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Abstract

The digital management of existing building data plays a key role in efficiently
allocating resources and developing urban renewal strategies. Urban development
issues such as urban building energy modeling, urban building retrofitting, urban heat
island, and urban vitality are inextricably linked to the fine management of digital urban
building data. With the transition of urban spatial development patterns to stock
optimization, a large number of urban buildings constructed during the high-speed
incremental period have generated a considerable amount of building data that needs to
be managed urgently. Building facade data is an important part of urban building data.
Building facades need to meet building performance requirements and pass on history
and culture. Large-scale collection and management of building facade data, including
building geometry data, facade colors, building functions, facade semantics, facade
materials, etc., is crucial in the maintenance of the life cycle of the stock buildings.
However, constructing a city-scale database of building facades is a difficult task. In
particular, the automation of the building measurement process has long been a
challenge that has plagued both academia and industry. Field measurements by
professional surveyors are still the dominant method in the industry. This approach

works well for neighborhood-scale projects but is hard to adapt to city-scale.

This study attempts to develop a three-step framework to automate the
measurement of building facade data at a large scale to construct an urban facade
database. The collected building facade data includes semantic segmentation, dominant
colors, building functions, and window-wall semantic information. Street-level images
and state-of-the-art deep learning methods are used to extract facade information.
Firstly, this study develops an unwanted object elimination system that can obtain the
complete building facade to decrease the loss of information caused by obstruction.
Secondly, a facade instance segmentation method using the synthetic dataset from a

city digital twin (CDT) is proposed, which has two benefits: It solves the segmentation
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problem of connected buildings. Another one is the automatically generated synthetic
dataset dramatically reduces the cost of data annotation. Third, an integrated multi-task
facade data extraction method is proposed. As a result, building facade data, including
facade dominant color, building functional classification, and window-wall semantics,
will be automatically counted. Based on the above research framework, the study
proposes several publicly available facade datasets for facade instance segmentation,

building function classification, and window-wall semantic segmentation.

The proposed frameworks contain various building facade data types that are not
recorded in existing urban geo-databases (e.g. OpenStreetMap). The experimental
results are verified in several cities and show that, first, the approach can overcome the
interference of street obstructions to the facade data collection. Then, the proposed CDT
synthetic dataset can be effectively used for facade instance segmentation of real images,
revealing the potential of the proposed synthetic dataset to replace real ones. Finally,
the integrated multi-task facade parsing approach has satisfactory accuracy in facade
dominant color measurement, building function -classification, and semantic
segmentation of walls and windows. Overall, the digital management of building assets
can facilitate the efficient allocation of public resources and urban development
decision-making. In the future, the collected digital facade information at the city scale
will be stored in a database that allows the public, private, and research sectors to

formulate urban development strategies.

Keywords: Building facades; Deep learning; Street-level images; Image

inpainting; Synthetic data; Facade parsing; Quantitative analysis
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Chapter 1. Introduction

1.1 Research background and problem statements

With the increase in urbanization, the developable amount of urban construction
land is gradually decreasing (Cao et al., 2020; M.-C. Chen et al., 2006). Therefore, the
mode of urban development is changing from high-speed expansion to optimization.
High-quality development is becoming the core goal of urban governance (Meijer &
Bol var, 2016). However, with the gradual aging of old urban areas, the deficiencies in
public facilities, resource integration capacity, and planning and management will
restrict urban development. The large number of urban buildings that have been built
can hardly meet people's new demand for a high quality of life. In particular, the
increase in the volume of building data brought about by various issues such as urban
building renewal (Zheng et al., 2014), urban thermal environment (Ferrando et al.,
2020), and urban vitality (Mouratidis & Poortinga, 2020) has posed new challenges to
building data management. Therefore, there is an urgent need to digitally refine the
management of existing urban data to help rationalize the allocation of resources and

make urban development strategies.

Building facade data is an important part of urban architectural data because the
facades should not only meet the needs of visual quality and architectural performance
but also embody a city’s history, express its culture and preserve its urban fabric
(Degaev & Barkhi, 2019). Therefore, it is especially important to collect and manage
building facade data, including building facade color, date of construction, facade
material, and facade element size, on a city-wide scale and in a detailed manner.
However, conducting building renewal on a large scale is a major challenge. This is
especially true when it comes to automating the building measurement process. Field

measurement by professional surveyors is currently the primary method in the industry.
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Manual measurement is adequate for small-scale projects. Starting work on city-scale

projects can, however, be difficult (Zhong et al., 2021).

The collection of building facade data is critical for the energy efficiency retrofit
of buildings. By fully understanding the impact of upgrades to the individual
constructions of different buildings on their thermal performance improvement, the
benefits of retrofitting can be clearly assessed and understood, creating a win-win
scenario for all stakeholders involved. Information from the building facade, including
geometric data, building function classification, and geographic information, allows the
construction of urban building energy models (UBEMs) (Ferrando & Causone, 2020)
and the development of data-driven building energy retrofit strategies (Hu, 2020).
When deploying retrofit programs for individual buildings, researchers collect
individual building data such as building geometry (Kheiri, 2018), thermal
characteristics (e.g., building materials, glazing ratios, window-door types, thermal
bridging issues) (Boodi et al., 2022), and failure information (broken windows and
facade defects) (Marchand et al., 2018) in order to effectively model building energy

and quantify the benefits of retrofits.

Building facade data collection is also essential for urban development and
renewal (M. Dai et al., 2021). The facade can convey the city's historical information.
It has the role of reflecting the city's characteristics and showing the city's culture,
customs, and urban landscape. Digital reconstruction and database construction of
building facades with conservation value have become essential (T. Deng et al., 2021).
Recently, researchers have proposed considering buildings as material databases and
have focused on new buildings with building information modeling (BIM) to preserve
high-value components for future use. However, these studies have done little to
address the fundamental barriers to reusing materials and components in existing
buildings, which lack digital records (Sultana & Storch, 2021). Urban researchers

encounter difficulties when they tackle developing urban or architectural landscape



renewal programs without quantitative analysis of old building data as support (J. Wang

etal., 2021).

As cities grow and spread in the population, the application of geographic
information system (GIS) in urban planning provides a better understanding of various
issues of a city, such as ecologies, transportation, housing, crime, aging, and other issues
(X. Liu et al., 2017). By processing geospatial data from satellite imagery, aerial
photography, and street view images, users can gain a detailed understanding of the
land and infrastructure. The GIS is important because it can bring together the vast
amount of city information necessary to balance competing priorities and solve
complex building problems, such as optimizing the layout of new buildings or the
digital management of building information (Zhu et al., 2018). Existing urban geo-
databases with building data, such as OpenStreetMap (OSM) (OpenStreetMap, 2021),
contain simple building data such as floor area, height, and the number of floors, and
lack the integration of detailed indicators about building facades such as semantic
information of facade components and facade dominant color. In recent years, laser
scanning technology for generating BIM models has seen increased usage in identifying
component attributes in existing buildings (Isteni¢ et al., 2020; B. Wang et al., 2021).
Applications for laser scanning technology in urban data collection continue to emerge
(Y. Wang et al., 2019). However, the obstacles to laser scanning include the high cost
of complex equipment, time-consuming and laborious handling of complex data,
inconvenient field operation, and large file type storage. It is, therefore, applicable only

to a small range of projects and is difficult to be used universally (Szczesniak et al.,

2022).

The advantages of integrating computer vision techniques and a large range of
freely available street images to extract building facade data are, in contrast, more
obvious (Campbell et al., 2019). They rely on a higher-order knowledge model of
facade topology and lower-level elements (roofs, windows, balconies, doors, walls, etc.)

that make up the building (W. Li et al., 2020). Researchers parse building facade images
3



by partitioning them into semantics requirements corresponding to the elevation
structures composed of lower-level elements (Kong & Fan, 2021; H. Liu et al., 2020;
Ma et al., 2020). The cost of this approach is low, and the accuracy requirement is
appropriate for building facade data acquisition. Therefore, supervised learning-based
building facade parsing is considered to become one of the most powerful techniques
for building information modeling at a city scale in the future (Gadde et al., 2016;

Riemenschneider et al., 2012).

However, supervised learning-based segmentation methods require data
annotation to be a laborious manual task (X. Xie et al., 2020). And the quality and
quantity of the dataset largely determine the execution of the segmentation model. On
the one hand, researchers want to use a large amount of accurately annotated data, and
on the other hand, they often struggle with the expensive costs associated with all this
data (Schumacher et al., 2019, p. 0). In addition, obstructions in the street scene are
detrimental factors affecting the method of obtaining facade data based on street view
images. Obstructions in front of the facade severely reduce the integrity of the data.
Whether it is street 2D data acquisition or 3D model reconstruction, removing unwanted

objects has been a challenge that has plagued researchers.

In summary, the large-scale automatic construction of the urban facade database
can be beneficial to constructing UBEMs and developing building renewal plans. The
critical issues of this study are the large-scale acquisition of facade images, the
automatic extraction of facade element information using deep learning and street-level

images, and the integration and utilization of facade data.
1.2 Research objective

This study attempts to develop a method that can automatically measure building
facade data on a large scale to comprise an urban facade information database. The
building facade data includes monolithic instance segmentation of the facade, dominant

color, building function, and window-wall semantics. In this study, street-level images
4



will be used as the data source, and state-of-the-art deep learning will be used to extract
facade information. By reviewing studies related to the large-scale collection and
quantitative analysis of building facade data, the practical application value of the
automated approach to building retrofitting and urban landscape renewal is explored.

Based on these, the objectives are as follows.

(1) To develop a method for automatically obtaining complete building facades in

street-level images, often obscured by obstacles;

(2) To develop a system for automatically generating synthetic datasets for training
deep learning-based facade instance segmentation models, which would alleviate the

cost of manually labeling datasets;

(3) To develop a comprehensive system of obtaining multiple data types of
building facades, including facade instance segmentation, facade dominant color,
building function, and window-wall semantics, in order to provide cost-effective tools

for developing urban facade databases.

1.3 Research significance

The mining, analyzing, and storage of building facade data play a crucial role in
the digital management of urban buildings, which can be used as data support for built
environment renewal and development. This study takes the large-scale collection and
quantitative analysis of building facade data as an entry point to assist city managers
and researchers in practical applications and theoretical research. In practical
applications, large-scale automatic extraction of building facade data can save
researchers' costs and labor compared with field measurements. In terms of theoretical
research, the built facade database can help urban researchers analyze urban issues,
including the prediction of urban building energy consumption and the development of

urban landscape renewal strategies.



14 Research scopes

The existing urban geo-database (such as OSM) can capture street networks,
building height, and building plan outlines. This study focuses on the elements of
building facades that are not available in the existing open database, such as the instance
segmentation of building facades, facade dominant colors, and facade window-wall

semantics, and these types of data will contribute to UBEMs and urban renewal.

The data sources in this study are street-level images, including Baidu Street View
(Baidu Street View service, 2022) and Google Street View images (Google Street View
service, 2022). This study is used for facade parsing methods based on deep learning
for image classification, semantic segmentation, and instance segmentation. The color

measurement used by Euclidean distance-based building standard color calculation.

1.5 Research framework

To implement a large-scale automated extraction system for building facades, the
research framework of the system (Figure 1.1) is divided into five steps: (1) Inputting
the street coordinates into the system and getting the shapefile of the road centerline
from OSM. (2) Calculating the requested deflection angle for Street View Service API.
The street view images for shooting the building facade vertically are obtained. (3)
Automatically eliminating unwanted objects in front of the building, such as trees, cars,
and people. Individual building facades are obtained using instance segmentation. (4)
Performing orthogonal transformation and resizing the images based on camera-to-
building distance, camera-to-edge center distance, camera zoom, and pitch angle.
Necessary information for each individual building is calculated, including facade color,
building function classification, and window-wall segmentation. (5) Measuring the
elements of the building facade at a large scale and generating an urban facade output
CSV file. An urban facade database was created to provide data-driven decision support

for urban designers and stakeholders.
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Figure 1.1. Research framework.

Overview of the dissertation

Figure 1.2 shows the overview of this dissertation, organized as follows.
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Figure 1.2. The overview of this dissertation

The dissertation will be divided into six chapters.

Chapter 1 Introductions.

This chapter introduces the research background, problem statement, research

objective, research significance, research scopes, research framework, and the

overview of the dissertation.

Chapter 2 Literature review:



This chapter reviews the issues and recent research pertinent to this study. It is
divided into five sections, the first of which introduces the brief problem of orientation
on the achievements and shortcomings of the facade data extraction using street-level
images and deep learning. The second section presents the existing methods for
automatic object removal with obstructed facades completion. The third section
describes the strengths and limitations of using synthetic datasets for training the
instance segmentation of building facades. The fourth section reviews the applications
of image-based building facade data extraction in city information modeling and
building retrofitting. The fifth section summarizes the gaps in established research and

outlines the overall objectives of this study.
Chapter 3 Automatic object removal with obstructed facades completion:

This chapter addresses object removal and facade inpainting. An image-based
cityscape removal approach is proposed by detecting multiple classes, including
pedestrians, cyclists, vegetation, and cars, as well as using generative adversarial
networks (GANSs) to fill in the detected areas by background textures from streetscape

images.

Chapter 4 Synthetic datasets from a city digital twin for use in the instance

segmentation of building facades:

This chapter develops a novel framework that can automatically produce synthetic
datasets from a city digital twin (CDT). An auto-generation system for synthetic street
views was built by rendering a city’s digital assets into a game engine, while the system
auto-generated the annotations for building facades. The hybrid dataset, along with
various subsets containing different proportions of synthetic and real data, were used to
train deep learning models for facade instance segmentation. Two types of synthetic
data (CDT-based and virtually-based) were compared, and the results showed that the
CDT synthetic data were more effective in boosting deep learning training with real-

world images compared with the virtual synthetic data (no real-world counterparts). By



swapping a certain portion of the real data with the proposed CDT synthetic images,
the performance could almost match what is achievable when using the real-world

training set.

Chapter 5 The large-scale approach for extracting data on multiple elements of

building facades:

This chapter explores an approach utilizing state-of-the-art deep learning
techniques and street-level imagery to measure multiple facade elements at a large scale,
including dominant color measurement, building function classification, and window-
wall semantic segmentation. A street of length 500m in Osaka, Japan, is used to
construct a database as an example. The results demonstrate the transferability and

effectiveness of the scheme.
Chapter 6 Conclusions:

This chapter offers the study's conclusions, contributions, and limitations and

presents plans for future work.



Chapter 2. Literature review: Large-scale
building facades data extraction using

street-level images

2.1 Background

With the increasing need for 3D building models in urban planning, urban
modeling platforms, autonomous driving and game simulation, facade parsing,
especially the parsing of detailed level building models developed by individual
buildings in City Geography Markup Language (CityGML), has become very
important in urban reconstruction. Building facade parsing aims to semantically
classify the fine-grained categories of each pixel in a building facade image, where the
semantic categories may include fine-grained facade components, the dominant color,
and the function. Facade parsing has been receiving continuous attention from the
academic community in recent years. It is much easier to search for buildings based on
grammar as opposed to Red-Green-Blue (RGB) images when building images are
parsed into grammar. Parsing building images into grammar can significantly reduce
the storage space required for building images. Apart from that, dividing the building
parts by semantics can greatly enrich the building and city information model.
Regarding the 3D reconstruction of buildings, the grammar generated by facade parsing
can also reduce manual labor costs. Existing facade parsing techniques typically rely
on grammar rules or computer vision techniques. These methods generally improve
facade parsing results by pre-processing techniques such as image correction or by

embedding a priori knowledge for the algorithm.

Although previous facade parsing methods and datasets have achieved significant

results (Gadde et al., 2016; Kong & Fan, 2021; H. Liu et al., 2020), the current
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extraction of building facade information is based on street-level images still faces three
main challenges in practical applications. (1) The existing datasets are most
orthographic projections of facades (Gadde et al., 2016), and previous studies rarely
considered the occlusion in front of buildings, which does not perform well for parsing
building facades of complex scenes. (2) When buildings are connected or visually
overlap, it is difficult to extract single buildings using semantic segmentation (M. Dai
et al., 2021), which is why instance segmentation must be used. (3) The traditional
facade parsing algorithm relies too much on the regular building facade structure based
on a priori knowledge (Martinovic¢ et al., 2012), which is not ideal for building facades
with asymmetric structures. Moreover, the application scenarios of building facade

parsing are still in the early stages of exploration.

The next section introduces the literature review along the following lines. Section
2.2 presents a review of previous methods for the elimination of unwanted objects in
front of building facades. Section 2.3 describes the instance segmentation methods of
building facades and the feasibility of creating synthetic datasets in a cost-effective
manner. Section 2.4 investigates the current practical applications of building facade
parsing in 3D city modeling and building retrofitting. Section 2.5 summarizes the

research gaps and research objectives.

2.2 Automatic objects removal with obstructed facades

completion

In urban environments, extensive foreground occlusion exists on building facades.
Analyzing the building facade without addressing the occlusion issue will result in
missing a significant amount of facade information, leading to biases and a decline in

the credibility of the built database.



2.2.1  Object segmentation and removal

Unwanted regions are detected, and the regions of interest (ROI) are eliminated
and filled with surrounding textures (Y. Sun et al., 2018). The recent emergence of deep
learning-based object segmentation shows the power of ROI segmentation. Objects can
be detected using the convolutional neural network (CNN) semantic segmentation
model and segmented according to their contours. However, when CNN-based object
segmentation is applied to determine the ROI, the ROI can be a mask covering the target

object or an outline of the target object (Z. Cai & Vasconcelos, 2019; Kido et al., 2021).

The ROI needs to be filled after semantic segmentation, for which there are two
main approaches: observation and inpainting. Observation requires a pre-taken image
of the background scene (Mori et al., 2017), which can be used as a reference to replace
the foreground obstacle directly. For example, using the observation method to remove
objects from the front of a building requires receiving complete information about the
obscured facade, then replacing unwanted objects with parts of a known building facade.
Another technique is inpainting (Criminisi et al., 2004), which uses the texture and
patch information of the source image to fill the detected area. This technique does not
require prior knowledge of the information behind the occlusion and uses the
knowledge of the database or the texture around unwanted objects to fill the ROI.
However, obtaining background images in projects where obstacles cannot be moved
is challenging. Therefore, inpainting without pre-processing is more suitable for

removing objects from street scenes than observation.

2.2.2  Generative adversarial inpainting

Existing image inpainting techniques generally fall into three categories
(Elharrouss et al., 2020). (1) Inpainting by replication: These techniques attempt to
explicitly borrow content or texture from the surrounding environment in order to fill

in the gaps. A context copy method is an example of unsupervised learning in which



surrounding image information is used to predict the loss of contents (Nathan
Mundhenk et al., 2018). However, image replication typically fails when dealing with
intricate scenes. (2) Inpainting by modeling: These methods use extensive external
databases to generate data-driven replacements for missing pixels. They attempt to
learn to model the distribution of the training images and assume that regions
surrounded by backgrounds with similar characteristics may contain similar content
(Pathak et al., 2016). These methods can effectively find sample images with sufficient
visual similarity to the query, but they easily fail when there are no similar examples in
the database. (3) Combining the two: the third class of approaches attempts to combine
the previous two in order to overcome the limitations of replication methods or
modeling methods, such as generative adversarial network (GAN) methods (Yi et al.,
2020; Yu et al., 2019). Not only do these methods learn to build image distributions in
a data-driven manner, but they are also designed to explicitly borrow patches or features
from background regions (Yi et al., 2020). However, when the training dataset and the
content of the processed images do not match, the generated image quality is not
satisfactory. Image inpainting works better when the dataset is customized rather than

when a generic dataset is used for a specific task.

2.3 Synthetic datasets from a city digital twin for use in the

instance segmentation of building facades

The instance segmentation of building facades is one of the focuses of this study.
This section reviews previous studies on developing instance segmentation for building
facades, using synthetic data for deep learning, and utilizing city digital twins to create

synthetic datasets, and summarizes the research gap and goals.
2.3.1  Instance segmentation of building facades

Effectively performing large-scale collection and integration of building facade

data in cities has been a long-standing challenge for industry and academia (Martinez

14



& Choi, 2017;Y. Wang et al., 2018). Parsing building facades into procedural grammars
and extracting facade information using semantic segmentation plays a significant role
in development tasks involving 3D buildings (M. Dai et al., 2021; Femiani et al., 2018;
Rahmani & Mayer, 2018). Deep learning-based semantic facade parsing methods have
yielded promising results when applied to open-source facade datasets (H. Liu et al.,
2020; Ma et al., 2020). Additionally, studies have enhanced the performance of deep
convolutional neural network (DCNN) models using 3D models to automatically
synthesize the semantically annotated datasets of building facades. However, studies
that use semantic segmentation treat all buildings as one category and do not
differentiate between distinct buildings. The semantic reserve is limited in its ability to
perform individual segmentation of regions (Carvalho et al., 2020), especially when
several buildings are visually superimposed or in contact. Instance segmentation, as a
new paradigm and the evolution of semantic segmentation, therefore, allows for a
unique understanding of each item in the same class, which is necessary for precisely

extracting information from building facades.

Currently, many powerful instance segmentation algorithms are emerging, such as
Fast R-CNN (Girshick, 2015), Mask R-CNN (He et al., 2017), YOLACT (Bolya et al.,
2019), and BlendMask (H. Chen et al., 2020). Mask R-CNN is a typical technique based
on the network architecture of detection followed by segmentation that is relatively easy
to train with better generalization and higher segmentation accuracy. For instance, Toda
et al. (2020) used synthetic datasets to train Mask R-CNN to characterize the seed
morphology of various cultivars. Carvalho et al. (2020) applied Mask R-CNN with real
open-source datasets to perform instance segmentation of rural facilities for agricultural
management. These studies used real or synthetic data training sets to perform object
instance segmentation, but they were seldom applied to building facades. Moreover,
previous studies have rarely evaluated the changes in model performance after CDT

synthetic data has been added to a real dataset.



2.3.2  Synthetic data for facade segmentation

Many studies have shown that the performance of DCNN-based instance
segmentation is affected by the network architecture and the amount of data available
for training, with the latter having a greater impact on improving the accuracy of the
segmentation results (X.-W. Chen & Lin, 2014). However, the acquisition and
annotation of the original datasets are time-consuming and laborious, often representing
a large percentage of the project budget (Sorokin & Forsyth, 2008). Consequently,
several attempts have been made to reduce the reliance on data annotation, such as by
using active learning (concentrating only on annotated data with high information)
(Settles, 2009), semi-supervised learning (using only a little annotated data) (van
Engelen & Hoos, 2020), unsupervised learning (no annotations required) (Locatello et
al., 2019), and reinforcement learning (no annotations required) (Botvinick et al., 2019).
However, these methods are still working to achieve performance comparable to that

of supervised learning with large annotated datasets.

Recently, the use of synthetic data in the training of supervised learning models
has increased considerably. Since creating synthetic datasets by computer is
significantly more efficient than collecting real datasets on a manual basis, once the
initial setting is established, the data is remarkably cost-effective. Visual segmentation
tasks are also starting to benefit from this trend. For example, Ros et al. (2016) built a
large-scale synthetic collection SYNTHIA by rendering 3D city models with semantic
annotations of counterparts. They combined SYNTHIA with natural urban scene
datasets for training DCNNs and showed that extending SYNTHIA in the training phase
significantly improved the performance of the semantic segmentation task. Saleh et al.
(2018) introduced VEIS, a virtual environment system that auto-annotates synthetic
images with instance-level segmentation urban elements, such as roads, pedestrians,
riders, cars, etc. However, these 3D city models are not digital copies of natural cities.

There is still a gap between the distribution of streetscape features in the human-created



fictional cities and natural ones, thus leading to the low realism of the generated

synthetic data.
2.3.3  Using the game engine to create synthetic data for deep learning

The original intention of game engines is to improve game development efficiency
(Nitsche & Maureen, 2004), while some notable game engines include Unreal, Unity,
CryEngine, etc. Game engines enable developers to power the physics, lighting, and
interactions in their virtual worlds. They can be used to generate photorealistic synthetic
datasets through physically based rendering (Z. Li & Snavely, 2018). Synthetic datasets
generated by game engines for deep learning training have received increasing attention
from scholars in recent years. For example, Oztirk & Erclebi (2021) used Unity to
create a large number of synthetic images of birds and UAVs for implementing a
classification deep learning task. However, this approach is limited to producing
synthetic data for single small-sized targets, and its effectiveness for large-scale objects
in urban environments is unclear. For segmentation tasks, Poucin et al. (2021) proposed
a simple method that combines the use of virtual synthetic images and real-world
images to facilitate instance segmentation in urban environments but lacks the creation
of synthetic data for individual building facades. For integrating multiple deep learning
tasks, NVIDIA Omniverse Replicator (2021) allows users to generate physically
simulated synthetic data. It provides RGB images and several ground-truth outputs,
such as depth and normal information, object or category segmentation, motion
segmentation, forward and backward, which can accelerate the development of
autonomous vehicles and robots. In general, cost-effective synthetic data outputs with
universal applicability and high fidelity are the current endeavors of game engine-based

approaches.



2.3.4  City digital twins for creating synthetic datasets

The implications of CDT in academic research and industrial applications
triggered extensive discussions in the fields of cities, architecture, engineering, and
construction (Aheleroff et al., 2021; L. Liu et al., 2022; G. Wang et al., 2022). Many
cities are beginning to experiment with creating and leveraging digital duplicates of real
cities at the intersection of reality and virtuality, and a plethora of urban digital assets
have been produced. However, compared to DT research in manufacturing (Niu & Qin,
2021), CDT research is still in its early stages, and there is little discussion related to

the utilization of digital assets from CDT to create synthetic datasets for training CNN.

The digital assets in CDT have a high level of detail (LOD) since they replicate
the physical world, simulating the materials and textures of real-world objects as closely
as possible. The higher the LOD of a digital asset with well-formed surfaces, the more
likely it is to be rendered as a photorealistic image. Theoretically, using synthetic data
with image texture distribution close to the real one for deep learning model training
can obtain satisfactory accuracy of instance segmentation. However, many studies have
proven that using a synthetic dataset alone as the training set cannot accomplish
competitive accuracy with the real dataset, even if it is rendered from a digital asset
with high LOD (Gao et al., 2020; Saleh et al., 2018). The domain adaptation has been
developed to address this problem by transferring an algorithm trained in source
domains to target domains (M. Wang & Deng, 2018). For example, the Balanced
Gradient Contribution (BGC) training method was introduced to improve model
accuracy using synthetic data (Ros, Stent, et al., 2016). The method statistics the
imagery features from two domains (synthetic and real) throughout the training process,
and the results are accurate for both domains. Therefore, a real dataset is necessary for

the facade instance segmentation training in order to complement the real domain.



2.4 Image-based building facade data extraction for 3D city

model and urban building retrofitting

24.1  Extracting building facade data for semantic enrichment of building and

city information models

The 3 Dimensional City Model (3DCM) is the result of the digitization of the city,
which is composed of GIS data and BIM data at a large scale and belongs to the basic
data of the new smart city development. Generally speaking, the technical route of the
GIS-based 3DCM construction method used is divided into five steps. (1) building
bottom contour data acquisition. The building base contour data is the boundary vector
data formed by the orthographic projection of the building to the ground. (2) After
getting the building bottom contour data, quality check, and post-process the data, the
main process covers topological closure of polylines, conversion of closed line
elements to surface elements and alignment of vector data position with image base
image, and unification of coordinate conversion. (3) Based on the processed building
bottom contour data, the city-level building white model is automatically generated in
batch by means of parametric tool modeling and exported to OBJ, FBX, OSG, and other
common formats of 3D data. (4) With data-supported intelligent applications as the
entry point, the 3D model is supplemented and improved with relevant fields and
attributes required for business by means of automatic links, paving the way for
visualization applications. (5) City-level 3D models are integrated with Digital
Orthophoto Maps (DOM) and Digital Elevation Models (DEM) within the framework

of the 3DCM platform to rapidly build city-level 3D GIS scenes.

The 3DCM is based on two-dimensional geographic information and can be used
to analyze the city's natural and man-made features (Chun & Kim, 2010). Users can
feel a realistic and intuitive sense of the synthetic city environment through interactive
operations. An important task in 3D city modeling is building facade parsing and
geometric analysis to create urban geometry datasets (Kong & Fan, 2021). Automated
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facade geometry extraction can be done from building images or from 3D laser scan
data points. Laser scan-based methods require specialized data formats and equipment,
so they cannot be used globally to create 3DCM models for additional urban renewal
or building energy consumption simulations (Isteni¢ et al., 2020). In contrast, image-
based techniques and computer vision are freely accessible on a larger scale. Deep
learning-based semantic segmentation methods obtain building facade geometry data,
mapping materials, and GIS coordinates from street view images, and these facade data

can be used to build 3DCM at city scale.

The 3D city platform reproduces the real-world (physical space) city in the virtual
world (cyberspace). Several 3D city platform projects have already been developed in
some cities. For example, Rennes city in France has created a 3D virtual twin of itself
intended for planning future urban development (Doyle, 2019). A 3D city model
platform with multiple data sources was created by the Virtual Singapore project
(Virtual Singapore, 2022), which can be accessed by the public, private, people, and
research sectors to formulate urban development strategies to address the urban
challenges related to city information modeling. In Japan, the PLATEAU project
(PLATEAU, 2022) was established to optimize the management potential of cities. The
project has created massive digital assets for many cities and is an essential part of the

digital infrastructure development in Japan’s Society 5.0 (Fukuyama, 2018).

In general, 3D city models are an important part of digital infrastructure
development. By integrating various urban activity data into the 3D city model, it
achieves a high degree of integration of physical space and cyberspace and further
heightens urban planning, simulation, and analysis of urban activities. The advantages
of acquiring building data based on street-level images for building 3DCM methods are
that (1) they do not rely on expensive equipment and specific data formats, (2) the
acquired building data are fine-grained, and (3) they can be used on a large scale

worldwide.
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2.4.2  Extracting building facade data for urban building retrofitting

Existing residential building retrofits for energy efficiency are crucial to reducing
global greenhouse gas emissions. In 2019, residential buildings were responsible for
15% of total greenhouse gas emissions and consumed 29% of total energy in all sectors
contributing to greenhouse gas emissions in the United Kingdom (Final UK
Greenhouse Gas Emissions National Statistics, 2019.; UK Housing, 2019). In this
context, energy efficiency retrofits in housing as an infrastructure priority can have a
significant positive effect on reducing carbon emissions. They collect data and analyze
data prior to deploying energy efficiency retrofit programs for individual buildings to
assess the building energy profile. Large-scale collection of facade data, including
building thermal indictors (such as building materials, window-door semantics),
building geometry, usage of buildings, and facade deficiency information, allow for the
construction of UBEM tools (Ferrando et al., 2020). A thorough evaluation and
comprehension of the advantages of retrofits can create a win-win situation for
stakeholders. However, providing building data for energy-efficient building retrofits
on a large scale is a major challenge, especially in terms of automation. Building facade
measurements based on professional surveyors in the field is time-consuming and
labor-intensive, which makes it difficult to roll out energy-efficient building retrofits at

a city scale.

Urban environmental data can be collected on a large scale using in-vehicle
sensors. For instance, the Google Street View service collects images with geo-data
from the urban environment, which is utilized in a variety of applications, such as land
use identification assistance (X. Li et al., 2015) and automatic identification of building
functions (J. Zhang et al., 2021b). Automated ground building facade data collection
based on street-level images for UBEM is a bottom-up approach. The field has gained
momentum in recent years due to automated procedures and wider accessibility of

spatial and geometric data streams. M. Dai et al. (2021) designed a street-level image

21



segmentation model for building facade images as a basis for an overall data analysis
framework. The model is based on deep learning semantic segmentation techniques and
uses an integrated learning strategy. Szczesniak et al. (2022) propose a method to
automatically extract the facade hole layout of each building adjacent to the Google
Street View route. The automatically generated window-to-wall ratio (WWR) of 1057
buildings in Manhattan is compared with the manually determined WWR to verify the

accuracy of the method.

Existing research has revealed the potential for collecting data on urban facades
using street-level imagery. By incorporating multispectral capture, building
characterization will contribute directly to the automation of current building energy
analysis (Martinez & Choi, 2017) and city information modeling platform (Biljecki et
al., 2016) for stakeholders, including local government authorities, research institutions,
and residents. Related research is at a preliminary stage, and it is worthwhile for

researchers to continue exploring this further.

2.5 Summary of research gaps and goals

As mentioned above, the application of building facade parsing in city modeling
and building renewal has many challenges in terms of methodology and dataset. The

following is a summary of the research gaps and goals.

1) Existing methods and datasets cannot overcome the challenge of facade
parsing with severe occlusions, perspective distortions, and reflections.
Current deep learning methods are affected by the training dataset. Most
facade datasets are small in size and low in diversity, given that producing

them is time-consuming and labor-intensive.

2) It is difficult to handle facades with complex environments as background.
When multiple buildings are connected in a scene, current semantic

segmentation-based methods have difficulty in obtaining data for individual
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3)

buildings. Moreover, building facades usually do not have any background,

only the sky in most of these open-source datasets.

Traditional facade parsing algorithms usually focus on the regularity and
symmetry of building facades. However, these methods encounter difficulties
when dealing with asymmetric, complex-shaped buildings. In addition, for
different application scenarios, traditional algorithms need to continuously
combine existing features to achieve optimal results, failing to achieve end-to-

end learning results. The existing methods lack stability and generalizability.

Existing methods are not universal and cannot be easily applied to practical

projects because of the research gaps mentioned above. The following are the objectives

of this study and an overview of how these gaps were bridged.

1)

2)

There are two possible solutions to the facade obstruction problem. The first
is to add a priori knowledge, such as the geometric characteristics of the
window, whereby the algorithm automatically corrects the window to a
rectangle when the foreground is determined to be obstructed. The second is
to use the picture inpainting technique to eliminate the foreground occlusion
and automatically fill in the building facade mapping. The former method can
solve the facade segmentation problem but cannot solve the analysis problem
that requires complete building facade data. The latter method can achieve
complete facade segmentation and solve the problem of requiring complete
facade information, such as color calculation of the obscured facade and facade
mapping extraction. However, the quantitative evaluation of the performance

of facade restoration results is a difficult problem.

The facade extraction methods use semantic segmentation and instance
segmentation. The instance segmentation can extract building facade
information one by one when multiple buildings are connected in a single

image. In addition, city digital twin models are emerging, which can efficiently
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3)

generate high-fidelity synthetic data for replacing real datasets. This can
greatly reduce the labor and time required for manual labeling of data. The
synthetic datasets generated by the game engine have been successfully used

for various computer vision tasks.

CNN-based segmentation algorithms have yielded promising results. This
research will try to use the CNN-based building facade parsing method to
extract and distinguish features of objects efficiently by learning a large
amount of data to obtain higher accuracy results than can be obtained by

traditional methods.

24



Chapter 3. Automatic object removal with

obstructed facades completion

3.1 Overview of obstructed facades completion

Automatic object removal is an extensively researched and fundamental task in
computer vision. Unwanted objects (e.g., pedestrians, cyclists, vegetation, and cars in
front of building facades) are numerous and often obscure the scene, hindering the
acquisition of building facade data. When analyzing a building facade, the obscured
information will lead to computational bias and incorrect results. Many studies have
been conducted to automatically remove objects from urban environments (Valada et
al., 2018), ranging from filtering out areas with unwanted objects to assuming a static
scene and classifying object areas as outliers (Y. Sun et al., 2017). Recently, promising
results have been achieved with learning-based methods for background texture
inpainting (Bescos et al., 2019; Yu et al., 2019). These methods first use semantic
segmentation to detect regions containing unwanted objects at the pixel level and then
use image inpainting techniques to synthesize the backgrounds of these regions
(Schwarz et al., 2018). Mask based manual selection of occlusion and then
complementation using surrounding textures can be labor intensive. Automatic or semi-
automatic based methods for detection and elimination of unwanted objects would
improve this problem and save costs. The goal of this Chapter is to automatically detect
unwanted objects to be removed from the urban scene and to recover the static occluded

backgrounds with a reasonable image.

With the development of DCNN and semantic segmentation datasets for urban
driving scenes, significant progress has been made in the automatic segmentation of

street elements; by creating target object masks, various objects can be detected with
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high accuracy from street-level images, especially those that are often obscured in front
of buildings (Cordts et al., 2016; Y. Zhang et al., 2019). In addition, image inpainting
has many applications in urban scene complementation. For example, the impact on the
urban environment before and after demolition can be assessed by eliminating entire
buildings (Kido et al., 2020). Synthesis of facade textures during building renovation
and digital heritage restoration (D. Dai et al., 2013). These studies fill in missing images
by matching and replicating background patches to achieve object removal results (N.
Zhang et al., 2019). However, traditional methods are based on copies of the
surrounding textures of the target objects, and they are still prone to failure in complex
and irreducible scenes (Yi et al., 2020). Recent encouraging advances in data-driven
image drawing methods, which are more effective than classical methods in handling
object removal for complex scenes and large occlusion rate images, have attracted the
interest of researchers. However, learning-based methods require a large amount of data
for training, and building diverse and high-quality databases of building facades is a
challenge. In addition, it is not desired that after object removal and filling, evaluating
the quality of the synthetic image will be a challenge because real textures are difficult
to obtain as a reference. Several generated image quality assessment metrics, such as
information fidelity criterion (IFC) (Sheikh et al., 2005), mean squared error (MSE),
peak signal-to-noise ratio (PSNR), structural similarity (SSIM) index, and feature
similarity indexing method (FSIM) (Sara et al., 2019), have been developed to measure

the similarity between generated images and ground truth through full-reference.

This Chapter expects to remove unwanted objects from street view images with
obscured facade completions. A custom occluded facade completion dataset is created.
Several state-of-the-art DCNNs for image classification were selected to extract invalid
data from the street view images, and then a dataset of building facades was created for
learning-based image inpainting. Next, semantic segmentation is used to automatically
detect regions containing unwanted objects. A GAN-based image inpainting method is

proposed to provide a cost-effective tool for matching physical space with digital
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objects in large-scale images by filling the missing region content of building facades
with contextual concerns. Finally, qualitative and quantitative validations for evaluating

the quality of the generated images are proposed.

3.2 Method and materials

Figure 3.1 depicts the workflow for automatic object removal and facade
inpainting in three steps. Firstly, the building facade dataset for GAN-based image
inpainting was constructed. These images can be retrieved from street view services
and purified with a classifier. Secondly, a semantic segmentation algorithm based on
the Cityscapes dataset can detect the street-level obstacles. Thirdly, a free-form image

inpainting tool was presented to fill the blank with contextual attention.
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Figure 3.1. The overall workflow.

3.2.1  Dataset making

The road networks for multiple cities using open source geographic information
data were extracted (Anguelov et al., 2010) to build the GAN-based image inpainting
dataset, as shown in Figure 3.2a. The geographic coordinates of road points were
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generated by equally sampling direction for each sampling point from the Google Map
API (viewing angle is 90 degrees, the horizontal angle is 0 degrees, the compass
heading of the camera is 6, and the picture size is 680 X 512 pixels). As shown in
Figures 3.2b and 3.2c, to ensure that the angle of the crawled picture is perpendicular

to the street, 8 is calculated as follows:
0 = arctan (yA — Vg X4 — xB) 3.1)

where point A (x4, y,) and Point B (xg,yg) are two adjacent points on the road
centerline, and the angle 6 is the deflection angle that grabs the orthographic
projection of the building facade in the online street view service. The existing building
facade in the urban environment can be obtained (Figure 3.2d), and these images are
used in the training set for the GAN-based model. The street view image recording

structure is depicted in Figure 3.3.
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Figure 3.2. The collection method of the perpendicular street facade.

The image generative inpainting model involves learning textures from a large
number of unobscured facade images. Because the collected images of street facades
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contain a great deal of noise and unwanted images, an image classification algorithm is
required to clean them up. 2,700 images of street facades are selected manually from
street view services, with 900 images per class. Data augmentation is used to increase
the diversity and size of the training sample, which prevents overfitting and improves
model performance (Shorten & Khoshgoftaar, 2019). The dataset for the facade

inpainting GAN is named ‘Street view dataset for building facade inpainting (SVBFI).’

Street Network Street 1 Point 1 L Left
— Street2 | — Point 2 Right
— Street 3 — Point 3

Figure 3.3. The structure of data recording.

3.2.2  Semantic segmentation

Semantic segmentation combines image classification and image detection to
perform categorization and annotation in terms of pixel-by-pixel in an image (Lateef &
Ruichek, 2019). Semantic segmentation tasks are composed of two components: the
dataset and the segmentation algorithm. Unwanted objects were determined in the
object segmentation dataset using Cityscapes (Cordts et al., 2016). DeepLabv3+ (L.-C.

Chen et al., 2018) was used for semantic segmentation.

As shown in Figure 3.1c, DeepLabv3+ is used on the Cityscapes test set for object
segmentation, and its mloU can reach 82.1%. In this Chapter, several classes of
obstacles in the streetscapes, that is, pedestrians, cyclists, vegetation, and cars, are taken
as specific objects to be eliminated. Through detecting by DeepLabv3+ on the
Cityscapes, they are mask images in the input image of the inpainting GAN model, as

illustrated in Figure 3.4.
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(a) Pedestrian (b) Cyclist (c) Vegetation (d) Car

Figure 3.4. Identified and eliminated labels, including pedestrian, cyclist, vegetation, and car.

3.2.3  Image inpainting

The facade inpainting method uses the open-source model DeepFill-v2 (Yu et al.,
2019), a free-form image inpainting method with gated convolution, to generate
alternative contents for blank areas in a visually realistic and semantically correct
manner. Figure 3.1d introduces the simplified overall network structure of DeepFill-v2.
For this neural network, the input data is divided into two channels: RGB Channel and
Mask Channel. The architecture of the model consists of a two-stage generator and a
discriminator. The initial stage of the generator consists of a coarse network that
produces a coarse output. The second stage is a two-branch refinement network with
contextual attention that produces a refined result, which can significantly enhance the
image quality and repair results' fidelity. Gated convolution dramatically improves
performance when the mask pictures have arbitrary shapes and the inputs are
conditionally free-from, such as in the sparse sketch (Yu et al., 2019). Thus, the model
is able to synthesize a new image structure on a blank image in a learning-based manner,

using the surrounding image features as a reference to generate reliable estimates.
3.3 Experiments and results

This part describes the production of the SVBFI dataset, the training of the GAN

model, and the quality evaluation of the generated images.
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3.3.1  Street-level images classification

For the training and testing sets, there were 2,700 pictures each. Each class was
given 750 images, which accounted for 0.83 percent of the total training set. 450 testing
images accounted for just 0.17 percent of the total training set. Several state-of-the-art
CNN models are introduced, named InceptionNet v4 (Szegedy et al., 2016),
XceptionNet (Chollet, 2017), EfficientNet (Bdalis-Szomoruet al., 2017), and ResNeSt
(H. Zhang et al., 2020), by fine-tuning all the convolutional layers with benchmark
datasets. Figure 3.5 depicts the normalized confusion matrix for the trained CNNs as
determined by the test data. One way to measure classification accuracy was to use the
matrix value, which represents the percentage of samples from one category that was
correctly classified into another. The F; score is utilized to evaluate model

performance, which was generated using the equations below:

p-r
F=2- (3.2)

where p is precision and r is recall. After calculating the F; scores of the four
networks, the classification performance of ResNeSt performs better than the other
networks. For the class of building facades, ResNeSt achieved the highest F; score
with 0.87. Therefore, the trained ResNeSt model was selected for the upcoming

extraction of unoccluded facade images.
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Figure 3.5. The test results of normalized confusion matrices associated with the four networks.
InceptionNet_v4 (Top-left), XceptionNet (Top-right), EfficientNet (Bottom-left) and ResNeSt
(Bottom-right).

More than 300,000 street view images were downloaded from Google Street View,
with each image measuring 680 X 512 pixels and containing images of unobstructed
facades, facades with unwanted objects, and no facades. The ResNeSt model had been
pre-trained in the previous step. The SVBFI datasets of 9,000 unoccluded facade

images are obtained by filtering the street view images. The SVBFI is used as the

training set for image inpainting GAN.
3.3.2  Image inpainting model training

GAN:s, in general, are made up of a generator and a discriminator, which compete
with each other to produce images that are constantly optimized and semantically

similar to the ground-truth image. Recently developed spectral normalization (Miyato
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et al., 2018) was used to stabilize the GANSs training further. The SN-GAN is a utilized

default fast approximation algorithm for spectral normalization. To discriminate if the

input was real or fake, the hinge loss is used as the objective function for the generator
L; and discriminator Lpsn.

Lg = ~Ezp,[D°"(G(2))] (3.3)

Lpsn = Eyop,, o[ReLU(1—D(x)) + E,-p,»)[ReL UL + D(G(2)))] (3.4)

where D®™ represents spectral-normalized discriminator, G(z) is an image
inpainting network that takes incomplete image z. In the training process, the datasets
were trained for 300 epochs, which iterated 216,000 steps. Figure 3.6 shows the loss of
generator L; and discriminator Lpsn in this model. The loss of the generator was
decreasing, and the discriminator loss was increasing. As the generator and

discriminator reach equilibrium, the overall performance of the work steadily improves.

Generator loss (L) Discriminator loss (L psn)
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Figure 3.6. Training loss of the GAN model. Left: generator loss; Right: discriminator loss.

3.3.3  Testing and qualitative comparisons

Figure 3.7 depicts a street-level test example of automatic object removal with
facade smearing. Both the proposed method and the previous example-based image
smearing method were introduced into the experiment. The two synthetic images are
compared with ground truth images. The ROI of each project was covered by a mask

full of contextual concerns, and no post-processing was performed to ensure fairness.
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Original Image Input Output by the Output by Groundtruth
proposed method  exemplar-based method

Figure 3.7. Test examples of automatic object removal and facade completion with several classes.

(a) People, (b) cyclist, (c) vegetation, (d) car.

As shown in Figure 3.7a and Figure 3.7d, DeepFill-v2 using the SVBFI dataset
performs well visually, with the synthesized parts matching the color of the surrounding
texture. Figure 3.7b shows that the model can fill in the facades with transparent and
reflective materials in the input image, but it blurs some details. Figure 3.7¢ shows that
the proposed model accurately contours the building in the input image to the actual
situation. Figure 3.7d shows that the proposed method is able to perform well in
recovering regular building components, such as rectangular windows, in the case of
facades with complex backgrounds. The results show that the GAN method learned
from massive data can effectively consider the image semantics and outperforms the

exemplar-based methods in complex scenes.

3.3.4  Validation and quantitative comparisons

Two widely used full-reference IQA metrics, PSNR and IFC, are used for the
quality assessment of generated images based on visual perception. On SVBFI, 900

images are used to test the proposed model against the exemplar-based approach.
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Unoccluded facade images are used as ground truth, and mask images superimposed
are used as input images, as shown in Figure 3.8 input images. The occluded objects,
including people, cyclists, trees, and cars, are used as mask shapes. These unwanted
objects overlap the mask area on the ground in the street-level images to simulate
obstructions in the actual street. The masking ratio is allocated from 0 to 50% of the
image size. Figure 3.8 shows the validation example of the proposed method and the

exemplar-based method at different mask ratios from 0-10% to 40-50%.

Output by our
proposed method

Output by
exemplar-based
method

Figure 3.8. Validation examples of automatic object removal and facade completion.

Figures 3.9 and 3.10 show the generated image quality based on the PSNR and
IFC. The quantitative comparisons of full-reference metrics indicate that the proposed
method achieves better results than the exemplar-based method. The proposed model
improves PSNR by 2.26 dB and IFC by 0.061 over the fill-by-replication method across
the entire mask range. Although the GAN-based approach using the proposed tailored
dataset is marginally superior to the filling through copying method for mask ratios of
40-50%, with PSNR improving by 1.56 dB and IFC improving by 0.042 in mean value,

it is worth noting.
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Figure 3.9. The PSNR results with the proposed method and exemplar-based method of different

mask ratios on the validation data.
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Figure 3.10. The IFC results with the proposed method and the exemplar-based method of various

mask ratios.

3.4 Discussion

34.1  Advantages

The system can perform object removal tasks for 2D images in different street
scenes. Eliminating obstacles in front of buildings can help improve data completeness
when extracting facade information using street view images and computer vision
techniques. The method balances the high quality of the generated images with the

detail of the textures and performs better for complex scenes compared to the exemplar-
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based method. In addition, a dataset SVBFTI is built for learning-based obstructed facade
painting from street view images. The proposed dataset is more focused and consumes
less computation for training than current open-source datasets such as Places2. The
proposed method is more practical than previous methods for field simulation (Kido et
al., 2020) and does not require background facade information in advance. The previous
observation-based method requires a pre-taken background scene of the image
background, which can be used as a reference to directly replace the foreground
obstacle. The inpainting-based approach used in this paper uses the texture and patch
information of the source image to fill in the detected regions. Therefore, the method
in this paper only needs to train a GAN-based inpainting model to handle obstacle
elimination, which is more convenient and cost-effective than the observation method
because it saves the trouble of shooting background information in the field. An image-
based method can help stakeholders visualize the redevelopment project and eliminate
unnecessary elements. The proposed strategy is quick to implement, lightweight to
deploy, and applicable to a wide range of situations, making it an excellent starting

point for further research.

3.4.2  Limitations

Currently, the system uses semantic segmentation, where two visually overlapping
objects are difficult to segment separately. For example, if two cars visually overlap,
they will be eliminated together. This shortcoming can be solved by using instance
segmentation. In addition, this method does not automatically detect shadows or
remove them in the subsequent inpainting. An example is shown in Figure 3.7a, where
the shadows of pedestrians are not removed from the picture. This deficiency can be
addressed by labeling the shadows of objects in the training set of the semantic

segmentation model.
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3.5  Summary of this Chapter

In this Chapter, an image-based approach for cityscape visualization is presented.
Unwanted objects on the street level scene are automatically detected without prior
background information. The visual removal of these objects is accomplished by
smearing the ROI. To this end, a semantic segmentation model was introduced to detect
the ROI of obstructions. Then, the SVBFI dataset was used for training the GAN-based
image inpainting model. The comparison experiments show this approach performs
better than the exemplar-based inpainting method. The on-site validation results proved
the effectiveness of the proposed method. By automatically removing unwanted objects
and filling in obstructed building facades by replication and modeling (J. Zhang et al.,
2021a), this approach improves the degradation of information acquisition from
buildings due to obscuration. By eliminating redundant objects and using only images

instead of 3D models, urban landscapes can be simulated and visualized.
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Chapter 4. Instance segmentation of
building facades based on city digital twin

datasets

4.1 Overview of facade instance segmentation using synthetic

data

The semantic enrichment of facades can be used for building information
modeling in construction management and architecture design (S. Cai et al., 2019; Xue
et al., 2021). Large-scale automated measurement of building facades using semantic
segmentation can provide data support both for retrofits and energy analyses of
buildings (M. Dai et al., 2021; M. Deng et al., 2019). Using deep learning in real-time
visualization of demolished building facades can be used to enhance stakeholder
engagement and design assistance (Kikuchi et al., 2021; J. Zhang et al., 2021a).
However, most previous studies have involved the semantic segmentation of building
facades, and it is difficult to extract the instance information for connected building
facades one by one using semantic segmentation. In contrast, the annotation task for
the instance segmentation requires both classification at the pixel level and the
identification of different instances of the same class (Ghiasi et al., 2021). It is
challenging to collect large-scale annotated datasets for the segmentation of individual

building facades (M. Dai et al., 2021).

Supervised machine learning methods generally perform well in instance
segmentation tasks. Even the best autoencoders, visual descriptors, and discriminative
machine learning techniques cannot obtain reliable results without a properly annotated

dataset containing sufficient diversity. Data annotation is a laborious, manual task that
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requires precise correction as it is prone to errors. The quality and quantity of the dataset
largely determine how well the instance segmentation model performs. Therefore, a
large and diverse annotated dataset is necessary for performing the instance

segmentation of building facades with high accuracy.

With the development of the DCNNSs, instance segmentation tasks have yielded
significant performance gains (Z. Cai & Vasconcelos, 2019). On the one hand,
researchers expected to use massive amounts of accurately annotated data for DCNN
training, and on the other hand, they often struggled with the expensive costs associated
with all that data. Photorealistic synthetic data have received increased attention as a
means for addressing these issues owing to the possibility of automatically generating

a vast number of high-quality images with diverse annotations (Tremblay et al., 2018).

Synthesizing instance-labeled datasets of building facades from 3D city models
for DCNN training is a promising method for reducing labeling costs and improving
model performance. However, when the application scenarios become complex, the
synthetic images of virtual urban environments have difficulty accurately representing
the original features in the physical world, such as object materials and ambient lighting,
and their misrepresentation can lead to problems with dataset shifts (Quifbnero-
Candela et al., 2009). Recently, digital twins (DTs) have been proposed as a possibility

for bridging the gap between synthetic and real-world data.

The DT paradigm is an information construct comprising a physical asset, its
corresponding digital asset, and the data connection to them (J. Liu et al., 2021). It has
recently been applied to urban systems to produce models called city digital twins
(CDTs) (Fan et al., 2021; Shahat et al., 2021). Typically, a digital asset in a CDT with a
high level of detail (LOD) is a copy of its counterpart in the physical world and
accurately reflects real-world information. Using synthetic datasets from CDTs rather
than from fictional cities (which have no real-world counterparts) as the training sets

could be promising for improving the accuracy of the instance segmentation model.
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The anticipated challenges include synthetic datasets generation and training
DCNN-based instance segmentation models. For the former, several 3D virtual city-
based methods have been proposed for producing synthetic datasets of urban features,
but these virtual data are criticized for their realism. Digital assets from the physical
world have closer to real materials and are expected to be ideal for rendering high-
fidelity synthetic images for the training of DCNN models. Figure 4.1 shows a
comparison training process of manual labeling and synthetic datasets for the facade
instance segmentation. This study is expected to substitute manual labeling by using an

auto-generation system based on CDT to create training sets for DCNN models.

1
Manual labelling data > Input
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Real world images P

Data Labeling Tl‘aining dataset Neural Network
[ Synthetic data with auto-generated annotation >
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Figure 4.1. A comparison of manually annotated datasets and automatically generated synthetic
datasets. (The conventional method requires hand-made labeling of images to produce the training
set, while the proposed system can automatically create synthetic data with instance annotations

by using digital assets of CDT.)

For the latter, the instance segmentation images generated by 3D models are not
directly usable and need to be converted to an annotation format with object class and
mask polygon for DCNN-based model training and evaluation. Besides, suboptimal
accuracy of semantic segmentation on real-world images has been seen in previous

studies when only using synthetic datasets as training sets. This study introduced a
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hybrid dataset to solve this issue and verified the performance of the synthetic dataset

generated by CDT for facades instance segmentation in multiple real cities.

This study attempts to develop an auto-generation method of synthetic facade
datasets for training instance segmentation models using high-quality digital assets
from CDT. The proposed system can produce synthetic street view images with auto-
annotated individual facade instances, including mask polygon and class information,
for DCNN training. In addition, a hybrid dataset, consisting of a variable proportion of
synthetic and real data, is built to train the DCNN model to compare the results of three
training sets (synthetic only, real-world only, and hybrid) on the instance segmentation
accuracy of building facades, which can show the contribution of synthetic data in
improving the DCNN model performance and reducing the annotation cost.
Furthermore, this Chapter validated the pre-trained model using the proposed datasets
in multiple cities to demonstrate the effectiveness and transferability of the research
framework. The quantitative and qualitative results indicate that the proposed method
can produce cost-effective synthetic data of building facades for training supervised
instance segmentation models and can potentially be used to extract and integrate

facade instance information in built environments.

4.2 Method and material

This section presents the process and evaluation methodology for the proposed
datasets (Figure 4.2). First, the 3D city model was downloaded from a city information
modeling platform and was imported into the Unity game engine for asset management.
The virtual camera and atmospheric effects were set up for rendering the 3D model,
and synthetic street images and facade annotations were produced. Second, synthetic
datasets (CDT-based and virtual-based), real-world datasets, and hybrid datasets are
built for training instance segmentation models. The synthetic dataset was converted so
that it would be available for DCNN-based model training, and the real dataset was
collected from street-view images and manually labeled. Several state-of-the-art
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instance segmentation models were selected. Finally, three assessment aspects are
considered: precision, size, and the number of detections. Six corresponding COCO
metrics are then introduced to evaluate the pre-trained models on real-world street-level

images using the proposed dataset.

Collecting 3D city model from a

city i11f0nmti9n modeling platform Pl Dataset making - - - - - 1|
v : Auto -generation Manual labeling | —— Model evaluation
3D city model ;- Synthesis training sets - - | v ' v ! l
! Import to a i i1 i, Synthetic Real-world 3
4 game engine L Gr(')und truth ' ! dataset dataset | Facade instance
e b | ! images ! : Mixing | ! segmentatlon. in the
R N ! ! \ ; ! ! real quld using our
) 1 i Instance segmentation 1 ! Hybrid Flataset A | pretrained models
: : ' annotations ' ! v » ) L
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COCO annotation | Instance segmentation ' Mask BBox
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Figure 4.2. Workflow for the study: (a) the synthetic data generation process, (b) training DCNN-

based instance segmentation, and (c) evaluation using real-world imagery.

4.2.1  Study areas and datasets

The selected study area is Koto City, which is located in the eastern part of Tokyo. The data used
in this study included a 3D city model, synthetic images (CDT and virtual) with facade
annotations, and real-world street-level images with facade annotations, as shown in Table 4.1.
The 3D city model was obtained from the PLATEAU platform. The synthetic datasets for building
instance training were auto-generated using the proposed method. Natural street-view images were
extracted from Google Street View (GSV), and facade annotations were obtained using manual

labeling.

Table 4.1. Datasets description

Datasets Data source Description

3D city model PLATEAU This platform provides digital assets of buildings to

the public for research or commercial purposes. It

covers most cities in Japan and contains massive
LOD1 and LOD?2 building models. The LOD2
building models used in this study are textured, and
their geometries are created by emulating the
corresponding real-world buildings.

CDT synthetic Auto-generated Synthetic images are digital copies of street-view
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dataset by the system images in the real world and have building facade
annotations.

Virtual synthetic Auto-generated Synthetic data are generated from a fictional 3D city

dataset by the system model that includes virtual street views and
annotations of fictitious facades. It is used for

comparison with the CDT data.

Real-world dataset  Google Street Real-world images of street views with building
View and annotations.
manually
labeling

Figure 4.3a shows a well-developed area of Tokyo as it is represented in
PLATEAU. Itis a LOD1 building model that covers 23 wards in Tokyo with a total area
of about 627 square kilometers. The pink regions are 3D building models with LOD?2,
with a total area of 6.72 square kilometers. Figure 4.3b shows the building digital assets
with LOD2 downloaded for this study. To increase the diversity of the data sample,
digital assets are selected for different types of buildings: residential, commercial,
office, industrial, and transportation. In addition, buildings from a diverse range of sizes,

including low-rise, mid-rise, high-rise, and large urban complexes, were captured in the

study area.
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Figure 4.3. The 3D city model from PLATEAU. (a) The built-up area of PLATEAU in Tokyo and
(b) the study area: Koto-ku, Tokyo, Japan.
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4.2.2  Automatic generation of synthetic data

4.2.2.1. 3D city model downloaded and pre-processed

Figure 4.4 shows an aerial view of the 3D city model in the study area. In total, it
contains 413 building models with LOD2. The selected 3D city model can be
downloaded for free from the Project PLATUEU database (n.d.) in the CityGML 2.0
and Filmbox formats, the latter of which was used for this study. Since the 3D model
includes geographic information, the satellite and topographic map can be loaded in to
match the virtual world. In addition, common elements from the urban environment of
the actual image are arbitrarily placed into the 3D model to increase its realism,

including greenery, overpasses, and vehicles.

Distortion is an important parameter for texture mapping of the 3D model. The
textures for the CDT model were taken from the physical camera and underwent
rigorous distortion correction before being placed on the model surface, as close as
possible to the real building facade. Figure 4.5 shows an example of the CDT models
that were used and a distortion-corrected mapping of a building facade next to its real-

world counterpart.

This study used an open-source package from Unity called Unity Perception
(Borkman et al., 2021), which can help speed up and simplify the process of generating
labeled synthetic datasets. In the virtual city model, each building has an object ID that
was created by PLATUEU, and they can be automatically tagged with the category
BUILDING. Consequently, the virtual camera in Unity can automatically recognize

different objects of the same category and generate instance annotations.
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Figure 4.4. 3D city model of the study area. (a) An example of CDT with its real-world street
views (Wangan-doro Avenue, Tokyo; March 2021; latitude: 35.6283, longitude: 139.7782). (b)
Aerial view of city digital twin.
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(a) (b)
Figure 4.5. Distortion correction of a CDT model texture mapping. (a) The CDT texture is

corrected for distortion before it is placed on the model surface. (b) Real-world building facade
(Wangan-doro Avenue, Tokyo; March 2021; latitude: 35.6279, longitude: 139.7785).

4.2.2.2. Virtual camera setup in the game engine

In the virtual environment, the camera on top of a car is set to acquire the building
images, and the height of the camera is limited to between 1.5 m and 2.5 m above the

ground. The acquisition platform consisted of one multi-camera made up of four
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monocular cameras linked by a common center, with the orientation changing every 90
degrees, as shown in Figure 4.6. All of the cameras have a horizontal field of view
(FOV) angle of 100 degrees and a vertical FOV angle of 79 degrees. The vehicle moved
through the 3D city and interacted dynamically with the buildings within it. This
interaction allowed us to collect building images at different horizontal angles. This
collection was intended to provide data that could be used with the spatio-temporal

constraints of the objects.

Figure 4.6. Virtual car setup used for data acquisition. One virtual multi-cameras with four

perspectives are used. The horizontal and vertical view angles are 100 degrees and 79 degrees.

4.2.2.3. 3D city model rendering

Unity has the ability to adjust lighting and global illumination, allowing it to be
used as a rendering tool for 3D city models. First, various atmospheric effects are used
to increase the realism and diversity of the virtual scenes for data augmentation. Second,
a vehicle with an attached multi-camera collected street-level images from four
directions in the 3D city model and automatically generated instance annotations for

the buildings.
(1) Details of the Unity renderer
The Lit Shader from Unity’s Universal Render Pipeline (URP) is used. Lit Shader

is provided by Unity and uses the Bidirectional Reflectance Distribution Function
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(BRDF) model to easily create realistic materials (Doppioslash, 2018). Direct and
ambient lighting is turned on, and shadows were rendered. Baking a city-scale model
to derive the ambient occlusion requires a large amount of data and computational
resources, which affects the efficiency of generating synthetic data. As an alternative,
post-processing methods are used, such as anti-aliasing and adjusting the exposure and

white balance, to improve the realism of the rendered images.
(2) Atmospheric effects for data augmentation

The same scene can vary significantly under different atmospheric parameters,
such as solar zenith angle, sky tone, and cloud density. Four atmospheric effects are
used for the city model in Unity to enhance the diversity of the synthetic data, including
rendering the scene in sunny conditions, cloudy conditions, and during the evening.

These are shown in Figure 4.7.

Figure 4.7. Real street-view image (latitude 35.6351; longitude 139.7829) and rendering images of

the CDT with different atmospheric conditions. (a) Real street view, (b) synthetic image with
sunny conditions, (c) synthetic image with cloudy conditions, and (d) synthetic image during the

evening.
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(3) Automatic generation of the ground-truth and facade annotations

The post-processing capabilities of Unity can render virtual scenes and
automatically obtain synthetic data, including RGB images of street views and the
instance segmentation of building facades. An example of a single shot is shown in
Figure 4.8. It shows the four views that were captured by the multi-camera system with

the corresponding instance segmentation masks of the building facades.

()

Figure 4.8. Four views of a single shot captured by the multi-camera system for the CDT synthetic
data (the coordinates of the real-world counterpart are latitude 35.6284, longitude 139.7784): (a)

synthetic street views and (b) corresponding instance segmentation masks.

4.2.3  Training instance segmentation

4.2.3.1. Facade instance annotations making

Four datasets with ground-truth images and instance annotations are built for
training the building instance segmentation, including a synthetic dataset (CDT and
virtual), a real-world dataset, and a hybrid dataset. Previous studies have demonstrated
that using synthetic data alone for semantic segmentation tasks involving real images
is unsatisfactory (Ikeno et al., 2021; B. Sun & Saenko, 2014; Vazquez et al., 2013).
Alternatively, training a model on a large number of synthetic images and then fine-
tuning it on a reduced number of real-world ones yields better results (Ros, Sellart, et

al., 2016). In this study, a hybrid dataset is created and used as the training set to
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demonstrate the effectiveness of CDT synthetic data in improving the instance
segmentation results of building facades for real-world images. The hybrid dataset,
which is called the Hybrid collection of Synthetic and Real-world Building Facade
Images and Annotations (HSRBFIA), can construct subsets of synthetic and real-world

data with variable proportions of each.
(1) Synthetic dataset transformed to the COCO annotation format

Instance segmentation comes with additional complexity in the form of label and
annotation formats, requiring a unique value for each element in the sample image
during the training process. The data format generated by Unity cannot be used directly
to train instance segmentation algorithms. Most instance segmentation algorithms
follow the COCO annotation format. Therefore, a format conversion open-source tool
is developed (Mortyzhang, 2021/2022b) that converts the data format generated in the
previous step to the COCO annotation format. The conversion procedure produces the
categories and annotations fields from synthetic mask images, and since this study has
only the category BUILDING. The annotations are an array of multiple annotation

instances (Lin et al., 2014), as shown in Table 4.2.

Table 4.2. Fields split by instance annotations

Annotation {
"id": int,
"image id": int,
"category id": int,
"segmentation": Run length encoding (RLE) or polygon,
"area": float,
"Bbox": [X, y, width, height],

"iscrowd": O or 1,

"id" and "image id" represent the serial number of the image. "category id" points

to the category of the tag. If iscrowd=0, the segmentation is in polygon format, and if
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iscrowd=1, the segmentation is in Run Length Encoding (RLE) format. "area" is the

area of encoded masks, which is the labeled area. "Bbox" is the bounding box of the

detection object. The coordinates of the upper-left corner of the rectangular box and its
length and width are provided in the form of an array.

(2) Real-world dataset from GSV
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Figure 4.9. Workflow for collecting real-world, street-level images and building annotations. (a)

Study area in OSM, (b) example of a randomly selected area with a road network, (c) sampling
point locations along with the road networks, and (d) street-level images with building instance

annotations that were manually applied.

To compare the differences between the real-world data and synthetic data in
supervised instance segmentation, the real street-view data need to be from the same
area as the virtual city scene. In this study, the Google Maps API is used to obtain real
street-level images of the study area. First, the road network was traversed in OSM

(OpenStreetMap, 2021), and sampling points were taken at 20-m intervals to validate

scenario differences (J. Zhang et al., 2021b). Figure 9c shows the sampled points on a
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road network, where randomly selected areas have been zoomed in. Then, Google Maps
API is used to obtain street-view images in four different directions at each sampling
point, with the point’s latitude and longitude coordinates. The street-view images were
setto 1280 x 800, and the vertical FOV was set to 79 degrees (same as in the synthetic
dataset). Then, the street-view images were selected as the training set, validation set,
and test set for the building instance segmentation. Finally, the LabelMe tool is used
(Russell et al., 2008) to manually label the facade instance annotations in the street-

view images.
(3) Mixing CDT synthetic data and real data into the hybrid dataset

The proposed HSRBFIA dataset contains a mixture of building images and facade
instance annotations from the CDT synthetic data and the real-world data, with 2,000
real and 2,000 CDT synthetic images. A scalable hybrid subset, HSRBFIA-x, can be
constructed from HSRBFIA. HSRBFIA-x is used for training, 400 real images from
HSRBFIA are used for testing, and 400 real images from HSRBFIA are used for
validation. In the subset HSRBFIA-x, the total number of images is 1200, and the

proportion of them that are real and CDT synthetic images is calculated according to

a=x%x1200

4.1)
b = (100 — x)% x 1200,

where a represents the number of real images, b the number of CDT synthetic
images, and x is the percentage of real data in HSRBFIA-x. For example, HSRBFIA-
40 indicates that the portion of real-world data is 40%, which means the hybrid dataset

comprises 480 real images and 720 CDT synthetic images.
(4) Baseline strategy for generating virtual synthetic data

A baseline strategy is presented for generating virtual synthetic data and
comparing its generation performance with that of the proposed CDT dataset to

definitively show the improvement of the CDT synthetic data as an enhanced training
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set. Fictitious LOD?2 city models are chosen for the generation system. The LOD?2 city
models contained 283 buildings with a total area of 2.37 square kilometers. These
buildings were of different types and included residential, commercial, office, and
industrial buildings. The virtual synthetic data were generated by the same automatic
system as the CDT previously, and all of the rendering parameters were set identically
to those in the CDT to ensure fairness. Figure 4.10 shows an example of the virtual
synthetic data completed with all four views and the building facade annotations. The

virtual models were textured in high quality but had no counterparts in the real world.

(b)

Figure 4.10. Four views from a single shot captured by the multi-camera system for virtual
synthetic data (no real-world counterparts): (a) virtual street views and (b) corresponding instance

segmentation masks.

4.2.3.2. State-of-the-art instance segmentation models

Instance segmentation combines the functionalities of both semantic segmentation
and object detection to classify different labels and separate instances of objects
belonging to the same class. Current instance segmentation techniques typically have
the following four frameworks (Hafiz & Bhat, 2020): the classification of mask
proposals (Girshick, 2015), detection followed by segmentation (He et al., 2017),
labeling pixels followed by clustering (Bai & Urtasun, 2017), and dense sliding window
methods (X. Chen et al., 2019). This study selected three state-of-the-art models: Mask
R-CNN (He et al., 2017), YOLACT (Bolya et al., 2019), and BlendMask (H. Chen et
al., 2020). After testing them with the proposed dataset, the model with the highest

accuracy can be recommended.
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The backbone structure has a significant impact on the instance segmentation
model. Due to computational power, it can vary depending on the desired performance,
training speed, and limitations. The most used backbone structures are ResNet (He et
al., 2016) and its variants (S. Xie et al., 2017) combined with the Feature Pyramid
Network (FPN) (Lin et al., 2017). For object instance segmentation tasks in complex
scenes, increasing the number of convolutional network layers often produces

improved accuracy (Carvalho et al., 2020).

The same training protocol is adopted for every selected model: (1) 36,000
iterations, optimizing tracking validation loss to a convergence point to avoid
overfitting; (2) four pictures per batch (it is worth noting that training with hybrid
datasets is conducted with a mixed batch of two real and two synthetic pictures.); and
(3) the Adam optimizer starting with a learning rate of 0.001 that is reduced to 0.0002

after 10k iterations.

4.2.4  Accuracy analysis

Accuracy analysis of the instance segmentation model allows for insight into its
applicability in the real world. Specifically, analyzing the accuracy of the HSRBFIA
dataset in testing real-world street-level images allows us to evaluate the performance
of synthetic data in augmented DCNN training. The three primary metrics used to
assess the instance segmentation performance are precision, recall, and the intersection

over union (IoU), and the equations are given by

TP

precision = P (4.2)

recall = L, (4.3)
TP+FN

JoU = —2F% (4.4)
TP+FP+FN
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For a given category, a true positive (TP) is the number of correctly identified
positive pixels, a false positive (FP) is the number of pixels that are mistakenly
classified, and a false negative (FN) is the number of pixels that are not classified as
belonging to this category but should have been. While precision and recall provide
great insight into the data, the threshold cutoffs are equally crucial for evaluating
instance segmentation models. The IoU of the bounding boxes is considered when

calculating the threshold value.

There are many standard COCO metrics for evaluating the object detection and
segmentation performance of instance segmentation tasks with different considerations
(Lin et al., 2014). For building instance segmentation with street-level scenes, three
aspects are important: (1) the detected precision, (2) the size of the detections, and (3)
the number of detections in each image. This study chose several metrics according to
specific requests, including (a) the average precision (AP), (b) APsq, (¢) AP, (d)
APpediums (€) APjarge, and (f) the Average Recall (AR) with ten maximum detections
(ARqp). For the detected precision, the AP uses the mean value from 10 IoU thresholds,
starting at 0.5 and going up to 0.95 with steps of size 0.05 (0.50: 0.05: 0.95), and APs,
represents the calculation under an [oU threshold of 0.50. Likewise, AP,5 is a stricter
metric and represents the calculation under an IoU threshold of 0.75. The closer the AP
is to 1, the better the authenticity of the instance segmentation model will be. As for the
size of detections, a 1280 x 800 pixels street-level image contains buildings with a
variety of scales. Tiny buildings are rare in our datasets, and thus two categories are
selected, APpegium (322 pixels < detection area < 967 pixels) and APjyrge (detection
area > 96° pixels), for consideration while excluding APy, (detection area < 322
pixels) [21]. When trying to determine the number of detections in each image, the AR
is used because it takes the maximum number of detections into consideration. Since
the maximum quantity of buildings for a single street-view image in the dataset is 10,

AR is the appropriate evaluation metric.
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4.3  Experiments and results

This section describes the time cost on synthetic and real image annotations and
the experiments to verify the accuracy of facade instance segmentation on real street-

level imagery using the HSRBFIA dataset.

The software and hardware environment configurations used to develop and

execute all the experiments are listed in Tables 4.3 and 4.4.

Table 4.3. Software and libraries.

Software Details

Operating System Ubuntu 16.04 64 bit

Programming language Python

Deep learning framework PyTorch

Dependent library Torch, Torchvision, CUDA, PIL etc.

Game engine Unity 2020.3.12f1 with universal render pipeline
Labeling tool LabelMe

Table 4.4. Hardware.

Content Appellation

CPU Intel Core 17-9700 @3.00GHz

RAM DDR4-2666 16GB X 2

GPU NVIDIA GeForce RTX 2070 SUPER 8GB X 2
Graphics tablet for manual labeling Wacom Intuos Pro

4.3.1  Time cost results of data annotation

To calculate the time needed for annotating CDT synthetic data, the proposed
system is used with a 3D city model of Tokyo to automatically generate 2,000 synthetic
street-level images and facade annotations. Then, the total time is recorded and

calculated.

To calculate the time needed for labeling real data, four graduate students are

invited from aged 23-28 years with architectural design backgrounds to manually label
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real data that were randomly selected. The same 100 images (size 1280 X 800 pixels),
labeling software (LabelMe), and labeling device (graphics tablet, Wacom Intuo Pro)
were used. Then, the total time that they spent was recorded, and the average labeling
time per image was calculated. Table 4.5 compares the time required per image to
annotate the synthetic and real-world datasets. It is worth noting that the annotation
time for the real data is approximately 2,050 times greater than that of the automatically

generated synthetic data.

Table 4.5. Time consumption of synthetic and real datasets for each image.

Dataset Contents Labeling method  Time cost per image (s)

Synthetic Virtual street views and building Automated 0.12

instance annotations
Real-world  Natural street views and Manual 246

building instance annotations

4.3.2  Accuracy verification of the proposed datasets

This study aims to show the potential of the auto-generated synthetic data in
improving DCNN-based instance segmentation models trained using real-world
imagery. Four experiments are presented that used CDT synthetic data to test this. The
first experiment used a baseline strategy for virtual synthetic data and compared its
performance with that of the proposed CDT synthetic dataset using several DCNN-
based instance segmentation models. The second experiment selected 100 real-world
images from HSRBFIA as the training set and then performed extended training using
the proposed CDT synthetic data and virtual synthetic data. The third experiment used
the same number of training images from HSRBFIA-x. The fourth used a pre-trained
model from the HSRBFIA-x dataset to perform facade instance segmentation for

street-view images from multiple cities not located in Japan, then validated its accuracy.

4.3.2.1. Comparison with virtual synthetic data using several instance segmentation
models
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The same amount of virtual synthetic, CDT synthetic, and real-world data as the
training set are selected for several instance segmentation models (Mask R-CNN with
SpineNet-96, Mask R-CNN with ResNet-101-FPN, BlendMask with ResNet-101-FPN,
and YOLACT with ResNet-101-FPN), 1200 images each. The pre-trained models were
then tested on 400 real-world images, and the corresponding AP values were calculated
separately. As shown in Table 4.6, the AP values (both mask and bounding box) for all
models show that using the proposed CDT synthetic data as the training set for the
instance segmentation of real-world images leads to better performance than when the
virtual data are used. However, there is still a performance gap compared with when
only real-world data are used. According to the overall accuracies shown in Table 4.6,
Mask R-CNN with a SpineNet-96 backbone performs the best, with only the mask AP
for virtual synthetic data being inferior to BlendMask with ResNet-101-FPN (0.309
compared with 0.314). In the following experiments, Mask R-CNN is used exclusively

with the SpineNet-96 backbone as the training model.

Table 4.6. AP values for the instance segmentation using different datasets when training several

state-of-the-art models

Type Mask R-CNN  Mask R-CNN  BlendMask YOLACT
(SpineNet-96) (ResNet-101-  (ResNet-101-  (ResNet-101-

FPN) FPN) FPN)

Virtual mask AP 0.309 0.282 0.314 0.227

synthetic data bbox AP 0.332 0314 0.329 0.263

only

(baseline)

CDT mask AP 0.415 0.377 0.409 0.312

synthetic data

only (the bbox AP 0.433 0.405 0.431 0.341

proposed)

Real-world mask AP 0.591 0.537 0.587 0.432

data only bbox AP 0.632 0.559 0.624 0.513

Bbox refers to bounding boxes.

4.3.2.2. Comparing results for training using real data with two types of synthetic
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data extensions

The second experiment compared the precision results of the COCO metrics. Only
100 real images were used for training, and the training set was then extended using
virtual synthetic images and the proposed CDT synthetic images. The pre-trained
models were all tested on the initial batch of 100 real images, and the results for this
are shown in Table 4.7. Comparing the results for the two synthetic extensions, the
inclusion of CDT synthetic data provides a greater improvement to the accuracies of
mask segmentation and bounding box detection than the virtual one when using the
same amount of data. APy egium 1S the metric that benefited most when the training set
was extended to include 1000 synthetic data elements, and this was true for both types
of synthetic data. The accuracy of APpeqium increased by 17.7% (Mask) and 19.4%
(Bounding box) relative to the baseline when the virtual data were included and by 24.8%

(Mask) and 23.7% (Bounding box) when the CDT data were included.

Table 4.7. Results from training facade instance segmentation on real-world images only and from
extending the training sets with virtual synthetic and CDT synthetic images. The improvements, as

compared with the baseline (training only with real data), are highlighted in bold.

Training sets Type AP AP, AP;5 APpedium  AParge ARyg
(number of
images)
100 (R) Mask 0.366 0.574 0.398 0.124 0.428 0.431
Bbox 0.382 0.587 0.399 0.139 0.437 0.425
100 (R) + Mask 0.392 0.629 0.436 0.177 0.454 0.462
100 (Syirtual) (2.6%) (5.5%) (3.8%) (5.3%) (2.6%) (3.1%)
Bbox 0.411 0.647 0.442 0.211 0.454 0.438
(2.9%) (6.0%) (4.3%) (7.2%) (1.7%) (1.3%)
100 (R) + Mask 0.398 0.638 0.442 0.181 0.461 0.466
100 (Scpt) (3.2%) (6.4%) (4.4%) (5.7%) (3.3%) (3.5%)
Bbox 0.415 0.652 0.449 0.227 0.455 0.441
(3.3%) (6.5%) (5.0%) (8.8%) (1.8%) (1.6%)
100 (R) + Mask 0.430 0.692 0.521 0.259 0.522 0.517
500 (Syirtual) (6.4%) (11.8%)  (12.3%)  (13.5%)  (9.4%) (8.6%)
Bbox 0.453 0.680 0.531 0.308 0.514 0.526
(7.1%) (9.3%) (13.2%)  (16.9%)  (7.7%) (10.1%)
100 (R) + Mask 0.473 0.705 0.538 0.302 0.543 0.548
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500 (Scpr) (10.7%)  (13.1%)  (14.0%)  (17.8%) (11.5%)  (11.7%)

Bbox 0.485 0.696 0.543 0.334 0.531 0.551

(103%)  (10.9%) (14.4%)  (19.5%) (9.4%)  (12.6%)

100(R)+  Mask 0.483 0.702 0.550 0.301 0.539 0.546
1,000 (11.7%)  (12.8%)  (152%) (17.7%) (11.1%)  (11.5%)
(Svirtual) Bbox 0.493 0.720 0.575 0.333 0.555 0.554
(11.1%)  (133%) (17.6%)  (19.4%) (11.8%)  (12.9%)

100(R)+  Mask 0.511 0.728 0.604 0.372 0.576 0.579
1,000 (Scpr) (145%)  (15.4%)  (20.6%) (24.8%) (14.8%)  (14.8%)
Bbox 0.535 0.743 0.613 0.376 0.581 0.576

(153%)  (15.6%) (21.4%) (23.7%) (14.4%)  (15.1%)

Training 100 (R) + 500 (Syirtuar) Training 100 (R) + 500 (Scpr) Training 100 (R) + 1000 (Syirtual)  Training 100 (R) + 1000 (Scpy)

Figure 4.11. Qualitative results for training real datasets only and for extending them with the two
types of synthetic datasets (CDT and virtual).

Figure 4.11 shows qualitative results that demonstrate how using the two types of
synthetic data during training improves the ability of the system to recognize individual
building facades in realistic scenarios. The results obtained using only the 100 real
images as the training set were not ideal, but with the inclusion of CDT or virtual
synthetic data, the ability to perform detection and mask segmentation of building
facades was improved, especially for small targets. When it comes to performing
instance segmentation for real images that have smaller structures and partial facades,
a pre-trained model using a dataset that has been augmented with CDT data can obtain

better results than one that has been augmented with virtual synthetic data.
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4.3.2.3. Comparison of results for different ratios of HSRBFIA-x
For the training sets, HSRBFIA-x is selected with different ratios of CDT

synthetic data and real data. The results for the COCO metrics are listed in Figure 4.12
and were obtained by using 400 natural street-view images from the downtown areas
of Tokyo. In Figure 4.12, the horizontal axis denotes the proportions of real data that
were used in the HSRBFIA-x datasets, and the vertical axis gives the values for the
COCO metrics. Observing the overall trend exhibited by all of the line graphs, the
testing results using synthetic data alone for the training set are the worst among the
COCO metrics. In addition, as the proportion of real-world data in the HSRBFIA-x
dataset is increased, the metric precision first grows substantially, then becomes gradual,
and finally stagnates. Taking the AP as an example, when the proportion of real data in
the training set reaches 60%, the bounding box detection result is 0.611, and the mask
segmentation result is 0.577, achieving 96.7% and 97.6% of the results using 100% real
data for the training set (Figure 4.12a). For the growth of the metric precision after
switching from 100% synthetic data to 100% real data, the improvement is minimal for
mask segmentation and bounding box detection when APs, is used in the analysis,
coming out to be 16.1% and 16.2%, respectively (Figure 4.12b). However, the
difference is significant for APeqium. The accuracy of the mask segmentation and

bounding box detection increased by 26.2% and 25.1%, respectively (Figure 12d).

Figure 4.13 shows the instance segmentation of several building types using
HSRBFIA-x datasets with varying ratios of synthetic to real data for the training sets.
The results from this qualitative analysis are similar overall to the results of the
quantitative analysis shown in Figure 4.12. In street-level images, some buildings are
located far away from the camera. As a result, they appear small in the images and tend

to vanish during the down-sampling process (Figure 4.13c).
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Figure 4.13. Qualitative results for different building categories from training HSRBFIA-x
datasets with different ratios of synthetic to real data: (a) traditional Japanese houses, (b) multi-
story residential buildings, (c) apartments, and (d) public high-rise buildings. (The red dashed
rectangles highlight parts of the natural street-level images that are prone to failure during facade

instance segmentation.)

4.3.2.4. Verification on other cities

As a comparison, the HSRBFIA-0, HSRBFIA-60, and HSRBFIA-100 that are
employed in Section 4.4.2.3 are re-used as the training set, and a total of 400 street view
images from four cities, including Osaka, Japan; Los Angeles (L.A.), US; New York
City (NYC), US; and Shanghai, China, were used as the test set. The test images are
downloaded through Street View services, covering a wide range of building types and

sizes, including residential, office, commercial, and industrial, as well as low-rise, high-
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rise, and complex buildings. Table 4.8 lists the training set information and COCO
metrics results for facade instance segmentation evaluated by the pre-trained model on
real-world images in multiple cities. The worst segmentation is obtained with entirely
synthetic data (HSRBFIA-0) as the training set. The accuracy of 60% real data
(HSRBFIA-60) is close to 100% real data (HSRBFIA-100) as the training set. The
results verified in these cities are similar to those presented in Section 4.4.2.3 for Tokyo
and show that the proposed training dataset HSRBFIA-x generalizes well to street

views in different cities without further fine-tuning.

Table 4.8. COCO metrics precision of facade instance segmentation with training the proposed
dataset HSRBFIA-x in multiple cities.
Cities Type HSRBFIA-0 HSRBFIA-60 HSRBFIA-100
AP APy, AP, AP APy, AP, AP APy, AP,
Osaka Mask 0.412 0.641 0.152 0.569 0.791 0378 0.584 0.812 0.411
Bbox 0.437 0.663 0.181 0.607 0.803 0.393 0.616 0.825 0.423
L.A. Mask 0.403 0.607 0.139 0.541 0.762 0362 0.569 0.798 0.395
Bbox 0.411 0.631 0.172 0.583 0.774 0.381 0.583 0.809 0.404
NYC Mask 0.388 0.572 0.121 0.544 0.727 0331 0.536 0.751 0.351
Bbox 0.402 0.603 0.148 0.583 0.741 0.348 0.551 0.767 0.357
Shanghai Mask 0.371 0.538 0.102 0.527 0.701 0316 0.517 0.718 0.328
Bbox 0.377 0.553 0.124 0.553 0.712 0323 0.543 0.735 0.335
The training set of 400 street view images includes 100 images of Osaka, Japan; 100 images of
Los Angeles (L. A.), US; 100 images of New York City (NYC), US; and 100 images of Shanghai,
China.

In natural street scenes, the residential architectural styles in American and
Chinese cities differ significantly from those in Japan, but most public building styles
are similar. Figure 4.14 shows the qualitative results of the building segmentation of
different building types for each city, and the red dashed rectangle is used to highlight
some parts of the street view images that are easy to fail in facade instance segmentation,
such as buildings far from the camera and complicated facade compositions. It was

observed that training on synthetic data generated by CDT was sufficient to recognize
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low-rise, high-rise, and integrated buildings. The combination of real and synthetic data
(HSRBFIA-60) then yielded high precision results for non-constructed items (Figure
4.14a), small buildings (Figure 4.14b and 4.14c), and even complex facades (Figure
4.14d).

New York City, US Shanghai, China

@ .\

Osaka, Japan Los Angeles, US

Input RGB

Ground-truth

Training
HSRBFIA-0 |

Training |
HSRBFIA-60 .

Training
HSRBFIA-100 | ©

(a) low-rise houses (b) low-rise houses  (c) high-rise buildings (d) Complex facades

Figure 4.14. Qualitative results for different types and sizes of buildings with training different

synthetic-real ratios of HSRBFIA-x datasets. (a) Low-rise houses in Osaka, Japan; (b) low-rise

houses in Los Angeles, US; (c) high-rise houses in New York City, US; (d) Complex facades in
Shanghai, China. (The red dashed rectangles on the images highlight some parts of the street view

images that are easy to fail in facade instance segmentation.)
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4.4 Discussion

441  Automatic generation of instance annotation for building facades based on

DT

This Chapter investigated the possibility of using auto-generated synthetic datasets
from CDT to boost the DCNN-based instance segmentation accuracy on real street-
level imagery. The results demonstrated that models trained by adding a fraction of real
data to synthetic datasets could obtain results comparable to models built with real
datasets. Furthermore, using synthetic data for extending the training set on real data
can improve the segmentation accuracy. These findings are significant because they
offer the possibility that the synthetic data from CDT can be used as an alternative to
real data for training supervised learning-based models, which will significantly slash

the cost of data annotation.

A hybrid dataset HSRBFIA on building facade images and annotations are built
for improving the facade instance segmentation on real images. Several large-scale
collections of synthetic datasets in the virtual city have previously been used for
semantic segmentation of streetscape elements (Ros, Sellart, et al., 2016; Saleh et al.,
2018). However, the effectiveness of synthetic data generated from real-world copies
for training DCNNs could not be concluded in these studies. Since they all use datasets
created from virtual cities (no correspondence with the natural world) as training sets,
the texture gap between virtuality and reality is more likely to cause domain shift
problems and lead to poor performance (Tremblay et al., 2018). In addition, instance
segmentation is more complex than semantic segmentation when annotating synthetic
datasets, distinguishing both semantics and instances. Compared to previous studies
based on virtual cities, the building digital assets with high LODs from CDT have high-
quality textures that emulate the physical counterparts in the virtual space, producing

more realistic synthetic data.
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4.4.2  Effective use of CDT data for street-level facade instance segmentation

From the results discussed in Section 4.4.2.1, it appears that CDT synthetic data
outperform virtual data when synthetic data are used for the training set and real images
for the test set. This may be because the 3D model textures in the CDT closely resemble
those of the real building images in the test set. Also, the feature map extracted by the

CNN model from a CDT synthetic image is similar to that extracted from the real image.

From the experimental results discussed in Section 4.4.2.2, extending the real-
world training set by adding CDT and virtual synthetic data can improve the instance
segmentation accuracy. This result is similar in some ways to previous work on the
semantic segmentation of urban scenes based on fictional cities (Prakash et al., 2019;
Ros, Sellart, et al., 2016; Saleh et al., 2018), but the proposed CDT synthetic data
outperform the virtual data when used in an enhanced training set for instance
segmentation tasks, and works for the street-level building category. Despite this benefit,
the value of AP eqium Was the lowest among all of the results for the COCO metrics,
indicating that the detection of smaller buildings remains a challenge, particularly when
only a small fraction of the real data in the training sets account for them. This could
be due to the fact that the semantic information for small objects appears in the
shallower feature maps, and their details may vanish entirely as the network gets deeper.
In addition, real images have more variation in texture, shape, and color compared with
synthetic images. When the fraction of real images in a dataset is limited, it is difficult

to transfer learned weights to the synthetic dataset.

From the results in Section 4.4.2.3, it appears that extending the proposed synthetic
data into the real-world training set can improve the instance segmentation accuracy.
This result is partly similar to previous reports on semantic segmentation of urban
scenes based on virtual city data (Prakash et al., 2019; Ros, Sellart, et al., 2016; Saleh
et al., 2018), but the attempt is a complement to instance segmentation task using

synthetic data of CDT as the training set, and it works in the street-level building
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category. Despite the benefit, the value of AP egium 15 the lowest among the metrics
results of all experiments, which indicates that the small building images are
challenging to be detected, particularly when the real data in training sets account for a
small fraction. This could be due to the following reasons: the semantic information of
small objects appears in the shallower feature maps, and their details may vanish
entirely as the network gets deeper. In addition, real images have higher variation in
texture, shape, and color than synthetic images. When the dataset has a limited fraction

of real images, the learned weights are difficult to be transferred to the synthetic dataset.

The test results for multiple cities can show the robustness and transferability of
the proposed HSRBFIA. The instance segmentation results for street-level images of
Osaka, which has similar architectural styles as Tokyo, showed the best results in the
experimental cities. This means that the prediction results can be satisfactory based on
resembling feature distributions. In the test results of two US cities, the pre-trained
model works well for low-rise residential and high-rise buildings with modern style.
This could be because the buildings in the test streetscape are non-dense and clearly
separated, showing the ability of the proposed method to handle simple scenes in other
cities. In contrast, the building instance segmentation results for street-level images of
Shanghai under three training sets (synthetic dataset, HSRBFIA-60, real-world dataset)
are relatively less accurate than the other three cities. This may be because the test
images are heavily sourced from public buildings in high-density urban areas, and the
buildings have appearance gaps from the training set. It is difficult to obtain satisfactory
results when the detection features of the training and test set are widely divergent, even

using a large amount of synthetic data and then fine-tuning it with real images.

443  Limitations

The holistic goal of this research is to implement an automatic, scalable, and high-
fidelity synthetic data generation system for urban scenes. The system will largely
contribute towards reducing manual labeling costs involving built environment data for
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supervised machine learning. The proposed approach has two limitations that need to
be pursued in future work. One is to synthesize virtual data with realism by enhancing
the rendering CDT model while auto-generating annotations of various elements. The

other is to improve the efficient use of CDT data to train DCNN-based models.

Given the nature of current CDTs 3D reconstruction, with LIDAR data and visible-
light photography capture, photorealistic virtual images can be rendered using fine-
grained 3D models with subdivision materials. Furthermore, new rendering techniques,
such as physical-based rendering, can be integrated into the system to improve
illumination effectiveness, bringing the lighting in virtual data rendering closer to the

natural environment.

Domain shifts and the loss of small buildings in the down-sampling process are
the main issues that impact the use of synthetic data for training instance segmentation
models in urban scenes. By systematically investigating the mechanisms at play, the
efficiency of synthetic data utilization can be optimized. It has been shown that domain
adaptation can transfer the knowledge learned by machine learning models in the source
domain (synthetic data) to the target domain (real data), which could be incorporated
into the method. Moreover, the recent emergence of deep learning-based methods for

small target detection will also be considered in further work.

4.5 Summary of this Chapter

The extraction of building facade data is integral to the construction of information
infrastructure. Compared with semantic segmentation, instance segmentation can
distinguish individual facades when acquiring and analyzing building information.
However, collecting and labeling a large amount of data from the real world for DCNN
training to perform accurate instance segmentation of building facades is a labor-
intensive process. This Chapter developed a system that can auto-generate synthetic
datasets from a CDT for the instance segmentation of building facades. The digital

assets of buildings are used in an area of Tokyo as an example. The proposed system
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can produce synthetic images of street views from multiple viewpoints under different
atmospheric effects. The system can also generate pixel-level instance annotation for

synthetic building facades. The general conclusions that can be drawn are as follows.

* Conventional methods for labeling data rely on manual labor. The Chapter
attempts to substitute the manual labeling process with an automated
generation system to create CDT synthetic data for training DCNNs. The
proposed method takes about 1/2,050 of the time that it takes to manually
annotate each image, which can significantly reduce the cost required to

annotate data.

* By comparing the DCNN training results for real, synthetic, and hybrid
datasets, extending the training set with the proposed synthetic data can
improve the accuracy of facade instance segmentation on real pictures. A
baseline strategy is introduced to show that, at the same LOD and rendering
settings, enhancements using CDT synthetic data are better than ones using
virtual synthetic data. Specifically, the segmentation accuracy is boosted
significantly when a certain fraction of real data is loaded into the CDT
synthetic datasets, to the point where its performance becomes competitive
with what is seen when 100% real data are used. This indicates that the
proposed synthetic dataset has the potential to replace the real imagery in the

training set.

*  Verification for multiple other cities demonstrated the transferability of the
proposed framework. The proposed dataset can obtain promising prediction
results for most modern architectural styles. However, the segmentation
accuracy needs to be improved for environments that have characteristic

architectural styles or high-density streets.

* This study generates synthetic datasets based on a CDT, which effectively

utilizes city information modeling and digital assets. As CDTs are further
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developed and refined, the research framework can be applied to other
elements in the urban environment, which will allow them to enrich their

semantic information in the further development of digital infrastructure.
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Chapter 5. The large-scale approach for
extracting data on multiple elements of

building facades

5.1 Overview of building facade information extraction at a large

scale

Facade data extraction, or facade parsing, is an important problem in computer
vision. The building facade elements are classified, segmented, and 3D reconstructed
using computer vision techniques, and then the building facade data can be recorded
according to rules (Martinovi¢ et al., 2012). Textualization, editorialization, and
semanticization of building facade data can store information more efficiently. Large-
scale facade data can support urban issues such as urban building energy models
(Ferrando et al., 2020), building retrofits (Al-Habaibeh et al., 2021), urban renewal
(Zheng et al., 2014), and urban vitality studies (Mouratidis & Poortinga, 2020).
Therefore, building facade data collection and digital management have become an

important part of developing a smart city.

Generating facade data from spatial data is a key tool to address these challenges.
Some geographic open databases or platforms have already achieved remarkable results.
For example, OSM covers the plan outline, area, and height of buildings, and Google
Earth can observe the mesh models of the world's major cities. However, these urban
databases or platforms still have the problem of data integration. In terms of data type,
researchers still need to obtain the data necessary for specific urban analysis tasks
manually and are not available from open platforms. For example, the dominant color
of the facade required for urban color design needs to be measured by professionals on-

site (Zhong et al., 2021). Building facade material for building renovation (Piccardo et
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al., 2020). Window-to-wall ratio data for building energy and lighting calculations are
not automatically available from existing urban databases or platforms (Szczes$niak et
al., 2022). Non-automatic and semi-automatic methods of data collection are still
dominant. If urban building data is to be digitally managed effectively, automated
spatial information collection methods must be developed. It will be a significant
challenge for industry and academia to develop an automatic framework to efficiently
collect and integrate multiple building data, build databases, and use these data

effectively for urban management and analysis.

It is necessary to collect, record and analyze data from the surrounding area before
specifying the project for implementation. In traditional approaches, work relies on
professional surveyors to take on-site measurements of the project, and manual-based
workflows can lead to heavy workloads in large-scale remediation projects. Novel
workflows have emerged in recent years that combine computer vision techniques with
open cityscape datasets. These studies have yielded promising results in parsing
building facades. Automating the rapid construction and continuous updating of large-
scale building facade databases will help designers and managers control the project
throughout the building cycle. This study aims to realize the large-scale automated
acquisition of existing building facade data. A toolbox was developed to assist
architectural and urban design with current urban development issues. Empowering
traditional workflows with digital technology can improve the efficiency of data

collection, the reliability of analysis results, and the refinement of management.

This Chapter will integrate the current state-of-the-art technical means to collect
multidimensional information on urban facades. Typical facade parsing tasks such as
facade color calculation, building function classification, and window-wall semantic
segmentation are used as examples to reveal the possibility of large-scale data
extraction of urban facades using street view images and deep learning. This chapter is
organized as follows. First, data collection, pre-processing, and facade parsing methods

are proposed. Then, the proposed methods are integrated with multiple facade data
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collection tasks. The experiments were conducted on a street in Osaka, Japan. Finally,
the discussion section shows the advantages of the proposed method over the
conventional methods. The potential application value and the limitations of the method

are presented.

This Chapter integrates the techniques of Chapters 3 and 4 for removing unwanted
objects in front of buildings and extracting individual facades of connected buildings.
After data pre-processing, facade information is collected, including dominant color
calculation of building facades, building functional classification, and semantic
segmentation. A street of length 500m in Osaka, Japan, is used as an example to

construct a database.

5.2 Methods

This section will describe the technology integration workflow for data extraction
of building facades, facade data collection, pre-processing of street view images, and

data mining.

5.2.1  Technology integration workflow for data extraction of building facades

This Chapter attempts to develop an end-to-end integrated multitasking
framework by collecting street-level images at a large scale to extract completed
building facades. State-of-the-art computer vision techniques are then used to identify
information of the individual, including the facade dominant color, the building
functions, and the window-wall semantics. The workflow of this proposed method is as

follows.

First, the obscured parts of the building facade will be completed using the GAN-
based method. Then, the buildings are extracted one by one using the proposed instance
segmentation pre-trained model in Chapter 4. Finally, the information on each building

facade will be extracted. Figure 5.1 shows a street-level image including only one
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building. The system can remove the trees and cyclists in front of the building. After
that, the building facade data are extracted, the facade dominant color is calculated
(7.5Y6.5/3.2 in Munsell color system), the building functions (Public service) are
automatically identified, and the window-wall semantics are segmented. Figure 5.2
shows a street-level image that includes several buildings that visually overlap. The
system can remove the tree, cars, and pedestrians in front of the building. The individual
building can be separated by instance segmentation. After that, the individual building
facade data are extracted, including window-wall semantics of a single facade, the
facade dominant color is calculated (10B7.5/1 in Munsell color system), and the

building functions (Public service) are automatically identified.

(@) (b)

I Wall I Window I Door

(c) (d) | ,
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I— — — — J unwanted objects Facade dominant color (in CBCC): 7.5Y6.5/3.2 |.[
Building function: Public service 0.83, Residence 0.17

Figure 5.1. Workflow for extracting multiple data in a street view image with one building facade.
(a) Data acquisition: original street view image, (b) data pre-processing: complete building facade

after color calibration and removal of unwanted objects, (c) data mining: window and wall
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semantic extraction in building facade, (d) data mining: facade information extraction, including
facade dominant color 7.5Y6.5/3.2 in Munsell color system and building function public service
0.83 confidence.

(a) (b)
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Facade dominant color (in CBCC):
10B7.5/1

Building function:
Public service 0.76, Commerce 0.24

Figure 5.2. Workflow for extracting multiple data in a street image with several building facades
visually overlapping. (a) Data acquisition: original street view image, (b) Data pre-processing:
complete building facade after color calibration and removal of unwanted objects, (c) Data pre-

processing: instance segmentation of building facade, (d) Data mining: semantic segmentation of a
single facade, (e) Data mining: facade information extraction, including facade dominant color

10B7.5/1 in Munsell color system and building function public service 0.76 confidence.
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5.2.2  Data acquisition

The images can be extracted from the street view platform to provide
comprehensive coverage of urban streets in street view photos. First, urban road
networks with geography coordinate information were chosen and obtained from OSM.
The road networks were then simplified into lines. Next, the sampling points with
geographical coordinate information can be obtained and shown in spatial distribution.
However, it is worth noting that not all sampled points in the street view service have
corresponding street view images. Lastly, to obtain the building facade, two pictures
(including left and right) are downloaded perpendicular to the road from the street view
service (the viewing angle is 90 degrees, the horizontal angle is 0 degrees, image size

is 800 X 500 pixels) for each sampling point (as shown in Figure 5.3).

Road direction

90° 1 90°
Left QE’JO Right

l

Road direction

Figure 5.3. Street-level imagery collection at an urban road coordinate.

5.2.3  Data pre-processing

5.2.3.1. Image color calibration

The color stimulus is significantly influenced by the ambient light. The captured
item will appear bluish if the color temperature of the sunlight is cold. A warm
temperature light source, on the other hand, will cause the object to appear reddish
(Jechow et al., 2020). Since the saturation and brightness of street view photographs
are modified by weather and time, the analysis premise is to eliminate the variation
caused by ambient light. Previous research has demonstrated that HSV (Hue, Saturation,

and Value) color spaces perform better in color calibration than RGB (Red, Green, and
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Blue) channels (Mazzeo et al., 2011). Therefore, the collected images are converted to
HSV color space. The AWB method was used for the saturation calibration of street
view images (Lam et al., 2008). In addition, the AEC of the digital photographs method
proposed by Yuan et al. (2012) was introduced to adjust overexposed and overly dark

street view images. Figure 5.4 shows the calibration demo by AWB and AEC.

H: 36 S: 46 V: 54

i [ ] it PR
(a) Street view image (b) After color calibration

Figure 5.4. A color calibration demo. (a) Ground truth of street view image; (b) color calibration

image.

5.2.3.2. Obstructed facade completion

In urban environments, there is extensive foreground occlusion of building facades.
As described in Chapter 3 of the supplemental methods for the obscured facade, to
obtain complete information about the building facade, it is necessary to supplement
the obscured part of the facade with rationalities. There are many methods in previous
research, which are not repeated here, and can be viewed in section 2.2 of the literature
review, and the method was introduced in Chapter 3. This Chapter uses a GAN-based
and data-driven inpainting model, DeepFill-v2, for image inpainting, and a custom
facade dataset is proposed. Figure 5.5 shows that the proposed system automatically
detects people and trees in the foreground of a facade and reasonably filled based on
context and data learning. The complete building facade will be fed into the next

building information extraction and analysis step.
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(a) Obstructed objects in streets (b) Unwanted objects removal

Figure 5.5. An example where people, car, and trees in the foreground of facades are automatically
detected by the proposed system and reasonably filled based on context and data learning. (a)

Obstructed objects in streets, (b) unwanted objected removal.

5.2.3.3. Facade instance segmentation

When multiple buildings are connected or visually overlapping, the study tries to
analyze the information of each building and requires the use of instance segmentation.
Many methods are proposed in previous research, which is not repeated here, and can
be viewed in section 2.3.1 of the literature review. The facade instance segmentation
datasets used in this chapter are presented in Chapter 4. Figure 5.6 shows the facade
extraction that uses semantic segmentation and instance segmentation, and the instance
segmentation can extract building facade information one by one when multiple

buildings are connected in a single image.

(a) Ground truth (b) Facades semantic segmentation (c) Facades instance segmentation

Figure 5.6. Compared to facade extraction methods that use semantic segmentation, instance
segmentation can extract building facade information one by one when multiple buildings are
connected in a single image. (a) Ground truth, (b) facade semantics segmentation, (c) facade

instance segmentation.
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5.2.4  Data mining

5.24.1. facade dominant color calculation

There are thousands of color values in an image, and it is difficult to define the
dominant color without merging colors. Therefore, extracting the dominant color of the
urban facade requires a standard color card for integrating the colors in the image to the
standard color. Since the use of color in architectural design and building decoration
should conform to standard color codes in different countries, this study chooses China
Building Color Chart (CBCC)-1026 as the standard color (the CBCC-1026 selects
1,026 commonly used architectural colors from the complete CBCC library) that can
cover most building colors in urban facades. The specific HSV information of CBCC-
1026 can be found in the online color chart (Architectural standard color chart, 2020.).
Then, the raw color data of street view images is merged to the standard color chart by
calculating the HSV value of the street view color and replacing them with the closest
architectural standard color (in terms of the Euclidean distance). In the HSV color space
model, the three-dimensional coordinate (x, y, z) of the color point (H, S, V) was

defined according to Equation. (5.1):

X=r-v-scosh

y=r-v-ssinh , 5.1

z=L(1-v)

where 7 is the radius of the bottom circle, and L is the height, and taking r and

L to the integer 100 for the convenience of later analysis. (h, s, v) is the HSV value
of the image color. After calculating and merging the distance to the standard color, all
colors on the street view images will be converted to the architectural standard color
chart. Then, the color proportion from each street view picture can be counted.

Although color dominance can be established in several aspects, such as the strength of

hue, the sharpness of vision, contrast, and perception of saturation, G. A. Agoston (2013)
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suggested that the two most critical factors affecting the dominant color of the picture
are the color proportion and the saturation contrast. Therefore, the following is the
approach to dominant color selection in this study. (1) The dominant color should be
the largest part of the building facade; (2) when the color proportions are equal in a
street view picture, the color with high saturation is the dominant color. The facade

dominant color open-source tool can be found in (Mortyzhang, 2020/2022).

5.2.4.2. Multi-Label Classification of Building Function

From the perspective of the facade in urban streets, there are four main types of
building functions in the city proper (Tardioli et al., 2018), including residence (R),
commercial service (B), public service (A), and other facilities (O). To effectively
classify the types of buildings, a DCNN-based model is conducted to automatically
classify the building functions of the study areas. In the previous research, single-label
methods have typically been used to classify building classes, with each photo
corresponding to only one label (Kang et al., 2018). However, the single-label method
cannot accurately separate the street view pictures of several building functions,
resulting in inaccurate experimental results. To solve this problem, a multi-label image
classification method is used to identify multiple building categories in street view

images.

To train the multi-label building classifier, the semantically segmented building
images was used firstly to build the corresponding street-view benchmark dataset that
contains 4,965 images from 4 basic categories: residential, commercial services, public
services, and other facilities. Meanwhile, images with more than one label are classified
as mixed services. The ground-truth labels of the training data are from the OSM, and
Table 5.1 contains descriptions of the different building function classes. There are
around 3,500 single-label images and 1,500 multi-label images in these training images,
as shown in Figures 5.7 and Figure 5.8. These street-level images were divided into a

training set (75%) and a testing set (25%). It is worth noting that all test images are not
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retrieved from a single city and are different from those utilized for training. To augment
the training data, 720 X 450 pixels from the original 800 X 500 pixels are randomly
selected, and the cropped images are flipped horizontally. Then, several state-of-the-art
CNN-based models are trained, including DenseNet (Iandola et al., 2014), EfficientNet
(Koonce, 2021), InceptionNet v4 (Szegedy et al., 2017), and ResNeSt (K.-L. Chen et
al., 2021), and demonstrated the corresponding classification performances. To improve
the learning rate, these models are trained for 100 epochs and decayed the learning rate
by a factor of 0.1 every 25 epochs. Each training batch contained a total of 64 images.
Other not mentioned values are default. The building functional classification open-

source tool is available online (Mortyzhang, 2021/2022a).

Table 5.1. Description of building class in the city.

Building classifications Description

Residential (R) Buildings are for people living, including villas, apartments,

and dormitories.

Commerecial service (B) Buildings allow people to engage in various business activities,
including retail, shopping malls, markets, hotels, restaurants,

and entertainment facilities.

Public services (A) Buildings allow people to carry out various public activities,
including office, education, health, culture, transportation, and

tourism buildings.

Other facilities (O) Buildings or structures that appear in urban areas other than

the above three.

Residence (R) Public service (A) Commercial service (B) Other facilities (O)
g = .

Single-label §

Multi-label

Mixed service (M)

Figure 5.7. The first row is a single-label category, from left to right: Residential, Public,

Commerce, and Other Facilities. The second row is a multi-label category, from left to right:
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public services and commercial, residential and commercial services, residential and public
services, and residential and other facilities. The classification benchmarks have 4,965 street view

images with four labels.

Number of Street view images (N=4965)

1500
1000
- I I
0 - - - I N e
W Residence (R) M Public service (A) Commercial service (B)
Other facilities (O) m A+B H R+B

HA+R H B+O H A+O
H R+O W Others

Figure 5.8. The number of training set images for each building category.

5.2.4.3. Semantic segmentation of windows and walls

(1) The categorical semantic segmentation algorithm

The fully convolutional network (FCN) is an early semantic segmentation model
that recovers the class to which each pixel belongs from abstract features (Long et al.,
2015). The classification pattern of FCN can be extended from image-level to pixel-
level compared to traditional methods. CNN-based classification models typically map
images to feature vectors by running the convolutional layer output through a fully
connected neural network to generate a vector output (X. Li et al., 2019). However,
FCNs use convolutional deconvolution layers instead of fully connected layers, and the
resolution of the feature map is reduced throughout the feature extraction process (J.
Dai et al., 2016). As a result, the downsampling rates (the ratio of the input image
resolution to the output feature map resolution) becomes a concern (Tang et al., 2019).

Redundant spatial resolution reduction will cause the target object to vanish, whereas
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insufficient resolution reduction may result in a model with insufficient translational

invariance (M. Dai et al., 2021).

The U-Net model is an FCN-based semantic segmentation model originally
developed for medical images (Siddique et al., 2021). The original U-Net consists of an
encoder with a standard CNN architecture and an asymmetric decoder that recovers the
spatial resolution of the feature maps. Skip connections concatenate feature maps from
shrinking paths before doubling the number of feature channels and symmetric feature
maps in the expanding path. The symmetric U-Net architecture is more advantageous
in handling the facade images with many small objects (Siddique et al., 2021). In
addition, building appearances are fixed in structure (windows are located in walls) and
not particularly rich in semantic information (the building usually consists of walls,
windows, doors, roofs, balconies, etc.). This situation is similar in medical images
where U-Net has been found effective (such as human brain structures with fixed
positions). Many empirical studies (Du et al., 2020; Esser et al., 2018; Siddique et al.,
2021) have shown that skip connection, and U-shaped structures of U-Net can obtain

pleasing segmentation results for fixed semantic information.

It has been shown that the upgraded version of U-Net, U-Net++, achieves 75.5%
mloU performance on the Cityscapes val dataset (Zhou et al., 2018), but DeepLabv3+
can achieve 79.6% (L.-C. Chen et al., 2018). Although the Cityscapes val dataset is not
based on the wall and window segmentation task, the segmented objects are in the same
building environment. DeepLabv3+ can integrate two advantages: one is the spatial
pyramidal pooling that encodes multi-scale contextual information, and the other is the
encoder-decoder structure that captures clear edge by gradually recovering spatial
information. This work will compare the accuracy results of U-Net++ and DeepLabv3+
in the tasks of segmenting walls (commonly referred to as buildings in traditional
computer vision datasets) and windows. The model that obtains better accuracy will be

recommended.
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(2) Semantic dataset for facade parsing

Commonly used open-source facade parsing datasets include eTRIMs (Korc &
F&stner, 2009), ECP2011 (Teboul et al., 2011), Graz2012 (Riemenschneider et al.,
2012), and CMP2013 datasets (Tyle¢ek & Séra, 2013). The eTRIMs dataset is well
diversified, it is built on multi-view images of many European cities, but it has only 60
annotated images. The ECP2011 dataset contains 104 annotated images of Paris in
seven categories, including balconies, rooftops, stores, sky, doors, walls, and windows.
The Graz2012 dataset consists of 50 images from Germany and Austria. This dataset
has only four categories: door, window, wall and sky. The disadvantage of these datasets
is that they do not perform well for the training set of images of building facades with
widely varying urban styles. The CMP2013 dataset is larger. It has 378 basic images
and 228 extended images from around the world. The dataset has a variety of building
styles with 12 categories, including wall, molding, cornice, column, window, door, bay
window, sash, balcony, store, trim, and background. However, the CMP2013 is a
relatively simple dataset of scenes with few foreground occlusions. In general, existing
methods based on these publicly available datasets do not perform well in practical

applications.

Several recent studies have complemented and enhanced the publicly available
datasets. Femiani et al. (2018) built a facade dataset based on street view images in
diverse cities. The dataset had only spherical facade photographs in frontal view. It still
had limitations related to calibration and single view. LabelMeFacade (Kong & Fan,
2021) extended eTIRMs based on the LabelMe database (Russell et al., 2008) to contain
945 polygonal images with annotations. However, the eTRIMs and LabelMeFacade
datasets include buildings, cars, doors, sidewalks, roads, sky, vegetation, and windows.
The resolution of these dataset images is below 2k, and small objects such as small
windows in the images are faintly represented. In addition, the illumination of the image
varies very little. In reality, a considerable portion of the facade images are in a low

illumination state. A facade labeled high resolution dataset containing 500 street view
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images with 2,048 x 1,152 pixels is proposed, which is higher than any previous
publicly available datasets. The dataset contains nine categories, including, sky, wall,
window, tree, sign, car, roof, door, and pedestrian. The photos in the dataset are from
different weather, and the lighting variations enrich the generalization of the dataset.

Figure 5.9 shows examples of facade images in previous datasets and the proposed

dataset.

—1ox1d 89, —]

— 1ox1d $701 —

Fsi2pixel ]  —— 2_048191xé1 —
(b) (c)

Figure 5.9. Examples of facade images in previous datasets and the proposed dataset. (a) ECP, an
open-source facade dataset with the front view buildings. (b) eTRIMS, an open-source facade
dataset without complicated obstacles. (c) Proposed datasets, high resolution (2048 x 1152) with
diverse scenes.

5.3  Results
5.3.1 Accuracy verification of facade color calculation

Two materials (MAT. 1 is ceramic tiles, and MAT. 2 is veneer brick) are firstly
selected with standard HSV information. Then, a digital camera is used to take ortho-
projected photographs of the materials at six ambient color temperatures. Next, the
AWB and AEC methods were used to conduct color calibration of the photos, and the

corrected HSV values of the two materials can be obtained. Table 5.2 lists sample
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materials, the digital camera specifications, and the software used for the experiments.
Finally, the shortest Euclidean distance between the standard HSV color value and the
image color can be used to calculate the color deviation AE, and Equation 5.2 is as

follows:

AE :Sqrt((xn - xs)z + (yn - ys)z + (Zn - Zs)z) (52)

where the HSV spatial coordinates can be calculated as (x,, Y, Z,) according to

Equation (1), and (xg, Vs, Z5) is the standard color HSV coordinate.

Figure 5.10 depicts the color deviation of the two materials in digital photos before
and after color calibration at several ambient color temperatures. The results indicate
that the introduced color calibration methods can significantly reduce the color

deviation of digital images when the color temperature is warm or cold.

Table 5.2. Materials, apparatus, and software.

Materials

ID Facade Material Name Facade Color Samples Standard HSV Value
MAT. 1 Ceramic tiles H:198, S: 8%, V: 96%
MAT. 2 Veneer brick - H: 16,S: 11%, V: 51%
Apparatus/Product

Digital camera/Canon EOS 60D

Software/Contents

Photoshop CS4: An image processing software developed by Adobe, used to obtain the HSV

value of the image color.
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Figure 5.10. Color deviation of two materials in several color temperatures before and after photo

color calibration.

The proposed methodology is validated in terms of color measurement based on
200 field survey images of street views randomly extracted from the three Chinese cities
(Shanghai, Nanjing, and Hefei). The comparisons between the field survey and the
proposed measurement method are shown in Figure 5.11. For color measurement
validation, the architectural standard color card was first visually compared with the
surveyed facade. The color code closest to the investigated object was recorded as the
ground truth. Then, the HSV value of the measured color of the surveyed building
facade was obtained. Finally, the color deviation between the measured color and
ground truth was calculated for each field survey sample, and the range of color
deviation was counted. The histogram of color deviation is shown in Figure 5.12, and

more than 67% of the color deviation is lower than 20.
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Figure 5.11. The proposed measurement method results and the field survey data.
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Figure 5.12. After color calibration, the distribution of the dominant color deviation was 28% for

samples less than 10 and 67% for samples less than 20.

5.3.2  C(lassification accuracy of building functions

As shown in Figure 5.13 and Table 5.3, the four areas under the curve (AUC) of
the trained DCNN model were evaluated through the test data. AUC is defined as the
area enclosed by the coordinate axis under the receiver operating characteristic (ROC)
curve. Since the maximum value of x and y after normalization is 1, and the ROC curve
is generally above the line y=x, the AUC takes values in the range of 0.5 and 1. The
closer the AUC is to 1.0, the higher the authenticity of the detection method. When it is

equal to 0.5, the authenticity is the lowest and has no application value. As shown in
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the results, the overall classification performance of EfficientNet was worse than the
other networks. For the accuracy of commercial service and public service
classification, ResNeSt performed better than the other three. For the class of residence
(R), InceptionNet-v4 achieved the highest AUC value. After comparison, the trained
ResNeSt model was selected, which has the highest overall accuracy among the four

models, for the following generation of building functional classification maps.

For classification validation, the proposed method and ground truth were
compared to the results of the classification of building functions. The overall building
functional classification accuracy is 86.5%, as shown in Table 5.4. Most categories
exceeded 85% accuracy, except for the residential type. These results are similar to the
classification accuracy in Figure 5.13 and show that the prediction results by the trained

ResNeSt achieve consistency with the verification results of the field investigation data.
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Figure 5.13. The AUC of the trained models including (a) DenseNet, (b) EfficientNet, (c)
InceptionNet-v4, and (d) ResNeSt. The red line indicates the AUC of residence, the blue line B
indicates the AUC of commerce, the yellow line A indicates the AUC of public service, and the

purple line O represents the AUC of other facilities.

Table 5.3. Multi-label classification performance of all the trained networks.

Type DenseNet EfficientNet InceptionNet-v4 ResNeSt
Residence (R) 0.9008 0.9145 0.9162 0.9148
Commercial service (B) 0.8968 0.8852 0.8814 0.9160
Public service (A) 0.9518 0.9299 0.9552 0.9563
Other facilities (O) 0.9504 0.9589 0.9608 0.9528
Overall 0.9249 0.9221 0.9284 0.9349

Bold values represent the highest output achieved among all the listed DCNNSs.
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Table 5.4. Building classification accuracy for the 200 sampled images.

Type R B A (0) R+A B+A
Number of samples 46 42 38 30 20 24
Subclass accuracy 84.8% 88.1% 89.5% 86.7%  85% 87.5%
Overall accuracy 86.5%

5.3.3  Accuracy for analysis of wall and window segmentation

This study uses PyTorch, an open-source machine learning framework, and tests
the pre-trained model on street-level images using the proposed dataset. The training
sets are 400 images, and the testing sets are 100 images. The advantages of U-Net++
and DeepLabv3+ for the facade parsing task were described previously, and the two
models were chosen to be trained separately on the proposed dataset, and then their
segmentation performance was compared. During model training, a data enhancement
technique was used: small rotations were applied at random to 60% of the data. In
addition, a 10% color adjustment was applied at random to 60% of the training set to

generate more training images.

The performance of the segmentation model was evaluated quantitatively and
qualitatively. The quantitative evaluation includes precision, recall, and IoU to indicate
the performance of the model. The IoU measures the overlap between positive
predictions and positive samples. The detection results of small and large objects can
be visually observed by Qualitative results. Besides, the difference in performance

between the two models can be observed by human vision.

Table 5.5 gives the segmentation results of the two with the training model on the
test set. Looking at the IoU metrics, the DeepLabv3+ performed better in the wall
category. The qualitative analysis shows the same overall results. Figure 5.14 shows the
segmentation examples for wall and window using DeepLabv3+ and U-Net++. Overall,

the DeepLabv3+ shows better performance in dealing with boundaries and large objects
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(such as walls), and a little improvement from U-Net++ in dealing with small objects

(such as windows).

Table 5.5. Wall and windows segmentation performance using U-Net++ and DeepLabv3+.

Model Precision Recall IoU
Wall U-Net++ 88.35% 89.53% 83.61%
a
DeepLabv3+ 92.35% 90.87% 86.86%
) U-Net++ 89.10% 87.19% 82.19%
Window
DeepLabv3+ 90.67% 87.57% 83.88%

B W= [ Window [N Sky I Road 0 Green People I Door
(a) Ground truth (b) Prediction by DeepLabv3+ (c) Prediction by U-Net++

Figure 5.14. The segmentation examples for wall and window using DeepLabv3+ and U-Net++.
(a) Ground truth, (b) prediction by DeepLabv3+, and (c¢) prediction by U-Net++.

5.3.4  Automatic extraction of building facade results

The urban facade database can be constructed by integrating the proposed methods.
The construction process of the database can be divided into three steps. The first is
data acquisition. The sampling points in the centerline of the city road can be acquired
from urban geo-databases (like OSM). The street view images on both sides of the
sampling points will be downloaded from Street View Service. The second is data pre-
processing. The developed system will detect building facades in the street view image
and remove the obstructions in front of the buildings. The separate building facade will
be extracted based on the pre-trained instance segmentation model. The third is data
mining. Building facades will be numbered, and each facade's dominant color, function,

and window wall semantics will be counted by the proposed method. A 500m long
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urban facade database was constructed for a street in Osaka. Figure 5.15 shows the
location of the study area, and the street sampling points are set at 50m intervals. Figure
5.16 shows the details of the urban facade database, including the sampling point ID;
the left and right along the direction of the street car; the coordinates of the sampling
point; the street view images; the pictures after the unwanted object removal, and the
facade instance segmentation; the number of individual facades; the dominant color of
each facade (based on the Munsell color system); the function of the building (A for
public service, B for commerce service, R for residence, O for other facilities); window-

wall semantic segmentation of the facade.
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Figure 5.15. Study area, (a) Osaka Prefecture region, (b) A case study street in Suita, Osaka, (c)
Ten sampling points are selected on a 500m-long street, and the street-level images are acquired
from Google Street View service on the left and right sides of each sampling point along the street

direction.
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Figure 5.16. An example facade database is constructed for a 500m street in Suita, Osaka. The
facade database includes the sampling point ID; the left and right along the direction of the street
car; the coordinates of the sampling point; the street view images; the pictures after the unwanted

object removal and the facade instance segmentation; the number of individual facades; the
dominant color of each facade (based on the Munsell color system); the function of the building

(A for public service, B for commerce service, R for residence, O for other facilities); window-

wall semantic segmentation of the facade. N/A means no facade.

5.4  Discussion
5.4.1  Comparison with conventional methods

For the facade color measurements, the previous methods developed by Lu et al.
(2010) and Nguyen & Teller (2017) are computationally expensive in terms of facade
color measurement and building function statistics, based mainly on field studies, and
with low expansibility. These methods require a significant amount of manual
measurement data, including on-site streetscape images and questionnaires, and are
restricted to neighborhood-scale studies. In contrast to the field survey-based method,
the proposed deep learning-based data processing method can analyze large amounts
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of data with high accuracy and is more cost-effective in measuring the facade color
corresponding to the building function classification. The proposed method can
quantitatively analyze the color distribution at different building functions to support

evidence-based urban analytics and design rather than simply qualitative descriptions.

The proposed method can accurately parse facades in street-level complex scenes
for the segmentation of walls and windows. Compared to previous methods (Gadde et
al., 2016; H. Liu et al., 2020; Ma et al., 2020; Teboul et al., 2012), this study's
contribution is to customize a high-resolution facade parsing dataset for complex scenes.
The new dataset contains wall annotation based on individual buildings. A larger dataset
of street-level facades with multiple views, foreground occlusions, various lighting

conditions, and complex facade backgrounds is included in the proposed dataset.

Compared to facade extraction methods that use semantic segmentation (J. Zhang
et al., 2021b), the proposed method using instance segmentation can extract building
facade information one by one when multiple buildings are connected in a single image.
The conventional method treats the information of all buildings in a picture as a whole
and is unable to parse the building monolithically. The proposed method is more
accurate and overcomes the previous problem of not being able to parse individual
facades information (such as individual facade dominant color or individual building

function) in connected buildings (visual adjacency or overlay).

5.4.2  Potential applications

This study attempts to construct a quantitative research method for the city-scale
measurement of facade data, including color, functions, walls, and windows. After
testing, the technique demonstrated its viability and convenience in initial
investigations of urban design and city modeling, implying potential application as an
augmented tool for designers to establish objective decision bias and enable a data-
driven strategy. Given the method’s benefits, it could be used to discover discordant

architectural colors in particular functional areas, assess the color planning of the built
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environment, and provide foundation color details for urban design implementation,
thus facilitating a feedback process. For example, the new and old facade color has a
noticeable difference because of the pace of construction and business distribution. This
study provides city managers with a clear understanding of street-level facade colors
with building classification to realize the optimal balanced development of the new
buildings and traditions. In addition, quantitative measurement and classification
provide empirical value for intelligent design guidelines in various areas, such as
residential, commercial, and public services. By analyzing the color and function of the
city, the authorities could explore the color tendencies of functional buildings in
different cities. Then propose urban planning solutions with their own identity. This
process helps avoid the drawbacks of stylistic homogenization induced by the
prevalence of functionalism. It is expected to help improve the color quality of the urban
built environment, especially in further exploring the visual environment design, to

better support urban renewal in the post-urbanization period.

The workflow proposed in this study can help create a portrait of the building at
the city scale and move to the next modeling step, such as urban building energy
modeling and 3D modeling reconstruction, which is crucial for building retrofitting
solutions and semantic enrichment of BIM. Other important building indicators, such
as the windows-to-wall ratio, which is essential for assessing the building energy
performance, can also be calculated from a semantic segmentation model integrated
with orthogonal transformation. In addition, the method may be more convenient and
economical than traditional methods, as it is characterized by ease of implementation

and does not rely on intensive physical labor.

5.4.3  Limitations

For the facade color measurements, the intense sunlight will impact the quality of
street view images, affecting the color calculation based on the introduced method; an
example is shown in Figure 5.17a. The color calibration of street view images can
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improve the calculation results. However, with the current color calibration methods, it
is difficult to obtain the actual color of the building facade for some overexposed and
overly dark street view images. In this way, the low image quality has a negative impact
on the accuracy of the color measurement, classification, and segmentation tasks of the

buildings.

According to the building classification results of the four classes, some residential
areas are relatively more difficult to identify than other classes, owing to the fact that
residential areas in older towns are highly mixed in function. Commercial services often
exist on the ground floor of residences, and few individual houses are on the streets of
these study cities, causing the classification accuracy of some residential buildings to
be lower than other classes. As shown in Figure 5.17b, the building in the street view
image is predicted to be a mixed service. Last, there are a few manual tagging errors
from OSM users in the training set of the classification model, especially for similar
facade features. As shown in Figure 5.17c, the building in the street view photo tends
to be a residential apartment, while the label from the OSM user is a hotel. Detecting
multiple labels for building functions is possible. By recreating the dataset for multi-
label image classification training, automatic recognition of multiple building functions

(more than two) for classification in a single street view image will be achieved.

Figure 5.17. Some observations from street view images illustrate the limitations of color

measurements and functional classification. (a) Color deviations persist in the overexposed street
view image despite color calibration. (b) It is difficult to identify a residential building with
commercial service. (c) The building in the street view photo is an apartment, whereas the label
from the OSM user is a hotel.
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For the walls and windows segmentation, the current limitation is that the proposed
building facade dataset has not been validated on a large range of streetscape images
under complex weather and crowded street, which is important for practical
engineering-oriented applications. Since some windows are small targets in street view
images, they are prone to lose information when down-sampling during CNN-based
model training, resulting in suboptimal segmentation accuracy for small targets. The
purpose of this research is oriented to the update of buildings and the semantic
understanding of building information models, so the accuracy of the results is required
to be high. The segmentation task for walls and windows of building facades is
characterized by the presence of both large and small targets in the picture, the diversity
of object angles and forms, and the state-of-the-art semantic model used in this study is
a generic design that does not achieve the most desirable segmentation accuracy results.
Furthermore, when glass reflects the sky or street objects, the segmentation model tends
to identify the reflection of window glass as other objects, which reduces its overall
quantitative performance (as shown in Figure 5.18). In future work, segmentation
accuracy will be further improved by tailored datasets and algorithm enhancements.
The semantic information of the building facade in the street image will be distortion

corrected to obtain a usable segmentation result.

Figure 5.18. Some observations from street view images illustrate the limitations of facade

segmentation. (a) The window glass reflects trees, and (b) the window glass reflects buildings will

reduce the segmentation accuracy of walls and windows.
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The GAN-based method eliminates the unwanted objects in front of the building
and completes them, which can solve the interference caused by obstacles to the
building elevation information extraction and improve the accuracy of the acquired
facade information. The proposed method currently generates prediction results that
will be slightly inconsistent with the real situation. In future research, the proposed
method will improve the accuracy of the algorithm, and the generated textures will be
consistent with the ground truth as much as possible. Many full reference metrics have
been proposed, but it is difficult to assess the gap between the generated images and
ground truth due to the unavailability of ground truth. The current criteria for evaluating
the generated image are two-fold: (1) based on human visual perception, and (2)
truthfulness of the content. First, after the GAN-based obstructed facade completion,
the goodness of the generated image can be judged by the experience of human visual
perception, such as color and semantic consistency, gray scale, or similarity. Second,
the current method cannot assess the authenticity of the generated image content. As an
example, the window size on the infill cannot be compared with the ground truth.
Therefore, calculating the window-to-wall ratio or the semantic segmentation of
windows is impossible to determine whether the generated images are accurate
compared to the real situation, leading to uncertain applications to the window-to-wall
ratio problems. This problem might be solved by synthesizing the street view.
Unwanted objects, such as trees, cars, people, etc., are superimposed on the complete
building facade image. The ground truth image, the obscured facade image with masks,

and generated image by inpainting the mask can be obtained.

9.5 Summary of this Chapter

This study proposed an automatic approach for facade color measurements,
building functional classification, and window-walls segmentation at a large scale by
applying state-of-the-art deep learning methods and street-level images. A pre-

processing data method for facade color measurement was developed in two steps:
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image color calibration and obstructed facades completion. A tailored dataset of street
view images is built to train a multi-label classifier for building functions, including
residential, public, commercial, and other facilities. Finally, a tailored dataset of
building facades is built for training semantic segmentation models for walls and

windows.

The proposed methods measure facade color, classify building functions, and
segment walls and windows using street-level images. The accuracy of the proposed
method was verified by field surveys. The results show that the proposed methods have
satisfactory accuracy, with a color deviation of less than 20 for more than 67% of the
measured data and overall accuracy of 86.50% for the building functional classification.
The ToUs for semantic segmentation of walls and windows using DeepLabv3+ are
86.86% and 83.88%, respectively. The proposed method can automatically collect basic
building information to support data for urban renewal. This work aims to quickly
access inventory data of existing buildings to aid in the application of large-scale city

information modeling and building renewal.
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Chapter 6. Conclusions

6.1  Summary

This study presents an automated workflow for extracting multiple types of
building facade data based on deep learning and geo-tagged street view imagery,
assigning measured data to individual buildings in urban areas. The main body of the
study is divided into three parts. Firstly, this study develops an unwanted object
elimination system that can obtain complete building facades to improve the fidelity of
building facade information based on street-level pictures. Secondly, a facade instance
segmentation method based on CDT synthetic dataset is proposed, which has two
benefits: one is to solve the segmentation problem of adjacent buildings. The other is
that the automatically generated synthetic dataset dramatically reduces the cost of data
annotation. Thirdly, an integrated multitasking facade data extraction method is
proposed. Building information, including building dominant color, building functional
classification, and wall and window semantics, will be automatically counted. For
dataset making, the author proposes a publicly available facade dataset that can be used
for obstacle removal in streets, DCNN-based facade instance segmentation models, and
window-wall semantic segmentation. The proposed method has been validated in

several cities, and the results prove its effectiveness.
6.2 Research contributions

This study proposes a workflow for large-scale acquisition and quantitative
analysis of multiple data of building facades based on street view images. The method
can overcome the interference of obstacles in the street to the facade data acquisition.
In addition, it is difficult to obtain individual information on connected buildings based
on the previous methods because of the lack of diverse facade instance annotations. The
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proposed CDT synthetic dataset HSRBFIA in this study can be effectively used for

facade instance segmentation for real images, revealing the potential of the proposed

synthetic dataset to replace real data. Further, multiple building facade data types, such

as facade dominant color and window-wall semantics, that are not recorded in existing

urban geographic databases (such as OSM) are measured and analyzed. Overall, the

contribution of this study consists of three parts, which are concluded as follows.

1)

2)

3)

An obstructed facade completion method was proposed. As a result, unwanted
objects in the street, including people, greenery, and cars, can be removed. In
addition, a dataset called SVBFI was tailored for DCNN-based facade
inpainting with unoccluded facade images, mask images, and semantic
segmentation labels. Eliminating obstacles in front of the building can
effectively improve the loss of information about the building facade obtained

through street view images.

An automatic generation system is proposed to create CDT synthetic data for
training facade instance segmentation. This approach takes about 1/2,050 of
the time that it takes to manually annotate each image, which can significantly
reduce the cost required to annotate data. The segmentation accuracy is
boosted significantly when a certain fraction of real data is loaded into the CDT
synthetic datasets, to the point where its performance becomes competitive
with what is seen when 100% real data is used. Verification for multiple other
cities demonstrated the transferability of the proposed framework. CDT
synthetic dataset can obtain promising prediction results for most modern
architectural styles. In addition, this method can effectively achieve monolithic

data extraction of connected buildings.

The extraction methods of multiple building facade data based on geo-tagged
street view imagery and deep learnings were presented. A pre-processing data

method for facade color measurement was developed in three steps: image
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color calibration, obstructed facades completion, and facade instance
segmentation. A tailored dataset of street view images is built to train a multi-
label classifier for building functions, including residential, public,
commercial, and other facilities. A tailored dataset of high-resolution facade
images is built for training semantic segmentation models for walls and

windows.

The tools developed by this study have been made open access and are listed as

follows.

A format conversion tool was in Chapter 4: from synthetic data to COCO format
for training deep learning-based instance segmentation  models:

https://github.com/Mortyzhang/Mask2polygon_tool

A facade dominant color -calculation tool was used in Chapter 5:

https://github.com/Mortyzhang/Facade-color-calculation-based-on-colorcard

A building function classification tool using street view images in Chapter 5:

https://github.com/Mortyzhang/Nanjing-street-view-datasets-and-classification-

tasks

Limitations and future work

The study's limitations can be divided into two aspects, one is the customized

model architecture, and the other is the bridging application. For the former, the general

CNN-based models in this study have not been targeted to improve the building facade

parsing task, so the accuracy needs to be further improved. For example, since most

windows are rectangular, controlled algorithm improvements based on a priori

knowledge can significantly improve segmentation accuracy for parsing exterior

windows. For the latter, this study can measure the facade data of buildings (facade

dominant color, building functions, and window-wall semantics) at a large scale.

However, the variety is limited, such as precise facade geometry data (like building
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height, building perimeter, building volume, etc.) cannot be covered. Therefore, it needs
to be supplemented with data from other open-source urban geodatabases (like OSM
and PLATEAU). This makes applying the current method directly in urban building

energy modeling or building retrofitting tasks difficult.

’ 1. Data Collection ‘ ‘ 2. Database Construction | 3. Applications: Scan to BIM and
CIM, urban building energy
[ Technologies ] J Data Analysis ‘ modeling, and urban renewal

=
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Figure 6.1. The research work for the future can be divided into the following three directions. (1)
Supplementary 3D point cloud data collection; (2) construction of the urban database; (3) and

practical application-oriented data analysis.

The overall goal of the future work is to implement an automated, scalable and
comprehensive building facade analysis system to enable efficient measurement of
urban building facades with multi-source data types. This system will largely help
transform existing building analysis methods, reduce data limitations, and increase
efficiency for developing urban facade databases. Figure 6.1 shows the research work
for the future. It can be divided into the following three steps. (1) Data collection
supplementary. 3D point cloud data needs to be collected for measuring facade
geometries. Buildings need to be monolithic in the 3D reconstruction model, rather than

treating all objects as a single mesh. (2) Construction of the database. All the collected
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data needs to be integrated into one database to address urban development issues in an
integrated manner. More building facade data analysis will be implemented based on
databases. For example, defects detection of building facades, especially glass curtain
walls and other vulnerable parts. Thermal and hyperspectral images are used to
determine the building's thermal properties and material type, respectively. It is possible
to identify building materials using spectral characteristics. Similarly, thermal maps of
the building's facade can be used to assess the presence of different components' thermal
bridges separately. (3) Practical application-oriented data analysis. Combined with
computer vision techniques and multispectral cityscape pictures, localized building
features will directly help automate the extraction of current existing building data for
use by local government authorities or other stakeholders. With the development of the
facade data extraction systems and evaluation of the proposed method by city-scale data,
it is clear that the prospect of applying this research to urban development issues, such
as building information modeling and city information modeling enrichment (Xue et
al., 2021), urban perception recognition (Larkin et al., 2021), urban-level building
daylighting and energy simulation (Szczesniak et al., 2022), and building renewal

(Zheng et al., 2017).
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