205 RD
HME D BETE OG5 D TRAR DRI X o TEENZREINTE D, ZAUTX o THERFICBIT 3
BIIEAANIRE 2 Z 127250, TS ITRTEFIERERL D 2ERELMEDRD LR E 0
BB T & 2Tl R .

5.3.2 de Gennes DETILDIHZE

de Gennes 12 & €TV TIE, BIRVEEARGLEE COMMERGE &, BIRVEEARRRISN S 2 5101
KBHENODES L LT, 27, HEIORRD? S, BRI TIE, RIMERLRIC X 2 FER
I TR, RUNBRERIC I 2 RAB ICBRARE LTV Zebhrok/cd, ZDHED
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KNEIRIEZAATIED 523, ZOMRBEZERICANINEZLZEEZHNS.

F72, Qian DETFIICHEH T B0, I 707 — 1D Do EWE, [Eikh o D EEE
HEREIG T L FRHRII OO D EWVICE R 57201213, #Hil ez SOMEFREZ T RKEL
RETHZRENDS. 2, MERED EEICALVZ BFEET 2 XS REETRVYE, REER
FITHR S 2 /KFIT D F D73 Af & FEaR 1 % BE-5F % Bakker ORDHEATER WD TH 5.
D% D, I/ RFRHEIEAZRD, ZHAXDEWERD THEAMAZER L 2T, BT
%, foL = yv(cosfy —coshs) LB EMZ B Z LIFTERWV. £, WIINEIDMEH S 3 &AL
DAHINEHT 22 LT, HMRORE U, THWT, KW H2 LH1, WK 2tH%
foUcr € LTWBA, 22707 —)WZ@3EESESN D 0MEALTWS 7D, ErOER
T, RELBMERBEIEH T 2HELERT HIRNETH 5.

5.3.3 Molecular Kinetic Theory D ETILDIHFE

Blake 512 & % Molecular Kinetic Theory(MKT) T, [BEAEEE LOWEY A ~ %2, WikT T
WYY T 55 THENTZ LR, ZONFOI Y TOHMEMEEIC LT, KR, Hit
MMOBERRENRE SN D L LT\, ZOR, HEMEICIER S 2 #8850 0 BB BRI 05
BAHENTRT, HMPRTOREDITOI v T WXHFEGT 2L LT, TRV vy 7T 2E%
RKOTWz, 2 U TREANIZIK, ZOE%2, W = yyv(cosly — costy) L BEHIZ 5 Z2I1T&ko
T, AR OO T Bl 2 BEAHT Tz, de Gennes DE FILDEE L FERRIC, Z
D &S REROBILT % & 5 REREE, HXTEMREIEROR SR, BIHoMtFEERR
RERINCEEMITIZ 2B TES. L L, 20X REEE, WS T OEREER LS
A POY Y I TERL, WEDFO, BiED»SKEAANDHE L, 250k, KM SR
HHINOHEZILEIRZ 2 RETH L. LHL, ANEOREILD DN Z@ED, LI T,
AR > TREDZE, bbb 3 OOREOME ZXITIIBEI T 25 FIconT, BH K
DRFEOF LD, X512, I 7Ry —VIQRRHEIZEARROLD, EHICEMELE
THAeRD, BENTEZW.

ABFETIE, EMIBGIAFTORE - EAEZHMH T2 Z 2 Il L TW\Wa 728, MKT THLD
S AT FOBINCES 2TEMHLT AL F DI TE 20D K5I A 208, g, AR
ERHZBIT 20 FOBEICES, AR XL —DREBEZATVWEZIZHR>TWAD, E
ERNCBIERM T 2 Z i3 LW, LA L, BIEMLAEO 0t oD FIZEBRL, ZO0FO
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HE L ZUHS DT ORI O AL X —Z(LF 2 T3 %5 Z & T, MKT THID 5 iE b
FNVF—ITHET 2O TE 2 A[REMHIED 5.
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BiF
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AN ETIRERER LTI R USRS 2R T2 D0% <, ZRUTEDSWTEHR
iR e S ORNGZR< &, EMIRICBWTRERDPEL 2 L WS BN D o 7. Zh% [k
THEHANLET IV D H 5705, I 27 nihRefRFIOBRD SR MICERB LIS DL
WS X Did, HRHNRDDTHol. 3618, Z2HZHFIHENBHREIEREMF e LTE
W22 ePHRLZ2OPEVIBEMTHHS. 2 I TRMIETIE, 20 X5 REEE#HEZD - T,
BIENBRZEBADS I 2 L — a VICHAATDEOMEREZT-o 7. 20K, 378X
7=V OHEFENIRR DN & LT, Lennard-Jones &%z FWT, [El5R OHEZEAMERDEIHNICFE
B9 200, BIVEMESEFICHERE SN IR ME 7 FEIFAETHRE L. 2hi
HOWT, Qian i X2 1F#ME T, de Gennes IZ X BRMHERBUCHE S WZE T )L, Blake IZ
X 2 RIEEERIIZE TV, LWV o RRHFOBINIFAE 7T ST S MEREZ1To 7. D,
I 7 u R 2 RIFRI OB D O HINCREE 21T S BN D o 7o DT,  HhiIRD B HERIER] & 5
BT Db THEYMELZERT HUNEND > 1.

X3, W2ETE, AWIETID S 0 FIHARDERNZTTEGRICOWTIAR, 8 3FETII,
W IER PSR TRER LTI ZETE S 2 FIETH 2 MEM D /7% (Method-of-Plane, MoP)
ZHGRT 5 Z 2T, FAROBRMEREFANCEE T 20 b CHEYHEL ERT 2 FELZRREL .
Z DR, BEARRZRE ML L, MERNZs FORERO@ERZBEEMN T 2 2T, mETF
st 7 B YR & MR R YR ORNCHOL S 2 BRN 2B U . BEIEHAAE
LD DHEETH 270, @EFEEPINCEDFRET 22, ZoBRNIckd, 2FEI%R
BT EAMOBER L TOFIEEOREEDPAREE Koz, ZAUCKD, HERRZEHELETE|
%2 CHRER EOFEE D K E D, EHEENICRIRE, 16/, BRI RES. Z0X54%%4
BT, B, R, 0, BREL Y oA ORFHIOEAN LR ER 2, AROEEZH S
HMAEMZEEST 20 FroitB T 2 HEERE L.

FATETIE, FEIETIRRE L MoP ZBUEFEIC L o THEES 572912, #—2JC Couette it
RNERDILS] - RZRIRE L7z, 9, BE, #E%Z MoP ICEDEIREL, BV (VA)IZLD
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HOE
RDObDE—HT 2 2B L. F, MENEOISHZEH L, BYNHETREO ML
HIRTW3 Z e 2B L7z, RIZ, Couette FiRINERICFHAEE S N2 EAFRHKZ MoP IC X DEHAEL,
zhpi~< 27 aDifEIIED Couette RO L T JELIRWNWZ & 2 HER L 7.

95 ETIE, BHFOBRRALVE T /WSS 2 MEREZ1T 5 720, RiH%Z 3 D08 THA, £
NHDBEC—EDHEAZG 25 Z T, BEKE=HOEIEAIREE T 2 EERE_TRE
FHLL, A, RBERAICERIEND 2Rz £z, MoP ZHWTEARKSGZEIHE L
AR, /BN Ninfinr s, FREEGHIIFERI ORENLRN, WK L7 EII3ER I
R TIIHNBR OIS DEN S Z e Bbh o7z, RIFFETIRET 2 MoP T, EikDRE
ANCEEE T 207 b TR ZER LD, HTFEINFHETIRIGIZ, FERDORR REEDH)
ROoMe LTHELNZ2DDTHY, ZODEIBEIRO D FEIIFEOPHATIEZ DD THREET
5. £le, THLINTS, SVTDOENB—EEZRS LN T X5, BINZRSRERDE
ROFEL X, TR EEOBEMNITIOH L IR YD, EVEATRE & OREREN ORI
WA 2 RIS 3 X ERD SRS 2 BEE 108, BRERN DD ES &% Qlan DET
MTHDWT, BIRYHEAMA 2 IRE T 2 DIFEH L V.

B AL 65 D BIR DT 2> &, WA L 7 ECIEREERBAZ L TWnd Z iaxf LT, HiE
BEOBBHEMIETIIR A RABIVORAL TWE Zehbhot. T, ML
A, REMZRET2 I, Thbb, HFRs THEZALF—ZLLTWVWE Z Ik
2 BRI 72BN & 2 D72 572, de Gennes DEFILTIE, BIWEEAERIATORMERGE Y, B
HIFE AR IR 3 2 PTNIC X 2 EHEI DD ES L LT\, ZD X5 REMEEEFETAEL 258
PUNRBRDMR S ERITNETH L. £72, Blake IZ & % Molecular Kinetic Theory T,
REEH OB A b2, METTFRI Y T2 TRENT IR, ZO0FOY Yy
DI ESEIZ K o T, M, HEMEOBERENTESINS L LTV, LaL, KD
fR &, EMEGLEETIE, RICIh o THREDZL, $7%bb 3 DORMEOM Z ~ KTk
320 FI200T, MOFORIFIUIOT R ARD, IFECEMRET LERoTLES. &
512, WHRINQEAHEIXEARFOD, ZOLSKRETV ¥ IEBHENTIE RV,

PLRICHART: K512, AT, e FG 3 2EHED MD RICBEWT, AU MERCHE
A EEOMERFICN L CGiikoHE, iR, =¥ —0RFANCERET 20756 T, &
BHIANT 2571, BIRROS 2T 2 HAZIRRE L. 7, ZHUCEOE, EEREI
PEROE B OFE 720N B X OB “Xouafiz it § 5 2 8w L. 2k, oF
PRI AERD DO LTHASME, TROBRMNME, B XORHEED &S D
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HBOeE AN
SEEOREE X, FERPTREICH U TERT 2 87 v > v V52 EERREEE T 2BICHL S
SELI R IBBADFIEZ I S T L, BIRRABIR 2SRy LTRBS % 2 Lionf L CRER
flE Uz, BiEEARORE 2 SREETTHIT 2 LT, BIFOETAREEL, ZhooRhR
DFELIMEIC T 2B H 5705, RIFFRICE D, WA FOHTBEARICHEN G E X OB
DFMZEZ Z e DAMREL R o 72 /2®, ZAUCIEDK Ze AR EN S, £ ZTRELEF
X, —XEBEXUOZRIEEF TR EZRERBVTHHEAMRER DO TH D, X512, BV
fAROEBI D AR LT, F/ ZHERNORNRY, F/ A7 — VD%, HEDLHEOTRN DM
FricbEHRBETH D, TNOHDRICOWVWTOMINZEITS 28T, F/ A7 — L OIRNDEEH
HEoZ RTINS,
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T 8&A FNOHEH

Al SFEDESR

SUH (interface) & 1%, —fRIZDH 23— 7R IKACERDHAIMM O —ZHEE L TV 35RO Z
LEIET. ZoEROD L HEEMTIERITIIYBL R EGINCZL L, ~ 27 IiEAERICZE
ftF2eAhRIND I eNZWV. FiZ, H—HO—DEKRD L IZIET, o —HEixis
b LIBREZEOSE, FHH%Z KM (surface) £ 5.

A1l FEERIDESLVERERS

M ETITRT &S RAMHEBHOREZEE L, WMHZMKE ST 27 FIZOWTIZ LT -1y
WEDPOEZ D, WERNEEO L2 (bulk) BEBICTEES 270 F1E, ZOREBEICEHNCH FIE
L, TNZ2hon T e HEERERIELD S 28 TZAAF—NICZELTWVWS. —THMA
HEICHET 20 FIX, WRIENENCEET 2 0 FICHAREEERZRIZL D 5 5 F OB 750

, —HRICIRENEICFET 20 F I DB RT VI LI AAF=EVIRECHZ. 20
7= ,m@ﬁﬁ@ P A LF —ICAHIRBEICH 2 DT, RAIOTZ A NLF—% TE 3751
NELK T2, TROBFRMMOMEBEZ/NE L FTEMEFICHPESHL. OIS HZ IS & X
ST HHMEZIDHD DI v ZXIMEFHIRS LR, o, ZOKRFIRSZ, Sz H
MHEERKIE2DICHEE TH2HHIALF - EZNX, BET, AEV, BXUTFEN
—ETRADKALT 5.

3F>
v =\ 5+ (A.1)
<3A NVT

7L, ARREOMEE, Fi3Helmholtz DEHHTILF—THD, NEHZILF—U, =¥ b
nt— S EHOWTXATEZ6N0 5.
F=U-TS (A.2)
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AR HhoM

THEZ2 6N 5. Bk L-5H, RADOERLD, JMEHRERNIEAEORARIE bRIN S, %
7z, EIRSEICBT 2 FHEEN ygyv, BERFEICE T 2 BN yer, 1222V TH RIS R S &
FRRICE Z BN,

vapor

liquid ; :

surface

Fig. A.1  Schematic of the interaction force between molecules at surface and in interior of
liquid.
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A.1.2 Bakker OT

M B2 KRS EIR S L IS ik #ifi 3 2 BEFEBRONZ/RT. 2T, KURAHICOW
T, SWEZYHEEN R ICAERICEL T 250RE TR, EALED, WHEEENIC
ZLT 2B EZX S, =L, ANhEEZ RV, B8, BIEEEIRECH 2TIkD L Z7ET
FISTT T VY VHEERT, TROBEROMIIN L TREIICELSE, $L2OMEIT—EL RS
2, BEOAEHD 3 “MHOBEFULEICBWTIE, #IEFEIRETLEHN TR RS,

JEE 2 BEDT YA LTREINIRTTIBW T IDDRG AT 505, MIMEEXEET %
Y, WL DU Tuwy Tyys Tozs Teys Tyzs Tex D 6 A THD, HIBEADFRTIE, HIEFHSME
MO Ty =Tyz = Tzo = 0 TH D, S OWIHEERRTHEONIMNED S 700 = 7y ET25. REHE—
TICREARER, WHT VI NDER TRV Tpy = Tyy & 7o FWTND 2z DADBIRUT
. Fio, BECH L TERARDOIENENIDODEVWEEZ 2, ZHUIRIBT—E,LD L
ZERDIES rPUE DB —B T 5. ThESIF AT, FEICH LU TERTOEN pr, ERR
FAEDOFEN py ZHWTINS DT ZRD & 512K E 5.

Toz = Tyy = —P1(2) (A.3)

roulk — N (A.4)

IR ZHHRICKI B2 ITRT & O ICHFREFFINC LTOE R b U206 AV ZZ0# LT, RN
WIS LA M % Ac B3 2 il ko T, KRB RIRERD AT Z 2 2L 2
FICKRSLH O HED A% Z{L S8 2 BEFEBRZE D K5 [39].

ROBATHRIDORIZ T 5L, ZDDER My OBENT X D KUK L A 4 OFREIZZL
LBRWZ DD,

27
AV = lAw/ dz (A.5)
25

ThHb. ZDLEDHRD Helmholtz DHHIZ A NF—Z(LAF 2EZ 5 L, ZIUXERMEENGE
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BAE FEhoM
FRIZBWT, 372D R M UDFALRICMATAFICHYETZ2DT, ROXS51XH526015%.

2T
AF = pNAV—le/ pr(2)dz

ZB

= lAx /ZT [N — pr(2)] dz (A.6)

ZB

= APEHRE ORI LE > RE 3L F — 2 L v L F4ug, Kot (0) ARars 3. 7%
B B FHOM KT EORIRLE 2 7200,

AF = ~yylAzx (A.7)
R (8), ([ED) 55 AF #MEL, FARGHTESHT L, KOMBEHELNS.

27
My = / [ (2) = 7] a2 (A-8)

2B

Az FHY R KHR S NSNS % Bakker O EMER. 7238, IBHDFETTHNT HILHE 5 3L 27 I
TR BRI rIc72 2 0T, BOHEHFHOMZ SO L7 EIC & UL oy 13— EEIE
F5. ¥, NENEMURESDHHI ALY —DOEPREATNTVWE X512 RX 20,
Az — 0 OWRICH T 2 (REHFEEZEZ, 2 OZMB RSB DK[IBAEDATH LN Z L,
T 725 Bakker DR TIE, RECIEH T2 I 70k iogfit~ZakRfmEN2H#GE L T\W3
ZEWizdkd, NFEHNEVWSITNEe 5.

%B, MD > a2l —yary T, @AMCEMRERSEEZHWS Z 8T, 25 e FHIRREI
BHBHUE T RN RIBEEBEDIIER TR e N TES. ZORKOEBESE 2 2 T5 %, Z
DRI & 28D 2 FIANCRIACEZ 2 b0 kD, 2=y MLIZE ST D D& HE
PEET 5. ZORIBWT, BEERT O] 7., 3BT —E LR 5D L, Filoss:
DOFHAFICENTDA, WWEIERT M DIERIEN] Typ (= Tyy) & T2 DENCIFESEHIBNS.
Lo, T3l BIXUORKKEOEANDD, FHED &N CEHWRRHE, B
FUESHDOANNL I PRI N TOEZRIIBVTE, Ricaz=y ML D Eife Tz & 40, 1,
IR,

2= [ ra(e) -l (A9
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pistony
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PN
vapor
AX
.~ | °B
Z liquid pr . Pistons

Jgk»x T

Fig. A.2 Thought experiment for the derivation of Bakker’s equation of a flat liquid-vapor
interface.

DD LD, Lledio T, #ERITRDIGT] D2 %

1 [k
Tow = l/ Toz(2)dz (A.10)
0

z

BRELERT DL,

Ly
T=5 [Taz — Tzz) (A11)

b, AN, IBoZEMSHERDT L d, ROISTOHIED AHH SREBFRIIDKE S 2
Y b. B, ZOMHERS, FRO T, oRbDICT,, HBVEENS DT (T +75y)/2
EFHWRZEBARETH B, ZDOHFEE, MD TRERNEAVWIEICES Avwsinsgs, ki
D& SiT, FHNRKH, WHDO NV BTEREINS Z e PEHORMRL 725 Z L ITEFERET 2
BN D .
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2

K2 2 DEERBRZ X B3R ERSEICHER S 2. ZOHEIRK B3I IR X 5 ICERSR
HHERRITANCE < ¥R b ¥ pistony &, FEZMEYISDTIERL, FEHOREMOAZE) <. KK
DEENEIMT—E LT 2L, HEOHEHHD T g Z A0 FOFET 2 TROMEI £ UL, K
(BH) BHALT B DT, ZDXIRIEIC 25 ZERT S. TDEZDER M YHKOD Helmholtz
DEHHZANLF —DZ AF X, WEOEEL2—EL 35, X (AD) RAkcRINE. —77,
COVZ LT 2EIC K D ERAEDIEZ 2 &, ThbBHERIC, B2y 2 E kR
D Z 122 DT, FHEkIHKD Helmholtz @ HH T 3L ¥ -2k, BEWARHES s
& BTN Y B EARD TR 50 ZHWTRD L S ITHRKEN 5.

AF =gl Az — 50l Ax (A.12)
X (AD), (BA2) X D FHZRERE NS % Bakker DX EDIL 5.
YSL — Ys0 = / ’ [Tm(z) — rbulkt g, (A.13)

RISV T T Y 7 [ SO T S 0 37 % Bakker O, EISUGREITR ysv & BZATHT 2 [E R D FLH R
T v50 ZHVWTRD K517 5.

zr
TSV — Yso = / [Txx(z) - Tbulk dz (A14)
zZB
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/AR HhOMR

pistony

Fig. A.3  Thought experiment for the derivation of Bakker’s equation of a flat solid-liquid
interface.

92



Young-Laplace DT

I TCRFEPHERZHETHRICHLT, HoFDEWXDFRER EAVTEOREFRAT
» % Young-Laplace DR %, KEZITRIHRKEDEZ S, KIBEA D (a) 1FH¥FE R OUE_RIT
WHETHY, ZOWHMOMHEIZBI2NTOFDEVEEZS. 20t E, MAEDD (b) TIEHNE
Pext & WTHNCIER T 2 N pine & KIRSEIR v DITFERNTOD &S T i 5.

I THREZEAZBZNERET B &, WL pin FRIFENTTEL L 2D T, BITHHOE
NREHZDDHDHDEVWED

2Rpext + 27Lv = 2Rpint (A15)
& 72 h XHUTRT Young-Laplace DIVE NS,
Pint — Pext = /7% (Alﬁ)

THUIHICE AR, FEIRRBICB W T Ay 28— ETRINUR, R 1/ RP—ETHRLIRL L
ERKT 5.

vapor vapor T
—> - — -
liquid
— - — R -
Pext —> <— DPext Pext —> ~— Pint
— - — -
—> - —> -
v
(a) : 2D droplet. (b) : force balance of 2D droplet.

Fig. A.4  Schematic for the Young-Laplace equation in a quasi-2D system.
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A2 EAROIESE
A2.1 EBENEMRICBITZNENETIL

¥ BETE b o) B & AU O TR R 1 5 BEE T U 110 & 7 BRI A o0 NG
%% 4 [ ET(a) B E O (b) IGRT. —BEF F DT BT 2> & BEF R [ PRI 1 52
FH (B8] DI LT, D AR E O A L BEE R I Y = Y 7 H A 2T B [0,

(a) static CL on homogeneous (b) static CL on inhomogeneous

Liquid
O

pinning force

Fig. A.5 Schematic of static contact lines: (a) on homogeneous wall and (b) on inhomogeneous
wall which induces the pinning force (red arrow) on fluid. Black dotted denote the contour of
potential between wall atom and fluid molecule. Black and red circles denote the wall atom
of lyophilic and lyophobic, and blue ones denote fluid molecule. Magenta arrows denote the
interactions between fluid and wall molecules.

(a) static CL on homogeneous (b) static CL on inhomogeneous
vapor TAr o' liquid vapor T.Ar liquid
Xy = Zr TN
TAr TAI T Ar T Ar
qu:l H ={>XJC xx<: I:>xx
zZ ZB é}’m
AL R X XR

- solid

I
Zl lyophobic wall lyophilic wall
)’é—x Y X

Fig. A.6  Schematic of force balance on control volume including contact lines: (a) static
contact line on homogeneous wall and (b) static pinned contact line on inhomogeneous wall.
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CHEHE RTINS OFIEMEE BUMAEREEZRIAEBR IR T LD ICHREL, ZOMAERK
I hooh GV T 2 2 2T, #Eilfic T 2o 50wz ERMLT 22T
%, KBED(a) DHETIE Young DRUCIRAGE T 2. KIBED(a) TUE, HAMEDE—2BEH LT
AR DWW TH > TV DT, MEFRBAEOTRAIIN U TEERID 51372 & < AKFEH R DI
Hicidtath s, 2ok, MERBIINT 2 KEARDIOD D EWIERENTOILT] 7
DATHAILL,

zZT zZT TR
/ —Toz(2L, 2)dz + / Tea (TR, 2)dz + / Toz(x, 27)dT =0 (A.17)
ZB ZB x

L

EEIFL. TITHLHE, B2HOPRDTHIIKUE, KD NIV EDET] pext, pint Z ZNEHN
EHE LTHAEL, 20F528D TR, XABBFLN 5.

zZT zZT
- / [Tl‘l‘(xLa Z) + pext] dz + / [Txx(xRa Z) + pint] dz

2B ZB

TR
+ / T, 20)dx — (Ping — Poxt) (21 — 2B) = 0 (A.18)

L

VWE 7 =z, KBWTXER RIS D 2 O TREFEEFAOHI D EV KD, pex = —77K (1)
YEEHZ LN, FAFIC s = op KBWTERE pny = —mPk(2g) L EEHBZ 503, 24U
XD (O OB 1, H2HOWT, Fauk (5), (BT3) © Bakker OR MG S
5. Fi, TR (BIR) O/E0E 3HORAMIEH OB ITOWTEZ 7012, FEIRBEED
WEEZIRVNEHE IRIICE R 5. 2 ORIBEHOFLO 2 B 20 T 2 FICFAT2 FHE L,
ZRY VAR 2 = 20 CHBT 2 LE L, %4 SMTHBICIEET 2 £HB X OAHEI & DR
XN B RERHICHT 2 KA EDH DO EVEEZ 52 L Ick>C, 2 (BI8) OFNE 3
DX AW DFETZ, #iJF Laplace EOFES CTEXHEZ 5 2B TE 5. ZIZT, Laplace £%
Young-Laplce DR 2 HWTEE T 2 &, RENEMALD, &R, X (EIR) 045 3THOEA
Wi ORISNE, BBD(a) OREHHO FEICIER & < KISRERH DK FH O I LTH T
50T, BEHE LN L CRRAESRTAE 0 LT 5L, RARD XS ICEMTE 3.

—(vsv — 7¥80) + (8L — ¥80) + Yveost — (Pint — Pext) (2T — 2B) = 0 (A.19)

B, B - FEA SUEFESR IR IS 3 5 Laplace E2 DD &S Z e 2EKT 5. W
¥, HIEFEREZWDF->TWEDT, BERDEELZIT 2 VET DK AR HE DOMEIZI—ETDH
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D, Z D5 % EARHEE THIR—EDSRMED D L AT L 7FROEAT & SRS O 72 3 iRAE R D
AeERlA 0 L ERT 5. T, RN —ETH 2 HPHOTIESFHOBRADLD 2 #liEEE 20 &
35k, b 4 THIZ Young-Laplace O3\ (ATI8) KA T2 Z  TLLTO@ED EBHTZ 5.

2T — 2
(Pint — Pext) (27 — 2B) = v — 7 &
_ 2T —20  ZB — 20
= v R R
= v (cost’ — cos) (A.20)

ZoR () 23X (ET9) ITRAT 2 2 2T, KRD Young DRDEAN .
ysL, — sv +yrveosth =0 (A.21)

RiZ, KEB(a) D¥—REE 2 1ZE72 D, BEOREEHR TR EER D> 5 /1% %21 2 X E8(b)
DY =¥ 7 XN OWTRN T 2. KIEE(b) OREREICHT 2 OB EVEE
Z5Y, BELLOVY=V I NEERTI2XENH L. BATAMOBMEX SO =v )
ZlmT2L, ToohHWEXNIck-oThobanb.

zT zT TR
/ — Tz (2L, 2)dz + / Tra (TR, 2)dz + / Tow (2, 27)dz + Coin = 0 (A.22)
2B 2B xy,

2L, ¥=Y 7 (o BRIBEB(b) Oz AaziEe Lz, ZOROLEAE 4 HLANDER7 13K
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Couette-flow system with control temperature at 85 K.
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