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Abstract 

The digital management of existing building data plays a key role in efficiently 

allocating resources and developing urban renewal strategies. Urban development 

issues such as urban building energy modeling, urban building retrofitting, urban heat 

island, and urban vitality are inextricably linked to the fine management of digital urban 

building data. With the transition of urban spatial development patterns to stock 

optimization, a large number of urban buildings constructed during the high-speed 

incremental period have generated a considerable amount of building data that needs to 

be managed urgently. Building facade data is an important part of urban building data. 

Building facades need to meet building performance requirements and pass on history 

and culture. Large-scale collection and management of building facade data, including 

building geometry data, facade colors, building functions, facade semantics, facade 

materials, etc., is crucial in the maintenance of the life cycle of the stock buildings. 

However, constructing a city-scale database of building facades is a difficult task. In 

particular, the automation of the building measurement process has long been a 

challenge that has plagued both academia and industry. Field measurements by 

professional surveyors are still the dominant method in the industry. This approach 

works well for neighborhood-scale projects but is hard to adapt to city-scale. 

This study attempts to develop a three-step framework to automate the 

measurement of building facade data at a large scale to construct an urban facade 

database. The collected building facade data includes semantic segmentation, dominant 

colors, building functions, and window-wall semantic information. Street-level images 

and state-of-the-art deep learning methods are used to extract facade information. 

Firstly, this study develops an unwanted object elimination system that can obtain the 

complete building facade to decrease the loss of information caused by obstruction. 

Secondly, a facade instance segmentation method using the synthetic dataset from a 

city digital twin (CDT) is proposed, which has two benefits: It solves the segmentation 
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problem of connected buildings. Another one is the automatically generated synthetic 

dataset dramatically reduces the cost of data annotation. Third, an integrated multi-task 

facade data extraction method is proposed. As a result, building facade data, including 

facade dominant color, building functional classification, and window-wall semantics, 

will be automatically counted. Based on the above research framework, the study 

proposes several publicly available facade datasets for facade instance segmentation, 

building function classification, and window-wall semantic segmentation. 

The proposed frameworks contain various building facade data types that are not 

recorded in existing urban geo-databases (e.g. OpenStreetMap). The experimental 

results are verified in several cities and show that, first, the approach can overcome the 

interference of street obstructions to the facade data collection. Then, the proposed CDT 

synthetic dataset can be effectively used for facade instance segmentation of real images, 

revealing the potential of the proposed synthetic dataset to replace real ones. Finally, 

the integrated multi-task facade parsing approach has satisfactory accuracy in facade 

dominant color measurement, building function classification, and semantic 

segmentation of walls and windows. Overall, the digital management of building assets 

can facilitate the efficient allocation of public resources and urban development 

decision-making. In the future, the collected digital facade information at the city scale 

will be stored in a database that allows the public, private, and research sectors to 

formulate urban development strategies. 

Keywords: Building facades; Deep learning; Street-level images; Image 

inpainting; Synthetic data; Facade parsing; Quantitative analysis 
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Chapter 1. Introduction 

1.1 Research background and problem statements 

With the increase in urbanization, the developable amount of urban construction 

land is gradually decreasing (Cao et al., 2020; M.-C. Chen et al., 2006). Therefore, the 

mode of urban development is changing from high-speed expansion to optimization. 

High-quality development is becoming the core goal of urban governance (Meijer & 

Bolívar, 2016). However, with the gradual aging of old urban areas, the deficiencies in 

public facilities, resource integration capacity, and planning and management will 

restrict urban development. The large number of urban buildings that have been built 

can hardly meet people's new demand for a high quality of life. In particular, the 

increase in the volume of building data brought about by various issues such as urban 

building renewal (Zheng et al., 2014), urban thermal environment (Ferrando et al., 

2020), and urban vitality (Mouratidis & Poortinga, 2020) has posed new challenges to 

building data management. Therefore, there is an urgent need to digitally refine the 

management of existing urban data to help rationalize the allocation of resources and 

make urban development strategies. 

Building facade data is an important part of urban architectural data because the 

facades should not only meet the needs of visual quality and architectural performance 

but also embody a city’s history, express its culture and preserve its urban fabric 

(Degaev & Barkhi, 2019). Therefore, it is especially important to collect and manage 

building facade data, including building facade color, date of construction, facade 

material, and facade element size, on a city-wide scale and in a detailed manner. 

However, conducting building renewal on a large scale is a major challenge. This is 

especially true when it comes to automating the building measurement process. Field 

measurement by professional surveyors is currently the primary method in the industry. 
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Manual measurement is adequate for small-scale projects. Starting work on city-scale 

projects can, however, be difficult (Zhong et al., 2021). 

The collection of building facade data is critical for the energy efficiency retrofit 

of buildings. By fully understanding the impact of upgrades to the individual 

constructions of different buildings on their thermal performance improvement, the 

benefits of retrofitting can be clearly assessed and understood, creating a win-win 

scenario for all stakeholders involved. Information from the building facade, including 

geometric data, building function classification, and geographic information, allows the 

construction of urban building energy models (UBEMs) (Ferrando & Causone, 2020) 

and the development of data-driven building energy retrofit strategies (Hu, 2020). 

When deploying retrofit programs for individual buildings, researchers collect 

individual building data such as building geometry (Kheiri, 2018), thermal 

characteristics (e.g., building materials, glazing ratios, window-door types, thermal 

bridging issues) (Boodi et al., 2022), and failure information (broken windows and 

facade defects) (Marchand et al., 2018) in order to effectively model building energy 

and quantify the benefits of retrofits. 

Building facade data collection is also essential for urban development and 

renewal (M. Dai et al., 2021). The facade can convey the city's historical information. 

It has the role of reflecting the city's characteristics and showing the city's culture, 

customs, and urban landscape. Digital reconstruction and database construction of 

building facades with conservation value have become essential (T. Deng et al., 2021). 

Recently, researchers have proposed considering buildings as material databases and 

have focused on new buildings with building information modeling (BIM) to preserve 

high-value components for future use. However, these studies have done little to 

address the fundamental barriers to reusing materials and components in existing 

buildings, which lack digital records (Sultana & Storch, 2021). Urban researchers 

encounter difficulties when they tackle developing urban or architectural landscape 
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renewal programs without quantitative analysis of old building data as support (J. Wang 

et al., 2021). 

As cities grow and spread in the population, the application of geographic 

information system (GIS) in urban planning provides a better understanding of various 

issues of a city, such as ecologies, transportation, housing, crime, aging, and other issues 

(X. Liu et al., 2017). By processing geospatial data from satellite imagery, aerial 

photography, and street view images, users can gain a detailed understanding of the 

land and infrastructure. The GIS is important because it can bring together the vast 

amount of city information necessary to balance competing priorities and solve 

complex building problems, such as optimizing the layout of new buildings or the 

digital management of building information (Zhu et al., 2018). Existing urban geo-

databases with building data, such as OpenStreetMap (OSM) (OpenStreetMap, 2021), 

contain simple building data such as floor area, height, and the number of floors, and 

lack the integration of detailed indicators about building facades such as semantic 

information of facade components and facade dominant color. In recent years, laser 

scanning technology for generating BIM models has seen increased usage in identifying 

component attributes in existing buildings (Istenič et al., 2020; B. Wang et al., 2021). 

Applications for laser scanning technology in urban data collection continue to emerge 

(Y. Wang et al., 2019). However, the obstacles to laser scanning include the high cost 

of complex equipment, time-consuming and laborious handling of complex data, 

inconvenient field operation, and large file type storage. It is, therefore, applicable only 

to a small range of projects and is difficult to be used universally (Szcześniak et al., 

2022). 

The advantages of integrating computer vision techniques and a large range of 

freely available street images to extract building facade data are, in contrast, more 

obvious (Campbell et al., 2019). They rely on a higher-order knowledge model of 

facade topology and lower-level elements (roofs, windows, balconies, doors, walls, etc.) 

that make up the building (W. Li et al., 2020). Researchers parse building facade images 
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by partitioning them into semantics requirements corresponding to the elevation 

structures composed of lower-level elements (Kong & Fan, 2021; H. Liu et al., 2020; 

Ma et al., 2020). The cost of this approach is low, and the accuracy requirement is 

appropriate for building facade data acquisition. Therefore, supervised learning-based 

building facade parsing is considered to become one of the most powerful techniques 

for building information modeling at a city scale in the future (Gadde et al., 2016; 

Riemenschneider et al., 2012).  

However, supervised learning-based segmentation methods require data 

annotation to be a laborious manual task (X. Xie et al., 2020). And the quality and 

quantity of the dataset largely determine the execution of the segmentation model. On 

the one hand, researchers want to use a large amount of accurately annotated data, and 

on the other hand, they often struggle with the expensive costs associated with all this 

data (Schumacher et al., 2019, p. 0). In addition, obstructions in the street scene are 

detrimental factors affecting the method of obtaining facade data based on street view 

images. Obstructions in front of the facade severely reduce the integrity of the data. 

Whether it is street 2D data acquisition or 3D model reconstruction, removing unwanted 

objects has been a challenge that has plagued researchers. 

In summary, the large-scale automatic construction of the urban facade database 

can be beneficial to constructing UBEMs and developing building renewal plans. The 

critical issues of this study are the large-scale acquisition of facade images, the 

automatic extraction of facade element information using deep learning and street-level 

images, and the integration and utilization of facade data.  

1.2 Research objective 

This study attempts to develop a method that can automatically measure building 

facade data on a large scale to comprise an urban facade information database. The 

building facade data includes monolithic instance segmentation of the facade, dominant 

color, building function, and window-wall semantics. In this study, street-level images 
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will be used as the data source, and state-of-the-art deep learning will be used to extract 

facade information. By reviewing studies related to the large-scale collection and 

quantitative analysis of building facade data, the practical application value of the 

automated approach to building retrofitting and urban landscape renewal is explored. 

Based on these, the objectives are as follows. 

(1) To develop a method for automatically obtaining complete building facades in 

street-level images, often obscured by obstacles; 

(2) To develop a system for automatically generating synthetic datasets for training 

deep learning-based facade instance segmentation models, which would alleviate the 

cost of manually labeling datasets; 

(3) To develop a comprehensive system of obtaining multiple data types of 

building facades, including facade instance segmentation, facade dominant color, 

building function, and window-wall semantics, in order to provide cost-effective tools 

for developing urban facade databases. 

1.3 Research significance 

The mining, analyzing, and storage of building facade data play a crucial role in 

the digital management of urban buildings, which can be used as data support for built 

environment renewal and development. This study takes the large-scale collection and 

quantitative analysis of building facade data as an entry point to assist city managers 

and researchers in practical applications and theoretical research. In practical 

applications, large-scale automatic extraction of building facade data can save 

researchers' costs and labor compared with field measurements. In terms of theoretical 

research, the built facade database can help urban researchers analyze urban issues, 

including the prediction of urban building energy consumption and the development of 

urban landscape renewal strategies. 
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1.4 Research scopes 

The existing urban geo-database (such as OSM) can capture street networks, 

building height, and building plan outlines. This study focuses on the elements of 

building facades that are not available in the existing open database, such as the instance 

segmentation of building facades, facade dominant colors, and facade window-wall 

semantics, and these types of data will contribute to UBEMs and urban renewal. 

The data sources in this study are street-level images, including Baidu Street View 

(Baidu Street View service, 2022) and Google Street View images (Google Street View 

service, 2022). This study is used for facade parsing methods based on deep learning 

for image classification, semantic segmentation, and instance segmentation. The color 

measurement used by Euclidean distance-based building standard color calculation. 

1.5 Research framework 

To implement a large-scale automated extraction system for building facades, the 

research framework of the system (Figure 1.1) is divided into five steps: (1) Inputting 

the street coordinates into the system and getting the shapefile of the road centerline 

from OSM. (2) Calculating the requested deflection angle for Street View Service API. 

The street view images for shooting the building facade vertically are obtained. (3) 

Automatically eliminating unwanted objects in front of the building, such as trees, cars, 

and people. Individual building facades are obtained using instance segmentation. (4) 

Performing orthogonal transformation and resizing the images based on camera-to-

building distance, camera-to-edge center distance, camera zoom, and pitch angle. 

Necessary information for each individual building is calculated, including facade color, 

building function classification, and window-wall segmentation. (5) Measuring the 

elements of the building facade at a large scale and generating an urban facade output 

CSV file. An urban facade database was created to provide data-driven decision support 

for urban designers and stakeholders. 
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Figure 1.1. Research framework. 

1.6 Overview of the dissertation 

Figure 1.2 shows the overview of this dissertation, organized as follows. 
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Figure 1.2. The overview of this dissertation 

The dissertation will be divided into six chapters. 

Chapter 1 Introductions: 

This chapter introduces the research background, problem statement, research 

objective, research significance, research scopes, research framework, and the 

overview of the dissertation. 

Chapter 2 Literature review: 
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This chapter reviews the issues and recent research pertinent to this study. It is 

divided into five sections, the first of which introduces the brief problem of orientation 

on the achievements and shortcomings of the facade data extraction using street-level 

images and deep learning. The second section presents the existing methods for 

automatic object removal with obstructed facades completion. The third section 

describes the strengths and limitations of using synthetic datasets for training the 

instance segmentation of building facades. The fourth section reviews the applications 

of image-based building facade data extraction in city information modeling and 

building retrofitting. The fifth section summarizes the gaps in established research and 

outlines the overall objectives of this study. 

Chapter 3 Automatic object removal with obstructed facades completion: 

This chapter addresses object removal and facade inpainting. An image-based 

cityscape removal approach is proposed by detecting multiple classes, including 

pedestrians, cyclists, vegetation, and cars, as well as using generative adversarial 

networks (GANs) to fill in the detected areas by background textures from streetscape 

images. 

Chapter 4 Synthetic datasets from a city digital twin for use in the instance 

segmentation of building facades: 

This chapter develops a novel framework that can automatically produce synthetic 

datasets from a city digital twin (CDT). An auto-generation system for synthetic street 

views was built by rendering a city’s digital assets into a game engine, while the system 

auto-generated the annotations for building facades. The hybrid dataset, along with 

various subsets containing different proportions of synthetic and real data, were used to 

train deep learning models for facade instance segmentation. Two types of synthetic 

data (CDT-based and virtually-based) were compared, and the results showed that the 

CDT synthetic data were more effective in boosting deep learning training with real-

world images compared with the virtual synthetic data (no real-world counterparts). By 
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swapping a certain portion of the real data with the proposed CDT synthetic images, 

the performance could almost match what is achievable when using the real-world 

training set. 

Chapter 5 The large-scale approach for extracting data on multiple elements of 

building facades: 

This chapter explores an approach utilizing state-of-the-art deep learning 

techniques and street-level imagery to measure multiple facade elements at a large scale, 

including dominant color measurement, building function classification, and window-

wall semantic segmentation. A street of length 500m in Osaka, Japan, is used to 

construct a database as an example. The results demonstrate the transferability and 

effectiveness of the scheme. 

Chapter 6 Conclusions: 

This chapter offers the study's conclusions, contributions, and limitations and 

presents plans for future work. 
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Chapter 2. Literature review: Large-scale 

building facades data extraction using 

street-level images 

2.1 Background 

With the increasing need for 3D building models in urban planning, urban 

modeling platforms, autonomous driving and game simulation, facade parsing, 

especially the parsing of detailed level building models developed by individual 

buildings in City Geography Markup Language (CityGML), has become very 

important in urban reconstruction. Building facade parsing aims to semantically 

classify the fine-grained categories of each pixel in a building facade image, where the 

semantic categories may include fine-grained facade components, the dominant color, 

and the function. Facade parsing has been receiving continuous attention from the 

academic community in recent years. It is much easier to search for buildings based on 

grammar as opposed to Red-Green-Blue (RGB) images when building images are 

parsed into grammar. Parsing building images into grammar can significantly reduce 

the storage space required for building images. Apart from that, dividing the building 

parts by semantics can greatly enrich the building and city information model. 

Regarding the 3D reconstruction of buildings, the grammar generated by facade parsing 

can also reduce manual labor costs. Existing facade parsing techniques typically rely 

on grammar rules or computer vision techniques. These methods generally improve 

facade parsing results by pre-processing techniques such as image correction or by 

embedding a priori knowledge for the algorithm.  

Although previous facade parsing methods and datasets have achieved significant 

results (Gadde et al., 2016; Kong & Fan, 2021; H. Liu et al., 2020), the current 
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extraction of building facade information is based on street-level images still faces three 

main challenges in practical applications. (1) The existing datasets are most 

orthographic projections of facades (Gadde et al., 2016), and previous studies rarely 

considered the occlusion in front of buildings, which does not perform well for parsing 

building facades of complex scenes. (2) When buildings are connected or visually 

overlap, it is difficult to extract single buildings using semantic segmentation (M. Dai 

et al., 2021), which is why instance segmentation must be used. (3) The traditional 

facade parsing algorithm relies too much on the regular building facade structure based 

on a priori knowledge (Martinović et al., 2012), which is not ideal for building facades 

with asymmetric structures. Moreover, the application scenarios of building facade 

parsing are still in the early stages of exploration. 

The next section introduces the literature review along the following lines. Section 

2.2 presents a review of previous methods for the elimination of unwanted objects in 

front of building facades. Section 2.3 describes the instance segmentation methods of 

building facades and the feasibility of creating synthetic datasets in a cost-effective 

manner. Section 2.4 investigates the current practical applications of building facade 

parsing in 3D city modeling and building retrofitting. Section 2.5 summarizes the 

research gaps and research objectives. 

2.2 Automatic objects removal with obstructed facades 

completion 

In urban environments, extensive foreground occlusion exists on building facades. 

Analyzing the building facade without addressing the occlusion issue will result in 

missing a significant amount of facade information, leading to biases and a decline in 

the credibility of the built database.  
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2.2.1 Object segmentation and removal 

Unwanted regions are detected, and the regions of interest (ROI) are eliminated 

and filled with surrounding textures (Y. Sun et al., 2018). The recent emergence of deep 

learning-based object segmentation shows the power of ROI segmentation. Objects can 

be detected using the convolutional neural network (CNN) semantic segmentation 

model and segmented according to their contours. However, when CNN-based object 

segmentation is applied to determine the ROI, the ROI can be a mask covering the target 

object or an outline of the target object (Z. Cai & Vasconcelos, 2019; Kido et al., 2021). 

The ROI needs to be filled after semantic segmentation, for which there are two 

main approaches: observation and inpainting. Observation requires a pre-taken image 

of the background scene (Mori et al., 2017), which can be used as a reference to replace 

the foreground obstacle directly. For example, using the observation method to remove 

objects from the front of a building requires receiving complete information about the 

obscured facade, then replacing unwanted objects with parts of a known building facade. 

Another technique is inpainting (Criminisi et al., 2004), which uses the texture and 

patch information of the source image to fill the detected area. This technique does not 

require prior knowledge of the information behind the occlusion and uses the 

knowledge of the database or the texture around unwanted objects to fill the ROI. 

However, obtaining background images in projects where obstacles cannot be moved 

is challenging. Therefore, inpainting without pre-processing is more suitable for 

removing objects from street scenes than observation. 

2.2.2 Generative adversarial inpainting 

Existing image inpainting techniques generally fall into three categories 

(Elharrouss et al., 2020). (1) Inpainting by replication: These techniques attempt to 

explicitly borrow content or texture from the surrounding environment in order to fill 

in the gaps. A context copy method is an example of unsupervised learning in which 
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surrounding image information is used to predict the loss of contents (Nathan 

Mundhenk et al., 2018). However, image replication typically fails when dealing with 

intricate scenes. (2) Inpainting by modeling: These methods use extensive external 

databases to generate data-driven replacements for missing pixels. They attempt to 

learn to model the distribution of the training images and assume that regions 

surrounded by backgrounds with similar characteristics may contain similar content 

(Pathak et al., 2016). These methods can effectively find sample images with sufficient 

visual similarity to the query, but they easily fail when there are no similar examples in 

the database. (3) Combining the two: the third class of approaches attempts to combine 

the previous two in order to overcome the limitations of replication methods or 

modeling methods, such as generative adversarial network (GAN) methods (Yi et al., 

2020; Yu et al., 2019). Not only do these methods learn to build image distributions in 

a data-driven manner, but they are also designed to explicitly borrow patches or features 

from background regions (Yi et al., 2020). However, when the training dataset and the 

content of the processed images do not match, the generated image quality is not 

satisfactory. Image inpainting works better when the dataset is customized rather than 

when a generic dataset is used for a specific task. 

2.3 Synthetic datasets from a city digital twin for use in the 

instance segmentation of building facades 

The instance segmentation of building facades is one of the focuses of this study. 

This section reviews previous studies on developing instance segmentation for building 

facades, using synthetic data for deep learning, and utilizing city digital twins to create 

synthetic datasets, and summarizes the research gap and goals. 

2.3.1 Instance segmentation of building facades 

Effectively performing large-scale collection and integration of building facade 

data in cities has been a long-standing challenge for industry and academia (Martinez 
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& Choi, 2017; Y. Wang et al., 2018). Parsing building facades into procedural grammars 

and extracting facade information using semantic segmentation plays a significant role 

in development tasks involving 3D buildings (M. Dai et al., 2021; Femiani et al., 2018; 

Rahmani & Mayer, 2018). Deep learning-based semantic facade parsing methods have 

yielded promising results when applied to open-source facade datasets (H. Liu et al., 

2020; Ma et al., 2020). Additionally, studies have enhanced the performance of deep 

convolutional neural network (DCNN) models using 3D models to automatically 

synthesize the semantically annotated datasets of building facades. However, studies 

that use semantic segmentation treat all buildings as one category and do not 

differentiate between distinct buildings. The semantic reserve is limited in its ability to 

perform individual segmentation of regions (Carvalho et al., 2020), especially when 

several buildings are visually superimposed or in contact. Instance segmentation, as a 

new paradigm and the evolution of semantic segmentation, therefore, allows for a 

unique understanding of each item in the same class, which is necessary for precisely 

extracting information from building facades. 

Currently, many powerful instance segmentation algorithms are emerging, such as 

Fast R-CNN (Girshick, 2015), Mask R-CNN (He et al., 2017), YOLACT (Bolya et al., 

2019), and BlendMask (H. Chen et al., 2020). Mask R-CNN is a typical technique based 

on the network architecture of detection followed by segmentation that is relatively easy 

to train with better generalization and higher segmentation accuracy. For instance, Toda 

et al. (2020) used synthetic datasets to train Mask R-CNN to characterize the seed 

morphology of various cultivars. Carvalho et al. (2020) applied Mask R-CNN with real 

open-source datasets to perform instance segmentation of rural facilities for agricultural 

management. These studies used real or synthetic data training sets to perform object 

instance segmentation, but they were seldom applied to building facades. Moreover, 

previous studies have rarely evaluated the changes in model performance after CDT 

synthetic data has been added to a real dataset. 
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2.3.2 Synthetic data for facade segmentation 

Many studies have shown that the performance of DCNN-based instance 

segmentation is affected by the network architecture and the amount of data available 

for training, with the latter having a greater impact on improving the accuracy of the 

segmentation results (X.-W. Chen & Lin, 2014). However, the acquisition and 

annotation of the original datasets are time-consuming and laborious, often representing 

a large percentage of the project budget (Sorokin & Forsyth, 2008). Consequently, 

several attempts have been made to reduce the reliance on data annotation, such as by 

using active learning (concentrating only on annotated data with high information) 

(Settles, 2009), semi-supervised learning (using only a little annotated data) (van 

Engelen & Hoos, 2020), unsupervised learning (no annotations required) (Locatello et 

al., 2019), and reinforcement learning (no annotations required) (Botvinick et al., 2019). 

However, these methods are still working to achieve performance comparable to that 

of supervised learning with large annotated datasets. 

Recently, the use of synthetic data in the training of supervised learning models 

has increased considerably. Since creating synthetic datasets by computer is 

significantly more efficient than collecting real datasets on a manual basis, once the 

initial setting is established, the data is remarkably cost-effective. Visual segmentation 

tasks are also starting to benefit from this trend. For example, Ros et al. (2016) built a 

large-scale synthetic collection SYNTHIA by rendering 3D city models with semantic 

annotations of counterparts. They combined SYNTHIA with natural urban scene 

datasets for training DCNNs and showed that extending SYNTHIA in the training phase 

significantly improved the performance of the semantic segmentation task. Saleh et al. 

(2018) introduced VEIS, a virtual environment system that auto-annotates synthetic 

images with instance-level segmentation urban elements, such as roads, pedestrians, 

riders, cars, etc. However, these 3D city models are not digital copies of natural cities. 

There is still a gap between the distribution of streetscape features in the human-created 
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fictional cities and natural ones, thus leading to the low realism of the generated 

synthetic data. 

2.3.3 Using the game engine to create synthetic data for deep learning 

The original intention of game engines is to improve game development efficiency 

(Nitsche & Maureen, 2004), while some notable game engines include Unreal, Unity, 

CryEngine, etc. Game engines enable developers to power the physics, lighting, and 

interactions in their virtual worlds. They can be used to generate photorealistic synthetic 

datasets through physically based rendering (Z. Li & Snavely, 2018). Synthetic datasets 

generated by game engines for deep learning training have received increasing attention 

from scholars in recent years. For example, Öztürk & Erçelebi (2021) used Unity to 

create a large number of synthetic images of birds and UAVs for implementing a 

classification deep learning task. However, this approach is limited to producing 

synthetic data for single small-sized targets, and its effectiveness for large-scale objects 

in urban environments is unclear. For segmentation tasks, Poucin et al. (2021) proposed 

a simple method that combines the use of virtual synthetic images and real-world 

images to facilitate instance segmentation in urban environments but lacks the creation 

of synthetic data for individual building facades. For integrating multiple deep learning 

tasks, NVIDIA Omniverse Replicator (2021) allows users to generate physically 

simulated synthetic data. It provides RGB images and several ground-truth outputs, 

such as depth and normal information, object or category segmentation, motion 

segmentation, forward and backward, which can accelerate the development of 

autonomous vehicles and robots. In general, cost-effective synthetic data outputs with 

universal applicability and high fidelity are the current endeavors of game engine-based 

approaches. 



18 

 

2.3.4 City digital twins for creating synthetic datasets 

The implications of CDT in academic research and industrial applications 

triggered extensive discussions in the fields of cities, architecture, engineering, and 

construction (Aheleroff et al., 2021; L. Liu et al., 2022; G. Wang et al., 2022). Many 

cities are beginning to experiment with creating and leveraging digital duplicates of real 

cities at the intersection of reality and virtuality, and a plethora of urban digital assets 

have been produced. However, compared to DT research in manufacturing (Niu & Qin, 

2021), CDT research is still in its early stages, and there is little discussion related to 

the utilization of digital assets from CDT to create synthetic datasets for training CNN. 

The digital assets in CDT have a high level of detail (LOD) since they replicate 

the physical world, simulating the materials and textures of real-world objects as closely 

as possible. The higher the LOD of a digital asset with well-formed surfaces, the more 

likely it is to be rendered as a photorealistic image. Theoretically, using synthetic data 

with image texture distribution close to the real one for deep learning model training 

can obtain satisfactory accuracy of instance segmentation. However, many studies have 

proven that using a synthetic dataset alone as the training set cannot accomplish 

competitive accuracy with the real dataset, even if it is rendered from a digital asset 

with high LOD (Gao et al., 2020; Saleh et al., 2018). The domain adaptation has been 

developed to address this problem by transferring an algorithm trained in source 

domains to target domains (M. Wang & Deng, 2018). For example, the Balanced 

Gradient Contribution (BGC) training method was introduced to improve model 

accuracy using synthetic data (Ros, Stent, et al., 2016). The method statistics the 

imagery features from two domains (synthetic and real) throughout the training process, 

and the results are accurate for both domains. Therefore, a real dataset is necessary for 

the facade instance segmentation training in order to complement the real domain. 



19 

 

2.4 Image-based building facade data extraction for 3D city 

model and urban building retrofitting 

2.4.1 Extracting building facade data for semantic enrichment of building and 

city information models 

The 3 Dimensional City Model (3DCM) is the result of the digitization of the city, 

which is composed of GIS data and BIM data at a large scale and belongs to the basic 

data of the new smart city development. Generally speaking, the technical route of the 

GIS-based 3DCM construction method used is divided into five steps. (1) building 

bottom contour data acquisition. The building base contour data is the boundary vector 

data formed by the orthographic projection of the building to the ground. (2) After 

getting the building bottom contour data, quality check, and post-process the data, the 

main process covers topological closure of polylines, conversion of closed line 

elements to surface elements and alignment of vector data position with image base 

image, and unification of coordinate conversion. (3) Based on the processed building 

bottom contour data, the city-level building white model is automatically generated in 

batch by means of parametric tool modeling and exported to OBJ, FBX, OSG, and other 

common formats of 3D data. (4) With data-supported intelligent applications as the 

entry point, the 3D model is supplemented and improved with relevant fields and 

attributes required for business by means of automatic links, paving the way for 

visualization applications. (5) City-level 3D models are integrated with Digital 

Orthophoto Maps (DOM) and Digital Elevation Models (DEM) within the framework 

of the 3DCM platform to rapidly build city-level 3D GIS scenes. 

The 3DCM is based on two-dimensional geographic information and can be used 

to analyze the city's natural and man-made features (Chun & Kim, 2010). Users can 

feel a realistic and intuitive sense of the synthetic city environment through interactive 

operations. An important task in 3D city modeling is building facade parsing and 

geometric analysis to create urban geometry datasets (Kong & Fan, 2021). Automated 
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facade geometry extraction can be done from building images or from 3D laser scan 

data points. Laser scan-based methods require specialized data formats and equipment, 

so they cannot be used globally to create 3DCM models for additional urban renewal 

or building energy consumption simulations (Istenič et al., 2020). In contrast, image-

based techniques and computer vision are freely accessible on a larger scale. Deep 

learning-based semantic segmentation methods obtain building facade geometry data, 

mapping materials, and GIS coordinates from street view images, and these facade data 

can be used to build 3DCM at city scale. 

The 3D city platform reproduces the real-world (physical space) city in the virtual 

world (cyberspace). Several 3D city platform projects have already been developed in 

some cities. For example, Rennes city in France has created a 3D virtual twin of itself 

intended for planning future urban development (Doyle, 2019). A 3D city model 

platform with multiple data sources was created by the Virtual Singapore project 

(Virtual Singapore, 2022), which can be accessed by the public, private, people, and 

research sectors to formulate urban development strategies to address the urban 

challenges related to city information modeling. In Japan, the PLATEAU project 

(PLATEAU, 2022) was established to optimize the management potential of cities. The 

project has created massive digital assets for many cities and is an essential part of the 

digital infrastructure development in Japan’s Society 5.0 (Fukuyama, 2018). 

In general, 3D city models are an important part of digital infrastructure 

development. By integrating various urban activity data into the 3D city model, it 

achieves a high degree of integration of physical space and cyberspace and further 

heightens urban planning, simulation, and analysis of urban activities. The advantages 

of acquiring building data based on street-level images for building 3DCM methods are 

that (1) they do not rely on expensive equipment and specific data formats, (2) the 

acquired building data are fine-grained, and (3) they can be used on a large scale 

worldwide. 
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2.4.2 Extracting building facade data for urban building retrofitting 

Existing residential building retrofits for energy efficiency are crucial to reducing 

global greenhouse gas emissions. In 2019, residential buildings were responsible for 

15% of total greenhouse gas emissions and consumed 29% of total energy in all sectors 

contributing to greenhouse gas emissions in the United Kingdom (Final UK 

Greenhouse Gas Emissions National Statistics, 2019.; UK Housing, 2019). In this 

context, energy efficiency retrofits in housing as an infrastructure priority can have a 

significant positive effect on reducing carbon emissions. They collect data and analyze 

data prior to deploying energy efficiency retrofit programs for individual buildings to 

assess the building energy profile. Large-scale collection of facade data, including 

building thermal indictors (such as building materials, window-door semantics), 

building geometry, usage of buildings, and facade deficiency information, allow for the 

construction of UBEM tools (Ferrando et al., 2020). A thorough evaluation and 

comprehension of the advantages of retrofits can create a win-win situation for 

stakeholders. However, providing building data for energy-efficient building retrofits 

on a large scale is a major challenge, especially in terms of automation. Building facade 

measurements based on professional surveyors in the field is time-consuming and 

labor-intensive, which makes it difficult to roll out energy-efficient building retrofits at 

a city scale. 

Urban environmental data can be collected on a large scale using in-vehicle 

sensors. For instance, the Google Street View service collects images with geo-data 

from the urban environment, which is utilized in a variety of applications, such as land 

use identification assistance (X. Li et al., 2015) and automatic identification of building 

functions (J. Zhang et al., 2021b). Automated ground building facade data collection 

based on street-level images for UBEM is a bottom-up approach. The field has gained 

momentum in recent years due to automated procedures and wider accessibility of 

spatial and geometric data streams. M. Dai et al. (2021) designed a street-level image 
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segmentation model for building facade images as a basis for an overall data analysis 

framework. The model is based on deep learning semantic segmentation techniques and 

uses an integrated learning strategy. Szcześniak et al. (2022) propose a method to 

automatically extract the facade hole layout of each building adjacent to the Google 

Street View route. The automatically generated window-to-wall ratio (WWR) of 1057 

buildings in Manhattan is compared with the manually determined WWR to verify the 

accuracy of the method. 

Existing research has revealed the potential for collecting data on urban facades 

using street-level imagery. By incorporating multispectral capture, building 

characterization will contribute directly to the automation of current building energy 

analysis (Martinez & Choi, 2017) and city information modeling platform (Biljecki et 

al., 2016) for stakeholders, including local government authorities, research institutions, 

and residents. Related research is at a preliminary stage, and it is worthwhile for 

researchers to continue exploring this further. 

2.5 Summary of research gaps and goals 

As mentioned above, the application of building facade parsing in city modeling 

and building renewal has many challenges in terms of methodology and dataset. The 

following is a summary of the research gaps and goals. 

1) Existing methods and datasets cannot overcome the challenge of facade 

parsing with severe occlusions, perspective distortions, and reflections. 

Current deep learning methods are affected by the training dataset. Most 

facade datasets are small in size and low in diversity, given that producing 

them is time-consuming and labor-intensive. 

2) It is difficult to handle facades with complex environments as background. 

When multiple buildings are connected in a scene, current semantic 

segmentation-based methods have difficulty in obtaining data for individual 
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buildings. Moreover, building facades usually do not have any background, 

only the sky in most of these open-source datasets.  

3) Traditional facade parsing algorithms usually focus on the regularity and 

symmetry of building facades. However, these methods encounter difficulties 

when dealing with asymmetric, complex-shaped buildings. In addition, for 

different application scenarios, traditional algorithms need to continuously 

combine existing features to achieve optimal results, failing to achieve end-to-

end learning results. The existing methods lack stability and generalizability. 

Existing methods are not universal and cannot be easily applied to practical 

projects because of the research gaps mentioned above. The following are the objectives 

of this study and an overview of how these gaps were bridged. 

1) There are two possible solutions to the facade obstruction problem. The first 

is to add a priori knowledge, such as the geometric characteristics of the 

window, whereby the algorithm automatically corrects the window to a 

rectangle when the foreground is determined to be obstructed. The second is 

to use the picture inpainting technique to eliminate the foreground occlusion 

and automatically fill in the building facade mapping. The former method can 

solve the facade segmentation problem but cannot solve the analysis problem 

that requires complete building facade data. The latter method can achieve 

complete facade segmentation and solve the problem of requiring complete 

facade information, such as color calculation of the obscured facade and facade 

mapping extraction. However, the quantitative evaluation of the performance 

of facade restoration results is a difficult problem. 

2) The facade extraction methods use semantic segmentation and instance 

segmentation. The instance segmentation can extract building facade 

information one by one when multiple buildings are connected in a single 

image. In addition, city digital twin models are emerging, which can efficiently 
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generate high-fidelity synthetic data for replacing real datasets. This can 

greatly reduce the labor and time required for manual labeling of data. The 

synthetic datasets generated by the game engine have been successfully used 

for various computer vision tasks. 

3) CNN-based segmentation algorithms have yielded promising results. This 

research will try to use the CNN-based building facade parsing method to 

extract and distinguish features of objects efficiently by learning a large 

amount of data to obtain higher accuracy results than can be obtained by 

traditional methods.  



25 

 

Chapter 3. Automatic object removal with 

obstructed facades completion 

3.1 Overview of obstructed facades completion 

Automatic object removal is an extensively researched and fundamental task in 

computer vision. Unwanted objects (e.g., pedestrians, cyclists, vegetation, and cars in 

front of building facades) are numerous and often obscure the scene, hindering the 

acquisition of building facade data. When analyzing a building facade, the obscured 

information will lead to computational bias and incorrect results. Many studies have 

been conducted to automatically remove objects from urban environments (Valada et 

al., 2018), ranging from filtering out areas with unwanted objects to assuming a static 

scene and classifying object areas as outliers (Y. Sun et al., 2017). Recently, promising 

results have been achieved with learning-based methods for background texture 

inpainting (Bescos et al., 2019; Yu et al., 2019). These methods first use semantic 

segmentation to detect regions containing unwanted objects at the pixel level and then 

use image inpainting techniques to synthesize the backgrounds of these regions 

(Schwarz et al., 2018). Mask based manual selection of occlusion and then 

complementation using surrounding textures can be labor intensive. Automatic or semi-

automatic based methods for detection and elimination of unwanted objects would 

improve this problem and save costs. The goal of this Chapter is to automatically detect 

unwanted objects to be removed from the urban scene and to recover the static occluded 

backgrounds with a reasonable image. 

With the development of DCNN and semantic segmentation datasets for urban 

driving scenes, significant progress has been made in the automatic segmentation of 

street elements; by creating target object masks, various objects can be detected with 
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high accuracy from street-level images, especially those that are often obscured in front 

of buildings (Cordts et al., 2016; Y. Zhang et al., 2019). In addition, image inpainting 

has many applications in urban scene complementation. For example, the impact on the 

urban environment before and after demolition can be assessed by eliminating entire 

buildings (Kido et al., 2020). Synthesis of facade textures during building renovation 

and digital heritage restoration (D. Dai et al., 2013). These studies fill in missing images 

by matching and replicating background patches to achieve object removal results (N. 

Zhang et al., 2019). However, traditional methods are based on copies of the 

surrounding textures of the target objects, and they are still prone to failure in complex 

and irreducible scenes (Yi et al., 2020). Recent encouraging advances in data-driven 

image drawing methods, which are more effective than classical methods in handling 

object removal for complex scenes and large occlusion rate images, have attracted the 

interest of researchers. However, learning-based methods require a large amount of data 

for training, and building diverse and high-quality databases of building facades is a 

challenge. In addition, it is not desired that after object removal and filling, evaluating 

the quality of the synthetic image will be a challenge because real textures are difficult 

to obtain as a reference. Several generated image quality assessment metrics, such as 

information fidelity criterion (IFC) (Sheikh et al., 2005), mean squared error (MSE), 

peak signal-to-noise ratio (PSNR), structural similarity (SSIM) index, and feature 

similarity indexing method (FSIM) (Sara et al., 2019), have been developed to measure 

the similarity between generated images and ground truth through full-reference.  

This Chapter expects to remove unwanted objects from street view images with 

obscured facade completions. A custom occluded facade completion dataset is created. 

Several state-of-the-art DCNNs for image classification were selected to extract invalid 

data from the street view images, and then a dataset of building facades was created for 

learning-based image inpainting. Next, semantic segmentation is used to automatically 

detect regions containing unwanted objects. A GAN-based image inpainting method is 

proposed to provide a cost-effective tool for matching physical space with digital 
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objects in large-scale images by filling the missing region content of building facades 

with contextual concerns. Finally, qualitative and quantitative validations for evaluating 

the quality of the generated images are proposed.  

3.2 Method and materials 

Figure 3.1 depicts the workflow for automatic object removal and facade 

inpainting in three steps. Firstly, the building facade dataset for GAN-based image 

inpainting was constructed. These images can be retrieved from street view services 

and purified with a classifier. Secondly, a semantic segmentation algorithm based on 

the Cityscapes dataset can detect the street-level obstacles. Thirdly, a free-form image 

inpainting tool was presented to fill the blank with contextual attention. 

 

Figure 3.1. The overall workflow. 

3.2.1 Dataset making 

The road networks for multiple cities using open source geographic information 

data were extracted (Anguelov et al., 2010) to build the GAN-based image inpainting 

dataset, as shown in Figure 3.2a. The geographic coordinates of road points were 
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generated by equally sampling direction for each sampling point from the Google Map 

API (viewing angle is 90 degrees, the horizontal angle is 0 degrees, the compass 

heading of the camera is 𝜃, and the picture size is 680 × 512 pixels). As shown in 

Figures 3.2b and 3.2c, to ensure that the angle of the crawled picture is perpendicular 

to the street, 𝜃 is calculated as follows: 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (𝑦𝐴 − 𝑦𝐵
，
𝑥𝐴 − 𝑥𝐵)                  (3.1) 

where point A  𝑥𝐴, 𝑦𝐴  and Point B  𝑥𝐵, 𝑦𝐵  are two adjacent points on the road 

centerline, and the angle 𝜃  is the deflection angle that grabs the orthographic 

projection of the building facade in the online street view service. The existing building 

facade in the urban environment can be obtained (Figure 3.2d), and these images are 

used in the training set for the GAN-based model. The street view image recording 

structure is depicted in Figure 3.3.  

 

Figure 3.2. The collection method of the perpendicular street facade. 

The image generative inpainting model involves learning textures from a large 

number of unobscured facade images. Because the collected images of street facades 
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contain a great deal of noise and unwanted images, an image classification algorithm is 

required to clean them up. 2,700 images of street facades are selected manually from 

street view services, with 900 images per class. Data augmentation is used to increase 

the diversity and size of the training sample, which prevents overfitting and improves 

model performance (Shorten & Khoshgoftaar, 2019). The dataset for the facade 

inpainting GAN is named ‘Street view dataset for building facade inpainting (SVBFI).’ 

 

Figure 3.3. The structure of data recording. 

3.2.2 Semantic segmentation 

Semantic segmentation combines image classification and image detection to 

perform categorization and annotation in terms of pixel-by-pixel in an image (Lateef & 

Ruichek, 2019). Semantic segmentation tasks are composed of two components: the 

dataset and the segmentation algorithm. Unwanted objects were determined in the 

object segmentation dataset using Cityscapes (Cordts et al., 2016). DeepLabv3+ (L.-C. 

Chen et al., 2018) was used for semantic segmentation. 

As shown in Figure 3.1c, DeepLabv3+ is used on the Cityscapes test set for object 

segmentation, and its mIoU can reach 82.1%. In this Chapter, several classes of 

obstacles in the streetscapes, that is, pedestrians, cyclists, vegetation, and cars, are taken 

as specific objects to be eliminated. Through detecting by DeepLabv3+ on the 

Cityscapes, they are mask images in the input image of the inpainting GAN model, as 

illustrated in Figure 3.4. 
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Figure 3.4. Identified and eliminated labels, including pedestrian, cyclist, vegetation, and car. 

3.2.3 Image inpainting 

The facade inpainting method uses the open-source model DeepFill-v2 (Yu et al., 

2019), a free-form image inpainting method with gated convolution, to generate 

alternative contents for blank areas in a visually realistic and semantically correct 

manner. Figure 3.1d introduces the simplified overall network structure of DeepFill-v2. 

For this neural network, the input data is divided into two channels: RGB Channel and 

Mask Channel. The architecture of the model consists of a two-stage generator and a 

discriminator. The initial stage of the generator consists of a coarse network that 

produces a coarse output. The second stage is a two-branch refinement network with 

contextual attention that produces a refined result, which can significantly enhance the 

image quality and repair results' fidelity. Gated convolution dramatically improves 

performance when the mask pictures have arbitrary shapes and the inputs are 

conditionally free-from, such as in the sparse sketch (Yu et al., 2019). Thus, the model 

is able to synthesize a new image structure on a blank image in a learning-based manner, 

using the surrounding image features as a reference to generate reliable estimates.  

3.3 Experiments and results 

This part describes the production of the SVBFI dataset, the training of the GAN 

model, and the quality evaluation of the generated images.  
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3.3.1 Street-level images classification 

For the training and testing sets, there were 2,700 pictures each. Each class was 

given 750 images, which accounted for 0.83 percent of the total training set. 450 testing 

images accounted for just 0.17 percent of the total training set. Several state-of-the-art 

CNN models are introduced, named InceptionNet_v4 (Szegedy et al., 2016), 

XceptionNet (Chollet, 2017), EfficientNet (Bódis-Szomorú et al., 2017), and ResNeSt 

(H. Zhang et al., 2020), by fine-tuning all the convolutional layers with benchmark 

datasets. Figure 3.5 depicts the normalized confusion matrix for the trained CNNs as 

determined by the test data. One way to measure classification accuracy was to use the 

matrix value, which represents the percentage of samples from one category that was 

correctly classified into another. The 𝐹1  score is utilized to evaluate model 

performance, which was generated using the equations below: 

𝐹1 = 2 ⋅
𝑝 ⋅ 𝑟

𝑝 + 𝑟
                                                          3.2  

where 𝑝 is precision and 𝑟 is recall. After calculating the 𝐹1 scores of the four 

networks, the classification performance of ResNeSt performs better than the other 

networks. For the class of building facades, ResNeSt achieved the highest 𝐹1 score 

with 0.87. Therefore, the trained ResNeSt model was selected for the upcoming 

extraction of unoccluded facade images. 
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Figure 3.5. The test results of normalized confusion matrices associated with the four networks. 

InceptionNet_v4 (Top-left), XceptionNet (Top-right), EfficientNet (Bottom-left) and ResNeSt 

(Bottom-right). 

More than 300,000 street view images were downloaded from Google Street View, 

with each image measuring 680 × 512 pixels and containing images of unobstructed 

facades, facades with unwanted objects, and no facades. The ResNeSt model had been 

pre-trained in the previous step. The SVBFI datasets of 9,000 unoccluded facade 

images are obtained by filtering the street view images. The SVBFI is used as the 

training set for image inpainting GAN. 

3.3.2 Image inpainting model training 

GANs, in general, are made up of a generator and a discriminator, which compete 

with each other to produce images that are constantly optimized and semantically 

similar to the ground-truth image. Recently developed spectral normalization (Miyato 



33 

 

et al., 2018) was used to stabilize the GANs training further. The SN-GAN is a utilized 

default fast approximation algorithm for spectral normalization. To discriminate if the 

input was real or fake, the hinge loss is used as the objective function for the generator 

ℒ𝐺  and discriminator ℒ𝐷𝑠𝑛. 

ℒ𝐺 = −𝔼𝑧∼ℙ𝑧 𝑧 [𝐷
𝑠𝑛 𝐺 𝑧  ]                   (3.3) 

ℒ𝐷𝑠𝑛 = 𝔼𝑥∼ℙdata  𝑥 [Re 𝐿𝑈(𝟙 − 𝐷𝑠𝑛 𝑥 ) + 𝔼𝑧∼ℙ𝑧 𝑧 [ReL 𝑈 𝟙 + 𝐷𝑠𝑛 𝐺 𝑧   ]   (3.4) 

where 𝐷𝑠𝑛  represents spectral-normalized discriminator, 𝐺 𝑧   is an image 

inpainting network that takes incomplete image 𝑧. In the training process, the datasets 

were trained for 300 epochs, which iterated 216,000 steps. Figure 3.6 shows the loss of 

generator ℒ𝐺   and discriminator ℒ𝐷𝑠𝑛  in this model. The loss of the generator was 

decreasing, and the discriminator loss was increasing. As the generator and 

discriminator reach equilibrium, the overall performance of the work steadily improves. 

 

Figure 3.6. Training loss of the GAN model. Left: generator loss; Right: discriminator loss. 

3.3.3 Testing and qualitative comparisons 

Figure 3.7 depicts a street-level test example of automatic object removal with 

facade smearing. Both the proposed method and the previous example-based image 

smearing method were introduced into the experiment. The two synthetic images are 

compared with ground truth images. The ROI of each project was covered by a mask 

full of contextual concerns, and no post-processing was performed to ensure fairness. 
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Figure 3.7. Test examples of automatic object removal and facade completion with several classes. 

(a) People, (b) cyclist, (c) vegetation, (d) car. 

As shown in Figure 3.7a and Figure 3.7d, DeepFill-v2 using the SVBFI dataset 

performs well visually, with the synthesized parts matching the color of the surrounding 

texture. Figure 3.7b shows that the model can fill in the facades with transparent and 

reflective materials in the input image, but it blurs some details. Figure 3.7c shows that 

the proposed model accurately contours the building in the input image to the actual 

situation. Figure 3.7d shows that the proposed method is able to perform well in 

recovering regular building components, such as rectangular windows, in the case of 

facades with complex backgrounds. The results show that the GAN method learned 

from massive data can effectively consider the image semantics and outperforms the 

exemplar-based methods in complex scenes. 

3.3.4 Validation and quantitative comparisons 

Two widely used full-reference IQA metrics, PSNR and IFC, are used for the 

quality assessment of generated images based on visual perception. On SVBFI, 900 

images are used to test the proposed model against the exemplar-based approach. 
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Unoccluded facade images are used as ground truth, and mask images superimposed 

are used as input images, as shown in Figure 3.8 input images. The occluded objects, 

including people, cyclists, trees, and cars, are used as mask shapes. These unwanted 

objects overlap the mask area on the ground in the street-level images to simulate 

obstructions in the actual street. The masking ratio is allocated from 0 to 50% of the 

image size. Figure 3.8 shows the validation example of the proposed method and the 

exemplar-based method at different mask ratios from 0-10% to 40-50%.  

 

Figure 3.8. Validation examples of automatic object removal and facade completion. 

Figures 3.9 and 3.10 show the generated image quality based on the PSNR and 

IFC. The quantitative comparisons of full-reference metrics indicate that the proposed 

method achieves better results than the exemplar-based method. The proposed model 

improves PSNR by 2.26 dB and IFC by 0.061 over the fill-by-replication method across 

the entire mask range. Although the GAN-based approach using the proposed tailored 

dataset is marginally superior to the filling through copying method for mask ratios of 

40-50%, with PSNR improving by 1.56 dB and IFC improving by 0.042 in mean value, 

it is worth noting. 
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Figure 3.9. The PSNR results with the proposed method and exemplar-based method of different 

mask ratios on the validation data. 

 

Figure 3.10. The IFC results with the proposed method and the exemplar-based method of various 

mask ratios.  

3.4 Discussion 

3.4.1 Advantages 

The system can perform object removal tasks for 2D images in different street 

scenes. Eliminating obstacles in front of buildings can help improve data completeness 

when extracting facade information using street view images and computer vision 

techniques. The method balances the high quality of the generated images with the 

detail of the textures and performs better for complex scenes compared to the exemplar-
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based method. In addition, a dataset SVBFI is built for learning-based obstructed facade 

painting from street view images. The proposed dataset is more focused and consumes 

less computation for training than current open-source datasets such as Places2. The 

proposed method is more practical than previous methods for field simulation (Kido et 

al., 2020) and does not require background facade information in advance. The previous 

observation-based method requires a pre-taken background scene of the image 

background, which can be used as a reference to directly replace the foreground 

obstacle. The inpainting-based approach used in this paper uses the texture and patch 

information of the source image to fill in the detected regions. Therefore, the method 

in this paper only needs to train a GAN-based inpainting model to handle obstacle 

elimination, which is more convenient and cost-effective than the observation method 

because it saves the trouble of shooting background information in the field. An image-

based method can help stakeholders visualize the redevelopment project and eliminate 

unnecessary elements. The proposed strategy is quick to implement, lightweight to 

deploy, and applicable to a wide range of situations, making it an excellent starting 

point for further research. 

3.4.2 Limitations 

Currently, the system uses semantic segmentation, where two visually overlapping 

objects are difficult to segment separately. For example, if two cars visually overlap, 

they will be eliminated together. This shortcoming can be solved by using instance 

segmentation. In addition, this method does not automatically detect shadows or 

remove them in the subsequent inpainting. An example is shown in Figure 3.7a, where 

the shadows of pedestrians are not removed from the picture. This deficiency can be 

addressed by labeling the shadows of objects in the training set of the semantic 

segmentation model. 
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3.5 Summary of this  hapter 

In this Chapter, an image-based approach for cityscape visualization is presented. 

Unwanted objects on the street level scene are automatically detected without prior 

background information. The visual removal of these objects is accomplished by 

smearing the ROI. To this end, a semantic segmentation model was introduced to detect 

the ROI of obstructions. Then, the SVBFI dataset was used for training the GAN-based 

image inpainting model. The comparison experiments show this approach performs 

better than the exemplar-based inpainting method. The on-site validation results proved 

the effectiveness of the proposed method. By automatically removing unwanted objects 

and filling in obstructed building facades by replication and modeling (J. Zhang et al., 

2021a), this approach improves the degradation of information acquisition from 

buildings due to obscuration. By eliminating redundant objects and using only images 

instead of 3D models, urban landscapes can be simulated and visualized. 
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Chapter 4. Instance segmentation of 

building facades based on city digital twin 

datasets 

4.1 Overview of facade instance segmentation using synthetic 

data 

The semantic enrichment of facades can be used for building information 

modeling in construction management and architecture design (S. Cai et al., 2019; Xue 

et al., 2021). Large-scale automated measurement of building facades using semantic 

segmentation can provide data support both for retrofits and energy analyses of 

buildings (M. Dai et al., 2021; M. Deng et al., 2019). Using deep learning in real-time 

visualization of demolished building facades can be used to enhance stakeholder 

engagement and design assistance (Kikuchi et al., 2021; J. Zhang et al., 2021a). 

However, most previous studies have involved the semantic segmentation of building 

facades, and it is difficult to extract the instance information for connected building 

facades one by one using semantic segmentation. In contrast, the annotation task for 

the instance segmentation requires both classification at the pixel level and the 

identification of different instances of the same class (Ghiasi et al., 2021). It is 

challenging to collect large-scale annotated datasets for the segmentation of individual 

building facades (M. Dai et al., 2021). 

Supervised machine learning methods generally perform well in instance 

segmentation tasks. Even the best autoencoders, visual descriptors, and discriminative 

machine learning techniques cannot obtain reliable results without a properly annotated 

dataset containing sufficient diversity. Data annotation is a laborious, manual task that 
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requires precise correction as it is prone to errors. The quality and quantity of the dataset 

largely determine how well the instance segmentation model performs. Therefore, a 

large and diverse annotated dataset is necessary for performing the instance 

segmentation of building facades with high accuracy.  

With the development of the DCNNs, instance segmentation tasks have yielded 

significant performance gains (Z. Cai & Vasconcelos, 2019). On the one hand, 

researchers expected to use massive amounts of accurately annotated data for DCNN 

training, and on the other hand, they often struggled with the expensive costs associated 

with all that data. Photorealistic synthetic data have received increased attention as a 

means for addressing these issues owing to the possibility of automatically generating 

a vast number of high-quality images with diverse annotations (Tremblay et al., 2018). 

Synthesizing instance-labeled datasets of building facades from 3D city models 

for DCNN training is a promising method for reducing labeling costs and improving 

model performance. However, when the application scenarios become complex, the 

synthetic images of virtual urban environments have difficulty accurately representing 

the original features in the physical world, such as object materials and ambient lighting, 

and their misrepresentation can lead to problems with dataset shifts (Quiñonero-

Candela et al., 2009). Recently, digital twins (DTs) have been proposed as a possibility 

for bridging the gap between synthetic and real-world data.  

The DT paradigm is an information construct comprising a physical asset, its 

corresponding digital asset, and the data connection to them (J. Liu et al., 2021). It has 

recently been applied to urban systems to produce models called city digital twins 

(CDTs) (Fan et al., 2021; Shahat et al., 2021). Typically, a digital asset in a CDT with a 

high level of detail (LOD) is a copy of its counterpart in the physical world and 

accurately reflects real-world information. Using synthetic datasets from CDTs rather 

than from fictional cities (which have no real-world counterparts) as the training sets 

could be promising for improving the accuracy of the instance segmentation model. 
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The anticipated challenges include synthetic datasets generation and training 

DCNN-based instance segmentation models. For the former, several 3D virtual city-

based methods have been proposed for producing synthetic datasets of urban features, 

but these virtual data are criticized for their realism. Digital assets from the physical 

world have closer to real materials and are expected to be ideal for rendering high-

fidelity synthetic images for the training of DCNN models. Figure 4.1 shows a 

comparison training process of manual labeling and synthetic datasets for the facade 

instance segmentation. This study is expected to substitute manual labeling by using an 

auto-generation system based on CDT to create training sets for DCNN models. 

 

 

Figure 4.1. A comparison of manually annotated datasets and automatically generated synthetic 

datasets. (The conventional method requires hand-made labeling of images to produce the training 

set, while the proposed system can automatically create synthetic data with instance annotations 

by using digital assets of CDT.) 

For the latter, the instance segmentation images generated by 3D models are not 

directly usable and need to be converted to an annotation format with object class and 

mask polygon for DCNN-based model training and evaluation. Besides, suboptimal 

accuracy of semantic segmentation on real-world images has been seen in previous 

studies when only using synthetic datasets as training sets. This study introduced a 
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hybrid dataset to solve this issue and verified the performance of the synthetic dataset 

generated by CDT for facades instance segmentation in multiple real cities. 

This study attempts to develop an auto-generation method of synthetic facade 

datasets for training instance segmentation models using high-quality digital assets 

from CDT. The proposed system can produce synthetic street view images with auto-

annotated individual facade instances, including mask polygon and class information, 

for DCNN training. In addition, a hybrid dataset, consisting of a variable proportion of 

synthetic and real data, is built to train the DCNN model to compare the results of three 

training sets (synthetic only, real-world only, and hybrid) on the instance segmentation 

accuracy of building facades, which can show the contribution of synthetic data in 

improving the DCNN model performance and reducing the annotation cost. 

Furthermore, this Chapter validated the pre-trained model using the proposed datasets 

in multiple cities to demonstrate the effectiveness and transferability of the research 

framework. The quantitative and qualitative results indicate that the proposed method 

can produce cost-effective synthetic data of building facades for training supervised 

instance segmentation models and can potentially be used to extract and integrate 

facade instance information in built environments. 

4.2 Method and material 

This section presents the process and evaluation methodology for the proposed 

datasets (Figure 4.2). First, the 3D city model was downloaded from a city information 

modeling platform and was imported into the Unity game engine for asset management. 

The virtual camera and atmospheric effects were set up for rendering the 3D model, 

and synthetic street images and facade annotations were produced. Second, synthetic 

datasets (CDT-based and virtual-based), real-world datasets, and hybrid datasets are 

built for training instance segmentation models. The synthetic dataset was converted so 

that it would be available for DCNN-based model training, and the real dataset was 

collected from street-view images and manually labeled. Several state-of-the-art 
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instance segmentation models were selected. Finally, three assessment aspects are 

considered: precision, size, and the number of detections. Six corresponding COCO 

metrics are then introduced to evaluate the pre-trained models on real-world street-level 

images using the proposed dataset.  

 

Figure 4.2. Workflow for the study: (a) the synthetic data generation process, (b) training DCNN-

based instance segmentation, and (c) evaluation using real-world imagery. 

4.2.1 Study areas and datasets 

The selected study area is Koto City, which is located in the eastern part of Tokyo. The data used 

in this study included a 3D city model, synthetic images (CDT and virtual) with facade 

annotations, and real-world street-level images with facade annotations, as shown in Table 4.1. 

The 3D city model was obtained from the PLATEAU platform. The synthetic datasets for building 

instance training were auto-generated using the proposed method. Natural street-view images were 

extracted from Google Street View (GSV), and facade annotations were obtained using manual 

labeling. 

 

Table 4.1. Datasets description 

Datasets Data source Description 

3D city model PLATEAU This platform provides digital assets of buildings to 

the public for research or commercial purposes. It 

covers most cities in Japan and contains massive 

LOD1 and LOD2 building models. The LOD2 

building models used in this study are textured, and 

their geometries are created by emulating the 

corresponding real-world buildings.  

CDT synthetic Auto-generated Synthetic images are digital copies of street-view 

3D city model

Building digital 

assets

Ground truth 

images

Instance segmentation 

annotations

COCO annotation 

format

Transformation

Atmosphere 

effects

Synthetic 

dataset

Instance segmentation 

model training

Model evaluation

Mask BBox

Facade instance 

segmentation in the 

real world using our 

pretrained models

Accuracy verification

Collecting 3D city model from a

city information modeling platform

               

          
                  

                 

              

          

Virtual camera 

setup

Real-world 

dataset

Hybrid dataset

Train Test Val

Manual labelingAuto -generation

Mixing

Dataset making

 a  b  c 

Synthesis training sets

Import to a 

game engine
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dataset by the system images in the real world and have building facade 

annotations. 

Virtual synthetic 

dataset 

Auto-generated 

by the system 

Synthetic data are generated from a fictional 3D city 

model that includes virtual street views and 

annotations of fictitious facades. It is used for 

comparison with the CDT data. 

Real-world dataset Google Street 

View and 

manually 

labeling 

Real-world images of street views with building 

annotations. 

 

Figure 4.3a shows a well-developed area of Tokyo as it is represented in 

PLATEAU. It is a LOD1 building model that covers 23 wards in Tokyo with a total area 

of about 627 square kilometers. The pink regions are 3D building models with LOD2, 

with a total area of 6.72 square kilometers. Figure 4.3b shows the building digital assets 

with LOD2 downloaded for this study. To increase the diversity of the data sample, 

digital assets are selected for different types of buildings: residential, commercial, 

office, industrial, and transportation. In addition, buildings from a diverse range of sizes, 

including low-rise, mid-rise, high-rise, and large urban complexes, were captured in the 

study area. 

 

Figure 4.3. The 3D city model from PLATEAU. (a) The built-up area of PLATEAU in Tokyo and 

(b) the study area: Koto-ku, Tokyo, Japan. 
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4.2.2 Automatic generation of synthetic data 

4.2.2.1. 3D city model downloaded and pre-processed 

Figure 4.4 shows an aerial view of the 3D city model in the study area. In total, it 

contains 413 building models with LOD2. The selected 3D city model can be 

downloaded for free from the Project PLATUEU database (n.d.) in the CityGML 2.0 

and Filmbox formats, the latter of which was used for this study. Since the 3D model 

includes geographic information, the satellite and topographic map can be loaded in to 

match the virtual world. In addition, common elements from the urban environment of 

the actual image are arbitrarily placed into the 3D model to increase its realism, 

including greenery, overpasses, and vehicles. 

Distortion is an important parameter for texture mapping of the 3D model. The 

textures for the CDT model were taken from the physical camera and underwent 

rigorous distortion correction before being placed on the model surface, as close as 

possible to the real building facade. Figure 4.5 shows an example of the CDT models 

that were used and a distortion-corrected mapping of a building facade next to its real-

world counterpart. 

This study used an open-source package from Unity called Unity Perception 

(Borkman et al., 2021), which can help speed up and simplify the process of generating 

labeled synthetic datasets. In the virtual city model, each building has an object ID that 

was created by PLATUEU, and they can be automatically tagged with the category 

BUILDING. Consequently, the virtual camera in Unity can automatically recognize 

different objects of the same category and generate instance annotations. 
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Figure 4.4. 3D city model of the study area. (a) An example of CDT with its real-world street 

views (Wangan-doro Avenue, Tokyo; March 2021; latitude: 35.6283, longitude: 139.7782). (b) 

Aerial view of city digital twin. 

 

Figure 4.5. Distortion correction of a CDT model texture mapping. (a) The CDT texture is 

corrected for distortion before it is placed on the model surface. (b) Real-world building facade 

(Wangan-doro Avenue, Tokyo; March 2021; latitude: 35.6279, longitude: 139.7785). 

4.2.2.2. Virtual camera setup in the game engine 

In the virtual environment, the camera on top of a car is set to acquire the building 

images, and the height of the camera is limited to between 1.5 m and 2.5 m above the 

ground. The acquisition platform consisted of one multi-camera made up of four 
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monocular cameras linked by a common center, with the orientation changing every 90 

degrees, as shown in Figure 4.6. All of the cameras have a horizontal field of view 

(FOV) angle of 100 degrees and a vertical FOV angle of 79 degrees. The vehicle moved 

through the 3D city and interacted dynamically with the buildings within it. This 

interaction allowed us to collect building images at different horizontal angles. This 

collection was intended to provide data that could be used with the spatio-temporal 

constraints of the objects. 

 

Figure 4.6. Virtual car setup used for data acquisition. One virtual multi-cameras with four 

perspectives are used. The horizontal and vertical view angles are 100 degrees and 79 degrees. 

4.2.2.3. 3D city model rendering 

Unity has the ability to adjust lighting and global illumination, allowing it to be 

used as a rendering tool for 3D city models. First, various atmospheric effects are used 

to increase the realism and diversity of the virtual scenes for data augmentation. Second, 

a vehicle with an attached multi-camera collected street-level images from four 

directions in the 3D city model and automatically generated instance annotations for 

the buildings. 

(1) Details of the Unity renderer 

The Lit Shader from Unity’s Universal Render Pipeline (URP) is used. Lit Shader 

is provided by Unity and uses the Bidirectional Reflectance Distribution Function 
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(BRDF) model to easily create realistic materials (Doppioslash, 2018). Direct and 

ambient lighting is turned on, and shadows were rendered. Baking a city-scale model 

to derive the ambient occlusion requires a large amount of data and computational 

resources, which affects the efficiency of generating synthetic data. As an alternative, 

post-processing methods are used, such as anti-aliasing and adjusting the exposure and 

white balance, to improve the realism of the rendered images. 

(2) Atmospheric effects for data augmentation 

The same scene can vary significantly under different atmospheric parameters, 

such as solar zenith angle, sky tone, and cloud density. Four atmospheric effects are 

used for the city model in Unity to enhance the diversity of the synthetic data, including 

rendering the scene in sunny conditions, cloudy conditions, and during the evening. 

These are shown in Figure 4.7. 

 

Figure 4.7. Real street-view image (latitude 35.6351; longitude 139.7829) and rendering images of 

the CDT with different atmospheric conditions. (a) Real street view, (b) synthetic image with 

sunny conditions, (c) synthetic image with cloudy conditions, and (d) synthetic image during the 

evening. 
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(3) Automatic generation of the ground-truth and facade annotations 

The post-processing capabilities of Unity can render virtual scenes and 

automatically obtain synthetic data, including RGB images of street views and the 

instance segmentation of building facades. An example of a single shot is shown in 

Figure 4.8. It shows the four views that were captured by the multi-camera system with 

the corresponding instance segmentation masks of the building facades. 

 

 

Figure 4.8. Four views of a single shot captured by the multi-camera system for the CDT synthetic 

data (the coordinates of the real-world counterpart are latitude 35.6284, longitude 139.7784): (a) 

synthetic street views and (b) corresponding instance segmentation masks. 

4.2.3 Training instance segmentation 

4.2.3.1. Facade instance annotations making 

Four datasets with ground-truth images and instance annotations are built for 

training the building instance segmentation, including a synthetic dataset (CDT and 

virtual), a real-world dataset, and a hybrid dataset. Previous studies have demonstrated 

that using synthetic data alone for semantic segmentation tasks involving real images 

is unsatisfactory (Ikeno et al., 2021; B. Sun & Saenko, 2014; Vazquez et al., 2013). 

Alternatively, training a model on a large number of synthetic images and then fine-

tuning it on a reduced number of real-world ones yields better results (Ros, Sellart, et 

al., 2016). In this study, a hybrid dataset is created and used as the training set to 
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demonstrate the effectiveness of CDT synthetic data in improving the instance 

segmentation results of building facades for real-world images. The hybrid dataset, 

which is called the Hybrid collection of Synthetic and Real-world Building Facade 

Images and Annotations (HSRBFIA), can construct subsets of synthetic and real-world 

data with variable proportions of each. 

(1) Synthetic dataset transformed to the COCO annotation format 

Instance segmentation comes with additional complexity in the form of label and 

annotation formats, requiring a unique value for each element in the sample image 

during the training process. The data format generated by Unity cannot be used directly 

to train instance segmentation algorithms. Most instance segmentation algorithms 

follow the COCO annotation format. Therefore, a format conversion open-source tool 

is developed (Mortyzhang, 2021/2022b) that converts the data format generated in the 

previous step to the COCO annotation format. The conversion procedure produces the 

categories and annotations fields from synthetic mask images, and since this study has 

only the category BUILDING. The annotations are an array of multiple annotation 

instances (Lin et al., 2014), as shown in Table 4.2. 

 

Table 4.2. Fields split by instance annotations 

Annotation { 

    "id": int,     

    "image_id": int, 

    "category_id": int, 

    "segmentation": Run length encoding (RLE) or polygon, 

    "area": float, 

    "Bbox": [x, y, width, height], 

    "iscrowd": 0 or 1, 

} 

 

"id" and "image_id" represent the serial number of the image. "category_id" points 

to the category of the tag. If iscrowd=0, the segmentation is in polygon format, and if 
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iscrowd=1, the segmentation is in Run Length Encoding (RLE) format. "area" is the 

area of encoded masks, which is the labeled area. "Bbox" is the bounding box of the 

detection object. The coordinates of the upper-left corner of the rectangular box and its 

length and width are provided in the form of an array. 

(2) Real-world dataset from GSV 

 

Figure 4.9. Workflow for collecting real-world, street-level images and building annotations. (a) 

Study area in OSM, (b) example of a randomly selected area with a road network, (c) sampling 

point locations along with the road networks, and (d) street-level images with building instance 

annotations that were manually applied. 

To compare the differences between the real-world data and synthetic data in 

supervised instance segmentation, the real street-view data need to be from the same 

area as the virtual city scene. In this study, the Google Maps API is used to obtain real 

street-level images of the study area. First, the road network was traversed in OSM 

(OpenStreetMap, 2021), and sampling points were taken at 20-m intervals to validate 

scenario differences (J. Zhang et al., 2021b). Figure 9c shows the sampled points on a 
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road network, where randomly selected areas have been zoomed in. Then, Google Maps 

API is used to obtain street-view images in four different directions at each sampling 

point, with the point’s latitude and longitude coordinates. The street-view images were 

set to 1280 × 800, and the vertical FOV was set to 79 degrees (same as in the synthetic 

dataset). Then, the street-view images were selected as the training set, validation set, 

and test set for the building instance segmentation. Finally, the LabelMe tool is used 

(Russell et al., 2008) to manually label the facade instance annotations in the street-

view images.  

(3) Mixing CDT synthetic data and real data into the hybrid dataset 

The proposed HSRBFIA dataset contains a mixture of building images and facade 

instance annotations from the CDT synthetic data and the real-world data, with 2,000 

real and 2,000 CDT synthetic images. A scalable hybrid subset, HSRBFIA-𝑥, can be 

constructed from HSRBFIA. HSRBFIA-𝑥 is used for training, 400 real images from 

HSRBFIA are used for testing, and 400 real images from HSRBFIA are used for 

validation. In the subset HSRBFIA-𝑥 , the total number of images is 1200, and the 

proportion of them that are real and CDT synthetic images is calculated according to 

𝑎 = 𝑥%× 1200 

𝑏 =  100 − 𝑥 %× 1200, 

(4.1) 

where 𝑎 represents the number of real images, 𝑏 the number of CDT synthetic 

images, and 𝑥 is the percentage of real data in HSRBFIA-𝑥. For example, HSRBFIA-

40 indicates that the portion of real-world data is 40%, which means the hybrid dataset 

comprises 480 real images and 720 CDT synthetic images. 

(4) Baseline strategy for generating virtual synthetic data 

A baseline strategy is presented for generating virtual synthetic data and 

comparing its generation performance with that of the proposed CDT dataset to 

definitively show the improvement of the CDT synthetic data as an enhanced training 
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set. Fictitious LOD2 city models are chosen for the generation system. The LOD2 city 

models contained 283 buildings with a total area of 2.37 square kilometers. These 

buildings were of different types and included residential, commercial, office, and 

industrial buildings. The virtual synthetic data were generated by the same automatic 

system as the CDT previously, and all of the rendering parameters were set identically 

to those in the CDT to ensure fairness. Figure 4.10 shows an example of the virtual 

synthetic data completed with all four views and the building facade annotations. The 

virtual models were textured in high quality but had no counterparts in the real world. 

 

Figure 4.10. Four views from a single shot captured by the multi-camera system for virtual 

synthetic data (no real-world counterparts): (a) virtual street views and (b) corresponding instance 

segmentation masks. 

4.2.3.2. State-of-the-art instance segmentation models 

Instance segmentation combines the functionalities of both semantic segmentation 

and object detection to classify different labels and separate instances of objects 

belonging to the same class. Current instance segmentation techniques typically have 

the following four frameworks (Hafiz & Bhat, 2020): the classification of mask 

proposals (Girshick, 2015), detection followed by segmentation (He et al., 2017), 

labeling pixels followed by clustering (Bai & Urtasun, 2017), and dense sliding window 

methods (X. Chen et al., 2019). This study selected three state-of-the-art models: Mask 

R-CNN (He et al., 2017), YOLACT (Bolya et al., 2019), and BlendMask (H. Chen et 

al., 2020). After testing them with the proposed dataset, the model with the highest 

accuracy can be recommended.  
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The backbone structure has a significant impact on the instance segmentation 

model. Due to computational power, it can vary depending on the desired performance, 

training speed, and limitations. The most used backbone structures are ResNet (He et 

al., 2016) and its variants (S. Xie et al., 2017) combined with the Feature Pyramid 

Network (FPN) (Lin et al., 2017). For object instance segmentation tasks in complex 

scenes, increasing the number of convolutional network layers often produces 

improved accuracy (Carvalho et al., 2020).  

The same training protocol is adopted for every selected model: (1) 36,000 

iterations, optimizing tracking validation loss to a convergence point to avoid 

overfitting; (2) four pictures per batch (it is worth noting that training with hybrid 

datasets is conducted with a mixed batch of two real and two synthetic pictures.); and 

(3) the Adam optimizer starting with a learning rate of 0.001 that is reduced to 0.0002 

after 10k iterations. 

4.2.4 Accuracy analysis 

Accuracy analysis of the instance segmentation model allows for insight into its 

applicability in the real world. Specifically, analyzing the accuracy of the HSRBFIA 

dataset in testing real-world street-level images allows us to evaluate the performance 

of synthetic data in augmented DCNN training. The three primary metrics used to 

assess the instance segmentation performance are precision, recall, and the intersection 

over union (IoU), and the equations are given by 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, (4.2) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 
, (4.3) 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
. (4.4) 
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For a given category, a true positive (TP) is the number of correctly identified 

positive pixels, a false positive (FP) is the number of pixels that are mistakenly 

classified, and a false negative (FN) is the number of pixels that are not classified as 

belonging to this category but should have been. While precision and recall provide 

great insight into the data, the threshold cutoffs are equally crucial for evaluating 

instance segmentation models. The IoU of the bounding boxes is considered when 

calculating the threshold value. 

There are many standard COCO metrics for evaluating the object detection and 

segmentation performance of instance segmentation tasks with different considerations 

(Lin et al., 2014). For building instance segmentation with street-level scenes, three 

aspects are important: (1) the detected precision, (2) the size of the detections, and (3) 

the number of detections in each image. This study chose several metrics according to 

specific requests, including (a) the average precision (AP), (b) AP50 , (c) AP75 , (d) 

APmedium, (e) APlarge, and (f) the Average Recall (AR) with ten maximum detections 

(AR10). For the detected precision, the AP uses the mean value from 10 IoU thresholds, 

starting at 0.5 and going up to 0.95 with steps of size 0.05 (0.50: 0.05: 0.95), and AP50 

represents the calculation under an IoU threshold of 0.50. Likewise, AP75 is a stricter 

metric and represents the calculation under an IoU threshold of 0.75. The closer the AP 

is to 1, the better the authenticity of the instance segmentation model will be. As for the 

size of detections, a 1280 × 800 pixels street-level image contains buildings with a 

variety of scales. Tiny buildings are rare in our datasets, and thus two categories are 

selected, APmedium (322 pixels < detection area < 962 pixels) and APlarge (detection 

area > 962 pixels), for consideration while excluding APsmall  (detection area < 322 

pixels)  21 . When trying to determine the number of detections in each image, the AR 

is used because it takes the maximum number of detections into consideration. Since 

the maximum quantity of buildings for a single street-view image in the dataset is 10, 

AR10 is the appropriate evaluation metric. 
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4.3 Experiments and results 

This section describes the time cost on synthetic and real image annotations and 

the experiments to verify the accuracy of facade instance segmentation on real street-

level imagery using the HSRBFIA dataset.  

The software and hardware environment configurations used to develop and 

execute all the experiments are listed in Tables 4.3 and 4.4.  

 

Table 4.3. Software and libraries. 

Software Details 

Operating System Ubuntu 16.04 64 bit 

Programming language Python 

Deep learning framework PyTorch 

Dependent library Torch, Torchvision, CUDA, PIL etc. 

Game engine Unity 2020.3.12f1 with universal render pipeline 

Labeling tool LabelMe 

 

Table 4.4. Hardware. 

Content Appellation 

CPU Intel Core i7-9700 @3.00GHz 

RAM DDR4-2666 16GB × 2 

GPU NVIDIA GeForce RTX 2070 SUPER 8GB × 2 

Graphics tablet for manual labeling Wacom Intuos Pro 

 

4.3.1 Time cost results of data annotation 

To calculate the time needed for annotating CDT synthetic data, the proposed 

system is used with a 3D city model of Tokyo to automatically generate 2,000 synthetic 

street-level images and facade annotations. Then, the total time is recorded and 

calculated. 

To calculate the time needed for labeling real data, four graduate students are 

invited from aged 23-28 years with architectural design backgrounds to manually label 
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real data that were randomly selected. The same 100 images (size 1280 × 800 pixels), 

labeling software (LabelMe), and labeling device (graphics tablet, Wacom Intuo Pro) 

were used. Then, the total time that they spent was recorded, and the average labeling 

time per image was calculated. Table 4.5 compares the time required per image to 

annotate the synthetic and real-world datasets. It is worth noting that the annotation 

time for the real data is approximately 2,050 times greater than that of the automatically 

generated synthetic data. 

 

Table 4.5. Time consumption of synthetic and real datasets for each image. 

Dataset Contents Labeling method Time cost per image (s) 

Synthetic Virtual street views and building 

instance annotations 

Automated 0.12 

Real-world Natural street views and 

building instance annotations 

Manual 246 

 

4.3.2 Accuracy verification of the proposed datasets 

This study aims to show the potential of the auto-generated synthetic data in 

improving DCNN-based instance segmentation models trained using real-world 

imagery. Four experiments are presented that used CDT synthetic data to test this. The 

first experiment used a baseline strategy for virtual synthetic data and compared its 

performance with that of the proposed CDT synthetic dataset using several DCNN-

based instance segmentation models. The second experiment selected 100 real-world 

images from HSRBFIA as the training set and then performed extended training using 

the proposed CDT synthetic data and virtual synthetic data. The third experiment used 

the same number of training images from HSRBFIA-𝑥. The fourth used a pre-trained 

model from the HSRBFIA-𝑥  dataset to perform facade instance segmentation for 

street-view images from multiple cities not located in Japan, then validated its accuracy. 

4.3.2.1. Comparison with virtual synthetic data using several instance segmentation 

models 
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The same amount of virtual synthetic, CDT synthetic, and real-world data as the 

training set are selected for several instance segmentation models (Mask R-CNN with 

SpineNet-96, Mask R-CNN with ResNet-101-FPN, BlendMask with ResNet-101-FPN, 

and YOLACT with ResNet-101-FPN), 1200 images each. The pre-trained models were 

then tested on 400 real-world images, and the corresponding AP values were calculated 

separately. As shown in Table 4.6, the AP values (both mask and bounding box) for all 

models show that using the proposed CDT synthetic data as the training set for the 

instance segmentation of real-world images leads to better performance than when the 

virtual data are used. However, there is still a performance gap compared with when 

only real-world data are used. According to the overall accuracies shown in Table 4.6, 

Mask R-CNN with a SpineNet-96 backbone performs the best, with only the mask AP 

for virtual synthetic data being inferior to BlendMask with ResNet-101-FPN (0.309 

compared with 0.314). In the following experiments, Mask R-CNN is used exclusively 

with the SpineNet-96 backbone as the training model. 

 

Table 4.6. AP values for the instance segmentation using different datasets when training several 

state-of-the-art models 

 Type Mask R-CNN 

(SpineNet-96) 

Mask R-CNN 

(ResNet-101-

FPN) 

BlendMask 

(ResNet-101-

FPN) 

YOLACT 

(ResNet-101-

FPN) 

Virtual 

synthetic data 

only 

(baseline) 

mask AP 0.309 0.282 0.314 0.227 

bbox AP 0.332 0.314 0.329 0.263 

CDT 

synthetic data 

only (the 

proposed) 

mask AP 0.415 0.377 0.409 0.312 

bbox AP 0.433 0.405 0.431 0.341 

Real-world 

data only 

mask AP 0.591 0.537 0.587 0.432 

bbox AP 0.632 0.559 0.624 0.513 

Bbox refers to bounding boxes. 

 

4.3.2.2. Comparing results for training using real data with two types of synthetic 
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data extensions 

The second experiment compared the precision results of the COCO metrics. Only 

100 real images were used for training, and the training set was then extended using 

virtual synthetic images and the proposed CDT synthetic images. The pre-trained 

models were all tested on the initial batch of 100 real images, and the results for this 

are shown in Table 4.7. Comparing the results for the two synthetic extensions, the 

inclusion of CDT synthetic data provides a greater improvement to the accuracies of 

mask segmentation and bounding box detection than the virtual one when using the 

same amount of data. APmedium is the metric that benefited most when the training set 

was extended to include 1000 synthetic data elements, and this was true for both types 

of synthetic data. The accuracy of APmedium increased by 17.7% (Mask) and 19.4% 

(Bounding box) relative to the baseline when the virtual data were included and by 24.8% 

(Mask) and 23.7% (Bounding box) when the CDT data were included.  

 

Table 4.7. Results from training facade instance segmentation on real-world images only and from 

extending the training sets with virtual synthetic and CDT synthetic images. The improvements, as 

compared with the baseline (training only with real data), are highlighted in bold. 

Training sets 

(number of 

images) 

Type AP AP50 AP75 APmedium APlarge AR10 

100 (R) Mask 0.366 0.574 0.398 0.124 0.428 0.431 

Bbox 0.382 0.587 0.399 0.139 0.437 0.425 

100 (R) + 

100 (𝐒𝐯𝐢𝐫𝐭𝐮𝐚𝐥) 

Mask 0.392 

(2.6%) 

0.629 

(5.5%) 

0.436 

(3.8%) 

0.177 

(5.3%) 

0.454 

(2.6%) 

0.462 

(3.1%) 

Bbox 0.411 

(2.9%) 

0.647 

(6.0%) 

0.442 

(4.3%) 

0.211 

(7.2%) 

0.454 

(1.7%) 

0.438 

(1.3%) 

100 (R) + 

100 (𝐒𝐂𝐃𝐓) 

Mask 0.398 

(3.2%) 

0.638 

(6.4%) 

0.442 

(4.4%) 

0.181 

(5.7%) 

0.461 

(3.3%) 

0.466 

(3.5%) 

Bbox 0.415 

(3.3%) 

0.652 

(6.5%) 

0.449 

(5.0%) 

0.227 

(8.8%) 

0.455 

(1.8%) 

0.441 

(1.6%) 

100 (R) + 

500 (𝐒𝐯𝐢𝐫𝐭𝐮𝐚𝐥) 

Mask 0.430 

(6.4%) 

0.692 

(11.8%) 

0.521 

(12.3%) 

0.259 

(13.5%) 

0.522 

(9.4%) 

0.517 

(8.6%) 

Bbox 0.453 

(7.1%) 

0.680 

(9.3%) 

0.531 

(13.2%) 

0.308 

(16.9%) 

0.514 

(7.7%) 

0.526 

(10.1%) 

100 (R) + Mask 0.473 0.705 0.538 0.302 0.543 0.548 
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500 (𝐒𝐂𝐃𝐓) (10.7%) (13.1%) (14.0%) (17.8%) (11.5%) (11.7%) 

Bbox 0.485 

(10.3%) 

0.696 

(10.9%) 

0.543 

(14.4%) 

0.334 

(19.5%) 

0.531 

(9.4%) 

0.551 

(12.6%) 

100 (R) + 

1,000 

(𝐒𝐯𝐢𝐫𝐭𝐮𝐚𝐥) 

Mask 0.483 

(11.7%) 

0.702 

(12.8%) 

0.550 

(15.2%) 

0.301 

(17.7%) 

0.539 

(11.1%) 

0.546 

(11.5%) 

Bbox 0.493 

(11.1%) 

0.720 

(13.3%) 

0.575 

(17.6%) 

0.333 

(19.4%) 

0.555 

(11.8%) 

0.554 

(12.9%) 

100 (R) + 

1,000 (𝐒𝐂𝐃𝐓) 

Mask 0.511 

(14.5%) 

0.728 

(15.4%) 

0.604 

(20.6%) 

0.372 

(24.8%) 

0.576 

(14.8%) 

0.579 

(14.8%) 

Bbox 0.535 

(15.3%) 

0.743 

(15.6%) 

0.613 

(21.4%) 

0.376 

(23.7%) 

0.581 

(14.4%) 

0.576 

(15.1%) 

 

 

Figure 4.11. Qualitative results for training real datasets only and for extending them with the two 

types of synthetic datasets (CDT and virtual). 

Figure 4.11 shows qualitative results that demonstrate how using the two types of 

synthetic data during training improves the ability of the system to recognize individual 

building facades in realistic scenarios. The results obtained using only the 100 real 

images as the training set were not ideal, but with the inclusion of CDT or virtual 

synthetic data, the ability to perform detection and mask segmentation of building 

facades was improved, especially for small targets. When it comes to performing 

instance segmentation for real images that have smaller structures and partial facades, 

a pre-trained model using a dataset that has been augmented with CDT data can obtain 

better results than one that has been augmented with virtual synthetic data. 
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4.3.2.3. Comparison of results for different ratios of HSRBFIA-x 

For the training sets, HSRBFIA-𝑥  is selected with different ratios of CDT 

synthetic data and real data. The results for the COCO metrics are listed in Figure 4.12 

and were obtained by using 400 natural street-view images from the downtown areas 

of Tokyo. In Figure 4.12, the horizontal axis denotes the proportions of real data that 

were used in the HSRBFIA-𝑥 datasets, and the vertical axis gives the values for the 

COCO metrics. Observing the overall trend exhibited by all of the line graphs, the 

testing results using synthetic data alone for the training set are the worst among the 

COCO metrics. In addition, as the proportion of real-world data in the HSRBFIA-𝑥 

dataset is increased, the metric precision first grows substantially, then becomes gradual, 

and finally stagnates. Taking the AP as an example, when the proportion of real data in 

the training set reaches 60%, the bounding box detection result is 0.611, and the mask 

segmentation result is 0.577, achieving 96.7% and 97.6% of the results using 100% real 

data for the training set (Figure 4.12a). For the growth of the metric precision after 

switching from 100% synthetic data to 100% real data, the improvement is minimal for 

mask segmentation and bounding box detection when AP50 is used in the analysis, 

coming out to be 16.1% and 16.2%, respectively (Figure 4.12b). However, the 

difference is significant for APmedium . The accuracy of the mask segmentation and 

bounding box detection increased by 26.2% and 25.1%, respectively (Figure 12d).  

Figure 4.13 shows the instance segmentation of several building types using 

HSRBFIA-𝑥 datasets with varying ratios of synthetic to real data for the training sets. 

The results from this qualitative analysis are similar overall to the results of the 

quantitative analysis shown in Figure 4.12. In street-level images, some buildings are 

located far away from the camera. As a result, they appear small in the images and tend 

to vanish during the down-sampling process (Figure 4.13c).  
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Figure 4.12. Comparison of the results for COCO metrics precision on real images. HSRBFIA-𝑥 

datasets with differing ratios of real data were used for the training set: (a) AP, (b) AP50, (c) AP75, 

(d) APmedium, (e) APlarge, and (f) AR10.  
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Figure 4.13. Qualitative results for different building categories from training HSRBFIA-𝒙 

datasets with different ratios of synthetic to real data: (a) traditional Japanese houses, (b) multi-

story residential buildings, (c) apartments, and (d) public high-rise buildings. (The red dashed 

rectangles highlight parts of the natural street-level images that are prone to failure during facade 

instance segmentation.) 

4.3.2.4. Verification on other cities 

As a comparison, the HSRBFIA-0, HSRBFIA-60, and HSRBFIA-100 that are 

employed in Section 4.4.2.3 are re-used as the training set, and a total of 400 street view 

images from four cities, including Osaka, Japan; Los Angeles (L.A.), US; New York 

City (NYC), US; and Shanghai, China, were used as the test set. The test images are 

downloaded through Street View services, covering a wide range of building types and 

sizes, including residential, office, commercial, and industrial, as well as low-rise, high-
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rise, and complex buildings. Table 4.8 lists the training set information and COCO 

metrics results for facade instance segmentation evaluated by the pre-trained model on 

real-world images in multiple cities. The worst segmentation is obtained with entirely 

synthetic data (HSRBFIA-0) as the training set. The accuracy of 60% real data 

(HSRBFIA-60) is close to 100% real data (HSRBFIA-100) as the training set. The 

results verified in these cities are similar to those presented in Section 4.4.2.3 for Tokyo 

and show that the proposed training dataset HSRBFIA-𝑥  generalizes well to street 

views in different cities without further fine-tuning. 

 

Table 4.8. COCO metrics precision of facade instance segmentation with training the proposed 

dataset HSRBFIA-𝒙 in multiple cities. 

Cities Type HSRBFIA-0 HSRBFIA-60 HSRBFIA-100 

AP AP50 APm AP AP50 APm AP AP50 APm 

Osaka Mask 0.412 0.641 0.152 0.569 0.791 0.378 0.584 0.812 0.411 

Bbox 0.437 0.663 0.181 0.607 0.803 0.393 0.616 0.825 0.423 

L.A. Mask 0.403 0.607 0.139 0.541 0.762 0.362 0.569 0.798 0.395 

Bbox 0.411 0.631 0.172 0.583 0.774 0.381 0.583 0.809 0.404 

NYC Mask 0.388 0.572 0.121 0.544 0.727 0.331 0.536 0.751 0.351 

Bbox 0.402 0.603 0.148 0.583 0.741 0.348 0.551 0.767 0.357 

Shanghai Mask 0.371 0.538 0.102 0.527 0.701 0.316 0.517 0.718 0.328 

Bbox 0.377 0.553 0.124 0.553 0.712 0.323 0.543 0.735 0.335 

The training set of 400 street view images includes 100 images of Osaka, Japan; 100 images of 

Los Angeles (L. A.), US; 100 images of New York City (NYC), US; and 100 images of Shanghai, 

China. 

 

In natural street scenes, the residential architectural styles in American and 

Chinese cities differ significantly from those in Japan, but most public building styles 

are similar. Figure 4.14 shows the qualitative results of the building segmentation of 

different building types for each city, and the red dashed rectangle is used to highlight 

some parts of the street view images that are easy to fail in facade instance segmentation, 

such as buildings far from the camera and complicated facade compositions. It was 

observed that training on synthetic data generated by CDT was sufficient to recognize 
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low-rise, high-rise, and integrated buildings. The combination of real and synthetic data 

(HSRBFIA-60) then yielded high precision results for non-constructed items (Figure 

4.14a), small buildings (Figure 4.14b and 4.14c), and even complex facades (Figure 

4.14d). 

 

Figure 4.14. Qualitative results for different types and sizes of buildings with training different 

synthetic-real ratios of HSRBFIA-𝒙 datasets. (a) Low-rise houses in Osaka, Japan; (b) low-rise 

houses in Los Angeles, US; (c) high-rise houses in New York City, US; (d) Complex facades in 

Shanghai, China. (The red dashed rectangles on the images highlight some parts of the street view 

images that are easy to fail in facade instance segmentation.) 
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4.4 Discussion 

4.4.1 Automatic generation of instance annotation for building facades based on 

CDT 

This Chapter investigated the possibility of using auto-generated synthetic datasets 

from CDT to boost the DCNN-based instance segmentation accuracy on real street-

level imagery. The results demonstrated that models trained by adding a fraction of real 

data to synthetic datasets could obtain results comparable to models built with real 

datasets. Furthermore, using synthetic data for extending the training set on real data 

can improve the segmentation accuracy. These findings are significant because they 

offer the possibility that the synthetic data from CDT can be used as an alternative to 

real data for training supervised learning-based models, which will significantly slash 

the cost of data annotation.  

A hybrid dataset HSRBFIA on building facade images and annotations are built 

for improving the facade instance segmentation on real images. Several large-scale 

collections of synthetic datasets in the virtual city have previously been used for 

semantic segmentation of streetscape elements (Ros, Sellart, et al., 2016; Saleh et al., 

2018). However, the effectiveness of synthetic data generated from real-world copies 

for training DCNNs could not be concluded in these studies. Since they all use datasets 

created from virtual cities (no correspondence with the natural world) as training sets, 

the texture gap between virtuality and reality is more likely to cause domain shift 

problems and lead to poor performance (Tremblay et al., 2018). In addition, instance 

segmentation is more complex than semantic segmentation when annotating synthetic 

datasets, distinguishing both semantics and instances. Compared to previous studies 

based on virtual cities, the building digital assets with high LODs from CDT have high-

quality textures that emulate the physical counterparts in the virtual space, producing 

more realistic synthetic data. 
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4.4.2 Effective use of CDT data for street-level facade instance segmentation 

From the results discussed in Section 4.4.2.1, it appears that CDT synthetic data 

outperform virtual data when synthetic data are used for the training set and real images 

for the test set. This may be because the 3D model textures in the CDT closely resemble 

those of the real building images in the test set. Also, the feature map extracted by the 

CNN model from a CDT synthetic image is similar to that extracted from the real image. 

From the experimental results discussed in Section 4.4.2.2, extending the real-

world training set by adding CDT and virtual synthetic data can improve the instance 

segmentation accuracy. This result is similar in some ways to previous work on the 

semantic segmentation of urban scenes based on fictional cities (Prakash et al., 2019; 

Ros, Sellart, et al., 2016; Saleh et al., 2018), but the proposed CDT synthetic data 

outperform the virtual data when used in an enhanced training set for instance 

segmentation tasks, and works for the street-level building category. Despite this benefit, 

the value of APmedium was the lowest among all of the results for the COCO metrics, 

indicating that the detection of smaller buildings remains a challenge, particularly when 

only a small fraction of the real data in the training sets account for them. This could 

be due to the fact that the semantic information for small objects appears in the 

shallower feature maps, and their details may vanish entirely as the network gets deeper. 

In addition, real images have more variation in texture, shape, and color compared with 

synthetic images. When the fraction of real images in a dataset is limited, it is difficult 

to transfer learned weights to the synthetic dataset.  

From the results in Section 4.4.2.3, it appears that extending the proposed synthetic 

data into the real-world training set can improve the instance segmentation accuracy. 

This result is partly similar to previous reports on semantic segmentation of urban 

scenes based on virtual city data (Prakash et al., 2019; Ros, Sellart, et al., 2016; Saleh 

et al., 2018), but the attempt is a complement to instance segmentation task using 

synthetic data of CDT as the training set, and it works in the street-level building 
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category. Despite the benefit, the value of APmedium is the lowest among the metrics 

results of all experiments, which indicates that the small building images are 

challenging to be detected, particularly when the real data in training sets account for a 

small fraction. This could be due to the following reasons: the semantic information of 

small objects appears in the shallower feature maps, and their details may vanish 

entirely as the network gets deeper. In addition, real images have higher variation in 

texture, shape, and color than synthetic images. When the dataset has a limited fraction 

of real images, the learned weights are difficult to be transferred to the synthetic dataset. 

The test results for multiple cities can show the robustness and transferability of 

the proposed HSRBFIA. The instance segmentation results for street-level images of 

Osaka, which has similar architectural styles as Tokyo, showed the best results in the 

experimental cities. This means that the prediction results can be satisfactory based on 

resembling feature distributions. In the test results of two US cities, the pre-trained 

model works well for low-rise residential and high-rise buildings with modern style. 

This could be because the buildings in the test streetscape are non-dense and clearly 

separated, showing the ability of the proposed method to handle simple scenes in other 

cities. In contrast, the building instance segmentation results for street-level images of 

Shanghai under three training sets (synthetic dataset, HSRBFIA-60, real-world dataset) 

are relatively less accurate than the other three cities. This may be because the test 

images are heavily sourced from public buildings in high-density urban areas, and the 

buildings have appearance gaps from the training set. It is difficult to obtain satisfactory 

results when the detection features of the training and test set are widely divergent, even 

using a large amount of synthetic data and then fine-tuning it with real images.  

4.4.3 Limitations 

The holistic goal of this research is to implement an automatic, scalable, and high-

fidelity synthetic data generation system for urban scenes. The system will largely 

contribute towards reducing manual labeling costs involving built environment data for 
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supervised machine learning. The proposed approach has two limitations that need to 

be pursued in future work. One is to synthesize virtual data with realism by enhancing 

the rendering CDT model while auto-generating annotations of various elements. The 

other is to improve the efficient use of CDT data to train DCNN-based models. 

Given the nature of current CDTs 3D reconstruction, with LiDAR data and visible-

light photography capture, photorealistic virtual images can be rendered using fine-

grained 3D models with subdivision materials. Furthermore, new rendering techniques, 

such as physical-based rendering, can be integrated into the system to improve 

illumination effectiveness, bringing the lighting in virtual data rendering closer to the 

natural environment. 

Domain shifts and the loss of small buildings in the down-sampling process are 

the main issues that impact the use of synthetic data for training instance segmentation 

models in urban scenes. By systematically investigating the mechanisms at play, the 

efficiency of synthetic data utilization can be optimized. It has been shown that domain 

adaptation can transfer the knowledge learned by machine learning models in the source 

domain (synthetic data) to the target domain (real data), which could be incorporated 

into the method. Moreover, the recent emergence of deep learning-based methods for 

small target detection will also be considered in further work. 

4.5 Summary of this  hapter 

The extraction of building facade data is integral to the construction of information 

infrastructure. Compared with semantic segmentation, instance segmentation can 

distinguish individual facades when acquiring and analyzing building information. 

However, collecting and labeling a large amount of data from the real world for DCNN 

training to perform accurate instance segmentation of building facades is a labor-

intensive process. This Chapter developed a system that can auto-generate synthetic 

datasets from a CDT for the instance segmentation of building facades. The digital 

assets of buildings are used in an area of Tokyo as an example. The proposed system 
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can produce synthetic images of street views from multiple viewpoints under different 

atmospheric effects. The system can also generate pixel-level instance annotation for 

synthetic building facades. The general conclusions that can be drawn are as follows. 

 Conventional methods for labeling data rely on manual labor. The Chapter 

attempts to substitute the manual labeling process with an automated 

generation system to create CDT synthetic data for training DCNNs. The 

proposed method takes about 1/2,050 of the time that it takes to manually 

annotate each image, which can significantly reduce the cost required to 

annotate data.  

 By comparing the DCNN training results for real, synthetic, and hybrid 

datasets, extending the training set with the proposed synthetic data can 

improve the accuracy of facade instance segmentation on real pictures. A 

baseline strategy is introduced to show that, at the same LOD and rendering 

settings, enhancements using CDT synthetic data are better than ones using 

virtual synthetic data. Specifically, the segmentation accuracy is boosted 

significantly when a certain fraction of real data is loaded into the CDT 

synthetic datasets, to the point where its performance becomes competitive 

with what is seen when 100% real data are used. This indicates that the 

proposed synthetic dataset has the potential to replace the real imagery in the 

training set.  

 Verification for multiple other cities demonstrated the transferability of the 

proposed framework. The proposed dataset can obtain promising prediction 

results for most modern architectural styles. However, the segmentation 

accuracy needs to be improved for environments that have characteristic 

architectural styles or high-density streets.  

 This study generates synthetic datasets based on a CDT, which effectively 

utilizes city information modeling and digital assets. As CDTs are further 
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developed and refined, the research framework can be applied to other 

elements in the urban environment, which will allow them to enrich their 

semantic information in the further development of digital infrastructure. 
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Chapter 5.  he large-scale approach for 

extracting data on multiple elements of 

building facades 

5.1 Overview of building facade information extraction at a large 

scale 

Facade data extraction, or facade parsing, is an important problem in computer 

vision. The building facade elements are classified, segmented, and 3D reconstructed 

using computer vision techniques, and then the building facade data can be recorded 

according to rules (Martinović et al., 2012). Textualization, editorialization, and 

semanticization of building facade data can store information more efficiently. Large-

scale facade data can support urban issues such as urban building energy models 

(Ferrando et al., 2020), building retrofits (Al-Habaibeh et al., 2021), urban renewal 

(Zheng et al., 2014), and urban vitality studies (Mouratidis & Poortinga, 2020). 

Therefore, building facade data collection and digital management have become an 

important part of developing a smart city. 

Generating facade data from spatial data is a key tool to address these challenges. 

Some geographic open databases or platforms have already achieved remarkable results. 

For example, OSM covers the plan outline, area, and height of buildings, and Google 

Earth can observe the mesh models of the world's major cities. However, these urban 

databases or platforms still have the problem of data integration. In terms of data type, 

researchers still need to obtain the data necessary for specific urban analysis tasks 

manually and are not available from open platforms. For example, the dominant color 

of the facade required for urban color design needs to be measured by professionals on-

site (Zhong et al., 2021). Building facade material for building renovation (Piccardo et 
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al., 2020). Window-to-wall ratio data for building energy and lighting calculations are 

not automatically available from existing urban databases or platforms (Szcześniak et 

al., 2022). Non-automatic and semi-automatic methods of data collection are still 

dominant. If urban building data is to be digitally managed effectively, automated 

spatial information collection methods must be developed. It will be a significant 

challenge for industry and academia to develop an automatic framework to efficiently 

collect and integrate multiple building data, build databases, and use these data 

effectively for urban management and analysis. 

It is necessary to collect, record and analyze data from the surrounding area before 

specifying the project for implementation. In traditional approaches, work relies on 

professional surveyors to take on-site measurements of the project, and manual-based 

workflows can lead to heavy workloads in large-scale remediation projects. Novel 

workflows have emerged in recent years that combine computer vision techniques with 

open cityscape datasets. These studies have yielded promising results in parsing 

building facades. Automating the rapid construction and continuous updating of large-

scale building facade databases will help designers and managers control the project 

throughout the building cycle. This study aims to realize the large-scale automated 

acquisition of existing building facade data. A toolbox was developed to assist 

architectural and urban design with current urban development issues. Empowering 

traditional workflows with digital technology can improve the efficiency of data 

collection, the reliability of analysis results, and the refinement of management.  

This Chapter will integrate the current state-of-the-art technical means to collect 

multidimensional information on urban facades. Typical facade parsing tasks such as 

facade color calculation, building function classification, and window-wall semantic 

segmentation are used as examples to reveal the possibility of large-scale data 

extraction of urban facades using street view images and deep learning. This chapter is 

organized as follows. First, data collection, pre-processing, and facade parsing methods 

are proposed. Then, the proposed methods are integrated with multiple facade data 
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collection tasks. The experiments were conducted on a street in Osaka, Japan. Finally, 

the discussion section shows the advantages of the proposed method over the 

conventional methods. The potential application value and the limitations of the method 

are presented. 

This Chapter integrates the techniques of Chapters 3 and 4 for removing unwanted 

objects in front of buildings and extracting individual facades of connected buildings. 

After data pre-processing, facade information is collected, including dominant color 

calculation of building facades, building functional classification, and semantic 

segmentation. A street of length 500m in Osaka, Japan, is used as an example to 

construct a database. 

5.2 Methods 

This section will describe the technology integration workflow for data extraction 

of building facades, facade data collection, pre-processing of street view images, and 

data mining.  

5.2.1 Technology integration workflow for data extraction of building facades 

This Chapter attempts to develop an end-to-end integrated multitasking 

framework by collecting street-level images at a large scale to extract completed 

building facades. State-of-the-art computer vision techniques are then used to identify 

information of the individual, including the facade dominant color, the building 

functions, and the window-wall semantics. The workflow of this proposed method is as 

follows. 

First, the obscured parts of the building facade will be completed using the GAN-

based method. Then, the buildings are extracted one by one using the proposed instance 

segmentation pre-trained model in Chapter 4. Finally, the information on each building 

facade will be extracted. Figure 5.1 shows a street-level image including only one 
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building. The system can remove the trees and cyclists in front of the building. After 

that, the building facade data are extracted, the facade dominant color is calculated 

(7.5Y6.5/3.2 in Munsell color system), the building functions (Public service) are 

automatically identified, and the window-wall semantics are segmented. Figure 5.2 

shows a street-level image that includes several buildings that visually overlap. The 

system can remove the tree, cars, and pedestrians in front of the building. The individual 

building can be separated by instance segmentation. After that, the individual building 

facade data are extracted, including window-wall semantics of a single facade, the 

facade dominant color is calculated (10B7.5/1 in Munsell color system), and the 

building functions (Public service) are automatically identified. 

 

Figure 5.1. Workflow for extracting multiple data in a street view image with one building facade. 

(a) Data acquisition: original street view image, (b) data pre-processing: complete building facade 

after color calibration and removal of unwanted objects, (c) data mining: window and wall 
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semantic extraction in building facade, (d) data mining: facade information extraction, including 

facade dominant color 7.5Y6.5/3.2 in Munsell color system and building function public service 

0.83 confidence. 

 

Figure 5.2. Workflow for extracting multiple data in a street image with several building facades 

visually overlapping. (a) Data acquisition: original street view image, (b) Data pre-processing: 

complete building facade after color calibration and removal of unwanted objects, (c) Data pre-

processing: instance segmentation of building facade, (d) Data mining: semantic segmentation of a 

single facade, (e) Data mining: facade information extraction, including facade dominant color 

10B7.5/1 in Munsell color system and building function public service 0.76 confidence. 
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5.2.2 Data acquisition 

The images can be extracted from the street view platform to provide 

comprehensive coverage of urban streets in street view photos. First, urban road 

networks with geography coordinate information were chosen and obtained from OSM. 

The road networks were then simplified into lines. Next, the sampling points with 

geographical coordinate information can be obtained and shown in spatial distribution. 

However, it is worth noting that not all sampled points in the street view service have 

corresponding street view images. Lastly, to obtain the building facade, two pictures 

(including left and right) are downloaded perpendicular to the road from the street view 

service (the viewing angle is 90 degrees, the horizontal angle is 0 degrees, image size 

is 800 × 500 pixels) for each sampling point (as shown in Figure 5.3). 

 

Figure 5.3. Street-level imagery collection at an urban road coordinate. 

5.2.3 Data pre-processing 

5.2.3.1. Image color calibration 

The color stimulus is significantly influenced by the ambient light. The captured 

item will appear bluish if the color temperature of the sunlight is cold. A warm 

temperature light source, on the other hand, will cause the object to appear reddish 

(Jechow et al., 2020). Since the saturation and brightness of street view photographs 

are modified by weather and time, the analysis premise is to eliminate the variation 

caused by ambient light. Previous research has demonstrated that HSV (Hue, Saturation, 

and Value) color spaces perform better in color calibration than RGB (Red, Green, and 
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Blue) channels (Mazzeo et al., 2011). Therefore, the collected images are converted to 

HSV color space. The AWB method was used for the saturation calibration of street 

view images (Lam et al., 2008). In addition, the AEC of the digital photographs method 

proposed by Yuan et al. (2012) was introduced to adjust overexposed and overly dark 

street view images. Figure 5.4 shows the calibration demo by AWB and AEC. 

 

Figure 5.4. A color calibration demo. (a) Ground truth of street view image; (b) color calibration 

image. 

5.2.3.2. Obstructed facade completion 

In urban environments, there is extensive foreground occlusion of building facades. 

As described in Chapter 3 of the supplemental methods for the obscured facade, to 

obtain complete information about the building facade, it is necessary to supplement 

the obscured part of the facade with rationalities. There are many methods in previous 

research, which are not repeated here, and can be viewed in section 2.2 of the literature 

review, and the method was introduced in Chapter 3. This Chapter uses a GAN-based 

and data-driven inpainting model, DeepFill-v2, for image inpainting, and a custom 

facade dataset is proposed. Figure 5.5 shows that the proposed system automatically 

detects people and trees in the foreground of a facade and reasonably filled based on 

context and data learning. The complete building facade will be fed into the next 

building information extraction and analysis step. 
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Figure 5.5. An example where people, car, and trees in the foreground of facades are automatically 

detected by the proposed system and reasonably filled based on context and data learning. (a) 

Obstructed objects in streets, (b) unwanted objected removal. 

5.2.3.3. Facade instance segmentation 

When multiple buildings are connected or visually overlapping, the study tries to 

analyze the information of each building and requires the use of instance segmentation. 

Many methods are proposed in previous research, which is not repeated here, and can 

be viewed in section 2.3.1 of the literature review. The facade instance segmentation 

datasets used in this chapter are presented in Chapter 4. Figure 5.6 shows the facade 

extraction that uses semantic segmentation and instance segmentation, and the instance 

segmentation can extract building facade information one by one when multiple 

buildings are connected in a single image.  

 

Figure 5.6. Compared to facade extraction methods that use semantic segmentation, instance 

segmentation can extract building facade information one by one when multiple buildings are 

connected in a single image. (a) Ground truth, (b) facade semantics segmentation, (c) facade 

instance segmentation.  
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5.2.4 Data mining 

5.2.4.1.  facade dominant color calculation 

There are thousands of color values in an image, and it is difficult to define the 

dominant color without merging colors. Therefore, extracting the dominant color of the 

urban facade requires a standard color card for integrating the colors in the image to the 

standard color. Since the use of color in architectural design and building decoration 

should conform to standard color codes in different countries, this study chooses China 

Building Color Chart (CBCC)-1026 as the standard color (the CBCC-1026 selects 

1,026 commonly used architectural colors from the complete CBCC library) that can 

cover most building colors in urban facades. The specific HSV information of CBCC-

1026 can be found in the online color chart (Architectural standard color chart, 2020.). 

Then, the raw color data of street view images is merged to the standard color chart by 

calculating the HSV value of the street view color and replacing them with the closest 

architectural standard color (in terms of the Euclidean distance). In the HSV color space 

model, the three-dimensional coordinate (𝑥 , 𝑦 , 𝑧 ) of the color point (H, S, V) was 

defined according to Equation. (5.1): 

{

𝑥 = 𝑟 · 𝑣 · 𝑠 𝑐𝑜𝑠 ℎ
𝑦 = 𝑟 · 𝑣 · 𝑠 𝑠𝑖𝑛 ℎ

𝑧 = 𝐿 1 − 𝑣        
 , (5.1) 

where 𝑟 is the radius of the bottom circle, and 𝐿 is the height, and taking 𝑟 and 

𝐿 to the integer 100 for the convenience of later analysis. (ℎ, 𝑠, 𝑣) is the HSV value 

of the image color. After calculating and merging the distance to the standard color, all 

colors on the street view images will be converted to the architectural standard color 

chart. Then, the color proportion from each street view picture can be counted. 

Although color dominance can be established in several aspects, such as the strength of 

hue, the sharpness of vision, contrast, and perception of saturation, G. A. Agoston (2013) 
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suggested that the two most critical factors affecting the dominant color of the picture 

are the color proportion and the saturation contrast. Therefore, the following is the 

approach to dominant color selection in this study. (1) The dominant color should be 

the largest part of the building facade; (2) when the color proportions are equal in a 

street view picture, the color with high saturation is the dominant color. The facade 

dominant color open-source tool can be found in (Mortyzhang, 2020/2022). 

5.2.4.2. Multi-Label Classification of Building Function 

From the perspective of the facade in urban streets, there are four main types of 

building functions in the city proper (Tardioli et al., 2018), including residence (R), 

commercial service (B), public service (A), and other facilities (O). To effectively 

classify the types of buildings, a DCNN-based model is conducted to automatically 

classify the building functions of the study areas. In the previous research, single-label 

methods have typically been used to classify building classes, with each photo 

corresponding to only one label (Kang et al., 2018). However, the single-label method 

cannot accurately separate the street view pictures of several building functions, 

resulting in inaccurate experimental results. To solve this problem, a multi-label image 

classification method is used to identify multiple building categories in street view 

images.  

To train the multi-label building classifier, the semantically segmented building 

images was used firstly to build the corresponding street-view benchmark dataset that 

contains 4,965 images from 4 basic categories: residential, commercial services, public 

services, and other facilities. Meanwhile, images with more than one label are classified 

as mixed services. The ground-truth labels of the training data are from the OSM, and 

Table 5.1 contains descriptions of the different building function classes. There are 

around 3,500 single-label images and 1,500 multi-label images in these training images, 

as shown in Figures 5.7 and Figure 5.8. These street-level images were divided into a 

training set (75%) and a testing set (25%). It is worth noting that all test images are not 



82 

 

retrieved from a single city and are different from those utilized for training. To augment 

the training data, 720 × 450 pixels from the original 800 × 500 pixels are randomly 

selected, and the cropped images are flipped horizontally. Then, several state-of-the-art 

CNN-based models are trained, including DenseNet (Iandola et al., 2014), EfficientNet 

(Koonce, 2021), InceptionNet_v4 (Szegedy et al., 2017), and ResNeSt (K.-L. Chen et 

al., 2021), and demonstrated the corresponding classification performances. To improve 

the learning rate, these models are trained for 100 epochs and decayed the learning rate 

by a factor of 0.1 every 25 epochs. Each training batch contained a total of 64 images. 

Other not mentioned values are default. The building functional classification open-

source tool is available online (Mortyzhang, 2021/2022a).  

 

Table 5.1. Description of building class in the city. 

Building classifications Description 

Residential (R) Buildings are for people living, including villas, apartments, 

and dormitories. 

Commercial service (B) Buildings allow people to engage in various business activities, 

including retail, shopping malls, markets, hotels, restaurants, 

and entertainment facilities. 

Public services (A) Buildings allow people to carry out various public activities, 

including office, education, health, culture, transportation, and 

tourism buildings. 

Other facilities (O) Buildings or structures that appear in urban areas other than 

the above three. 

 

Figure 5.7. The first row is a single-label category, from left to right: Residential, Public, 

Commerce, and Other Facilities. The second row is a multi-label category, from left to right: 
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public services and commercial, residential and commercial services, residential and public 

services, and residential and other facilities. The classification benchmarks have 4,965 street view 

images with four labels. 

 

Figure 5.8. The number of training set images for each building category. 

5.2.4.3. Semantic segmentation of windows and walls 

(1) The categorical semantic segmentation algorithm 

The fully convolutional network (FCN) is an early semantic segmentation model 

that recovers the class to which each pixel belongs from abstract features (Long et al., 

2015). The classification pattern of FCN can be extended from image-level to pixel-

level compared to traditional methods. CNN-based classification models typically map 

images to feature vectors by running the convolutional layer output through a fully 

connected neural network to generate a vector output (X. Li et al., 2019). However, 

FCNs use convolutional deconvolution layers instead of fully connected layers, and the 

resolution of the feature map is reduced throughout the feature extraction process (J. 

Dai et al., 2016). As a result, the downsampling rates (the ratio of the input image 

resolution to the output feature map resolution) becomes a concern (Tang et al., 2019). 

Redundant spatial resolution reduction will cause the target object to vanish, whereas 
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insufficient resolution reduction may result in a model with insufficient translational 

invariance (M. Dai et al., 2021).  

The U-Net model is an FCN-based semantic segmentation model originally 

developed for medical images (Siddique et al., 2021). The original U-Net consists of an 

encoder with a standard CNN architecture and an asymmetric decoder that recovers the 

spatial resolution of the feature maps. Skip connections concatenate feature maps from 

shrinking paths before doubling the number of feature channels and symmetric feature 

maps in the expanding path. The symmetric U-Net architecture is more advantageous 

in handling the facade images with many small objects (Siddique et al., 2021). In 

addition, building appearances are fixed in structure (windows are located in walls) and 

not particularly rich in semantic information (the building usually consists of walls, 

windows, doors, roofs, balconies, etc.). This situation is similar in medical images 

where U-Net has been found effective (such as human brain structures with fixed 

positions). Many empirical studies (Du et al., 2020; Esser et al., 2018; Siddique et al., 

2021) have shown that skip connection, and U-shaped structures of U-Net can obtain 

pleasing segmentation results for fixed semantic information. 

It has been shown that the upgraded version of U-Net, U-Net++, achieves 75.5% 

mIoU performance on the Cityscapes val dataset (Zhou et al., 2018), but DeepLabv3+ 

can achieve 79.6% (L.-C. Chen et al., 2018). Although the Cityscapes val dataset is not 

based on the wall and window segmentation task, the segmented objects are in the same 

building environment. DeepLabv3+ can integrate two advantages: one is the spatial 

pyramidal pooling that encodes multi-scale contextual information, and the other is the 

encoder-decoder structure that captures clear edge by gradually recovering spatial 

information. This work will compare the accuracy results of U-Net++ and DeepLabv3+ 

in the tasks of segmenting walls (commonly referred to as buildings in traditional 

computer vision datasets) and windows. The model that obtains better accuracy will be 

recommended. 
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(2) Semantic dataset for facade parsing 

Commonly used open-source facade parsing datasets include eTRIMs (Korc & 

Förstner, 2009), ECP2011 (Teboul et al., 2011), Graz2012 (Riemenschneider et al., 

2012), and CMP2013 datasets (Tyleček & Šára, 2013). The eTRIMs dataset is well 

diversified, it is built on multi-view images of many European cities, but it has only 60 

annotated images. The ECP2011 dataset contains 104 annotated images of Paris in 

seven categories, including balconies, rooftops, stores, sky, doors, walls, and windows. 

The Graz2012 dataset consists of 50 images from Germany and Austria. This dataset 

has only four categories: door, window, wall and sky. The disadvantage of these datasets 

is that they do not perform well for the training set of images of building facades with 

widely varying urban styles. The CMP2013 dataset is larger. It has 378 basic images 

and 228 extended images from around the world. The dataset has a variety of building 

styles with 12 categories, including wall, molding, cornice, column, window, door, bay 

window, sash, balcony, store, trim, and background. However, the CMP2013 is a 

relatively simple dataset of scenes with few foreground occlusions. In general, existing 

methods based on these publicly available datasets do not perform well in practical 

applications.  

Several recent studies have complemented and enhanced the publicly available 

datasets. Femiani et al. (2018) built a facade dataset based on street view images in 

diverse cities. The dataset had only spherical facade photographs in frontal view. It still 

had limitations related to calibration and single view. LabelMeFacade (Kong & Fan, 

2021) extended eTIRMs based on the LabelMe database (Russell et al., 2008) to contain 

945 polygonal images with annotations. However, the eTRIMs and LabelMeFacade 

datasets include buildings, cars, doors, sidewalks, roads, sky, vegetation, and windows. 

The resolution of these dataset images is below 2k, and small objects such as small 

windows in the images are faintly represented. In addition, the illumination of the image 

varies very little. In reality, a considerable portion of the facade images are in a low 

illumination state. A facade labeled high resolution dataset containing 500 street view 
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images with 2,048 ×  1,152 pixels is proposed, which is higher than any previous 

publicly available datasets. The dataset contains nine categories, including, sky, wall, 

window, tree, sign, car, roof, door, and pedestrian. The photos in the dataset are from 

different weather, and the lighting variations enrich the generalization of the dataset. 

Figure 5.9 shows examples of facade images in previous datasets and the proposed 

dataset. 

 

Figure 5.9. Examples of facade images in previous datasets and the proposed dataset. (a) ECP, an 

open-source facade dataset with the front view buildings. (b) eTRIMS, an open-source facade 

dataset without complicated obstacles. (c) Proposed datasets, high resolution (2048 × 1152) with 

diverse scenes. 

5.3 Results 

5.3.  Accuracy verification of facade color calculation 

Two materials (MAT. 1 is ceramic tiles, and MAT. 2 is veneer brick) are firstly 

selected with standard HSV information. Then, a digital camera is used to take ortho-

projected photographs of the materials at six ambient color temperatures. Next, the 

AWB and AEC methods were used to conduct color calibration of the photos, and the 

corrected HSV values of the two materials can be obtained. Table 5.2 lists sample 
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materials, the digital camera specifications, and the software used for the experiments. 

Finally, the shortest Euclidean distance between the standard HSV color value and the 

image color can be used to calculate the color deviation ∆E, and Equation 5.2 is as 

follows: 

Δ𝐸 = 𝑠𝑞𝑟𝑡  𝑥𝑛  −  𝑥𝑠 
2  +   𝑦𝑛  − 𝑦𝑠 

2  +   𝑧𝑛  −  𝑧𝑠 
2  (5.2) 

where the HSV spatial coordinates can be calculated as  𝑥𝑛, 𝑦𝑛, 𝑧𝑛   according to 

Equation (1), and  𝑥𝑠, 𝑦𝑠, 𝑧𝑠  is the standard color HSV coordinate. 

Figure 5.10 depicts the color deviation of the two materials in digital photos before 

and after color calibration at several ambient color temperatures. The results indicate 

that the introduced color calibration methods can significantly reduce the color 

deviation of digital images when the color temperature is warm or cold. 

 

Table 5.2. Materials, apparatus, and software. 

Materials 

ID Facade Material Name Facade Color Samples Standard HSV Value 

MAT. 1 Ceramic tiles 
 

H:198, S: 8%, V: 96% 

MAT. 2 Veneer brick 
 

H: 16, S: 11%, V: 51% 

Apparatus/Product 

Digital camera/Canon EOS 60D 

Software/Contents 

Photoshop CS4: An image processing software developed by Adobe, used to obtain the HSV 

value of the image color. 
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Figure 5.10. Color deviation of two materials in several color temperatures before and after photo 

color calibration. 

The proposed methodology is validated in terms of color measurement based on 

200 field survey images of street views randomly extracted from the three Chinese cities 

(Shanghai, Nanjing, and Hefei). The comparisons between the field survey and the 

proposed measurement method are shown in Figure 5.11. For color measurement 

validation, the architectural standard color card was first visually compared with the 

surveyed facade. The color code closest to the investigated object was recorded as the 

ground truth. Then, the HSV value of the measured color of the surveyed building 

facade was obtained. Finally, the color deviation between the measured color and 

ground truth was calculated for each field survey sample, and the range of color 

deviation was counted. The histogram of color deviation is shown in Figure 5.12, and 

more than 67% of the color deviation is lower than 20. 
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Figure 5.11. The proposed measurement method results and the field survey data. 

 

Figure 5.12. After color calibration, the distribution of the dominant color deviation was 28% for 

samples less than 10 and 67% for samples less than 20. 

5.3.  Classification accuracy of building functions 

As shown in Figure 5.13 and Table 5.3, the four areas under the curve (AUC) of 

the trained DCNN model were evaluated through the test data. AUC is defined as the 

area enclosed by the coordinate axis under the receiver operating characteristic (ROC) 

curve. Since the maximum value of x and y after normalization is 1, and the ROC curve 

is generally above the line y=x, the AUC takes values in the range of 0.5 and 1. The 

closer the AUC is to 1.0, the higher the authenticity of the detection method. When it is 

equal to 0.5, the authenticity is the lowest and has no application value. As shown in 
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the results, the overall classification performance of EfficientNet was worse than the 

other networks. For the accuracy of commercial service and public service 

classification, ResNeSt performed better than the other three. For the class of residence 

(R), InceptionNet-v4 achieved the highest AUC value. After comparison, the trained 

ResNeSt model was selected, which has the highest overall accuracy among the four 

models, for the following generation of building functional classification maps.  

For classification validation, the proposed method and ground truth were 

compared to the results of the classification of building functions. The overall building 

functional classification accuracy is 86.5%, as shown in Table 5.4. Most categories 

exceeded 85% accuracy, except for the residential type. These results are similar to the 

classification accuracy in Figure 5.13 and show that the prediction results by the trained 

ResNeSt achieve consistency with the verification results of the field investigation data. 
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Figure 5.13. The AUC of the trained models including (a) DenseNet, (b) EfficientNet, (c) 

InceptionNet-v4, and (d) ResNeSt. The red line indicates the AUC of residence, the blue line B 

indicates the AUC of commerce, the yellow line A indicates the AUC of public service, and the 

purple line O represents the AUC of other facilities. 

 

Table 5.3. Multi-label classification performance of all the trained networks. 

Type DenseNet EfficientNet InceptionNet-v4 ResNeSt 

Residence (R) 0.9008 0.9145 0.9162 0.9148 

Commercial service (B) 0.8968 0.8852 0.8814 0.9160 

Public service (A) 0.9518 0.9299 0.9552 0.9563 

Other facilities (O) 0.9504 0.9589 0.9608 0.9528 

Overall 0.9249 0.9221 0.9284 0.9349 

Bold values represent the highest output achieved among all the listed DCNNs. 

 

 



92 

 

Table 5.4. Building classification accuracy for the 200 sampled images. 

Type R B A O R + A B + A 

Number of samples 46 42 38 30 20 24 

Subclass accuracy 84.8% 88.1% 89.5% 86.7% 85% 87.5% 

Overall accuracy 86.5% 

 

5.3.3 Accuracy for analysis of wall and window segmentation  

This study uses PyTorch, an open-source machine learning framework, and tests 

the pre-trained model on street-level images using the proposed dataset. The training 

sets are 400 images, and the testing sets are 100 images. The advantages of U-Net++ 

and DeepLabv3+ for the facade parsing task were described previously, and the two 

models were chosen to be trained separately on the proposed dataset, and then their 

segmentation performance was compared. During model training, a data enhancement 

technique was used: small rotations were applied at random to 60% of the data. In 

addition, a 10% color adjustment was applied at random to 60% of the training set to 

generate more training images.  

The performance of the segmentation model was evaluated quantitatively and 

qualitatively. The quantitative evaluation includes precision, recall, and IoU to indicate 

the performance of the model. The IoU measures the overlap between positive 

predictions and positive samples. The detection results of small and large objects can 

be visually observed by Qualitative results. Besides, the difference in performance 

between the two models can be observed by human vision. 

Table 5.5 gives the segmentation results of the two with the training model on the 

test set. Looking at the IoU metrics, the DeepLabv3+ performed better in the wall 

category. The qualitative analysis shows the same overall results. Figure 5.14 shows the 

segmentation examples for wall and window using DeepLabv3+ and U-Net++. Overall, 

the DeepLabv3+ shows better performance in dealing with boundaries and large objects 
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(such as walls), and a little improvement from U-Net++ in dealing with small objects 

(such as windows).  

 

Table 5.5. Wall and windows segmentation performance using U-Net++ and DeepLabv3+. 

 Model Precision Recall IoU 

Wall 
U-Net++ 88.35% 89.53% 83.61% 

DeepLabv3+ 92.35% 90.87% 86.86% 

Window 
U-Net++ 89.10% 87.19% 82.19% 

DeepLabv3+ 90.67% 87.57% 83.88% 

 

 

Figure 5.14. The segmentation examples for wall and window using DeepLabv3+ and U-Net++. 

(a) Ground truth, (b) prediction by DeepLabv3+, and (c) prediction by U-Net++. 

5.3.4 Automatic extraction of building facade results 

The urban facade database can be constructed by integrating the proposed methods. 

The construction process of the database can be divided into three steps. The first is 

data acquisition. The sampling points in the centerline of the city road can be acquired 

from urban geo-databases (like OSM). The street view images on both sides of the 

sampling points will be downloaded from Street View Service. The second is data pre-

processing. The developed system will detect building facades in the street view image 

and remove the obstructions in front of the buildings. The separate building facade will 

be extracted based on the pre-trained instance segmentation model. The third is data 

mining. Building facades will be numbered, and each facade's dominant color, function, 

and window wall semantics will be counted by the proposed method. A 500m long 
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urban facade database was constructed for a street in Osaka. Figure 5.15 shows the 

location of the study area, and the street sampling points are set at 50m intervals. Figure 

5.16 shows the details of the urban facade database, including the sampling point ID; 

the left and right along the direction of the street car; the coordinates of the sampling 

point; the street view images; the pictures after the unwanted object removal, and the 

facade instance segmentation; the number of individual facades; the dominant color of 

each facade (based on the Munsell color system); the function of the building (A for 

public service, B for commerce service, R for residence, O for other facilities); window-

wall semantic segmentation of the facade. 

 

Figure 5.15. Study area, (a) Osaka Prefecture region, (b) A case study street in Suita, Osaka, (c) 

Ten sampling points are selected on a 500m-long street, and the street-level images are acquired 

from Google Street View service on the left and right sides of each sampling point along the street 

direction. 



95 

 

 

(Continued on next page) 

ID Dir

 oordinates
Street view images  nwanted objects removal

and instance segmentation
 ID Dominant color

 unc -

tion

 all and windows 

segmentation
Lat Lng

1

Left

34.766

96

35.520

01

1 N7.25 A

Right 1 7.5GY9/1 O

2

Left

34.767

18

135.51

993

N/A N/A N/A N/A

Right 2

8.1YR5.5/4 R

9.4YR7.5/5 O

3

Left

34.767

85

135.51

983

2

8.1R5.5/1 R

N6.75 R

Right 1 8.8R5/1.6 A

4

Left

34.768

41

135.51

977

2

3.8Y6/2 A

N7 R

Right 2

0.6YR7/2 R

1.3Y6.5/2.4 A



96 

 

 

(Continued on next page) 

ID Dir

 oordinates
Street view images  nwanted objects removal

and instance segmentation
 ID

Dominant 

color

 unc-

tion

 all and windows 

segmentation
Lat Lng

5

Left

34.768

55

135.51

976

4

2.5Y4/1.6 R

2.5Y6/1.2 A

0.6GY5.5/1 R

1.9Y5.5/1.2 A

Right 4

3.8GY4/3.6 R

1.3GY5/2.4 R

0.6GY7/1 A

8.8P8.5/1 A

6

Left

34.768

95

135.51

966

N/A N/A N/A N/A

Right 2

8.8R5.5/1.6 R

8.8YR6/5 A

7

Left

34.769

03

135.51

950

N/A N/A N/A N/A

Right 2

8R4.5/1.4 R

10Y3.5/1.8 B

8

Left

34.769

46

135.51

958

2

3.8Y6.5/1 R

N5.25 A

Right 2

3YR3/1 R

10B6.5/1 R



97 

 

 

Figure 5.16. An example facade database is constructed for a 500m street in Suita, Osaka. The 

facade database includes the sampling point ID; the left and right along the direction of the street 

car; the coordinates of the sampling point; the street view images; the pictures after the unwanted 

object removal and the facade instance segmentation; the number of individual facades; the 

dominant color of each facade (based on the Munsell color system); the function of the building 

(A for public service, B for commerce service, R for residence, O for other facilities); window-

wall semantic segmentation of the facade. N/A means no facade. 

5.4 Discussion 

5.4.1 Comparison with conventional methods 

For the facade color measurements, the previous methods developed by Lu et al. 

(2010) and Nguyen & Teller (2017) are computationally expensive in terms of facade 

color measurement and building function statistics, based mainly on field studies, and 

with low expansibility. These methods require a significant amount of manual 

measurement data, including on-site streetscape images and questionnaires, and are 

restricted to neighborhood-scale studies. In contrast to the field survey-based method, 

the proposed deep learning-based data processing method can analyze large amounts 
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of data with high accuracy and is more cost-effective in measuring the facade color 

corresponding to the building function classification. The proposed method can 

quantitatively analyze the color distribution at different building functions to support 

evidence-based urban analytics and design rather than simply qualitative descriptions.  

The proposed method can accurately parse facades in street-level complex scenes 

for the segmentation of walls and windows. Compared to previous methods (Gadde et 

al., 2016; H. Liu et al., 2020; Ma et al., 2020; Teboul et al., 2012), this study's 

contribution is to customize a high-resolution facade parsing dataset for complex scenes. 

The new dataset contains wall annotation based on individual buildings. A larger dataset 

of street-level facades with multiple views, foreground occlusions, various lighting 

conditions, and complex facade backgrounds is included in the proposed dataset.  

Compared to facade extraction methods that use semantic segmentation (J. Zhang 

et al., 2021b), the proposed method using instance segmentation can extract building 

facade information one by one when multiple buildings are connected in a single image. 

The conventional method treats the information of all buildings in a picture as a whole 

and is unable to parse the building monolithically. The proposed method is more 

accurate and overcomes the previous problem of not being able to parse individual 

facades information (such as individual facade dominant color or individual building 

function) in connected buildings (visual adjacency or overlay). 

5.4.2 Potential applications 

This study attempts to construct a quantitative research method for the city-scale 

measurement of facade data, including color, functions, walls, and windows. After 

testing, the technique demonstrated its viability and convenience in initial 

investigations of urban design and city modeling, implying potential application as an 

augmented tool for designers to establish objective decision bias and enable a data-

driven strategy. Given the method’s benefits, it could be used to discover discordant 

architectural colors in particular functional areas, assess the color planning of the built 
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environment, and provide foundation color details for urban design implementation, 

thus facilitating a feedback process. For example, the new and old facade color has a 

noticeable difference because of the pace of construction and business distribution. This 

study provides city managers with a clear understanding of street-level facade colors 

with building classification to realize the optimal balanced development of the new 

buildings and traditions. In addition, quantitative measurement and classification 

provide empirical value for intelligent design guidelines in various areas, such as 

residential, commercial, and public services. By analyzing the color and function of the 

city, the authorities could explore the color tendencies of functional buildings in 

different cities. Then propose urban planning solutions with their own identity. This 

process helps avoid the drawbacks of stylistic homogenization induced by the 

prevalence of functionalism. It is expected to help improve the color quality of the urban 

built environment, especially in further exploring the visual environment design, to 

better support urban renewal in the post-urbanization period. 

The workflow proposed in this study can help create a portrait of the building at 

the city scale and move to the next modeling step, such as urban building energy 

modeling and 3D modeling reconstruction, which is crucial for building retrofitting 

solutions and semantic enrichment of BIM. Other important building indicators, such 

as the windows-to-wall ratio, which is essential for assessing the building energy 

performance, can also be calculated from a semantic segmentation model integrated 

with orthogonal transformation. In addition, the method may be more convenient and 

economical than traditional methods, as it is characterized by ease of implementation 

and does not rely on intensive physical labor. 

5.4.3 Limitations 

For the facade color measurements, the intense sunlight will impact the quality of 

street view images, affecting the color calculation based on the introduced method; an 

example is shown in Figure 5.17a. The color calibration of street view images can 
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improve the calculation results. However, with the current color calibration methods, it 

is difficult to obtain the actual color of the building facade for some overexposed and 

overly dark street view images. In this way, the low image quality has a negative impact 

on the accuracy of the color measurement, classification, and segmentation tasks of the 

buildings. 

According to the building classification results of the four classes, some residential 

areas are relatively more difficult to identify than other classes, owing to the fact that 

residential areas in older towns are highly mixed in function. Commercial services often 

exist on the ground floor of residences, and few individual houses are on the streets of 

these study cities, causing the classification accuracy of some residential buildings to 

be lower than other classes. As shown in Figure 5.17b, the building in the street view 

image is predicted to be a mixed service. Last, there are a few manual tagging errors 

from OSM users in the training set of the classification model, especially for similar 

facade features. As shown in Figure 5.17c, the building in the street view photo tends 

to be a residential apartment, while the label from the OSM user is a hotel. Detecting 

multiple labels for building functions is possible. By recreating the dataset for multi-

label image classification training, automatic recognition of multiple building functions 

(more than two) for classification in a single street view image will be achieved. 

 

Figure 5.17. Some observations from street view images illustrate the limitations of color 

measurements and functional classification. (a) Color deviations persist in the overexposed street 

view image despite color calibration. (b) It is difficult to identify a residential building with 

commercial service. (c) The building in the street view photo is an apartment, whereas the label 

from the OSM user is a hotel. 
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For the walls and windows segmentation, the current limitation is that the proposed 

building facade dataset has not been validated on a large range of streetscape images 

under complex weather and crowded street, which is important for practical 

engineering-oriented applications. Since some windows are small targets in street view 

images, they are prone to lose information when down-sampling during CNN-based 

model training, resulting in suboptimal segmentation accuracy for small targets. The 

purpose of this research is oriented to the update of buildings and the semantic 

understanding of building information models, so the accuracy of the results is required 

to be high. The segmentation task for walls and windows of building facades is 

characterized by the presence of both large and small targets in the picture, the diversity 

of object angles and forms, and the state-of-the-art semantic model used in this study is 

a generic design that does not achieve the most desirable segmentation accuracy results. 

Furthermore, when glass reflects the sky or street objects, the segmentation model tends 

to identify the reflection of window glass as other objects, which reduces its overall 

quantitative performance (as shown in Figure 5.18). In future work, segmentation 

accuracy will be further improved by tailored datasets and algorithm enhancements. 

The semantic information of the building facade in the street image will be distortion 

corrected to obtain a usable segmentation result. 

 

Figure 5.18. Some observations from street view images illustrate the limitations of facade 

segmentation. (a) The window glass reflects trees, and (b) the window glass reflects buildings will 

reduce the segmentation accuracy of walls and windows. 



102 

 

The GAN-based method eliminates the unwanted objects in front of the building 

and completes them, which can solve the interference caused by obstacles to the 

building elevation information extraction and improve the accuracy of the acquired 

facade information. The proposed method currently generates prediction results that 

will be slightly inconsistent with the real situation. In future research, the proposed 

method will improve the accuracy of the algorithm, and the generated textures will be 

consistent with the ground truth as much as possible. Many full reference metrics have 

been proposed, but it is difficult to assess the gap between the generated images and 

ground truth due to the unavailability of ground truth. The current criteria for evaluating 

the generated image are two-fold: (1) based on human visual perception, and (2) 

truthfulness of the content. First, after the GAN-based obstructed facade completion, 

the goodness of the generated image can be judged by the experience of human visual 

perception, such as color and semantic consistency, gray scale, or similarity. Second, 

the current method cannot assess the authenticity of the generated image content. As an 

example, the window size on the infill cannot be compared with the ground truth. 

Therefore, calculating the window-to-wall ratio or the semantic segmentation of 

windows is impossible to determine whether the generated images are accurate 

compared to the real situation, leading to uncertain applications to the window-to-wall 

ratio problems. This problem might be solved by synthesizing the street view. 

Unwanted objects, such as trees, cars, people, etc., are superimposed on the complete 

building facade image. The ground truth image, the obscured facade image with masks, 

and generated image by inpainting the mask can be obtained. 

5.5 Summary of this  hapter 

This study proposed an automatic approach for facade color measurements, 

building functional classification, and window-walls segmentation at a large scale by 

applying state-of-the-art deep learning methods and street-level images. A pre-

processing data method for facade color measurement was developed in two steps: 
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image color calibration and obstructed facades completion. A tailored dataset of street 

view images is built to train a multi-label classifier for building functions, including 

residential, public, commercial, and other facilities. Finally, a tailored dataset of 

building facades is built for training semantic segmentation models for walls and 

windows. 

The proposed methods measure facade color, classify building functions, and 

segment walls and windows using street-level images. The accuracy of the proposed 

method was verified by field surveys. The results show that the proposed methods have 

satisfactory accuracy, with a color deviation of less than 20 for more than 67% of the 

measured data and overall accuracy of 86.50% for the building functional classification. 

The IoUs for semantic segmentation of walls and windows using DeepLabv3+ are 

86.86% and 83.88%, respectively. The proposed method can automatically collect basic 

building information to support data for urban renewal. This work aims to quickly 

access inventory data of existing buildings to aid in the application of large-scale city 

information modeling and building renewal. 
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Chapter 6.  onclusions 

6.1 Summary 

This study presents an automated workflow for extracting multiple types of 

building facade data based on deep learning and geo-tagged street view imagery, 

assigning measured data to individual buildings in urban areas. The main body of the 

study is divided into three parts. Firstly, this study develops an unwanted object 

elimination system that can obtain complete building facades to improve the fidelity of 

building facade information based on street-level pictures. Secondly, a facade instance 

segmentation method based on CDT synthetic dataset is proposed, which has two 

benefits: one is to solve the segmentation problem of adjacent buildings. The other is 

that the automatically generated synthetic dataset dramatically reduces the cost of data 

annotation. Thirdly, an integrated multitasking facade data extraction method is 

proposed. Building information, including building dominant color, building functional 

classification, and wall and window semantics, will be automatically counted. For 

dataset making, the author proposes a publicly available facade dataset that can be used 

for obstacle removal in streets, DCNN-based facade instance segmentation models, and 

window-wall semantic segmentation. The proposed method has been validated in 

several cities, and the results prove its effectiveness.  

6.2 Research contributions 

This study proposes a workflow for large-scale acquisition and quantitative 

analysis of multiple data of building facades based on street view images. The method 

can overcome the interference of obstacles in the street to the facade data acquisition. 

In addition, it is difficult to obtain individual information on connected buildings based 

on the previous methods because of the lack of diverse facade instance annotations. The 
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proposed CDT synthetic dataset HSRBFIA in this study can be effectively used for 

facade instance segmentation for real images, revealing the potential of the proposed 

synthetic dataset to replace real data. Further, multiple building facade data types, such 

as facade dominant color and window-wall semantics, that are not recorded in existing 

urban geographic databases (such as OSM) are measured and analyzed. Overall, the 

contribution of this study consists of three parts, which are concluded as follows. 

1) An obstructed facade completion method was proposed. As a result, unwanted 

objects in the street, including people, greenery, and cars, can be removed. In 

addition, a dataset called SVBFI was tailored for DCNN-based facade 

inpainting with unoccluded facade images, mask images, and semantic 

segmentation labels. Eliminating obstacles in front of the building can 

effectively improve the loss of information about the building facade obtained 

through street view images. 

2) An automatic generation system is proposed to create CDT synthetic data for 

training facade instance segmentation. This approach takes about 1/2,050 of 

the time that it takes to manually annotate each image, which can significantly 

reduce the cost required to annotate data. The segmentation accuracy is 

boosted significantly when a certain fraction of real data is loaded into the CDT 

synthetic datasets, to the point where its performance becomes competitive 

with what is seen when 100% real data is used. Verification for multiple other 

cities demonstrated the transferability of the proposed framework. CDT 

synthetic dataset can obtain promising prediction results for most modern 

architectural styles. In addition, this method can effectively achieve monolithic 

data extraction of connected buildings. 

3) The extraction methods of multiple building facade data based on geo-tagged 

street view imagery and deep learnings were presented. A pre-processing data 

method for facade color measurement was developed in three steps: image 
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color calibration, obstructed facades completion, and facade instance 

segmentation. A tailored dataset of street view images is built to train a multi-

label classifier for building functions, including residential, public, 

commercial, and other facilities. A tailored dataset of high-resolution facade 

images is built for training semantic segmentation models for walls and 

windows. 

The tools developed by this study have been made open access and are listed as 

follows. 

 A format conversion tool was in Chapter 4: from synthetic data to COCO format 

for training deep learning-based instance segmentation models: 

https://github.com/Mortyzhang/Mask2polygon_tool 

 A facade dominant color calculation tool was used in Chapter 5: 

https://github.com/Mortyzhang/Facade-color-calculation-based-on-colorcard 

 A building function classification tool using street view images in Chapter 5: 

https://github.com/Mortyzhang/Nanjing-street-view-datasets-and-classification-

tasks 

6.3 Limitations and future work 

The study's limitations can be divided into two aspects, one is the customized 

model architecture, and the other is the bridging application. For the former, the general 

CNN-based models in this study have not been targeted to improve the building facade 

parsing task, so the accuracy needs to be further improved. For example, since most 

windows are rectangular, controlled algorithm improvements based on a priori 

knowledge can significantly improve segmentation accuracy for parsing exterior 

windows. For the latter, this study can measure the facade data of buildings (facade 

dominant color, building functions, and window-wall semantics) at a large scale. 

However, the variety is limited, such as precise facade geometry data (like building 

https://github.com/Mortyzhang/Mask2polygon_tool
https://github.com/Mortyzhang/Facade-color-calculation-based-on-colorcard
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height, building perimeter, building volume, etc.) cannot be covered. Therefore, it needs 

to be supplemented with data from other open-source urban geodatabases (like OSM 

and PLATEAU). This makes applying the current method directly in urban building 

energy modeling or building retrofitting tasks difficult. 

 

Figure 6.1. The research work for the future can be divided into the following three directions. (1) 

Supplementary 3D point cloud data collection; (2) construction of the urban database; (3) and 

practical application-oriented data analysis. 

The overall goal of the future work is to implement an automated, scalable and 

comprehensive building facade analysis system to enable efficient measurement of 

urban building facades with multi-source data types. This system will largely help 

transform existing building analysis methods, reduce data limitations, and increase 

efficiency for developing urban facade databases. Figure 6.1 shows the research work 

for the future. It can be divided into the following three steps. (1) Data collection 

supplementary. 3D point cloud data needs to be collected for measuring facade 

geometries. Buildings need to be monolithic in the 3D reconstruction model, rather than 

treating all objects as a single mesh. (2) Construction of the database. All the collected 
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data needs to be integrated into one database to address urban development issues in an 

integrated manner. More building facade data analysis will be implemented based on 

databases. For example, defects detection of building facades, especially glass curtain 

walls and other vulnerable parts. Thermal and hyperspectral images are used to 

determine the building's thermal properties and material type, respectively. It is possible 

to identify building materials using spectral characteristics. Similarly, thermal maps of 

the building's facade can be used to assess the presence of different components' thermal 

bridges separately. (3) Practical application-oriented data analysis. Combined with 

computer vision techniques and multispectral cityscape pictures, localized building 

features will directly help automate the extraction of current existing building data for 

use by local government authorities or other stakeholders. With the development of the 

facade data extraction systems and evaluation of the proposed method by city-scale data, 

it is clear that the prospect of applying this research to urban development issues, such 

as building information modeling and city information modeling enrichment (Xue et 

al., 2021), urban perception recognition (Larkin et al., 2021), urban-level building 

daylighting and energy simulation (Szcześniak et al., 2022), and building renewal 

(Zheng et al., 2017). 
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