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Abstract  

Occupant behavior (OB) models, that simulate the daily activity of residents, have been developed 

to be integrated into building simulation tools to estimate residential building energy demand. OB 

models contribute to improving accuracy as they can capture the impact of the OBs on energy 

demand. However, previous OB studies mainly focused on the simulation algorithms and paid 

less attention to the design of the overall model, especially the pre-simulation process — data 

processing, variable selection, and parameter preparation. In addition, the diversity among the 

occupants particularly the spatial variation was greatly underestimated. Therefore the existing OB 

models hinder generating realistic behavior profiles thereby leading to less reliable energy 

predictions for future building design and planning.  

Based on the aforementioned background, this thesis aims to provide a systematic investigation 

in three steps. First, various machine learning based OB models are evaluated and compared to 

illustrate the importance of the pre-simulation process for the OB model development. Second, 

the existence of spatial variation and historical change in OBs were confirmed. The significance 

of these factors on model performance is further evaluated. Finally, new OB models incorporating 

spatial variation are proposed to enhance the diversity exhibited over given heterogeneous regions. 

The thesis is divided into 6 chapters.  

In Chapter 1, the thesis centers on introducing the energy use and energy demand modeling in the 

residential sector, the role of OB in influencing the energy demand, the development of OB 

modeling, and diversity in OBs. Then, three critical reviews are presented to reflect the current 

research status. One is conducted to summarize the model engine, the modeling methods to 

prepare the parameter, and variables used in the model in previous studies. The remaining two 

summarize previous studies on modeling with spatial variation for both the engineering field and 

other fields in terms of the aspects — empirically representing the spatial variation and simulating 

the research object with the consideration of the spatial variation. Then, the research gap was 

found based on the review. In addition, the overall framework of research targeting the assessment 

of OB model performance and development of the model that can involve spatial variation are 

outlined. 

In Chapter 2, the pre-simulation process of OB modeling is analyzed and its importance is 

evaluated. In this chapter, two crucial questions representing the vital components of the pre-

simulation process that have been paid less attention to in previous studies were solved: 1) which 

variables should be considered and 2) what is the most appropriate parameter preparation method. 

Using four machine learning based parameter preparation methods combined with three cases 

including different variable consideration conditions based on the single-year American time use 
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survey (ATUS) data, the significance of the design of the pre-simulation process of OB modeling 

for residential energy demand simulations had been highlighted.  

In Chapter 3, the existence of the spatial variation and historical change are confirmed through a 

case study of watching television activity for the women population based on the multi-year 

ATUS data. In this chapter, the spatial variation is checked for the time interval with the largest 

discrepancies in the probability of undertaking watching television among the years from 2009 to 

2019. The historical change is detected in a five-year period (2009–2014–2019). In addition, the 

performance of the conventional logistic regression model to reproduce the spatial variation is 

checked by comparing the distribution in space with the observations. 

In Chapter 4, new OB models that can incorporate spatial variation are established. In this chapter, 

the spatial variation for four activities — sleeping, cooking and washing up, watching television, 

and commuting for 6 groups of the subpopulation of women is confirmed and modeled. Three 

new OB models are developed based on different representations of spatial variation and assessed 

in terms of indicators at the national and state levels. Further potential applications including the 

broader range such as energy demand simulation considering the spatial variation in OB are 

discussed.  

Chapter 5 discusses the main outcomes of the thesis, as well as its limitations and further work.  

Chapter 6 summarizes the study findings, conclusions, and contributions. 

Overall, this work has contributed to broadening the knowledge of the pre-simulation and 

successfully incorporating spatial variation to enhance the model diversity thus greatly improving 

the understanding of the systems and identifying areas to support sustainable decision-making 

depending on the time-use of people in different regions. These findings can be extended to 

develop more realistic energy demand models in future work. 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

List of Publications  

1. Li, Y., Yamaguchi, Y., & Shimoda, Y. (2022). Impact of the pre-simulation process of 

occupant behavior modeling for residential energy demand simulations. Journal of Building 

Performance Simulation, 15(3), 287–306.  

2. Li, Y., Yamaguchi, Y., Chen, C. F., & Shimoda, Y. Spatial variation and historical change in 

occupant behavior: statistical analysis and application on household activities and time 

scheduling. Proceedings of Building Simulation 2021: 17th Conference of IBPSA. 

3. Li, Y., Yamaguchi, Y., Torriti, J., & Shimoda, Y. Modeling of occupant behavior considering 

spatial variation: geostatistical analysis and application based on American Time Use Survey 

data. Energy and Buildings, under review.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

Acknowledgment 

This work has been made possible by the tireless support and effort of my academic advisors. I 

thank Professor Yamaguchi for being there at every step throughout the study period. His great 

contribution to the ideas that gave birth to the outputs in this dissertation cannot be overstated. I 

thank Professor Shimoda for their support with the technical guidance and their insightful 

comments during the seminars. As well as much thanks to Professor Chien-fei Chen, Professor 

Jacopo Torriti, and Professor Kondo.  

I also thank my colleagues in the Shimoda laboratory; especially Usama Perwez who sacrificed 

some of his time to help me out with the difficult areas, especially sharing useful papers and 

discussing the new ideas that related to my work. I drew a lot of motivation from each of the 

members, especially Takai Shiho, Okubo Hiromi, Furutani Sumiko, and Okumura Miyuki, and 

thank them for their assistance whenever I needed it. Special mention of Xiangyun Shi whom I 

consulted from time to time although based in a different laboratory. 

Special mention of my parents who have been my support base since the start of the foreign trip 

and the start of my academic journey. Their undying support both moral and financial has seen 

me exploit my potential to the best of my ability. Together with my lovely friends Yixuan Wang, 

Yue Li, Hannan Fu, Yilin Xie, and Xiaoye Tian who are all been great pillars for me. 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Table of Contents 

Abstract .......................................................................................................................................... i 

List of Publications ...................................................................................................................... iii 

Acknowledgment ......................................................................................................................... iv 

Table of Contents .......................................................................................................................... v 

Figures ........................................................................................................................................ viii 

Tables ........................................................................................................................................... xi 

Equation ...................................................................................................................................... xii 

Abbreviation and Acronyms....................................................................................................... xiii 

1 Introduction ........................................................................................................................... 1 

 Energy use in the residential sector ................................................................................ 1 

 Role of occupant behavior ............................................................................................. 2 

 Occupant behavior modeling ......................................................................................... 3 

 Diversity ......................................................................................................................... 5 

 Critical literature review ................................................................................................ 6 

 Studies related to OB and energy demand modeling ............................................. 7 

 Studies related to OB and energy modeling with spatial variation ...................... 11 

 Studies related to spatial analysis and modeling in other fields ........................... 15 

 Research gap ................................................................................................................ 17 

 Aims and objectives ..................................................................................................... 18 

 Contributions ................................................................................................................ 18 

 Thesis outline ............................................................................................................... 19 

2 Impact of the pre-simulation process of occupant behavior modeling for residential energy 

demand simulations ..................................................................................................................... 22 

 Purpose ......................................................................................................................... 22 

 Data material and methodology ................................................................................... 22 

 Data ...................................................................................................................... 24 

 Case design ........................................................................................................... 26 

 Methods of parameter preparation........................................................................ 27 

 Model performance assessment ............................................................................ 28 

 Results .......................................................................................................................... 29 

 Average performance............................................................................................ 29 

 Diversity performance .......................................................................................... 31 

 Individual specificity performance ....................................................................... 35 

 Significant variable ............................................................................................... 36 



vi 

 

 Discussion .................................................................................................................... 39 

 Summary of results ............................................................................................... 39 

 Determination of the most appropriate parameter preparation method ................ 40 

 Determination of variable to be considered .......................................................... 41 

 Limitation ............................................................................................................. 41 

 Conclusion ................................................................................................................... 42 

 Appendix ...................................................................................................................... 43 

 Appendix A. ATUS data record ............................................................................ 43 

 Appendix B. Evaluation of the effect of the combination of time intervals ......... 43 

 Appendix C. Variables considered in the examined cases .................................... 44 

3 Spatial variation and historical change in occupant behavior: statistical analysis and 

application on household activities and time scheduling ............................................................ 45 

 Purpose ......................................................................................................................... 45 

 Data material and methodology ................................................................................... 46 

 Results and discussion ................................................................................................. 49 

 Data Analysis ........................................................................................................ 49 

 Results of Logistic Regression ............................................................................. 51 

 Results of the kriging Method .............................................................................. 53 

 Conclusion ................................................................................................................... 54 

4 Modeling of occupant behavior involving spatial variation: geostatistical analysis and 

application based on American Time Use Survey data ............................................................... 57 

 Purpose ......................................................................................................................... 57 

 Data material and method ............................................................................................ 57 

 Data material ........................................................................................................ 57 

 Method ................................................................................................................. 58 

 Performance assessment .............................................................................................. 63 

 Error indicator ...................................................................................................... 63 

 Diversity indicator ................................................................................................ 64 

 Results .......................................................................................................................... 64 

 Confirmation of the existence of the spatial variation .......................................... 64 

 Representations of spatial variation...................................................................... 67 

 Spatial logistic regression models ........................................................................ 70 

 Evaluation of spatial logistic regression models applied to the entire population 77 

 Discussion .................................................................................................................... 81 

 Conclusion ................................................................................................................... 82 

 Appendix ...................................................................................................................... 83 



vii 

 

5 Integrated discussion ........................................................................................................... 86 

 Discussion .................................................................................................................... 86 

 Pre-simulation process ......................................................................................... 86 

 Enhancement of diversity ..................................................................................... 87 

 Conventional logistic regression and spatial logistic regression model ............... 89 

 Limitations and future work ......................................................................................... 90 

6 Conclusion ........................................................................................................................... 93 

Reference ..................................................................................................................................... 96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

Figures 

Figure 1-1. Procedure for simulating energy demand considering occupant behavior. ......... 5 

Figure 1-2. Summary of the methods for spatial analysis and modeling............................. 15 

Figure 1-3. Thesis structure. ................................................................................................ 20 

Figure 2-1. Analysis procedure. ........................................................................................... 23 

Figure 2-2. Number of observations at each time interval. ................................................. 26 

Figure 2-3. Starting probability of activities at the time of day. Each colored area indicates 

the probability of an activity indicated by the graph legend (Table 2-1). Figure (a) shows 

the proportion of activities observed in the test set. Figures (b)–(f) show those estimated 

for the test set in Case 1. .............................................................................................. 30 

Figure 2-4. RMSE of developed models. ............................................................................ 31 

Figure 2-5. MSD of developed models................................................................................ 31 

Figure 2-6. The activity-starting probability of the 10 subgroups created by sorting the 

samples based on the probability estimated by the Case 3 MLR-based model are 

indicated by the red line. The nine figures indicate the result of watching television, 

kitchen and food clean-up, and sleeping at the representative time intervals of 10:00, 

18:00, and 23:00, respectively. The horizontal axis indicates the number of sorted 

samples. The black line indicates the average of the observation. The other colored lines 

indicate the results of the models. ................................................................................ 32 

Figure 2-7. Activity-starting probability of the 10 subgroups created by sorting the samples 

based on the probability estimated by the Case 1 MLR-based model (indicated by the 

red line). ....................................................................................................................... 33 

Figure 2-8. Averaged starting probability of activities estimated and observed in the 

subgroups created based on the estimation of the Case 3 MLR-based model. The 

horizontal axis shows the observed probabilities, and the vertical axis shows the 

estimated probabilities. The black line indicates the reference line 𝑦 = 𝑥 . Each dot 

indicates a combination of the activity, time interval, and subgroup. Logarithmic 

transformation was conducted in the range (−4, 0) × (−4, 0). ...................................... 34 

Figure 2-9. RMSE_GA for developed models when subgroups were divided based on Case 

3. .................................................................................................................................. 35 

Figure 2-10. Accuracy and F1 score of developed models. ................................................. 35 

Figure 2-11. Significance of representative variables for a combination of activities (shown 

vertically) and time intervals (shown horizontally). Red cells indicate that the variable 

was significant in the combination, and dark red cells indicate an activity considered as 

a reference category in the MLR for which the significance of the variables could not 



ix 

 

be obtained. .................................................................................................................. 37 

Figure 2-12. Significance of variables for each activity observed in the MLR of Case 3. The 

horizontal axis lists the variables, and the vertical axis lists the activities in which the 

clusters were labeled. The circle sizes ranging from 0.0 to 1.0 indicate the number of 

time intervals in which a variable significantly affected an activity (1 indicates all time 

intervals). The blue circles indicate that the variable had a significant effect during the 

period from 0:00 to 5:59. ............................................................................................. 39 

Figure 2-13. Results of representative indicators of developed models. ............................. 40 

Figure 2-14. RMSE, MSD, and accuracy of methods with and without the combination of 

time intervals 0:00–5:59 in Case 1. .............................................................................. 43 

Figure 3-1. Research procedure. .......................................................................................... 46 

Figure 3-2. Weighted undertaking probability of watching TV per hour for each year. ...... 49 

Figure 3-3. Kriging based on weighted observations. ......................................................... 50 

Figure 3-4. Spatial variation and historical change shown by the improved model. ........... 53 

Figure 3-5. Comparison of the kriging results. .................................................................... 54 

Figure 4-1. Study methodology. .......................................................................................... 59 

Figure 4-2. Probability of undertaking activities for representative groups. Lines in different 

colors indicate different states and the black one indicates the national level estimations.

 ..................................................................................................................................... 65 

Figure 4-3. Results of the Moran’s I test considering the representative activities for each 

group. The time intervals listed in the table are the intervals during which spatial 

variation existed. .......................................................................................................... 66 

Figure 4-4. The spatial distribution of the probability of undertaking watching television for 

Group 6 at the 13:00 time interval at the state level based on observations. ............... 67 

Figure 4-5. The spatial distribution of the probability of undertaking watching television for 

Group 6 at 13:00 based on representations of spatial variation obtained from the ordinary 

kriging and SAR. ......................................................................................................... 68 

Figure 4-6. The accuracy of the representations of the spatial variation at the state level. The 

horizontal axis shows the observation probabilities of combinations of group, activity, 

and state. The vertical axis shows the representations. The black line indicates the 

reference line 𝑦 = 𝑥 . Logarithmic transformation was conducted in the range (–4, 

0)×(–4, 0). .................................................................................................................... 69 

Figure 4-7. The spatial distribution of the undertaking probability based on observations and 

the reproductions of the spatial variation by the reference model and three developed 

spatial logistic regression models for Case (a)–Case (d) respectively. ........................ 74 

Figure 4-8. The results of indicators at the national level for all models in the training and 



x 

 

test sets. ........................................................................................................................ 75 

Figure 4-9. The results of indicators at the regional level and state level for all models in the 

training set. ................................................................................................................... 76 

Figure 4-10. The accuracy of the spatial logistic regression model at the state level. The 

horizontal axis shows the observation probabilities of combinations of the group, state, 

and activity. The vertical axis shows the estimations. The black line indicates the 

reference line 𝑦 = 𝑥 . Logarithmic transformation was conducted in the range (–4, 

0)×(–4, 0). .................................................................................................................... 77 

Figure 4-11. The spatial distribution of the undertaking probability based on observations 

and estimations for watching television at the 13:00 time interval of Group 7. .......... 79 

Figure 4-12. Accuracy of Model 3 at the state level, considering two approaches (variables 

and segmentation). The different colors in the figure represent different groups. The 

circular and triangular shapes represent the entire population and the subpopulations, 

respectively. Logarithmic transformation was performed in the range of (−2, −0.5) × (−2, 

−0.5). ............................................................................................................................ 81 

Figure 4-13. Probability of undertaking activities for representative groups with the training 

set. Lines in different colors indicate different states and the black one indicates the 

national level estimations. ............................................................................................ 84 

Figure 4-14. Probability of undertaking activities for representative groups with the test set. 

Lines in different colors indicate different states and the black one indicates the national 

level estimations. .......................................................................................................... 85 

Figure 5-1. The density of probability of undertaking watching television for each group in 

the case study used in Chapter 4. ................................................................................. 88 

Figure 5-2. The spatial probability of undertaking watching television for Group 6 at 13:00 

in the case study used in Chapter 4. The red line divides several major time zones for 

the mainland of the U.S................................................................................................ 89 

 

 

 

 

 

 

 

 

 

 



xi 

 

Tables 

Table 1-1. Model engines and parameter preparation methods of previous studies. ............. 8 

Table 1-2. Summary of influencing factors categories and corresponding representative 

variables considered in OB models. ............................................................................. 10 

Table 1-3. Summary of influencing factors considered in previous studies. ....................... 11 

Table 1-4. The reviewed studies with spatial variation in OB modeling and energy demand 

modeling with consideration of OBs. .......................................................................... 13 

Table 2-1. Activities and codes used in this study. .............................................................. 25 

Table 2-2. Number and type of variables considered in cases. The definition of the variables 

is listed in Table 3-4 in Appendix C. ............................................................................ 27 

Table 2-3. Example of original ATUS records. .................................................................... 43 

Table 2-4. Variables and independent variables of different cases. ..................................... 44 

Table 3-1. Predictor variables of the regression model for the whole population. .............. 47 

Table 3-2. Significant variables based on the improved model for the whole population. .. 52 

Table 4-1. Activity code. ...................................................................................................... 58 

Table 4-2. Designed groups and their details. ...................................................................... 62 

Table 4-3. Results of indicators considering all the models with Group 7 at the national and 

state levels. RMSE_GA was calculated only at the national level. .............................. 80 

Table 4-4. Comparison of the approaches through statistical indicators at the state level. . 81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

Equation 

1-1  .................................................................................................................................. 8 

1-2  .................................................................................................................................. 9 

1-3  .................................................................................................................................. 9 

1-4  ................................................................................................................................ 16 

1-5  ................................................................................................................................ 16 

1-6  ................................................................................................................................ 17 

1-7  ................................................................................................................................ 17 

2-1  ................................................................................................................................ 28 

2-2  ................................................................................................................................ 28 

2-3  ................................................................................................................................ 29 

2-4  ................................................................................................................................ 29 

2-5  ................................................................................................................................ 29 

3-1  ................................................................................................................................ 48 

3-2  ................................................................................................................................ 48 

3-3  ................................................................................................................................ 48 

3-4  ................................................................................................................................ 48 

4-1  ................................................................................................................................ 59 

4-2  ................................................................................................................................ 59 

4-3  ................................................................................................................................ 60 

4-4  ................................................................................................................................ 60 

4-5  ................................................................................................................................ 60 

4-6  ................................................................................................................................ 61 

4-7  ................................................................................................................................ 61 

4-8  ................................................................................................................................ 61 

4-9  ................................................................................................................................ 61 

4-10 ................................................................................................................................ 61 

4-11 ................................................................................................................................ 62 

4-12 ................................................................................................................................ 63 

4-13 ................................................................................................................................ 63 

4-14 ................................................................................................................................ 63 

4-15 ................................................................................................................................ 64 

4-16 ................................................................................................................................ 64 

4-17 ................................................................................................................................ 64 

4-18 ................................................................................................................................ 64 



xiii 

 

 Abbreviation and Acronyms 

ANN artificial neural network 

ATUS American time use survey 

GWR Geographically Weighted Regression 

MLR multinomial log-linear regression 

Moran’s I test Global Moran Index test 

MSD mean standard deviation 

OB occupant behavior 

ORs odds ratios 

RCs regression coefficients 

RMSE root mean squared error 

RMSE_GA averaged root mean squared error of subgroups 

SAR spatial autoregressive 

SVM support vector machine 

TAE total absolute error 

TUD time use data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

 

This page is intentionally left blank 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

1 Introduction 

This chapter composed a concise introduction to occupant behavior (OB) modeling and the 

overview of this thesis. First, how energy is consumed in the residential sector is introduced. 

Second, the role of OB in building energy performance is discussed. Third, the development of 

OB modeling underpinning the energy demand simulation is presented. Forth, the diversity 

between occupants and their behaviors resulting in major uncertainty in predicting building 

energy performance is highlighted. Fifth, three critical reviews are presented to reflect the current 

research status. Then, the research gap was found based on the review. Finally, the aim and 

objectives, contributions, and the outline of the thesis are explained respectively.  

 Energy use in the residential sector 

The residential sector accounts for a relatively high proportion (16–50%) of the national energy 

consumption and it is the major sector in terms of electricity consumption (Martinaitis et al., 2015; 

Wilke et al., 2013). Since the great impact on the energy supply side, the residential sector draws 

more and more attention to help reduce the cost and the energy demand throughout the day as 

well as to better support the design of the control algorithms for the supply-side systems. 

Therefore, the residential sector has great energy-saving potential. At the same time, residential 

building energy systems are tightly related to national or regional energy and environmental 

policies (Yu et al., 2011). Hence, the energy demand models which are the foundation of making 

related strategies and plans for the entire industry progress have been developed.  

In recent decades, two types of modeling approaches — top-down and bottom-up have been 

applied to simulate the building energy demand (Kavgic et al., 2010). The energy demand models 

applied with the top-down approach are established at an aggregated level, typically by fitting 

historical time series data of national energy consumptions or greenhouse gas emissions. These 

models aim to illustrate the inter-relationships between the energy sector and the macroeconomics 

primarily based on considering the relationship between energy use and market economic factors 

such as fuel prices and technological progress. Models can be generally categorized into 

econometric and technological two groups by different variables to represent the economy. 

However, these top-down models are incapable of explaining factors such as the building physical 

factor and OBs that can affect energy demand.  

On the contrary, the bottom-up modeling approach is widely applied to simulate aggregated 

residential energy consumption by characterizing individual appliances and loads within a 

building (McKenna et al., 2018). Therefore, various modules such as the external temperature 

model, thermal demand model, and solar photovoltaic model are combined to estimate the overall 
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energy demand. Nowadays, the OB model is gradually integrated into the bottom-up based energy 

demand models as they can encapsulate the full range and timing of OB (i.e., occupants’ presence, 

activities, and dependent behaviors) on the buildings’ energy balance. Moreover, bottom-up based 

energy demand models are able to predict the future changes in the physical composition of 

buildings or the ownership of appliances as well as the changes in the population’s 

demographic/behavioral characteristics (Wilke et al., 2013). Hence, this thesis is focusing on 

researching the OB model underpinning the bottom-up based energy demand model. Bottom-up 

based energy demand models can be categorized into three groups — engineering models, 

statistical models, and hybrid models. Most research efforts for the engineering models have 

focused on residential buildings using archetypes (i.e., representative buildings or prototype 

buildings) (Lim & Zhai, 2017). Each archetype is defined by specific features in terms of four 

main areas: form, envelope, system, and operation (Corgnati et al., 2013). These engineering 

models simulate the energy demand for the archetypes instead of the whole building stock. The 

total energy demand is then aggregated for all predicted energy demands of each archetype with 

proper weighting factors such as the floor area. Regarding the statistical models, most of them are 

based on regression techniques. Such models are capable of taking demographics and OBs that 

have a significant influence on energy consumption into account. Regarding the hybrid models, 

they combine modeling components where both building physics and statistical approaches were 

applied and they can solve more practical problems (Kavgic et al., 2010). Since these three groups 

of the bottom-up models are established at a disaggregated level, sufficient databases of empirical 

data that can support the description of each model component to characterize each individual 

load are required (Shorrock & Dunster, 1997).    

 Role of occupant behavior 

Simulation studies (Mastrucci et al., 2017; Wilke et al., 2013; Zhao et al., 2014) have confirmed 

that OB is an important determinant of building energy consumption in the bottom-up based 

statistical or hybrid type of energy demand models and a leading source of uncertainty in 

predicting building energy use, as energy-consuming appliances are generally operated to satisfy 

people’s daily needs in correspondence to the activities that the occupants perform. For instance, 

the oven for cooking meals, the washing machine for washing the clothes, lights for lighting, and 

the air-conditioner for adjusting the temperature during the summer and winter days. Occupants 

also adjust the settings of the indoor environment to pursue comforts, such as operating window 

openings and shading devices (Mosteiro-Romero et al., 2017; Ruan et al., 2017) to improve the 

indoor air quality or keep the indoor temperature within a comfortable range. Furthermore, OB is 

a vital factor in the assessment of technologies employed in building design and retrofit (Yan et 

al., 2015). Many case studies have demonstrated that OB influences the adaptability and 
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implementation of building technologies for better assessing the building energy performance as 

well as accurately simulating the energy demand (Belessiotis & Mathioulakis, 2002; Fabi et al., 

2013). 

 Occupant behavior modeling 

Since the significance of the OB is clear, numerous models (called OB models) for capturing the 

occupancy, activities, and actions of building occupants have been developed for understanding, 

modeling, and analyzing OBs and their impacts on building energy demand. To capture the 

dynamic changes in the building energy demand and diversity among the households, OB models 

are gradually employed as one module in energy demand models. Generally, for residential 

buildings, most of the divisions of the building stock are based on building physics of form, 

envelope, and system characteristics, only a few have based on the relevance of OBs, which can 

define the archetype in the operation area (Buttitta et al., 2017). Heinrich et al., 2022 built 

archetypes that are related to specific housing contexts and energy consumption levels based on 

the seven clusters of OBs in the residential sector.   

OB, as mentioned in Chapter 1.2, can be modeled in terms of occupancy, activities, and actions. 

The occupancy model simulates the presence and absence status of the occupants in the targeted 

building. The activity model takes into account the various daily activities of occupants over the 

complete time range to provide a better time-dependent activity profile. Chapter 1.5.1 reviewed 

OB models including all these three types. However, this thesis mainly focuses on the activity 

model. In the following chapters, unless explicitly stated, all OB models refer to the activity model. 

Moreover, the OB models considered and developed in Chapters 2–4 also indicate the activity 

model. The action model models specific actions such as the window opening for simulating 

certain loads or evaluating indoor air quality. 

The majority of OB models were established based on the time use data (TUD) as TUD is an 

important data source that collects invaluable information — sociodemographic information, 

housing information, and the daily activity schedule for recorded households. Particularly, TUD 

is widely used as it was collected at the national level for many countries (e.g., America, United 

Kingdom, German, Australia, China, and Japan ). Existing OB models use either deterministic or 

stochastic modeling techniques (Happle et al., 2018). This thesis focuses on the stochastic models 

because deterministic models only capture the average behavior of energy demand, whereas 

stochastic models enable the production of stochastic behavior in building energy demand. 

Stochastic models employ empirical statistical data such as the TUD to model the probability that 

the occurrence or undertaking of activity thus reflecting the OBs more realistically (Jeong et al., 

2021). Therefore, the stochastic OB models can better assist to simulate the actual building energy 
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demand in terms of diversity and the variability among the simulated occupants (Yamaguchi et 

al., 2019). 

To develop an OB model or energy demand model with consideration of OBs, three processes 

should be carefully designed. Figure 1-1 shows the whole general procedure with three processes 

for simulating building energy demand using OBs as inputs. The OBs input for the energy demand 

model is located in the post-simulation process. According to Figure 1-1, OBs comprise data 

regarding occupancy states, activities, and/or actions referred to as “model objectives”. These 

data are stochastically generated by a model engine during the simulation of OBs. The model 

engine has several model parameters based on which OBs are generated. Model parameters can 

be used to differentiate OBs among simulated occupants according to the conditions given in the 

simulation process. The model parameters were prepared based on a model developed during the 

pre-simulation process. In the pre-simulation process, first, the input data were prepared based on 

raw data, for example, TUD through data preprocessing. Then, a certain parameter preparation 

method was applied based on the input data to develop the model to prepare the model parameters 

for the simulated occupants. For example, many studies have quantified model parameters based 

on sample distribution. Statistical and machine learning methods can be developed for preparation. 

The parameter preparation method may consider several variables, such as demographic 

conditions so that the influence of the considered variables can be reflected in the model 

parameters and the resultant OBs in the simulation process. In this thesis, we refer to the process 

of combining data processing, variable selection, and parameter preparation as the pre-simulation 

process. 

Each process matters for the simulation results as all processes are closely linked. For this thesis, 

three vital selections as shown in Figure 1-1: selection of considered variables, selection of the 

parameter preparation method, and the selection of the engine which require thorough 

considerations to allow the better development of the framework together with better design 

appropriate combinations of these three processes are highlighted. The selection of the engine is 

located in the simulation process and most studies had paid great attention to improving model 

methods for the engine. As for the first two selections located in the pre-simulation process, few 

studies had considered although greater knowledge of the pre-simulation process is needed as 

revealed in Chapter 1.5.1. 
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Figure 1-1. Procedure for simulating energy demand considering occupant behavior. 

 

 Diversity 

Modeling OBs is critically important and it has become increasingly important, as the modeling 

of energy demands with a high spatiotemporal resolution has attracted attention. To this end, 
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in the engineering field (O’Brien et al., 2017a). Herein, the simple way to understand the diversity 

is the variability response from the behaviors that occupants conducted. In order to model the 

diversity in building OBs thereby modeling demand loads more accurately, especially the 

dynamic changes in the energy demand, various factors have been considered to represent the 

diversity. The variable representing the household composition which is related to one of the most 

important factors — the demographic factor has a significant influence on energy consumption 

as it varies significantly among households (Jones et al., 2015). Likewise, the type of the housing 

unit, climate, and day of the week these variables also play important role in influencing the 

residential energy demand. We have summarized commonly used factors in the literature in 

Chapter 1.5.1.  

Among all factors, the geographic factor (also called the spatial factor) to represent the spatial 

variation has not been fully investigated (Li et al., 2019). Spatial variation essentially refers to the 

rules or tendencies of objects of the research exhibited in a given space. It can be represented and 

considered in the modeling in different ways. Many researchers have proven that spatial variation 

plays an important role in simulating energy demand. Druckman & Jackson, 2008 demonstrated 

that household energy use and the associated carbon dioxide emissions vary significantly with 

household socioeconomic conditions and locations. Rural/urban environments are another 

important factor in devising policies for a low-carbon society. Halleck Vega et al., 2022 pointed 

out that although the spatial perspective has received limited attention in the literature, it is a 

significant factor in energy-related policy considerations. They observed that the spatial factor is 

important, and ignoring it can lead to inaccurate conclusions. Furthermore, spatial variation also 

exists in time use. Several studies showed differences in the time use of occupants among 

countries, which revealed spatial variation existed in the time spent on OBs (Al-Mumin et al., 

2003; Jeong et al., 2021; Torriti, 2012). Esteban Ortiz-Ospina & Roser, 2020 found that OBs 

conducted by people are spatially varied in European countries, which cannot be effectively 

explained by economic or demographic differences. Such spatial variation in OBs may further 

occur within a country or even within a region. Studying how people spend their time over space 

provides an important perspective for understanding living conditions, economic opportunities, 

and general well-being. However, a consistent approach to empirically represent spatial variation 

in OB and to consider it in OB modeling is currently lacking, but useful spatial analysis and 

modeling methods have been developed in other fields as shown in review Chapters 1.5.2 and 

1.5.3. 

 Critical literature review  

The literature review is divided into three parts. Chapter 1.5.1 summarizes the reviewed studies 

that developed an OB model or an energy demand simulation with consideration of OBs. We 
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mainly focus on three important sub-process as mentioned in Chapter 1.3 for energy demand 

modeling with consideration of OBs — the model engine, the methods for preparing the 

parameters for the model engine, and variables. Chapter 1.5.2 summarizes the reviewed studies 

related to OB and energy modeling with spatial variation. Chapter 1.5.3 summarizes the reviewed 

studies relevant to spatial variation in other fields.  

 Studies related to OB and energy demand modeling 

This chapter is a summary of the studies in terms of the three selections of the model development. 

First, the model engine of two types is reviewed. Secondly, the parameter preparation methods 

considered in the previous studies are summarized. Finally, the type of factors used in the existing 

models is categorized.    

The selection for the engine is a core process for the OB models as the engine determines the OB 

model outputs which are also the inputs for the energy demand model. Osman & Ouf, 2021  

summarized the model engine in modeling occupants’ presence and behaviors. Most of the 

reviewed studies used discrete-time or discrete-event approaches, which are the main approaches, 

as summarised in the second column of Table 1-1. A discrete-time approach considers a fixed 

time interval, and the changes in the model objectives are examined at each time step. In this 

approach, the time-inhomogeneous Markov chain model is widely used (Aerts et al., 2014; Diao 

et al., 2017; Richardson et al., 2008; Widén et al., 2009). Time-inhomogeneous Markov chain 

model consists of the current state space and the probabilities associated with the transitions from 

each of the states into the others (Ramírez-Mendiola et al., 2019). The stochastic processes that 

can be adequately described by a time-inhomogeneous Markov chain model are said to satisfy the 

Markov property. This property for the time-inhomogeneous Markov can also be said as 

memoryless: P(𝑥𝑡+1 = 𝑖𝑛+1|𝑥𝑡 = 𝑖𝑛, 𝑥𝑡−1 = 𝑖𝑡−1, … , 𝑥0 = 𝑖0) = P(𝑥𝑡+1 = 𝑖𝑛+1|𝑥𝑡 = 𝑖𝑛) = 𝑝 , 

which indicated that state 𝑥 at time 𝑡 + 1 only related to that state at time 𝑡. Advanced methods 

have also been applied. Liisberg et al., 2016 used hidden Markov models to create methods for 

the indirect observation and characterization of OB. Kleinebrahm et al., 2021 applied neural 

networks which combined state-of-the-art long short-term memory (LSTM) and attention-based 

autoregressive models with imputation models to generate weekly activity profiles capable of 

capturing long-term dependencies in mobility and activity patterns. A discrete-event approach 

reproduces an OB as an ordered event sequence. Each event has a specific start time and duration. 

Wilke et al., 2013 presented an approach to model residential activities based on time-dependent 

probabilities for the start of activities and the corresponding distributions of activity durations. 
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Table 1-1. Model engines and parameter preparation methods of previous studies. 

Literature Model engine Parameter preparation method Segmentation 

Diao et al., 2017 Discrete-time: 

Markov chain 

Clustering, neural network Yes 

Liisberg et al., 2016 Discrete-time: 

Markov chain 

Sample distribution No 

Ramírez-mendiola et al., 

2019 

Discrete-time: 

Markov chain 

Sample distribution Yes 

Richardson et al., 2008 Discrete-time: 

Markov chain 

Sample distribution Yes 

Aerts et al., 2014 Discrete-time: 

Markov chain 

Sample distribution Yes 

Widén et al., 2009 Discrete-time: 

Markov chain 

Sample distribution Yes 

Jones et al., 2017 Discrete-time Multivariate logistic regression No 

Okada et al., 2020 Discrete-event Logistic regression Yes 

Yamaguchi & Shimoda, 

2017 

Discrete-event Sample distribution Yes 

Tanimoto et al., 2008b, 

2008a 

Discrete-event Sample distribution Yes 

Fischer et al., 2015 Discrete-event Sample distribution Yes 

Wilke et al., 2013 Discrete-event Logistic regression and sample distribution No 

Deng & Chen, 2019 Discrete-event Neural network Yes 

Kleinebrahm et al., 2021 Discrete-time Neural networks Yes 

 

Existing OB models have used the various parameter preparation methods listed in the third 

column of Table 1-1. The methods were divided into three groups. The first group used a sample 

distribution or fitted distribution (Aerts et al., 2014; Fischer et al., 2015; Liisberg et al., 2016; 

Ramírez-mendiola et al., 2019; Richardson et al., 2008; Tanimoto et al., 2008b, 2008a; Widén et 

al., 2009; Yohei Yamaguchi & Shimoda, 2017). For example, Richardson et al., 2008 used the 

transition probability derived from the TUD by dividing the occurrence of transitions in the 

occupancy state by the number of samples to model occupancy. In the sample-based method, the 

same modeling parameters are applied to simulated individuals; thus, diversity is ignored. The 

second group used regression to quantify the modeling parameters. Logistic regression is the most 

frequently used method to consider variations owing to various factors (Jones et al., 2017; Okada 

et al., 2020; Wilke et al., 2013). In recent decades, multinomial log-linear regression models have 

become useful to model OBs. It is a generalization of binomial logistic regression which can deal 

with the classification of multiple labels of dependent variable Y which is the probability of 

activity. The mathematical expression of multinomial log-linear regression models is: 

ln (
P(𝑌𝑖 = 𝑦𝑘)

P(𝑌𝑖 = 𝑦1)
) = 𝛼 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 +⋯+𝛽𝑚𝑥𝑚𝑖 = 𝑍𝐾 , 𝐾 = 2,… ,𝑁 1-1 
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P(𝑌𝑖 = 𝑦1) =
1

1 + ∑ 𝑒𝑍𝑗𝑁
𝑗=2

 1-2 

P(𝑌𝑖 = 𝑦𝑘) =
𝑒𝑍𝑘

1 + ∑ 𝑒𝑍𝑗𝑁
𝑗=2

 1-3 

where the 𝑖  means the 𝑖th  observation and 𝑁  means the total number of activities, 𝑥 

represents the attribution of occupants. 𝑌𝑖 = 𝑦1 is selected as the base case and the choice of the 

base case does not change the calculations of probability, it only affects the coefficients and ways 

to explain the odds ratio. An example of the use of multinomial log-linear regression is Wilke et 

al., 2013, who proposed the use of it to model the activity-starting probability.  

The third group used advanced data-driven methods (e.g., statistical tests and random forests). 

Nowadays, the use of the artificial neural network to develop a model based on big data become 

more popular. Same as regression models the artificial neural network (ANN) also contains the 

input, calculation functions (i.e., one or more layers ), and output. The ANN has two types: 

feedforward and feedback network architectures. One of the distinct characteristics of the ANN 

is it learns from experience and examples and then can adapt to changing situations (Rafiq et al., 

2001). Kleinebrahm et al., 2021 applied advanced ANNs to simulate OBs including synthetic 

weekly mobility schedules. Deng & Chen, 2019 applied an ANN method to model the OB 

occurrence. As presented in the fourth column of Table 1-1, many of the existing models grouped 

the input data before applying the parameter preparation method. Many studies have used basic 

demographic conditions for segmentation, such as age and gender (Okada et al., 2020) and the 

distinction between weekdays and weekends (Ramírez-Mendiola et al., 2019; Richardson et al., 

2008). Diao et al., 2017 and Aerts et al., 2014 grouped TUD samples based on the characteristics 

of time allocation observed in TUD using a clustering method. Segmentations can improve the 

reproduction of diversity in OBs, even when a sample-based parameter preparation method is 

used. 

For the segmentation and development of statistical OB models, previous studies considered 

several variables to address their influence on OBs and to enhance the diversity among the 

simulated occupants (Okada et al., 2020), although many of the models suppressed occupant 

diversity (O’Brien et al., 2017b). Haldi et al., 2017 and Tahmasebi & Mahdavi, 2018 revealed 

that the consideration of diversity enhances the diversity in energy demand among households 

and improves the reproducibility of building energy demand models, including extreme values.  

We categorized the variables used in the existing OB models into the eight categories listed in 

Table 1-2. This categorization was originally used by Stazi et al., 2017 and modified by the 
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authors based on the reviewed studies listed in Table 1-3. We refer to the categories as 

“influencing factors”. Table 1-3 includes studies that were not listed in Table 1-1 because they 

did not provide an OB model but provided relevant evidence indicating the significant influence 

of a factor on OB.  

According to Table 1-3, variables related to demographic and time factors are most commonly 

considered regardless of the model objectives. The consideration of variables representing the 

demographic factor enables consideration of the inter-person/household diversity of OBs, 

whereas time factor variables enhance the reproducibility of temporal variations in OBs which 

are important for reproducing the time-dependent characteristics of building energy demand. 

Occupancy factor variables contribute to the dependency on the designated location (e.g., 

performed at home). Notably, psychological and environmental factors are only considered in the 

modeling of occupant actions; for example, window opening. 

Table 1-2. Summary of influencing factors categories and corresponding representative variables 

considered in OB models. 

Influencing factor Representative variables 

Demographic  Individual attributes: age, gender, employment status 

Household attributes: household size, household composition 

Housing condition: housing  

Attributes of other household members: employment status, age  

Time  Time of day, day of week, distinction between weekday and weekend 

Activity  Previous activity, accompanying people 

Geographic   Metropolitan status, region, nation 

Appliance  Ownership, appliance control 

Environmental Local weather, climate zone, humidity 

Occupancy  Presence, arrival, awake status 

Psychological Motives, goals, setting preferences 
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Table 1-3. Summary of influencing factors considered in previous studies. 

Literature 

Influencing factor 

Demo-

graphic 
Time Activity 

Geo-

graphic 

App- 

liance 

Environ-

mental 

Occu-

pancy 

Psycho-

logical 

Diao et al., 2017 √ √  √     

Liisberg et al., 2016 √ √       

Ramírez-mendiola et 

al., 2019 

√        

Richardson et al., 2008 √ √     √  

Aerts et al., 2014  √ √      

Widén et al., 2009 √ √       

Jones et al., 2017  √    √   

Okada et al., 2020 √ √  √     

Yamaguchi & Shimoda, 

2017 

√ √ √      

Tanimoto et al., 2008b, 

2008a 

√ √       

Fischer et al., 2015 √ √ √      

Wilke et al., 2013 √ √  √ √  √  

Deng & Chen, 2019 √     √   

Chiou et al., 2011 √ √       

Anderson, 2016 √ √       

Buttitta et al., 2017 √ √       

Torriti, 2017  √       

De Lauretis et al., 2017 √ √  √ √    

Toftum, 2010 √       √ 

 

 Studies related to OB and energy modeling with spatial variation  

Spatial variation essentially refers to the rules or tendencies of objectives of the research exhibited 

in a given space. Spatial variation can be represented and considered in the modeling in different 

ways. Table 1-4 summarizes reviewed studies in terms of the research sector, objective, spatial 

variation, modeling scale, and modeling method. 

There is a significant development in OB-related modeling that addresses space use. These space 

use studies considered spatial choice or individual preference based on geo-referenced data to 

determine space use (Chiou et al., 2011; Ibrahim et al., 2020). Tabak, 2009 developed a model 

called the User Simulation of Space Utilization that simulates space utilization in an office 

building by calculating the distances between the locations of different activities based on 

measured data. In addition to spatial utilization, the mobility and occupancy patterns of people 

can also be estimated based on dynamic spatial choices or preferences (Dziedzic et al., 2020; Feng 

et al., 2015; Kleinebrahm et al., 2021; Mohammadi & Taylor, 2017; Nassar & Elnahas, 2007; C. 

Wang et al., 2011). As shown in Table 1-4, the majority of the previous studies considered space 

use to integrate spatial variation into their works. Although these studies conducted analyses or 
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developed models with spatial variation, the variation in OBs over space has not been discussed.  

According to the fourth column of Table 1-4, only limited studies have used some independent 

variables related to the spatial factor to consider spatial variation during the modeling process to 

enhance the diversity of the model (Li et al., 2022). These spatial variables are usually used as the 

general variables in data-driven methods such as regression analysis and neural networks. Halleck 

Vega et al., 2022 assessed various factors, including seven spatial factor variables (e.g., urban–

rural gradient, city center, and village center), to develop a suitable policy for increasing the 

uptake of carbon emission reduction measures. They also highlighted the importance of using the 

spatial factor for designing energy policy frameworks. Marín-Restrepo et al., 2020 identified OB 

patterns in office environments through data analysis and the Chi-squared test based on spatial 

(e.g., spatial layout and occupant orientation relative to control elements) and human factor 

variables. Wilke et al., 2013 considered an independent variable that indicated whether an 

occupant lives in an urban/suburban area to simulate the starting probability of activities through 

a multinomial logit model. Okada et al., 2020 applied the same method by considering city size 

as an independent variable to simulate the probability of undertaking activities. Rafiee et al., 2019 

revealed through regression analyses that spatial context (e.g. building density and urban form) is 

a significant determinant of household heat consumption. Abbasabadi et al., 2019 presented an 

urban energy use model that captures both urban building operational energy and transportation 

energy consumption by localizing the energy performance data and considering various urban 

socioeconomic factors and spatial contexts (e.g., urban density and accessibility). 

Moreover, the scale of the modeling with spatial variation in previous studies is almost limited to 

the building or room levels as shown in the fifth column of Table 1-4. However, modeling at the 

larger scale such as the neighbor scale or urban scale can improve the understanding of urban 

energy use by informing decision-making regarding urban morphological and spatial patterns that 

can affect the city structure and subsequent building operational and transportation energy end-

uses (Abbasabadi et al., 2019). Further, developing a model that can be applied to multi-scale is 

the final goal for all related researchers.  

Based on the above-mentioned, less focus has been paid to spatial variation in the OB modeling 

at a larger scale. Spatial variation has been insufficiently represented based on the actual data in 

previous studies. Although some studies used the spatial factor, there is still a lack of modeling 

methods to better reproduce spatial variation in OBs.   
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 Studies related to spatial analysis and modeling in other fields  

Disciplines associated with the fields of epidemiology, environmental meteorology, and 

econometrics have applied sound spatial analysis methods to solve subject-specific problems. 

Epidemiological studies that analyze how health objectives are related to risk factors that vary 

geographically or predict the spatial spread range of infectious diseases are becoming increasingly 

popular (Wang, 2012; Zhu et al., 2016). The prediction of the diffusion of air pollutants and the 

prediction of precipitation or other meteorological phenomena for the unmeasured areas have 

always been the research hotspots in the environmental meteorology field (Degré et al., 2015; 

Monestiez et al., 2001; Xie et al., 2017). A lot of econometric research focused on investigating 

how the fluctuations or changes of the social-economic items of interest such as the wage or house 

price (Chasco et al., 2007; Murakami et al., 2017) varied by spatial area. This chapter summarized 

such methods used to either empirically represent the spatial variation or simulate the research 

objective with the consideration of the spatial variation. Figure 1-2 shows the summary of the 

methods. 

 

Figure 1-2. Summary of the methods for spatial analysis and modeling. 

 

Based on the mechanism and data input, the methods used in these studies can be classified as 

spatial interpolation and regression-based methods. Spatial interpolation methods simulate the 
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spatial autocorrelation of surrounding observations to represent the spatial trend of the objectives 

or to generate spatial predictions for unmeasured areas. Based on the interpolation range, models 

can be further divided into global (Nath, 2014), local (Lu & Wong, 2008; Oliver & Webster, 

2007), and boundary (Faisal & Gaffar, 2012) spatial interpolation models. The global 

interpolation model uses all observations to conduct the feather fitting for the whole study area. 

The typical method is the trend surface analysis. The local interpolation model uses the limited 

observations within a defined neighboring area to build the mathematical function that can reflect 

the changes in this neighboring space. The typical method is the inverse distance weighting 

interpolation method and the kriging interpolation method. The boundary interpolation model 

assumes that objectives within the boundary are the same (i.e. uniform and homogeneous), 

changes only occur on the boundary of the region. The typical method is the Thiessen polygon 

method. Olaf Berke, 1999 applied the trend surface analysis and universal kriging to simulate 

acid-precipitation in Lower Saxony. Olaf Berke, 2001 also developed the modified median polish 

kriging method to generate more robust spatial predictions for Wolfcamp-Aquifer. Varouchakis, 

2021 applied median polish kriging and sequential Gaussian simulation to explore the spatial 

distribution of source rock data in terms of total organic carbon weight concentration.  

In regression-based methods, they incorporate additional factors, such as sociodemographic factor 

variables, into the modeling process. According to the mathematical expression, these regression-

based models can be divided into Geographically Weighted Regression (GWR), cross-sectional 

(first-order) spatial model, and logistic spatial model three categories. The mathematical 

expression of GWR is similar to the conventional regression model, however, the calculation of 

the regression coefficients is different which involves the information of the locations (Chasco et 

al., 2007; Mcmillen, 1996; McMillen & McDonald, 1997): 

𝑦𝑠𝑖 = 𝛽𝑠𝑖,0 +∑ 𝛽𝑠𝑖,𝑘 ∗ 𝑥𝑠𝑖,𝑘
𝑚

𝑘=1
+ 𝜀 1-4 

where 𝛽𝑠𝑖,𝑘  indicates the coefficient for each variable  𝑥𝑘, (𝑥1 , 𝑥2 , … 𝑥𝑚,)  and location 

𝑠𝑖, (𝑠1, 𝑠2, … 𝑠𝑁,). Therefore the coefficient 𝛽 is not a 𝑚 × 1 dimensional vector but a 𝑚 ×

𝑁 dimensional matrix. To estimate the 𝛽 the weights should be assigned to each objective by 

different distances to the location 𝑠𝑖: 

�̃� = (𝑋′𝑊𝑠𝑖𝑋)
−1
𝑋′𝑊𝑠𝑖𝑦 1-5 

where �̃� = (�̃�𝑠𝑖,0, �̃�𝑠𝑖,1, … , �̃�𝑠𝑖,𝑘)  is the vector of estimated coefficient for location 𝑠𝑖  and 

W𝑠𝑖 = [

𝑤𝑠𝑖,𝑠1 …

0 𝑤𝑠𝑖,𝑠2

0 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… 𝑤𝑠𝑖,𝑠𝑁

] is the weighting matrix which can be defined by the inverse 
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distance function or various kernel functions (Bivand et al., 2021). Chasco et al., 2007 analyzed 

the spatially varying impacts of some conventional variables, such as unemployment rate and 

average housing price, on the per capita household income in Spanish provinces based on 

geographically weighted regression. In the cross-sectional spatial model, the spatial lags can exist 

in any parameters of the model (Arraiz et al., 2010; Bivand et al., 2021; Kelejian & Prucha, 1998). 

The mathematical expression of the cross-sectional spatial model is defined as follows: 

Y = 𝜋𝑇Υ + 𝛽𝑇x + 𝛼𝑇Wx+ 𝜆𝑇Wy+ μ 1-6 

μ = 𝜌𝑇Mμ + ε 1-7 

where y is the dependent variable on objectives, Υ and x are (endogenous and exogenous) 

independent variables, and μ  indicates the disturbance. W  and M  are defined spatial 

weighting matrices. 𝛼, 𝜆, and 𝜌 are scalar spatial autoregressive parameters. The variables Wx, 

Wy, and Mμ are referred to as spatial lags. Various models can be generated if we set different 

restrictions to the coefficients in Equations 1-6 and 1-7. Such as the spatial error model ( let 𝜋 =

𝛼 = 𝜆 = 0), spatial autoregressive model (𝜋 = 𝛼 = 𝜌 = 0), and spatial Durbin model (𝜋 = 𝜌 =

0). To solve these cross-sectional spatial models, some assumptions should be pre-defined to 

simplify the solution process and ensure the uniqueness of the solution. The spatial logistic 

regression model has a similar mathematical expression to the conventional logistic regression 

model. The only difference is that it considered the smooth function 𝑔(𝑠𝑖; 𝜃) parameterized by 

𝜃 over location 𝑠. According to different 𝑔(𝑠𝑖; 𝜃), the spatial logistic model can derive different 

models as well (e.g., generalized additive model and generalized linear mixed model) (Paciorek, 

2007). Xie et al., 2000 employed spatial logistic regression to obtain the development patterns in 

regions and to assess the prognostic capacity of the model based on several factors such as 

population density and availability of usable sites. Paciorek, 2007 compared several models for 

fitting spatial logistic regression models and suggested that the spectral basis model is the best to 

provide a good compromise between the quality of fit and computational speed for the estimation 

of the spatial surface.  

 Research gap 

As highlighted in Chapter 1.3 and revealed in the review Chapter 1.5.1, there is ample evidence 

of the significance of the OB models for simulating energy demand. Many of the bottom-up based 

energy demand models consider the OB model modules accordingly. However, the development 

framework of the OB is not well documented in previous literature. In particular, the pre-

simulation in terms of the selection of the variable used in the model and the selection of the 

parameter preparation method lack discussion. Considered variables are mainly from the 

sociodemographic and time factors. Other factors, while potentially important, were ignored. In 
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addition, the majority of the parameter preparation methods are sample distribution or fitted 

distribution based. These choices of the OB model design result in poor performance in terms of 

diversity.  

Further, while diversity has been recognized as an essential cause resulting in the performance 

gap, the deeper investigation and the practical application in the OB model have not been 

implemented yet. In particular, spatial variation in OBs has attracted more and more attention, but 

little relevant progress has been made. Most of the research only concerns the space use or the 

mobility of the occupants, the variation in OB over space is not within the scope of their study. 

Further, proper methods to deal with the spatial variation have been sparsely considered and 

applied in the energy field although other fields have already developed some robust spatial 

analysis methods. These insufficient considerations of diversity in OBs can lower the impact of 

the occupants on building energy performance and create less accurate energy consumption 

estimations. 

  Aims and objectives 

Based on the aforementioned research gap, this thesis aims to improve the OB model by analyzing 

and evaluating the modeling process, especially the underrated pre-simulation process thus 

providing reference guides for designing the OB model framework. In particular, this thesis 

intends to develop new OB models that can incorporate spatial variation into the modeling process 

thereby better enhancing the diversity among simulated occupants in a given space.  

Three objectives are studied related to the research aims: 

1) Address research questions on which variables should be considered and what is the most 

appropriate parameter preparation method to improve the pre-simulation process of OB 

modeling. 

2) Address research questions on whether spatial variation and historical change exist in OB, 

whether variables can represent spatial and temporal variations, and whether the conventional 

modeling method can reproduce the spatial variation. 

3) Address research questions on when spatial variation exists in OB, how can spatial variation 

in OB be represented quantitatively, and how can spatial methods reproduce spatial variations 

in OB to develop a new method for OB modeling with consideration of spatial variation. 

 Contributions 

The overall research studies would be beneficial in numerous ways to the people who are 

committed to the residential energy sector both in academia and industry. 
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First of all, one of the contributions of the work connected to this thises is the comprehensive 

summary of the review literature. As shown in Chapter 1.5.1, the summary of the use of the 

modeling method, variables, and engine are given. It contributes to existing knowledge on the 

development of OB models underpinning energy demand simulation. It also contributes to further 

understanding of the impact of the significant factors on building energy consumption. More 

importantly, it reveals the significance of pre-simulation, as the existing studies had seldom paid 

attention to the design of the framework of an OB model or energy demand model with the 

consideration of the OBs. In addition, based on the review in Chapter 1.5.1, a further investigation 

and a deeper discussion of the pre-simulation process were conducted. These contribute to 

explaining the reason for the selection of the engine, model method, and parameter as well as their 

combination which are rarely explained in the literature thereby providing useful references and 

model development direction for other researchers.  

Furthermore, the most important contribution is the development of the methodology — OB 

modeling incorporating spatial variation. Previous studies have pointed out the importance of 

diversity. However, most of the studies just stop at the discussion aspect of how to enhance 

diversity. According to Chapter 1.5.2, diversity especially for the spatial variation was 

insufficiently represented based on the actual data in previous studies. Although some studies 

used spatial factor variables, there is still a lack of modeling methods to better reproduce spatial 

variation in OBs. To address the research gap, this thesis developed new OB models incorporating 

spatial variation to better reproduce the spatial variation in OBs. The new OB model broadens the 

knowledge of diversity and highlights its significance for the engineering field. Moreover, the 

outcomes of the model will beneficial to engineering and environment professionals to simulate 

energy demand and design policy advocacy. Further, the present methodology to consider the 

diversity in this thesis can be investigated not only for modeling OBs but also for modeling and 

analyzing the adoption of appliances or other objectives of the research. 

In short, the contributions of this thesis are highlighting the importance of the pre-simulation 

process of OB modeling as well as successfully developing new OB models that can consider 

spatial variation. For the above-mentioned reasons, this thesis provides great contributions toward 

more advanced OB modeling underpinning the energy demand simulation and moves forward the 

state-of-the-art in the field. 

 Thesis outline  

The work consists of seven chapters. Figure 1-3 presents the overall flow of the thesis. As shown 

by the figure, Chapters 2–4 revolve around the research objectives to fill the research gap 

mentioned in Chapter 1.6 respectively. 
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Figure 1-3. Thesis structure. 

 

Chapter 1 centers on introducing the energy use and energy demand modeling in the residential 

sector, the role of OB in energy demand modeling, the development of OB modeling, and 

diversity in OBs. Then a critical literature review to summarize the methods of OB modeling or 

energy demand modeling with consideration of OBs, and methods of spatial analysis and 

modeling in both the engineering field and other fields is given. Based on the review, the research 

gap was found. Finally, the overall objectives and the framework of research targeting the 

assessment of OB model performance and development of the model that can involve spatial 

variation are outlined. 

Chapter 2 presents a case study to highlight the importance of the design of the pre-simulation 

process based on single-year American time use survey (ATUS) data. It covers the two vital sub-

processes in the pre-simulation thus evaluating their corresponding impact on OB model 

outcomes.      

Chapter 3 and Chapter 4 present analyses related to spatial variation in OBs based on multiple-

year ATUS data. In Chapter 3, the spatial analysis method learned from the geostatistics field was 

applied to assess the performance of the OB model that was selected based on the results from 

Chapter 2. The existence of the spatial variation and the historical change is confirmed by the 

spatial analysis method. 
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Chapter 4 proposes the research method to develop the new OB models incorporating spatial 

variation. This chapter includes the theoretical concepts of the spatial analysis and modeling 

methods reviewed in previous studies, as well as the implementation of the new model (i.e., the 

data collection, the tool, the evaluation standard).  

Chapter 5 presents a combined in-depth discussion of the preceding chapters, giving an overview 

of the complex nature of the OB modeling systems that were analyzed. The chapter highlights the 

significance of the design of the OB modeling and put forwards the pre-conditions and appropriate 

ways to involve spatial variation in the OB modeling process. The limitation and future work are 

also discussed. 

Chapter 6 presents the achievement of research objectives, research conclusions, and research 

contributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 

 

2 Impact of the pre-simulation process of occupant behavior modeling for 

residential energy demand simulations 

 Purpose 

OB models play an important role in building energy demand modeling. As OBs can control the 

operation status of energy-consuming appliances, reflect the occupancy status of the rooms or 

buildings which helps to evaluate the regular energy system, and adjust the indoor environment 

to meet the needs of the occupants. Useful simulation algorithms for OB modeling have been 

developed in previous studies as summarized in Chapter 1.5.1. However, previous studies have 

generally focused on model engines. Less attention has been paid to the pre-simulation process, 

even though it has a significant influence as analyzed in this chapter. Although existing OB 

models have used various pre-simulation processes, the reason for choosing a pre-simulation 

process is not well documented, and alternative methods are rarely compared to improve model 

performance. To obtain better OB models, the following questions which were mentioned in 

Chapter 1.7 should be addressed by model developers and users: (1) which variables should be 

considered, and (2) what is the most appropriate parameter preparation method. None of the 

previous studies have addressed these questions.  

The study in this chapter aimed to provide a reference for addressing the aforementioned two 

research questions and to improve the pre-simulation process of OB modeling. To this end, this 

study evaluated how model performance is affected by changes in the pre-simulation processes. 

Through cross-comparison, this study provided a better understanding of the influences of the 

selection of variables and parameter preparation methods on OB model performance. The study 

also provides recommendations for developing improved OB models for different application 

contexts. Chapter 2.2 introduces the methods and materials used in this study. The results are 

presented in Chapter 2.3, Chapter 2.4 discusses the findings, and Chapter 2.5 concludes this study. 

 Data material and methodology 

This study considered the development of a discrete-event model that stochastically generated an 

activity sequence as the model objective. The model used two modeling parameters: 1) the starting 

probability of activities and 2) the statistical distributions of activity durations. The activity 

sequence was stochastically generated by a model engine that repeats two processes: 1) selection 

of an activity that starts at the first vacant time slot by random selection based on the activity-

starting probability, and 2) selection of the duration of the selected activity based on the statistical 

distribution of the activity duration. An example of this model can be found in the studies of 

Wilke et al., 2013 and Okada et al., 2020. The time resolution of the OB model was dependent on 

the unit length of the activity-duration modeling. For example, it was 5 min when the activity 
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duration was modeled using the cumulative probability distribution quantified with a 5-min 

interval. The studies confirmed that this modeling framework is capable of producing realistic 

temporal sequences of activities (Wilke et al., 2013) and differentiating them by considering 

various influencing factors in the modeling of the starting probability and statistical distribution 

of activity durations (Okada et al., 2020). Although the original TUD can be used as an input for 

a building energy demand model, the use of the OB model is beneficial when applied to a large 

number of households; for example, in urban and building stock energy models.  

This study only considered the activity-starting probability for the evaluation of the impact of the 

pre-simulation process and did not include the simulation process using the model engine. The 

activity-starting probability, which is used in the first process of the activity sequence generation 

in the discrete-event OB model, represents the composition of the probabilities for selecting each 

target activity. This study quantified the activity-starting probability within each of the individual 

24 h intervals of the day based on a parameter preparation method. The evaluation procedure is 

illustrated in Figure 2-1.  

 

Figure 2-1. Analysis procedure.  
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This study used the TUD collected from the ATUS in the year 2018. The ATUS is sponsored by 

the Bureau of Labor Statistics and conducted by the U.S. Census Bureau. The TUD was first 

randomly divided into training and test sets. The training set comprised 70% of all TUD used to 

develop models that estimated the activity-starting probability for simulated occupants. We 

developed nine models based on the training set, combining three evaluation cases and three 

parameter preparation methods. The evaluation cases, Cases 1–3, were designed to have different 

combinations of variables considered in the parameter preparation method to evaluate the impact 

of variable selection on the model performance (explained in Chapter 2.2.2). To evaluate the 

impact of the selection of the parameter preparation method, we considered three methods 

(Chapter 2.2.3): 1) a multinomial log-linear regression (MLR), 2) support vector machines 

(SVMs), and 3) a feedforward artificial neural network (ANN). The remaining 30% of the TUD 

was used as the test set to evaluate the performance of the developed models for validation. In the 

validation, the nine developed models were applied to the test set to quantify several performance 

indicators, and the performance was cross-compared based on well-designed indicators (Chapter 

2.2.4). 

 Data  

The ATUS collected time use diaries for 24 h beginning at 4:00 on a survey day from 9,370 

individuals. The diary contains activity codes representing the activity performed and the times 

at which the activity started and ended. Table 2-3 in Appendix A. ATUS data record shows an 

example of the ATUS data. The ATUS data use 18 major activity categories with hundreds of 

subcategories. The ATUS data contain the identification number used in the current population 

survey data that contain the demographic attributes of individuals. Using the identification 

number, demographic attributes are attached to the activity data.  

For the modeling, we converted the activity code in the ATUS data into 25 activities listed in 

Table 2-1 such that each category had similar appliance usage, and the activity locations could be 

grouped as indoor or outdoor. It should note that the text in the brackets is the abbreviation of the 

corresponding activity. Activities 1–10 and 14–21 were indoor activities. Activities 11–13, 22, 

and 23 were outdoor activities. Activity 24 is an unspecified personal or private activity performed 

at an unspecified location. Activity 25 involves activities that are missing for various reasons (for 

example, survey participants refused to provide information, and an activity code could not be 

assigned). Based on these features, we classified the activities into activity clusters C1–C5 as 

listed in Table 2-1 to be referred to in the results chapter. C1 includes basic life activities such as 

sleeping, eating, drinking, and personal care activities that occur indoors. C2 contains indoor 

housework activities. C3 contains work and study activities. C4 and C5 contain other indoor and 

outdoor activities, respectively. 
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Table 2-1. Activities and codes used in this study.  

Cluster Code Activity Cluster Code Activity 

C1 1 Eating and drinking 

(Eating&D) 

C4 

 

14 Computer 

2 Personal care 15 Telephone 

3 Sleeping 16 Television 

C2 4 Laundry 17 Household and personal management 

and planning 

(Plan&M) 

5 Caring 18 Leisure and hobby (Leisure&H) 

6 Housework 19 Sports 

7 Food preparation and presentation 

(FoodP&P) 

20 Religious, volunteer, and civic 

activities (Religious&VC) 

8 Kitchen and food clean-up 

(Kitchen&FC) 

21 Shopping and using services 

(Shopping&S) 

C3 9 Paid work or job 

(Work&J) 

C5 

 

22 Appliances for outside 

(Appliances_O) 

10 Studies, school work, and research 

(Studies&WR) 

23 Other outside activities 

(Other act_O) 

11 Paid work or job outside 

(Work&J_O) 

- 24 Personal activities  

 (Personal act) 

12 Studies, school work, and research 

outside 

(Studies&WR_O) 

- 25 Missing 

13 Commuting and school 

(Commute&S) 

   

 

As this study quantified the activity-starting probability using a 1 h interval, the activity records 

were classified into 24 groups based on the clock time as threshold values. For each group, the 

parameter preparation method was applied independently. However, we combined the time 

intervals from 0:00 to 5:59 to ensure that the events per variable (the number of activity records 

of each independent variable) was 10 or larger (Concato et al., 1995) for each activity. Figure 2-2 

shows the number of observations in each time interval. As shown, the sample size at intervals 

from 1:00 to 4:59 was smaller than 1,000. When the parameter preparation methods were applied 

to this interval, five dummy variables representing each of the intervals from 0:00 to 4:59 were 

considered with 5:00–5:59 as the reference category. Appendix B evaluated the influence of the 

combined time intervals. 
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Figure 2-2. Number of observations at each time interval. 

 

 Case design 

As shown in Figure 2-1, we designed three cases (i.e., Cases 1–3) characterized by the number 

and type of selected variables considering three levels of variables. The first level comprised the 

eight influencing factors explained in Chapter 1.5.1. The second level comprised variables 

included in the TUD, such as age. The third level consisted of independent variables input during 

the application of the parameter preparation methods. For example, we created three dummy 

independent variables representing young people 10–29 yrs, middle-aged 30–59 yrs, and seniors 

60 yrs or older based on the age variable. Table 2-4 in Appendix C. Variables considered in the 

examined cases lists the variables and independent variables considered in this study. 

Table 2-2 lists the type of variables, the number of variables, and the independent variables 

considered in each case. Case 1 contained the fewest variables and considered only the basic 

variables of the demographic and time factors. These six basic variables have been commonly 

used in existing OB models (Anderson, 2016; Diao et al., 2017; Fischer et al., 2015; Okada et al., 

2020; Wilke et al., 2013).  

Case 2 contained the variables considered in the models of Wilke et al., 2013 and Okada et al., 

2020. Case 2 newly considered the ownership of the housing unit in the demographic factor and 

the metropolitan status in the geographical factor. The number of variables representing the 

demographic, time, and geographical factors increased to 14 and the number of independent 

variables increased to 26.  

Case 3 assumed a situation in which as much available information as possible was considered in 

the modeling to include those rarely used in existing OB models and considered the variables in 

the remaining three influencing factors. The employment status of a spouse was from the 

demographic factor, the ownership of a telephone was represented as the appliance factor, and the 
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other four variables, such as the type of person accompanying an occupant, were represented by 

the activity factor. The number of independent variables was 67.  

Table 2-2. Number and type of variables considered in cases. The definition of the variables is 

listed in Table 2-4 in Appendix C. 

Item Case 1 Case 2 Case 3 

Demographic Individual Age, gender, 

education, and 

employment 

Variables considered 

in Case 1, occupation, 

health, and race 

Variables considered in 

Case 2 and student 

Household Num_people Num_people, 

children, and income 

Num_people, children, 

and income  

Housing  Housing Housing 

Other members   Spouse employment 

Time Diary day Diary day and holiday Diary day and holiday 

Activity   Time_care, num_people 

accompany, 

type_people 

accompany, and 

previous activity  

Geographic  Metropolitan Metropolitan and region 

Appliance   Telephone 

Number of variables / independent 

variables 

6 / 8 14 / 26 22 / 67 

 

 Methods of parameter preparation 

The activity-starting probability was modeled using three parameter preparation methods: 1) a 

MLR following (Wilke et al., 2013), 2) SVMs with a Gaussian radial basic kernel function (Jiawei 

Han, Micheline Kamber, 2014), and 3) a feedforward ANN with a backpropagation algorithm 

and one hidden layer. Generally, for an ANN, a single layer with an optimal number of neurons 

is sufficient for many practical problems (Goh, 1994; Rafiq et al., 2001). The number of neurons 

in the hidden layer was determined using 𝑚 = log2 𝑛, where m is the number of neurones in the 

hidden layer, and n is the number of neurones in the previous input layer, which should be between 

the number of input and output neurones (Sheela & Deepa, 2014). 

Our intention was not to find the best method for modeling activity-starting probability but to 

evaluate how model performance changes with the selection of the method. Thus, we chose MLR 

because it has been widely used in OB modeling and is easy to develop. SVM and ANN were 

selected as potential alternatives capable of dealing with nonlinear relationships.   

We applied the stepwise method to select variables for MLR, as in most previous studies. All of 

the variables were used to develop the models using the ANN because it required large-scale data 

and did not require feature extraction. For the SVM, we applied stepwise and LASSO regression 
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(Ranstam & Cook, 2018) in addition to the model using all variables to determine whether feature 

extraction was required for the TUD. 

 Model performance assessment  

We assessed the model performance using five performance indicators related to three aspects. 

The first aspect was the reproducibility of the average activity-starting probability, which is 

crucial for obtaining a realistic average energy demand. To evaluate the reproducibility, we used 

the root mean squared error (RMSE) defined as 

RMSE =  √
∑ ∑ (𝜀𝑡,𝑚)

2𝑀
𝑚=1

𝑇
𝑡=1

𝑇 ∗ 𝑀
= √

∑ ∑ (𝑝𝑜𝑏𝑠𝑡,𝑚 − 𝑝𝑒𝑠𝑡𝑡,𝑚)
2𝑀

𝑚=1
𝑇
𝑡=1

𝑇 ∗ 𝑀
 

2-1 

where RMSE quantifies the average error between observation and estimations for all activities 

and time intervals, 𝑡 is the time interval (T = 24), 𝑚 is the activity (M = 25), 𝑝 is the activity-

starting probability, and 𝜀 denotes the error.  

The second aspect was diversity, which assesses how well the model represented the variation in 

OBs among the simulated occupants. We used two performance indicators. The first was the mean 

standard deviation (MSD) calculated as 

MSD =
∑ ∑ |𝑆𝐷𝑒𝑠𝑡𝑡,𝑚|

𝑀
𝑚=1

𝑇
𝑡=1

𝑇 ∗ 𝑀
 2-2 

where 𝑆𝐷𝑒𝑠𝑡𝑡,𝑚  is the standard deviation of the estimated probability among the sample for 

activity m at t. MSD measures the average amount of variation or dispersion of the estimates for 

all combinations of activities and time intervals.  

The weakness of MSD is that it does not quantify the goodness-of-fit with the observations. To 

overcome this weakness, we considered a second indicator based on the Hosmer–Lemeshow test 

which is often used to evaluate the goodness-of-fit in logistic regression models. In the test, the 

samples were divided into several groups after sorting the samples according to the estimated 

probability from the lowest to the highest. Then, the statistical difference in the probability of 

each group was tested between the estimation and observation. However, this method is not 

effective when the occurrence of the model objectives is low (Paul et al., 2013) and it is 

inapplicable to activities with a low starting probability. Therefore, we designed an indicator that 

measured the RMSE between the averaged estimated probability and averaged probability of 

observations of subgroups as in the Hosmer–Lemeshow test, named RMSE_GA and calculated 

as 
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RMSE_GA =
√∑ ∑ ∑ (𝑀𝑒𝑎𝑛𝑡,𝑚,𝑔(𝑃𝑒𝑠𝑡) − 𝑀𝑒𝑎𝑛𝑡,𝑚,𝑔(𝑃𝑜𝑏𝑠))

2
𝐺
𝑔=1

𝑀
𝑚=1

𝑇
𝑡=1

𝑇 ∗ 𝑀 ∗ 𝐺
 

2-3 

where 𝑔 indicates the subgroups created based on the estimated probability of the test set. For 

activity m at t, we sorted the test set according to the estimated probability and then equally 

divided it into 10 subgroups (𝐺 = 10 as often used in the Hosmer–Lemeshow test) for all methods. 

This indicator quantified the difference in the distribution of observation and estimation, thereby 

assessing diversity.  

The third aspect was the reproducibility of individuals’ activities; that is, individual specificity. 

Individual specificity is important to accurately predict an individual’s activities. The accuracy 

and F1 score were used to evaluate individual specificity, respectively defined as 

accuracy =
1

𝑇
∑

𝑁𝑝𝑟𝑒𝑑𝑡
𝑁𝑡𝑜𝑡𝑎𝑙𝑡

𝑇

𝑡=1
 2-4 

F1 score =  
1

𝑇
∑

2 Precision𝑡 ∗ Recall𝑡
Precision𝑡 + Recall𝑡

𝑇

𝑡=1
 2-5 

where 𝑁𝑝𝑟𝑒𝑑𝑡  indicates the number of correctly predicted cases at t. The accuracy measures the 

percentage of all correctly predicted cases. For prediction, the activity with the highest starting 

probability was selected. The precision and recall values of the F1 score were extracted from the 

confusion matrix. The F1 score measured incorrectly classified cases, which is an important 

metric when misprediction is costly. 

 Results 

 Average performance 

Figure 2-3 (a) shows the sample distribution of the starting probability in the test set. Figure 2-3 

(b)–(f) show the average of the activity-starting probability estimated by the three methods of 

Case 1. No evident differences were observed with the sample distribution. This result indicates 

that all of the models reproduced the average starting probability of the test set in Case 1. Similar 

results were obtained for Cases 2 and 3. 

Figure 2-4 shows that the RMSE for all developed models was less than 1%. This scale of error 

is much smaller than that originating from the simulation processes of OB (in the middle of Figure 

1-1) and building energy demand, which generally has an RMSE error greater than 10%. For 

example, the error of Yamaguchi & Shimoda, 2017 was 10%–20% for multiple activities. The 
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error of Naspi et al., 2018 for the window-closing action was 15%. The RMSE for modeling the 

energy use of appliances in a low-energy house in the work of Candanedo et al., 2017 was greater 

than 65%. The most notable result is that the MLR and ANN had lower RMSE values than that 

of the SVMs. Case 3 had the smallest RMSE among all methods. The improvement in Case 2 

from Case 1 was limited to the MLR and ANN. The effect of the SVM was significant when 

stepwise and LASSO regression were adopted for the selection of independent variables. 

 

Figure 2-3. Starting probability of activities at the time of day. Each colored area indicates the 

probability of an activity indicated by the graph legend (Table 2-1). Figure (a) shows the 

proportion of activities observed in the test set. Figures (b)–(f) show those estimated for the test 

set in Case 1.  
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Figure 2-4. RMSE of developed models. 

 

 Diversity performance 

As shown in Figure 2-5, the MSD for all developed models was smaller than 7%. The MSDs of 

MLR and ANN were higher than those of the SVMs. The MSD of Case 3 was higher than that of 

Cases 1 and 2, and a small improvement was observed from Case 1 to Case 2. This result indicates 

that the newly considered variables in Case 3 enhanced the diversity. 

 

Figure 2-5. MSD of developed models. 

 

Figure 2-6 shows the sorted probability of watching TV, kitchen, food clean-up, and sleeping at 

the representative hours of the day estimated by the MLR in Case 3 (red lines). The figure also 

shows the averaged probability in the 10 subgroups made by the MRL in Case 3 as explained in 

Chapter 2.2.4. The black line indicates the observations of the test set. All of the methods in Case 
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3 fit well with the averaged probabilities regardless of the activity. Compared to Case 3, the 

averaged probabilities of Cases 1 and 2 did not fit well with the subgroups in the test set. The 

most obvious example was sleeping, which ranged from 41% to 53% for all subgroups in Case 1 

and ranged from 43% to 54% in Case 2. 

 

Figure 2-6. The activity-starting probability of the 10 subgroups created by sorting the samples 

based on the probability estimated by the Case 3 MLR-based model are indicated by the red line. 

The nine figures indicate the result of watching television, kitchen and food clean-up, and sleeping 

at the representative time intervals of 10:00, 18:00, and 23:00, respectively. The horizontal axis 

indicates the number of sorted samples. The black line indicates the average of the observation. 

The other colored lines indicate the results of the models.  

 

However, this result did not indicate that Cases 1 and 2 did not fit the test set. Figure 2-7 shows 

the same results using the subgroups created based on the probability estimated by the MLR in 

Case 1. All the models fit well with the averaged probabilities of the subgroups in the test set 

shown in Figure 2-7. However, the ranges of the starting probability of all three representative 

activities were smaller than those of Case 3 in Figure 2-6, which is consistent with the MSD 
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results. This result indicates that less diversity was produced in Cases 1 and 2 compared to that 

of Case 3. 

 

Figure 2-7. Activity-starting probability of the 10 subgroups created by sorting the samples based 

on the probability estimated by the Case 1 MLR-based model (indicated by the red line).  

 

Figure 2-8 shows the base-10 logarithms of the estimated and observed probabilities of the test 

set for all combinations of activities, time intervals, and subgroups. The subgroups were divided 

based on Case 3 MLR. According to Figure 2-8 (a) and (b), the distribution was scattered owing 

to the error as shown in Figure 2-6. The figures present two R² values obtained with and without 

the transformation of the base-10 logarithm (R²log and R², respectively). The R² was 0.48 for the 

MLR and ANN in Case 1 without logarithmic transformation, and 0.36 and 0.35, respectively, 

with the transformation. Figure 2-8 (c) and (d) indicate that the Case 3 models fit the test set well, 

although there were discrepancies in the range with probabilities less than 0.01. These 

discrepancies are acceptable as the probabilities were very small because the figures are shown 

as a base-10 logarithm. R² was 0.99 for the MLR and ANN in Case 3 without logarithmic 

transformation, whereas the R²log values with the transformation were 0.48 and 0.73, respectively. 
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Therefore, the Case 3 models were more capable of enhancing the diversity range and reproducing 

the distribution of probability among the simulated occupants differentiated by the considered 

variables. This result was confirmed by the RMSE_GA.  

 

Figure 2-8. Averaged starting probability of activities estimated and observed in the subgroups 

created based on the estimation of the Case 3 MLR-based model. The horizontal axis shows the 

observed probabilities, and the vertical axis shows the estimated probabilities. The black line 

indicates the reference line 𝑦 = 𝑥. Each dot indicates a combination of the activity, time interval, 

and subgroup. Logarithmic transformation was conducted in the range (−4, 0) × (−4, 0). 

 

Figure 2-9 shows the RMSE_GA results, including all developed models with the subgroups 

created according to the estimated probabilities in Case 3. We found that all methods had the 

smallest RMSE_GA in Case 3, particularly the MLR. These results further demonstrate that Case 

3 had higher diversity and better characterized the probability distribution in the test set. Cases 1 

and 2 had similar RMSE_GA results, implying that the newly added variables in Case 2 did not 

enhance the diversity. 
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Figure 2-9. RMSE_GA for developed models when subgroups were divided based on Case 3. 

 

 Individual specificity performance 

Figure 2-10 shows the results of the individual specificity performance. All of the parameter 

preparation methods had similar accuracies, and Case 3 had the highest accuracy (53% for MLR 

and SVM, 52% for ANN). Cases 1 and 2 exhibited similar accuracies. However, the accuracies 

of all developed models were less than 60%, which is smaller than that in other fields that conduct 

multi-classification (Silva-Palacios et al., 2017). The F1 score showed similar results in Cases 1 

and 3. The SVMs had a higher F1 score than the ANN and MLR, particularly in Case 2. The F1 

score deteriorated from Case 1 to Case 2 for the MLR, ANN, and stepwise SVM. Combining the 

two indicators, Case 3 had better individual specificity performance than the other cases. 

 

Figure 2-10. Accuracy and F1 score of developed models. 
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 Significant variable 

In this subchapter, the variables with a significant influence on the activity-starting probability 

are analyzed based on the MLR in Case 3, which provided the best performance for all three 

aspects of model performance. We applied the Wald test to calculate the P-values of the regression 

coefficients in the MLR model and evaluated the independent variables as to be significant when 

P-value < 0.05. A significant influence of a variable on target activity was recognized when the 

regression coefficient of one or more independent variables of the variable is significant. 

Figure 2-11 shows the combination of activities and times of day at which a significance was 

observed in the six representative variables which were widely considered in previous studies —

gender, diary day (weekends or weekdays), employment status, presence of children, number of 

people, and student status. The gender variable showed the significance of indoor activities in 

activity clusters C2 and C4 at most time intervals. The dairy day variable was significant for most 

of the activities during the daytime from 6:00 to 18:59. The employment status variable was 

significant in most of the time intervals, except those from 20:00 to 23:59 for most activities, 

particularly activities in C3. The presence of children, number of people, and student status 

variables were only significant for several activities in limited time intervals. Therefore, the 

significance of these commonly used variables differed depending on the activity and time of day. 
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Figure 2-11. Significance of representative variables for a combination of activities (shown 

vertically) and time intervals (shown horizontally). Red cells indicate that the variable was 

significant in the combination, and dark red cells indicate an activity considered as a reference 

category in the MLR for which the significance of the variables could not be obtained. 
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Figure 2-12 shows the significance of all variables on the horizontal axis for the activities shown 

on the vertical axis. We identified the following significant relationships: 

 The variables in the demographic factor for both individuals (variable ID 1, 2, and 4 on the 

horizontal axis) and the household (7), time (6), and activity factors (20–22) had a significant 

influence on the activities in all of the activity clusters C1–C5 because they had large circles. 

Contrary to our expectations, variables 9 and 17 of the geographic factor were insignificant.  

 Activity clusters C1, C2, and C4 included activities conducted indoors. In addition to the 

variables mentioned above, the other variables in the demographic factor such as health status 

(12), race (13), and ownership of housing unit (14) showed significance for many activities. 

The time spent providing secondary care for children younger than 13 years (16) in the 

activity factor and the ownership of a telephone (18) in the appliance factor also had 

significance. 

 Activity cluster C3 included activities conducted both indoors and outdoors. The work and 

education variables in the demographic factor such as education (3), occupation (10), health 

status (12), and student status (19) showed significance. 

 Activity cluster C5 included activities conducted outdoors. Except for variables (20–22) in 

the activity factor, all other variables were significant at limited time intervals for these 

activities.  

The horizontal axis in Figure 2-12 indicates the case in which the variables were included. We 

observed that most of the variables in Case 1 significantly influenced most activities. However, 

the circle sizes of the newly added variables in Case 2 were relatively small; therefore, Case 2 

had a similar performance to that of Case 1. Case 3 included three highly significant variables in 

the activity factor: the number of people accompanying (20), type of person accompanying (21), 

and previous activity (22).  
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Figure 2-12. Significance of variables for each activity observed in the MLR of Case 3. The 

horizontal axis lists the variables, and the vertical axis lists the activities in which the clusters 

were labeled. The circle sizes ranging from 0.0 to 1.0 indicate the number of time intervals in 

which a variable significantly affected an activity (1 indicates all time intervals). The blue circles 

indicate that the variable had a significant effect during the period from 0:00 to 5:59.  

 

 Discussion 

 Summary of results 

Figure 2-13 shows a summary of the three examined aspects of model performance for all 

developed models using representative indicators. Regarding the average performance, the MLR, 

ANN, and SVM methods had similar results in all three cases in terms of the RMSE. The 

maximum difference within each case was 0.3%, whereas that among the cases was 0.4%. 

Regarding the diversity performance, Case 3 had the lowest RMSE_GA, and all of the methods 

had similar performances in each case. The individual specificity performance represented by 
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accuracy was similar among the methods and was low even in Case 3 with the highest accuracy, 

53%. 

 

Figure 2-13. Results of representative indicators of developed models. 

 

Therefore, MLR, ANN, and SVM are all acceptable methods for OB modeling when the 

reproducibility of the average probability is important, regardless of the considered variables. 

Case 3 considering many variables exhibited the best diversity performance. These results 

indicate that consideration of important variables enhances the reproducibility of diversity in OB. 

However, simply increasing the considered variables may not guarantee improvement in 

performance as observed in Case 2. 

Regarding the reproducibility of individual activities, all methods showed poor performance. This 

result implies that the examined methods cannot deliver a model with high accuracy using ATUS 

data. This is reasonable because 1) we only assessed the correctly predicted cases (same as the 

true positive cases in binary classification) since true negative cases cannot be directly obtained 

by the multi-classification method, and 2) the input variables were not sufficiently detailed to 

predict individual activities. 

 Determination of the most appropriate parameter preparation method 

As mentioned in Chapter 2.4.1, all of the methods had similar performances and were sufficient 

for OB modeling in terms of the reproducibility of the average probability and diversity. However, 

from a more practical perspective, stepwise MLR was useful when only a small number of 

independent variables were considered as illustrated in Case 1. When considering a larger number 

of independent variables, ANN was useful because the feedforward ANN with a simple structure 

obtained similar results to the stepwise MLR with a much shorter run time because the ANN did 

RMSE RMSE_GA accuracy

MLR 0.5% 8.2% 36%

ANN 0.5% 8.2% 36%

SVM 0.8% 8.4% 36%

MLR 0.5% 8.1% 36%

ANN 0.5% 8.1% 36%

SVM 0.8% 8.4% 36%

MLR 0.4% 1.3% 53%

ANN 0.4% 1.7% 52%

SVM 0.6% 2.6% 53%

Case Method
Representative performance indicator

Case1

Case2

Case3
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not require a feature extraction process. 

As discussed in Chapter 2.4.1, the examined methods cannot deliver a model with high accuracy 

using ATUS data. Therefore, other modeling approaches (e.g., Kleinebrahm et al., 2021) should 

be employed when individual specificity is considered.  

In addition, at time intervals during the night that contained a small number of samples, all models 

showed noticeably larger errors compared to the other intervals because the TUD was unbalanced. 

Consequently, we recommend combining modeling time intervals or applying advanced 

techniques such as resampling or bootstrap to generate new reliable samples (Raudys & Jain, 

1991) when the sample size is limited. 

 Determination of variable to be considered 

Many previous studies have considered only the basic variables in the demographic and time 

factors. This approach enables the construction of OB models capable of reproducing the average 

probability as shown by the RMSE of the average performance. More variables should be 

included when diversity needs to be reproduced. However, the consideration of more variables 

does not guarantee an improvement in the model performance as indicated in Case 2. The model 

performance is improved only when highly significant variables are considered. Therefore, we 

recommend setting a reference group that includes the basic variables from previous studies to 

test whether the newly considered variables are worthy of being included in the modeling. 

The results in Chapter 2.3.4 indicate that complex relationships exist among the activities, 

variables, and time of day. For example, the significance of basic variables in the demographic 

and time factors varied greatly with respect to the activity and time of day. The relationships 

should be reflected in the variable selection to better express diversity. Although variables in the 

activity and appliance factors (e.g., the type of person accompanying the occupant(s) and 

ownership of an appliance) were rarely considered in previous models. These factors have a 

significant impact on diversity. 

 Limitation 

This study targeted only the activity-starting probability parameter for OB modeling and assumed 

that the other parameters would have similar results. We developed models with whole samples, 

although many existing OB models conducted segmentation as indicated in Table 1-1. Part of 

the bias or diversity among the subpopulations was ignored in this study. In addition, only OB-

related performance indicators were used to evaluate the cross-comparisons. Indicators for 

measuring the influence of the OB model on the energy demand simulation were not included. 
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Another limitation was that we were unable to test the different cases combined with the different 

parameter preparation methods on big data because of data limitations. Advanced methods such 

as multilayer ANNs and other time-series methods may provide better performance (Calis et al., 

2017; Kleinebrahm et al., 2021). 

 Conclusion 

OB models have several modeling parameters (e.g., activity-starting probability) prepared to 

simulate the occupants in the pre-simulation process. The method used to quantify these modeling 

parameters for building occupants has a significant impact on the performance of OB models and 

subsequent energy demand models. However, the impact of the pre-simulation process of OB 

modeling has received less attention. A literature review of the existing OB models revealed that 

modeling parameters have been predominantly quantified based on a sample-based approach; i.e. 

using a sample distribution. Variables considered in the parameter preparation method were 

limited to basic demographic and time factors, and the selection of the methods and variables was 

not comprehensively designed. Therefore, this study elaborated on the pre-simulation process of 

OB modeling and evaluated how the design of the pre-simulation process influenced the average, 

diversity, and individual specificity performances, whereas previous studies mainly focused only 

on the average performance. Our analysis results showed that all the considered methods (MLR, 

ANN, and SVM) effectively reproduce the average activity-starting probability of a population 

with the basic variables of the demographic and time factors. An increase in the consideration of 

significant variables contributed to enhancing the reproducibility of diversity. Regarding the 

reproducibility of individuals’ activities, the methods did not perform well, even with many 

variables. Furthermore, based on these findings, we offer the following practical 

recommendations for improving the pre-simulation process: 

1. MLR with stepwise variable selection is the most practical method for cases in which the 

number of independent variables in the TUD is small. However, when the number of 

independent variables is large, the use of ANNs or other data-driven methods is more 

practical. 

2. There is a complex relationship among variables, activities, and the time of day. Representing 

such relationships contributes to enhancing diversity in OB modeling. For activity modeling, 

in addition to basic variables in the demographic and time factors, variables in the activity 

(e.g., previous activity) and appliance (e.g., appliance ownership) factors are significant. 

3. It is beneficial to use a reference model with a widely used parameter preparation method 

that considers basic variables to assess the pre-simulation process. 
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 Appendix 

 Appendix A. ATUS data record 

Table 2-3. Example of original ATUS records. 

Case ID Age Start time End time Act code Loc code 

20180101180006 4 4:00:00 8:00:00 10101 -1 

20180101180006 4 8:00:00 12:00:00 120303 1 

20180101180006 4 12:00:00 12:10:00 181101 12 

20180101180021 5 4:00:00 10:30:00 10101 -1 

20180101180021 5 10:30:00 12:30:00 120303 1 

20180101180054 7 10:00:00 10:01:00 70103 7 

20180101180096 4 15:00:00 15:15:00 180301 14 

Note: the age variable has eight categories; the numbers in bold in the Act code are the main activities of 18 

categories. The Loc code has 26 categories for locations and -1 denotes missing values. 

 

 Appendix B. Evaluation of the effect of the combination of time intervals 

Figure 2-14 shows the results of RMSE, MSD, and accuracy (defined in Chapter 2.2.4) of Case 

1. The grey bars show the results of models with time intervals 0:00–5:59 combined using dummy 

variables indicating each time interval as explained in Chapter 2.2.1. The black bars indicate the 

models without the combination of time intervals where all of the time intervals were 

independently modeled. According to the figure, the latter models had a 20% larger RMSE 

compared to that of the former models. The latter model had a relatively larger MSD; however, 

the difference from the former model was within 0.8%. The two models had almost the same 

accuracies. Based on these results, we combined the time intervals in this study.  

 

Figure 2-14. RMSE, MSD, and accuracy of methods with and without the combination of time 

intervals 0:00–5:59 in Case 1.  
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 Appendix C. Variables considered in the examined cases 

Table 2-4 lists variables and independent variables considered in Cases 1–3. The independent 

variables were created based on the variables listed in the second column. 

Table 2-4. Variables and independent variables of different cases. 

Case Variable Independent variables 

Case 1 1. Age Young (10–29 yrs), middle age (30–59 yrs), senior (60+ yrs) 

2. Gender Male, Women * 

3. Education Level of education above secondary education 

4. Employment status Full-time worker *; part-time worker; no work (absent, unemployed, 

not in the labour force) 

5. Number of people 1–6 

6. Diary day Weekends*, weekdays 

Case 2 7. Presence of household 

children 

No*, Yes 

8. Holiday No*, Yes 

9. Metropolitan status Metropolitan*, non-metropolitan, not identified 

10. Occupation Management, professional, and related; service; sales and office; 

farming, fishing, and forestry; construction and maintenance; 

production, transportation, and material moving; no work* 

11. Household income Lower income (household income below lowest 23%); middle 

income (50%)*; higher income 

12. Health status With disability, without disability* 

13. Race White*; black; Native and Indian; Asian; Hawaiian 

14. Ownership of housing 

unit 

Owned or being bought by a household member*, occupied without 

payment of cash or rent for cash 

Case 3 15. Spouse employment No spouse or unmarried partner*; full-time spouse or unmarried 

partner; part-time spouse or unmarried partner; variable hours 

worked by spouse or unmarried partner; unemployed spouse or 

unmarried partner 

16. Time spent providing 

secondary care for children 

<13 

0–1440 min 

17. Region Northeast, midwest (formerly north central), south*, west 

18. Telephone Own telephone in this house/apartment*, no telephone in this 

house/apartment 

19. Student status Not a student*, student (1; full-time high school, part-time high 

school, full-time college or university, part-time college or 

university) 

20. Number of people 

accompanying 

1–15 

 

21. Type of person 

accompanying  

Unknown; alone*; family member or related person living within the 

household; unrelated person living within the household; family 

member or related person living outside the household; unrelated 

person living outside household; work-related person 

22. Previous activity  1–25 (reference category 23) 

Note: * refers to the reference category. 
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3 Spatial variation and historical change in occupant behavior: statistical 

analysis and application on household activities and time scheduling 

 Purpose 

Residents’ occupancy and their activities at home have been recognized as two of the most 

important factors that determine residential energy demand, as they characterize the scale and 

temporal pattern of residential energy demand (Wilke et al., 2013; Zhao et al., 2014). OB models 

have been developed to capture residents’ occupancy, activity, and action and reflect realistic 

patterns of buildings’ energy demands. However, as mentioned in Chapter 1.5.2, the diversity in 

OB has not been fully investigated. For example, in some studies, the movement or mobility of 

people in space has been modeled to estimate the building energy consumption (Dziedzic et al., 

2020; Mohammadi & Taylor, 2017), but spatial variation is not considered. Moreover, historical 

changes in OBs have not been taken into account (Deng & Chen, 2019; Hoes et al., 2009). The 

historical change represents long-term changes in people’s lifestyles. The TUD has been used to 

observe the long-term changes in OB at an aggregate level. Some studies have considered the 

temporal variations by using measured time-series data to predict occupancy and energy demand 

(Calis et al., 2017; Piselli & Pisello, 2019; Yang et al., 2012). Temporal and spatial variations, 

however, were considered separately in these studies. Therefore, the spatial variation and 

historical change in OBs have not been effectively understood and assessed. Spatial variation and 

historical change are of high importance in OB modeling because the living location can 

predetermine the time required for some activities (e.g., the time required for commuting and 

shopping is different when the distance to travel is different among locations). Particularly, OB 

has generally been considered at the building level, but the nation-scale spatial analyses related 

to OB have seldom been conducted. More importantly, the specific modeling methods that are 

well suited to address spatial variation and historical change have not been established and 

assessed by conventional methods yet. 

To address research gaps, this chapter presents a preliminary study to investigate the impacts of 

spatial variation and historical change of OB on residential energy demand. The purposes of this 

study were (1) to confirm the existence of spatial variation and historical change in household 

activities and time scheduling, (2) to find significant variables for representing spatial and 

temporal variations, and (3) to evaluate the performance of a logistic regression-based method for 

analyzing the spatial variation and historical change in household activities and time scheduling. 

The remainder of this chapter presents the methods, results, and discussion, followed by our 

conclusions about our approach to modeling the spatial variation and historical change in OB. 
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 Data material and methodology 

The data used in this study were still obtained from the ATUS, which includes multiple-year 

survey records. Although this data from 2003 to 2019 were available, we only used the data from 

2009 to 2019 to ensure that the coding for each variable was consistent across each year since 

some variables were discontinued or newly introduced before 2009. The ATUS activity data 

subfile contained a summarised 24 h diary, starting from 4:00. The information in this subfile 

could be linked with other subfiles containing demographic attributes of the survey participants 

and the locations where the activities were performed. Although 17 main activities were defined 

in the multiple-year ATUS files, we only analyzed the activity of watching TV. As a result, 

2,411,222 records of activities from 124,941 households were included in this study.  

Figure 3-1 presents the analysis procedure. This study estimated the undertaking probability of 

watching TV activity and indicated the percentages of people watching TV at different times 

within 24 hours of the day. First, we analyzed the sample to confirm the existence of spatial 

variation, i.e., differences in the undertaking probability among living locations, and historical 

change, i.e., differences among the survey years. For this purpose, we quantified the average 

probability of watching TV for women with full-time jobs during the time interval from 21:00 to 

21:59 in the U.S. in 2009, 2014, and 2019. Further, we aggregated the samples counted after 

multiplying a weight indicating the number of people represented by each sample that was given 

by the ATUS. We refer to this result as the ‘weighted subpopulation observation’. We chose to 

analyze watching TV activity and women with full-time jobs because watching TV is one of the 

main household activities in the ATUS (Xu & Chen, 2019) and the sample size of the women 

population was large and had various activity patterns. 

 

Figure 3-1. Research procedure. 
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Then, we conducted a logistic regression analysis to quantify the variation in the probability due 

to spatial and temporal variables for the entire population. For this analysis, data from the year 

2009 to 2018 were used to develop the model (training model), and the data from 2019 were used 

to test this model (test model). Following the work of Wilke et al., 2013, we designed a case 

considering the socio-demographic conditions and the variables representing spatiotemporal 

variations. Year rank, population density, and spatial relationship were included to represent the 

spatial and temporal variations. Table 3-1 lists all the variables considered in this case. 

Table 3-1. Predictor variables of the regression model for the whole population. 

Variable Definition Variable Definition 

Disable Respondent with disability. Gender Respondent is male. 

Student Respondent is a student. Region 
1: north-east; 2: mid-west; 3*: south; 

4: west. 

Carer 
Respondent takes care of house or 

family. 

Metropolitan 

status 

1*: metropolitan; 2: non-

metropolitan; 3: not clear. 

Ill Respondent is ill. State code 1–56 (reference is CA: California). 

Retire Respondent is retired. Day of week 
Mon–Sun (reference group is 

Sunday). 

Family income 
1–14 levels (reference group is level 

12: $100,000–$149,999) 
Month 1–12 (reference group is January). 

Work status 

1: not in the labour force; 2*: full-

time; 3: part-time; 4: with job, not at 

work; 5: unemployed. 

Holiday Dairy day is a holiday. 

Housing type 
1*: home, apartment, flat; 2: mobile 

home; 3: other types. 
Year※ ATUS surveyed year. 

Ownership of 

housing 

1*: own; 2: rent; 3: other 

arrangements. 
Year rank 

1: 2009–2013; 2: 2014–2018; 3: 

2019. 

Education 

1: Not completed secondary 

education/high school; 2*: high 

school; 3: college, no degree; 4: 

associate degree; 5: Bachelor’s 

degree; 6: Master’s degree; 7: 

professional school degree; 8: 

Doctorate degree. 

Population 

density※ 

The number of people per unit of 

area (square mile). 

Household size 1, 2*, 3, 4, 5, 6+. 
Spatial 

relationship 

Neighbor flag of a state. 1 means the 

state is the neighbor of the targeted 

state, 0 means the state is not the 

neighbor. 

Age 

1: 15–19; 2: 20–29; 3*: 30–39; 4: 

40–49; 5: 50–59; 6: 60–69; 7: 70–79; 

8: 80+. 

  

* indicates the reference group for each variable; ※ indicates that the variable is continuous. 

 

Subsequently, the developed regression models were evaluated based on the Hosmer–Lemeshow 

goodness-of-fit test and the following two indicators: total absolute error (TAE) and root mean 

squared error (RMSE). These indicators can be mathematically expressed as follows: 
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TAE = |�̅�𝐸𝑠𝑡𝑖 − �̅�𝑂𝑏𝑠| 3-1 

RMSE = √
∑ (𝑝𝐸𝑠𝑡𝑖 − �̅�𝑂𝑏𝑠)

2
 𝑁

𝑖=1

𝑁
 3-2 

where N was the number of observations, and �̅�𝑂𝑏𝑠  and 𝑝𝐸𝑠𝑡  were the average undertaking 

probabilities observed in the sample and estimated by the regression model, respectively. 

First, Lasso regression (Ranstam & Cook, 2018) was applied to select the variables for running 

the logistic regression for the whole population. Second, the significance of the spatiotemporal 

variables was identified based on the regression analysis. Then, we applied the ordinary kriging 

method to interpolate the spatial variation. The kriging method used the surrounding observations 

to predict the value of unmeasured locations. Its mathematical form was similar to a weighted 

regression. The prediction for unmeasured location (𝑖0, 𝑗0), �̂� (𝑠0(𝑖0,𝑗0)
) was given by Equation 

3-3:  

�̂� (𝑠0(𝑖0,𝑗0)
) =∑ 𝜆𝑘𝑍 (𝑠𝑘(𝑖𝑘,𝑗𝑘)

)
𝑁

𝑘=1
 3-3 

where 𝑍 (𝑠𝑘(𝑖𝑘,𝑗𝑘)
) was the observation value at the kth locations(𝑖𝑘 , 𝑗𝑘) and λ was unknown 

weight subject to ∑ 𝜆𝑘 = 1
𝑁
𝑘=1 . For the ordinary kriging the weight λ depended on 1) the distance 

between the locations of observations and the prediction and 2) the spatial relationship between 

the observations which surround the prediction. To obtain the weight λ, various empirical 

semivariograms were applied to fit the actual semivariogram so that they can reflect the spatial 

relationship between observations. In this study, we applied the widely considered empirical 

semivariogram-spherical model which was defined as: 

γ(ℎ) =

{
 
 

 
 

0, ℎ = 0                 

𝑐0 + 𝑐𝑠 {
3ℎ

2𝑎
−
1

2
(
ℎ

𝑎
)
3

} , 0 < ℎ ≤ 𝑎

𝑐0 + 𝑐𝑠, ℎ ≥ 𝑎

 3-4 

where h was the lag which represents the distance to the observation. The parameters 𝑐0 (nugget), 

𝑐𝑠 (partial sill) and a (major range) are non-negative constants that will be optimized to fit with 

the semivariogram. 
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Our kriging analysis was conducted only for the subpopulation of women with full-time jobs to 

minimize the influence of diversity of sociodemographic conditions. The estimated probabilities 

were then weighted to estimate the average probability for the entire subpopulation of the states. 

Then, we spatially interpolated the estimated probabilities for the states using the ordinary kriging 

method. The location of the states is represented by the internal points of the states. To assess the 

model’s ability to replicate the spatial variation and historical change, the predicted probability 

was compared with the probability based on the weighted observations. 

 Results and discussion 

 Data Analysis 

This subchapter first presents the results obtained based on the raw data. Figure 3-2 presents the 

yearly change in the undertaking probability of watching TV based on the weighted observations 

for the whole population and subpopulation, respectively. We observed a general decreasing trend 

during the 20:00 to 00:00 time period for both the whole population and the subpopulation of 

women with full-time jobs. The time interval from 21:00 to 21:59 exhibited the largest decrease 

(2.6% for the whole population and 2.4% for the subpopulation). Therefore, we picked this time 

interval to further visualize the spatial variation of the probability. 

 

Figure 3-2. Weighted undertaking probability of watching TV per hour for each year. 
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Figure 3-3 presents the visualization results of the weighted subpopulation observations. The 

shapefile data of the U.S. in 2018 and the location data (latitude and longitude of the internal 

points representing each state) used to obtain the results were downloaded from the website of 

the U.S. Census Bureau. The color scale is consistent among the images in Figure 3-3 for 

comparison. Figure 3-3 depicts a spatial variation that changes over time. The general observed 

trend was that the region with a higher probability shifted from the north to the south and then to 

the east. In 2009, higher probability levels were located in most of the northwest and central parts 

(central but closer to the north) of the U.S. In 2014, the high probability levels shifted to the mid-

south and mid-north areas. Finally, the higher probability levels relocated to be more concentrated 

in the southeast areas in 2019. We also observed a decreasing trend in the five-year periods as the 

probability of the areas with a high probability level decreased; this observation was consistent 

with the information presented in Figure 3-2. 

 

Figure 3-3. Kriging based on weighted observations. 

 

It is important to note that the results in Figure 3-3 did not fully represent the actual spatial 

variation. One of the significant limitations was that we used one internal point to represent the 

entire state. To capture the actual spatial variation, a higher granularity should have been 
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incorporated. Additionally, the results for marginal areas may have contained an error originating 

from the characteristics of the ordinary kriging method. For example, Alaska, the state with the 

largest area, exhibited the highest probability. In reality, Alaska has the lowest population density, 

implying that the majority of the states must have been uninhabited or sparsely populated. Such 

areas in Alaska should have exhibited lower probability levels. Therefore, a single internal point, 

without nearby data points or with only a few nearby data points located in limited directions, 

might not have provided accurate spatial variations for the entire area. 

 Results of Logistic Regression 

The initial model for the whole population during the time interval from 21:00 to 21:59 based on 

logistic regression, with Lasso regression to select the variables, did not pass the Hosmer–

Lemeshow goodness-of-fit test. Therefore, to optimize the model, we conducted the Analysis of 

Variance (ANOVA) to reselect the significant variables. The improved model exhibited a 

relatively high prediction accuracy. It passed the Hosmer–Lemeshow goodness-of-fit test for both 

the training model and the test model, as the P-values of the improved model were 0.26 and 0.34 

for the training and test model, respectively; both the P-values > 0.05, meaning that the model fits 

well with the observations. The TAE and RMSE for the test model of the improved model were 

7.6%, and 1.5%, respectively. These two indicators verified that our improved model performed 

well in terms of probability errors. 

Table 3-2 lists the regression coefficients (RCs) and odds ratios (ORs) of the significant variables, 

determined by the improved model. Regarding the socio-demographic variables, the probabilities 

were lower for students and people who took care of family members in the household. On the 

contrary, the probabilities were higher for people who were not in the labor force or were 

unemployed. With respect to the temporal variables, almost all the temporal variables were 

significant. These temporal variables, such as year, month, and day of the week, had negative 

influences on the probability of watching TV, such that the probability within the reference groups 

was estimated to be the lowest in the respective categories. In terms of the spatial variables, a 

lower probability was estimated for people living in the western part of the U.S. than that for 

people living in other regions. Moreover, one special state code flag, Florida (FL), was found to 

be significant, indicating that people who lived in Florida were more likely to watch TV from 

21:00 to 21:59 in 2019 than those in the other states. 

Figure 3-4 presents the spatial variation and historical change for the subpopulation which was 

extracted from the improved model made based on the whole population. Figure 3-4 (a) and (b) 

depict the spatial variation and yearly change of observations and estimations for the four regions 

from 2009 to 2018. A large-scale fluctuation was seen in the observation probabilities, whereas a 
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decreasing trend was observed in the estimation probabilities in the four regions. Figure 3-4 (c) 

depicts the predicted results for 2019. We observed that the absolute difference for each region 

was less than 2.3%. The spatial variation narrowed as the difference in the maximum and 

minimum probabilities decreased from 6.2% in the observation results to 3.6% in the estimation 

results. These results indicate that the logistic regression model with significant variables was 

capable of replicating spatial variation and historical change at the aggregate level. The scale of 

the prediction error was approximately 10% of the actual probability. 

Table 3-2. Significant variables based on the improved model for the whole population. 

Variable Dummy Variable RCs ORs Variable Dummy Variable RCs ORs 

Intercept - 15.07*** 2 
Day of 

week 
Monday −0.09*** 0.91 

Male - 0.22*** 1.25  Tuesday −0.11*** 0.89 

Student - −0.78*** 0.74  Wednesday −0.14*** 0.87 

Carer - −0.49*** 0.75  Thursday −0.14*** 0.87 

Family 

income 
$10,000–$14,999 −0.05* 0.94  Friday −0.12*** 0.88 

Work 

status 

Not in labour 0.53*** 1.43  Saturday −0.08*** 0.92 

Unemployed 0.11*** 1.15 Month Mar −0.06** 0.94 

Ownership 

of housing 

Rent −0.14*** 0.95  Apr −0.08*** 0.92 

Other −0.26*** 0.82  May −0.11*** 0.9 

Education 

Less than high 

school 
−0.13*** 0.93  Jun −0.17*** 0.85 

Associate school −0.12*** 0.89  Jul −0.19*** 0.82 

College −0.11*** 0.9  Aug −0.14*** 0.87 

Bachelor’s degree −0.18*** 0.84  Sep −0.13*** 0.88 

Master’s degree −0.3*** 0.72  Oct −0.1*** 0.9 

Professional school −0.27*** 0.74  Nov −0.09*** 0.91 

Doctor −0.46*** 0.63  Dec −0.13*** 0.88 

Number of 

people 

1 0.2*** 1.04 Year - −0.01*** 0.99 

3 0.22*** 1.09 State FL 0.95** 0.94 

5 −0.1*** 0.87 Region West −0.15*** 0.8 

*** < 0.001, ** < 0.01, and *< 0.05 
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Figure 3-4. Spatial variation and historical change shown by the improved model. 

 

 Results of the kriging Method 

To evaluate the performance of the logistic regression-based approach and further investigate the 

influence of spatial variations, the ordinary kriging method was applied to interpolate the 

probabilities. Figure 3-5 illustrates the comparison of the ordinary kriging results based on the 

weighted subpopulation observations and weighted subpopulation estimations. The classification 

of the undertaking probability levels was refined using Figure 3-3 for better comparison. 

According to Figure 3-5, the estimation-based results had lower probability levels than the 

observation-based results. However, the spatial distribution trend was similar (see Figure 3-5 (a) 

and (b)); the probability was higher in the eastern areas, whereas it was lower in the western areas. 

This result indicates that a general trend can be replicated using the logistic regression model, as 

discussed in the previous chapter on the logistic regression model. However, the spatial 

differences at a higher spatial resolution, as observed in Figure 3-5 (a), could be replicated. The 

kriging-based model can replicate such differences as it allows one state to have multiple 

probability levels. With respect to detailed spatial variations, a relatively clear band-shaped 

distribution pattern in the west-east direction was observed in Figure 3-5 (a) and (b). The spatial 

variations, however, were weakened in the estimation-based result. The results did not accurately 
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reflect the probabilities for the highest-level areas, such as the northeast part of the U.S., including 

Michigan and Minnesota. The error for such areas ranged from 6% to 11% partly owing to the 

limitations of the logistic regression-based approach in reflecting spatial variations. 

 

Figure 3-5. Comparison of the kriging results. 

 

 Conclusion 

The objective of this study was three-fold: (1) to confirm the existence of spatial variation and 

historical change in OB, (2) to find significant variables for representing the spatial and temporal 

variations, and (3) to evaluate the performance of a logistic regression-based approach to consider 
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the spatial variations in OB. First, based on the analysis from the ATUS data, we confirmed the 

existence of spatial variation and historical change in the watching TV activity for the 

subpopulation of women with full-time jobs. We observed a clear historical transition as the 

probability of watching TV during the time interval from 21:00 to 21:59 decreased from 2009 to 

2014 and 2014 to 2019. This result may be due to the fact that many people changed the time at 

which they watched TV or they participated in other emerging entertainment activities, such as 

playing games on computers or smartphones during this time interval. We also observed spatial 

variation and historical change wherein higher probability levels first shifted from the north to the 

south (2009 to 2014) and then gradually moved to the eastern part (2014 to 2019) of the country. 

Then, the significant variables were determined using the logistic regression model. We obtained 

a regression model that fits well with the TUD sample as the developed model passed the 

goodness-of-fit test and the error was small enough as well. Socio-demographic and 

spatiotemporal variables were selected for the model. With respect to the temporal variables, the 

day of the week, month, and year were significant. Regarding spatial variables, the probability 

for people living in the western part of the U.S. was lower than that in other regions. Some specific 

states were also found to be significant (e.g., Florida). Based on these results, the logistic 

regression method was partly proved to be able to replicate the spatial variation and historical 

change in OB modeling. However, not all the considered spatiotemporal variables were 

significant, such as metropolitan status. One possible reason is that the penetration rate of TV in 

the U.S. is high and the metropolitan status may not have much impact on watching TV activity. 

Further analysis is required to determine the types of variables that can represent spatial variations 

and historical change and the types of formats that should be used for variables in OB modeling. 

Subsequently, we applied the ordinary kriging method to evaluate the spatial variation of the 

probability estimated using the developed logistic regression model. The results indicated that a 

general trend can be replicated using the logistic regression-based approach, but this approach is 

not as effective for the replication of spatial variation and historical change. The kriging-based 

model in our study showed a strong advantage for representing spatial variation and historical 

change. Moreover, the kriging-based model can predict the undertaking probability for locations 

without data that cannot be estimated only based on the logistic regression model. It indicates that 

the kriging method is a possible prediction approach that can contribute to the field of TUD-based 

OB modeling in the case of a lack of data. About 51 internal points, however, were considered to 

conduct interpolation for the entire U.S., therefore, the spatial interpolation performance may not 

be ideal for some marginal areas which had fewer neighbor observations (e.g., Alaska). The 

identification of locations at higher spatial resolution would contribute to replicating spatial 

variation and historical change because more accurate and realistic interpolation predictions could 
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be conducted. More importantly, the kriging-based model in this study can be applied to other 

energy-related activities of interest, which may benefit energy demand modeling in the fields of 

OB and building energy efficiency. 
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4 Modeling of occupant behavior involving spatial variation: geostatistical 

analysis and application based on American Time Use Survey data 

 Purpose 

Numerous OB models that simulate occupancy, activity, and action at home have been developed 

to improve the accuracy and quality of energy demand estimations (Osman & Ouf, 2021; Yan et 

al., 2017). As OBs play the main role in shaping the residential energy demand profiles. Various 

methods have been applied to TUD integrated with additional survey data that cover social, 

economic, and building aspects, to develop representative OB models. Previous studies have 

revealed that the consideration of diversity improves the performance of OB models (Li et al., 

2022). However, obtaining a reliable source of data and developing representative models for 

these OBs remain a key challenge, especially for developing energy models with consideration 

of OBs at high spatial resolution. 

Based on the background mentioned in Chapter 1.5.2 together with the findings in Chapter 3, we 

found that the previous studies have seldom confirmed the existence of spatial variation instead 

most of them assumed the spatial variation existed for the targeted research objective for the entire 

modeling time. Also, existing models ignore spatial variation in OBs or partially consider it using 

a simple method without evaluating whether it is sufficient. Spatial variation is commonly treated 

as the difference among the research objectives represented by different measured locations in 

previous studies which cannot be fully reproduced. Moreover, the modeling method to reproduce 

the spatial variation is missing. 

Hence, the study in this chapter proposes and evaluates methods to model OB with the 

consideration of spatial variation. The research gaps were addressed through three research 

questions: 1) when does spatial variation exist in OB, 2) how can spatial variation in OB be 

represented quantitatively, and 3) how can spatial methods reproduce spatial variations in OB. 

We selected a spatial logistic regression model as the spatial method in this study as it is an 

extension of one of the most frequently used OB models. The remainder of this chapter presents 

the methodology, results, and discussion, followed by our conclusions. 

 Data material and method 

 Data material 

The multi-year ATUS0319 collected the activity diaries and sociodemographic conditions of the 

survey participants. The data collected between 2009 and 2019 were used to ensure the consistent 

coding of the variables. We selected women aged 30–59 years in the U.S. because the sample size 



58 

 

of women was large in the ATUS dataset and women conduct various activities including both 

paid and unpaid work (Anxo et al., 2011; Gentry et al., 2003; Li & Tilahun, 2020; Sayer, 2005). 

70% of the data was used as the training dataset, whereas the remaining was used as the test 

dataset.  

The predefined activities were summarized into the 16 categories as listed in Table 4-1 such that: 

1) the sub-categories in a group exhibited similar appliance usage and 2) the activity locations 

could be divided into indoor and outdoor groups. Four typical activities were considered: sleeping, 

cooking and washing up, watching television, and commuting. Additionally, the 1 min resolution 

data were converted to 1 h time interval data.  

The location of each occupant was defined by the internal point of the state in which the occupant 

lived on the U.S. mainland. We considered the states as the unit for modeling as it was the only 

available data with respect to space use for the entire nation. The cartographic boundary shapefile 

of the U.S. as of 2018 was used to visualize the spatial distribution of the probability on the map. 

The spatial distribution of the probability of undertaking the activities at each time interval is 

referred to as the spatial probability in this study. 

Table 4-1. Activity code. 

Code for all activities in this study 

Code Activity Location (indoor) Code Activity Location (outdoor) 

1 Sleeping 

Home and yard 

10 Work-relted Workplace 

2 Grooming 11 Education School, library 

3 Laundry 12 Commuting Transporptaion 

4 Caring 13 Other travelling Transportation 

5 
Cooking and 

washing up 
14 Consumer purchase Store, mall 

6 Eating & drinking 15 Other 2 Not at home or yard 

7 Watching Television 16 Other 3 Missing 

8 Listen to music    

9 Other 1    

 

 Method 

The methodology of this study is shown in Figure 4-1. Steps 1–3 address research questions 

discussed in Chapter 4.1. 
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Figure 4-1. Study methodology. 

4.2.2.1 Step1: Existence of the spatial variation 

We applied the Global Moran Index (Moran’s I) test to confirm the time intervals that spatial 

variation existed for selected four activities. Moran’s I test is used to check the significance of the 

random distribution of qualitative determination on areas of a map (Moran, 1948). Moran’s I 

ranges from –1 to 1 and its definition is: 

𝐼 =
∑ ∑ w𝑠𝑖,𝑠𝑗(𝑝𝑖 − �̅�)(𝑝𝑗 − �̅�)

𝑁
𝑗=1

𝑁
𝑖=1

𝑆2∑ ∑ w𝑠𝑖,𝑠𝑗
𝑁
𝑗=1

𝑁
𝑖=1

 4-1 

where 𝐼 is the Moran’s I, 𝑝𝑖 is the probability for state 𝑠𝑖, �̅� is the average probability for all 

states, 𝑆2 is the sample variance and w𝑠𝑖,𝑠𝑗 is the element for state 𝑠𝑖 and 𝑠𝑗 in the weighting 

matrix. Z score was calculated to evaluate the significance of the Moran’s I: 

𝑍 =
𝐼 − 𝐸(𝐼)

√𝑣𝑎𝑟(𝐼)
 4-2 

If the Z score is not statistically significant, (P-value > 0.05), it is probable that the objectives are 

randomly distributed in space; if the Z score is positive and significant, the objectives display a 

clustered distribution (similar tendency); if the Z score is negative and significant, the objectives 

display a dispersed distribution (competitive tendency). The subsequent steps only considered the 

time intervals during which spatial variation existed. 

4.2.2.2 Step 2: Methods to represent spatial variation 

Two representations of spatial variation that quantify the average probability of undertaking an 

activity in each state 𝑠𝑖 at each time interval were designed using the ordinary kriging and spatial 

autoregressive (SAR) methods. However, as they measure the probability of undertaking an 



60 

 

activity, their values were restricted from 0 to 1. Furthermore, the ordinary kriging and SAR 

methods can generate representations at higher resolutions if detailed location data are available.   

A) Ordinary kriging method 

The ordinary kriging method uses the observations of the surroundings to predict the values of 

unmeasured locations (Cressie, 1988) which has been simply introduced in Chapter 3.2. Here give 

a more detailed explanation. For a certain time interval that the spatial variation existed, the 

prediction 𝐺𝑠0 for location 𝑠0(𝑢0, 𝑣0) was given by:  

�̃�𝑠0(𝑢0,𝑣0) =∑ 𝜆𝑖
𝑁

𝑖=1
𝐺𝑠𝑖(𝑢𝑖,𝑣𝑖) 4-3 

where 𝐺𝑠𝑖(𝑢𝑖,𝑣𝑖) was the average undertaking probability of activity at the state 𝑠𝑖 represented 

by the internal point (𝑢𝑖, 𝑣𝑖), and 𝜆𝑖 was unknown weight subject to ∑ 𝜆𝑖 = 1
𝑁
𝑖=1  for obtaining 

the unbiased estimation of 𝐺𝑠0. λ can be estimated by Equation 4-4 to achieve the minimum 

variance estimation of 𝐺𝑠0: 

agrmin𝜆 𝑓: 𝐸 {[𝐺𝑠0(𝑢0,𝑣0) − �̃�𝑠0(𝑢0,𝑣0)]
2
} − 2𝜇 (∑ 𝜆𝑖 − 1

𝑁

𝑖=1
) 4-4 

The widely used approach to dealing with the first item of Equation 4-4 was to apply the 

theoretical semivariogram which is defined as γ(𝑠𝑖, 𝑠𝑗) = γ(𝑠𝑖 − 𝑠𝑗) =
1

2
𝐸 {[𝐺𝑠𝑖(𝑢𝑖,𝑣𝑖) −

𝐺𝑠𝑗(𝑢𝑗,𝑣𝑗)]
2
} to fit the experiment variogram. A commonly considered theoretical semivariogram 

— spherical model defined as Equation 3-4 was mentioned in Chapter 3.2. 

B) Spatial autoregressive method 

The SAR allows us to examine the impact that the undertaking probability of an activity for one 

state has on other neighboring states by including other variables in the modeling process. It is 

generated based on the cross-sectional spatial model which is defined as Equation 4-5: 

�̃�𝑠0(𝑢0,𝑣0) = y𝑠0 = 𝛽
𝑇𝑥 + 𝜆𝑇Wy𝑠0 + ε 4-5 

where �̃�𝑠0(𝑢0,𝑣0) is average undertaking probability of activity at the state 𝑠𝑜. 𝑥 are variables 

and W is the weighting matrix that is constructed in the form of adjacent edges or points of each 

state. 𝜆 is scalar autoregressive parameters. The variable Wy𝑠0is referred to as the spatial lag of 

 y𝑠0. 

4.2.2.3 Step 3: Spatial logistic regression 

In this subchapter, we developed three spatial logistic regression models through Equation 4-6: 
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logit(𝑝𝑠𝑖,𝑡) = ln
𝑝𝑠𝑖,𝑡

1 − 𝑝𝑠𝑖,𝑡
= 𝛽𝑇𝑥𝑠𝑖,𝑡 + 𝑔(𝑠𝑖; 𝜃) + 𝜀 4-6 

where 𝑝𝑠𝑖,𝑡  is the probability for 𝑖 th individual of location 𝑠  at 𝑡  time interval. 𝛽 is a 

coefficient of the variable x𝑠𝑖,𝑡 . 𝑔(𝑠𝑖; 𝜃)  is the smooth function parameterized by 𝜃  over 

location 𝑠 . We used one spatial factor variable �̃�𝑟  and two representations of the spatial 

variation �̃�𝑠  as the smooth function 𝑔(𝑠𝑖; 𝜃) which the 𝜃 were considered as the averaged 

probability of undertaking activities at the regional and state level. The conventional logistic 

regression model without considering spatial variation served as the reference model for 

comparison. Stepwise analysis was applied to all the models to statistically test the significance 

of the considered variables, including the spatial factor variables and representations. 

A) Reference model 

For the conventional logistic regression model, the probability of undertaking activity at time t 

for an individual i is modeled by Equations 4-7 and 4-8:  

logit(𝑝𝑖,𝑡) = ln
𝑝𝑖,𝑡

1 − 𝑝𝑖,𝑡
= 𝛽𝑇𝑥𝑖,𝑡 + ε 4-7 

𝑝𝑖,𝑡 =
1

1 + 𝑒−(𝛽
𝑇𝑥𝑖,𝑡+ε )

 4-8 

where 𝛽 is a coefficient of the socio-demographic variable 𝑥𝑖,𝑡.  

B) Model 1 

Model 1 introduces the spatial factor —three region dummy variables to represent the spatial 

variations. Therefore, Equation 4-6 can be rewritten as: 

logit(𝑝(𝑥𝑖, 𝑟𝑖)𝑡) = 𝛽
𝑇𝑥𝑖,𝑡 + �̃�𝑟𝑖,𝑡 + ε 4-9 

�̃�𝑟𝑖,𝑡 = 𝛾1𝑅1,𝑖,𝑡 + 𝛾2𝑅2,𝑖,𝑡 + 𝛾3𝑅3,𝑖,𝑡 4-10 

where 𝑅1, 𝑅2 and 𝑅3 indicates the northeast, mid-west, and west region respectively with the 

region of the south being the reference group. 𝛾 is the corresponding coefficient to each region 

dummy variable. 

C) Model 2 

We extracted the estimations �̃�𝑠𝑖,𝑡, the average undertaking probability of activities for each state 

𝑠𝑖  at 𝑡 time interval, from the ordinary kriging interpolation results to represent the spatial 

variations. Then the probability of undertaking an activity estimated by Model 2 is given by 

Equation 4-11: 
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logit(𝑝(𝑥𝑖, 𝑠𝑖)𝑡) = 𝛽
𝑇𝑥𝑖,𝑡 + 𝛾�̃�𝑠𝑖,𝑡 + ε 4-11 

where the 𝑥𝑖,𝑡 are the variables of the individual 𝑖 at 𝑡 time interval. 

D) Model 3 

The calculation of Model 3 is as same as Model 2. The only difference is that estimations �̃�𝑠𝑖,𝑡, 

the average undertaking probability of activities for each state, was extracted from the SAR results 

to represent the spatial variations.  

4.2.2.4  Segmentation 

To develop the smooth functions and the corresponding spatial logistic regression models, six 

groups were designed to represent different subpopulations of women. Each group was 

homogenized by avoiding the influence of spatial variation in the socio-demographic factor, as 

shown in Table 4-2. The variables used in the developed models are also listed in Table 4-2. The 

grouping conditions used were the type of day (i.e., weekdays and weekends) and employment 

status, which have been commonly used in previous studies for segmentation (Kleinebrahm et al., 

2021; Marín-Restrepo et al., 2020; C. Wang et al., 2011; Wilke et al., 2013; Zhou et al., 2022). 

Groups 1 and 4 represent women with full-time jobs, Groups 2 and 5 represent women with part-

time jobs, and Groups 3 and 6 represent unemployed women. Groups 1–3 comprise activities that 

were performed during the weekdays, and Groups 4–6 comprise activities that were performed 

during the weekends. 

Table 4-2. Designed groups and their details. 

Group Subpopulation 
Type of 

day 

Employment 

status 
Items of interest Observations 

1 

Women aged 30–

59 

Weekdays 

Full-time Survey year, age, 

presence of children, 

family income, carer, 

education, ownership of 

the housing unit, number 

of people in the 

household, region, and 

state 

8888 

2 Part-time 3571 

3 Unemployed 5753 

4 

Weekends 

Full-time 9086 

5 Part-time 3571 

6 Unemployed 5753 

7 Entire population of women aged 30–59 

Items in Groups 1–6, as 

well as employment 

status and type of day 

36622 

 

In addition to Groups 1–6, Group 7 was considered for representing the entire population of 

women aged between 30–59 including Groups 1–6. Group 7 was designed to  examine whether 

the developed spatial logistic regression model 1) can be applied to larger and more complex 
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populations and 2) can be used to determine the superior approach for OB modeling, using 

segmentation (Hayn et al., 2014) or using grouping conditions as variables. Furthermore, many 

previous OB studies designed segmentations for simulated occupants (Li et al., 2022). This 

analysis was conducted considering the watching television activity.  

 Performance assessment 

The performance of the models was assessed in terms of the reproducibility of the spatial 

variations in OBs and the comprehensive performance. The ordinary kriging method was applied 

to visualize the spatial probability, thereby assessing the reproducibility of the spatial variation. 

The comprehensive performance was evaluated by indicators to assess the error and diversity 

considering the training and test datasets. 

 Error indicator 

Error indicators measure the errors between the estimations obtained from all models and the 

observations. The first indicator is the TAE which quantified the cumulative value of the errors 

observed in all time intervals that spatial variation existed for each of the selected activities. TAEs 

assess the ability to model the total averaged undertaking probability at the national and state level 

respectively which is crucial for obtaining a more realistic averaged energy demand. TAEs are 

quantified as Equations 4-12 and 4-13 show: 

TAEnation =∑ |�̅�𝑒𝑠𝑡𝑡 − �̅�𝑜𝑏𝑠𝑡|
𝑇

𝑡=1
 4-12 

TAEstate =∑ ∑ |�̅�𝑒𝑠𝑡𝑡,𝑠 − �̅�𝑜𝑏𝑠𝑡,𝑠|
𝑆

𝑠=1

𝑇

𝑡=1
 4-13 

where 𝑡 indicates the selected time interval that spatial variation exists, 𝑠 indicates the state of 

the U.S., and �̅�𝑒𝑠𝑡 and �̅�𝑜𝑏𝑠 is the average probability of the estimation and the observation 

respectively.  

The second indicator is the RMSE. RMSEs are quantified to measure the averaged errors of each 

selected time interval and averaged errors of combinations of the state and time interval. They are 

sensitive to individual outliers of the estimations which are shown by Equations 4-14 and 4-15: 

RMSEnation =
√∑ (�̅�𝑒𝑠𝑡𝑡 − �̅�𝑜𝑏𝑠𝑡)

2𝑇
𝑡=1

𝑇
 4-14 
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RMSEstate =
√
∑ ∑ (�̅�𝑒𝑠𝑡𝑡,𝑠 − �̅�𝑜𝑏𝑠𝑡,𝑠)

2𝑆
𝑠=1

𝑇
𝑡=1

𝑆 ∗ 𝑇
 4-15 

 Diversity indicator 

Diversity indicators assess how well the model represents the variation in OBs among simulated 

occupants. We followed the Hosmer-Lemeshow test to design subgroups to check the diversity 

of the model estimations which measures the root mean squared error between the averaged 

estimated probability and averaged probability of observations of subgroups shown by Equation 

4-16: 

RMSEGA =
√∑ ∑ (𝑀𝑒𝑎𝑛𝑡,𝑑(𝑃𝑝𝑟𝑒𝑑) − 𝑀𝑒𝑎𝑛𝑡,𝑑(𝑃𝑜𝑏𝑠))

2
𝐷
𝑑=1

𝑇
𝑡=1

𝑇 ∗ 𝐷
 

4-16 

where 𝑑 indicates the subgroup (𝐷 = 10) and the number 10 is commonly used in the Hosmer-

Lemeshow test. RMSE_GA is only quantified at the national level because of the data limitation. 

To compare the diversity performance at the state level, another indicator — MSD was considered. 

MSDs measure the mean of the distance that each estimation deviates from the mean at the 

national and state level respectively. Their definitions are shown by Equations 4-17 and 4-18: 

MSDnation =
∑ 𝑆𝐷𝑝𝑟𝑒𝑑𝑡
𝑇
𝑡=1

𝑇
 4-17 

MSDstate =
∑ ∑ 𝑆𝐷𝑝𝑟𝑒𝑑𝑡,𝑠

𝑆
𝑠=1

𝑇
𝑡=1

𝑇 ∗ 𝑆
 4-18 

where 𝑆𝐷𝑝𝑟𝑒𝑑 is the standard deviation of estimated probability among the sample. 

 Results 

 Confirmation of the existence of the spatial variation 

Figure 4-2 shows the representative probabilities of the women in Group 4 sleeping, those in 

Group 3 cooking and washing up, those in Group 6 watching television, and those in Group 1 

commuting based on all observations. As shown in Figure 4-2, the probability of undertaking 

activities exhibited certain variation among the states at different times of the day. Such variation 

results from the combination of the difference in demographic factor variables, the spatial 

variation, and the random bias, according to Equation 4-6. The effect of the first element (i.e., the 

difference in demographic factor variables) is decreased by the segmentation.  
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Figure 4-2. Probability of undertaking activities for representative groups. Lines in different 

colors indicate different states and the black one indicates the national level estimations.  

 

Figure 4-3 summarizes the results of the Moran’s I tests applied for all combinations of the groups 

and activities. Spatial variation existed only during limited time intervals. The spatial variation 

during different time intervals varied with the type of day (weekdays or weekends), 

subpopulations with different employment statuses, and activities. As shown in Figure 4-3, 

considering sleeping, employed women in Group 1 exhibited lesser spatial variation than 

unemployed women in Group 3 during the relevant time interval on weekdays. On weekends, 

women exhibited the same number of spatial variations during the relevant time intervals, 

irrespective of their employment statuses. Considering cooking and washing up, unemployed 

women in Group 3 exhibited more spatial variation during the weekdays, whereas women with 

full-time jobs in Group 4 exhibited more spatial variation during the weekends. No spatial 

variations existed for women with full-time jobs in Group 1 on weekdays and unemployed women 

in Group 6 on the weekends. Considering watching television, women with part-time jobs in 
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Group 5 did not exhibit any spatial variation during the weekends. Women with part-time jobs in 

Group 2 further exhibited a low spatial variation during the weekdays. Considering commuting, 

irrespective of their employment status, women in Groups 1–3 exhibited more spatial variation 

during the weekdays than those in Groups 4–6 during the weekends. Women with part-time jobs 

in Group 5 did not exhibit any spatial variation during the weekends. 

In most time intervals, the spatial variation exhibited a clustered distribution, with only limited 

time intervals exhibiting a dispersed distribution. Figure 4-4 illustrates the probability of the 

women in Group 6 watching television at 13:00. An obvious clustered distribution can be 

observed at the state level. The observed spatial probability ranged from 0–21%.  

 

Figure 4-3. Results of the Moran’s I test considering the representative activities for each group. 

The time intervals listed in the table are the intervals during which spatial variation existed. 
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Figure 4-4. The spatial distribution of the probability of undertaking watching television for 

Group 6 at the 13:00 time interval at the state level based on observations. 

 

 Representations of spatial variation 

Figure 4-5 shows the spatial probability of the women in Group 6 watching television at 13:00 

based on the representations of the spatial variation generated by the ordinary kriging and SAR 

methods. The representation generated by ordinary kriging (i.e., kriging-based representation) 

ranges from 6 to 14% whereas the representation generated by SAR (i.e., SAR-based 

representation) ranges from 4 to 17%. The variation was narrower than the observation shown in 

Figure 4-5. The kriging-based representation can simulate the changing tendencies of spatial 

probabilities. However, the clustered pattern was not identified. The SAR-based representation 

can provide more accurate estimations for certain states, simultaneously providing a better 

representation of the cluster areas. 
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Figure 4-5. The spatial distribution of the probability of undertaking watching television for 

Group 6 at 13:00 based on representations of spatial variation obtained from the ordinary kriging 

and SAR. 

 

Furthermore, we also compared the two representations considering all the combinations of 

groups, activities, and states. Figure 4-6 shows the comparison between the kriging-based and 

SAR-based representations for all combinations of the group, activity, and state. Two 

representations and the observations were conducted with the base-10 logarithmic transformation. 

Two R2 values with and without the logarithmic transformation were also presented in the figures. 

According to Figure 4-6, the kriging-based representations are more scattered than the SAR-based. 

The R2 without and with logarithmic transformation (R2 and Rlog
2 respectively) is 82.5% and 24.0% 

for kriging-based representations and 98.3% and 84.9% for SAR-based representations. 

Regarding TAE and RMSE at the state level, the kriging-based representation was 126.5 and 
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9.9%, and the SAR-based representation was 61.2 and 3.0% respectively. These results implied 

that the SAR method can generate more accurate representations of the spatial variation at the 

state level than ordinary kriging. 

 

Figure 4-6. The accuracy of the representations of the spatial variation at the state level. The 

horizontal axis shows the observation probabilities of combinations of group, activity, and state. 

The vertical axis shows the representations. The black line indicates the reference line 𝑦 = 𝑥. 

Logarithmic transformation was conducted in the range (–4, 0)×(–4, 0). 

 



70 

 

 Spatial logistic regression models 

4.4.3.1 Reproduction of the spatial variation 

The reproducibility of the spatial variation by the developed spatial logistic regression models 

was evaluated based on four representative cases: (a) sleeping at 8:00 in Group 4; (b) cooking and 

washing up at 12:00 in Group 3; (c) watching television at 13:00 in Group 6; (d) commuting at 

10:00 in Group 1. Figure 4-7 illustrates the spatial probability of activity in each of the four cases, 

based on the observations and estimations. The visualization of the spatial variations in all the 

subfigures was interpolated using the ordinary kriging method. Considering the reproduction of 

the spatial variations in these four cases, the spatial distributions determined by the three spatial 

logistic regression models were more consistent with the observations than those determined by 

the reference model. However, Model 2 for Case (b) and Model 3 for Case (c) yielded the same 

results as that of the reference model. This is because the spatial representations, 𝑔(𝑠𝑖; 𝜃), were 

eliminated during the stepwise process. The reference model also showed limited spatial 

variations (see subfigures in Figure 4-7 for Cases (b) and (c)), which is attributed to the variations 

in demographic factor variables.  
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Figure 4-7. The spatial distribution of the undertaking probability based on observations and the 

reproductions of the spatial variation by the reference model and three developed spatial logistic 

regression models for Case (a)–Case (d) respectively. 

 

4.4.3.2 Comprehensive performance 

Figure 4-8 shows the stacked values of performance indicators quantified at the national level, 
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TAEnation, RMSEnation, MSDnation, and RMSE_GAnation, for all the models considering the six 

groups in the training and test datasets. The indicators are the cumulative values quantified for 

each activity and group combination. As shown, the error indicators exhibited similar 

performances with all the models for almost all of the combinations in the training and test 

datasets. Considering the diversity, Models 1 and 3 exhibited 7% higher MSDnation than the 

reference model. Considering RMSE_GAnation, all the models exhibited similar results with both 

the training and test datasets. 

 

Figure 4-8. The results of indicators at the national level for all models in the training and test 

sets. 

 

Figure 4-9 illustrates the TAE , RMSE , and MSD  values of the models for the six groups 

quantified at the state level. As shown in Figure 4-8 and Figure 4-9, the magnitudes of the error 

indicators increased from the national level. However, MSD  exhibited the opposite trend. 

Considering the error indicators, improvements were observed in the spatial logistic regression 

models compared to the reference model. Model 3 exhibited the greatest improvement compared 

to the reference model, reducing the stacked TAEstate value by 9.9 and the stacked RMSEstate 
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value by 11% for the training dataset. This was followed by Model 1 (stacked TAEstate 

decreased by 4.4 and stacked RMSEstate decreased by 3.6%) and Model 2 (stacked TAEstate 

decreased by 3.2 and stacked RMSEstate  decreased by 2.1%). However, the spatial logistic 

regression models, particularly Model 3, did not provide such advantages with the test dataset. 

The unexpected performance in the test set was mainly due to the sample size for each state being 

small. Although the test set had the same probabilities as the training set at the national level, the 

probabilities among states were quite different as shown in Figure 4-13 and Figure 4-14 in 

Appendix 4.7. Considering MSD, the spatial logistic regression models, particularly Models 1 

and 3, performed better than the reference model with both the training and test datasets. 

 

Figure 4-9. The results of indicators at the regional level and state level for all models in the 

training set. 

 

These results are confirmed in Figure 4-10, which shows the accuracy evaluations of each model 

at the state level. The estimations and observations were obtained using the base-10 logarithmic 

transformation. Two R2 values, with and without logarithmic transformation, were quantified. All 

the models exhibited high accuracies. However, the points in the reference model were relatively 
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scattered compared to those in the spatial logistic regression models. Considering the values of 

R2, the spatial logistic regression models, especially Model 3, exhibited relatively higher R2 values 

than the reference model. 

 

Figure 4-10. The accuracy of the spatial logistic regression model at the state level. The horizontal 

axis shows the observation probabilities of combinations of the group, state, and activity. The 

vertical axis shows the estimations. The black line indicates the reference line 𝑦 = 𝑥 . 

Logarithmic transformation was conducted in the range (–4, 0)×(–4, 0). 

 

 Evaluation of spatial logistic regression models applied to the entire population 

4.4.4.1 Application of Group 7 

In this subchapter, the spatial logistic regression model was applied to Group 7 (i.e., the entire 

population of women aged between 30–59 years) for watching television activity. The Moran’s I 

test results indicated that spatial variation existed during the time intervals 9:00–17:00 and 22:00–

0:00. Therefore, the spatial logistic regression models were developed and assessed only for these 

time intervals. 
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Figure 4-11 shows the same visualization maps (see Figure 4-7) of the spatial probability of 

watching television at 13:00 based on the observations and estimations of Group 7. The range of 

probability is narrower than Figure 4-7 for Group 6 because Groups 1–6 were combined. The 

spatial logistic regression models, especially Model 3, showed a more accurate spatial distribution 

relative to the observations than the reference model. Table 4-3 shows the performance of all of 

the models evaluated by the indicators, considering all the time intervals that exhibited spatial 

variation. The models performed effectively with Group 7. At the national level, all the models 

exhibited the same performance in terms of errors and MSD. However, the reference model 

showed a relatively lower RMSE_GA compared to the spatial logistic regression models. At the 

state level, the spatial logistic regression models exhibited lower TAE and RMSE values, and 

similar MSD values to the reference model. 
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Figure 4-11. The spatial distribution of the undertaking probability based on observations and 

estimations for watching television at the 13:00 time interval of Group 7.  
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Table 4-3. Results of indicators considering all the models with Group 7 at the national and state 

levels. RMSE_GA was calculated only at the national level. 

Level Indicator 
Reference  

model 
Model 1 Model 2 Model 3 

National 

TAE 0.0% 0.0% 0.0% 0.0% 

RMSE 0.0% 0.0% 0.0% 0.0% 

MSD 0.6% 0.6% 0.6% 0.6% 

RMSE_GA 3.3% 3.4% 3.5% 3.4% 

State 

TAE 7.6  6.3  6.0  6.1  

RMSE 1.7% 1.5% 1.4% 1.4% 

MSD 3.2% 3.2% 3.1% 3.1% 

 

4.4.4.2 Comparison approach of segmentation and using conditions as variables 

Figure 4-12 depicts the accuracy in the base-10 logarithmic transformation of Model 3 for 

watching television, considering Group 7 and different subpopulations at the state level. Only the 

time intervals that exhibited spatial variation considering Group 7 and the subpopulations of 

Groups 1–6 have been considered in this analysis. Model 3 developed for Group 7 was applied to 

certain subpopulations Groups 1–6 corresponding to the different time intervals to represent 

estimations based on Group 7. The thick black line shown in the two subfigures of Figure 4-12 

represents the fitted line of the estimations obtained from Model 3 considering Group 7, which 

indicates the approach that uses variables, and the thick dashed line represents the estimations 

obtained from Model 3 considering the subpopulations, which indicates the approach using 

segmentation. The thin black line is the reference line, 𝑦 = 𝑥. Model 3 considering both the entire 

population and the subpopulations fitted significantly with the observations. However, the thick 

dashed line was slightly closer to the reference line than the thick black line, which implies that 

the estimations obtained from Model 3 through segmentation were more accurate than those 

obtained from the variable-based approach.   

Table 4-4 shows the comprehensive performance comparison through the statistical indicators of 

the two approaches for all models at the state level. According to Table 4-4, all models performed 

adequately for both approaches. However, the segmentation-based approach yielded smaller TAE 

and RMSE for all the models. In contrast, for the diversity assessed by MSD, the variable-based 

approach showed a relatively better performance. 
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Figure 4-12. Accuracy of Model 3 at the state level, considering two approaches (variables and 

segmentation). The different colors in the figure represent different groups. The circular and 

triangular shapes represent the entire population and the subpopulations, respectively. 

Logarithmic transformation was performed in the range of (−2, −0.5) × (−2, −0.5). 

 

Table 4-4. Comparison of the approaches through statistical indicators at the state level. 

Approach Group Indicator 
Reference 

model 
Model 1 Model 2 Model 3 

Segmentation-based  Subpopulation Group 1–6 

TAE 17.8 16.4 16.6 15.3 

RMSE 3.3% 3.1% 3.1% 2.9% 

MSD 0.4% 1.1% 1.0% 1.3% 

Variable-based Entire population Group 7 

TAE 18.8 17.6 17.3 17.4 

RMSE 3.4% 3.2% 3.1% 3.1% 

MSD 0.5% 1.0% 1.2% 1.3% 

 

 Discussion 

The Moran’s I tests in Chapter 4.4.1 showed that spatial variation exists and it differed according 

to the time of day and activity for different study populations. Therefore, spatial variation should 

be carefully considered in OB modeling. To this end, SAR-based and kriging-based spatial 

representations were developed to better represent spatial variation empirically and used in 

subsequent spatial logistic regression models. The results in Chapter 4.4.2 showed the SAR-based 

representation was superior to the kriging-based representation because the former accounts for 

the variation in other demographic factor variables. If the location data required to develop a 

spatial representation is insufficient, spatial factor variables can be used to represent spatial 
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variation for model development, as in the case of Model 1.  

As discussed in Chapter 4.4.3, the developed spatial logistic regression models improved the 

diversity, as the single-activity MSD for subpopulations improved by 0.6%, and the stacked MSD 

for all combinations improved by 12.5% at the state level with the training dataset compared to 

the reference model. In particular, the developed models better reproduced the spatial variation 

of OB, as the error was further reduced (RMSE decreased by 0.3%, and stacked RMSE decreased 

by 5.6%). Furthermore, we compared the two approaches for model development: variable-based 

and segmentation-based. As discussed in Chapter 4.4.4.2, the variable-based approach can be an 

effective substitute for the segmentation-based approach for further grouping, because it can 

approximately reflect the diversity, and the error was only marginally larger than the segmentation 

approach (the stacked TAE and RMSE increased by 1.3 and 0.1%, respectively). 

This study showed the existence of spatial variation in OBs and established a new modeling 

method to consider spatial variations in OBs, which may contribute to better reproducing the 

spatial variation in building energy demand while maintaining high accuracy. A limited sample 

extracted from ATUS data representing women from states of the U.S. mainland and the 

inaccurate low-resolution location data were used. Therefore, Models 2 and 3 exhibited the same 

performance as the reference model in several cases, whereas the developed model showed no 

significant improvement with the test dataset. Nevertheless, the developed model can easily be 

applied to different regions or countries, as the national level time use data have been collected 

in many countries. However, the detailed information relevant to the housing, households, and 

environment should be supplemented by combining the data collected at the local level. In 

addition, reliable new samples ought to be generated to enrich the sample size similarly. 

Furthermore, the advancements in geographic information systems allow the higher resolution 

location data to become more and more available. Thus, if adequate data is available (i.e., rich 

information of occupants, higher resolution location data, sufficient sample size), spatial 

representations can be generated with higher accuracy at the zip code or even household level. 

Therefore, subsequent spatial logistic regression models can facilitate further improvements. 

 Conclusion 

Existing OB models lack a comprehensive and systematic consideration of spatial variation. 

These models were primarily established within limited locations based on geo-referenced data 

to determine space use or to simulate occupant mobility. Some studies used spatial factor variables 

to insufficiently consider the spatial variation in OBs or energy demand. However, the real spatial 

distribution of OBs has not been comprehensively investigated, and modeling methods that 

reproduce spatial variation in OBs are yet to be developed.   



83 

 

This study showed that spatial variation exists in OBs and developed new OB models that can 

incorporate spatial variation. The developed models significantly enhanced the reproducibility of 

spatial variations in OBs and generated smaller errors at the state level than the conventional 

logistic regression model. Particularly, the developed models can be applied in different countries 

for any application context (i.e., any spatial scale and population). However, our results were 

obtained with limited samples from the ATUS data and low-resolution location data. The 

performance may be improved when the following requirements are satisfied: the high-resolution 

location data, behavioral data with richer information, and sufficient sample sizes. Therefore, with 

more comprehensive considerations of spatial variation in the new OB model, location-based OB 

patterns can be generated, which can be used in future studies to simulate more realistic energy 

demand profiles and to develop region-sensitive energy policies. 

 Appendix 

Figure 4-13 and Figure 4-14 show the representative probabilities with the training set and the 

test set for the women in Group 4 sleeping, those in Group 3 cooking and washing up, those in 

Group 6 watching television, and those in Group 1 commuting. According to these two figures, 

we found the probabilities at the national level are similar, however, the probabilities among the 

states are quite different between the training set and the test set. 
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Figure 4-13. Probability of undertaking activities for representative groups with the training set. 

Lines in different colors indicate different states and the black one indicates the national level 

estimations. 
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Figure 4-14. Probability of undertaking activities for representative groups with the test set. Lines 

in different colors indicate different states and the black one indicates the national level 

estimations. 
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5 Integrated discussion 

This chapter presents an integrated discussion of this thesis in Chapter 5.1. In particular, the 

discussion focuses on the extended scientific knowledge in the field in terms of the modeling 

process, diversity represented by model input, and the modeling method. The limitations of the 

new OB model developed in this thesis and the potential for future research are discussed in 

Chapter 5.2  

 Discussion 

This thesis conducted three studies to accomplish the research aims. By analyzing the overall 

development of the OB model underpinning the energy demand simulation, the significance of 

pre-simulation was revealed. Choices including the selection of the variable, selection of the 

parameter preparation method, and the model engine had large influences on model estimations. 

Logistic regression models with an appropriate number of significant variables can provide 

relatively good performance in terms of the error in the actual application context. However, it is 

incapable of enabling the reproduction of spatial variation in OBs. There are several elements to 

the proposed new OB model — spatial logistic regression model which favors it over the current 

predominant logistic regression models. First, the error and accuracy can be further improved at 

a higher spatial level. Second, the diversity among simulated occupants can be enhanced. Finally, 

the spatial probability of OBs can be better reproduced. The further discussion that might help 

address the development of energy demand simulation with consideration of OBs and encourage 

the investigation of diversity are outlined below.  

 Pre-simulation process 

The pre-simulation process of OB-based energy demand simulation contains the data processing, 

variable selection, and parameter preparation which was mentioned in Chapter 1.3. Previous 

studies have paid less attention to this process and the majority of them focused on the modeling 

engine part. When considering the pre-simulation process, various methods were applied to 

different data with items of interest to prepare the parameters for the engine. More importantly, 

sample distribution is dominantly used to prepare the parameters in which diversity is ignored. In 

addition, no detailed explanation was made to guide other researchers to start as the first step for 

developing models in the previous studies.  

However, our study in Chapter 2 showed that the pre-simulation process needed to be carefully 

considered thus developing more comprehensive research frameworks for simulating the OB 

patterns. In our study, two key sub-processes which were variable selection and parameter 

preparation method selection were analyzed based on the commonly used TUD. Nine models 
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which are combinations of three parameters preparing methods (i.e., multinomial log-linear 

regression (MLR), support vector machines (SVMs), and feedforward artificial neural network 

(ANN)) and three cases of different variable conditions (i.e., type and number of the variable) 

were designed to assess the impact of the pre-simulation process on OB modeling. The selections 

of the methods and the variables were based on the concrete literature review and available data. 

More specifically, we assessed the model performances by three aspects (i.e., average 

performance, diversity, and individual specificity) which were represented by well-designed 

indicators.  

The analysis suggested that the OB modeling performance can be affected by the pre-simulation 

process. Data with significant variables and enough sample size can better support the model 

simulation. Regarding the parameter preparation method, all selected methods had a quite good 

and similar performance. However, the running time of each method varied. Therefore, the 

selection of the method should consider the actual situation (data in hand and the speed of the 

computer). As for the variable, compared to the factors such as demographic and time factors that 

were commonly used in the previous study, our finding suggested considering the appliance and 

activity factor in the modeling process because variables from these factors are proved to be 

significant. Simply increasing the variable may not improve the model performance as we 

observed in one of our cases. Only considering more significant variables can improve the 

diversity among the simulated occupants.     

 Enhancement of diversity 

As mentioned in Chapter 1.4, some researchers point out that diversity among the occupants can 

explain a great part of the gap between reality and simulations in both OB modeling and energy 

demand modeling. Previous studies have tried to deal with the diversity issue by conducting 

segmentation in terms of different conditions such as type of day, housing unit type, and other 

sociodemographic information. Such segmentation techniques are quite useful and efficient to 

enhance the diversity among all the simulated occupants as proved by the findings in Chapter 4. 

Also, as shown in Figure 5-1, different women subpopulation groups represented by different 

colors have different density distributions in conducting the activity of watching television. 

Therefore, developing a specific model for each group can better capture the characteristics of 

each group and reflect the discrepancies among the groups. However, the drawback of 

segmentation is that it requires enough sample size otherwise it will draw unrealistic conclusions. 

The findings in Chapter 4 illustrate that only basic segmentation is needed if the sample size is 

enough. Further detailed segmentation is unnecessary as it can be replaced by using variables in 

the model. However, we also found that increasing the variable may deteriorate the model 

performance as shown in Chapter 2. Only considering significant variables can improve the 
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diversity while maintaining the model accuracy. Therefore, the selection of the variables is a 

crucial part of the modeling which also needs to be carefully designed.  

 

Figure 5-1. The density of probability of undertaking watching television for each group in the 

case study used in Chapter 4.  

 

Here should be noted that diversity refers to the total variation among simulated occupants. 

However, diversity contains various aspects such as the difference in attributes of the people, 

spatial variation, temporal variation, and socioeconomic cultural differences. These aspects are 

not all independent, but there is a certain connection between them. For example, Figure 5-2 

shows the spatial probability distribution of undertaking watching TV at the 13:00 time interval 

for Group 6 which is defined in Chapter 4, where the time zone divided by the red line is marked. 

Although the undertaking probability was simulated by the local time, the time zone may still 

affect occupants conducting watching television, especially watching some live shows. Thus 

spatial and temporal variations (i.e., spatiotemporal variation) may be considered and processed 

simultaneously to better reflect reality. As mentioned before, researchers have realized that 

diversity is one of the important causes resulting in the gap between simulation and reality in 

recent decades. However, their focus was on the simple differences in the attributes of the research 

objectives (i.e., occupant, building, and type of day). The long-term temporal variation (e.g., 
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historical change) and spatial variation were seldom fully analyzed although some researchers 

revealed that these variations should be highlighted. In Chapter 3, our study verified that the 

historical change and spatial variation existed for certain OBs. The findings also pointed out that 

certain OBs may have a clustered or dispersed probability distribution over space at a specific 

time. Such integrated variations should be paid more attention to in the modeling in future 

research to improve the accuracy and quality of the simulation estimations. 

 

Figure 5-2. The spatial probability of undertaking watching television for Group 6 at 13:00 in the 

case study used in Chapter 4. The red line divides several major time zones for the mainland of 

the U.S. 

 

 Conventional logistic regression and spatial logistic regression model 

Previous OB studies considering the discrete-event approach commonly used the logistic 

regression model to quantify the probability of starting or undertaking an activity. The logistic 

regression model has been proved very useful and efficient. It can take various factors to 

distinguish the simulated occupants in the modeling process. However, it cannot fully reproduce 

the variation exhibited in the activity conducted by occupants as we analyzed in this thesis. An 

obvious example is that only limited variation in OBs was reproduced in a given space as 

mentioned in Chapters 3 and 4. 

Compared to the conventional logistic regression model, the developed spatial logistic regression 
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model based on knowledge from the geostatistical field can involve the consideration of spatial 

variation. Actually, the spatial logistic regression model is an extension of logistic regression. It 

incorporates a smooth function (e.g., estimation of the spatial autoregressive model or ordinary 

kriging model, spatial factor variable which are introduced in Chapter 4) that represents the spatial 

variation in the modeling process. In Chapter 4, our study revealed that the spatial logistic 

regression model can better reproduce the spatial variation in OBs. Moreover, the spatial logistic 

regression model can generate estimations with smaller errors and higher diversity at higher 

spatial resolution. As no sufficient location was available for this study, the spatial logistic 

regression model had the same results as the logistic regression model for several cases. But we 

believe that the developed spatial logistic regression model may obtain further improvement once 

adequate data especially higher resolution spatial data is available.  

In addition, the developed spatial logistic regression model only involved spatial variation. The 

impact of the temporal aspect on the OBs is undeniable, no matter the long-term temporal 

variation (i.e., historical change, annual change) or mid-term temporal variation (i.e., seasonal 

change, monthly change). More importantly, as mentioned in Chapter 5.1.2, spatial variation and 

temporal variation may not independently influence the OBs. Thus, a novel model is urgently 

required to consider the variation from both spatial and temporal aspects for modeling OB and 

energy demand in further research. 

 Limitations and future work 

This thesis aims to investigate how can an OB model be developed and improve the OB model 

from a spatial perspective. It would contribute to the dynamic building energy demand estimation 

thereby providing useful references in both industry and academia. Summarised below are the 

limitation of the studies in this thesis: 

1. The studies are limited to demographic and time factors and don’t include environmental and 

psychological factors. The physical environmental factor variables are usually considered in 

the energy demand models. Building’s physical conditions such as the wall material and the 

neighbor's environmental conditions such as trees can largely influence people's daily 

behavior. However, considering these factors again in the OB model may be redundant. 

Therefore, the significant variables of the OB model should be selected based on a 

compromise of variables considered in all sub-modules of energy demand modeling. 

Likewise, the psychological health of an occupant influences their comfort and enthusiasm 

for activities such as working. However, these psychological factor variables are challenging 

to collect and may fluctuate rapidly and vary from person to person.  

2. All studies are conducted based on ATUS. Literature suggests that an occupant tends to 
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respond positively to questions. However, we only extracted the neutral question (i.e., 

demographic factor variables and activity records) from the survey. Still, ATUS contains the 

TUD only recording the representative individual in each household. The activity patterns for 

the unit of the household cannot be obtained to better estimate the energy consumption for 

each household. Moreover, the applicability of the developed models and corresponding 

findings should be checked by other countries or regions 

3. This thesis is only targeted for energy demand modeling with consideration of OBs in the 

residential sector. Its results are only applicable to buildings in similar conditions. In general, 

OB models for modeling occupancy and action are more likely to be applied in the 

commercial sector. Regarding the transport sector, electrical vehicle models are widely used. 

These models had their own modeling logic.  

4. The developed spatial logistic regression model requires the spatial location data for each 

simulated occupant. The studies used low-resolution location data which makes the people in 

one state of the U.S. share the same location. Therefore, the results obtained by the new OB 

model did not show obvious progress compared to the conventional logistic regression model 

for several cases. Thus, sufficient higher resolution location data is needed for the model 

development. In addition, this thesis only focuses on the spatial variation in OBs. As 

mentioned in Chapter 5.1.2, the spatial and temporal variation should be considered 

simultaneously in the modeling to achieve a more realistic dynamic energy demand 

simulation.  

The overall work of this thesis provides the starting point for investigating the development of 

the OB model underpinning the bottom –up based energy demand simulation and enhancing the 

diversity in OBs. In addition, this work is one of the first studies to develop new OB models that 

can robustly incorporate spatial variation. Hence, future work can be identified from the following 

point: 

1. Integrate variables from a wider range of factors such as the time, environmental, and 

psychological factors to represent the variation shown by occupants. Design metrics to 

characterize some hard-to-measure factors for OB models. At the same time, 

comprehensively considering variables in various factors for developing the OB model to 

further tackle the trade-off between error and diversity when increasing the model complexity.  

2. The results of the developed OB model should be easily explained. The reason for the spatial 

variation in OBs should be further discussed and investigated. Moreover, the new OB model 

should generate more realistic OB patterns in terms of different spatial and time scales. 
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3. Test new OB models on different sectors as well as different geographical regions to verify 

their applicability range. The modeling method for the residential sector in America should 

be extended to other application contexts. 

4. Efficiently combine other sub-modules with the developed OB model in energy demand 

simulation to generate reliable dynamic energy demand profiles. Evaluate the performance of 

the energy demand model along with the newly developed OB model.  

5. The design of the division of a region should be rethought when adequate location data is 

available. More location data contributes to simulating the spatial autocorrelation among 

these locations to represent the spatial trend. However, the amount of supplement data 

containing other factors such as the demographic factor for one location will be decreased as 

the number of location data increases. Therefore, the number and position of the location data 

to represent a certain area needs to meet the requirements of 1) enough to reflect the trend 

change of the space, and 2) the amount of other data in each location is sufficient.  

6. Derive strategies or policies as well as adjust programs (i.e., demand response program) based 

on simulated energy demand profiles. 
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6 Conclusion  

There is an increasing interest in reducing energy consumption as well as reducing the associated 

greenhouse gas emissions in every sector of all nations. Among all sectors, the residential sector 

is a substantial consumer of energy and therefore draws the focus of energy consumption 

reduction efforts. Due to the complex characteristics of energy consumption in the residential 

sector, comprehensive models are needed to assess the impact of adopting energy efficiency and 

renewable energy technologies suitable for residential applications (Swan & Ugursal, 2009). In 

particular, models to capture dynamic changes in the energy demand are urgently required.  

Based on this context, researchers have recognized that occupant behavior (OB) has a significant 

impact on building energy consumption. As occupants influence energy consumption through 

their direct interaction with the building systems and devices and influence the indoor 

environment by their presence just in terms of sources of heat and carbon dioxide production 

(Naspi et al., 2018). Numerous OB models for capturing the occupancy, activities, and actions of 

building occupants have been developed for understanding, modeling, and analyzing OBs and be 

integrated into current building energy simulation tools to quantify the effect of OBs on building 

energy use. However, existing OB studies seldom paid attention to the model development 

process, especially for the pre-simulation process (i.e., the modeling methods to prepare the 

parameter and variables used in the model). In addition, modeling OB with spatial variation which 

underpins building energy simulation is rare in general.  

This thesis seeks to analyze and evaluate the modeling process for the existing OB models thereby 

summarizing the experiences that support researchers to shape their decision-making for 

designing the energy demand model with consideration of OBs. Furthermore, this thesis proposes 

new OB models that can incorporate spatial variation into the modeling process thereby better 

enhancing the model diversity.  

The overall target of this thesis is to better understand and design the OB model based on ATUS 

data. This thesis conducted three studies to address the research gap. The following are sets of 

research questions relevant to the research gap and corresponding answers. 

1) Address research questions on which variables should be considered and what is the most 

appropriate parameter preparation method to improve the pre-simulation process of OB 

modeling.  

Answer: all three parameter preparation methods (i.e., multinomial log-linear regression 

(MLR), support vector machines (SVMs), and feedforward artificial neural network (ANN)) 

with the same variables inputs had similar performances which are evaluated by indicators 
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representing three aspects: average performance, diversity, and individual specificity. 

However, we recommend the use of MLR when applying basic TUD. Regarding the variable, 

we found that only including more significant variables, especially from the activity and 

appliance-related factors, contribute to enhancing the diversity. Therefore, setting a reference 

group using basic variables and a simple method helps to assess the feasibility of the designed 

methodology framework is recommended. 

2) Address research questions on whether spatial variation and historical change exist in OB, 

whether variables can represent spatial and temporal variations, and whether the conventional 

modeling method can reproduce the spatial variation. 

Answer: the historical change was confirmed to exist in watching television activity 

conducted by the targeted subpopulation of women with full-time jobs based on 

comprehensive descriptive analysis. The spatial distribution of the activity probability can be 

visualized through the ordinary kriging interpolation method. The interpolation results 

revealed that the probability of undertaking watching television had an obvious 

spatiotemporal variation over the mainland of the U.S. at a five year-period time slot. More 

importantly, the analysis implied that the conventional logistic regression model can only 

reproduce limited spatial variation. A new model is urgently required to better reproduce the 

detailed spatial variation. 

3) Address research questions on when spatial variation exists in OB, how can spatial variation 

in OB be represented quantitatively, and how can spatial methods reproduce spatial variations 

in OB to develop a new method for OB modeling with consideration of spatial variation.  

Answer: developed three spatial logistic regression models involving one spatial factor 

variable and two spatial representations (kriging-based and SAR-based representations) 

successfully incorporating the spatial variation into the modeling process based on the case 

of four representative activities for six subpopulations groups of women. By comparing with 

the conventional logistic regression model in terms of reproducibility and comprehensive 

performance (i.e., error and diversity), the results showed that the developed spatial logistic 

regression model improves the reproducibility of the spatial variation in OBs, at the same 

time it is able to generate estimations with smaller errors and higher diversity at a higher 

spatial resolution level. Moreover, the finding revealed that basic segmentation is 

recommended when the data is sufficient. Segmentation can enhance the diversity among 

simulated occupants as it helps to develop targeted models to better grasp and describe the 

differences between research objectives in different scenarios. However, further segmentation 

to run the model is unnecessary especially when only limited data is available. In this case, 
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diversity can be enhanced by using appropriate variables in the modeling process. 

To conclude, the overall work of this thesis has contributed to developing advanced OB models 

incorporating spatial variation. The thesis also has shown that indicators can be drawn from 

various aspects, including error, diversity, and reproducibility to assess the model performance 

more comprehensively. To sum up, this thesis has broadened the knowledge of the pre-simulation 

and successfully enhanced the model diversity thus improving the understanding of the systems 

and identifying areas to support sustainable decision-making depending on the time-use of people 

in different regions. Going forward, our findings in this thesis can be extended to generate more 

reliable energy demand profiles thus guiding to improve energy efficiency, saving energy cost, 

and reducing greenhouse gas emissions for heterogeneous regions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



96 

 

Reference  

Abbasabadi, N., Ashayeri, M., Azari, R., Stephens, B., & Heidarinejad, M. (2019). An 

integrated data-driven framework for urban energy use modeling (UEUM). Applied 

Energy, 253(February), 113550. https://doi.org/10.1016/j.apenergy.2019.113550 

Aerts, D., Minnen, J., Glorieux, I., Wouters, I., & Descamps, F. (2014). A method for the 

identification and modelling of realistic domestic occupancy sequences for building 

energy demand simulations and peer comparison. Building and Environment, 75, 67–78. 

https://doi.org/10.1016/j.buildenv.2014.01.021 

Al-Mumin, A., Khattab, O., & Sridhar, G. (2003). Occupants’ behavior and activity patterns 

influencing the energy consumption in the Kuwaiti residences. Energy and Buildings, 

35(6), 549–559. https://doi.org/10.1016/S0378-7788(02)00167-6 

An, J., Yan, D., Hong, T., & Sun, K. (2017). A novel stochastic modeling method to simulate 

cooling loads in residential districts. Applied Energy, 206(May), 134–149. 

https://doi.org/10.1016/j.apenergy.2017.08.038 

Anderson, B. (2016). Laundry, energy and time: Insights from 20 years of time-use diary data in 

the United Kingdom. Energy Research and Social Science, 22, 125–136. 

https://doi.org/10.1016/j.erss.2016.09.004 

Anxo, D., Mencarini, L., Pailhé, A., Solaz, A., Tanturri, M. L., & Flood, L. (2011). Gender 

differences in time use over the life course in France, Italy, Sweden, and the US. Feminist 

Economics, 17(3), 159–195. https://doi.org/10.1080/13545701.2011.582822 

Arraiz, I., Drukker, D. M., Kelejian, H. H., & Prucha, I. R. (2010). A spatial cliff-ord-type 

model with heteroskedastic innovations: Small and large sample results. Journal of 

Regional Science, 50(2), 592–614. https://doi.org/10.1111/j.1467-9787.2009.00618.x 

Belessiotis, V., & Mathioulakis, E. (2002). Analytical approach of thermosyphon solar domestic 

hot water system performance. Solar Energy, 72(4), 307–315. 

https://doi.org/10.1016/S0038-092X(02)00011-7 

Berke, O. (1999). Estimation and prediction in the spatial linear model. Water, Air, and Soil 

Pollution, 110(3–4), 215–237. https://doi.org/10.1023/a:1005035509922 

Berke, O. (2001). Modified median polish kriging and its application to the Wolfcamp-Aquifer 

data. Environmetrics, 12(8), 731–748. https://doi.org/10.1002/env.495 

Bivand, R., Millo, G., & Piras, G. (2021). A review of software for spatial econometrics in r. 

Mathematics, 9(11), 1–40. https://doi.org/10.3390/math9111276 



97 

 

Buttitta, G., Turner, W., & Finn, D. (2017). Clustering of Household Occupancy Profiles for 

Archetype Building Models. Energy Procedia, 111(September 2016), 161–170. 

https://doi.org/10.1016/j.egypro.2017.03.018 

Calis, G., Atalay, S. D., Kuru, M., & Mutlu, N. (2017). Forecasting occupancy for demand 

driven HVAC operations using time series analysis. Journal of Asian Architecture and 

Building Engineering, 16(3), 655–660. https://doi.org/10.3130/jaabe.16.655 

Candanedo, L. M., Feldheim, V., & Deramaix, D. (2017). Data driven prediction models of 

energy use of appliances in a low-energy house. Energy and Buildings, 140, 81–97. 

https://doi.org/10.1016/j.enbuild.2017.01.083 

Carlucci, S., Lobaccaro, G., Li, Y., Catto Lucchino, E., & Ramaci, R. (2016). The effect of 

spatial and temporal randomness of stochastically generated occupancy schedules on the 

energy performance of a multiresidential building. Energy and Buildings, 127, 279–300. 

https://doi.org/10.1016/j.enbuild.2016.05.023 

Chasco, C., García, I., & Vicéns, J. (2007). Modeling Spatial Variations in Household 

Disposable Income with Geographically Weighted Regression. Munich Personal RePEc 

Archive, 50(June 2014), 31. 

Chiou, Y. S., Carley, K. M., Davidson, C. I., & Johnson, M. P. (2011). A high spatial resolution 

residential energy model based on American Time Use Survey data and the bootstrap 

sampling method. Energy and Buildings, 43(12), 3528–3538. 

https://doi.org/10.1016/j.enbuild.2011.09.020 

Concato, J., Peduzzi, P., Holford, T. R., & Feinstein, A. R. (1995). Importance of events per 

independent variable in proportional hazards analysis I. Background, goals, and general 

strategy. Journal of Clinical Epidemiology, 48(12), 1495–1501. 

https://doi.org/10.1016/0895-4356(95)00510-2 

Corgnati, S. P., Fabrizio, E., Filippi, M., & Monetti, V. (2013). Reference buildings for cost 

optimal analysis: Method of definition and application. Applied Energy, 102, 983–993. 

https://doi.org/10.1016/j.apenergy.2012.06.001 

Cressie, N. (1988). Spatial prediction and ordinary kriging. Mathematical Geology, 20(4), 405–

421. https://doi.org/10.1007/BF00892986 

De Lauretis, S., Ghersi, F., & Cayla, J. M. (2017). Energy consumption and activity patterns: 

An analysis extended to total time and energy use for French households. Applied Energy, 

206(September), 634–648. https://doi.org/10.1016/j.apenergy.2017.08.180 

Degré, A., Tech, G. A., & Passage, S. S. (2015). Different methods for spatial interpolation of 



98 

 

rainfall data for operational hydrology and hydrological modeling at watershed scale : a 

review PoPuPS | Different methods for spatial interpolation of rainfall data for ... Base, 

17(2013), 1–10. lake 

Deng, Z., & Chen, Q. (2019). Simulating the impact of occupant behavior on energy use of 

HVAC systems by implementing a behavioral artificial neural network model. Energy and 

Buildings, 198, 216–227. https://doi.org/10.1016/j.enbuild.2019.06.015 

Diao, L., Sun, Y., Chen, Z., & Chen, J. (2017). Modeling energy consumption in residential 

buildings: A bottom-up analysis based on occupant behavior pattern clustering and 

stochastic simulation. Energy and Buildings, 147, 47–66. 

https://doi.org/10.1016/j.enbuild.2017.04.072 

Druckman, A., & Jackson, T. (2008). Household energy consumption in the UK: A highly 

geographically and socio-economically disaggregated model. Energy Policy, 36(8), 3177–

3192. https://doi.org/10.1016/j.enpol.2008.03.021 

Dziedzic, J. W., Yan, D., Sun, H., & Novakovic, V. (2020). Building occupant transient agent-

based model – Movement module. Applied Energy, 261(7491), 114417. 

https://doi.org/10.1016/j.apenergy.2019.114417 

Esteban Ortiz-Ospina, C. G., & Roser, M. (2020). Time Use. Our World in Data. 

Fabi, V., Buso, T., Andersen, R. K., Corgnati, S. P., & Olesen, B. W. (2013). Robustness of 

building design with respect to energy related occupant behaviour. Proceedings of BS 

2013: 13th Conference of the International Building Performance Simulation Association, 

1999–2006. 

Faisal.N, & A.Gaffar. (2012). Development of Pakistan ’ s New Area Weighted Rainfall Using 

Thiessen Polygon Method. Pakistan Journal of Meteorology, 9(17), 107–116. 

Feng, X., Yan, D., & Hong, T. (2015). Simulation of occupancy in buildings. Energy and 

Buildings, 87, 348–359. https://doi.org/10.1016/j.enbuild.2014.11.067 

Fischer, D., Härtl, A., & Wille-Haussmann, B. (2015). Model for electric load profiles with high 

time resolution for German households. Energy and Buildings, 92, 170–179. 

https://doi.org/10.1016/j.enbuild.2015.01.058 

Gentry, J., Commuri, S., & Jun, S. (2003). " Review of Literature on Gender in the Family. 

Academy of Marketing Science Review, 2003(January 2003), 1. 

Goh, A. T. C. (1994). Some civil engineering applications of neural networks. Proceedings of 

the Institution of Civil Engineers: Structures and Buildings, 104(4), 463–469. 

https://doi.org/10.1680/istbu.1994.27204 



99 

 

Haldi, F., Calì, D., Andersen, R. K., Wesseling, M., & Müller, D. (2017). Modelling diversity in 

building occupant behaviour: a novel statistical approach. Journal of Building 

Performance Simulation, 10(5–6), 527–544. 

https://doi.org/10.1080/19401493.2016.1269245 

Halleck Vega, S., van Leeuwen, E., & van Twillert, N. (2022). Uptake of residential energy 

efficiency measures and renewable energy: Do spatial factors matter? Energy Policy, 

160(March 2021), 112659. https://doi.org/10.1016/j.enpol.2021.112659 

Happle, G., Fonseca, J. A., & Schlueter, A. (2018). A review on occupant behavior in urban 

building energy models. Energy and Buildings, 174, 276–292. 

https://doi.org/10.1016/j.enbuild.2018.06.030 

Hayn, M., Bertsch, V., & Fichtner, W. (2014). Electricity load profiles in Europe: The 

importance of household segmentation. Energy Research and Social Science, 3(C), 30–45. 

https://doi.org/10.1016/j.erss.2014.07.002 

Heinrich, M., Ruellan, M., Oukhellou, L., Samé, A., & Lévy, J.-P. (2022). From energy 

behaviours to lifestyles: Contribution of behavioural archetypes to the description of 

energy consumption patterns in the residential sector. Energy and Buildings, 269, 112249. 

https://doi.org/10.1016/j.enbuild.2022.112249 

Hoes, P., Hensen, J. L. M., Loomans, M. G. L. C., de Vries, B., & Bourgeois, D. (2009). User 

behavior in whole building simulation. Energy and Buildings, 41(3), 295–302. 

https://doi.org/10.1016/j.enbuild.2008.09.008 

Ibrahim, A., Ali, H., Abuhendi, F., & Jaradat, S. (2020). Thermal seasonal variation and 

occupants’ spatial behaviour in domestic spaces. Building Research and Information, 

48(4), 364–378. https://doi.org/10.1080/09613218.2019.1681928 

Jeong, B., Kim, J., & de Dear, R. (2021). Creating household occupancy and energy behavioural 

profiles using national time use survey data. Energy and Buildings, 252, 111440. 

https://doi.org/10.1016/j.enbuild.2021.111440 

Jiawei Han, Micheline Kamber, J. P. (2014). Data mining: Data mining concepts and 

techniques. In Proceedings - 2013 International Conference on Machine Intelligence 

Research and Advancement, ICMIRA 2013. https://doi.org/10.1109/ICMIRA.2013.45 

Jones, R. V., Fuertes, A., Gregori, E., & Giretti, A. (2017). Stochastic behavioural models of 

occupants’ main bedroom window operation for UK residential buildings. Building and 

Environment, 118, 144–158. https://doi.org/10.1016/j.buildenv.2017.03.033 

Kavgic, M., Mavrogianni, A., Mumovic, D., Summerfield, A., Stevanovic, Z., & Djurovic-



100 

 

Petrovic, M. (2010). A review of bottom-up building stock models for energy consumption 

in the residential sector. Building and Environment, 45(7), 1683–1697. 

https://doi.org/10.1016/j.buildenv.2010.01.021 

Kelejian, H. H., & Prucha, I. R. (1998). A Generalized Spatial Two-Stage Least Squares 

Procedure for Estimating a Spatial Autoregressive Model with Autoregressive 

Disturbances. Journal of Real Estate Finance and Economics, 17(1), 99–121. 

https://doi.org/10.1023/A:1007707430416 

Kim, T. W., & Cha, S. H. (2019). Empirical validation of the spatial-choice modelling approach 

to user simulation. Architectural Science Review, 62(4), 313–322. 

https://doi.org/10.1080/00038628.2019.1625299 

Kleinebrahm, M., Torriti, J., McKenna, R., Ardone, A., & Fichtner, W. (2021). Using neural 

networks to model long-term dependencies in occupancy behavior. Energy and Buildings, 

240, 110879. https://doi.org/10.1016/j.enbuild.2021.110879 

Li, M., & Tilahun, N. (2020). A comparative analysis of discretionary time allocation for social 

and non-social activities in the U.S. between 2003 and 2013. Transportation, 47(2), 893–

909. https://doi.org/10.1007/s11116-018-9924-1 

Li, Y., Yamaguchi, Y., & Shimoda, Y. (2022). Impact of the pre-simulation process of occupant 

behaviour modelling for residential energy demand simulations. Journal of Building 

Performance Simulation, 15(3), 287–306. https://doi.org/10.1080/19401493.2021.2022759 

Liisberg, J., Møller, J. K., Bloem, H., Cipriano, J., Mor, G., & Madsen, H. (2016). Hidden 

Markov Models for indirect classification of occupant behaviour. Sustainable Cities and 

Society, 27, 83–98. https://doi.org/10.1016/j.scs.2016.07.001 

Lim, H., & Zhai, Z. J. (2017). Review on stochastic modeling methods for building stock 

energy prediction. Building Simulation, 10(5), 607–624. https://doi.org/10.1007/s12273-

017-0383-y 

Lu, G. Y., & Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation 

technique. Computers and Geosciences, 34(9), 1044–1055. 

https://doi.org/10.1016/j.cageo.2007.07.010 

Marín-Restrepo, L., Trebilcock, M., & Gillott, M. (2020). Occupant action patterns regarding 

spatial and human factors in office environments. Energy and Buildings, 214. 

https://doi.org/10.1016/j.enbuild.2020.109889 

Martinaitis, V., Zavadskas, E. K., Motuziene, V., & Vilutiene, T. (2015). Importance of 

occupancy information when simulating energy demand of energy efficient house: A case 



101 

 

study. Energy and Buildings, 101, 64–75. https://doi.org/10.1016/j.enbuild.2015.04.031 

Mastrucci, A., Pérez-López, P., Benetto, E., Leopold, U., & Blanc, I. (2017). Global sensitivity 

analysis as a support for the generation of simplified building stock energy models. Energy 

and Buildings, 149, 368–383. https://doi.org/10.1016/j.enbuild.2017.05.022 

McKenna, E., Higginson, S., Grunewald, P., & Darby, S. J. (2018). Simulating residential 

demand response: Improving socio-technical assumptions in activity-based models of 

energy demand. Energy Efficiency, 11(7), 1583–1597. https://doi.org/10.1007/s12053-017-

9525-4 

Mcmillen, D. P. (1996). One hundred fifty years of land values in Chicago: A nonparametric 

approach. Journal of Urban Economics, 40(1), 100–124. 

https://doi.org/10.1006/juec.1996.0025 

McMillen, D. P., & McDonald, J. F. (1997). A nonparametric analysis of employment density 

in a polycentric city. Journal of Regional Science, 37(4), 591–612. 

https://doi.org/10.1111/0022-4146.00071 

Mohammadi, N., & Taylor, J. E. (2017). Urban energy flux: Spatiotemporal fluctuations of 

building energy consumption and human mobility-driven prediction. Applied Energy, 195, 

810–818. https://doi.org/10.1016/j.apenergy.2017.03.044 

Monestiez, P., Courault, D., Allard, D., & Ruget, F. (2001). Spatial interpolation of air 

temperature using environmental context: Application to a crop model. Environmental and 

Ecological Statistics, 8(4), 297–309. https://doi.org/10.1023/A:1012726317935 

Moran, P. A. P. (1948). The Interpretation of Statistical Maps. Journal of the Royal Statistical 

Society: Series B (Methodological), 10(2), 243–251. https://doi.org/10.1111/j.2517-

6161.1948.tb00012.x 

Mosteiro-Romero, M., Fonseca, J. A., & Schlueter, A. (2017). Seasonal effects of input 

parameters in urban-scale building energy simulation. Energy Procedia, 122, 433–438. 

https://doi.org/10.1016/j.egypro.2017.07.459 

Murakami, D., Yoshida, T., Seya, H., Griffith, D. A., & Yamagata, Y. (2017). A Moran 

coefficient-based mixed effects approach to investigate spatially varying relationships. 

Spatial Statistics, 19, 68–89. https://doi.org/10.1016/j.spasta.2016.12.001 

Naspi, F., Arnesano, M., Stazi, F., D’orazio, M., & Revel, G. (2018). Measuring Occupants’ 

Behaviour for Buildings’ Dynamic Cosimulation. Journal of Sensors, 2018, 1–17. 

https://doi.org/10.1155/2018/2756542 

Naspi, F., Arnesano, M., Stazi, F., D’Orazio, M., & Revel, G. M. (2018). Measuring occupants’ 



102 

 

behaviour for buildings’ dynamic cosimulation. Journal of Sensors, 2018. 

https://doi.org/10.1155/2018/2756542 

Nassar, K., & Elnahas, M. (2007). Occupant dynamics: Towards a new design performance 

measure. Architectural Science Review, 50(2), 100–105. 

https://doi.org/10.3763/asre.2007.5015 

Nath, R. (2014). Trend Surface Analysis of Spatial Data. Gondwana Geological Magazine, 

29(1–2), 39–44. 

Nguyen, B. V. D., Wang, T. H., & Peng, C. (2020). Integration of agent-based modelling of 

social-spatial processes in architectural parametric design. Architectural Science Review, 

63(2), 119–134. https://doi.org/10.1080/00038628.2019.1640107 

O’Brien, W., & Gunay, H. B. (2015). Mitigating office performance uncertainty of occupant use 

of window blinds and lighting using robust design. Building Simulation, 8(6), 621–636. 

https://doi.org/10.1007/s12273-015-0239-2 

O’Brien, W., Gunay, H. B., Tahmasebi, F., & Mahdavi, A. (2017a). A preliminary study of 

representing the inter-occupant diversity in occupant modelling. Journal of Building 

Performance Simulation, 10(5–6), 509–526. 

https://doi.org/10.1080/19401493.2016.1261943 

O’Brien, W., Gunay, H. B., Tahmasebi, F., & Mahdavi, A. (2017b). A preliminary study of 

representing the inter-occupant diversity in occupant modelling. Journal of Building 

Performance Simulation, 10(5–6), 509–526. 

https://doi.org/10.1080/19401493.2016.1261943 

Okada, T., Yamaguchi, Y., & Shimoda, Y. (2020). Data Preparation to Address Heterogeneity 

in Time Use Data Based Activity Modelling. Proceedings of Building Simulation 2019: 

16th Conference of IBPSA, 16, 2356–2363. 

https://doi.org/10.26868/25222708.2019.211095 

Oliver, M. A., & Webster, R. (2007). International journal of geographical information systems 

Kriging : a method of interpolation for geographical information systems. Geographical, 

October 2011, 37–41. 

Osman, M., & Ouf, M. (2021). A comprehensive review of time use surveys in modelling 

occupant presence and behavior: Data, methods, and applications. Building and 

Environment, 196, 107785. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.107785 

Paciorek, C. J. (2007). Computational techniques for spatial logistic regression with large data 

sets. Computational Statistics and Data Analysis, 51(8), 3631–3653. 



103 

 

https://doi.org/10.1016/j.csda.2006.11.008 

Paul, P., Pennell, M. L., & Lemeshow, S. (2013). Standardizing the power of the Hosmer-

Lemeshow goodness of fit test in large data sets. Statistics in Medicine, 32(1), 67–80. 

https://doi.org/10.1002/sim.5525 

Piselli, C., & Pisello, A. L. (2019). Occupant behavior long-term continuous monitoring 

integrated to prediction models: Impact on office building energy performance. Energy, 

176, 667–681. https://doi.org/10.1016/j.energy.2019.04.005 

Rafiee, A., Dias, E., & Koomen, E. (2019). Analysing the impact of spatial context on the heat 

consumption of individual households. Renewable and Sustainable Energy Reviews, 

112(May), 461–470. https://doi.org/10.1016/j.rser.2019.05.033 

Rafiq, M. Y., Bugmann, G., & Easterbrook, D. J. (2001). Neural network design for engineering 

applications. Computers and Structures, 79(17), 1541–1552. 

https://doi.org/10.1016/S0045-7949(01)00039-6 

Ramírez-mendiola, J. L., Grünewald, P., & Eyre, N. (2019). Residential activity pattern 

modelling through stochastic chains of variable memory length. Applied Energy, 237(July 

2018), 417–430. https://doi.org/10.1016/j.apenergy.2019.01.019 

Ramírez-Mendiola, J. L., Grünewald, P., & Eyre, N. (2019). Residential activity pattern 

modelling through stochastic chains of variable memory length. Applied Energy, 

237(January), 417–430. https://doi.org/10.1016/j.apenergy.2019.01.019 

Ranstam, J., & Cook, J. A. (2018). LASSO regression. British Journal of Surgery, 105(10), 

1348. https://doi.org/10.1002/bjs.10895 

Raudys, S. J., & Jain, A. K. (1991). Small Sample Size Effects in Statistical Pattern 

Recognition: Recommendations for Practitioners. In IEEE Transactions on Pattern 

Analysis and Machine Intelligence (Vol. 13, Issue 3, pp. 252–264). 

https://doi.org/10.1109/34.75512 

Richardson, I., Thomson, M., & Infield, D. (2008). A high-resolution domestic building 

occupancy model for energy demand simulations. Energy and Buildings, 40(8), 1560–

1566. https://doi.org/10.1016/j.enbuild.2008.02.006 

Ruan, Y., Cao, J., Feng, F., & Li, Z. (2017). The role of occupant behavior in low carbon 

oriented residential community planning: A case study in Qingdao. Energy and Buildings, 

139, 385–394. https://doi.org/10.1016/j.enbuild.2017.01.049 

Sayer, L. C. (2005). Gender, time and inequality: Trends in women’s and men’s paid work, 

unpaid work and free time. Social Forces, 84(1), 285–303. 



104 

 

https://doi.org/10.1353/sof.2005.0126 

Shahzad, S., Calautit, J. K., Hughes, B. R., Satish, B. K., & Rijal, H. B. (2019). Patterns of 

thermal preference and Visual Thermal Landscaping model in the workplace. Applied 

Energy, 255(July). https://doi.org/10.1016/j.apenergy.2019.113674 

Sheela, K. G., & Deepa, S. N. (2014). Selection of number of hidden neurons in neural 

networks in renewable energy systems. Journal of Scientific and Industrial Research, 

73(10), 686–688. 

Shorrock, L. D., & Dunster, J. E. (1997). The physically-based model BREHOMES and its use 

in deriving scenarios for the energy use and carbon dioxide emissions of the UK housing 

stock. Energy Policy, 25(12), 1027–1037. https://doi.org/10.1016/S0301-4215(97)00130-4 

Silva-Palacios, D., Ferri, C., & Ramírez-Quintana, M. J. (2017). Improving Performance of 

Multiclass Classification by Inducing Class Hierarchies. Procedia Computer Science, 108, 

1692–1701. https://doi.org/10.1016/j.procs.2017.05.218 

Stazi, F., Naspi, F., & D’Orazio, M. (2017). A literature review on driving factors and 

contextual events influencing occupants’ behaviours in buildings. Building and 

Environment, 118, 40–66. https://doi.org/10.1016/j.buildenv.2017.03.021 

Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the 

residential sector: A review of modeling techniques. Renewable and Sustainable Energy 

Reviews, 13(8), 1819–1835. https://doi.org/10.1016/j.rser.2008.09.033 

Tabak, V. (2009). User Simulation of Space Utilisation: System for Office Building Usage 

Simulation (Issue 2009). https://doi.org/10.6100/IR640457 

Tahmasebi, F., & Mahdavi, A. (2018). On the utility of occupants’ behavioural diversity 

information for building performance simulation: An exploratory case study. Energy and 

Buildings, 176, 380–389. https://doi.org/10.1016/j.enbuild.2018.07.042 

Tanimoto, J., Hagishima, A., & Sagara, H. (2008a). A methodology for peak energy 

requirement considering actual variation of occupants’ behavior schedules. Building and 

Environment, 43(4), 610–619. https://doi.org/10.1016/j.buildenv.2006.06.034 

Tanimoto, J., Hagishima, A., & Sagara, H. (2008b). Validation of probabilistic methodology for 

generating actual inhabitants’ behavior schedules for accurate prediction of maximum 

energy requirements. Energy and Buildings, 40(3), 316–322. 

https://doi.org/10.1016/j.enbuild.2007.02.032 

Toftum, J. (2010). Central automatic control or distributed occupant control for better indoor 

environment quality in the future. Building and Environment, 45(1), 23–28. 



105 

 

https://doi.org/10.1016/j.buildenv.2009.03.011 

Torriti, J. (2012). Demand Side Management for the European Supergrid: Occupancy variances 

of European single-person households. Energy Policy, 44, 199–206. 

https://doi.org/10.1016/j.enpol.2012.01.039 

Torriti, J. (2017). Understanding the timing of energy demand through time use data: Time of 

the day dependence of social practices. Energy Research and Social Science, 25, 37–47. 

https://doi.org/10.1016/j.erss.2016.12.004 

Ueda, R., & Mita, A. (2015). Homeostasis lighting control based on relationship between 

lighting environment and human behavior. Sensors and Smart Structures Technologies for 

Civil, Mechanical, and Aerospace Systems 2015, 9435(March 2015), 94352S. 

https://doi.org/10.1117/12.2083672 

Varouchakis, E. A. (2021). Median polish kriging and sequential gaussian simulation for the 

spatial analysis of source rock data. Journal of Marine Science and Engineering, 9(7). 

https://doi.org/10.3390/jmse9070717 

Wang, C., Yan, D., & Jiang, Y. (2011). A novel approach for building occupancy simulation. 

Building Simulation, 4(2), 149–167. https://doi.org/10.1007/s12273-011-0044-5 

Wang, Y.-C. (2012). Examining landscape determinants of Opisthorchis viverrini transmission. 

EcoHealth, 9(3), 328–341. https://doi.org/10.1007/s10393-012-0789-z 

Widén, J., Nilsson, A. M., & Wäckelgård, E. (2009). A combined Markov-chain and bottom-up 

approach to modelling of domestic lighting demand. Energy and Buildings, 41(10), 1001–

1012. https://doi.org/10.1016/j.enbuild.2009.05.002 

Wilke, U., Haldi, F., Scartezzini, J., & Robinson, D. (2013). A bottom-up stochastic model to 

predict building occupants ’ time-dependent activities. Building and Environment, 60, 

254–264. https://doi.org/10.1016/j.buildenv.2012.10.021 

Xie, C., Huang, B., & Claramunt, C. (2000). Spatial logistic regression and GIS to model rural^ 

urban land conversion’’ Estimation of ubiquitous air quality View project Maritime Big 

Data Workshop 2020 View project SEE PROFILE. March 2014. 

https://www.researchgate.net/publication/228904456 

Xie, X., Semanjski, I., Gautama, S., Tsiligianni, E., Deligiannis, N., Rajan, R. T., Pasveer, F., & 

Philips, W. (2017). A review of urban air pollution monitoring and exposure assessment 

methods. ISPRS International Journal of Geo-Information, 6(12), 1–21. 

https://doi.org/10.3390/ijgi6120389 

Xu, X., & Chen, C. fei. (2019). Energy efficiency and energy justice for U.S. low-income 



106 

 

households: An analysis of multifaceted challenges and potential. Energy Policy, 

128(January), 763–774. https://doi.org/10.1016/j.enpol.2019.01.020 

Yamaguchi, Y, Yilmaz, S., Prakash, N., Firth, S. K., & Shimoda, Y. (2019). A cross analysis of 

existing methods for modelling household appliance use. Journal of Building Performance 

Simulation, 12(2), 160–179. https://doi.org/10.1080/19401493.2018.1497087 

Yamaguchi, Yohei, & Shimoda, Y. (2017). A stochastic model to predict occupants’ activities 

at home for community-/urban-scale energy demand modelling. Journal of Building 

Performance Simulation, 10(5–6), 565–581. 

https://doi.org/10.1080/19401493.2017.1336255 

Yan, D., Hong, T., Dong, B., Mahdavi, A., D’Oca, S., Gaetani, I., & Feng, X. (2017). IEA EBC 

Annex 66: Definition and simulation of occupant behavior in buildings. Energy and 

Buildings, 156, 258–270. https://doi.org/10.1016/j.enbuild.2017.09.084 

Yan, D., O’Brien, W., Hong, T., Feng, X., Burak Gunay, H., Tahmasebi, F., & Mahdavi, A. 

(2015). Occupant behavior modeling for building performance simulation: Current state 

and future challenges. Energy and Buildings, 107, 264–278. 

https://doi.org/10.1016/j.enbuild.2015.08.032 

Yang, Z., Li, N., Becerik-Gerber, B., & Orosz, M. (2012). A multi-sensor based occupancy 

estimation model for supporting demand driven HVAC operations. Simulation Series, 44(8 

BOOK), 100–107. 

Yu, W., Li, B., Lei, Y., & Liu, M. (2011). Analysis of a residential building energy 

consumption demand model. Energies, 4(3), 475–487. https://doi.org/10.3390/en4030475 

Zhao, J., Lasternas, B., Lam, K. P., Yun, R., & Loftness, V. (2014). Occupant behavior and 

schedule modeling for building energy simulation through office appliance power 

consumption data mining. Energy and Buildings, 82, 341–355. 

https://doi.org/10.1016/j.enbuild.2014.07.033 

Zhou, M., Li, J., Basu, R., & Ferreira, J. (2022). Creating spatially-detailed heterogeneous 

synthetic populations for agent-based microsimulation. Computers, Environment and 

Urban Systems, 91(September 2021), 101717. 

https://doi.org/10.1016/j.compenvurbsys.2021.101717 

Zhu, G., Liu, J., Tan, Q., & Shi, B. (2016). Inferring the Spatio-temporal Patterns of Dengue 

Transmission from Surveillance Data in Guangzhou, China. PLoS Neglected Tropical 

Diseases, 10(4). https://doi.org/10.1371/journal.pntd.0004633 

 


