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Abstract

Occupant behavior (OB) models, that simulate the daily activity of residents, have been developed
to be integrated into building simulation tools to estimate residential building energy demand. OB
models contribute to improving accuracy as they can capture the impact of the OBs on energy
demand. However, previous OB studies mainly focused on the simulation algorithms and paid
less attention to the design of the overall model, especially the pre-simulation process — data
processing, variable selection, and parameter preparation. In addition, the diversity among the
occupants particularly the spatial variation was greatly underestimated. Therefore the existing OB
models hinder generating realistic behavior profiles thereby leading to less reliable energy
predictions for future building design and planning.

Based on the aforementioned background, this thesis aims to provide a systematic investigation
in three steps. First, various machine learning based OB models are evaluated and compared to
illustrate the importance of the pre-simulation process for the OB model development. Second,
the existence of spatial variation and historical change in OBs were confirmed. The significance
of these factors on model performance is further evaluated. Finally, new OB models incorporating
spatial variation are proposed to enhance the diversity exhibited over given heterogeneous regions.
The thesis is divided into 6 chapters.

In Chapter 1, the thesis centers on introducing the energy use and energy demand modeling in the
residential sector, the role of OB in influencing the energy demand, the development of OB
modeling, and diversity in OBs. Then, three critical reviews are presented to reflect the current
research status. One is conducted to summarize the model engine, the modeling methods to
prepare the parameter, and variables used in the model in previous studies. The remaining two
summarize previous studies on modeling with spatial variation for both the engineering field and
other fields in terms of the aspects — empirically representing the spatial variation and simulating
the research object with the consideration of the spatial variation. Then, the research gap was
found based on the review. In addition, the overall framework of research targeting the assessment
of OB model performance and development of the model that can involve spatial variation are
outlined.

In Chapter 2, the pre-simulation process of OB modeling is analyzed and its importance is
evaluated. In this chapter, two crucial questions representing the vital components of the pre-
simulation process that have been paid less attention to in previous studies were solved: 1) which
variables should be considered and 2) what is the most appropriate parameter preparation method.
Using four machine learning based parameter preparation methods combined with three cases
including different variable consideration conditions based on the single-year American time use



survey (ATUS) data, the significance of the design of the pre-simulation process of OB modeling
for residential energy demand simulations had been highlighted.

In Chapter 3, the existence of the spatial variation and historical change are confirmed through a
case study of watching television activity for the women population based on the multi-year
ATUS data. In this chapter, the spatial variation is checked for the time interval with the largest
discrepancies in the probability of undertaking watching television among the years from 2009 to
2019. The historical change is detected in a five-year period (2009-2014-2019). In addition, the
performance of the conventional logistic regression model to reproduce the spatial variation is
checked by comparing the distribution in space with the observations.

In Chapter 4, new OB models that can incorporate spatial variation are established. In this chapter,
the spatial variation for four activities — sleeping, cooking and washing up, watching television,
and commuting for 6 groups of the subpopulation of women is confirmed and modeled. Three
new OB models are developed based on different representations of spatial variation and assessed
in terms of indicators at the national and state levels. Further potential applications including the
broader range such as energy demand simulation considering the spatial variation in OB are
discussed.

Chapter 5 discusses the main outcomes of the thesis, as well as its limitations and further work.
Chapter 6 summarizes the study findings, conclusions, and contributions.

Overall, this work has contributed to broadening the knowledge of the pre-simulation and
successfully incorporating spatial variation to enhance the model diversity thus greatly improving
the understanding of the systems and identifying areas to support sustainable decision-making
depending on the time-use of people in different regions. These findings can be extended to
develop more realistic energy demand models in future work.
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1 Introduction

This chapter composed a concise introduction to occupant behavior (OB) modeling and the
overview of this thesis. First, how energy is consumed in the residential sector is introduced.
Second, the role of OB in building energy performance is discussed. Third, the development of
OB modeling underpinning the energy demand simulation is presented. Forth, the diversity
between occupants and their behaviors resulting in major uncertainty in predicting building
energy performance is highlighted. Fifth, three critical reviews are presented to reflect the current
research status. Then, the research gap was found based on the review. Finally, the aim and
objectives, contributions, and the outline of the thesis are explained respectively.

1.1 Energy use in the residential sector

The residential sector accounts for a relatively high proportion (16-50%) of the national energy
consumption and it is the major sector in terms of electricity consumption (Martinaitis et al., 2015;
Wilke et al., 2013). Since the great impact on the energy supply side, the residential sector draws
more and more attention to help reduce the cost and the energy demand throughout the day as
well as to better support the design of the control algorithms for the supply-side systems.
Therefore, the residential sector has great energy-saving potential. At the same time, residential
building energy systems are tightly related to national or regional energy and environmental
policies (Yu et al., 2011). Hence, the energy demand models which are the foundation of making
related strategies and plans for the entire industry progress have been developed.

In recent decades, two types of modeling approaches — top-down and bottom-up have been
applied to simulate the building energy demand (Kavgic et al., 2010). The energy demand models
applied with the top-down approach are established at an aggregated level, typically by fitting
historical time series data of national energy consumptions or greenhouse gas emissions. These
models aim to illustrate the inter-relationships between the energy sector and the macroeconomics
primarily based on considering the relationship between energy use and market economic factors
such as fuel prices and technological progress. Models can be generally categorized into
econometric and technological two groups by different variables to represent the economy.
However, these top-down models are incapable of explaining factors such as the building physical
factor and OBs that can affect energy demand.

On the contrary, the bottom-up modeling approach is widely applied to simulate aggregated
residential energy consumption by characterizing individual appliances and loads within a
building (McKenna et al., 2018). Therefore, various modules such as the external temperature
model, thermal demand model, and solar photovoltaic model are combined to estimate the overall



energy demand. Nowadays, the OB model is gradually integrated into the bottom-up based energy
demand models as they can encapsulate the full range and timing of OB (i.e., occupants’ presence,
activities, and dependent behaviors) on the buildings’ energy balance. Moreover, bottom-up based
energy demand models are able to predict the future changes in the physical composition of
buildings or the ownership of appliances as well as the changes in the population’s
demographic/behavioral characteristics (Wilke et al., 2013). Hence, this thesis is focusing on
researching the OB model underpinning the bottom-up based energy demand model. Bottom-up
based energy demand models can be categorized into three groups — engineering models,
statistical models, and hybrid models. Most research efforts for the engineering models have
focused on residential buildings using archetypes (i.e., representative buildings or prototype
buildings) (Lim & Zhai, 2017). Each archetype is defined by specific features in terms of four
main areas: form, envelope, system, and operation (Corgnati et al., 2013). These engineering
models simulate the energy demand for the archetypes instead of the whole building stock. The
total energy demand is then aggregated for all predicted energy demands of each archetype with
proper weighting factors such as the floor area. Regarding the statistical models, most of them are
based on regression techniques. Such models are capable of taking demographics and OBs that
have a significant influence on energy consumption into account. Regarding the hybrid models,
they combine modeling components where both building physics and statistical approaches were
applied and they can solve more practical problems (Kavgic et al., 2010). Since these three groups
of the bottom-up models are established at a disaggregated level, sufficient databases of empirical
data that can support the description of each model component to characterize each individual
load are required (Shorrock & Dunster, 1997).

1.2 Role of occupant behavior

Simulation studies (Mastrucci et al., 2017; Wilke et al., 2013; Zhao et al., 2014) have confirmed
that OB is an important determinant of building energy consumption in the bottom-up based
statistical or hybrid type of energy demand models and a leading source of uncertainty in
predicting building energy use, as energy-consuming appliances are generally operated to satisfy
people’s daily needs in correspondence to the activities that the occupants perform. For instance,
the oven for cooking meals, the washing machine for washing the clothes, lights for lighting, and
the air-conditioner for adjusting the temperature during the summer and winter days. Occupants
also adjust the settings of the indoor environment to pursue comforts, such as operating window
openings and shading devices (Mosteiro-Romero et al., 2017; Ruan et al., 2017) to improve the
indoor air quality or keep the indoor temperature within a comfortable range. Furthermore, OB is
a vital factor in the assessment of technologies employed in building design and retrofit (Yan et
al., 2015). Many case studies have demonstrated that OB influences the adaptability and



implementation of building technologies for better assessing the building energy performance as
well as accurately simulating the energy demand (Belessiotis & Mathioulakis, 2002; Fabi et al.,
2013).

1.3 Occupant behavior modeling

Since the significance of the OB is clear, numerous models (called OB models) for capturing the
occupancy, activities, and actions of building occupants have been developed for understanding,
modeling, and analyzing OBs and their impacts on building energy demand. To capture the
dynamic changes in the building energy demand and diversity among the households, OB models
are gradually employed as one module in energy demand models. Generally, for residential
buildings, most of the divisions of the building stock are based on building physics of form,
envelope, and system characteristics, only a few have based on the relevance of OBs, which can
define the archetype in the operation area (Bulttitta et al., 2017). Heinrich et al., 2022 built
archetypes that are related to specific housing contexts and energy consumption levels based on
the seven clusters of OBs in the residential sector.

OB, as mentioned in Chapter 1.2, can be modeled in terms of occupancy, activities, and actions.
The occupancy model simulates the presence and absence status of the occupants in the targeted
building. The activity model takes into account the various daily activities of occupants over the
complete time range to provide a better time-dependent activity profile. Chapter 1.5.1 reviewed
OB models including all these three types. However, this thesis mainly focuses on the activity
model. In the following chapters, unless explicitly stated, all OB models refer to the activity model.
Moreover, the OB models considered and developed in Chapters 2—4 also indicate the activity
model. The action model models specific actions such as the window opening for simulating
certain loads or evaluating indoor air quality.

The majority of OB models were established based on the time use data (TUD) as TUD is an
important data source that collects invaluable information — sociodemographic information,
housing information, and the daily activity schedule for recorded households. Particularly, TUD
is widely used as it was collected at the national level for many countries (e.g., America, United
Kingdom, German, Australia, China, and Japan ). Existing OB models use either deterministic or
stochastic modeling techniques (Happle et al., 2018). This thesis focuses on the stochastic models
because deterministic models only capture the average behavior of energy demand, whereas
stochastic models enable the production of stochastic behavior in building energy demand.
Stochastic models employ empirical statistical data such as the TUD to model the probability that
the occurrence or undertaking of activity thus reflecting the OBs more realistically (Jeong et al.,
2021). Therefore, the stochastic OB models can better assist to simulate the actual building energy



demand in terms of diversity and the variability among the simulated occupants (Yamaguchi et
al., 2019).

To develop an OB model or energy demand model with consideration of OBs, three processes
should be carefully designed. Figure 1-1 shows the whole general procedure with three processes
for simulating building energy demand using OBs as inputs. The OBs input for the energy demand
model is located in the post-simulation process. According to Figure 1-1, OBs comprise data
regarding occupancy states, activities, and/or actions referred to as “model objectives”. These
data are stochastically generated by a model engine during the simulation of OBs. The model
engine has several model parameters based on which OBs are generated. Model parameters can
be used to differentiate OBs among simulated occupants according to the conditions given in the
simulation process. The model parameters were prepared based on a model developed during the
pre-simulation process. In the pre-simulation process, first, the input data were prepared based on
raw data, for example, TUD through data preprocessing. Then, a certain parameter preparation
method was applied based on the input data to develop the model to prepare the model parameters
for the simulated occupants. For example, many studies have quantified model parameters based
on sample distribution. Statistical and machine learning methods can be developed for preparation.
The parameter preparation method may consider several variables, such as demographic
conditions so that the influence of the considered variables can be reflected in the model
parameters and the resultant OBs in the simulation process. In this thesis, we refer to the process
of combining data processing, variable selection, and parameter preparation as the pre-simulation
process.

Each process matters for the simulation results as all processes are closely linked. For this thesis,
three vital selections as shown in Figure 1-1: selection of considered variables, selection of the
parameter preparation method, and the selection of the engine which require thorough
considerations to allow the better development of the framework together with better design
appropriate combinations of these three processes are highlighted. The selection of the engine is
located in the simulation process and most studies had paid great attention to improving model
methods for the engine. As for the first two selections located in the pre-simulation process, few
studies had considered although greater knowledge of the pre-simulation process is needed as
revealed in Chapter 1.5.1.
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Figure 1-1. Procedure for simulating energy demand considering occupant behavior.

1.4 Diversity

Modeling OBs is critically important and it has become increasingly important, as the modeling
of energy demands with a high spatiotemporal resolution has attracted attention. To this end,
researchers in academia and industry have developed various OB models. However, there exists
complicated decision-making of the occupants to conduct their daily behaviors. Therefore, they
will unlikely exhibit the reaction as what the researchers assumed or set in the model scenarios
(O’Brien & Gunay, 2015). Also, most of the previous studies seem to model the typical or
representative occupants for the building energy demand simulation. As revealed by researchers,
the performance gap exists between the energy demand simulation and reality (Happle et al.,
2018; Martinaitis et al., 2015; Yan et al., 2017) and it comes from the following points: 1) the use
of oversimplified assumptions such as a fixed occupancy schedule (Delzendeh et al., 2017), 2)
inappropriate consideration of the interactions between appliances and building systems (Diao et
al., 2017), and 3) ignorance of the diversity resulting from different sociodemographic conditions
and/or other influencing conditions for OBs (Happle et al., 2018). Among all, the underestimation
of the diversity among the occupants especially the general occupants is one of the major sources
resulting in the performance gap.

Diversity itself has been defined in different ways in different contexts by different fields, even



in the engineering field (O’Brien et al., 2017a). Herein, the simple way to understand the diversity
is the variability response from the behaviors that occupants conducted. In order to model the
diversity in building OBs thereby modeling demand loads more accurately, especially the
dynamic changes in the energy demand, various factors have been considered to represent the
diversity. The variable representing the household composition which is related to one of the most
important factors — the demographic factor has a significant influence on energy consumption
as it varies significantly among households (Jones et al., 2015). Likewise, the type of the housing
unit, climate, and day of the week these variables also play important role in influencing the
residential energy demand. We have summarized commonly used factors in the literature in
Chapter 1.5.1.

Among all factors, the geographic factor (also called the spatial factor) to represent the spatial
variation has not been fully investigated (Li et al., 2019). Spatial variation essentially refers to the
rules or tendencies of objects of the research exhibited in a given space. It can be represented and
considered in the modeling in different ways. Many researchers have proven that spatial variation
plays an important role in simulating energy demand. Druckman & Jackson, 2008 demonstrated
that household energy use and the associated carbon dioxide emissions vary significantly with
household socioeconomic conditions and locations. Rural/urban environments are another
important factor in devising policies for a low-carbon society. Halleck Vega et al., 2022 pointed
out that although the spatial perspective has received limited attention in the literature, it is a
significant factor in energy-related policy considerations. They observed that the spatial factor is
important, and ignoring it can lead to inaccurate conclusions. Furthermore, spatial variation also
exists in time use. Several studies showed differences in the time use of occupants among
countries, which revealed spatial variation existed in the time spent on OBs (Al-Mumin et al.,
2003; Jeong et al., 2021; Torriti, 2012). Esteban Ortiz-Ospina & Roser, 2020 found that OBs
conducted by people are spatially varied in European countries, which cannot be effectively
explained by economic or demographic differences. Such spatial variation in OBs may further
occur within a country or even within a region. Studying how people spend their time over space
provides an important perspective for understanding living conditions, economic opportunities,
and general well-being. However, a consistent approach to empirically represent spatial variation
in OB and to consider it in OB modeling is currently lacking, but useful spatial analysis and
modeling methods have been developed in other fields as shown in review Chapters 1.5.2 and
1.5.3.

1.5 Critical literature review

The literature review is divided into three parts. Chapter 1.5.1 summarizes the reviewed studies
that developed an OB model or an energy demand simulation with consideration of OBs. We



mainly focus on three important sub-process as mentioned in Chapter 1.3 for energy demand
modeling with consideration of OBs — the model engine, the methods for preparing the
parameters for the model engine, and variables. Chapter 1.5.2 summarizes the reviewed studies
related to OB and energy modeling with spatial variation. Chapter 1.5.3 summarizes the reviewed
studies relevant to spatial variation in other fields.

1.5.1 Studies related to OB and energy demand modeling

This chapter is a summary of the studies in terms of the three selections of the model development.
First, the model engine of two types is reviewed. Secondly, the parameter preparation methods
considered in the previous studies are summarized. Finally, the type of factors used in the existing
models is categorized.

The selection for the engine is a core process for the OB models as the engine determines the OB
model outputs which are also the inputs for the energy demand model. Osman & Ouf, 2021
summarized the model engine in modeling occupants’ presence and behaviors. Most of the
reviewed studies used discrete-time or discrete-event approaches, which are the main approaches,
as summarised in the second column of Table 1-1. A discrete-time approach considers a fixed
time interval, and the changes in the model objectives are examined at each time step. In this
approach, the time-inhomogeneous Markov chain model is widely used (Aerts et al., 2014; Diao
et al., 2017; Richardson et al., 2008; Widén et al., 2009). Time-inhomogeneous Markov chain
model consists of the current state space and the probabilities associated with the transitions from
each of the states into the others (Ramirez-Mendiola et al., 2019). The stochastic processes that
can be adequately described by a time-inhomogeneous Markov chain model are said to satisfy the
Markov property. This property for the time-inhomogeneous Markov can also be said as
memoryless: P(x¢yq = g1 |xe = ln, Xem1 = lem1, -, X0 = lo) = P(Xp1q = X =) =p
which indicated that state x attime t 4+ 1 only related to that state at time t. Advanced methods
have also been applied. Liisberg et al., 2016 used hidden Markov models to create methods for
the indirect observation and characterization of OB. Kleinebrahm et al., 2021 applied neural
networks which combined state-of-the-art long short-term memory (LSTM) and attention-based
autoregressive models with imputation models to generate weekly activity profiles capable of
capturing long-term dependencies in mobility and activity patterns. A discrete-event approach
reproduces an OB as an ordered event sequence. Each event has a specific start time and duration.
Wilke et al., 2013 presented an approach to model residential activities based on time-dependent
probabilities for the start of activities and the corresponding distributions of activity durations.



Table 1-1. Model engines and parameter preparation methods of previous studies.

Literature Model engine Parameter preparation method Segmentation

Diao et al., 2017 Discrete-time: Clustering, neural network Yes
Markov chain

Liisberg et al., 2016 Discrete-time: Sample distribution No
Markov chain

Ramirez-mendiola et al., Discrete-time: Sample distribution Yes

2019 Markov chain

Richardson et al., 2008 Discrete-time: Sample distribution Yes
Markov chain

Aerts et al., 2014 Discrete-time: Sample distribution Yes
Markov chain

Widén et al., 2009 Discrete-time: Sample distribution Yes
Markov chain

Jones et al., 2017 Discrete-time Multivariate logistic regression No

Okada et al., 2020 Discrete-event Logistic regression Yes

Yamaguchi & Shimoda, Discrete-event Sample distribution Yes

2017

Tanimoto et al., 2008b, Discrete-event Sample distribution Yes

2008a

Fischer et al., 2015 Discrete-event Sample distribution Yes

Wilke et al., 2013 Discrete-event Logistic regression and sample distribution No

Deng & Chen, 2019 Discrete-event Neural network Yes

Kleinebrahm et al., 2021 Discrete-time Neural networks Yes

Existing OB models have used the various parameter preparation methods listed in the third
column of Table 1-1. The methods were divided into three groups. The first group used a sample
distribution or fitted distribution (Aerts et al., 2014; Fischer et al., 2015; Liisberg et al., 2016;
Ramirez-mendiola et al., 2019; Richardson et al., 2008; Tanimoto et al., 2008b, 2008a; Widén et
al., 2009; Yohei Yamaguchi & Shimoda, 2017). For example, Richardson et al., 2008 used the
transition probability derived from the TUD by dividing the occurrence of transitions in the
occupancy state by the number of samples to model occupancy. In the sample-based method, the
same modeling parameters are applied to simulated individuals; thus, diversity is ignored. The
second group used regression to quantify the modeling parameters. Logistic regression is the most
frequently used method to consider variations owing to various factors (Jones et al., 2017; Okada
et al., 2020; Wilke et al., 2013). In recent decades, multinomial log-linear regression models have
become useful to model OBs. It is a generalization of binomial logistic regression which can deal
with the classification of multiple labels of dependent variable Y which is the probability of
activity. The mathematical expression of multinomial log-linear regression models is:

1 <P(Yi = Yk)
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where the i means the ith observation and N means the total number of activities, x
represents the attribution of occupants. Y; = y; is selected as the base case and the choice of the
base case does not change the calculations of probability, it only affects the coefficients and ways
to explain the odds ratio. An example of the use of multinomial log-linear regression is Wilke et
al., 2013, who proposed the use of it to model the activity-starting probability.

The third group used advanced data-driven methods (e.g., statistical tests and random forests).
Nowadays, the use of the artificial neural network to develop a model based on big data become
more popular. Same as regression models the artificial neural network (ANN) also contains the
input, calculation functions (i.e., one or more layers ), and output. The ANN has two types:
feedforward and feedback network architectures. One of the distinct characteristics of the ANN
is it learns from experience and examples and then can adapt to changing situations (Rafiq et al.,
2001). Kleinebrahm et al., 2021 applied advanced ANNs to simulate OBs including synthetic
weekly mobility schedules. Deng & Chen, 2019 applied an ANN method to model the OB
occurrence. As presented in the fourth column of Table 1-1, many of the existing models grouped
the input data before applying the parameter preparation method. Many studies have used basic
demographic conditions for segmentation, such as age and gender (Okada et al., 2020) and the
distinction between weekdays and weekends (Ramirez-Mendiola et al., 2019; Richardson et al.,
2008). Diao et al., 2017 and Aerts et al., 2014 grouped TUD samples based on the characteristics
of time allocation observed in TUD using a clustering method. Segmentations can improve the
reproduction of diversity in OBs, even when a sample-based parameter preparation method is
used.

For the segmentation and development of statistical OB models, previous studies considered
several variables to address their influence on OBs and to enhance the diversity among the
simulated occupants (Okada et al., 2020), although many of the models suppressed occupant
diversity (O’Brien et al., 2017b). Haldi et al., 2017 and Tahmasebi & Mahdavi, 2018 revealed
that the consideration of diversity enhances the diversity in energy demand among households
and improves the reproducibility of building energy demand models, including extreme values.

We categorized the variables used in the existing OB models into the eight categories listed in
Table 1-2. This categorization was originally used by Stazi et al., 2017 and modified by the



authors based on the reviewed studies listed in Table 1-3. We refer to the categories as
“influencing factors”. Table 1-3 includes studies that were not listed in Table 1-1 because they
did not provide an OB model but provided relevant evidence indicating the significant influence
of a factor on OB.

According to Table 1-3, variables related to demographic and time factors are most commonly
considered regardless of the model objectives. The consideration of variables representing the
demographic factor enables consideration of the inter-person/household diversity of OBs,
whereas time factor variables enhance the reproducibility of temporal variations in OBs which
are important for reproducing the time-dependent characteristics of building energy demand.
Occupancy factor variables contribute to the dependency on the designated location (e.g.,
performed at home). Notably, psychological and environmental factors are only considered in the
modeling of occupant actions; for example, window opening.

Table 1-2. Summary of influencing factors categories and corresponding representative variables

considered in OB models.

Influencing factor Representative variables
Demographic Individual attributes: age, gender, employment status
Household attributes: household size, household composition
Housing condition: housing
Attributes of other household members: employment status, age

Time Time of day, day of week, distinction between weekday and weekend
Activity Previous activity, accompanying people

Geographic Metropolitan status, region, nation

Appliance Ownership, appliance control

Environmental Local weather, climate zone, humidity

Occupancy Presence, arrival, awake status

Psychological Motives, goals, setting preferences
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Table 1-3. Summary of influencing factors considered in previous studies.

Influencing factor
Literature Demq— Time | Activity Geo-. App- Environ- | Occu- Psy(.:ho-
graphic graphic | liance mental pancy | logical
Diao et al., 2017 Y \ N
Liisberg et al., 2016 v v
Ramirez-mendiola et v
al., 2019
Richardson et al., 2008 | v v
Aerts et al., 2014 v v
Widén et al., 2009 \ \
Jones et al., 2017 Y v
Okada et al., 2020 \ \ \
Yamaguchi & Shimoda, | V Y N
2017
Tanimoto et al., 2008b, | V Y
2008a
Fischer et al., 2015 N Y N
Wilke et al., 2013 N Y N v v
Deng & Chen, 2019 V v
Chiou et al., 2011 \ \
Anderson, 2016 \ \
Buttitta et al., 2017 \ v
Torriti, 2017 \
De Lauretisetal., 2017 | S S S
Toftum, 2010 \ N

1.5.2 Studies related to OB and energy modeling with spatial variation

Spatial variation essentially refers to the rules or tendencies of objectives of the research exhibited
in a given space. Spatial variation can be represented and considered in the modeling in different
ways. Table 1-4 summarizes reviewed studies in terms of the research sector, objective, spatial
variation, modeling scale, and modeling method.

There is a significant development in OB-related modeling that addresses space use. These space
use studies considered spatial choice or individual preference based on geo-referenced data to
determine space use (Chiou et al., 2011; Ibrahim et al., 2020). Tabak, 2009 developed a model
called the User Simulation of Space Utilization that simulates space utilization in an office
building by calculating the distances between the locations of different activities based on
measured data. In addition to spatial utilization, the mobility and occupancy patterns of people
can also be estimated based on dynamic spatial choices or preferences (Dziedzic et al., 2020; Feng
et al., 2015; Kleinebrahm et al., 2021; Mohammadi & Taylor, 2017; Nassar & Elnahas, 2007; C.
Wang et al., 2011). As shown in Table 1-4, the majority of the previous studies considered space
use to integrate spatial variation into their works. Although these studies conducted analyses or
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developed models with spatial variation, the variation in OBs over space has not been discussed.

According to the fourth column of Table 1-4, only limited studies have used some independent
variables related to the spatial factor to consider spatial variation during the modeling process to
enhance the diversity of the model (Li et al., 2022). These spatial variables are usually used as the
general variables in data-driven methods such as regression analysis and neural networks. Halleck
Vega et al., 2022 assessed various factors, including seven spatial factor variables (e.g., urban—
rural gradient, city center, and village center), to develop a suitable policy for increasing the
uptake of carbon emission reduction measures. They also highlighted the importance of using the
spatial factor for designing energy policy frameworks. Marin-Restrepo et al., 2020 identified OB
patterns in office environments through data analysis and the Chi-squared test based on spatial
(e.g., spatial layout and occupant orientation relative to control elements) and human factor
variables. Wilke et al., 2013 considered an independent variable that indicated whether an
occupant lives in an urban/suburban area to simulate the starting probability of activities through
a multinomial logit model. Okada et al., 2020 applied the same method by considering city size
as an independent variable to simulate the probability of undertaking activities. Rafiee et al., 2019
revealed through regression analyses that spatial context (e.g. building density and urban form) is
a significant determinant of household heat consumption. Abbasabadi et al., 2019 presented an
urban energy use model that captures both urban building operational energy and transportation
energy consumption by localizing the energy performance data and considering various urban
socioeconomic factors and spatial contexts (e.g., urban density and accessibility).

Moreover, the scale of the modeling with spatial variation in previous studies is almost limited to
the building or room levels as shown in the fifth column of Table 1-4. However, modeling at the
larger scale such as the neighbor scale or urban scale can improve the understanding of urban
energy use by informing decision-making regarding urban morphological and spatial patterns that
can affect the city structure and subsequent building operational and transportation energy end-
uses (Abbasabadi et al., 2019). Further, developing a model that can be applied to multi-scale is
the final goal for all related researchers.

Based on the above-mentioned, less focus has been paid to spatial variation in the OB modeling
at a larger scale. Spatial variation has been insufficiently represented based on the actual data in
previous studies. Although some studies used the spatial factor, there is still a lack of modeling
methods to better reproduce spatial variation in OBs.
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1.5.3 Studies related to spatial analysis and modeling in other fields

Disciplines associated with the fields of epidemiology, environmental meteorology, and
econometrics have applied sound spatial analysis methods to solve subject-specific problems.
Epidemiological studies that analyze how health objectives are related to risk factors that vary
geographically or predict the spatial spread range of infectious diseases are becoming increasingly
popular (Wang, 2012; Zhu et al., 2016). The prediction of the diffusion of air pollutants and the
prediction of precipitation or other meteorological phenomena for the unmeasured areas have
always been the research hotspots in the environmental meteorology field (Degré et al., 2015;
Monestiez et al., 2001; Xie et al., 2017). A lot of econometric research focused on investigating
how the fluctuations or changes of the social-economic items of interest such as the wage or house
price (Chasco et al., 2007; Murakami et al., 2017) varied by spatial area. This chapter summarized
such methods used to either empirically represent the spatial variation or simulate the research
objective with the consideration of the spatial variation. Figure 1-2 shows the summary of the
methods.

. . Trend surface
Interpolation Global interpolation l—b analysis,...
range
Spatla:};z:;z%‘)latmn Local interpolation |—> weiInl:Ftei;se (Ilé“:;a?:e
Location & spatial ghting, kriging,...
weighting matrix
Boundary .
—b{ Th I pour
interpolation lessen polygon
Research I di
Objects Geographically nverse distance

function or various

weighted regression .
g g kernel functions

Location & spatial

weighting matrix & Regression-based Cross-sectional (first- Spa‘tlal error mode‘:l,
. spatial autoregressive
factor method order) spatial method
model,...
Mathematical G liged additi
expression Spatial logistic eneralized additive
N model, generalized
regression

linear mixed model,...

Figure 1-2. Summary of the methods for spatial analysis and modeling.

Based on the mechanism and data input, the methods used in these studies can be classified as
spatial interpolation and regression-based methods. Spatial interpolation methods simulate the
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spatial autocorrelation of surrounding observations to represent the spatial trend of the objectives
or to generate spatial predictions for unmeasured areas. Based on the interpolation range, models
can be further divided into global (Nath, 2014), local (Lu & Wong, 2008; Oliver & Webster,
2007), and boundary (Faisal & Gaffar, 2012) spatial interpolation models. The global
interpolation model uses all observations to conduct the feather fitting for the whole study area.
The typical method is the trend surface analysis. The local interpolation model uses the limited
observations within a defined neighboring area to build the mathematical function that can reflect
the changes in this neighboring space. The typical method is the inverse distance weighting
interpolation method and the kriging interpolation method. The boundary interpolation model
assumes that objectives within the boundary are the same (i.e. uniform and homogeneous),
changes only occur on the boundary of the region. The typical method is the Thiessen polygon
method. Olaf Berke, 1999 applied the trend surface analysis and universal kriging to simulate
acid-precipitation in Lower Saxony. Olaf Berke, 2001 also developed the modified median polish
kriging method to generate more robust spatial predictions for Wolfcamp-Aquifer. Varouchakis,
2021 applied median polish kriging and sequential Gaussian simulation to explore the spatial
distribution of source rock data in terms of total organic carbon weight concentration.

In regression-based methods, they incorporate additional factors, such as sociodemographic factor
variables, into the modeling process. According to the mathematical expression, these regression-
based models can be divided into Geographically Weighted Regression (GWR), cross-sectional
(first-order) spatial model, and logistic spatial model three categories. The mathematical
expression of GWR is similar to the conventional regression model, however, the calculation of
the regression coefficients is different which involves the information of the locations (Chasco et
al., 2007; Mcmillen, 1996; McMillen & McDonald, 1997):

m
ysi = ﬁsi,o + Zk_lﬂsi,k * xSi,k te 1-4

where fg ;. indicates the coefficient for each variable xy, (x1 , X ,...xm,) and location
s;, (51,52, ...sN,). Therefore the coefficient f is not a m x 1 dimensional vector but a m X
N dimensional matrix. To estimate the S the weights should be assigned to each objective by
different distances to the location s;:

F= (o x) Xy 15
where B = (Bs, 0, Bs;1» -+ Bsy) 1S the vector of estimated coefficient for location s; and
Wsis, = 0 0
0 W,
W, = S is the weighting matrix which can be defined by the inverse
0 0 = Wsy

16



distance function or various kernel functions (Bivand et al., 2021). Chasco et al., 2007 analyzed
the spatially varying impacts of some conventional variables, such as unemployment rate and
average housing price, on the per capita household income in Spanish provinces based on
geographically weighted regression. In the cross-sectional spatial model, the spatial lags can exist
in any parameters of the model (Arraiz et al., 2010; Bivand et al., 2021; Kelejian & Prucha, 1998).
The mathematical expression of the cross-sectional spatial model is defined as follows:

Y=nTY+pBTx+a"Wx+ ATWy + 1-6
u=p'Mu+e 1-7

where y is the dependent variable on objectives, Y and x are (endogenous and exogenous)
independent variables, and p indicates the disturbance. W and M are defined spatial
weighting matrices. a, 4,and p are scalar spatial autoregressive parameters. The variables Wx,
Wy, and Mp are referred to as spatial lags. Various models can be generated if we set different

restrictions to the coefficients in Equations 1-6 and 1-7. Such as the spatial error model ( let =
a = 1 = 0), spatial autoregressive model (t = a = p = 0), and spatial Durbin model (r = p =
0). To solve these cross-sectional spatial models, some assumptions should be pre-defined to
simplify the solution process and ensure the uniqueness of the solution. The spatial logistic
regression model has a similar mathematical expression to the conventional logistic regression
model. The only difference is that it considered the smooth function g(s;; 8) parameterized by
6 over location s. According to different g(s;; 8), the spatial logistic model can derive different
models as well (e.g., generalized additive model and generalized linear mixed model) (Paciorek,
2007). Xie et al., 2000 employed spatial logistic regression to obtain the development patterns in
regions and to assess the prognostic capacity of the model based on several factors such as
population density and availability of usable sites. Paciorek, 2007 compared several models for
fitting spatial logistic regression models and suggested that the spectral basis model is the best to
provide a good compromise between the quality of fit and computational speed for the estimation
of the spatial surface.

1.6 Research gap

As highlighted in Chapter 1.3 and revealed in the review Chapter 1.5.1, there is ample evidence
of the significance of the OB models for simulating energy demand. Many of the bottom-up based
energy demand models consider the OB model modules accordingly. However, the development
framework of the OB is not well documented in previous literature. In particular, the pre-
simulation in terms of the selection of the variable used in the model and the selection of the
parameter preparation method lack discussion. Considered variables are mainly from the
sociodemographic and time factors. Other factors, while potentially important, were ignored. In
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addition, the majority of the parameter preparation methods are sample distribution or fitted
distribution based. These choices of the OB model design result in poor performance in terms of
diversity.

Further, while diversity has been recognized as an essential cause resulting in the performance
gap, the deeper investigation and the practical application in the OB model have not been
implemented yet. In particular, spatial variation in OBs has attracted more and more attention, but
little relevant progress has been made. Most of the research only concerns the space use or the
mobility of the occupants, the variation in OB over space is not within the scope of their study.
Further, proper methods to deal with the spatial variation have been sparsely considered and
applied in the energy field although other fields have already developed some robust spatial
analysis methods. These insufficient considerations of diversity in OBs can lower the impact of
the occupants on building energy performance and create less accurate energy consumption
estimations.

1.7 Aims and objectives

Based on the aforementioned research gap, this thesis aims to improve the OB model by analyzing
and evaluating the modeling process, especially the underrated pre-simulation process thus
providing reference guides for designing the OB model framework. In particular, this thesis
intends to develop new OB models that can incorporate spatial variation into the modeling process
thereby better enhancing the diversity among simulated occupants in a given space.

Three objectives are studied related to the research aims:

1) Address research questions on which variables should be considered and what is the most
appropriate parameter preparation method to improve the pre-simulation process of OB
modeling.

2) Address research questions on whether spatial variation and historical change exist in OB,
whether variables can represent spatial and temporal variations, and whether the conventional
modeling method can reproduce the spatial variation.

3) Address research questions on when spatial variation exists in OB, how can spatial variation
in OB be represented quantitatively, and how can spatial methods reproduce spatial variations
in OB to develop a new method for OB modeling with consideration of spatial variation.

1.8 Contributions

The overall research studies would be beneficial in numerous ways to the people who are
committed to the residential energy sector both in academia and industry.
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First of all, one of the contributions of the work connected to this thises is the comprehensive
summary of the review literature. As shown in Chapter 1.5.1, the summary of the use of the
modeling method, variables, and engine are given. It contributes to existing knowledge on the
development of OB models underpinning energy demand simulation. It also contributes to further
understanding of the impact of the significant factors on building energy consumption. More
importantly, it reveals the significance of pre-simulation, as the existing studies had seldom paid
attention to the design of the framework of an OB model or energy demand model with the
consideration of the OBs. In addition, based on the review in Chapter 1.5.1, a further investigation
and a deeper discussion of the pre-simulation process were conducted. These contribute to
explaining the reason for the selection of the engine, model method, and parameter as well as their
combination which are rarely explained in the literature thereby providing useful references and
model development direction for other researchers.

Furthermore, the most important contribution is the development of the methodology — OB
modeling incorporating spatial variation. Previous studies have pointed out the importance of
diversity. However, most of the studies just stop at the discussion aspect of how to enhance
diversity. According to Chapter 1.5.2, diversity especially for the spatial variation was
insufficiently represented based on the actual data in previous studies. Although some studies
used spatial factor variables, there is still a lack of modeling methods to better reproduce spatial
variation in OBs. To address the research gap, this thesis developed new OB models incorporating
spatial variation to better reproduce the spatial variation in OBs. The new OB model broadens the
knowledge of diversity and highlights its significance for the engineering field. Moreover, the
outcomes of the model will beneficial to engineering and environment professionals to simulate
energy demand and design policy advocacy. Further, the present methodology to consider the
diversity in this thesis can be investigated not only for modeling OBs but also for modeling and
analyzing the adoption of appliances or other objectives of the research.

In short, the contributions of this thesis are highlighting the importance of the pre-simulation
process of OB modeling as well as successfully developing new OB models that can consider
spatial variation. For the above-mentioned reasons, this thesis provides great contributions toward
more advanced OB modeling underpinning the energy demand simulation and moves forward the
state-of-the-art in the field.

1.9 Thesis outline

The work consists of seven chapters. Figure 1-3 presents the overall flow of the thesis. As shown
by the figure, Chapters 2-4 revolve around the research objectives to fill the research gap
mentioned in Chapter 1.6 respectively.
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Chapter 1.

Introduction
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Chapter 2. Chapter 3. Chapter 4.
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Chapter 5.
Integrated discussion

!
Chapter 6.
Conclusion

Figure 1-3. Thesis structure.

Chapter 1 centers on introducing the energy use and energy demand modeling in the residential
sector, the role of OB in energy demand modeling, the development of OB modeling, and
diversity in OBs. Then a critical literature review to summarize the methods of OB modeling or
energy demand modeling with consideration of OBs, and methods of spatial analysis and
modeling in both the engineering field and other fields is given. Based on the review, the research
gap was found. Finally, the overall objectives and the framework of research targeting the
assessment of OB model performance and development of the model that can involve spatial
variation are outlined.

Chapter 2 presents a case study to highlight the importance of the design of the pre-simulation
process based on single-year American time use survey (ATUS) data. It covers the two vital sub-
processes in the pre-simulation thus evaluating their corresponding impact on OB model
outcomes.

Chapter 3 and Chapter 4 present analyses related to spatial variation in OBs based on multiple-
year ATUS data. In Chapter 3, the spatial analysis method learned from the geostatistics field was
applied to assess the performance of the OB model that was selected based on the results from
Chapter 2. The existence of the spatial variation and the historical change is confirmed by the
spatial analysis method.
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Chapter 4 proposes the research method to develop the new OB models incorporating spatial
variation. This chapter includes the theoretical concepts of the spatial analysis and modeling
methods reviewed in previous studies, as well as the implementation of the new model (i.e., the
data collection, the tool, the evaluation standard).

Chapter 5 presents a combined in-depth discussion of the preceding chapters, giving an overview
of the complex nature of the OB modeling systems that were analyzed. The chapter highlights the
significance of the design of the OB modeling and put forwards the pre-conditions and appropriate
ways to involve spatial variation in the OB modeling process. The limitation and future work are
also discussed.

Chapter 6 presents the achievement of research objectives, research conclusions, and research
contributions.
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2 Impact of the pre-simulation process of occupant behavior modeling for
residential energy demand simulations

2.1 Purpose

OB models play an important role in building energy demand modeling. As OBs can control the
operation status of energy-consuming appliances, reflect the occupancy status of the rooms or
buildings which helps to evaluate the regular energy system, and adjust the indoor environment
to meet the needs of the occupants. Useful simulation algorithms for OB modeling have been
developed in previous studies as summarized in Chapter 1.5.1. However, previous studies have
generally focused on model engines. Less attention has been paid to the pre-simulation process,
even though it has a significant influence as analyzed in this chapter. Although existing OB
models have used various pre-simulation processes, the reason for choosing a pre-simulation
process is not well documented, and alternative methods are rarely compared to improve model
performance. To obtain better OB models, the following questions which were mentioned in
Chapter 1.7 should be addressed by model developers and users: (1) which variables should be
considered, and (2) what is the most appropriate parameter preparation method. None of the
previous studies have addressed these questions.

The study in this chapter aimed to provide a reference for addressing the aforementioned two
research questions and to improve the pre-simulation process of OB modeling. To this end, this
study evaluated how model performance is affected by changes in the pre-simulation processes.
Through cross-comparison, this study provided a better understanding of the influences of the
selection of variables and parameter preparation methods on OB model performance. The study
also provides recommendations for developing improved OB models for different application
contexts. Chapter 2.2 introduces the methods and materials used in this study. The results are
presented in Chapter 2.3, Chapter 2.4 discusses the findings, and Chapter 2.5 concludes this study.

2.2 Data material and methodology

This study considered the development of a discrete-event model that stochastically generated an
activity sequence as the model objective. The model used two modeling parameters: 1) the starting
probability of activities and 2) the statistical distributions of activity durations. The activity
sequence was stochastically generated by a model engine that repeats two processes: 1) selection
of an activity that starts at the first vacant time slot by random selection based on the activity-
starting probability, and 2) selection of the duration of the selected activity based on the statistical
distribution of the activity duration. An example of this model can be found in the studies of
Wilke et al., 2013 and Okada et al., 2020. The time resolution of the OB model was dependent on
the unit length of the activity-duration modeling. For example, it was 5 min when the activity
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duration was modeled using the cumulative probability distribution quantified with a 5-min
interval. The studies confirmed that this modeling framework is capable of producing realistic
temporal sequences of activities (Wilke et al., 2013) and differentiating them by considering
various influencing factors in the modeling of the starting probability and statistical distribution
of activity durations (Okada et al., 2020). Although the original TUD can be used as an input for
a building energy demand model, the use of the OB model is beneficial when applied to a large
number of households; for example, in urban and building stock energy models.

This study only considered the activity-starting probability for the evaluation of the impact of the
pre-simulation process and did not include the simulation process using the model engine. The
activity-starting probability, which is used in the first process of the activity sequence generation
in the discrete-event OB model, represents the composition of the probabilities for selecting each
target activity. This study quantified the activity-starting probability within each of the individual
24 h intervals of the day based on a parameter preparation method. The evaluation procedure is
illustrated in Figure 2-1.

/ ATUS2018 /

v

/ TUDwith /

variables /

\ Observation
Training set Test set / o[ OBs
(70% of TUD) (30% of TUD) /
I"ﬂriﬂbfg.& Variable
observation of OB

E Casel 2 3 E Casel 2 3
v [ | [ ][ ] | Model iamr | || |
SVMDDD SVM L] |

| '

];S‘::I?EE' d Performance
pal'ametegs indicators

Figure 2-1. Analysis procedure.
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This study used the TUD collected from the ATUS in the year 2018. The ATUS is sponsored by
the Bureau of Labor Statistics and conducted by the U.S. Census Bureau. The TUD was first
randomly divided into training and test sets. The training set comprised 70% of all TUD used to
develop models that estimated the activity-starting probability for simulated occupants. We
developed nine models based on the training set, combining three evaluation cases and three
parameter preparation methods. The evaluation cases, Cases 1-3, were designed to have different
combinations of variables considered in the parameter preparation method to evaluate the impact
of variable selection on the model performance (explained in Chapter 2.2.2). To evaluate the
impact of the selection of the parameter preparation method, we considered three methods
(Chapter 2.2.3): 1) a multinomial log-linear regression (MLR), 2) support vector machines
(SVMs), and 3) a feedforward artificial neural network (ANN). The remaining 30% of the TUD
was used as the test set to evaluate the performance of the developed models for validation. In the
validation, the nine developed models were applied to the test set to quantify several performance
indicators, and the performance was cross-compared based on well-designed indicators (Chapter
2.2.4).

2.2.1 Data

The ATUS collected time use diaries for 24 h beginning at 4:00 on a survey day from 9,370
individuals. The diary contains activity codes representing the activity performed and the times
at which the activity started and ended. Table 2-3 in Appendix A. ATUS data record shows an
example of the ATUS data. The ATUS data use 18 major activity categories with hundreds of
subcategories. The ATUS data contain the identification number used in the current population
survey data that contain the demographic attributes of individuals. Using the identification
number, demographic attributes are attached to the activity data.

For the modeling, we converted the activity code in the ATUS data into 25 activities listed in
Table 2-1 such that each category had similar appliance usage, and the activity locations could be
grouped as indoor or outdoor. It should note that the text in the brackets is the abbreviation of the
corresponding activity. Activities 1-10 and 14-21 were indoor activities. Activities 11-13, 22,
and 23 were outdoor activities. Activity 24 is an unspecified personal or private activity performed
at an unspecified location. Activity 25 involves activities that are missing for various reasons (for
example, survey participants refused to provide information, and an activity code could not be
assigned). Based on these features, we classified the activities into activity clusters C1-C5 as
listed in Table 2-1 to be referred to in the results chapter. C1 includes basic life activities such as
sleeping, eating, drinking, and personal care activities that occur indoors. C2 contains indoor
housework activities. C3 contains work and study activities. C4 and C5 contain other indoor and
outdoor activities, respectively.
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Table 2-1. Activities and codes used in this study.

outside
(Studies&WR_0)

Cluster | Code Activity Cluster | Code Activity
C1 1 Eating and drinking C4 14 Computer
(Eating&D)
2 Personal care 15 Telephone
3 Sleeping 16 Television
C2 4 Laundry 17 Household and personal management
and planning
(Plan&M)
5 Caring 18 Leisure and hobby (Leisure&H)
6 Housework 19 Sports
7 Food preparation and presentation 20 Religious, volunteer, and civic
(FoodP&P) activities (Religious&VC)
8 Kitchen and food clean-up 21 Shopping and using services
(Kitchen&FC) (Shopping&S)
C3 9 Paid work or job C5 22 Appliances for outside
(Work&J) (Appliances_0)
10 Studies, school work, and research 23 Other outside activities
(Studies&WR) (Other act_0)
11 Paid work or job outside - 24 Personal activities
(Work&J_0) (Personal act)
12 Studies, school work, and research | - 25 Missing

13

Commuting and school
(Commute&S)

As this study quantified the activity-starting probability using a 1 h interval, the activity records

were classified into 24 groups based on the clock time as threshold values. For each group, the

parameter preparation method was applied independently. However, we combined the time

intervals from 0:00 to 5:59 to ensure that the events per variable (the number of activity records

of each independent variable) was 10 or larger (Concato et al., 1995) for each activity. Figure 2-2

shows the number of observations in each time interval. As shown, the sample size at intervals

from 1:00 to 4:59 was smaller than 1,000. When the parameter preparation methods were applied

to this interval, five dummy variables representing each of the intervals from 0:00 to 4:59 were

considered with 5:00-5:59 as the reference category. Appendix B evaluated the influence of the

combined time intervals.
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Figure 2-2. Number of observations at each time interval.

2.2.2 Case design

As shown in Figure 2-1, we designed three cases (i.e., Cases 1-3) characterized by the number
and type of selected variables considering three levels of variables. The first level comprised the
eight influencing factors explained in Chapter 1.5.1. The second level comprised variables
included in the TUD, such as age. The third level consisted of independent variables input during
the application of the parameter preparation methods. For example, we created three dummy
independent variables representing young people 10-29 yrs, middle-aged 30-59 yrs, and seniors
60 yrs or older based on the age variable. Table 2-4 in Appendix C. Variables considered in the
examined cases lists the variables and independent variables considered in this study.

Table 2-2 lists the type of variables, the number of variables, and the independent variables
considered in each case. Case 1 contained the fewest variables and considered only the basic
variables of the demographic and time factors. These six basic variables have been commonly
used in existing OB models (Anderson, 2016; Diao et al., 2017; Fischer et al., 2015; Okada et al.,
2020; Wilke et al., 2013).

Case 2 contained the variables considered in the models of Wilke et al., 2013 and Okada et al.,
2020. Case 2 newly considered the ownership of the housing unit in the demographic factor and
the metropolitan status in the geographical factor. The number of variables representing the
demographic, time, and geographical factors increased to 14 and the number of independent
variables increased to 26.

Case 3 assumed a situation in which as much available information as possible was considered in
the modeling to include those rarely used in existing OB models and considered the variables in
the remaining three influencing factors. The employment status of a spouse was from the
demographic factor, the ownership of a telephone was represented as the appliance factor, and the
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other four variables, such as the type of person accompanying an occupant, were represented by
the activity factor. The number of independent variables was 67.

Table 2-2. Number and type of variables considered in cases. The definition of the variables is
listed in Table 2-4 in Appendix C.

Item Case 1 Case 2 Case 3
Demographic Individual Age, gender, Variables considered Variables considered in
education, and in Case 1, occupation, | Case 2 and student
employment health, and race
Household Num_people Num_people, Num_people, children,
children, and income and income
Housing Housing Housing
Other members Spouse employment
Time Diary day Diary day and holiday | Diary day and holiday
Activity Time_care, num_people
accompany,
type_people
accompany, and
previous activity
Geographic Metropolitan Metropolitan and region
Appliance Telephone
Number of variables / independent | 6/8 14126 22167
variables

2.2.3 Methods of parameter preparation

The activity-starting probability was modeled using three parameter preparation methods: 1) a
MLR following (Wilke et al., 2013), 2) SVMs with a Gaussian radial basic kernel function (Jiawei
Han, Micheline Kamber, 2014), and 3) a feedforward ANN with a backpropagation algorithm
and one hidden layer. Generally, for an ANN, a single layer with an optimal number of neurons
is sufficient for many practical problems (Goh, 1994; Rafiq et al., 2001). The number of neurons
in the hidden layer was determined using m = log, n, where m is the number of neurones in the
hidden layer, and n is the number of neurones in the previous input layer, which should be between
the number of input and output neurones (Sheela & Deepa, 2014).

Our intention was not to find the best method for modeling activity-starting probability but to
evaluate how model performance changes with the selection of the method. Thus, we chose MLR
because it has been widely used in OB modeling and is easy to develop. SVM and ANN were
selected as potential alternatives capable of dealing with nonlinear relationships.

We applied the stepwise method to select variables for MLR, as in most previous studies. All of
the variables were used to develop the models using the ANN because it required large-scale data
and did not require feature extraction. For the SVM, we applied stepwise and LASSO regression
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(Ranstam & Cook, 2018) in addition to the model using all variables to determine whether feature
extraction was required for the TUD.

2.2.4 Model performance assessment

We assessed the model performance using five performance indicators related to three aspects.
The first aspect was the reproducibility of the average activity-starting probability, which is
crucial for obtaining a realistic average energy demand. To evaluate the reproducibility, we used
the root mean squared error (RMSE) defined as

2 2
RMSE = Z?:l Z%:l(gt,m) _ Z=1 2%21(p0b5t,m - peStt.m) 2-1
T*M T«M
where RMSE quantifies the average error between observation and estimations for all activities
and time intervals, t is the time interval (T =24), m is the activity (M = 25), p is the activity-

starting probability, and & denotes the error.

The second aspect was diversity, which assesses how well the model represented the variation in
OBs among the simulated occupants. We used two performance indicators. The first was the mean
standard deviation (MSD) calculated as

T M
MSD = t=1 Zm:l |SDestt'm| 2.2
T M

where SDgg, .. is the standard deviation of the estimated probability among the sample for
activity m at t. MSD measures the average amount of variation or dispersion of the estimates for
all combinations of activities and time intervals.

The weakness of MSD is that it does not quantify the goodness-of-fit with the observations. To
overcome this weakness, we considered a second indicator based on the Hosmer—Lemeshow test
which is often used to evaluate the goodness-of-fit in logistic regression models. In the test, the
samples were divided into several groups after sorting the samples according to the estimated
probability from the lowest to the highest. Then, the statistical difference in the probability of
each group was tested between the estimation and observation. However, this method is not
effective when the occurrence of the model objectives is low (Paul et al., 2013) and it is
inapplicable to activities with a low starting probability. Therefore, we designed an indicator that
measured the RMSE between the averaged estimated probability and averaged probability of
observations of subgroups as in the Hosmer—Lemeshow test, named RMSE_GA and calculated
as
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2
’11_::1 Z%:1 Zg=1 (Meant,m,g (Pest) - Meant,m,g (Pobs)) 2-3
RMSE_GA =
T*M=x*G

where g indicates the subgroups created based on the estimated probability of the test set. For
activity m at t, we sorted the test set according to the estimated probability and then equally
divided it into 10 subgroups (G =10 as often used in the Hosmer—Lemeshow test) for all methods.
This indicator quantified the difference in the distribution of observation and estimation, thereby
assessing diversity.

The third aspect was the reproducibility of individuals’ activities; that is, individual specificity.
Individual specificity is important to accurately predict an individual’s activities. The accuracy
and F1 score were used to evaluate individual specificity, respectively defined as

1 T Npredt
accuracy = —Z —_— 2-4
T t=1 Ntotalt
1T 2 Precision, * Recall;
F1 score = —Z — 2-5
T £a¢=1 Precision; + Recall;

where Np,.q, indicates the number of correctly predicted cases at t. The accuracy measures the
percentage of all correctly predicted cases. For prediction, the activity with the highest starting
probability was selected. The precision and recall values of the F1 score were extracted from the
confusion matrix. The F1 score measured incorrectly classified cases, which is an important
metric when misprediction is costly.

2.3 Results

2.3.1 Average performance

Figure 2-3 (a) shows the sample distribution of the starting probability in the test set. Figure 2-3
(b)—(f) show the average of the activity-starting probability estimated by the three methods of
Case 1. No evident differences were observed with the sample distribution. This result indicates
that all of the models reproduced the average starting probability of the test set in Case 1. Similar
results were obtained for Cases 2 and 3.

Figure 2-4 shows that the RMSE for all developed models was less than 1%. This scale of error
is much smaller than that originating from the simulation processes of OB (in the middle of Figure
1-1) and building energy demand, which generally has an RMSE error greater than 10%. For
example, the error of Yamaguchi & Shimoda, 2017 was 10%-20% for multiple activities. The
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error of Naspi et al., 2018 for the window-closing action was 15%. The RMSE for modeling the
energy use of appliances in a low-energy house in the work of Candanedo et al., 2017 was greater
than 65%. The most notable result is that the MLR and ANN had lower RMSE values than that
of the SVMs. Case 3 had the smallest RMSE among all methods. The improvement in Case 2
from Case 1 was limited to the MLR and ANN. The effect of the SVM was significant when
stepwise and LASSO regression were adopted for the selection of independent variables.

u Computer = Laundry = Telephone Television m Caring

= Plan&M = Housework m FoodP&P m Eating&D m Kitchen&FC

m Personal care = Sleeping m Leisure &H = Sports Work&J
Studies&WR m Religious&VC = Shopping&S u Appliances_O mWork&J_O

u Studies&«WR O = Commute&S E Other act O = Peronal act Missing

1
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- 0.7
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Starting probability of activity

Time of day

Figure 2-3. Starting probability of activities at the time of day. Each colored area indicates the
probability of an activity indicated by the graph legend (Table 2-1). Figure (a) shows the
proportion of activities observed in the test set. Figures (b)—(f) show those estimated for the test
set in Case 1.
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Figure 2-4. RMSE of developed models.

2.3.2  Diversity performance

As shown in Figure 2-5, the MSD for all developed models was smaller than 7%. The MSDs of
MLR and ANN were higher than those of the SVMs. The MSD of Case 3 was higher than that of
Cases 1 and 2, and a small improvement was observed from Case 1 to Case 2. This result indicates
that the newly considered variables in Case 3 enhanced the diversity.
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Figure 2-5. MSD of developed models.

Figure 2-6 shows the sorted probability of watching TV, kitchen, food clean-up, and sleeping at
the representative hours of the day estimated by the MLR in Case 3 (red lines). The figure also
shows the averaged probability in the 10 subgroups made by the MRL in Case 3 as explained in
Chapter 2.2.4. The black line indicates the observations of the test set. All of the methods in Case
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3 fit well with the averaged probabilities regardless of the activity. Compared to Case 3, the
averaged probabilities of Cases 1 and 2 did not fit well with the subgroups in the test set. The
most obvious example was sleeping, which ranged from 41% to 53% for all subgroups in Case 1
and ranged from 43% to 54% in Case 2.
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Figure 2-6. The activity-starting probability of the 10 subgroups created by sorting the samples
based on the probability estimated by the Case 3 MLR-based model are indicated by the red line.
The nine figures indicate the result of watching television, kitchen and food clean-up, and sleeping
at the representative time intervals of 10:00, 18:00, and 23:00, respectively. The horizontal axis
indicates the number of sorted samples. The black line indicates the average of the observation.
The other colored lines indicate the results of the models.

However, this result did not indicate that Cases 1 and 2 did not fit the test set. Figure 2-7 shows
the same results using the subgroups created based on the probability estimated by the MLR in
Case 1. All the models fit well with the averaged probabilities of the subgroups in the test set
shown in Figure 2-7. However, the ranges of the starting probability of all three representative
activities were smaller than those of Case 3 in Figure 2-6, which is consistent with the MSD
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results. This result indicates that less diversity was produced in Cases 1 and 2 compared to that
of Case 3.
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Figure 2-7. Activity-starting probability of the 10 subgroups created by sorting the samples based
on the probability estimated by the Case 1 MLR-based model (indicated by the red line).

Figure 2-8 shows the base-10 logarithms of the estimated and observed probabilities of the test
set for all combinations of activities, time intervals, and subgroups. The subgroups were divided
based on Case 3 MLR. According to Figure 2-8 (a) and (b), the distribution was scattered owing
to the error as shown in Figure 2-6. The figures present two R2 values obtained with and without
the transformation of the base-10 logarithm (R%04 and R?, respectively). The Rz was 0.48 for the
MLR and ANN in Case 1 without logarithmic transformation, and 0.36 and 0.35, respectively,
with the transformation. Figure 2-8 (c) and (d) indicate that the Case 3 models fit the test set well,
although there were discrepancies in the range with probabilities less than 0.01. These
discrepancies are acceptable as the probabilities were very small because the figures are shown
as a base-10 logarithm. Rz was 0.99 for the MLR and ANN in Case 3 without logarithmic
transformation, whereas the R24 values with the transformation were 0.48 and 0.73, respectively.
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Therefore, the Case 3 models were more capable of enhancing the diversity range and reproducing
the distribution of probability among the simulated occupants differentiated by the considered
variables. This result was confirmed by the RMSE_GA.
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Figure 2-8. Averaged starting probability of activities estimated and observed in the subgroups
created based on the estimation of the Case 3 MLR-based model. The horizontal axis shows the
observed probabilities, and the vertical axis shows the estimated probabilities. The black line
indicates the reference line y = x. Each dot indicates a combination of the activity, time interval,

and subgroup. Logarithmic transformation was conducted in the range (—4, 0) x (-4, 0).

Figure 2-9 shows the RMSE_GA results, including all developed models with the subgroups
created according to the estimated probabilities in Case 3. We found that all methods had the
smallest RMSE_GA in Case 3, particularly the MLR. These results further demonstrate that Case
3 had higher diversity and better characterized the probability distribution in the test set. Cases 1
and 2 had similar RMSE_GA results, implying that the newly added variables in Case 2 did not
enhance the diversity.
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Figure 2-9. RMSE_GA for developed models when subgroups were divided based on Case 3.

2.3.3 Individual specificity performance

Figure 2-10 shows the results of the individual specificity performance. All of the parameter

preparation methods had similar accuracies, and Case 3 had the highest accuracy (53% for MLR

and SVM, 52% for ANN). Cases 1 and 2 exhibited similar accuracies. However, the accuracies

of all developed models were less than 60%, which is smaller than that in other fields that conduct

multi-classification (Silva-Palacios et al., 2017). The F1 score showed similar results in Cases 1
and 3. The SVMs had a higher F1 score than the ANN and MLR, particularly in Case 2. The F1
score deteriorated from Case 1 to Case 2 for the MLR, ANN, and stepwise SVM. Combining the
two indicators, Case 3 had better individual specificity performance than the other cases.
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Figure 2-10. Accuracy and F1 score of developed models.
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2.3.4 Significant variable

In this subchapter, the variables with a significant influence on the activity-starting probability
are analyzed based on the MLR in Case 3, which provided the best performance for all three
aspects of model performance. We applied the Wald test to calculate the P-values of the regression
coefficients in the MLR model and evaluated the independent variables as to be significant when
P-value < 0.05. A significant influence of a variable on target activity was recognized when the
regression coefficient of one or more independent variables of the variable is significant.

Figure 2-11 shows the combination of activities and times of day at which a significance was
observed in the six representative variables which were widely considered in previous studies —
gender, diary day (weekends or weekdays), employment status, presence of children, number of
people, and student status. The gender variable showed the significance of indoor activities in
activity clusters C2 and C4 at most time intervals. The dairy day variable was significant for most
of the activities during the daytime from 6:00 to 18:59. The employment status variable was
significant in most of the time intervals, except those from 20:00 to 23:59 for most activities,
particularly activities in C3. The presence of children, number of people, and student status
variables were only significant for several activities in limited time intervals. Therefore, the
significance of these commonly used variables differed depending on the activity and time of day.
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Figure 2-12 shows the significance of all variables on the horizontal axis for the activities shown

on the vertical axis. We identified the following significant relationships:

The variables in the demographic factor for both individuals (variable ID 1, 2, and 4 on the
horizontal axis) and the household (7), time (6), and activity factors (20-22) had a significant
influence on the activities in all of the activity clusters C1-C5 because they had large circles.
Contrary to our expectations, variables 9 and 17 of the geographic factor were insignificant.

Activity clusters C1, C2, and C4 included activities conducted indoors. In addition to the
variables mentioned above, the other variables in the demographic factor such as health status
(12), race (13), and ownership of housing unit (14) showed significance for many activities.
The time spent providing secondary care for children younger than 13 years (16) in the
activity factor and the ownership of a telephone (18) in the appliance factor also had
significance.

Activity cluster C3 included activities conducted both indoors and outdoors. The work and
education variables in the demographic factor such as education (3), occupation (10), health
status (12), and student status (19) showed significance.

Activity cluster C5 included activities conducted outdoors. Except for variables (20-22) in
the activity factor, all other variables were significant at limited time intervals for these
activities.

The horizontal axis in Figure 2-12 indicates the case in which the variables were included. We

observed that most of the variables in Case 1 significantly influenced most activities. However,

the circle sizes of the newly added variables in Case 2 were relatively small; therefore, Case 2

had a similar performance to that of Case 1. Case 3 included three highly significant variables in

the activity factor: the number of people accompanying (20), type of person accompanying (21),

and previous activity (22).
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Figure 2-12. Significance of variables for each activity observed in the MLR of Case 3. The
horizontal axis lists the variables, and the vertical axis lists the activities in which the clusters
were labeled. The circle sizes ranging from 0.0 to 1.0 indicate the number of time intervals in
which a variable significantly affected an activity (1 indicates all time intervals). The blue circles
indicate that the variable had a significant effect during the period from 0:00 to 5:59.

2.4 Discussion

2.4.1 Summary of results

Figure 2-13 shows a summary of the three examined aspects of model performance for all
developed models using representative indicators. Regarding the average performance, the MLR,
ANN, and SVM methods had similar results in all three cases in terms of the RMSE. The
maximum difference within each case was 0.3%, whereas that among the cases was 0.4%.
Regarding the diversity performance, Case 3 had the lowest RMSE_GA, and all of the methods
had similar performances in each case. The individual specificity performance represented by
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accuracy was similar among the methods and was low even in Case 3 with the highest accuracy,
53%.

Representative performance indicator
Case Method RMSE RMSE GA| accuracy

MLR L 0.5% 8.2%
Casel ANN L 0.5% 8.2%
SVM I 0.8% 8.4%
MLR L 0.5% 8.1%

Case2 ANN L 0.5% 8.1%
SVM 05 % | 8.4%
MLR L 0.4% 1.3%
Case3 ANN I 04% 1.7%

SVM . 0.6% 2.6%

Figure 2-13. Results of representative indicators of developed models.

Therefore, MLR, ANN, and SVM are all acceptable methods for OB modeling when the
reproducibility of the average probability is important, regardless of the considered variables.
Case 3 considering many variables exhibited the best diversity performance. These results
indicate that consideration of important variables enhances the reproducibility of diversity in OB.
However, simply increasing the considered variables may not guarantee improvement in
performance as observed in Case 2.

Regarding the reproducibility of individual activities, all methods showed poor performance. This
result implies that the examined methods cannot deliver a model with high accuracy using ATUS
data. This is reasonable because 1) we only assessed the correctly predicted cases (same as the
true positive cases in binary classification) since true negative cases cannot be directly obtained
by the multi-classification method, and 2) the input variables were not sufficiently detailed to
predict individual activities.

2.4.2 Determination of the most appropriate parameter preparation method

As mentioned in Chapter 2.4.1, all of the methods had similar performances and were sufficient
for OB modeling in terms of the reproducibility of the average probability and diversity. However,
from a more practical perspective, stepwise MLR was useful when only a small number of
independent variables were considered as illustrated in Case 1. When considering a larger number
of independent variables, ANN was useful because the feedforward ANN with a simple structure
obtained similar results to the stepwise MLR with a much shorter run time because the ANN did
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not require a feature extraction process.

As discussed in Chapter 2.4.1, the examined methods cannot deliver a model with high accuracy
using ATUS data. Therefore, other modeling approaches (e.g., Kleinebrahm et al., 2021) should
be employed when individual specificity is considered.

In addition, at time intervals during the night that contained a small number of samples, all models
showed noticeably larger errors compared to the other intervals because the TUD was unbalanced.
Consequently, we recommend combining modeling time intervals or applying advanced
techniques such as resampling or bootstrap to generate new reliable samples (Raudys & Jain,
1991) when the sample size is limited.

2.4.3 Determination of variable to be considered

Many previous studies have considered only the basic variables in the demographic and time
factors. This approach enables the construction of OB models capable of reproducing the average
probability as shown by the RMSE of the average performance. More variables should be
included when diversity needs to be reproduced. However, the consideration of more variables
does not guarantee an improvement in the model performance as indicated in Case 2. The model
performance is improved only when highly significant variables are considered. Therefore, we
recommend setting a reference group that includes the basic variables from previous studies to
test whether the newly considered variables are worthy of being included in the modeling.

The results in Chapter 2.3.4 indicate that complex relationships exist among the activities,
variables, and time of day. For example, the significance of basic variables in the demographic
and time factors varied greatly with respect to the activity and time of day. The relationships
should be reflected in the variable selection to better express diversity. Although variables in the
activity and appliance factors (e.g., the type of person accompanying the occupant(s) and
ownership of an appliance) were rarely considered in previous models. These factors have a
significant impact on diversity.

2.4.4 Limitation

This study targeted only the activity-starting probability parameter for OB modeling and assumed
that the other parameters would have similar results. We developed models with whole samples,
although many existing OB models conducted segmentation as indicated in Table 1-1. Part of
the bias or diversity among the subpopulations was ignored in this study. In addition, only OB-
related performance indicators were used to evaluate the cross-comparisons. Indicators for
measuring the influence of the OB model on the energy demand simulation were not included.
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Another limitation was that we were unable to test the different cases combined with the different
parameter preparation methods on big data because of data limitations. Advanced methods such
as multilayer ANNSs and other time-series methods may provide better performance (Calis et al.,
2017; Kleinebrahm et al., 2021).

2.5 Conclusion

OB models have several modeling parameters (e.g., activity-starting probability) prepared to
simulate the occupants in the pre-simulation process. The method used to quantify these modeling
parameters for building occupants has a significant impact on the performance of OB models and
subsequent energy demand models. However, the impact of the pre-simulation process of OB
modeling has received less attention. A literature review of the existing OB models revealed that
modeling parameters have been predominantly quantified based on a sample-based approach; i.e.
using a sample distribution. Variables considered in the parameter preparation method were
limited to basic demographic and time factors, and the selection of the methods and variables was
not comprehensively designed. Therefore, this study elaborated on the pre-simulation process of
OB modeling and evaluated how the design of the pre-simulation process influenced the average,
diversity, and individual specificity performances, whereas previous studies mainly focused only
on the average performance. Our analysis results showed that all the considered methods (MLR,
ANN, and SVM) effectively reproduce the average activity-starting probability of a population
with the basic variables of the demographic and time factors. An increase in the consideration of
significant variables contributed to enhancing the reproducibility of diversity. Regarding the
reproducibility of individuals’ activities, the methods did not perform well, even with many
variables. Furthermore, based on these findings, we offer the following practical
recommendations for improving the pre-simulation process:

1. MLR with stepwise variable selection is the most practical method for cases in which the
number of independent variables in the TUD is small. However, when the number of
independent variables is large, the use of ANNs or other data-driven methods is more
practical.

2. Thereis a complex relationship among variables, activities, and the time of day. Representing
such relationships contributes to enhancing diversity in OB modeling. For activity modeling,
in addition to basic variables in the demographic and time factors, variables in the activity
(e.g., previous activity) and appliance (e.g., appliance ownership) factors are significant.

3. It is beneficial to use a reference model with a widely used parameter preparation method

that considers basic variables to assess the pre-simulation process.
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2.6 Appendix

2.6.1 Appendix A. ATUS data record

Table 2-3. Example of original ATUS records.

Case ID Age Start time End time Act code Loc code
20180101180006 4 4:00:00 8:00:00 10101 -1
20180101180006 4 8:00:00 12:00:00 120303 1
20180101180006 4 12:00:00 12:10:00 181101 12
20180101180021 5 4:00:00 10:30:00 10101 -1
20180101180021 5 10:30:00 12:30:00 120303 1
20180101180054 7 10:00:00 10:01:00 70103 7
20180101180096 4 15:00:00 15:15:00 180301 14

Note: the age variable has eight categories; the numbers in bold in the Act code are the main activities of 18
categories. The Loc code has 26 categories for locations and -1 denotes missing values.

2.6.2 Appendix B. Evaluation of the effect of the combination of time intervals

Figure 2-14 shows the results of RMSE, MSD, and accuracy (defined in Chapter 2.2.4) of Case
1. The grey bars show the results of models with time intervals 0:00-5:59 combined using dummy
variables indicating each time interval as explained in Chapter 2.2.1. The black bars indicate the
models without the combination of time intervals where all of the time intervals were
independently modeled. According to the figure, the latter models had a 20% larger RMSE
compared to that of the former models. The latter model had a relatively larger MSD; however,
the difference from the former model was within 0.8%. The two models had almost the same
accuracies. Based on these results, we combined the time intervals in this study.

a
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0

ML ANN  SVM(stepwise) SVM(LASSO)  SVM(full) ML ANN  SVM(stepwise) SVM(LASSO)  SVM(full)

OWith time combined

025 # Without time combined

accuracy

;

0

ML ANN SVM(stepwise) SVM(LASSO)  SVM(full)

Figure 2-14. RMSE, MSD, and accuracy of methods with and without the combination of time
intervals 0:00-5:59 in Case 1.
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2.6.3 Appendix C. Variables considered in the examined cases

Table 2-4 lists variables and independent variables considered in Cases 1-3. The independent

variables were created based on the variables listed in the second column.

Table 2-4. Variables and independent variables of different cases.

Case Variable Independent variables
Case 1 1. Age Young (10-29 yrs), middle age (30-59 yrs), senior (60+ yrs)
2. Gender Male, Women *
3. Education Level of education above secondary education
4. Employment status Full-time worker *; part-time worker; no work (absent, unemployed,
not in the labour force)
5. Number of people 1-6
6. Diary day Weekends*, weekdays
Case 2 7. Presence of household No*, Yes
children
8. Holiday No*, Yes
9. Metropolitan status Metropolitan*, non-metropolitan, not identified
10. Occupation Management, professional, and related; service; sales and office;
farming, fishing, and forestry; construction and maintenance;
production, transportation, and material moving; no work*
11. Household income Lower income (household income below lowest 23%); middle
income (50%)%*; higher income
12. Health status With disability, without disability*
13. Race White*; black; Native and Indian; Asian; Hawaiian
14. Ownership of housing Owned or being bought by a household member*, occupied without
unit payment of cash or rent for cash
Case 3 15. Spouse employment No spouse or unmarried partner*; full-time spouse or unmarried

partner; part-time spouse or unmarried partner; variable hours
worked by spouse or unmarried partner; unemployed spouse or
unmarried partner

16. Time spent providing
secondary care for children
<13

0-1440 min

17. Region

Northeast, midwest (formerly north central), south*, west

18. Telephone

Own telephone in this house/apartment*, no telephone in this
house/apartment

19. Student status

Not a student*, student (1; full-time high school, part-time high
school, full-time college or university, part-time college or
university)

20. Number of people
accompanying

1-15

21. Type of person
accompanying

Unknown; alone*; family member or related person living within the
household; unrelated person living within the household; family
member or related person living outside the household; unrelated
person living outside household; work-related person

22. Previous activity

1-25 (reference category 23)

Note: * refers to the reference category.
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3 Spatial variation and historical change in occupant behavior: statistical
analysis and application on household activities and time scheduling

3.1 Purpose

Residents’ occupancy and their activities at home have been recognized as two of the most
important factors that determine residential energy demand, as they characterize the scale and
temporal pattern of residential energy demand (Wilke et al., 2013; Zhao et al., 2014). OB models
have been developed to capture residents’ occupancy, activity, and action and reflect realistic
patterns of buildings’ energy demands. However, as mentioned in Chapter 1.5.2, the diversity in
OB has not been fully investigated. For example, in some studies, the movement or mobility of
people in space has been modeled to estimate the building energy consumption (Dziedzic et al.,
2020; Mohammadi & Taylor, 2017), but spatial variation is not considered. Moreover, historical
changes in OBs have not been taken into account (Deng & Chen, 2019; Hoes et al., 2009). The
historical change represents long-term changes in people’s lifestyles. The TUD has been used to
observe the long-term changes in OB at an aggregate level. Some studies have considered the
temporal variations by using measured time-series data to predict occupancy and energy demand
(Calis et al., 2017; Piselli & Pisello, 2019; Yang et al., 2012). Temporal and spatial variations,
however, were considered separately in these studies. Therefore, the spatial variation and
historical change in OBs have not been effectively understood and assessed. Spatial variation and
historical change are of high importance in OB modeling because the living location can
predetermine the time required for some activities (e.g., the time required for commuting and
shopping is different when the distance to travel is different among locations). Particularly, OB
has generally been considered at the building level, but the nation-scale spatial analyses related
to OB have seldom been conducted. More importantly, the specific modeling methods that are
well suited to address spatial variation and historical change have not been established and
assessed by conventional methods yet.

To address research gaps, this chapter presents a preliminary study to investigate the impacts of
spatial variation and historical change of OB on residential energy demand. The purposes of this
study were (1) to confirm the existence of spatial variation and historical change in household
activities and time scheduling, (2) to find significant variables for representing spatial and
temporal variations, and (3) to evaluate the performance of a logistic regression-based method for
analyzing the spatial variation and historical change in household activities and time scheduling.
The remainder of this chapter presents the methods, results, and discussion, followed by our
conclusions about our approach to modeling the spatial variation and historical change in OB.
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3.2 Data material and methodology

The data used in this study were still obtained from the ATUS, which includes multiple-year
survey records. Although this data from 2003 to 2019 were available, we only used the data from
2009 to 2019 to ensure that the coding for each variable was consistent across each year since
some variables were discontinued or newly introduced before 2009. The ATUS activity data
subfile contained a summarised 24 h diary, starting from 4:00. The information in this subfile
could be linked with other subfiles containing demographic attributes of the survey participants
and the locations where the activities were performed. Although 17 main activities were defined
in the multiple-year ATUS files, we only analyzed the activity of watching TV. As a result,
2,411,222 records of activities from 124,941 households were included in this study.

Figure 3-1 presents the analysis procedure. This study estimated the undertaking probability of
watching TV activity and indicated the percentages of people watching TV at different times
within 24 hours of the day. First, we analyzed the sample to confirm the existence of spatial
variation, i.e., differences in the undertaking probability among living locations, and historical
change, i.e., differences among the survey years. For this purpose, we quantified the average
probability of watching TV for women with full-time jobs during the time interval from 21:00 to
21:59 in the U.S. in 2009, 2014, and 2019. Further, we aggregated the samples counted after
multiplying a weight indicating the number of people represented by each sample that was given
by the ATUS. We refer to this result as the ‘weighted subpopulation observation’. We chose to
analyze watching TV activity and women with full-time jobs because watching TV is one of the
main household activities in the ATUS (Xu & Chen, 2019) and the sample size of the women
population was large and had various activity patterns.

ATUS Sp ecific Decrease Women
data Historical time diversity from “ilth F ull-
Logistic _,{ change | interval demographic time jobs
regression conditions
(Lasso) N
Estimations | Kriging Compare Ezitii(:ldg

method & Evaluate
Spatial Spatial
Significant variations <—|variations
variables for estimation for raw data

Figure 3-1. Research procedure.
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Then, we conducted a logistic regression analysis to quantify the variation in the probability due
to spatial and temporal variables for the entire population. For this analysis, data from the year
2009 to 2018 were used to develop the model (training model), and the data from 2019 were used
to test this model (test model). Following the work of Wilke et al., 2013, we designed a case
considering the socio-demographic conditions and the variables representing spatiotemporal
variations. Year rank, population density, and spatial relationship were included to represent the

spatial and temporal variations. Table 3-1 lists all the variables considered in this case.

Table 3-1. Predictor variables of the regression model for the whole population.

Variable Definition Variable Definition

Disable Respondent with disability. Gender Respondent is male.
Student Respondent is a student. Region 411: \:ertr_east 2: mid-west; 3*: south;
Carer Respondent takes care of house or Metropolitan 1*: metropolitan; 2: non-

family. status metropolitan; 3: not clear.
1 Respondent is ill. State code 1-56 (reference is CA: California).
Retire Respondent is retired. Day of week gt?}g;i;n (reference group is
Family income ;1; ig\éeé;érf;f; ;Z g)r oup is level Month 1-12 (reference group is January).

1: not in the labour force; 2*: full-
Work status time; 3: part-time; 4: with job, notat | Holiday Dairy day is a holiday.

work; 5: unemployed.

*- . . H

Housing type io;nhe?rgfl)?ﬁjrrttr;s:stj flat; 2: mobile Year* ATUS surveyed year.
Ownership of 1*: own; 2: rent; 3: other Year rank 1: 2009-2013; 2: 2014-2018; 3:
housing arrangements. 2019.

1: Not completed secondary

education/high school; 2*: high

. SChOO.I; 3: college, no degree; 4: Population The number of people per unit of

Education associate degree; 5: Bachelor’s density* area (square mile).

degree; 6: Master’s degree; 7:

professional school degree; 8:

Doctorate degree.

Neighbor flag of a state. 1 means the
. Spatial state is the neighbor of the targeted
Household size | 1, 2%, 3, 4,5, 6+. relationship state, 0 means the state is not the
neighbor.

1: 15-19; 2: 20-29; 3*: 30-39; 4:
Age 40-49; 5: 50-59; 6: 60-69; 7: 70-79;

8: 80+.
* indicates the reference group for each variable; * indicates that the variable is continuous.

Subsequently, the developed regression models were evaluated based on the Hosmer—Lemeshow

goodness-of-fit test and the following two indicators: total absolute error (TAE) and root mean

squared error (RMSE). These indicators can be mathematically expressed as follows:
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TAE = |ﬁEsti - ﬁ0b5| 3-1

_ 2
RMSE :\/Z?’:1(pEst;V_ pObs) 3-2

where N was the number of observations, and py,s and pg; Were the average undertaking
probabilities observed in the sample and estimated by the regression model, respectively.

First, Lasso regression (Ranstam & Cook, 2018) was applied to select the variables for running
the logistic regression for the whole population. Second, the significance of the spatiotemporal
variables was identified based on the regression analysis. Then, we applied the ordinary kriging
method to interpolate the spatial variation. The kriging method used the surrounding observations
to predict the value of unmeasured locations. Its mathematical form was similar to a weighted

regression. The prediction for unmeasured location (iq, jo), Z (SO(iO jo)) was given by Equation
3-3:

N

z (So(io.jo)) = zk=1’1k2 (Sk(ik,jk)) 3-3

where Z (Sk(ik jk)) was the observation value at the kth locations(i, j,,) and 2 was unknown

weight subjectto Y'¥_, 4, = 1. For the ordinary kriging the weight A depended on 1) the distance
between the locations of observations and the prediction and 2) the spatial relationship between
the observations which surround the prediction. To obtain the weight A, various empirical
semivariograms were applied to fit the actual semivariogram so that they can reflect the spatial
relationship between observations. In this study, we applied the widely considered empirical
semivariogram-spherical model which was defined as:

( 0,h=0
3h 1 /h\}
Y(h):{co-l'cs{z—z(a) },0<h£a 3-4

cotce,h=>a
where h was the lag which represents the distance to the observation. The parameters ¢, (nugget),

cs (partial sill) and a (major range) are non-negative constants that will be optimized to fit with

the semivariogram.
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Our kriging analysis was conducted only for the subpopulation of women with full-time jobs to
minimize the influence of diversity of sociodemographic conditions. The estimated probabilities
were then weighted to estimate the average probability for the entire subpopulation of the states.
Then, we spatially interpolated the estimated probabilities for the states using the ordinary kriging
method. The location of the states is represented by the internal points of the states. To assess the
model’s ability to replicate the spatial variation and historical change, the predicted probability

was compared with the probability based on the weighted observations.

3.3 Results and discussion

3.3.1 Data Analysis

This subchapter first presents the results obtained based on the raw data. Figure 3-2 presents the
yearly change in the undertaking probability of watching TV based on the weighted observations
for the whole population and subpopulation, respectively. We observed a general decreasing trend
during the 20:00 to 00:00 time period for both the whole population and the subpopulation of
women with full-time jobs. The time interval from 21:00 to 21:59 exhibited the largest decrease
(2.6% for the whole population and 2.4% for the subpopulation). Therefore, we picked this time

interval to further visualize the spatial variation of the probability.
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Figure 3-2. Weighted undertaking probability of watching TV per hour for each year.
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Figure 3-3 presents the visualization results of the weighted subpopulation observations. The
shapefile data of the U.S. in 2018 and the location data (latitude and longitude of the internal
points representing each state) used to obtain the results were downloaded from the website of
the U.S. Census Bureau. The color scale is consistent among the images in Figure 3-3 for
comparison. Figure 3-3 depicts a spatial variation that changes over time. The general observed
trend was that the region with a higher probability shifted from the north to the south and then to
the east. In 2009, higher probability levels were located in most of the northwest and central parts
(central but closer to the north) of the U.S. In 2014, the high probability levels shifted to the mid-
south and mid-north areas. Finally, the higher probability levels relocated to be more concentrated
in the southeast areas in 2019. We also observed a decreasing trend in the five-year periods as the
probability of the areas with a high probability level decreased; this observation was consistent
with the information presented in Figure 3-2.
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Figure 3-3. Kriging based on weighted observations.
It is important to note that the results in Figure 3-3 did not fully represent the actual spatial

variation. One of the significant limitations was that we used one internal point to represent the
entire state. To capture the actual spatial variation, a higher granularity should have been
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incorporated. Additionally, the results for marginal areas may have contained an error originating
from the characteristics of the ordinary kriging method. For example, Alaska, the state with the
largest area, exhibited the highest probability. In reality, Alaska has the lowest population density,
implying that the majority of the states must have been uninhabited or sparsely populated. Such
areas in Alaska should have exhibited lower probability levels. Therefore, a single internal point,
without nearby data points or with only a few nearby data points located in limited directions,
might not have provided accurate spatial variations for the entire area.

3.3.2 Results of Logistic Regression

The initial model for the whole population during the time interval from 21:00 to 21:59 based on
logistic regression, with Lasso regression to select the variables, did not pass the Hosmer—
Lemeshow goodness-of-fit test. Therefore, to optimize the model, we conducted the Analysis of
Variance (ANOVA) to reselect the significant variables. The improved model exhibited a
relatively high prediction accuracy. It passed the Hosmer—Lemeshow goodness-of-fit test for both
the training model and the test model, as the P-values of the improved model were 0.26 and 0.34
for the training and test model, respectively; both the P-values > 0.05, meaning that the model fits
well with the observations. The TAE and RMSE for the test model of the improved model were
7.6%, and 1.5%, respectively. These two indicators verified that our improved model performed

well in terms of probability errors.

Table 3-2 lists the regression coefficients (RCs) and odds ratios (ORs) of the significant variables,
determined by the improved model. Regarding the socio-demographic variables, the probabilities
were lower for students and people who took care of family members in the household. On the
contrary, the probabilities were higher for people who were not in the labor force or were
unemployed. With respect to the temporal variables, almost all the temporal variables were
significant. These temporal variables, such as year, month, and day of the week, had negative
influences on the probability of watching TV, such that the probability within the reference groups
was estimated to be the lowest in the respective categories. In terms of the spatial variables, a
lower probability was estimated for people living in the western part of the U.S. than that for
people living in other regions. Moreover, one special state code flag, Florida (FL), was found to
be significant, indicating that people who lived in Florida were more likely to watch TV from
21:00 to 21:59 in 2019 than those in the other states.

Figure 3-4 presents the spatial variation and historical change for the subpopulation which was
extracted from the improved model made based on the whole population. Figure 3-4 (a) and (b)
depict the spatial variation and yearly change of observations and estimations for the four regions
from 2009 to 2018. A large-scale fluctuation was seen in the observation probabilities, whereas a
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decreasing trend was observed in the estimation probabilities in the four regions. Figure 3-4 (c)

depicts the predicted results for 2019. We observed that the absolute difference for each region

was less than 2.3%. The spatial variation narrowed as the difference in the maximum and

minimum probabilities decreased from 6.2% in the observation results to 3.6% in the estimation

results. These results indicate that the logistic regression model with significant variables was

capable of replicating spatial variation and historical change at the aggregate level. The scale of

the prediction error was approximately 10% of the actual probability.

Table 3-2. Significant variables based on the improved model for the whole population.

Variable Dummy Variable RCs ORs | Variable Dummy Variable RCs ORs
Intercept | - 15.07*** | 2 Day of Monday —0.09*** | 0.91
week
Male - 0.22*** 1.25 Tuesday —0.11*%** | 0.89
Student - —0.78*** 0.74 Wednesday —0.14*** 0.87
Carer - —0.49*** 0.75 Thursday —0.14*** 0.87
Family 1 $10000-$14999 | -0.05¢ | 0.94 Friday 012+ | 0.8
income
Work Not in labour 0.53*** 1.43 Saturday —0.08*** 0.92
status Unemployed 0.11*** 1.15 | Month Mar —0.06** 0.94
Ownership | Rent —0.14*** | 0.95 Apr —0.08*** | 0.92
of housing | Other —0.26*** | 0.82 May —0.11%** 0.9
Less than high ~0.13%* | 0.93 Jun ~0.17%** | 0.85
school
Associate school —0.12%** 0.89 Jul —0.19*** 0.82
. College —0.11*** 0.9 Aug —(0.14%** 0.87
Education
Bachelor’s degree —0.18*** 0.84 Sep —(0.]13%** 0.88
Master’s degree —(0.3%** 0.72 Oct —0.1%%* 0.9
Professional school —0.27*** 0.74 Nov —0.09*** 0.91
Doctor —0.46*** | 0.63 Dec —0.13*%*%* | (.88
Number of 1 0.2%** 1.04 | Year - —0.01*** 0.99
people 3 0.22*** 1.09 Statfz FL 0.95** 0.94
5 —0.1*** 0.87 | Region West -0.15*** | 0.8

*** < 0.001, ** < 0.01, and *< 0.05
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Figure 3-4. Spatial variation and historical change shown by the improved model.

3.3.3 Results of the kriging Method

To evaluate the performance of the logistic regression-based approach and further investigate the
influence of spatial variations, the ordinary kriging method was applied to interpolate the
probabilities. Figure 3-5 illustrates the comparison of the ordinary kriging results based on the
weighted subpopulation observations and weighted subpopulation estimations. The classification
of the undertaking probability levels was refined using Figure 3-3 for better comparison.
According to Figure 3-5, the estimation-based results had lower probability levels than the
observation-based results. However, the spatial distribution trend was similar (see Figure 3-5 (a)
and (b)); the probability was higher in the eastern areas, whereas it was lower in the western areas.
This result indicates that a general trend can be replicated using the logistic regression model, as
discussed in the previous chapter on the logistic regression model. However, the spatial
differences at a higher spatial resolution, as observed in Figure 3-5 (a), could be replicated. The
kriging-based model can replicate such differences as it allows one state to have multiple
probability levels. With respect to detailed spatial variations, a relatively clear band-shaped
distribution pattern in the west-east direction was observed in Figure 3-5 (a) and (b). The spatial

variations, however, were weakened in the estimation-based result. The results did not accurately
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reflect the probabilities for the highest-level areas, such as the northeast part of the U.S., including
Michigan and Minnesota. The error for such areas ranged from 6% to 11% partly owing to the

limitations of the logistic regression-based approach in reflecting spatial variations.
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Figure 3-5. Comparison of the kriging results.

3.4 Conclusion

The objective of this study was three-fold: (1) to confirm the existence of spatial variation and
historical change in OB, (2) to find significant variables for representing the spatial and temporal

variations, and (3) to evaluate the performance of a logistic regression-based approach to consider
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the spatial variations in OB. First, based on the analysis from the ATUS data, we confirmed the
existence of spatial variation and historical change in the watching TV activity for the
subpopulation of women with full-time jobs. We observed a clear historical transition as the
probability of watching TV during the time interval from 21:00 to 21:59 decreased from 2009 to
2014 and 2014 to 2019. This result may be due to the fact that many people changed the time at
which they watched TV or they participated in other emerging entertainment activities, such as
playing games on computers or smartphones during this time interval. We also observed spatial
variation and historical change wherein higher probability levels first shifted from the north to the

south (2009 to 2014) and then gradually moved to the eastern part (2014 to 2019) of the country.

Then, the significant variables were determined using the logistic regression model. We obtained
a regression model that fits well with the TUD sample as the developed model passed the
goodness-of-fit test and the error was small enough as well. Socio-demographic and
spatiotemporal variables were selected for the model. With respect to the temporal variables, the
day of the week, month, and year were significant. Regarding spatial variables, the probability
for people living in the western part of the U.S. was lower than that in other regions. Some specific
states were also found to be significant (e.g., Florida). Based on these results, the logistic
regression method was partly proved to be able to replicate the spatial variation and historical
change in OB modeling. However, not all the considered spatiotemporal variables were
significant, such as metropolitan status. One possible reason is that the penetration rate of TV in
the U.S. is high and the metropolitan status may not have much impact on watching TV activity.
Further analysis is required to determine the types of variables that can represent spatial variations
and historical change and the types of formats that should be used for variables in OB modeling.

Subsequently, we applied the ordinary kriging method to evaluate the spatial variation of the
probability estimated using the developed logistic regression model. The results indicated that a
general trend can be replicated using the logistic regression-based approach, but this approach is
not as effective for the replication of spatial variation and historical change. The kriging-based
model in our study showed a strong advantage for representing spatial variation and historical
change. Moreover, the kriging-based model can predict the undertaking probability for locations
without data that cannot be estimated only based on the logistic regression model. It indicates that
the kriging method is a possible prediction approach that can contribute to the field of TUD-based
OB modeling in the case of a lack of data. About 51 internal points, however, were considered to
conduct interpolation for the entire U.S., therefore, the spatial interpolation performance may not
be ideal for some marginal areas which had fewer neighbor observations (e.g., Alaska). The
identification of locations at higher spatial resolution would contribute to replicating spatial
variation and historical change because more accurate and realistic interpolation predictions could
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be conducted. More importantly, the kriging-based model in this study can be applied to other
energy-related activities of interest, which may benefit energy demand modeling in the fields of
OB and building energy efficiency.
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4 Modeling of occupant behavior involving spatial variation: geostatistical
analysis and application based on American Time Use Survey data

4.1 Purpose

Numerous OB models that simulate occupancy, activity, and action at home have been developed
to improve the accuracy and quality of energy demand estimations (Osman & Ouf, 2021; Yan et
al., 2017). As OBs play the main role in shaping the residential energy demand profiles. Various
methods have been applied to TUD integrated with additional survey data that cover social,
economic, and building aspects, to develop representative OB models. Previous studies have
revealed that the consideration of diversity improves the performance of OB models (Li et al.,
2022). However, obtaining a reliable source of data and developing representative models for
these OBs remain a key challenge, especially for developing energy models with consideration
of OBs at high spatial resolution.

Based on the background mentioned in Chapter 1.5.2 together with the findings in Chapter 3, we
found that the previous studies have seldom confirmed the existence of spatial variation instead
most of them assumed the spatial variation existed for the targeted research objective for the entire
modeling time. Also, existing models ignore spatial variation in OBs or partially consider it using
a simple method without evaluating whether it is sufficient. Spatial variation is commonly treated
as the difference among the research objectives represented by different measured locations in
previous studies which cannot be fully reproduced. Moreover, the modeling method to reproduce
the spatial variation is missing.

Hence, the study in this chapter proposes and evaluates methods to model OB with the
consideration of spatial variation. The research gaps were addressed through three research
questions: 1) when does spatial variation exist in OB, 2) how can spatial variation in OB be
represented quantitatively, and 3) how can spatial methods reproduce spatial variations in OB.
We selected a spatial logistic regression model as the spatial method in this study as it is an
extension of one of the most frequently used OB models. The remainder of this chapter presents
the methodology, results, and discussion, followed by our conclusions.

4,2 Data material and method

42,1 Data material

The multi-year ATUS0319 collected the activity diaries and sociodemographic conditions of the
survey participants. The data collected between 2009 and 2019 were used to ensure the consistent
coding of the variables. We selected women aged 30-59 years in the U.S. because the sample size

57



of women was large in the ATUS dataset and women conduct various activities including both
paid and unpaid work (Anxo et al., 2011; Gentry et al., 2003; Li & Tilahun, 2020; Sayer, 2005).
70% of the data was used as the training dataset, whereas the remaining was used as the test
dataset.

The predefined activities were summarized into the 16 categories as listed in Table 4-1 such that:
1) the sub-categories in a group exhibited similar appliance usage and 2) the activity locations
could be divided into indoor and outdoor groups. Four typical activities were considered: sleeping,
cooking and washing up, watching television, and commuting. Additionally, the 1 min resolution
data were converted to 1 h time interval data.

The location of each occupant was defined by the internal point of the state in which the occupant
lived on the U.S. mainland. We considered the states as the unit for modeling as it was the only
available data with respect to space use for the entire nation. The cartographic boundary shapefile
of the U.S. as of 2018 was used to visualize the spatial distribution of the probability on the map.
The spatial distribution of the probability of undertaking the activities at each time interval is
referred to as the spatial probability in this study.

Table 4-1. Activity code.

Code for all activities in this study
Code Activity Location (indoor) | Code Activity Location (outdoor)
1 Sleeping 10 Work-relted Workplace
2 Grooming 11 Education School, library
3 Laundry 12 Commuting Transporptaion
4 Caring 13 Other travelling Transportation
5 Cook_mg and Home and yard 14 Consumer purchase Store, mall
washing up
6 Eating & drinking 15 Other 2 Not at home or yard
7 Watching Television 16 Other 3 Missing
8 Listen to music
9 Other 1
4.2.2 Method

The methodology of this study is shown in Figure 4-1. Steps 1-3 address research questions

discussed in Chapter 4.1.
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Figure 4-1. Study methodology.

4.2.2.1 Stepl: Existence of the spatial variation

We applied the Global Moran Index (Moran’s ) test to confirm the time intervals that spatial
variation existed for selected four activities. Moran’s | test is used to check the significance of the
random distribution of qualitative determination on areas of a map (Moran, 1948). Moran’s |
ranges from —1 to 1 and its definition is:

_ Z{\]:l Z;yzlwsi,s]-(pi - ﬁ)(p] - ﬁ)
52 év=1 Z?’=1W5ir5j

where I is the Moran’s /, p; is the probability for state s;, p is the average probability for all

I

4-1

states, S? is the sample variance and Ws,s; is the element for state s; and s; in the weighting

matrix. Z score was calculated to evaluate the significance of the Moran’s [I:

_I—EWD)

Jvar(l) 4-2

If the Z score is not statistically significant, (P-value > 0.05), it is probable that the objectives are

Z

randomly distributed in space; if the Z score is positive and significant, the objectives display a
clustered distribution (similar tendency); if the Z score is negative and significant, the objectives
display a dispersed distribution (competitive tendency). The subsequent steps only considered the

time intervals during which spatial variation existed.

4.2.2.2 Step 2: Methods to represent spatial variation

Two representations of spatial variation that quantify the average probability of undertaking an
activity in each state s; at each time interval were designed using the ordinary kriging and spatial
autoregressive (SAR) methods. However, as they measure the probability of undertaking an
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activity, their values were restricted from O to 1. Furthermore, the ordinary kriging and SAR
methods can generate representations at higher resolutions if detailed location data are available.
A) Ordinary kriging method

The ordinary kriging method uses the observations of the surroundings to predict the values of
unmeasured locations (Cressie, 1988) which has been simply introduced in Chapter 3.2. Here give
a more detailed explanation. For a certain time interval that the spatial variation existed, the
prediction G, for location sq(ug, vo) was given by:

N
Gso(uomo) = Z i Gsituiwo 4-3
l=
where Gg,y,v;) Was the average undertaking probability of activity at the state s; represented
by the internal point (u;, v;), and A; was unknown weight subjectto Y~ , A; = 1 for obtaining
the unbiased estimation of Gg . A can be estimated by Equation 4-4 to achieve the minimum

variance estimation of Gg_:

. ~ 2 N
agrmin, f:E {[GSo(uo.vo) - GSO(uo,vO)] }— 2;1( 1_1/11- - 1) 4-4

L

The widely used approach to dealing with the first item of Equation 4-4 was to apply the

theoretical semivariogram which is defined as y(si,sj) = y(si - Sj) = %E {[GSz(ui,vi) —

2
G Sj(uj’vj)] } to fit the experiment variogram. A commonly considered theoretical semivariogram

— spherical model defined as Equation 3-4 was mentioned in Chapter 3.2.

B) Spatial autoregressive method

The SAR allows us to examine the impact that the undertaking probability of an activity for one
state has on other neighboring states by including other variables in the modeling process. It is
generated based on the cross-sectional spatial model which is defined as Equation 4-5:

Gsy(ugmo) = Vso = BTx + AT Wy, + & 4-5
where Gso(uo,vo) is average undertaking probability of activity at the state s,. x are variables
and W is the weighting matrix that is constructed in the form of adjacent edges or points of each
state. 4 is scalar autoregressive parameters. The variable Wyj is referred to as the spatial lag of

Yso-

4.2.2.3 Step 3: Spatial logistic regression

In this subchapter, we developed three spatial logistic regression models through Equation 4-6:
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psi,t
1- psi,t

logit(psi,t) =In =BT x5, +9(s;;0) + ¢ 4-6
where pg, ;. is the probability for ith individual of location s at t time interval. g is a
coefficient of the variable xg .. g(s;;6) is the smooth function parameterized by 6 over
location s. We used one spatial factor variable G, and two representations of the spatial
variation G, as the smooth function g(s;;8) which the & were considered as the averaged
probability of undertaking activities at the regional and state level. The conventional logistic
regression model without considering spatial variation served as the reference model for
comparison. Stepwise analysis was applied to all the models to statistically test the significance
of the considered variables, including the spatial factor variables and representations.

A) Reference model

For the conventional logistic regression model, the probability of undertaking activity at time t
for an individual i is modeled by Equations 4-7 and 4-8:

Dit
1—-pit

logit(p;) = In =B x; +e 4-7

1
Pit = 1+ e‘(BTxi,t"'s )

where f is a coefficient of the socio-demographic variable x; ;.
B) Model 1

Model 1 introduces the spatial factor —three region dummy variables to represent the spatial
variations. Therefore, Equation 4-6 can be rewritten as:

logit(p(x;, 7)) = BT xic + Gy + £ 4-9

Gri,t =V1Ryit T V2R2ie +V3R3 ¢ 4-10
where Ry, R, and R; indicates the northeast, mid-west, and west region respectively with the
region of the south being the reference group. y is the corresponding coefficient to each region
dummy variable.

C) Model 2

We extracted the estimations Gsi,t, the average undertaking probability of activities for each state
s; at t time interval, from the ordinary kriging interpolation results to represent the spatial
variations. Then the probability of undertaking an activity estimated by Model 2 is given by
Equation 4-11:
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logit(p(x;, 5)¢) = BTxir +vGs,, + &
where the x; . are the variables of the individual i at t time interval.
D) Model 3

4-11

The calculation of Model 3 is as same as Model 2. The only difference is that estimations GSM,
the average undertaking probability of activities for each state, was extracted from the SAR results
to represent the spatial variations.

4.2.2.4 Segmentation

To develop the smooth functions and the corresponding spatial logistic regression models, six
groups were designed to represent different subpopulations of women. Each group was
homogenized by avoiding the influence of spatial variation in the socio-demographic factor, as
shown in Table 4-2. The variables used in the developed models are also listed in Table 4-2. The
grouping conditions used were the type of day (i.e., weekdays and weekends) and employment
status, which have been commonly used in previous studies for segmentation (Kleinebrahm et al.,
2021; Marin-Restrepo et al., 2020; C. Wang et al., 2011; Wilke et al., 2013; Zhou et al., 2022).
Groups 1 and 4 represent women with full-time jobs, Groups 2 and 5 represent women with part-
time jobs, and Groups 3 and 6 represent unemployed women. Groups 1-3 comprise activities that
were performed during the weekdays, and Groups 4-6 comprise activities that were performed
during the weekends.

Table 4-2. Designed groups and their details.

Group Subpopulation Type of Employment Items of interest Observations
day status
1 Full-time Survey year, age, 8888
2 Weekdays | Part-time presence of children, 3571
3 Unemployed family income, carer, 5753
4 Women aged 30- Full-time education, ownership of | 9086
5 59 Part-time the housing unit, number | 3571
Weekends of people in the
6 Unemployed household, region, and 5753
state
Items in Groups 1-6, as
7 Entire population of women aged 30-59 well as employment 36622
status and type of day

In addition to Groups 1-6, Group 7 was considered for representing the entire population of
women aged between 30-59 including Groups 1-6. Group 7 was designed to  examine whether
the developed spatial logistic regression model 1) can be applied to larger and more complex
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populations and 2) can be used to determine the superior approach for OB modeling, using
segmentation (Hayn et al., 2014) or using grouping conditions as variables. Furthermore, many
previous OB studies designed segmentations for simulated occupants (Li et al., 2022). This
analysis was conducted considering the watching television activity.

4.3 Performance assessment

The performance of the models was assessed in terms of the reproducibility of the spatial
variations in OBs and the comprehensive performance. The ordinary kriging method was applied
to visualize the spatial probability, thereby assessing the reproducibility of the spatial variation.
The comprehensive performance was evaluated by indicators to assess the error and diversity
considering the training and test datasets.

4.3.1 Error indicator

Error indicators measure the errors between the estimations obtained from all models and the
observations. The first indicator is the TAE which quantified the cumulative value of the errors
observed in all time intervals that spatial variation existed for each of the selected activities. TAES
assess the ability to model the total averaged undertaking probability at the national and state level
respectively which is crucial for obtaining a more realistic averaged energy demand. TAEs are
guantified as Equations 4-12 and 4-13 show:

T
TAEation = Zt_llﬁestt — Pobs,| 4-12

T N
TAEState = z Z |ﬁestt‘s - p_ObSt,S| 4_13
t=1 s=1

where t indicates the selected time interval that spatial variation exists, s indicates the state of
the U.S,, and p,s; and p,,s is the average probability of the estimation and the observation
respectively.

The second indicator is the RMSE. RMSEs are quantified to measure the averaged errors of each
selected time interval and averaged errors of combinations of the state and time interval. They are
sensitive to individual outliers of the estimations which are shown by Equations 4-14 and 4-15:

T (= = 32
RMSEpation = JZt:l(peSttT Pov) e
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_ _ 2
RMSE _ \/ Z:l Zgzl(pestt‘s - pobst‘s) 4-15
state SHT

4.3.2  Diversity indicator

Diversity indicators assess how well the model represents the variation in OBs among simulated
occupants. We followed the Hosmer-Lemeshow test to design subgroups to check the diversity
of the model estimations which measures the root mean squared error between the averaged
estimated probability and averaged probability of observations of subgroups shown by Equation
4-16:

2
RMSEns = \/ Z=1 23=1 (Meantld (Ppred) — Mean; 4 (Pobs)) 4-16
GA — T « D
where d indicates the subgroup (D = 10) and the number 10 is commonly used in the Hosmer-
Lemeshow test. RMSE_GA is only quantified at the national level because of the data limitation.

To compare the diversity performance at the state level, another indicator — MSD was considered.
MSDs measure the mean of the distance that each estimation deviates from the mean at the
national and state level respectively. Their definitions are shown by Equations 4-17 and 4-18:

Z't{;l SDpredt
T

MSDhation = 4-17
Z?=1 Z§=1 SDpred t,s

Tx*S
where SDy,;qq is the standard deviation of estimated probability among the sample.

4-18

MSDstate =

4.4 Results

4.4.1 Confirmation of the existence of the spatial variation

Figure 4-2 shows the representative probabilities of the women in Group 4 sleeping, those in
Group 3 cooking and washing up, those in Group 6 watching television, and those in Group 1
commuting based on all observations. As shown in Figure 4-2, the probability of undertaking
activities exhibited certain variation among the states at different times of the day. Such variation
results from the combination of the difference in demographic factor variables, the spatial
variation, and the random bias, according to Equation 4-6. The effect of the first element (i.e., the
difference in demographic factor variables) is decreased by the segmentation.
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Figure 4-2. Probability of undertaking activities for representative groups. Lines in different
colors indicate different states and the black one indicates the national level estimations.

Figure 4-3 summarizes the results of the Moran’s | tests applied for all combinations of the groups
and activities. Spatial variation existed only during limited time intervals. The spatial variation
during different time intervals varied with the type of day (weekdays or weekends),
subpopulations with different employment statuses, and activities. As shown in Figure 4-3,
considering sleeping, employed women in Group 1 exhibited lesser spatial variation than
unemployed women in Group 3 during the relevant time interval on weekdays. On weekends,
women exhibited the same number of spatial variations during the relevant time intervals,
irrespective of their employment statuses. Considering cooking and washing up, unemployed
women in Group 3 exhibited more spatial variation during the weekdays, whereas women with
full-time jobs in Group 4 exhibited more spatial variation during the weekends. No spatial
variations existed for women with full-time jobs in Group 1 on weekdays and unemployed women
in Group 6 on the weekends. Considering watching television, women with part-time jobs in
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Group 5 did not exhibit any spatial variation during the weekends. Women with part-time jobs in

Group 2 further exhibited a low spatial variation during the weekdays. Considering commuting,

irrespective of their employment status, women in Groups 1-3 exhibited more spatial variation

during the weekdays than those in Groups 4-6 during the weekends. Women with part-time jobs

in Group 5 did not exhibit any spatial variation during the weekends.

In most time intervals, the spatial variation exhibited a clustered distribution, with only limited

time intervals exhibiting a dispersed distribution. Figure 4-4 illustrates the probability of the

women in Group 6 watching television at 13:00. An obvious clustered distribution can be

observed at the state level. The observed spatial probability ranged from 0-21%.
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Figure 4-3. Results of the Moran’s I test considering the representative activities for each group.

The time intervals listed in the table are the intervals during which spatial variation existed.
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Value

-0.04
~0.04-0.08
£70.08-0.12
m0.12-0.16
N 0.16- 0.20
N 0.20 - 0.22

Figure 4-4. The spatial distribution of the probability of undertaking watching television for
Group 6 at the 13:00 time interval at the state level based on observations.

4.4.2 Representations of spatial variation

Figure 4-5 shows the spatial probability of the women in Group 6 watching television at 13:00
based on the representations of the spatial variation generated by the ordinary kriging and SAR
methods. The representation generated by ordinary kriging (i.e., kriging-based representation)
ranges from 6 to 14% whereas the representation generated by SAR (i.e., SAR-based
representation) ranges from 4 to 17%. The variation was narrower than the observation shown in
Figure 4-5. The kriging-based representation can simulate the changing tendencies of spatial
probabilities. However, the clustered pattern was not identified. The SAR-based representation
can provide more accurate estimations for certain states, simultaneously providing a better
representation of the cluster areas.
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Value
—1-0.04
~10.04-0.08
~10.08-0.12
N 0.12-0.16
N 0.16-0.20
. 0.20-0.22

SAR representation

Figure 4-5. The spatial distribution of the probability of undertaking watching television for
Group 6 at 13:00 based on representations of spatial variation obtained from the ordinary kriging
and SAR.

Furthermore, we also compared the two representations considering all the combinations of
groups, activities, and states. Figure 4-6 shows the comparison between the kriging-based and
SAR-based representations for all combinations of the group, activity, and state. Two
representations and the observations were conducted with the base-10 logarithmic transformation.
Two R2values with and without the logarithmic transformation were also presented in the figures.
According to Figure 4-6, the kriging-based representations are more scattered than the SAR-based.
The R2without and with logarithmic transformation (R?and Rieg? respectively) is 82.5% and 24.0%
for kriging-based representations and 98.3% and 84.9% for SAR-based representations.
Regarding TAE and RMSE at the state level, the kriging-based representation was 126.5 and
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9.9%, and the SAR-based representation was 61.2 and 3.0% respectively. These results implied
that the SAR method can generate more accurate representations of the spatial variation at the
state level than ordinary kriging.
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Figure 4-6. The accuracy of the representations of the spatial variation at the state level. The
horizontal axis shows the observation probabilities of combinations of group, activity, and state.
The vertical axis shows the representations. The black line indicates the reference line y = x.
Logarithmic transformation was conducted in the range (-4, 0)x(-4, 0).
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4.4.3 Spatial logistic regression models

4.4.3.1 Reproduction of the spatial variation

The reproducibility of the spatial variation by the developed spatial logistic regression models
was evaluated based on four representative cases: (a) sleeping at 8:00 in Group 4; (b) cooking and
washing up at 12:00 in Group 3; (¢) watching television at 13:00 in Group 6; (d) commuting at
10:00 in Group 1. Figure 4-7 illustrates the spatial probability of activity in each of the four cases,
based on the observations and estimations. The visualization of the spatial variations in all the
subfigures was interpolated using the ordinary kriging method. Considering the reproduction of
the spatial variations in these four cases, the spatial distributions determined by the three spatial
logistic regression models were more consistent with the observations than those determined by
the reference model. However, Model 2 for Case (b) and Model 3 for Case (c) yielded the same
results as that of the reference model. This is because the spatial representations, g(s;; 8), were
eliminated during the stepwise process. The reference model also showed limited spatial
variations (see subfigures in Figure 4-7 for Cases (b) and (c)), which is attributed to the variations
in demographic factor variables.
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Figure 4-7. The spatial distribution of the undertaking probability based on observations and the
reproductions of the spatial variation by the reference model and three developed spatial logistic
regression models for Case (a)—Case (d) respectively.

4.4.3.2 Comprehensive performance

Figure 4-8 shows the stacked values of performance indicators quantified at the national level,
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TAE ations RMSE ation: MSDpation, ahd RMSE_GA .ti0n, fOr all the models considering the six
groups in the training and test datasets. The indicators are the cumulative values quantified for
each activity and group combination. As shown, the error indicators exhibited similar
performances with all the models for almost all of the combinations in the training and test
datasets. Considering the diversity, Models 1 and 3 exhibited 7% higher MSD, .tion than the
reference model. Considering RMSE_GA,,4ti0n, all the models exhibited similar results with both
the training and test datasets.
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Figure 4-8. The results of indicators at the national level for all models in the training and test
sets.

Figure 4-9 illustrates the TAE, RMSE, and MSD values of the models for the six groups
quantified at the state level. As shown in Figure 4-8 and Figure 4-9, the magnitudes of the error
indicators increased from the national level. However, MSD exhibited the opposite trend.
Considering the error indicators, improvements were observed in the spatial logistic regression
models compared to the reference model. Model 3 exhibited the greatest improvement compared
to the reference model, reducing the stacked TAEg, e Value by 9.9 and the stacked RMSEg;.¢e
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value by 11% for the training dataset. This was followed by Model 1 (stacked TAEgiate
decreased by 4.4 and stacked RMSE;,;. decreased by 3.6%) and Model 2 (stacked TAEg;ate
decreased by 3.2 and stacked RMSE.,;. decreased by 2.1%). However, the spatial logistic
regression models, particularly Model 3, did not provide such advantages with the test dataset.
The unexpected performance in the test set was mainly due to the sample size for each state being
small. Although the test set had the same probabilities as the training set at the national level, the
probabilities among states were quite different as shown in Figure 4-13 and Figure 4-14 in
Appendix 4.7. Considering MSD, the spatial logistic regression models, particularly Models 1
and 3, performed better than the reference model with both the training and test datasets.
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Figure 4-9. The results of indicators at the regional level and state level for all models in the
training set.

These results are confirmed in Figure 4-10, which shows the accuracy evaluations of each model
at the state level. The estimations and observations were obtained using the base-10 logarithmic
transformation. Two R?values, with and without logarithmic transformation, were quantified. All
the models exhibited high accuracies. However, the points in the reference model were relatively
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scattered compared to those in the spatial logistic regression models. Considering the values of
R?, the spatial logistic regression models, especially Model 3, exhibited relatively higher R?values
than the reference model.
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Figure 4-10. The accuracy of the spatial logistic regression model at the state level. The horizontal
axis shows the observation probabilities of combinations of the group, state, and activity. The
vertical axis shows the estimations. The black line indicates the reference line y =x.
Logarithmic transformation was conducted in the range (-4, 0)x (-4, 0).

4.4.4 Evaluation of spatial logistic regression models applied to the entire population

4.4.4.1 Application of Group 7

In this subchapter, the spatial logistic regression model was applied to Group 7 (i.e., the entire
population of women aged between 30-59 years) for watching television activity. The Moran’s |
test results indicated that spatial variation existed during the time intervals 9:00-17:00 and 22:00—
0:00. Therefore, the spatial logistic regression models were developed and assessed only for these
time intervals.
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Figure 4-11 shows the same visualization maps (see Figure 4-7) of the spatial probability of
watching television at 13:00 based on the observations and estimations of Group 7. The range of
probability is narrower than Figure 4-7 for Group 6 because Groups 1-6 were combined. The
spatial logistic regression models, especially Model 3, showed a more accurate spatial distribution
relative to the observations than the reference model. Table 4-3 shows the performance of all of
the models evaluated by the indicators, considering all the time intervals that exhibited spatial
variation. The models performed effectively with Group 7. At the national level, all the models
exhibited the same performance in terms of errors and MSD. However, the reference model
showed a relatively lower RMSE_GA compared to the spatial logistic regression models. At the
state level, the spatial logistic regression models exhibited lower TAE and RMSE values, and
similar MSD values to the reference model.
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Figure 4-11. The spatial distribution of the undertaking probability based on observations and
estimations for watching television at the 13:00 time interval of Group 7.
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Table 4-3. Results of indicators considering all the models with Group 7 at the national and state
levels. RMSE_GA was calculated only at the national level.

Level Indicator Reference Model 1 Model 2 Model 3
model
TAE 0.0% 0.0% 0.0% 0.0%
National RMSE 0.0% 0.0% 0.0% 0.0%
MSD 0.6% 0.6% 0.6% 0.6%
RMSE_GA 3.3% 3.4% 3.5% 3.4%
TAE 7.6 6.3 6.0 6.1
State RMSE 1.7% 1.5% 1.4% 1.4%
MSD 3.2% 3.2% 3.1% 3.1%

4.4.4.2 Comparison approach of segmentation and using conditions as variables

Figure 4-12 depicts the accuracy in the base-10 logarithmic transformation of Model 3 for
watching television, considering Group 7 and different subpopulations at the state level. Only the
time intervals that exhibited spatial variation considering Group 7 and the subpopulations of
Groups 1-6 have been considered in this analysis. Model 3 developed for Group 7 was applied to
certain subpopulations Groups 1-6 corresponding to the different time intervals to represent
estimations based on Group 7. The thick black line shown in the two subfigures of Figure 4-12
represents the fitted line of the estimations obtained from Model 3 considering Group 7, which
indicates the approach that uses variables, and the thick dashed line represents the estimations
obtained from Model 3 considering the subpopulations, which indicates the approach using
segmentation. The thin black line is the reference line, y = x. Model 3 considering both the entire
population and the subpopulations fitted significantly with the observations. However, the thick
dashed line was slightly closer to the reference line than the thick black line, which implies that
the estimations obtained from Model 3 through segmentation were more accurate than those
obtained from the variable-based approach.

Table 4-4 shows the comprehensive performance comparison through the statistical indicators of
the two approaches for all models at the state level. According to Table 4-4, all models performed
adequately for both approaches. However, the segmentation-based approach yielded smaller TAE
and RMSE for all the models. In contrast, for the diversity assessed by MSD, the variable-based
approach showed a relatively better performance.
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Figure 4-12. Accuracy of Model 3 at the state level, considering two approaches (variables and
segmentation). The different colors in the figure represent different groups. The circular and
triangular shapes represent the entire population and the subpopulations, respectively.

Logarithmic transformation was performed in the range of (-2, —0.5) x (=2, —0.5).

Table 4-4. Comparison of the approaches through statistical indicators at the state level.

Approach Group Indicator Re;:‘]ez)r;e:ce Model 1 | Model 2 | Model 3
TAE 17.8 16.4 16.6 15.3
Segmentation-based | Subpopulation Group 1-6 | RMSE 3.3% 3.1% 3.1% 2.9%
MSD 0.4% 1.1% 1.0% 1.3%
TAE 18.8 17.6 17.3 17.4
Variable-based Entire population Group 7 | RMSE 3.4% 3.2% 3.1% 3.1%
MSD 0.5% 1.0% 1.2% 1.3%

4.5 Discussion

The Moran’s | tests in Chapter 4.4.1 showed that spatial variation exists and it differed according
to the time of day and activity for different study populations. Therefore, spatial variation should
be carefully considered in OB modeling. To this end, SAR-based and kriging-based spatial
representations were developed to better represent spatial variation empirically and used in
subsequent spatial logistic regression models. The results in Chapter 4.4.2 showed the SAR-based
representation was superior to the kriging-based representation because the former accounts for
the variation in other demographic factor variables. If the location data required to develop a
spatial representation is insufficient, spatial factor variables can be used to represent spatial

31



variation for model development, as in the case of Model 1.

As discussed in Chapter 4.4.3, the developed spatial logistic regression models improved the
diversity, as the single-activity MSD for subpopulations improved by 0.6%, and the stacked MSD
for all combinations improved by 12.5% at the state level with the training dataset compared to
the reference model. In particular, the developed models better reproduced the spatial variation
of OB, as the error was further reduced (RMSE decreased by 0.3%, and stacked RMSE decreased
by 5.6%). Furthermore, we compared the two approaches for model development: variable-based
and segmentation-based. As discussed in Chapter 4.4.4.2, the variable-based approach can be an
effective substitute for the segmentation-based approach for further grouping, because it can
approximately reflect the diversity, and the error was only marginally larger than the segmentation
approach (the stacked TAE and RMSE increased by 1.3 and 0.1%, respectively).

This study showed the existence of spatial variation in OBs and established a new modeling
method to consider spatial variations in OBs, which may contribute to better reproducing the
spatial variation in building energy demand while maintaining high accuracy. A limited sample
extracted from ATUS data representing women from states of the U.S. mainland and the
inaccurate low-resolution location data were used. Therefore, Models 2 and 3 exhibited the same
performance as the reference model in several cases, whereas the developed model showed no
significant improvement with the test dataset. Nevertheless, the developed model can easily be
applied to different regions or countries, as the national level time use data have been collected
in many countries. However, the detailed information relevant to the housing, households, and
environment should be supplemented by combining the data collected at the local level. In
addition, reliable new samples ought to be generated to enrich the sample size similarly.
Furthermore, the advancements in geographic information systems allow the higher resolution
location data to become more and more available. Thus, if adequate data is available (i.e., rich
information of occupants, higher resolution location data, sufficient sample size), spatial
representations can be generated with higher accuracy at the zip code or even household level.
Therefore, subsequent spatial logistic regression models can facilitate further improvements.

4.6 Conclusion

Existing OB models lack a comprehensive and systematic consideration of spatial variation.
These models were primarily established within limited locations based on geo-referenced data
to determine space use or to simulate occupant mobility. Some studies used spatial factor variables
to insufficiently consider the spatial variation in OBs or energy demand. However, the real spatial
distribution of OBs has not been comprehensively investigated, and modeling methods that
reproduce spatial variation in OBs are yet to be developed.
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This study showed that spatial variation exists in OBs and developed new OB models that can
incorporate spatial variation. The developed models significantly enhanced the reproducibility of
spatial variations in OBs and generated smaller errors at the state level than the conventional
logistic regression model. Particularly, the developed models can be applied in different countries
for any application context (i.e., any spatial scale and population). However, our results were
obtained with limited samples from the ATUS data and low-resolution location data. The
performance may be improved when the following requirements are satisfied: the high-resolution
location data, behavioral data with richer information, and sufficient sample sizes. Therefore, with
more comprehensive considerations of spatial variation in the new OB model, location-based OB
patterns can be generated, which can be used in future studies to simulate more realistic energy
demand profiles and to develop region-sensitive energy policies.

4.7 Appendix

Figure 4-13 and Figure 4-14 show the representative probabilities with the training set and the
test set for the women in Group 4 sleeping, those in Group 3 cooking and washing up, those in
Group 6 watching television, and those in Group 1 commuting. According to these two figures,
we found the probabilities at the national level are similar, however, the probabilities among the
states are quite different between the training set and the test set.
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Figure 4-13. Probability of undertaking activities for representative groups with the training set.
Lines in different colors indicate different states and the black one indicates the national level
estimations.
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in different colors indicate different states and the black one indicates the national level
estimations.

85



5 Integrated discussion

This chapter presents an integrated discussion of this thesis in Chapter 5.1. In particular, the
discussion focuses on the extended scientific knowledge in the field in terms of the modeling
process, diversity represented by model input, and the modeling method. The limitations of the
new OB model developed in this thesis and the potential for future research are discussed in
Chapter 5.2

5.1 Discussion

This thesis conducted three studies to accomplish the research aims. By analyzing the overall
development of the OB model underpinning the energy demand simulation, the significance of
pre-simulation was revealed. Choices including the selection of the variable, selection of the
parameter preparation method, and the model engine had large influences on model estimations.
Logistic regression models with an appropriate number of significant variables can provide
relatively good performance in terms of the error in the actual application context. However, it is
incapable of enabling the reproduction of spatial variation in OBs. There are several elements to
the proposed new OB model — spatial logistic regression model which favors it over the current
predominant logistic regression models. First, the error and accuracy can be further improved at
a higher spatial level. Second, the diversity among simulated occupants can be enhanced. Finally,
the spatial probability of OBs can be better reproduced. The further discussion that might help
address the development of energy demand simulation with consideration of OBs and encourage
the investigation of diversity are outlined below.

5.1.1 Pre-simulation process

The pre-simulation process of OB-based energy demand simulation contains the data processing,
variable selection, and parameter preparation which was mentioned in Chapter 1.3. Previous
studies have paid less attention to this process and the majority of them focused on the modeling
engine part. When considering the pre-simulation process, various methods were applied to
different data with items of interest to prepare the parameters for the engine. More importantly,
sample distribution is dominantly used to prepare the parameters in which diversity is ignored. In
addition, no detailed explanation was made to guide other researchers to start as the first step for
developing models in the previous studies.

However, our study in Chapter 2 showed that the pre-simulation process needed to be carefully
considered thus developing more comprehensive research frameworks for simulating the OB
patterns. In our study, two key sub-processes which were variable selection and parameter
preparation method selection were analyzed based on the commonly used TUD. Nine models
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which are combinations of three parameters preparing methods (i.e., multinomial log-linear
regression (MLR), support vector machines (SVMs), and feedforward artificial neural network
(ANN)) and three cases of different variable conditions (i.e., type and number of the variable)
were designed to assess the impact of the pre-simulation process on OB modeling. The selections
of the methods and the variables were based on the concrete literature review and available data.
More specifically, we assessed the model performances by three aspects (i.e., average
performance, diversity, and individual specificity) which were represented by well-designed
indicators.

The analysis suggested that the OB modeling performance can be affected by the pre-simulation
process. Data with significant variables and enough sample size can better support the model
simulation. Regarding the parameter preparation method, all selected methods had a quite good
and similar performance. However, the running time of each method varied. Therefore, the
selection of the method should consider the actual situation (data in hand and the speed of the
computer). As for the variable, compared to the factors such as demographic and time factors that
were commonly used in the previous study, our finding suggested considering the appliance and
activity factor in the modeling process because variables from these factors are proved to be
significant. Simply increasing the variable may not improve the model performance as we
observed in one of our cases. Only considering more significant variables can improve the
diversity among the simulated occupants.

5.1.2 Enhancement of diversity

As mentioned in Chapter 1.4, some researchers point out that diversity among the occupants can
explain a great part of the gap between reality and simulations in both OB modeling and energy
demand modeling. Previous studies have tried to deal with the diversity issue by conducting
segmentation in terms of different conditions such as type of day, housing unit type, and other
sociodemographic information. Such segmentation techniques are quite useful and efficient to
enhance the diversity among all the simulated occupants as proved by the findings in Chapter 4.
Also, as shown in Figure 5-1, different women subpopulation groups represented by different
colors have different density distributions in conducting the activity of watching television.
Therefore, developing a specific model for each group can better capture the characteristics of
each group and reflect the discrepancies among the groups. However, the drawback of
segmentation is that it requires enough sample size otherwise it will draw unrealistic conclusions.
The findings in Chapter 4 illustrate that only basic segmentation is needed if the sample size is
enough. Further detailed segmentation is unnecessary as it can be replaced by using variables in
the model. However, we also found that increasing the variable may deteriorate the model
performance as shown in Chapter 2. Only considering significant variables can improve the
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diversity while maintaining the model accuracy. Therefore, the selection of the variables is a
crucial part of the modeling which also needs to be carefully designed.

25

20-

Density

02 03 04 0.5
Probability
Figure 5-1. The density of probability of undertaking watching television for each group in the
case study used in Chapter 4.

Here should be noted that diversity refers to the total variation among simulated occupants.
However, diversity contains various aspects such as the difference in attributes of the people,
spatial variation, temporal variation, and socioeconomic cultural differences. These aspects are
not all independent, but there is a certain connection between them. For example, Figure 5-2
shows the spatial probability distribution of undertaking watching TV at the 13:00 time interval
for Group 6 which is defined in Chapter 4, where the time zone divided by the red line is marked.
Although the undertaking probability was simulated by the local time, the time zone may still
affect occupants conducting watching television, especially watching some live shows. Thus
spatial and temporal variations (i.e., spatiotemporal variation) may be considered and processed
simultaneously to better reflect reality. As mentioned before, researchers have realized that
diversity is one of the important causes resulting in the gap between simulation and reality in
recent decades. However, their focus was on the simple differences in the attributes of the research
objectives (i.e., occupant, building, and type of day). The long-term temporal variation (e.g.,
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historical change) and spatial variation were seldom fully analyzed although some researchers
revealed that these variations should be highlighted. In Chapter 3, our study verified that the
historical change and spatial variation existed for certain OBs. The findings also pointed out that
certain OBs may have a clustered or dispersed probability distribution over space at a specific
time. Such integrated variations should be paid more attention to in the modeling in future
research to improve the accuracy and quality of the simulation estimations.

Figure 5-2. The spatial probability of undertaking watching television for Group 6 at 13:00 in the
case study used in Chapter 4. The red line divides several major time zones for the mainland of
the U.S.

5.1.3 Conventional logistic regression and spatial logistic regression model

Previous OB studies considering the discrete-event approach commonly used the logistic
regression model to quantify the probability of starting or undertaking an activity. The logistic
regression model has been proved very useful and efficient. It can take various factors to
distinguish the simulated occupants in the modeling process. However, it cannot fully reproduce
the variation exhibited in the activity conducted by occupants as we analyzed in this thesis. An
obvious example is that only limited variation in OBs was reproduced in a given space as
mentioned in Chapters 3 and 4.

Compared to the conventional logistic regression model, the developed spatial logistic regression
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model based on knowledge from the geostatistical field can involve the consideration of spatial
variation. Actually, the spatial logistic regression model is an extension of logistic regression. It
incorporates a smooth function (e.g., estimation of the spatial autoregressive model or ordinary
kriging model, spatial factor variable which are introduced in Chapter 4) that represents the spatial
variation in the modeling process. In Chapter 4, our study revealed that the spatial logistic
regression model can better reproduce the spatial variation in OBs. Moreover, the spatial logistic
regression model can generate estimations with smaller errors and higher diversity at higher
spatial resolution. As no sufficient location was available for this study, the spatial logistic
regression model had the same results as the logistic regression model for several cases. But we
believe that the developed spatial logistic regression model may obtain further improvement once
adequate data especially higher resolution spatial data is available.

In addition, the developed spatial logistic regression model only involved spatial variation. The
impact of the temporal aspect on the OBs is undeniable, no matter the long-term temporal
variation (i.e., historical change, annual change) or mid-term temporal variation (i.e., seasonal
change, monthly change). More importantly, as mentioned in Chapter 5.1.2, spatial variation and
temporal variation may not independently influence the OBs. Thus, a novel model is urgently
required to consider the variation from both spatial and temporal aspects for modeling OB and
energy demand in further research.

5.2 Limitations and future work

This thesis aims to investigate how can an OB model be developed and improve the OB model
from a spatial perspective. It would contribute to the dynamic building energy demand estimation
thereby providing useful references in both industry and academia. Summarised below are the
limitation of the studies in this thesis:

1. The studies are limited to demographic and time factors and don’t include environmental and
psychological factors. The physical environmental factor variables are usually considered in
the energy demand models. Building’s physical conditions such as the wall material and the
neighbor's environmental conditions such as trees can largely influence people's daily
behavior. However, considering these factors again in the OB model may be redundant.
Therefore, the significant variables of the OB model should be selected based on a
compromise of variables considered in all sub-modules of energy demand modeling.
Likewise, the psychological health of an occupant influences their comfort and enthusiasm
for activities such as working. However, these psychological factor variables are challenging
to collect and may fluctuate rapidly and vary from person to person.

2. All studies are conducted based on ATUS. Literature suggests that an occupant tends to
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respond positively to questions. However, we only extracted the neutral question (i.e.,
demographic factor variables and activity records) from the survey. Still, ATUS contains the
TUD only recording the representative individual in each household. The activity patterns for
the unit of the household cannot be obtained to better estimate the energy consumption for
each household. Moreover, the applicability of the developed models and corresponding
findings should be checked by other countries or regions

This thesis is only targeted for energy demand modeling with consideration of OBs in the
residential sector. Its results are only applicable to buildings in similar conditions. In general,
OB models for modeling occupancy and action are more likely to be applied in the
commercial sector. Regarding the transport sector, electrical vehicle models are widely used.
These models had their own modeling logic.

The developed spatial logistic regression model requires the spatial location data for each
simulated occupant. The studies used low-resolution location data which makes the people in
one state of the U.S. share the same location. Therefore, the results obtained by the new OB
model did not show obvious progress compared to the conventional logistic regression model
for several cases. Thus, sufficient higher resolution location data is needed for the model
development. In addition, this thesis only focuses on the spatial variation in OBs. As
mentioned in Chapter 5.1.2, the spatial and temporal variation should be considered
simultaneously in the modeling to achieve a more realistic dynamic energy demand

simulation.

The overall work of this thesis provides the starting point for investigating the development of

the OB model underpinning the bottom —up based energy demand simulation and enhancing the

diversity in OBs. In addition, this work is one of the first studies to develop new OB models that

can robustly incorporate spatial variation. Hence, future work can be identified from the following

point:

1.

Integrate variables from a wider range of factors such as the time, environmental, and
psychological factors to represent the variation shown by occupants. Design metrics to
characterize some hard-to-measure factors for OB models. At the same time,
comprehensively considering variables in various factors for developing the OB model to
further tackle the trade-off between error and diversity when increasing the model complexity.

The results of the developed OB model should be easily explained. The reason for the spatial
variation in OBs should be further discussed and investigated. Moreover, the new OB model
should generate more realistic OB patterns in terms of different spatial and time scales.
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3. Test new OB models on different sectors as well as different geographical regions to verify
their applicability range. The modeling method for the residential sector in America should
be extended to other application contexts.

4. Efficiently combine other sub-modules with the developed OB model in energy demand
simulation to generate reliable dynamic energy demand profiles. Evaluate the performance of
the energy demand model along with the newly developed OB model.

5. The design of the division of a region should be rethought when adequate location data is
available. More location data contributes to simulating the spatial autocorrelation among
these locations to represent the spatial trend. However, the amount of supplement data
containing other factors such as the demographic factor for one location will be decreased as
the number of location data increases. Therefore, the number and position of the location data
to represent a certain area needs to meet the requirements of 1) enough to reflect the trend
change of the space, and 2) the amount of other data in each location is sufficient.

6. Derive strategies or policies as well as adjust programs (i.e., demand response program) based
on simulated energy demand profiles.
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6 Conclusion

There is an increasing interest in reducing energy consumption as well as reducing the associated
greenhouse gas emissions in every sector of all nations. Among all sectors, the residential sector
is a substantial consumer of energy and therefore draws the focus of energy consumption
reduction efforts. Due to the complex characteristics of energy consumption in the residential
sector, comprehensive models are needed to assess the impact of adopting energy efficiency and
renewable energy technologies suitable for residential applications (Swan & Ugursal, 2009). In
particular, models to capture dynamic changes in the energy demand are urgently required.

Based on this context, researchers have recognized that occupant behavior (OB) has a significant
impact on building energy consumption. As occupants influence energy consumption through
their direct interaction with the building systems and devices and influence the indoor
environment by their presence just in terms of sources of heat and carbon dioxide production
(Naspi et al., 2018). Numerous OB models for capturing the occupancy, activities, and actions of
building occupants have been developed for understanding, modeling, and analyzing OBs and be
integrated into current building energy simulation tools to quantify the effect of OBs on building
energy use. However, existing OB studies seldom paid attention to the model development
process, especially for the pre-simulation process (i.e., the modeling methods to prepare the
parameter and variables used in the model). In addition, modeling OB with spatial variation which
underpins building energy simulation is rare in general.

This thesis seeks to analyze and evaluate the modeling process for the existing OB models thereby
summarizing the experiences that support researchers to shape their decision-making for
designing the energy demand model with consideration of OBs. Furthermore, this thesis proposes
new OB models that can incorporate spatial variation into the modeling process thereby better
enhancing the model diversity.

The overall target of this thesis is to better understand and design the OB model based on ATUS
data. This thesis conducted three studies to address the research gap. The following are sets of
research questions relevant to the research gap and corresponding answers.

1) Address research questions on which variables should be considered and what is the most
appropriate parameter preparation method to improve the pre-simulation process of OB
modeling.

Answer: all three parameter preparation methods (i.e., multinomial log-linear regression
(MLR), support vector machines (SVMs), and feedforward artificial neural network (ANN))
with the same variables inputs had similar performances which are evaluated by indicators
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2)

3)

representing three aspects: average performance, diversity, and individual specificity.
However, we recommend the use of MLR when applying basic TUD. Regarding the variable,
we found that only including more significant variables, especially from the activity and
appliance-related factors, contribute to enhancing the diversity. Therefore, setting a reference
group using basic variables and a simple method helps to assess the feasibility of the designed
methodology framework is recommended.

Address research questions on whether spatial variation and historical change exist in OB,
whether variables can represent spatial and temporal variations, and whether the conventional
modeling method can reproduce the spatial variation.

Answer: the historical change was confirmed to exist in watching television activity
conducted by the targeted subpopulation of women with full-time jobs based on
comprehensive descriptive analysis. The spatial distribution of the activity probability can be
visualized through the ordinary kriging interpolation method. The interpolation results
revealed that the probability of undertaking watching television had an obvious
spatiotemporal variation over the mainland of the U.S. at a five year-period time slot. More
importantly, the analysis implied that the conventional logistic regression model can only
reproduce limited spatial variation. A new model is urgently required to better reproduce the
detailed spatial variation.

Address research questions on when spatial variation exists in OB, how can spatial variation
in OB be represented quantitatively, and how can spatial methods reproduce spatial variations
in OB to develop a new method for OB modeling with consideration of spatial variation.

Answer: developed three spatial logistic regression models involving one spatial factor
variable and two spatial representations (kriging-based and SAR-based representations)
successfully incorporating the spatial variation into the modeling process based on the case
of four representative activities for six subpopulations groups of women. By comparing with
the conventional logistic regression model in terms of reproducibility and comprehensive
performance (i.e., error and diversity), the results showed that the developed spatial logistic
regression model improves the reproducibility of the spatial variation in OBs, at the same
time it is able to generate estimations with smaller errors and higher diversity at a higher
spatial resolution level. Moreover, the finding revealed that basic segmentation is
recommended when the data is sufficient. Segmentation can enhance the diversity among
simulated occupants as it helps to develop targeted models to better grasp and describe the
differences between research objectives in different scenarios. However, further segmentation
to run the model is unnecessary especially when only limited data is available. In this case,
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diversity can be enhanced by using appropriate variables in the modeling process.

To conclude, the overall work of this thesis has contributed to developing advanced OB models
incorporating spatial variation. The thesis also has shown that indicators can be drawn from
various aspects, including error, diversity, and reproducibility to assess the model performance
more comprehensively. To sum up, this thesis has broadened the knowledge of the pre-simulation
and successfully enhanced the model diversity thus improving the understanding of the systems
and identifying areas to support sustainable decision-making depending on the time-use of people
in different regions. Going forward, our findings in this thesis can be extended to generate more
reliable energy demand profiles thus guiding to improve energy efficiency, saving energy cost,
and reducing greenhouse gas emissions for heterogeneous regions.
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