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Construction cost
- - = Operating cost (fuel consumption)
~ = ==-Construction cost+ Operating cost

Construction cost, Operating cost
. \ b )

S -
S e
S e e wm .

L1 Ship Length(m)

Fig.1-1 Relationship between ship construction cost and resistance/propulsion performance as operating cost

when ship length is a parameter.
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Construction and operating costs
considering actual sea performance

\
a N\
\ .
N
\ .
///7\\
~ ~'~\

Construction and operating
costs determined by
performance in still water

Cost

Construction cost

<Displacement constant>

L1 L2 Ship Length(m)

Fig.1-2 Relationship between construction cost and operating cost when actual sea performance is taken into

account.
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[Carrying Cost Factor : CCF($/ton)] & FH T EHFMERE 2 f 7 L 72, CCF |3dhE =2 X R 32 liZelx &,
RN BN D IRVIE E/NEL D, ZELIE, ME320m OX U —E R E LT, HEKE -
IR - UK —ERIFIC TR 22 S W7z 4 I Z2 Nz 72 5 i xt9 % CCF # k& 7-. Fig.1-3
X, PARHHRRIC—E Y —~ — VU AN X DEROEMBRE R L EkEY) & RBEiTICE
TSI - AR N S OHEE BN A VTR 5 F2E Y2 KD CCF Lzt T
5. AReFEFITHERTNEIE, EEFERIEIC LD CCF OfERIZITHERIEICITR S e CCF il
SIS REINL L 1372 2 Lpp=310m H7= D IZHFEL TWDHZ EThHD.

12.0;

® Considering actual sea performance
———&—— Using performance in still water

—
—
9

—
o
)

—— CCF ($/ton)
o

—
o
o

300 310 320 330 340
Ship Length  (m)

Fig.1-3 A calculation example between ship length and the Carrying Cost Factor (CCF)?.
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LT BT EFR EADWKITHIAR IR L, I X > TAEL BB ER/MNCT D L 01T, E
WM REHE E IR Z W TIE SN A RETH D, 29 L THEMEHRIEREZ 147 1S Bk & B 7= iU BH
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EEDI [g/(ton - mile)]

_ Conv. factor to CO, X Fuel consumption[g/(kW - h)] X Engine Power (kW) (1-1)
- DWT (ton) X Ship speed(mile/h)

F7-, ¥RE ST Beaufort A PERL GEEIE 6 2MEEE) 10T D E A Z & L 7~ EEDIweather
BAEENTAI121E, K’k 995 H NS,

EEDIyeqther [g/(ton - mile)]

_ Conv. factor to CO, X Fuel consumption[g/(kW - h)] X Engine Power (kW) (1-2)
- DWT (ton) X Ship speed(mile/h) X Weather factor f,,

(1) D f,, 1 ZFEE S 417= Beaufort A SIFERRIZ 3517 2 MdK T O 2 7~ 3 R iR (f,=1.0 1%
IR T ENEr 27 7) C, RAUTL > TERINS.

_ Ship speed attainable in a given Beaufort scale
fw = Ship speed in calm sea at 75% MCR

(1-3)

72%, THE MARINE ENVIRONMENT PROTECTION COMMITTEE(MEPC)D ik E (&5 3k 4
BEOS) 1o knE, A-DX~13)XFOfE I Tthe shipspeed), V=V —7 7 7 ¥ —{(% [Weather
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cvy—iE) BINCRE LTI THD. F-, TOREE %M > T Beaufort JAI &R 6 DEFD fw &
A L7z —f% Table 1-1 |2~

Nominal Speed Loss in a Seaway according to the Engine Operation Mode

Beaufort Scale

Revolution Constant

Speed Loss (kt)
W
o

-4.0 - — -Power Constant
5.0 - - = Torque Constant

.\
-6.0

Fig.1-4 Nominal speed loss of container ship in a seaway according to the engine characteristics.

Table 1-1 An example which calculated fw at 20.133kt.

Beaufort | Wind Speed | Significant Wave Mean Wave Engine Operation Speed Loss fw
Scale (m/s) height(m) Period(sec.) Mode (kt)
Revolution Constant 0.970 0.952
6 12.35 3 6.7 Power Constant 1.130 0.944
Torque Constant 1.207 0.940
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Fig.2-1 1%, LA EOMHMEREHEEE EHEE DN E £ Db D TH D.
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L Input data

Calculation description

Calculation Result

[tems to reflect the results

Principal dimensions

* —hull
I —propeller, rudder

Estimation’

s condition

= —loading condition . -
I —ship speed

L.

——q

Lines .

—.-l_.—.—l

I T Ev; E)r;nﬁm. - _l Estimation of ship response

* —swell, wind waves I | functionin regular waves |

I —Hy3 To, X . ]

= —wave spectrum I -
—wave direction function ' Short-term prediction

e — — O — O — —

= Long—term wave statistics data *

—6-DOF ship motion
— Acceleration
— Relative motion

Steady lateral force
and turning moment
due to waves

\ 4

Phenomena caused by ship motion

—slamming
—deck wetness
—propeller racing

l_Strength Stan dards-!

Determination of possible
hull and engine damage
Local strength:
Reflected in structural design

Maneuvering
Decisions

Fig.2-1 Estimation flow of seakeeping performance using existing estimation techniques.
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Drift- Rudder angle estimation

—resistance due to drift/steering
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Wind information

—wind speed, wind direction 1
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Mean added resistance
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Wave loads

[

Ship performancein calm sea

—resistance

— self propalsion factors
—POC

—main engine property

Long—term prediction

Reflected as external forces
during structural design

Wind resistance estimation

* Operation Limit .I
Standard

Estimation of power increase and
nominal speedloss

Operational fuel consumption
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2.1.2 EMURE OE S HEETE
Ko LBV, MHTERERRTIO K E 2 BHE & U C EWEE TR OEMURE M RE DR N B 5.
) SN

[ElIBu
RPL, FEEIENIRIL A BE L THEH 2D OREHEEEZHET 22 L THL. LR 1ODE
L% &, BRI S0 OO RENEE & F 1T TERIND.

F=f,y(P,N)P (ton/hour) (2-1)
I, fo: BRI B2 0 - BT J1 & 70 O OBREREE f(ton/hour/ps), y(PN) : FHEME ) P(ps) &
TV VAR Napm)DBEE & L CThH 2 BN 2 EHEE E(Fig.2-2 28, X DO%FRR S 7z ik
ByPN)TH D), ThHD.
Q-DXOBALREM 72 0 - AL J1 857 0 OBRENEE: & fo & BREHE 3 y(PN)I X 1 D R
LTV A== b 5206050 T, FEEEHITRO P & N I L UOWERRH 2 R E0E,

B Z X —THE B T DIRENE B BENGHE TE 5. Fig2-2 6 & i, P=10,000ps, N=350rpm D
REIT y(P,N)=100.8%~101.5% D (XF D XH) (Z&H Y, A X > CTEMZy(P, N)EZF 3
5. TOREREQ-DRURATIUL, FRFETE S, £70, 29 LTRERHEEF NkEh

WRE OPREL A A 52 5 2 & C, —HilEOEMBRE N RN TE 5. ZOERBREOFHEE L i
DL, SEISATRF O EHE ) P LB OHEERE L Om EXMNETH 5.

72%, Fig.2-2 110 ALC (3 H B & A7Hl#E2EE (Automatic Load Control) WD Z & T, H[ZAE v F
S AT BRI U CRRBHE L R0 il & 7 DAl BT

ETHD.

7T A AR LTS B WV TERGE

FEDMEBN 35 X 9 1A & BEIRICHIET 5%
13000r  mcr 14,200 PS

BHP
(PS)

10,000~

5,000+

TTTE0 300 380 a0
Engine revolurion (RPM)
Fig.2-2 Example of fuel oil consumption’s rate!?-19,

ZTC, 2-DAEH 1 F|IZTTR L EEDUEZ#HEET 2 (1-DVUTH L S ETHEGER T 5 &, (1-1)=
ﬂ@Dt%~~x&LT%%éhfmé_kﬂ%%_ﬁé.?&b%,@nﬁﬂlﬁ%%tw®%
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BHIZERZ BT 55Tl 5 OIKE LT, (1)@ & 2 R 2 i & 4 Ol
KTz | b OEIE |~ A VR D OB R E CO BHERICRIT 5 b O ThB. 20
ZEmbh, FFHEAITR OMHUAT OFHRE R EOTEd ORFINEHE TH L.

A TRFO S N OHGERSIDIE, TR 31 2 HEFORANR Sy & HEE RO HEE R 1
Lo TRESNS. Thbb, FEKEAMTT 2L, B - B2 & OIFLEZ T TR EEBA
it - ISR 24TV RS DRTHET B, L7eAs - T, FEHEMIIAT 2 U - I o HE R 3R -
WA KD IRPUHANC AN T, 2 A BAMELFIC BT M EFIIC Lo T4 L 2 AR IRHH A
(ERfE « UL - \I5E7e O) B LT huE e H7ew. b ofEE=E SR208 HFZEile 112 THRE
SHIts, TOHEREORIEN 5 TRVCEDSIBEThHS. —F, ko LY M5 OHeE
I IEHEE R DR EAR AR TH Y, ZhUck LCIREIRo & 350 R 5 B3R
RTURT DI ENIRT 5 2 L NUETH D,

R OB R LB AR R, B L R R L LS E L & — o T
B Vi ICE o TRESD. L, EOHFEITHMKEE OBEDOREE & XM OHEE RS E IR 77
5. S BIZ, BT BAEEO FERISIIN O EIC U CHRE S5 7200 MR R BB C E
MR ET D 2 LI L <, BEHRICBVLTHBEIZS 5 LbkE->TWE & LTS . LTI,
PR DO EHIZOWTIR R D,

(1) MAEPEREY R = L— a3 S K-> COEBIE 2 #EE+ 5 Ik

— WU OO S A HEE T 5 72 01TE, Rk o> FENEE T o0 i I E AL N 2. T, AR
THEEDOFENNETH D, — Mg L7 S 0 & B2 HE T 2 —2 & LT, i
PEREY R 2 L—a LTk D 1E (B, MaMEREY S aL—ra VIEERT) b b, 2ok
X, NS AHEE TOM, M5 - KRIC L DMELEE LG O TIRIRITERT 2 1080 5V e
KEME RN D, FE UEMME L2 S S TMIoZEE 22 21— a3 U5 5ETH
2.

TR P ZHAT L COSIMERICER T2 12 LT, 7axXI# Xy, #E)) - E— A2 b
(X, YR,NRr), AU ) (X, Yi,Nu) 36 £ OV « 1T K 554 T1(Xa, Y a.Na,Xw, Yw,Nw) 23 & V), ffteid %
NHDHEE—AL MBI G olofkiE GEFIREE) THIATT 5. ZOEFIREBIZI T DAMKI/E
AT 271 =22 b GWVHREAL, 8k 1ICEEMEZ R LIz LB kA D TRELEND.

XA+XH+XR+Xw+Xp=O
YA +YH + YR +YW = O (2'2)
NA+NH+NR+NW =0

(22)RKDJ) » T—A 2 OB, [FHEEL - ik - fEFA - RHTA I L OKR(EE - Bl A) - SR
(B« B - B )AL LTS TER Y, RIS LORE - RS L L

TR AR - REA - RHFTA O 3 B AR E L TR, FlZX, B —EMIT28EL, BE
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Wi EOKRITBWTRS - WSEHRE 525 2 L TRAXEML L, 22)XRDOKRMETH 5
o e - RASRE DS, Fio, R/ ONTREREND T e XTI EEROBLAHEETE 5.
F UL > THEENRDZEA R E D DT, FOFEEOERHUE & MY & — MO BREE &
ORI HNE R TE OB LR TE D, 72, HABROMKELE2 5225 LRKE > -
SRR FHE CE 5. 29 LT, 2-D)NDFH RIS E e T 77 - [BIERE & v 23k £ 5.

9 LT, MMATEREY X = L— g RIRBUAHEREVERE - THTIERE - BRAEVERE OHEE BN A 1
L7eb DT, ¥alb—arZ70I3BIEICO 2 HEROANBLETH S, =ZFH 9F, K
FIEE AW THANEL & R OVERELLIR 2 AT S Tl 2 R LTz, 728, U=V ——TF 0 7 9
RAAMERES R 2 L—r g AR L7 b 0T, IS B RUHIOBICER O ZE L T, X
G BH OB, 52 TZERERA V MEIZQ2)XE MO TIMEDIRIEZ b 5 = & THETr~
TR 2R LS BRI 5 . ZOBE, RO 5 RENK 2 ER T H 200 EEN
VLT, RFERFEIRTR R B ORENE R B/ MR RN & 5. 0LV =V —1N—TFT 1 v T %
179 2 LT, R - MR OZEACITHIR LS DT L 72556 O FEM 22 BOBHI 2 oA R 234 C
5. UL, RGO =W — 1 —F 4 VT VAT AOERIIA T — 2 NEIZZ KD
RE 2 2 S e B &0 ) RICB W T, BRI M R L Bbh s, BUR T, X
V) fEAE 72 7 15 CTHEREE 2 5RO 2 FIENLE E B X 5.

(2) EWITHNEE R CEE M & HEE 3 5 7k

RAAMERE S X = L— v g VIEEEZ W T IS A ORENEE &4 3R T 2005k E LT, 3.2
(RTE N & MR T O BIfRE W TEZ RO 5 FIENR S 2 bvd. ik, BEMKICE
T2 S (B S H A T) IS 50 2 s T &2 B 5 L 7 iiimE ) VSIHT) &
R LT HEO N 2 R D 2 FIETH L. MEER Do TWDHOT, RDIEEMEIC K
D HER SRR T & 5. AREIETIE, MIKICB T 2 EEEROREICREBHEERITRS N
W IR B R E RS p(H T Z W 5. 37005, BHITROFETHOKAD & 9 1238
TR LR p(H, D) 2 EABAE L LT, IR VSIHT) E BT AEDLEDL 2 LT, HHP 51
BUICHBT 5 Z L BB LR —HiEOMEFE Vi, 2 H T 5.

1SS V(. T) - p(H, TYdHAT
Jy Jy p(H,T)dHAT

(2-3)

m

S I, EHMEEZ i EICBI LT, iV ((Hk 6 @ Fig.A6-1 2SO Z L) EIZ p(H D%
HELTEB ZENAMRETH D, ZOGAEIE, FBROFEIME Vi 2RO T2, b &Y
L CGEFMEKICE TS Ve B HEET 5. ZOHAED Vnld, &5,
= = [V (H,T) - p;(H, T)dHAT
E}Wz }ﬂ% i(H,T)  pi(H,T)

U = .
i=1 i=1 ffo pi(Hr T)deT

i=1-,n (2-4)

S|
S|r
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-, HATT DR OE N EEZETE H500802-3) e8RS, 2-3)XB L0049, Ak
ORMATERE S X 2 L— 3 3 B R TS G TIZH 203, LR OWFGRRIL 2 IR Bk
REERIC L > TEET 22 L THIBOTFHMELZFRE TE 2. ZOHER, HEICHETE
B AIZB WD THIIRR GBS ~E A Lo90 . 2B, M & 3R 6 5 72 012(2-3)5UdH 2 W id(2-4)K
ZEMT 25AI10E, BRI BMERE EEBICE L T 235 filld25 LB OBRERH 5. ((2-
AU L DG EGNE, FHF% 10 1R~ T.)

2.2 RUHEHEENERE A B L oG ot
RSB T D M HEENEREHE R HAT I, 6k S O WK P HRPL - HEMENERE L AMEL ISR T 54
FEOHPTHINEL /3 36 X OHEEZN R OHEE & BT 5.

BUR OMMARREHC 31T 2 EHIS I OWRE X, I — 1 —BaEIC K> TIThiv b O —%H) T
5. FEUFHSHEEMREZ Z B LI iiaket o 7 o —13, 212 fi Tk~ kb & T Fig2-3 O X
N2 D, KRBT - HEEMERE A B L 7ok aticxt LT, ZEBOMa 03 M- Tb. Fig2-3
DX I, FEEEFHE ) (BHPrealsea) 73 HARsXE L7-fE (BHPtrg) Zifi/d 9 % £ THBI R A
MOBESND. AEREDEME LB RIC LY, ST oMK T %2 558 L - a2
Red7-1%, FMEEHATOEEMSR 2 B R L CEMRE & EMREHE LTS e LRERSEL
NRWEEITEE T X b EE T 2 OB EITORNET, TEAORELALETHS. Flz
X, MEEZRELS T L@Ea X MIT v 74250, FEHEICH T 2EREDM LIC X > TEMOIE]T
A NEHIECTE DAEEEAH Y, W2 FOEREWVICE > TRAMIZIZBRENS ).

BRI OHEEIEE, AR O & B 0 BUEESTOHIR PRGN O Z By & U7 B
FHIC—IIEH ST D X ICEH LW CTIE 7w, TR b ofEREE I L3252 Lick
STETETREMRZEORITIULR SR,

NT A NIREED L O ITHUK MR VIREE TOMATCIE, RRRIZT BT L — IR T IV
IRECDHEAENDD. RO 7 —I2BWThH, BT LB E LTI L —
TIREIBRNVWE I R e RTEBKELRET DFIRIZENTND., —F, TexTL—v 7
NEERVFATHL T a_XTERKENELT 5 Z & TT T EHMEEKLKYP (LT 5728, D
WEZEBR L THEDRZ RO D Z LN ERE HHEEHEOR EICKNETH L. £, WRTICE
T M ASEBNC X o TINERSE A Z LT 53, TOEE LY 7 aT HIGERA K F OfEIC
BEARTEAT D2 EZXRTE b7, 295 LT, ERENHEERELZ&ED L7212, i
RS DEA DR S HEE FIRICAASATL IR & 5.
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Weather conditions Design conditions
—wind speed, wind direction —principal dimensions (L,B,d,etc.)
—swell, wind wave —loading condition, designspeedVs
—Hy/3, To, X —target BHPtrg, operating profitability
—wave spectrum
—wave direction function .

Draw the lines

A

A 4

resistance due to resistance due to Resistance in calm sea
wave Rwave wind Rwind Rstill
resistance due to resistance due to
drift Rdrift yaw Ryaw >
resistance due to
,—' steering Rrudder

Rudder data
—rudder area

Total resistance in actual sea
Rrealsea

Self propalsion factors

| BHP in actual sea |

Y

—aspect ratio

POC data
K. Ko Mo
—Kn. Kq 7, T e 7

Effect of propeller immersion

NO

BHPtrg>BHPrealsea?

Effect of changing wake at the stern

Ship's speedthat can be attained in
actual sea conditions Vrealsea
(design speed—nominal speed losds)

Operational fuel consumption

when navigating in actual seas

Operating Profitability during
Long—Term Operations

Long-term wave occurrence probability

density function

Is the operating profitability
enough?

END

Review of design conditions

—principal dimensions (L,B,d,etc.)

Fig.2-3 Flow of ship design considering propulsive performance in actual seas.
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2.3 MHFTMEREHEE Hefir 2 ik sHCE M 2 & & OfE

MHHPEREHEE D — D> DR E L BT, AR D & B0 EIRPOENIHIHEE TH 5. BUEE TIZE
RSN ARIERERT — 2 2 AE M L2203 SR O K M EHEE T 2 FIER, MaiEsh
TWD. HEFEFTNENIRFENH Y, BIEIEEIZH > TN PBETH L. €D
ZOICiE, TNENOFIEORAT « B2 PSR L TR RIZR L2, S6IT, ZORHIZ
D ETHEZIIETE 2. MAREINTWLENHEEEO T ORI —HE) —Bakn, ety
DIEIMEEDTEE LTRSS TS,

LU, F& 8 IHEE O RS EE M BTk 2 BUROFRE Z 1% L, EtT R E A48 0 AT, K7l
BHL—HE —BAEIE R LR BRI A 5.

23.1 FERHOEMEER

B LR AT T DA TTIE, MBS I IRER) O BT K o TPRKF ORI TRE
SERDZEMBTaRTHEENMEMNT S, ZODIEREORMNC T 12T RO T2
K0, HEEDENET D Z LR D ODRFEICE D BN TWD. L L, BT
ICZDO XS REIRFICHE T 2 AMEROZITBREENT, FAkH & E CEEME > T DO NE
WTh s, KTk, MIKEBCL L7 aXTMARELTICER LT, 7 rX7 AR EAE
7RG PRI RINET B O TG 5.

232 WRHPOT T EEE

BRI TIL, 7 aXTBRKEENENT D, BAKREDOEGIZHEN, AT A b« ML BEET
HZ NG ODIFRIZE > THOLENTWD. T7hbbh, BKEENELS 78 &7 a7 Rpkn
REENT D, DI, WEBEELL 2D ETaXTEHBAEL, TaXTRETE HICE LT
5.

FSJ1HN - AR T EHE ORSEE R B o729 ZOEBEEET L L CTHEE FIBICHAAT
ENEETH LN, BROEME SHITARBR A EJE LT HEE O FNEITHENL S LTV 2RV, Kii
T, WIRT TOT m T RO 2 5 F 7 v % G IHIHEE FIEP I ZAA AT, £
DEBORELZMETD.

233 SMELHIZI T D GBI Y
(1) HLAE FPHCHTE NS 2 B4
LRI R HTEE A B R, SRR ORI K AP EIC L > TR B EERERTH
5. WIS —BakIZ X - THBRP OB M e HEET 256, FRPHEGUIR - FFEIZLD
U 2 N A T ARGUEIC K > TRIEREZ R LT 2. L7ehd > T, HRIE P GG & B
FWTHEE S L2 IS K 2 IRPUE NS, 6 InHE SRS S R 8 2 AT . BLIR BRI
EHUE IS E BB E R, RS COPUEIHEE RS I R RV, N T X MREBEZ & T
HEEICIRREIZ I 1T DU EER & O—BJEIIRIEA T Th 5. ], LORE RN THD. Fli T
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I%, EUT(Enhanced Unified Theory)! <> =R jula it #3815 1912 K 2 FHRESCHIABUC kTG L7 2 7 B
BaMWTEHET 2 HE R EERFREMRESNTEMLEIN>2H 5.

BT RN PPN R 2 RO 5 72 DI, TAHEPH O & 1 5502 CRATSE G T s 2
BB AHEE L CRBMLERDS. LL, tHE T 1 7T AORKIFKIEIZ LV 53 720 B R Bz
SR TERWVWI ENRZ VDT, 208D RIGEITEH T ORE 2RI 5 72 DI IR E R
HPHS OB TOIEMEZHE L TH L L9 02BN LETH S, R, HERMAO
S ALEE D ENEE L 72 5 LB Z D Rim T, BRI RHREUE NS Z BB O b LB O ik &
Rt L, SIEINHEE o6 D imil AL D s B A A %

(2) FEx OGNS

IR B 2 AT 5 &, A - JWOSMELIC ko TP AL T 5. Fig2-4 1%, J& - 3% - 4
fE « BERAVRH) OIRBIHE Ny % € 2 — 7 o — MEIBEFRBIBNONCRE L2 Th 5. 725,
MEH LA RPN % BNO=S ([CB T 2 2t CHlo7ctbaz7my ML, ZOMICL D L, W
LD L < 72 513 EWRIZ X D HPUEINR 2N BT 2723, £ O OIREIH Ay &\ 35 2
CIXTE V. BREOEGUHEEME Sy OHEERIL, Ak &0 SR208 A TIRESINL TN D
0, ZOHERDEEMIEIREAR TS THSH. 0%, AR EZERKE 5 & O LLEMGEEC TR MGE
AT o1tk PEROHEERICHERGBEMZ D Z L0, HLWHEEXORENLETH 5.

PCC. Vs=20kt. x =120°
o 1.0
é 0.9 Component
Z of Raw
- 08 ;
£ B8 Drift
g 07 B Hel
=
8 06 [ = e o
2 05 BWind
- 0.4 B Wave
L 03 O Calm
N
2 02
o
< 01
(&)
&8 0.0
3 4 5 6 7 8
Beaufort No.(BNO)

Fig.2-4 An example which calculated the ratio of added resistance components according to Beaufort wind

force scale.

234 WA NT A EEETH
AT 20X, —fREICITESIRRE A BT DI AT T A& BRI A AR B A L
TIThb. ZOEE, 2R NPT 2SR L TIXJONSWAP i 227 b T L%, B

-19-



B DMK L TULISSC I ARY F T AZ WD Z ERZL0.

940 & EWENOHET 2SO RN, FEEGUEIEOSE T 2O OREERNIC
STHEEMBLZHEMICE LA L TRD D Z ERERNBITONTWS. ZOHEETFIEIL, oz/wﬁk
oy R DI ANRT N T ARERIMSETHHHAITELV. L LR L, 540 LEED
AT b7 AOHBUERBEIFANE 2D G5 GEIEbITCHEMAR R LECIIER T 2 en TR
. EDIWD, ZOXK D RIBRIKEBIZIIT D ENIHEEFEICRWN T, BT O FIEI T D B
INFED. RFmTIEL, 90 &R IHES DI 1T 2 8IS E TR O FIEIZONT, (kD
FFEISERSL T 5 40 2 WAL L 72 S DIRETT 5.

235 RUNGRFEBIBER

RWIMORFEHSHER 200F, AREE R KO AN R XS Uiz K S IR B &
B2 72RTH2D. BWITHRIONN, ZORIREEEEROEZ IR BMERE LRSS LTHNWS.
BURIZEB W CTAR STV D IIRFEBUHE R OEEEIL, BUHT — & &80T — &% OBLANG
RAFET 5. R, REITHNCEEE RIZT RIEEOBLAIT — & &IZIFFIZZ Lo, HIRREH
BAIE R O KPR OFRBUERIZIIAFEDN S D3 E- TV D, T772bh, IRFBHHERICET 58
FERFAENALETHS.

o, O T L VAR &P E O RIRHE=RE A RE I TVWD L 91T, KR
%ﬁ%%%ﬁ%ﬁ%‘:f%ﬁ#é*kfﬁﬂ?—&@xﬁﬂé%ﬁ’*tﬁﬁ%&%ié.
A CIL, SR LA STV D BEHIIRBEBEROD EDHESN, QL ORE, BT
B O HEEREFE (B % RIF TN OV TR T 5.

23.6 REITHE

FHITH 200, BIRFEBUE R B B & AR A o iR 2 VW TiThiu s . BUIROEH 7H
X, RHNERFEBHERIOREND TR TOWRICK L TIE—ETHITT 20 & LT Tbh
HONEHETHD.

ik LWVERICHE BT 5 & EME T LIMAISE /NS < b 7201, BEITHE S HE—EIIC
TAT2 T2 TR TS < 72D 2 LIFAEED 0/NITS POWEIC L s TaHGiTnsd. &
2bob, E-EIC LR TRMILEREI Y b REREL 70D, TOMEEME - TERET 5 & ilbEl
BEICRDBNRDH Y, BHEHEITE > TPREOHRNTAES TIERVORERRTH 5. REHEME
WSRO UWMEREEE O O PRI A 15 5 72 D11E, (LR (e E OB E L BET 5, HDH
mﬂ%t&ﬁﬂﬁﬁ%&wﬁ%%ﬁﬁfé_&ﬁ&f%%@ﬁﬁ%ﬁ%+ﬁﬁﬁbtﬁ%%%%
ThREe b2\, KT, B2 EE LZHA0RMTIEC O W THRETT 5.

2.4 [SEEHEErERE 2 5 Lok at] FE0 7260 o B RREHE
AR CUE, MHHPEREHEE BT OB & £ OB SO\ TR~ T2, Z 30 B REHEE Bl 2 1% &
U 7o S e MR REHE B 1R 2 & DICRIR S, MBPERE O WX Gt~ D 2 feite - B/ SE DT
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HHZEAMFRRE SR, T ICESEZK> THRHZITS.

(1) FEHESAZIT D16 I EENHERE DR B2 2 s

MR EHZ BT 2 EEAREE O—2%, FHHEFHE HOHETH 5. 1l - T EA Ot %
BHRIZUT, AR R < B FEEE 2 HET 20 W TodEmrsmE > TETWnD. £
DiETIIe UTC, A CIIKMERT — % 2 VT EME D 2R+ 2R BN HEEERL, ©
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B DR (AR BIECOR BB B PH DN 572 &) DFERIZ DWW TR 5.
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(2) 9k &EPEAIHE LTV DB I 2885 TRl g5k

J5 T H N RSO M AR 5 O FEVEIEATA T IR D L AYERE & FRTFEAM - 2 72 01, BLRIE PR
ISE RS EAEHEL S T2 AT b T A& AW ERIRE TH 2098 Hnsind. ZOHIET
X, oY LEWEROHMET Sk (970 - JRREOHAEE) TIZR AT M7 LAORENEZE L 7
D, ZOX D RUHE T, ARGREE & RHEN R ZFH BN O R (50 LR NERYE
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W O OB ENGIZ BN T, W AT T AOER Y G ) EIBOREIXEE ALY T LD
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Ba JAFT 20, MO BARFEBVHEERIC L) REITHRRS 2R 5. BRI, TN ThORIRAESR
BAE 2 D R i XA RO BAPE R OFE DRI T RFERICTRS 2T D L B 5.

£z, MM LWDMESICER L2 S A 3SR T (A RS E T 5728, & BIZilSRE L <
2% EARRHIBNC X0 ERE R E0ECAE R L W o e B AT O . b b, SRRORS TR ORE
Z ) B9 5 T O RH R FIET IR RAMAT D O O 2 G BRI AT 2 LB ET, K
B Ko iCRB T DB EE TRT 5 2 ENHAENLREN TR RZGL-OICEETH D,
AFSC T, HEARGEEDD) 2 PR FEBSAE R OFERX 77 L B SF THEET 5 2 & T, BT
(ZF T DR BRI O E R AT L, ARG RIEER TR 2 ZHR T D R TREZRET
5. FTo, HEHUERAR OB R E WRES KI8T, £OHERPRHTIIC TS EE
LI ORIZHOWTHRETHRETT 5. ORERYRBIRFEIIHELE R O KB & XM OHE 2 JA T 5.
@Rz i XA 4k D FE IR 2 2L S E IR ORI E ORI OISR ~DZEEZ KD 5. @i
KL 2 B8 LT R THE 2 O CEMIRR 2T 5. OMEIK T 258 LR TR0 —
TEERRT 5.

S
(e

(2

&

(4) AR PEHANC R 2 FHAIR R O Wt

ERROTEA %GO TR OHEEBAMTORFE R EiC & - T, REAIEHEER & O B REEX
RAIR T % . HBARAED 72 DITITREE O B WK R PEHE RS LI T, Zuld AHLRIE
F2BR % G 2 RS IE DS BE L2 2D TR O TR 2 $0 o CREAIRE R CFH [ 5 7 & o0 B e
EWRDIRTIUTR 220 LinL, BRONIZERR T P 2 — /LW Cld+45 725 HEIRE <05 HEl 1
AHERT D LT LW, FHIEEICEET 2 2 & 2 BBRIICERHFEEZ RO TV D IZHE /e
WORBURTH D . Bl 2L, FEBRFHUOREEITFHAIRR R & B HEICBER L TWDH 2 & mbn Ty
% 2973, FEEREHE RS CE D OBMR 2 E EIICHE CE UL, B EE R 0 723D O FEBR )3
Ko Linb.

AFSCTH, FHERFR RIS R T 2 3R A O E &ML BRE RO 2 HIEFIRET 5. FEHICL
TeRERRICL Y, EOSBAESZ D4 BB O 58U -V TR R & 3HIIREZ 0 BI6R 2 314
T5. £, TNOOEEMNZREREZRD D BT, HOMARIGE O UE « 43 HUE OS8O #5647
ik X OVH CAHBIBIEO NI D Z L AT, A OB HICHE c& 2 2 L 2RI 2 LT,
AW EH R~ B AR OB AZ KRG IZT 5. T, 025 CElE S 5 RUEERE NS
BT RAR IR 6 U TR B A R OWRICEBR T 5 2 L2720, o FHAN B 23 R
OEEHIHI M OHE RGN R & < WBE RITT 728, RIEWEHT — & BT O IR EBEEIC L -
TR EICEREL I RETHDHZ L E2RT.
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EBI3E EBHEHIZBITA2ENIEMDOHEE

3.1 I

SRR A AT T DAAD B N E EO X D ITHEET 5002 1 &V ) iEm ST ERE A D
RO T FUT, B OMAMERICET 2N L TE 2 &ild D, D2 &, FkFoH#
HEPERE7ZIT T2 <, EBRIZR T 2O G R EREL BEH T 2B E R E > TE BN T, 4
B OEBETITIHED Z LTV, iU, TarERe 2 M ERICAI LGRS 2 & AN ATREILC
7o T2 FH - AT OSSR E LTV D NETH D, O R EIEE OREILRE R AT
bian SN TE T, FEIMES R YT LH 4 7 TERPOE N 2 IS L ORI 72
ZEDBHLNTENTNDD, TOEMROEERZAMICL TEBLERDH DH. MR, mEDKME
VURVTATINDDORICEHLTRY DL THDA, ~R—UHilR A &I Fllk S i
TV, ZORWETED BT H, KETIIHEEONRKRW R GTIEOFEEZ RL, ZORM, &
FHCOWTIR RS, Fio, BT —2 2 OB DEIMEES 23 & & Hic, SR PAMAIGE
BIBCRB A7 b T Ak K OGHR A BEEIH OWNT7 72 £ O FG EIHEE I B~ & JiTon
Tk 5.

ZZTOUSHEEM &%, KT oME %, FEEECRERFT 2 72 DI E R K i, &v )
BEWRTHD. ZOOITITEzEN RV v TFaZx, BREFZEML 2T T e 6720, F8k s
WATT 2 EMEMET T 525, ZTORT LR T TORNEETITRW. Ml T, EK
FOMEE, TORFOFM N BV v F & FE—IRIEICBIT 2 FEOME, Lox] TH5H. J
B, BT & BN ERI SRR T D03, &,

INOOMENEMETH D D1E, Em, BEAY, EOEITTmR ENEIT 5720 T, FEifg
WAMATT D Z L EBELLESAE, MATHARY b T L0 EZOHBNARBERNPES L L
TMD D056 ThD. WERIRIEAE ERIICRET 2HFN L Wi, EWmL Tk 257738
O T OHEE &2 EEOWERICBWTH O N EMRBE R L B L TRFT 22 81225
CHELWOTH D, ERRENE S, SEICTEH I KRG - BB R &, WEOERE
ENTT = R=2 %Mo T KRB R DHEEEND D &, WRFPERITHREENED S DT,
ZNOOFELHEEEOEL Z REICHRT2ENTERVRRICL TS R EF 2 5.

VLB, SEJEIHEE (S 3 1 2 HKBERER 70 DR NCBI T 2 Miat st T 5. B INHEE #
FEm B 7= I2iX, IHHEREZ 1 Cle S HEMEMEREICBE T 2 MET b LB Th 5. BN E T 21
LR EHATT 525G, EAKFEITERVBEOHRAERER N AT 5 Z EICL 0 Ex OBG N AR
T2, BB T, AR AAER)NC LY ARERSG S EIRIC A" T 5 Z L iTmbinTna.
RSO ZAIZ X VRO EL T 5720, Tu T RBNET 5. TOBLIIERETH Y,
1 AT 2 7 0T ZROFEMEIT R POME L1358 5. 207w, Sz 80E L7 1
B OHEEREEE R BIIZ T e NI ROBNEEET 5 2 LBKET, Zo—fFlL L TIAES)
12X D7 RIHROEOREERERT

Fiz, TaRTERKEEN RO EITEKEE R+ 7RI T T T R E T 5
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EBRHOBITND. WRPEL L 2D L, T aXIEICBIT HHMEMPREL LY, T a7
BAREENRELS BT D, 2Oz axXIH#)) - MLy BRRELBA L, ZHICHERENT
e DBRENEL D, 22T, 7RI MEAER L T a R EKENET DB EZE LTS
JHEEFIEEZTRL, 2RO DOBRICE D2 LORREZHKE L —fl 2R~ 7.

PLRIZIZ THEE T REE, Tu T8 Bino—5 03K RICEH LR TliE 7 v X7 EiER
BN CEIT DO FMENEEEZ WL LN HDE NI ZETH D, HIXlE OEERR
RECOHEE CIEART372720, TaXTBRNEELER L7 a7 A B O R 23 2
T, KETITZEO—HlZRT.

3.2 BN & EAR T O BIfR
Fig.3-1 |ZA#Hh 2 Mk, Mt S /12 R Lo BT — 1 —7 Pk O F— 71 Tin Still water |,
ﬁ%&%mﬂ,ﬁw&%%n,mAwﬁmwiﬁﬂﬁﬁv—v—engM%%ELkﬁ~7%Fm

Sea) & LCRIR) Aot B, M Vs &4l L7 COO—~@ % R RS SR T 5.
ZOREHES B F F%ﬁ%bn@?&m LES. T, ORI REEZT 5.
BHP
A

in Sea(H1/3, To, X o SM)
@

in Still water

>
Vi V, V

Fig.3-1 Explanation of power increase and speed loss on BHP-V diagram.

ST, THUIER ISR RRET ORIZIZH V155 2 L TH D05, FHEETIE T Lo rEE)
ZORRICENIS 2 &IFSR EH VIR, EEIIMEIK T 5720, TEOFEEIRAO» 5O
LY DICBE LY 5. EELADOICBE L725E, THISET D AailE: Vo-1, 25 sl
TETHD. ZOF, (FEILR@DRDAFNMBIZ/RD. ZOFEH@% —EMIZED DT, KT
HINA KD HWEE K OMEEHMER 2] LW I FJEEE L L 21T, BIZ—2DRMRL
HThD. TORMN TR TH L. AL, BT L > TEFEIR@ITES D TH 5.
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e EBAGIC, SOIOIBTIT ) 13, EMEEORBEEZT 5. OICERENBE LT
D A %o T/ IO L B L TV BHARD 5. I, MK T L-REL FIicss
I SHEE ORIRE T 5. Z OIRED S BERMCTH B, i ST I DRI O i #1%ik
5. WAHRIEG T HEE & 55 7T o0 RS I 363 S VB A i, IR L7V & 5 IS EERE AN
HCHDH .

3.3 SHEEIZIRT D RAEO S JHEIHEE

flil % Dim 2 D DIZH T2 > T, RO LD R HFOMRFEZRD TE L. SITVFKFHEENS D
N, AlZEsouibSnoEinE, B E S IR, A TRATF 0 13 KF O,
wiTBR T 2, sea |FEVEIG % 2 B8 L7 i 2, £ TIRAT mod (IBAM TOME, A TH
ZF- ship IXFMTOAE, 72 FTUSATF m TR EEEE SFC (Skin Friction Correction) & L 525k
i, Z£E FIAS s (X SFC & DFERME, PRTON 1TTnTE), 851, H), v, BlEsk,
o 1 TAEBEEL, S()TIE AT T A, pIZ A=V (Laip/Linoder) %389, 215 Z#ED T, x8Ay,z
EWVIFRFICTTRT. AL, ZORFEMIL LR THEREZIEZ D Z EBRWGAITERT 52
EWDHD.

HEOERITTIT, WIREL {, MWRE L, g4 B, 7uXJ7EEZ D, MELVETDHL,
RATREND.

AR(w) = —R@) gy = OT@)
 pgli(B2/L)’  pgl3(B%/L)
_ 8Q(w) _ ON(w)
AW = mwnn MV = yrmn v

T, BN EE IR & 72 FESRE ST D 302, 2 HEEENE, (1)EBEE 1175  Direct
Power Method (DPM) , (2) h/V 7 - [Al#5%47% @ Torque and Revolution Number Method (QNM) , (3)#E
77« [Bl§iz%ki5 - Thrust and Revolution Number Method (TNM) , (4)#f 71— ik : Thrust Identity Method
(TIM) , (5)iEEfTAERYE : Over Load Test Method (OLTM) , ® 5 M THS. 723, ik OHHIC
XV (4D TFED L FRiT Resistance/Thrust Identity Method D 53 B W 2B 2 TEH Y, LIk, bUHES)
—%iE (RTIM) LIEFRT 5.

72¥, PRI SEER T S o ASEEIT, #iR/50 OEA ITTC OHERE TH 5. ik 4m
ORI TIL, W& 8em T DH. LT, BHEEIEIZI T HHEE FINEOZ SLRETFH &2~ 2 73,
THREBAERERFIZ RO D EEFRT.

3.3.1 [EHEEJ11E(DPM)
Fhife S DR FEER LRI, IR D LB ThD.
1) &LV CTYokd o> SFCHE L o Affisdli 2 FEhi LT, V7 2o, BIERENo 23RO D .
2) FHANE oo [ MERER GREE V) 290 U<, by, BIEEEEEINO B EEEE (500(@)w, «ON(w)y)
ERDD.
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3) BN OIS E 10 Plw)nod ZIRFUTTRD 5.

2
mOP (@) moq = %{(mQO + maQ((‘))W)(mNO + m6N(a))w) —mQo- mNO} (-1

4) B2 ONEABANE AT N T LS(0)mea 2BV, TG TN 1 6Pmoq 2 KT LV RD 2

[oe]

_ 6P(w)
m&%mzzfm___ﬂﬂ
0

CZ S(w)moddw (3'2)

5) ROONTEEZ FRldtRIC LV Ay — AT v 7 +5. Zhk, 35FAEE S Z LT 5.

mﬁship = (}/)3'5 ’ mﬁmod (3-3)

ZOHEE, BMERER EOFRIIAE R B, BMEBRREO T e XTI A Ny T r T E2E S
T ENTE L. MM, 32T, B & D ZRICHATLFLREL TNWDH I & THD.
ozl gRsnTWD.

DD EEFET, SFC Z i L CWoKH BB A £ 5 HF035 2 b5, SFC & BATaER Tl
iz hvr, EliEE%E sQo,sNo & L, SFCHEL &L DFE%EAqy, Any (N HOREIFIEME) &35
&, mQo, mNo IZIRATRELTZ 5.

m@o = sQo +A4q, , mlNo = sNo + Ang (3-4)

T5&, B-DR, 32, GIHAROFEREZNEN, RAUTRTIETOMHENTS.

2
86P(0)moa = 52 {10 - mOQ@) + Ado - mON (@)} (3-5)
_ [ 08P (@)moa
66Pm0d = Zf TS(G))dO) (3-6)

0

Wship = (}/)3'5 'Wmod (3-7)

08, HEEE J)E (DPM) 138 S 72 FINETEHA] - fifdT 35 Z & & LC, SFC L o 3 fiiallk % ki
RKELTWD.

332 R~ - [EIEEEE(QNM)

i S DR TR L EATIE, RO LBV THD.

1) H2EE V CTHARF O SFC A& D AMBERE TR LT, "7 sQ, B sNoZRD 5.
2) HAEHFOAMRER GEE ») 23 LT, bovs 8N, REEEIEIN O E BN (s00(w)y,
sON(w)w) Z RO 5.
3) 5z BT AHRRE IR 55 bV 7 BN §6Qmoa) & FHIEHEEIEM( §SNpoq) %, KU
FUkd5n.
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Swmod = Zf SSQ—(Z(U)WS(w)moddw
0

¢a
'] (3'8)
Smmod = Zf SﬁN—(Z(I))‘/VS(w)moddw
)
4) RIRREE OB ETIEENN § 6P moa %, IRTRD 5.
— 21 __ —
s6Pmoa = ﬁ{( sQo + 55Qmod)( sNo + 55Nmod) — sQo- sNo} (3-9)
5) ZOEE3SFEAICLY AT —LT v 755,
Sﬁship = (]/)3'5 ’ Sﬁmod (3-10)

ZoOFEL, BERERE EiiI 5721 TR, EHEE E (DPM) LiE- T, SFC O REEME L
T5. ZOHEE, MG EEREGEIN G FIRFIZH & O ZRIZHAT 5 FEEZRE L TWD. (3-
A A P IRIED —FeTHID &,

Sﬁmod _ 2_”( NO Swmod Smmod _ S@mod Smmod Cé) (3_11)

Z 75 7z tshT Z

LR FIE S THIZ X - TS8P, 8Q, SN O = B [RIRFIZ B HRNE O IR B3 D (REILA ST L7e 22,
FIZGB-)XTRENT-MAERD D L, DPM OB Tran=XE 3 FET 5. Blh, DPM &
QNM %, FNFES o RmA W RO RIZHAHIT D &V GBI E 2> Tk Y, WL
BEZTHD. LL, Murdey 1, WMHEELEDZEIT/ NIV % a2 70Y) E5-oTW5. HIZ,
Bix hvy (Q) ElEEEEL (N) OFHAIZILIC L J57E (QNM) 1, BME AN RIRE O R 203 5HA
HEONIIKMT 2D THD EF ) EBTIEL T\ 5 0.

333 H#E7) - [EIREUE(TNM)

Felfi S DAY FEER L RATIX, RO E B ThS.

1) & 253EE V CTYoKkH o SFC A+ & 0 A a2 ki LT, HES) sTonod, sNowoa Z23RD 5. Z DFER
&I aRGF =T R R, PR l-w b, = Kpo/Kop & RO D . (K, + 7' 13T BUMBRE
2B D VI RE Ko : IRRICIIT D b v 425D

2) BB o AfTEER GHREE V) %5805 LC, HESHEINOEIERRE (s 0 T @)na) & [RIEREIENN
(s ON(@)woat) D JEHWEHIFEZ RO D .

3) 52 BN ARAE BT D EEHET TN s6Tmoq) & FIFEEIENN( gONpmoq) & RAUZ TR D 5.

_ r 6T(w)
$0Tmoa = Zf Sz—zmis(w)moddw]
a
% (3-12)
_ 6N (w)
s6Nmoa = Zf : CZ med S(w)moadw
a

0
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4) OO AT O FEHEN Ty moa) & TR Ny moa) & KD 5.

STw,mod = STO,mod + Sﬁmo{i} (3-13)

SNw,mod = SNO,mod + SaNmod

5) TaXTF—TURHEEE, LTOKAT v TOHEEITY. FIORLEHERAT v 7 &7
BT A =T R EOxtIS %, Fig3-2 PICEFESO~@OTRT. ZOFHEOODRT v FHFHIE
7B VND 72 EIXFEMOEEHE S .

@ sTwmoa g _NDO® Koo _ KogMro

sTwmod » sNwmoa = Kr = ——"— =— > Kp=—=

P SNZW,modD4 Va

(3-14)
@)pwshi =—27TN i Qshi =—7TpD2 Vi (1 —w)3K
,Ship 75 ship ¥ship 75 ship " ship P

1 T T T T T T T T T T T T T 2
0.8} Ky
o 11.5
< 1OKQ .
G 0.6f Mo 2
X N
‘C_D KT 11 TN
= 0.4} X
X ®
10.5
0.2 @ @
i NG
0 1 1 1 1 1 V@ 1 1 1 1 0
0 0.2 0.4 0.6 0.8 1 J 1.2 1.4

Fig.3-2 Propeller open characteristics and Kp curve.

6) EAK T DHESI( sTomoa) & FHEH( sNomoa) & FIVT, AT v 7 5) & [H UFMETIEAT OE )
(Po,snip) &7t LTot2, AU THE M Z KD 5.

ﬁw,ship = _W,Ship - PO,ship (3-15)

ZOFES AR E EfiT 57200 TR WY, AMRBRICHEAT D a7 4 — 7 U & A
STELIMENDH S, ZO, TRPO 7 02T ORESEREEL, SERkTORHEEFER T TH
L.l EIRETAHZ LIRS,
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3.3.4  RHUHET ) —BAERTIM)

St S A D R TR & EATIE, IRDEBD THS.

1) H5IEE V TG A FEME L C, IRy maa 2RO D, [FIFRIC, BEMEER GEE 1)
ZEEBLT, 7aXTA—T UL 01 —wy, 1 —ty,noE0OBEMEEERD L. ZOHE
NI, BMERZROLTETICHERTEDA by 7 7 aXT7THRU.
2) MR R OPTHINERR GRE 7)) 23206 L <, EHNo ER A EE (SR (W) mea ) & 3K D,
R IALEAR(0) & Rt H T 5.
3) B2 BV AR T IS D EM D EHRGIINSR,, snip & FrLatRICE VKD 5.

D7 a

[ee)

_ SR shi

6Rw,ship = Zf Ms(w)shipdw (3-16)
0 a

Z DK, SR(W)w ship/Tasnip = Psg(BE/L)AR() &M S . Y7 1 v 7 A ship 1%, FEMOETHS.

4) B2, JBEEHT (GRyinasnip)» ZAEHEHT (SRpeimsnip) FEBET 2561F, W TEMBERO T

PRGN 2 R % .

ﬁsea,ship = ﬁW,ship + ﬁwind,ship + ﬁhelm,ship + - (3'17)

ZOXHICHERETHINEZ INE T 5 2 & T, RTIM [XEW O R FREZE L2 SFAICE Y AT
ZLINTEA.
5) INHOFERE T RT A —T U RS T, IRICKEICTRTFEZIT .

Rsea,ship= RO,ship + SRsea,ship

7o 3 DHP, N
R ot K T ‘
_Seaspb 1 r

= - K 3-18
1-— tO ” ]2 pDZ VZ (1 - Wo)z F ( )

Py = pD2 V2 (1 -wp)’K
w,ship — 75P ship " ship Wy P

ERETIE, 3) DM CIMAR L7223, SO E TIIHA L~V TEERD, T rRTA—T
RFVERIRREIC EAR DL 2 A > TEMRE L TH RV, ZoHEE, B, BHHRE FE 25 %
BRDD. HONUW, Kl & KPP 2RO THL LM EfTH 5.

ZO XIS BIHINFEIZILTNM b RTIM & 7 07 4 —7 U RetE 24l 5 DR CTH 573,
TNM (TN & [EEEE 6 5 72010 MR EFHBR TABMICRO LN D TRETH L0
(ZXF L, RTIM IHEHHINZ A 5 72 DI AMBER DS LEIT R D . Zhs, BFIEOR MR EZ
BIFORERENTHD.

33.5 G2 b AHARE Iz T 5 BitaER
BESNTAHABEHRICBT 2 AMRABREZEwmT 52 HELH 0, TR ERNRAE FIZB T
YN R ( 6Qmods sONmoa) Z KD D FHETHS. DPM(3-2)7, QNM(3-9):ITHH Y3 2
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P55 TJBEIN L g6Pmoq & EHER D 2 FET, H 2 BN AHARE IR 2HEREOES & Eim T D
EiHicies.

ik, Fo TEHiES) Y 25%0E L CHREDEBLS A HET 5B H LR LTHD. £ DX
BaHT D IEMHEHEENEGE R, B DRHEES T CREM 95 &\ 9 35 2034 1 O FEE R BE & S
TOREDO—OOMRKEEZEZOND. ZORE X TCABAZ, £O&ENRFE—THIULF—OR
A CRET A0 OFERDEREICRSD.

3.3.6 A aBR{A(OLTM)

PRI BV TIZERE OB L o TR~ OEPUEMNAE L 570, WEEILFKTOREEY
bRELSRD. iz, WOA—EZVE—T 3 ROMMEETNIC Ko TREIRSG AR Z 21T CTEM
BRITEAKRFOMENSET D, BMERORF OO, mEEEAERRNFEMIND. HKRF
O EMIEERIL, FFFPEERERETEIN & 2 oK T BRI B AT & U Ch 2 70 TR CTil
PlTEBLWHIEZTHS. 2121, ZOBEZIZT ERO BMMERE~ORIR & IMAES) O BN E
FNRWIZDEE TIERv. LnL, ZOX I RAHEDETIESH 573, H 60O E %
E L TCBTIEAKRTOMEEEFTRRT — X 20 06BN EHE C& 5. LUT, BAarERik
(OLTM) DHEE FNAZ 7~

OLTM (23U T M S U DA 28R & fiffiriy, AT LB THD.

1) & 2IHEE V TYRT O SFC L o Affiakiiza Ehi LT, V2 Qo [HIHEE Ny 2R 5. =

DOEMEEFESE, MY L REEHOBEGEROFEESZZD.

2) MEEAEX T, AMEER GREGRER ; B V) 2175 . AR THRONIERERO Mr
7 bl , Rl B (Load(Newton)) D77 727 vy h9 5.

3) Bz b FEHRICER T A EGUEN ( SR.q) FAFREICTHEETS.

4) ZFOWPUHHINZEWEAR &5 2T, TOWMAMIZIHIT D MLy L EEEEOHES) §Q,, SN & 2)D 3

AR LV RD S,

5) kAU K, FHFIEEM 2R 5.

_ 2T
mOPmod = %(mNO(SQ + mQoON + 8Q68N) (3-19)

6) ZNE3S5SFUTAI—NAT v 7L, EMOENHENEEZRD 5.

Fig.3-3 |2, MEELTRERT — X MO HEIBNE RO DN ERT. 2228105 M7 (@) &
[Al#R4 T — & (X )IE SFC fi+& & SFC L TiT - 7= BT — ¥ &4 > THERK L 72487 — ¥ C
H5. BHHME BR.g ) £V Q ENDRKEDLDT, nOo & o & & HIZB-19)UATH
S MR E I TX .
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Q(N-m) N(rps)

1 00 T T T I T T T T T 16
®Q . .
x N < finded by over load test in still water
| SN | X 1415
5Q x/&)‘/
0.80r < %%
ON X 114
xX -
» X/ /‘
— X _®
, it T L 113
060  mNo - s
dQ - _®
- )
Qy —< _o ¥ . 112
i  ~ -
SNO -~ ///
040 - S Reu=6.52 111
@ . .
sQo Model plopulsion point
in still water

10

1 1 1 | 1 1 1 1 1
-80 -6.0 40 -20 00 20 40 6.0 8.0 10.0
| equivalent to SFC| Load(Newton)
| ol

Fig.3-3 An example of the procedure by over load test.

3.4 HEEIEICEET 2Rt
341 PEo RICHAITEEIIONT

IINETOEMT, Hx OHEIEIZE o T EDEBEEO ZRIZHHIT L EEL TWDH? ],
NEETH D Z LR bND . BRHTHINAE & O 5G9 25 T TR RIB L D292 o0 e
BRI O SEHRPTI N &SR, & BT 5 (3-16)%, (3-2), (3-8), (3-12)=AT L~ THEN 7R ARHL
AT H. ZOZ L, AR T O ZIROBINEZ RO AT, AENICEERZ ETH 5.
Thbb, BENBILLEGAEEZD E, ZHEG-2), (3-8), B-12)B L UB-16)0%&XH D S(w)
EELESEDZ LIS TED, EOXBEED RICHHITEZEEZFHRICLTWANDLTH
%.

342 WIRPOAMESR

EZ5 )% (DPM), hv2 - [BlEsEeE (QNM), H#E7) - [BlEEEEE (TNM) (3R AR P CRAEN S
AT BRI 2 A U TR M E#EE T 2 olcxt L, v —3ak (RTIM) (FEHIls -
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EHUEIMZFEIC LTV DL B, BMEREZMESETE IEMA R 5. RTIM IZHEGGEER L B
WMABR 2 FEM T2 & ZABMMBOFEEOHETHD. ZOX I ICR O FEDLET & T 5
&, ERE LN TE M) —BUEITIRGUHE ) — Bk & 5 5 F B L0770,

RTIM IZG B CTH 508, HEAITEIRTPOBEMERZE S SICH 5. WIRTOBMEFRIT, FK
FEFECTRWNLTHD. FRCESRER R L < 725 &, MG DS EIN 72 B A 21 T 72
RS & R&ESESTL 5. #EERNRDINGNG L &, FrZ T a I EOINIAED 7 a
THEOIERT &, HRBREOERTREEL L TBNTL 5.

ok & [F G TP 2D & —IIR TP OBPHMNNE L D L —F u T REAL,
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Fig.3-4 Treatment of response function on experiment data.

3.5.2 AEHEIROKPUEINHEE & F TR 2R bR AL EE
(1) SRRk oo BB e e =

NV BEN, HEFIHEINES K ONEEEEH IR 5 CR D B HER S 72 20, FEBRE 72 13RO HET
AR 2 LanZaus, SEUHEINC S TR R A & O THESL S N BERRAMFET 50 T, K
PUHES — s RTIM) OBAITHEGRMEH WD Z EBNARETH D, 2 2 T, 3.5.1 TR L0
ERD 5 H O R EE M OLIIZHERE L 5. B HAaGbt b2 LT, RITH - m/EHK
MO REIZ 22D, BEAYRARIAEF LTGRO B WG JJIIHEE AN Al 6E & 72 5. B RIS
#nEEA S LT, SR243 BFZEERIC TIRE ¥ Sk LE WS, Zhud, EEEIEE, Bk
EEHEZ & AT - @fE 2 oX%, HEE EHEIX Faltinsen® OXUZT, BUKEEHEIXS kD%
BRFE A f(d/B) CEEL7-RUCT, ThENEEZHZ-XTHD.

ow(w) = (1 + ZwTV) f (g) sin? g (3-20)

ZIT, 4K, g EAOMEE, B:E, o WEKRE, VghE, sin2p 7T b AR,
ThD.
ZORIFMETICB T 2EOKFNC L > TAL | MERI LD TH Y, A
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MECIRIEA B 2 5 &, Bl RIROEGTHE MM & #5750 TR AT CIRE TRV, £ 2T,
Lex—2DHZEZ X, VL Ly/L L5 L < 705 F COWPUEMNEZ(3-200 Tk, ZORE%E
HHEMEL LTz, bbb, LV EWVEE CIIMEEDORREEEBET LMLERNH Y, (3-
20) 2L HM S I3E H T E 7R,

Fig.3-5 RN, REHEINT — 2 12T 2 imBlii 2 ~m4 b O ThH. £, Fig3-5 THIE, E
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WAD, WENELS D (0 MREL D) ITHEVWKEL 2D,
@+HNT LyL I L W HAEFIHZRE LIS A T, ZOMTIEHED TR VL=03(0=7.17)Th
5.

QOH%GE EQDEAH D &, Fig3-5 TRIO—S8#HBROENH D, ODOFFIEE, &b FRER
TOEBRMEHAEET, ZOMEMAEWERILDMAIRD.

Fig.3-6 1%, WAXT T A LRSS Z BT &bt TRRIDE AT T AEHET
DHENT, ERERIC L/l 12 K o TR RO O GG 2 3%0E L CORD7-E (B o
@) ZMATGE & ERBERZ T Z2HAVEHEAEEZLELELOTH L. SFHEEAH (T) BNord
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Fig.3-5 Added resistance in short wave length (head sea).
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Fig.3-6 Comparison with response spectrum of added resistance in head sea condition (model scale).

353 EBUL LI ARY N T A X DEWSEHEE OFE ) & O AL
BIEIZ R 7= FEIC K, AREISE A HE T 2 PR EE 2 5 LAY T A

SHELT 2 JE S IL R D (Fig.3-7 22 8). T 07, BRI A RISE BI%k o St e o
JE WAL b R IR U T2 OEEZE 2 i iud e e, AT N T A0 BRI
HPH D I A INAK & —E ThH VT, BHE P AISE B O bRl LB 24T 5 ~ = JEEEG
PHASEAREIZ 72 0 ALBR Lo 0.

-35-



(1) MERICTEWELE DT AT T DO
ISSC(1964) e A7 T NI, A EH, 3, FEIBJAIIT 3 L O AR wIZ &> TRATE
5.

S() — , To (wTo\ > wTp\ ™4
((1)) —0.111‘11/3% E exp —0.44 ? (3—21)
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Fig.3-7 Wave spectrum by mean wave period.

F 7z, AR PRI E B & L RS IIR e (w) /32 2 BN EAUE, (3-16)xUC(3-21)R & fRA
T 52 ET, AHAE O GUEINER,y, DR L > THEETE 5.

("R (w) , To (wTp\™® wTo\~*

RAW =2 J;) T 0.1 1H1/3 E (E) exp {—044 (ﬁ) dw (3-22)
GB-2)REFEIT DHEL, Tox 52 THANY T AREERMEE 725 L TFRO B &5 JE
WD ETIRERD 1%, O ETROM TIREUEMISEBEIZxE LT 3.5.2 filcik~7= ki
Ko TR AT 5. 2 2C, FEOT 2 BERBEIFH A TR ET 2 2 L0k 51z, (3-21)=X
Z R TR TR ST IR BE S L » TR L CEHET 5.

_wTy

=2 (3-23)

$

(3-23) A& B2D)UTRA L, STk > TEKEWEITH IR L5,
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Se(§) = S(w) Z—? = 0.11H{ /3¢ >exp{—0.44¢~*} (3-24)

(24 % (3-22)RITRAT I, WEED.

_ ®R

Raw = 2 fo A?—g(a0.11H12/3§_5exp{—0.44§_4}d€ (3-25)
B2D)RDPE AT R T AlF Fig3-7 O L D IZTlKE L TEIRNZED DA, (3-24) N EH L%
DAY T A% Fig.3-8 D L 9 IZTylZKAF L TWRWD T & AR DIVTTEIRD — IR E 5.
728, TOXITEEEBR L TESELESGAIE, &l BT L5,

0.12

0.10 € that is the mean wave period

0.08

0.06

S¢(§)/Hy3?

0.04

0.02

0.00

0 0.5 1 1.5 2 2.5 3 3.5 a4 a5 § 5

Fig.3-8 Wave spectrum normalized by non-dimensional frequency.
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IR,

Fig.3-8 \ZR LICi AT N T LD HIELY ¢ OHIFAAZEX THHET 22 LT, 2472 8 Oy
HPHZ D 5. Table3-1 1%, FED 925 & OFHEZFEA Z X 72 &L TDOP AT N T AO5EUE % 7R
LIcAERTH D, ETo, FEOREIC K > CTHESFIHAOZ Y MEEZ I 572012, £=0.05~5 ZFE57
HPH L LR (2 2 TIEBARIC K 2RI TR 2 RMEL LT, HodHE ki
FFDRER & DR G RO, BDT- Oy D LML MEGRT 272018, RO T/ HIEZ Hy /3 A
LB IR LTz, AT T MIAREEIZL > TEBILENTWAH DT, + 72l /&l %
5.2 TR THUL, Hyz =1.0mic72 5. £=0.05~5 ZF0HH & U-CORO2aHiEE, BEEOH, /3
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THE DRV, BT XD LRESRRZAEN R E V. Table3-1 12 LU, & OFifHA 0.45~3 [ZHGUIE
FEVEEITHR LT 0.5%DNRRAEICIND D Z LR TED. LIER->T, £=045~3 ZRHHD—
OORRTTHILINTED. ZOR, S¢(§ =0.45) =0.0001, Sg(3)=0.0005T, 55(5)753t~&
L7 %E = 07512317 HES:(0.75) = 0.11531Z5%F L TEILEI 0.1%, 0.4% L /NS 722ET, AR
AT N T AMED E=045~3 IZHEBES TV D

Table 3-1 Comparison of wave spectrum variance values for different ranges of £ to be integrated.

variance values and ratios by range of &

range of & @ 0.05~5 @ 05~2.2 @ 0.45~3 @ 045~26
O e 0.0626 0.0615 0.0623 0.0621
ratio (Ozi ~ Ozg) - 0.982 0.995 0.992

converted to

Significant Wave 1.001 0.992 0.998 0.997
Height (4 0 ¢)

(3) HLEAUPE AT IR DERER LR 24T 5 A /L O#iPH

WA ST LOBRND, MREHISEHERFICIIT 5224 BoHHo—>O L% &
=0.45~3 & L7z, RE LRGP D BT IRy pper~Eiower) 2 (3-25) UTRAT 5 &, fARHS
Bt e 72 5.

fupper R
Ry = 2 J Aw(f )
3

lower a

0.11H7 ;3& exp{—0.44¢*}d¢ (3-26)

WANRT T D2 BRI E I K-> TIEHU LT 5 2 & T, AR HICEHEE I TR 108
F BRI NRE TE 7. E L7z & OFPAICK LT, (3-260)RUTBI1T 2 b 95— OBFE /> BI%k
DFLRIEE RIS Z B A RO TR R ITHIT 7R B 720,

FLANDE PSS BB L /L R—=ATRHEIND Z L BE DT, MRTEREK E & 1/ O
TR 2R U C I < & M ARSI 8 0 17 L2 0\ "C BB R (A TR 280 BE e oD i F AL EL 0D B A e B
ERITHD. &L AL DOBEFRIE, RATHS.

/1_ To?\ 1 ]
o/zf 7= E)<T>f_2 (3-27)

B2 I T, DS EOFRPICKIT D AL IIMEL LTya X7 A—2 L LTHEHEN
5. Thbb, BEOGUARBICTERE LAY T LS()E MWD HIEE, FEDITHER
LA PR IS BB OB AZ L & ToZ AV TIRD D £ Z AR TH 5.

KA SEBR I % O B « BE T PHAUR O A K12 b X DA%, HLRIE AN ARG A BI%R T L /L=0.2
~2.0 OHFPFAIZ TERIN D OB —MKIIThd 5. FLAIE FAMAISE BIESERE L7 X (6=0.45
~3) IZBWTERSHEMTON TOIUZRE WA, ZOHPHN 14 TRWVEA I 2 % 2
R UE e B BRI AR ARIS BRI L S VR DS B 70 B O TR BN S AL BR D 5 1 %
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Fig.3-9 Relationship between the response function of Raw in regular waves and normalized wave spectrum

for non-dimensional frequencies.

Fig.3-9 1%, & X—ATORyy (&) % FLEW AR (Ty=6 F,8 0,14 F) 127w b L7z, EHLL
72Se(§) & BfFFed 2 Z & T, Table3-1 TRIE L7=Se (&) DFE/ I £ =0.45~3 15 L T Raw DHIFHA
EORETHLINPHERTE D, HIZIE, To=6 B TIL E=127~3, To=8 B TILE=1.69~3, T,=14
B ClE £=0.45~0.62 D RawfEN KRR LTS, L, HFEVIZAWEREEESFIZEBV T Raw D
FEEEITORAE S L2 VO DRBUR D728, Raw 2RO TR REFERHIC EFRZ# I TR Z &G
HTHD.

FT, EEEM EPREL RN ORERELZE X 572012, T2 TIHMMHOBATICK X 72
WELZRIEFTHEEOR/MEZ 1m &7 5. FEHRICB O UIEENELS 0D EHENER Z 503, £
DOHEGHI R R A OWE EAREL H/A) 1X1/7 ThD. 1121, FEEOWE TIE H/ A =1/10 FLE
TIEEALEDERIHE L TLE S EELNTEY, KECIEEED Im OEA IR BIR N Ul
WIRA O R % 10m &7 5. ZOWEZMEEICEHEERICE BT & RO E & T,
AR Raw Z RO TR IND L/L DIRETE 5.

— 77, RIEEM ERN/NEL RDM) OREFHEICONTIE, RawdSA/L=4FRE CTEalZird
52 L HEZXTAL=4 ZRo#MHO LR EFTHITRV.

IR AFEP S 572912, Table 3-2 12 4 DOMEICK LT RawfEEZE > FLTHIRZ AL O L
TIRMEDBZ%E E LT,
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Table 3-2 Approximate upper and lower bounds for A/L to set the response function of Raw in regular waves.
Ship Length (m) Lower Limitation of A/L Upper Limitation of A/L
150 0.07
200 0.05 4.0
300 0.03
400 0.03

(4) PANZ BT L& B PRGNS B O M BLUR 2 D IR TE L 72 Fi ) il

Fig.3-10 (X(3-27) I L > TEHE L= AL & E DERZ T 6] (Ty=6 BDOHA) T, “AKD*E
B CKZER - Lpp=150m, HIZEAR : Lpp=300m) 7% A /L=0.2~2.0 OFiJH CTHEH D5V ITEBREZIT-T-
HLOLLTEERDIEFERTHD. WP D E=045 & £=3.02H 25— 88#RI%, Table3-1 12 THkD

TP ANRY N T A EFAMEL LTRDIZED ETRE (RHOD £=045~3.0) Tho. £z, W
IXFHR/EBREIH O A /L TIEGE-26)UCB T D RESHAN AL T D E 2RT
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Fig.3-10 An example of the relationship between A/L and & calculated by eq. (3-26).

Fig.3-10 (T L 4UE, Lpp=150m DOFMAIZ IV TEHR/FEERFFH D L /L=2.0 FFIZE pyer = 43D T2 0D
EALERIC X DR RUBRILIRIT R B TZ0Y, A /L=0.2 DRFIZE pper = LATH AR T AEFEHEL L
TRO T Eypper = 3.01T%F L TR 22D 72 9D Ui

S LB A AT > T BRI Z L8R L 72 iF vl e & 72
VN, ORUMIBGER T, Table3-2 (2R L72 A /L @ EFERIED H &L A2 SB I TRO T2 i B O FiPH T 5.
Z DI BT D UEBAEREFA X A /L=0.2—0.07 T, § = 14~23,75. L7=n-T, 20X
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Pt 72 (3-26) DO FE I FEIAIEE pyer ~Eupper = 0.45~2.3T, Z OFE/HIPHIZ T Table3-1 & [A] Uit %
179 & Hyy3 =0995L 720, &pper =3.0& L7 < THEMHITK T HRAEITIFATE 5.

F£7-, Fig.3-10 O VHE TR L 72 Lpp=300m D34 Tl Lpp=150m [T T & & (2 IRV i [
D A /L (=0.2—0.03) I THFBLELZITORT LR BN EMNZORMN S DN D, Lpp=300m D
A D (3-26) ROFE S HPHIL, Eower~Eupper = 045~25TH 5.

29 LTSe(O)DFBNEE DB DR DT pwer ~Eupper = 0.45~3.0% L L7235, RIER
BT 0 ITULHT D Ry (6) DFFH & T R TITRE A U D &0 ) @ DO RFFFEZ B L
TBLIEM € ORIPFHZIRD 55 2 7 OZBHEN B T 2.

3.6 KMo HEE R

3.6.1 Mg T —4

Table 3-1 1%, AFHRICHWZ a7y (BRIN—2) BLOF o — (Effp—R) OFEH
Y. ZOMICHERIERE LT, eI RE, hLs, [BliEE, 2T A MBS KOO
ISERIH, RHREMRETDMWG - ] T — % (AERME (His), FEREEE (Ty), B, i)
N5, 728, AR T A%, ISSC(1964) TRE IR TH 5.

Ty (wTy\ "> wTo\ "4
5@o=muﬁﬁjxif)em{mﬁdif)} (3-28)

Table 3-3 Principal dimensions.

ltemn Container Tanlker
(model) (ship)
Length (m) 40 320.0
Breadth (m) 0.585 53.3
Propeller Diameter (m) 0.15 9.3
Entrance Length (m) 1.20 60.0
Scale 43.75 1.0
Froude no. 0.25 0.129
1-t 0.824 0.805
1-w 0.713 0.568
Resistance in still water (kg) 1.78 | 1.46 x 10°
Torque in still wate (kg—m) 0.0528 —
RPM in still water (rps) 12.8 —
Ahead wind resistance coefficient — 1.1
Ahead projected area above waterline (m?) — 940.0

Fio, R CTIHIERmEFERT — 4 2H T, RIRIERRAKFOE DN E#HET 5. =2
T IO FEERT — 2 1%, Y 2NBEICEE LR CSEH SN W AR REZ AW, 2
H—HDFET — Z 1T OV TIE SR208 PRI 2 1T B W TAR SN EEZ AWz, £7-, X h—
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L.

3.6.2 IO E S

(1) BRSO ERAEOHIE
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Fig.3-11 Relation between power increase and mean wave period (head sea, Hi5=2.3cm) .
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Fig.3-12 Relation between power increase and significant wave height (head sea, To=10.6s) .
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%. ZORIZEnE, ODPM Ils—EME & 5, @QNM & TNM (HIEEm N K & < 72 51 HEVVE
T2, @RTIM [T &2 3m ETIEM—ETHLINENZEBRD L EHTS

(3) BN RS 2 MUERRDT, MAeHtHT

Fig.3-13 1%, ¥, &, MFEOPUEMNE BN KT THE L ©a—7 +— NAJJEH% (BNO)
CEE (MET) L7eb D ThD. BNO TGS DA ZE S, FAEEH, JE@# 4 Table3-4 1T
T BEIHEEIEIX RTIM ©, X b —% AW CEE L. EBRMEOHGTHING AR 7210 %
it 5 @FNC I, IR RIROFHRM 2 N 2 72 HeE (X AN T LR & . JBEHHTIEE S8 e e i1
RESEEL, WETOEE (XH) IZHARBNO=7 IZB W TR 2 5 (OF) 1IZ/2->Tnb. =
DY TIE, BNO=5 L F CIXEERBA LI TH 5. 7285, BIEHEHT (GRyimasnip) 1% Table3-3 |2
LT E BRI PUR S Cx &K B Em&EEE 4r 2 0T, WATHERB L.

__ 1
6Rwind,ship = EpaATCXVI% (3-29)

ZIT, 04 BROBE, Vi fHxEEE, THD.
S5, YHEEZE LEEANARTHLD. O TIYHEITIOREEE T/ NSV, ks
W3 K&\ PCC (Pure Car Carrier) CTIEMSAEOREITIMA T 720, 7238, MHEHHLIT SR208 HF9T
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Fig.3-13 Power increase for tanker in actual seas that several added resistance components (wave, wind and

helm) are considered (Lpp=320m, head sea).

MHEIC K D IPTHIN OF R LA Y RE RS, RO & L RVHBEIN & 25 . R TE A BRI )
WHEHATL TCWAHEAE TS, IOFMNMEEZ DL EUDNLEICRD ETHRIND. 81 D
(A1-19)RUZ FAuE, B ISR 2 4k Bl TRUER )3 X ONRIREF ) ORE S TR E DR,
BIRE TSI DWW @O "I IBITH Z L 2E 2D L, WIT XK 2 YHEEITH & O RIS G
THELTHAD. 2T CIEMERTERFR A Iz 3610 2 YRE B 1T & O FIZEFI L,
IO GHE B S pmar! L 5° (2 2 CIEAEMEE 4m (BNO=7) [C TR AR YAMEERL Lz) ThDH. %
7o, 7aTREEEORBEICL D KFOYfREIT 1° Ths. ] EEETLH 2L EL, kAT
X527,

8p = 0.25H] 5+ 1.0,  Ogpgx = 5° (3-30)

@) BAEMNABELNLER ; BRE, v —~—D

29 LTHEIBEMARE D &, FEES P2 AT L7856 OISR T &, 5/ nECmeny &
BN EEREERORHNAREL 725, —fFl & LT, Fig3-14 1B MR REHH 2 ~3.
ZAE, W B MREOIPIR Yy 2B L CHE M LB A Wiz 54a (AFD, BNO =4 T
15% T o T2 BIHEMFEDE LVBRIZ2 2 LML TS ERTF DD,

Vew—U v (SM) IHHERTIHEHREICEEINTWDEHIRETH LN, KA TER
nTn5b.

B, — P,

SM =
Po

(%) (3-31)

ZZT, P KRR S RF O RG], Py PR CHMRE ) 2R T 5 72 OMEET), TH 5.
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TEZIE, BOENETHL. 2ok, BHEliT BT OMEITFKRFTOZENEELY. 2
DODREM ST, HLEIERT T [SMB A% THD] ET2HERHLN, FEEERT I 1
TEEMBEN A% THD] LEIRELEZD. v—v—U %, b HEMMO TN RE N E
ST BNIBRBOMETHLNOLTHD. ZOEKEMND, Fig3-13 Tk —~v—I 2 T E
MMFE LW HFEEZ AW, YROZERNLEMTHOFIECZ ZTHONTE MoK R4
iz 1E, e OERTOY —~—V 0 OB HITEARETH 5.
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Fig.3-14 Relation between ratio of power increase and sea conditions.

Table 3-4 Estimation example for increase of FOC.

BNO Power increase BHP(kw) Increase of FOC
V,ingm/s) / Hy 5(m) / TO(s) (kw) (ton/day)
6.75 / 1%0 / 3.9 208x10° | 1.63x 10" 10.6
940//;% / 55 4.12x10° | 1.83x 10" 20.4
1235/30,/67 7.13x10° | 2.13x 10" 34.2
1555/10//77 11.32x10° | 2.55x 10 51.9

Table 3-4 12, B =o—7+— MNEJJMEEHR (BNO) OBAEHEE & (Fuel Oil Consumption ; FOC) @
HNZ2BH U2 R 257, BNO=6 OA12 FOC #4Ni% 35ton/day TH Y, 1 /3—L b ($159 U
v V) & 608 L7-A OB OBINE, 18% 109 [ & LT, B 14,5008/day (F9 158 I F/H)
L. ek, ZORMIZIIET (BHP) LBENEEEOBBRPMLETHSH. Z 2 TlE, Fig3-15
WZRTIA U & 9 Rk A B o8 O FREBAIT % U T < 417c Shop test #2705 15 54072 BHP-
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Fig.3-15 Relation between BHP and FOC.
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(5) DY &R PHFES D A8E LI E 05 1 EInHEE

BRIE, 9RVDART N T AERPEDOART VT LEEFRL, TNTNOH AT T LEH
WTHE L& PRI EL Biic 2 LabE s 2L THrhabn - BURIHFEE O S 1 n%
HEL TS, LonL, 980 ERHEOH AT T AREEEOH 2 CTER YDA H LA ITH
fMiRR LAETRETL2ZLIFITET, ERYV A IO PN LRBLETH SH. AFIZHOW
TIE, WEICTHMIIRFTT 5.

37 T XRTMANRELEEZEE LIS E OE I~ %8

FECMIRMERIZE T, KB FIIHZ /X 203 D EMICES) (F—e 4 rE—vay) 7562
EBHBILTND. ZD XD MR EMAT L TV DIAOIEIRIG 28T 5 &, AGHEOKKL
FEE) & FIUTEE S T U D IMAETNC X > T 7 125 N~ DI EE DS 2 4 2 1288 LT
WD ZERDND. FIl, iaOENZER LA BREE LT e X7 AREICE T 5 B s
RSB & S h L7 O3 s Sz, 2L, P u SR ELE A HIE 95 2 & TR O ET
B ERFREE 22 2B TH S

Z OKRLFIEB S X OWMYRIEBNC AL O T e R MARELENL, T a7 QBRI EL
FAEF. Fiz, MR FEMMBIMATT 2 EAMEET AR E <725 2 & THREMIZ T 17 EKER
INEL 7Y, SHITHMAEEINE L b L 7RI RERICER LTI L— 7 &5
XTI, 20D, HETHITICBW T oI hRpn Kk E < BT 5.

TRESS INTIRHTMERE CRK Rt & Pt hn) & AfitERE (HEERER) otic ks TRkES LD
2, BHRPICRT 5 7 m TR OR TITHEED RO TIZER 5720, BIEno—=R &
5. £oT, WRPIZEIT 27 v RXINROEAORRE 2R FHRHIRE - 288 L Tl < 2 L33
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BEOTDICEMTH L. £z, 343 HilZ RO T 1T RpHEIEH UOEIRIRE Tl i uiE
FRF DA VTRV, JEIEIMHEEREE R EOBLE BIEIRP T o RTEER SO X5
BT 20 E RO D LER S H. | L7z, 22T, KB TRTaXTBHBIELDHIZED
ﬁbwﬁﬁ%mfi&wﬂ,ﬁ%ﬂ:“%%é*@%ﬁ%&%%ﬁ@ Lo THEL DRSO
EH), T78b5 7 XTI AREEE N T 1T BRI LR LTl 2T,

371 PHRFICEIT D7 m T A A E)

WIRFZMATT D &, AFHEOAKR T 1EE) & 2> TE L A EEENIC L Y 7 a X T N
(IR T DI % A 2 (ICEE T 5. AR IEECAMAEE)IC L 0 72 T EN A~ O AR EE
DAY EENT 5 Z &%, TuXT i A HELT &P,

7a AT N R OME S ERE, OB ES) L AREE Of L L CEHET S Z LR
TE5 . A, E V CHEMERE o= kg, kiZHEk, giXE IR O BRI A2 AT L7 &
XEZEZD. HEVWHEK B w,(=w—kVcosy), 7 v~XTHEHN~DOFNEELEIRIFU,, F DAL
B &+2dE, 7uXTHN~DRARELSu)IL, RAXTHEZONDS. (ZOFEEB IO
FOFEMIE, 82 2SR L))

u(t)=u§~ g +uy, +u, =g -cos(a)et+,3) (3-32)

ZIT, wldHTR RIS K> TAEL 2 7 e R T MAREEB OMME S Th 5. FFRIZ, upld
W%ﬂ/uﬂﬁ%ﬁ%ﬂ/uMi%E?Ewﬁﬂﬁﬁﬁﬁﬁ6]&%%@%¢%Wh%%@Lijﬁ;i57
AR Z AR ELBOME TS TH 5.
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A
A 4
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Xg

X<

Yaw+

Zy

Fig.3-16 Co-ordinate System.
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(3-32)RXlc kb L, WA rﬁ%@%%%e%@umﬁ %, I &M IREB O R 7 My DHRIE
ENAHTH 2B 5. Fig3-16 OFEEERIZ , B32)RUTKD LS ITERTE D,

u(t)=ugy -cos(w,t+ f)=w, &, -cos(caet +eg )+ dpg -, -0, -cos(w,t+&p)
—VpG 0 W, ~cos(a)et +é&, )+ Uy - cos(w,t + )
= [a)e (fa rcosey +dpg 0, -cosEy —ypg YW, COSE, )+ U, - COS a]cos W,t

o . o 1 (3-33)
—[a)e(é‘a singz+dpg -0, -sinEg —ypG - Yq-Singy, )+ Uy -szna]szna)et

= \/XCZ +XS2 cos(a)et+ﬁ)

22T, ERTHOWEERIRKRO LI ICEZBNS.

Xc =0, ( 0 Cose; +dpg-0,-coseg—ypG Y- cosgy,)+uwo -cosa

XS=a)( -sings +dpg -0, singyg —ypg Y, singy, |+ ) U,y Sina

_ -1 Xg
p=tan ( /<§Cj (3-34)

Uy = _C(a)’;()'é/a 'm'cosl'e_k.dp

a=k-lp-cosy—k-ypg-siny , k=2l

ZIT, RIEIRILOIRNE & AT (E, &), MEBALOIRIR & ATHI(0a, e0), METENOIRIE & AAH(ya,
gy L O OIRIE Ca, FORTENLE deg, B X —T A4 b7 BT HIE TOREHE ypo(1 Bl
Bt X yre=0), AFHERIERA R C(oy), HEEK o, HEWAy, EEL &b Ko b7 m
ZHhE CO/BE, AP ENS T e XTI HE COBEE,, THDH. (EXUB LR FSOFEMIZS
WTIE, g2 2B8Hoz L))

372 WRPICET D7 a7 B O L)

TR THANEENREL R 2 CEET D2 LT, R E S riEEREN LS T 5. ZhcEo
T RIS L 7 a7 MR N R 2 A2 B8 5. LovL, BUROKEHEEIZIBWT [
1T BN O JE A O BT KRB OEE R CTh 5. ] L oiEZHvhiE, KOHEE
IZZ DT RITANREEE DR ELEET 0BT, ML, BUROE HHEEDOFIEFIZ T
BT HAHELEBOREIT LB ST, L L, BAOREERE R LB A SR
IZBWTHEBIIIC 7 v R T ARE N EH) L72REO 7 1~ 7 Bl &SRR O 4 i35 2
& T, EROIREDZEEZHMFTL THEL ZLITERDHD.

EA=RN A/ W)GL Vﬁ@%%ﬁbt7n«7@@%4@ﬁ%@tb@mtm&@ﬁ$ %, LR
DEBYTHDS.
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DO RTEHEEBI LN T T R TAEEED T &2 DI REIOHEPAJW)) Z ZB T 5729, ﬁ@ﬁ:éﬁﬁz
Ki/PEBLIORAT A MR K & PV REU Ko MR & & BICAIEE T 2. 295 LT, miEEs-
AT A MEEL - BV ARENZ TR E L 7 0 RT BN n, 23 Fig.3-17 O ER OB R Z F02
KENOHEIP 2 FFH & & HIZEMZEE) (n(t) T5.

I, noom TOREE LTI RE R TIHRIE CTH DU, T ORFZENN Z DIk
FRIE DRI L 72 3581F Fig3-17 O TSR T K 91 no ORFHEEBINIEITH L0 b, 2078
2, —JAOTFIEIE g £V bS8 D. LR T, IR OEME DHEEIZ n, ORFREAH)
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Fig.3-17 Pattern diagram that show temporal fluctuation of propeller efficiency in a regular wave.
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ARECHHRECHRBRICB T 2BREZRFTHLZHMNE LTEY, Btk TAELSL TR
AT FNEE DB ED ne OEENT T THDH. T70bh, Mg & #PHE I LB
X, 2T 2 MR Kr & PV 7185 Ko DZARIE T IS DR TR TE 5. UBOKFHC
BT, Kr & ko3P EZH WS, £/, LICBTARERERE IV, = (1 —w)V, TH D03,
IR CORMEEREILZ DOV, & I LT, Fig3-17 EXFORE O 2 B E# 5. =
DAL 2, LFDO X HICRKT.

u(t) ug

= ——cos(wet + f) = gy cos(w,t + ) = &(t) (3-35)
Val Val

PR TS A B 5 AT AV, (O, RAUTH 5.
Vaw (€) = [1 + &g cos(wet + B)IVa1 = [1 + e(O)Vay (3-36)

(3-36)D & ) ICRTEERE N EWEE) L 5E, RiEER, A7 A MEEE L MV 7RO 3
RSB BRI EB(, (D), Krw (6), Ko (D)L, TRZRKKXTEATE .
~ Vaw(@®)

Jw(®) = 10Dy =J1[1+ &(8)] \

Krw(t) = a+bj,(t) = a+ bJ;[1+ &(t)] (3-37)
Kow(t) = d +e],(t) = d + e];[1 + &()]

(3NRE T BT EMHEORITAAT S = LT, WRFITHT 57 1= Bl RO FZE
B, (O BEATEHEND.

Ju(8) K (O 14+ 250

w Tw

Mow () = =5 R0 = M1l + 0] 1+e]1§&) (3-38)
Ko1

ZZT, 33)RDEETIIHRHED T 1T ng ~O B OF AR Lo, (3-38)x %
WD BTl Ak A AV CUT R 5.

[ee)

1
E}%=1+a+ﬁ+~+ﬂ”+m=sz (lal < 1)
n=0 (3-39)

n=1 = 1+az=——o-
1—a

(3-38) XD D3R %2 (3-39) XA HW TR L& I @ 2 FOHAEK LT, 7rXIjA
W DOIEERL /eI CTHEHLT 5 Lk L 72 B
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B-40)ADIEPRIT LD &, T RXTRAEEZBS et) DRENT 6 2 B HO R B )3
TE 5. BHARY ZZ 27254, e)® 1 IREORFHEB O K E SIXEHR AK: %50 & B(Ko £%
BOOZETHRE LN, ZOHITHAMEBEO O —EMORMEAEIIEr L7225, LR T,
71 T BN o (TR B A RAE T OIFIEER O et)? DIRT, Z OB EIRPITI VTR S
HEECSEDLWM ThD. £z, TOREOREITIER A L B OEIL>TRES. FilZIT,
Kr D JIZBT 2 0 REREL a ZRE S THUTEE A D/ S <725 DT g(t)? DID noy ~D 2T/
S5 W, KeD TIZET2 0 IEREd /S 2T B ARELS R DHDT, gt HORE
NS THIENTED.

Q)PEIRD T 1 T BRI M IFE T AL BRI 5 720D A
Wz KD 7 0 <RI AEE ORI A E N 7 07 BRI T T80T, UTOFIEIC X
> CHERT 5.

OVo TEAKRFZHATHOIEENSIL I T, TOROT BT8R I no0 THDH. (Fig.3-17 HO+H])

@R PR ARIES), HBUEIN A HE T 5.

@WK FHEHT & RPN X VAR ESRIC L - TRFEBREE RO, IRPOEER T 2Rk 5.
(Fig.3-17 o fif SR E AR E oo BaR)

@EEE—EE— RICTHITHZ2EELT, LHICBTAE V, 2K 5.

OV IZIBIT 2 EIR AR ER 2 5 H T 5.

O NS HRIE & B s L O IEIES OIRNE - (1A & (3-33)2, (3-349)RUTRAL T, a7
N A BIRIE R L ON 23T 5.

DO DFERZ(3-35)RUTRA LT, AIEHE Va OJEMIEB Y e() 2 KD 5.

@I BT D PV I B H Ko, AT A MR Kn BEIORT BT BHMNER 0, 2RO DH. T O,
MV GREE AT A MEEIE, (3-37) D RTHEEL D — (K, = a+ bJy ,Kgr = d +¢e)p)
EHWD. 72720, e T Bl sIIRiE ER O kAU D700, BiEERI L CIER
EThHsb., ZizT, B-40)XDEE A(=bJ,/(a+b]))E B(=¢eJ,/(d+e] )R ED.

QOODB LUV TRDE &t), Ko, K BED no ZHNT, 77 HARO E#IZEEm,,, (6
% (3-40) U TEHEAT 5.
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AR

RS L DRI A B K ORI, Table3-5 189 B0 THD. iz,

7= 7 1~ HAERE(POC)IE Fig3-18 D L0 Th 5.

Table 3-5 Principal dimensions and calculation conditions.

Type of ship Container
Length between perpendiculars (m) 175.0
Breadth (m) 25.4
Draft (m) 9.5
Propeller diameter (m) 6.5625
Wave amplitude (m) 1.0
Heading angle of incident wave (deg.) 180.0
ML 0.3~2.0
Froude number 0.250
Total resistance in still water (tonf) 148.2
Number of revolution (rpm) 114.21
1—w 0.697
1—t 0.809
nr 1.047
no in still water 0.543
0.8
. \0'5KT e Jin still water : 0.578
% 06 I — } N
> o~ ~ ‘\\
ﬁos_\\_ T~ \
E’ 04 \&\ \\\ \
J 0.3 — \ ~
S'i 0.2 4/ % ~
< / ISR |
0.1 ~—— N
) Qg N
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Fig.3-18 Propeller Open Characteristics used in the calculations in this section.
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DT v T MR T w2 bRE LD VL=1L1IZBWT02%EEFIT/hSNT &2
rolz. 7ok, WRMEAKRE < RHUE uw NRE LD O TT uT BMZEhRIET OGN TER
BEIC BT L TR E KRB0, HUTARERIBR TICR W TIEZ DR BIIEATE 5.

Table 3-6 Results which calculated the center of temporal fluctuation in each A/L.

L Raw in waves Ry R/(1-t) | K/ J? Ji V, Va Ky Kat N o

non dim. tonf tonf tonf — — m/s m/s — — —

0.2 1.142 4315 | 152.535| 188.524 0.804 0.572 10.256 7.148 0.2628 0.0444 0.5391

0.3 0.924 3.493 [ 151.714 | 187.509 0.799 0.573 10.274 7.161 0.2623 0.0443 0.5399

04 0.762 2879 [ 151.099 | 186.750 0.796 0.574 10.288 7171 0.2619 0.0443 0.5404

0.5 0.705 2.664 [ 150.885 | 186.484 0.795 0.574 10.293 7174 0.2618 0.0443 0.5406

0.6 0.639 2414 [ 150.634 | 186.175 0.794 0.575 10.299 7.178 0.2617 0.0443 0.5408

0.7 0.760 2871 151.091 | 186.740 0.796 0.574 10.288 7171 0.2619 0.0443 0.5404

0.8 1.419 5.361 | 153.581 | 189.818 0.809 0.571 10.232 7.132 0.2634 0.0445 0.5382

0.9 3.477 13.140 [ 161.360 | 199.431 0.850 0.562 10.063 7.014 0.2679 0.0450 0.5316

1 7.051 26.642 | 174.862 | 216.120 0.921 0.546 9.790 6.824 0.2751 0.0459 0.5206

1.1 9.927 37.510 | 185.730 | 229.552 0.979 0.535 9.587 6.682 0.2805 0.0466 0.5123

1.2 8.964 33.873 | 182.093 | 225.056 0.960 0.539 9.654 6.729 0.2787 0.0464 0.5150

1.3 6.908 26.105 | 174326 | 215.456 0.919 0.547 9.801 6.831 0.2748 0.0459 0.5211

14 5.205 19.668 [ 167.889 | 207.500 0.885 0.554 9.928 6.920 0.2715 0.0455 0.5262

1.5 3.916 14.797 | 163.017 | 201.480 0.859 0.560 10.029 6.990 0.2688 0.0451 0.5302

1.6 2.990 11.299 | 159519 | 197.156 0.841 0.564 10.103 7.042 0.2669 0.0449 0.5332

1.7 2.331 8.808 [ 157.028 | 194.078 0.827 0.567 10.156 7.079 0.2654 0.0447 0.5353

1.8 1.852 6.999 [ 155.219 | 191.842 0.818 0.569 10.196 7.107 0.2644 0.0446 0.5368

1.9 1.497 5.657 [ 153.878 | 190.184 0.811 0.571 10.226 7127 0.2636 0.0445 0.5380

2 1.228 4642 | 152.862 | 188.929 0.806 0.572 10.248 7.143 0.2630 0.0444 0.5389
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Fig.3-19 Non dimensional values of the fluctuation amplitude of the flow into the propeller (y=180°).
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Fig.3-20 A flow chart for estimating main engine outputs which considered the influence of propeller
immersion.
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Fig.3-21 Positional relationship between the propeller and still water.

0.6 Rerative motion at Propeller position
Vs=20.1kt, head sea, H=1m
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Fig.3-22 Amplitude response function of relative motion at propeller position(wave height=1m, head sea).
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Fig.3-23 Relation between propeller immersion and propeller thrust and torque*®.
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Fig.3-24 A simulation example of an effect that the propeller immersion changes due to the ship motion in a

regular head wave.
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Fig.3-26 View which enlarged the part of the black broken line in Fig.3-25.
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Fig.3-27 An example of actual ship measuring result at 2" voyage of the Hikawa maru *7.
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Relation between torque decrease and revolution increase
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Fig.3-28 Relation between torque decrease and revolution increase on the propeller emersion state.
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Fig.3-29 Relation between measured torque and propeller immersion.
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Relation between revolution increase and propeller immersion
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Fig.3-30 Relation between revolution increase and propeller immersion.
Table 3-7 Converting propeller emersion to propeller immersion.
Propeller emersion relative to the diameter Iw (m) Iw/Rp
1/10 2.625 0.8
1/3 1.094 0.333
12 0.0 0.0
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% IERIE DEIZ K > Tno @ 1 JEMIEIEAN KR O & B7e 2 kG K 23U F1 T,
no ~OWEIIIEFIT NS EETELBRETH 720, HEtAA v o7 a T E#EA R
HETHLHGE IR ORMITIES . 2ok, AHBEPIZBEW IR L0 & R
INEL 2D DT, HYOKRIERE 2B X RWIRY, a3 GEEEB) O SIHEE ~ D5
TR L TRV,

8) HHE Iz W T T a T EKENEMICE T 503, T aXTEKERHLMEEY b/
S BRDHEART AL« MV BMETT 5. FEMIC K DREEITIE, A ERT 527
A N OEEEIT T 7B RN TEKENRKREDVREOMEIZHART/hS SR DM, I r TN EREH
L7RWERR0 72 « K8 T CIEZ OIR FOREI NS W oo, BIHEERE I RIE T 23N
SV —F, AEEE Sm - FEEEH 10 oSSR IS0 5B TIE, 30 oA
T A NEB)TIE T AR EE DS ROVEFOE & M —E T 223, BEGIOF ik S CIEM AR
REL R TZFMICBWVWT AT A MBRBAMITNS <D, ZOBGITEEMEZ FV TG H#
TERGE~DORENT/ N E O, T EOFEENLERZ L AR LTV, s, T,
BT KAUE OB ATEE TH Y, KT 513 EIMAEBIN /N &< 25720, /NN H~T
BARIZ KD 7 a0 R T BOKERBIIAHINT NS < 2 5.

9) EMFHUT —Z OH/ITIZ LT, TeXTEED 13 1ZH-570XF7HE FinhZEhicgEiH
T 5L, B MCRICFHIMY T2 EEZBZ D 2 EXMERTEZ. —F, 7aXT73 FiifEH
M7 BRTEAED 1/10 ThHiu, RN RIBREMHAT L TOD RO LT 20%0D[H]
HREHE N (MCR IZHHY 9~ D 0.85 fi5) 12 & EF 5. ERERHREZ BT 2805, 20 1/10
EABENE 7RI PmBEHO FIREEERT L LEARETDH. 20 LRELREES L
T, 7uXTOREEZRDD.

10) 7 _XZEKENTBRT L—2 0 PRAEICKE S EZ RITT720, REIOMG O RS E R
FlZiE 7 m ST EKEICK T RS - ) - bV s OFHIIT — X OFFE - RENALH K TH
L. Fl, IaRT L= 7 OFRAEFE N TR KT T RIS E &R BERIZ O
T, MRERRELE Lizv.

11) 2480 ERPENIET DML EMAITT D 2 & 2T LIBE0ENHERIC OV T, Wik A
N7 NTLPNERDES O R TRPMET, LU OV TR EIZ TEEMIC KRG &

179.
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FA4E ShY - RERHFEBRICE T 2EHMEET A

41 LLC®IZ

TR DWW IR ZRBLT 5 FE L U TEELINTE AT N T L PDOSORHNLNHD, £0
RIFZ—oDET /MM E T, BRI EET DAY T LS IEFE— TR, WHrE
BENPOLROONTZINSEDOHEARY b T A, [ —E QRS ERFFK X, R0
FELREED L0 ) R T TIEERRER L BB LTS, ZH5L T, BRoNTZEHETTIEH D
b O DARFACUREREEY) O WAR T 1T HHEREHEE D 72DIZ, ZOW AT b T L& MEREHh o
AHiESR E LCHWD Z LA R TH .

F5 1IN B ARG 5 0D SRS T IRE D AR AEYERE & FRTEHI - 2 72 012E, BRI PRt
IS ZEBE &R ART b T D W T EIISE O TFRIFE 0908 Hnbihsd. ZohiEZ AN
D%, 90 EREAOHET 2 (580 - BUEOHFERE) TIREAX7 b T L OFHGi EEE
LD TOX D R TIE, ARG & RS R S AEICSION R (DY LR AEkR

HOTHARY NTANRERREND. D0 « B OHFEE T o SRIE] TIEIORIERE 2~ 7 ~Z
LODSDNL L ZDW AT § T AHEERUL Ochi DI > TORESNTE. £ivg: L0 fEHICE
B9 %572 940 % nominal JONSWAP % (LLF, JONSWAP M L Hig47), A EIE Pierson-
Moskowitz ! (LLF, P-MBIEBET) O ALY h T ADOCTERILL, 2D E R LAY Tl
DHF OB ENS & 32 2 L 23 SR208 AFFEiiA /e & DT ThC& 7z, LavL, ANKiTHeima
ThHEEGEZ B AT 8T LOHMRRE LEIZL > TRETLHDIL, TOERY G755
DY P NZEER D TR D . ZHUT, BRSNTZE AR BT LAORRIZ K - T, FHOKEFH A
ELTL A6 THD.

KRETIE, BEERESZDAMMEE S Iab—va v ZHWTHEARY NI LARERY A
PR D AT N T AOMERNFHEZRFI L, 240 - BB ET 2 MIREHIGE
IS CRM T _R&E TH D Z L 2T, FT, TOMBPICESE SRV « B OHFER O FEISE O
TR, RIS e )S EE B 70 SR T IN i O SR 0 53 AR O RS ol & 7= 9.

E BT, WEOMMOBEER] 207 O M IETRE K & R EE RITTIRISE T, Z0K
KENRIE L 725, 22T, AEREOFEZ AW CEBISEORKEZ RO 5 FIEEZ R L, Bk
DREIIEE O TR TR THEE SN D FRKME L B L7223 5 2 OV EoRd. T, i 7HlF
BT Un e ROEEIE 2 S 2 RS B AR E R 2 N B o 2 B ES o 13, A~
N7 AOHBUEEEOIEN Y 2 EFRT D3 RIF/RT A —F g ICHBIND 20, W IHFOWRE)
BOWART 8T LD e b a DBURIZOW TR 5.

W DR OB EIGICIBNT, WEARY b T LAOER D G 5 IS MRS A T8 2
ERIETZEER L. ZOERD A IEROREIFEE AT N T LAOE— I IEIZEK > TE
bd 2720, WEART b T L0 =7 ITRINERBO Y — 27 22T 3 DO — 7 ONLERM
REAIZ KX AR IREISE TR~ OB N ERE L 0D, £ 2T, AR N7 AOERY
HAEZRTIEL L Tyon (D0 B— 7 JEH & R EERE o) 28 AL T, KERETF
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EEROTHRET 3.
728, ARETIIIC & 5> TR BB L WIS L o TREFT 272012, Wi E—mh S Fsk

T 556 2iERE ORHlESR & 5.

42 RISE OEHIT I & FHmES
PURS s R Tl 0 BT o, BRI T OIS E BI%(H (0), Raw () ZFIH L,

AR L L TOWE AT N T LAS(w)DIEZROD LT, I2lE—2DOHEEMENIRE D . AR

JSET RO IR 0L, kA THD.

[ [H@T]
o° = f Z S(w)dw

(4-1)

(4-2)

(R ()

RW/:ZJ"[AZ? ]S@ﬂdm

20, wlZAFEOMERE, H(w)l3HRI P AASETNICZ B, Ry (0) IR PGt
S o MB[O0~] TCORENIERNDIHEE —HT 2L IICERINTPART T

IS B,
L, OIS HUE, Ry (T T-EHRPUINE, (J3EIRIECH 5.

920 B O TIE, Figd-117R7 79 L 212940 & JONSWAP U 27 kT A(Sqpen(@))
T, B E P-M B AT R T A(Syave(@) THEZIZRILL, TN 62RO LS ICHMIZIE LA

bEDZETHINRY « B OHABROFHIESR & T 25 2 &N —fRANICITORL T E 72 129,
(4-3)

S(w) = Ssweu (@) + Swave ((‘))(= S1(w) + S, (w))

ZOEHRORIEE, @2RICRAT S LR E R,
(4-4)

— [ [Raw(® S
Raw = Zf [(—2 [Sswerr (@) + Swave(w)]dw = RAWswell + RAWwave
5 a

Tlebb, @-4)RXH5RVICE D FHRPUIENE & RIEIC L D ENZR] 2 ICFHE Ui R 2 B
MU LETIUE, 90 - BEOHFERIC S T 5 Py mEnRkEs 2 L 2R LTS, Z
D@-4)X ORI, AR EOHEE 721 Tlde <, ivSER) 2 & T (A E IS S O4= Tl
HHIND. @-D)A06, MKEENL S 20 - BEHOMKISESBIEZ, TR0, e 0have

ELTEIE, 02 =02y + 05ae THD.

LI LR s, 20X BMe NG T a0 - BEIHMAEEOE A~ N7 55K T DI,
Fig4-1 FUTAHHET DM AT N T LOER D H I ZER LIRS &R T & 5 IS HHITN
BLTWDEW) RIZBWT, TOERDFODITERAED . KRETIE, KEURIORT Y Iab—

=S
TarEHAWNWT, ZoREOKRFEITY.
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0 50'_ — S(w) : Composite
S | LI S(W) ey : JONSWAP

. 0.40r
= 0 30| (T,=16.8sec.)
~ n
§ - ———= S(W),e 1 P~M

0.201 (T, =7sec.)

0.10r

0.0q! e -

'80 02 04 0.6 08 10 1.2 14 W16

Fig.4-1 Relationship between wave spectra (Sqe11 (@), Swave (w)) and composite wave spectrum.

43 ZODOWEKOELRD
AR R R AR T 20D 2 a2 b— a3 2T, S (w) % B — 7 EBIT) S 16.8 B
ﬂwwmﬁ%Sﬂm%ﬁw&ﬂ%aw@7@®RMﬂ@&x~&%7A%%wé Fo, AFRK
BIEHE AN F T At ImET5. 02—y a T, oDk/Mi(w = 0.1)0 5 R KEw =
3.1) D] & 53 EIZ 2 Ax(=0.01)IZ T n fEl(=301 E)DC2EIT . £7z, j & B OMBEEWHOwZ w; &
KT, LUF TS (0) &S ()M RAET L FEDw; = 0.61231F DA 27~ 7.

43.1 MNLLT722WRE2EKLIZE AR T A
HDHIZEBIT D EMIOFFRYI(w, )1E, —HRICERERBICTRATRINS.

{(w,t) = X(w)e'™" = |[X(w)]e®@ et (4-5)

ZIZT, X()iFwllBlF 2 EFIEERSY, e()E—n~nloAAT 25T X MM T, WIENET
—AEDMTHD. £72, X(ITEF T o F 2EREOARSHAKRE RS x () 1%, koL B
D7 —IJ xR L TWD

[ee)

X(w) =% Jx(t)e‘i“’tdt ) x(t) = fX(a))ei“’tda) (4-6)

— 00

4-6)20%, x(O)NFBRE DR TIX(0)| Ee(w)DEREDLOETEREATEXLZLEZF/RL TS,
ZORBAIED AR T L ES(w)ETDHE, [X(w)]|iF/2S(w)/dwt EH T, 52 oz AR
N LEHTDHAHEAGEORSREY|E LT, EBEERHORE=HED.

x(t) = J /22(;)‘)) cos[wt + e(w)]dw (4-7)
0

2 WERPEAGD S 572 {(w,0)(= ((w,0) + H(o, )b, @-5X, @-6)XNEFRICERRT D2
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EMTE, TOARY b T 2%S ()T D&, {(w ) DIRIERT|Y(0)|1E /ZSn(w)/dw“C“Ebé. ES

72, 22T 2 WREAR LUIEABRAE O RS Zn(t) & EFLT 5 &, ) D RIEEM| Y ()1
1Y () ?=[X; (0)+X ()] [X] (0)+ X (w)]* TH 2 b D CrixEBERE) 2, Z oAz ERoOERE
EAXRT T AOBRBRERHWD EIRXEED.

Sp(w) = 51 (W) + Sz (w) + 2¢/S; (w)S;(w)cos[e; (w)—&; (w)]
= 51(w) + Sz (w) + S3(w)

(4-8)

2 PR E A LTZ(@E-8) DB AT T L (BRI ART bT L) 1L, HiH 3 HOMHERIC
F D ROKRANBERIZ2D.

[V5:@) ~ V5@ < 5,(0) < [V5@ +S;@@)]| (4-9)

49 LT, Sy (w)DHR/AMEFZETD o ([ZBWTIHZED g (0) -6 (0) =1, F 7R KIEE
g (w)—&(w) = 0DFFTHD.

Fig4-2 1%, 4-8) U THEK LIZAKIE AT N7 AO—f%~T. Figd-2 [ZR-T X 5 124-8)=
5 3 HONAHZEDBERIZIS U T, (4-9RD ETROFMH TEE O AT T LIFET . T
TD o IZFLT, g(w)—g(w) =n/208H2134-8):UF 3 HAE R L5720, S)(w) =S;(w) +
Sy(w) 72 5. ZHUE, 940 gy & B RS A BN L 72 (4-3) RO AT T AN TH 5.
ZOXEHNT D 20 BRI O BN E TR AT O FIED, BIEITOI TV D HIETH S.
—JF, RETIEHEAZ 872X LTUE-)REH WD,

050 WS @) 5 @) ¥
040 S,(w)+S,(w)
= 0.30} :
§ 0_20-_ (VS (w) =S,(w)}
7 010} ;

008 05 10 15w (1/s) 2.0

Fig.4-2 Example of wave spectra generated by eq.(4-8).

(4-7) A TRAE S W T2F 2 OFRFHANEIE, MR e(w)Z il 7e 2 T v X AT 2 TH, miE
ERELWE—DOE AT N T A&7 D. (ORI e 4 O FigAd-7 17T B0 T, BER
BIRTIEFE 72 A7 F T A TEZRW. @)U TARR L7 A IR R BRI O SR TR 72 A2
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7 NTANE, Eol T U H MRS 2D ERRoI B LR, FAUTERE PO & LTS E U
TIEHINEL D 2R > TND Z L E2RTTEDIT, FigAd-8 TOH ALY T Lo b TFERIE A
BRCRBLLIZ.) L TAN, MO 2 DOWICER DWW DHEET D L, HATNHZEDRIIEIC
BIDARZ R T ARHEEND. ZOZEBRFTREMET, S, (0)DWE % H~5IZI34-8)2E
3 THONA DR MEE OB AMLETH S, 295 LT, MRS T 5@-)X, 4-2)=
DRI T RMEOME & %5 TS, () DPEE N SLERZ L BEREND. LI, -84 3 S, (w)
AR BT AOT-HHE & T

432 Airttle; (), & (w;) OHEH S 1
(4-8)55 3 HOAAHIE 2 DOWRNMSE TH BN D, TP —a~ 1 (KT B
R (PDF ; Probability Density Function) Z##f5H, WA TH X 6 5.

file)=1/27, frlex)=1/22, (~x<e.6<nx) (4-10)

Z O A OFEIEIL 0, BT /3TH 5.

Figd-3 1%, (4-10)NZ MR % 7 I —BRELIKIC L U ARk L 72 1,000 1 OALHH 2 BHEEARAT L 7= 1
Thb. @Dz HANTENDS, () EDIKIEEREZIT ) &, (4-8)KDS; (W), S, (w) DI
LERs. Linl, @8R 3 HS; (w) DIIIEERIF T > & LT 52 bR D (it (), £(w)
OIEIZ LTS . Thbb, S, () TEIELICRANARRIIOMEET FIEET 5.

~
o

Frequency
= NWHhO1TOD

- -7 /2 0 7T /2 T

Phase € 4

Fig.4-3 Histogram of 1,000 random phases computed with uniform distribution.

433 o= o TOMEa(w) = &1(w)) — 2(w) PHEFI A

{i;‘:a%@ﬁﬁgﬁ\%ﬂ:&ﬁj‘%’uT@%gﬁﬁﬁ(%)JSz(wj)ﬂj:a g, & EWET . IHHe, £, DFEAMERE
FERIE f1o (e, eI, €, &N TH DD f1,(e1,8) = fi(e)fa(e) E 70D, Ko T, &,5,0 7%
0 (= £1—e,) DU RIS ()15, WAL 725, 73, ajlia(w)% MEICT 575100 LT,

;)= 17 Ala; - ) (- 2, e, (4-11)
fi(e)f2(e)1F(4-10)NTHEZ 6N D05, @-1D)XNDOFD Z0a; < -2nD5E, @21 < a;DHEHE,
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@21 < a; S 0DHE, @0 < o < 2nDHAITHT THHTZIERV. OB LUOIEf(a) =0ThH D
B, @B LUVOOHAIFRATHS.

A )=t 47 +)27 (4-12)

ZIT, BFRFESR-2n < <0T, AF—MN0<a; <2nTHD. ZHUL, |o] <+2nTHE
FIND =AROMREEFE L 725, Figd-4 132 DONHE(w)) = e1(w)) — &2(w)) KD, £
AR LICRER T D, ZORICE D &, —HREEICTRAES T 2 DONEEa(w)) X
M) 72 HeSREE FEBE R T B D (4-12) XD ZfATE Al > T 5.

------ PDF by

T
Q
~

£

Il
o
(@)

—
—_—
S~
w

N

Frequency
N A D O O
O O O O O

: .

o

-2 -7 0 Tt 27
Phase difference o (w;)

Fig. 4-4 Histogram of phase difference at »;=0.6.

434 o= wjlZBT Dcos|a(w;)| DRI
5. a(y) ATEOf (o) DBIRIT, a(y) = f(a))/|dyy/dey| PEAZHAT D 5. E DI,

dyj/da; = —sinaj = — /(1 —yjz)“C“% Y, B Da; Ly, OIRD MABFET D %6 O KR

FRATH 5.

a(y,) = Zﬁwf(aji) _ Zliwf(aji)
i) = dy (4-13)
TN

(4-13) % BARRICEHRT 2 &, y; = cos|a(w; )| OfeRE EBI%q (v;)1E|a;| < 2ndIcy; DR
Al Y, kLD,

q(yj) = ; [f(ajl) + f(ajz) + f(ocjg) + f(aj4)] = !

1-y7? n/l—yjz

ZIT, fEEDa IR L Ta, = (21 — aj1), aj3 = —a; 3 KOy = (aj, — 2m) DR % (4-13)50

Il =1 (4-14)
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WHWTW5.

Z DR ERIE Ty, = 1 TERRICR D BEABEETH 523, o2 e AME 0, /v
B 172 ZFFOMESR3ARITHE D . Figd-5 1%, —RRELELCAR L72 1,000 Bl Z > 7 LI ZED 4354
Zifficos{a(w)) Yo BEEMNT L 7o R T 5. —RRELECCA R L7l 2 a (w)) D REEEHL, D
HERIETH D @- 1RO TV D, 7ok, T OB Z R T AHIE 1.0 I2B W TR
L5,

>160f : at w=0.6 (1/s) :
o120r @ ----- PDF by theory(eq.(4-14))
(O] i : 1

> 80r W

9 L

w40

-1.0 -0.5 0.0 0.5 1.0
cos { o (w))}

Fig.4-5 Histogram of cos component of phase difference at ®;=0.6.

435 o= w; TOS;(w;)DHEFEAM & Z D5y Hop;?

RO EBY, Sy (w)iF(4-8)2 U5 3 IHS; (w) DHERAIER IIRIFT D72, S3(w) DHERIIAT DR
AINEE L7225, Figd-6 Do = wjilBV TS, (w;)1E(4-9)XD L FROFEINZ /AT 243, ik
S3(@) DA HES TV D . ZDS3(w)i, 4.3 HilZ £V (4-9)XD EFIREZSHXH[-C~C1E T 5,
B Rm T A (p) £ 72 5.

WS /(W) +S,(w) Y
S, (w)+Sy(w) ;
VS, (w) =\Sy(w)} c

J

Sp(w)

Fig.4-6 PDF of the third terms of wave spectrum at o=w;.
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(4-8) XD 3 1S3 (wj) = 2 /Sl(w])Sz(w])cos{a(w])} 1, Clwj) =2 /sl(w,)sz(w,)éz <&, i

FBHy; = cos{a(w;) )3 HUZ C ()5 SN 7224 (w)) = C(w)) cos{a(w;)} = p;Ic 2272 TH .
ZOC(w)) &G EFRLT D L, LTOMEEERIIA-19HXL v R E 25,
1 1
q(pj) = qu(pj/cj) =T (4-15)

= OWERBIEREIE Figd-6 [ORT L B0, KE[-C~C] (Caid 5 T4 0, 5#lic (o))’ /2

G (v 2
opj(w)” = JPJ J— 7 (2]) Hpl =2 si(@)S(0) =6 @-16)

p; = CicosajlE, |pj| < C;THLIERAMERELT, 4-15)THRT L I FMER 0, /3 BUEA
Gr2x 5, 1(w |7 - pF oo B F .

78, op(w)) 120,721 TR TRTOIBOTHRLTHDDOT, o L Uikitikd 5. &
I, @-15)RBLVME-16)UC XY, 0 =C/N2L D THEHERBGREGD. JIST 0L, EHEFA
XM D1/N2THZ BN,

Fig.4-7 1%, Fig.4-5 (2R L7 2D RTEE Wicos{a(w;) 1o AV Toj = 0.6 8 I i 12 341 4
% Ss(w) ) DBEMT 2 AT o TR TH D, 2 L0, BB CDS;(0)) DMIFE 2D REEE
DHRFIEFELTEY, EEE-9XD ETROFHCTHAT 5.

1201
100
80
60
40}
20}

at w=0.6 (1/s)
------ PDF by theory(eq.(4-15))

T

T

Frequency

-0.12 -0.08 -0.04 0.00 004 0.08 0412
Ss(w))

Fig.4-7 Histogram of the third terms of wave spectrum at ©;=0.6.
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44 BEPEANT N T AOEME ORI

b D w231 5 S3(0;) DHERIIMER DI L7203, By SN BNR ED XS Rl E 2 H/
H0ELLTFICRT. AR NI LAOHE 4 #RDD 2 EI2L-T, ARERSRYIO BB H
/ohd. WA M7 AOER AL, -84 T0ZLTRkES. T7hbb, RATHS.

[oe] [0 [oe]

A= J Sp(w) dw = f [S;(w) + S, (w)] dw +J 2/ 51 (w)S,(w) cos{e; (w)—¢&,(w)} dw
0 0 , 0 (4-17)
=A;+ A4, = A
1 2 kZl k

ZOWFE AL, B2 HEPHERETHINE —OOMWREKRTHSH. LIEN-T, HE A4 Ok
FOPERS IR, (4-17)305 2 BHITIRAF T 5. 208 2 HZBERUNIC n [ D(4-15)KDC & 433 HiDa; %
i > CHEfRMICE R T D &, kA THD.

n
A, = Z(CjAw) cosq; , j=1-n (4-18)
j=1

PLbE, oz EEERTS.
D@17 NDH; 2 I A, DFEIEIT 0 TH 2 DT, FEULS NI AT b T LS, (w)F, W
AT N T AOBEMFDS; () + S,(w) TH 5.
@M 4, J8 0 DIEFEA DIXHHOEEGEZRTHOHIE o2 ITH 2 H AN OHETE, ZOEITK
X THDH. CEHOFEMT, fEsE2sRoz L))

n 2
C;A
042 = Z( S Za)) : where Cj = 2 ’Sl((j)j)SZ(wj) (4-19)
j=1

Z DR, R A OMERE BT OMRERIC LY, FEHEA = A, 78Ee,2ORADIEH
A%, (BRI BRIC I VIEH LR E, R8BI ORI ITRLT.)

(4- fT)Z]

ZO'AZ

f4) = exp | — (4-20)

1
V2moy

BRPE AT BT AMZIEE-9)RXOBERERH Y, HiE 4 135 (0) ES,(IZ XV kE D ETFIRMEE
B0, 51(0) &Sy ()32 B D & FHME 4 3 @- 1R 1 HE Y, @-HXEHO L1500
BEICTHETE S, 200 8ENRA-19)UTTRE D720, g (w), & () DNFFEHRNI72< TH
BB AT BT LADMEE A OF G RE200RICE > THEZBRD. T74bb, (4-19)X
BLOME-200RUT L > T, MIMERICEDFERSHPHEETE 5.
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100 — — __CDF by simulation 10
& 80y ——CDF by theory , 0.8
G 60— PDF by theory(eq.(4-20)) 06 S
o 40f 04 2
“ oot ”H 02 E

I ' O
0 ! . \ .ﬂl \ 00
0 0.05 0.1 m? 015
Area of Composite Wave Spectrum
Fig.4-8 Probability distribution of area of composite wave spectrum.
(4-20)= U THEE S D e R 58 FEBASR DRRGE D 72 DT, —HRELEUC THERL L 72 1,000 B ON7FE

DBEDEZA-1TRITRAL T I 2 b—3 3 %217 9. Figd-8 ORERIT, (4-200D1EH
AR TROIZABPE AT b T LS, (0)DIEFE 4 OMFREERE# (PDF) ZxRd. Ziud
(4-17)380 4, BB 0.125m2 (= 4) & (4-19)RUT TRD I SHAE (0.,/=2.26X10°m?) % (4-20)2

ICRALCTHEERTH D, MPITIE, OO 1,000 FlO Y R 2 b—3 3 bR 2 S ART
L 7ES a7 7 L LThFET 5.

F7-, KPOMERIIBEBHERSA (CDF ; Cumulative Distribution Function) 13 1EMH 457 ZA=0UC
L DRERT, MEBRROBRRIT 1,000 BT I = L—3 g v OMEMRITREE CEXME 0.125m2, 4k
249X 10°m?%) THD. LEND, @200 L DERIFV I 2 b—va VIERICAE LTS
IE, IRIREZRD H(A-D)R, 4-2)ZUT A WIUSIR RIS O 53 BB O fe S 53 AT e 8 |23 © &
5.

7B, MRELINE OHEE Z IR O TE X D &, G AT b T AOHEDOFHIE 4,
WEETHDS. Lonl, @19)RUTLTTE AT b T LOELRYPRELS RoTGRREL R

HDIFEHE A DIEDLOENKREL 8D, ZO7®D, FHIE A4 OFHTITRIGE & KB 5 D118
L<, MEANRY 8T AOTWERTHRE AL NEEL D,

4.5 SERJERBUEM - AEIRT - REHEE R OHEES]

ATERLS, D40 « BIOHARIIC I 1T D ARG E O 5 BAE O E=R 340 703, (4-20)3 0% IV CHERE
T& 52 L aR Ui, ARECI, PN ORESR I3 AR OHEE K5 B 2 7~ 9. P HG T I &1
BRI AET DHEERE ROV E L L COMHEZ T 2 2 L NEERMEINE TH L. 72k,
Z 2 CIRIEIR PO 2 OEEMEEZ R D O T/, T ORREM GRR A EPTHEM) 2 E
gL LT 5.

(4-20)7AZ & & FEPERGIEIN S O R R A HEERE R OMGED 726D, —RRELEIZ TARL L 72 1,000
BIONARZEDFAAA W& AW ORI EZ R L. 20Y 2 b—ya U RIEE, KO
LBV THD. D1,000 FIOMAHZEE -8)RUTMRAL, 1,000 FIO G AT b T LEART .
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QBRI AT T LEx@-2)FXURA L, FHERIUEMELZHE TS, 29 LT, 1,000 BlOA K
WA T HNHIZEIT 5 1,000 FlOFEEGTEMEN K E 5. Tabled-1 1%, HEAfOFEE - 5
REAMB X ORHIES TH 5. o, FHMHER TN & > T b B LWERIEE B 2 b D B
[Fl—J71 (EHEAHE) »HEkT 58548 & L.

Fig.4-9(1) DK EML, EMOAARIT TRD 72 P IN B OMERE L% (PDF) %/~57.
ZE, (44 CTEHE L2 EHCPTIE N R 107.91kN &, 4-19)CTHHE L 72 EHHRPUE & 0 /7y ik
fifl 156.95(kN)? % (4-20)UZfRA L TRDTFERTH D, T2, RIFOEET 1,000 510> I = L—
voa U EBERNT LT RER E2 R T, (4-0)NCEVE L7 R HTHEIN & 107.91kN 1%, 1,000 il 2
2 b= g VEEROHEIE 108.84kN (2% LT 0.9%DFRENIZINE > THEY, B —HLTW5.
F—H O —# & LT, (420U TK 7= PDF % W CEE BTN E R £ O E
107.91kN ®+10% (97.1~118.7kN) DOFaPHIZ A D= (LIR, T10%HMERELFRT) ZRKHD. 2D
+ 10%HER N R EVIE E BB PEMTICEE > TND Z EIThY, 20 X5 2RI
HETHLZLZERLTWD. Figd-9)DHEEBIDEETE, T10%MERITH 61% TH 5.

INDDFREREME ST, LUFO LD RREAFEEIC/ 5. Fig4-92)F L O Fig4-93)I%, Rik®
EHHERHUE N E A O CRIEEE — E RIS CRO I T & & 2 ORFOBRERN & (FOC) % (4-
20)UCTRO RN THD. £z, MPICITY I 2 b—3 g VR Z SR U7 R % Of
TS IO ORI, MEEK TECBRENEEE D, FHRBUEINE & R HEE 8 ORI
FHmA M E 72 Z AR LTV D,

Table 4-1 Principal dimensions and sea conditions.

Type of ship Contaimer

Length (m) 175
Breadth (m) 25.4
Draft (m) 9.5
Ship speed (knots) 24
Wave period (s) ; Swell (Tp) /Wind wave (Tw) 16.8s / 7s
Significant wave height (m) ; Swell Wind wave 3m/2m
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160r ———- CDF by simulation

140r
120! CDF by theory

100-—— PDF by theory
I (eq.(4-20))

T

o
™

1

Frequency

S
L
1
o o o =
N A O © O

N B~ OO
o O
LI
1
Cumulative Freq.

OO 20 40 60 80 100 120 140 16%'0
Mean Added Resistance (kN)

Fig.4-9(1) Probability distribution of mean added resistance in seas.

200_’ ------ CDF by simulation 110 =
> 150_—CDF by theory _0.8 E
S - — PDF by theory 06 2
=1 100_— (eq.(4-20)) l04 o
D {77 3
L 50 02 §

[ . O
0 1 1 1 ] 8
O 01 02 03 04 05 06 0.7 O.
Nominal Speed Loss (kt)
Fig.4-9(2) Probability distribution of nominal speed loss.

100_’ —————— CDF by simulation 11.0 _
> 80— CDF by theory 10.8 3
c | —— PDF by theory ] L
g 60 (eq.(4-20)) 06 ¢
S 40t 104 ©
Y- 20t lo2 §

I ] @)

3923 3.24 3.25 3.26 3.27 3.28 3.2%'0
FOC (ton/h)

Fig.4-9(3) Probability distribution of fuel oil consumption.

UbEDZ &iE, @-3)RDL 2500 ERBEOMPE AT T La Bl LES, = S1(w) +
Sy ()W TERIBL L -BLROBIISE TRNE, 940 &R NI 23RS 2 — > O VEHERIZIR
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ELIHEEMTHD Z AR L TWVD. 2T, ARITEBIFET DHEERROVEIEEZ 525
RERFIETH DN, BTG S BT — 7 Ol ERTNR U 7MLt 2 B 81 5%
LNt H 2 L a2EWRT S, FIAE, EMEHANC TG S 7R & BURO TIEIC & 2 IS E T
AT 5L, BTLLRVW—EREONRWGERH L. TO LD RGE1E, MR ZA
T 5 4-8)=5F 3 HOTBHHEIC L 2B HEEO FHIEDIZ 6 - 250 T, FMFHIR R 2 Fiks
i~ &LBERD.

4.6 B RAEDSEIE & 72 5 I IRIENE O HEE B
4.6.1 MR OISR EE o> fife 2 B BRSO HE E 5]

RITENCoR U7z EHHR PN BT B W TE D 9 & 250 7 R T, &2/ EOE
INEE LR D HER TH T — 05, OB EOREELO S ER L b &, BEM Lo
BANDMER LHEBICE - 72N DD, Theb b, JRIRME, FIREBIKIEH 2 W TIE %
DIMAISENE, VR OIE-CRE A O FiE /e EICR< BMR T2 BN TH Y, BEIAAET DRI
BHEEREROTFHMEEL 0 b, MEOWRPIZBWTERT 2 RKMEOFINEE L 725,

ARETIE, MIEISEORKMEHEE FNEZ R THNS, F T IR E O R 2 E O MR/ E
12(4-19)2, 4200 A WD Z L3270 2 & 2R T 5. (4-19)70 & (4-20)=% VT Table 4-1 @
ST DN E B IIEE OREER A (B T B A R 2218 % 8 s Ol - 7o fE
[GIICTHIR) ORERBERE A RO D &, Figd-10 DRWERE 2D, £72, Tabled-1 DEIFITT
1,000 BIONFHZEDMAEDEEZ WY I 2 b — g 2k ->T, 1,000 BlOME ETFINEE D
HEYERAEE RO 5. Figd-10 DY T 71, 1,000 5] 0OFE AR 240 2 ST L7-f R Th 5.
(4-20)U2 L 5 PDF 1% 1,000 {5l I = L—3 5 o OB RS R ODTRICE > THB Y, (4-20)=
ERAVDZYUERRGECTE 2. B, RFOHMIWER & BEBLR ORI E 2 10(4-20)208 X O
JERRATRE RN SR 7- CDF THh 5. Z9 LT, @19, @20z LBt T\ 5 ik
& FIEIZ Ko THEE TR AT 5 2 & TS BIEER EE ORGSR ED.

1507 mean value=0.191G _. 1.0

_ 108 &
2 100r — ——- CDF by simulation los o
S |~ CDF bytheory =
® 5ol— PDF by theory __0'4 E
L (eq.(4-20)) 102 5
] @)

(S).OO 0.05 0.10 0.15 0.20 0.25 0.3%'0
Standard Deviation of Acceleration (G)

Fig.4-10 Probability distribution of standard deviations of vertical acceleration at F.P. in actual seas
(T,=16.8s and Tw=Ts).
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4.6.2 FEHISED Un HBRFEEEOHRKRIEZ KD 5175

ARETIE, S0 - JBEIHFERIZ IO TA U DM ERE IS E O R KIS 35 Un i K-
HEORKNEZHEST 2 FIBERET S, 5RY - WEIHAERIZ IS W TEMEHICHA-ME LN
HERRINZfRtTT 2 &, e L T INEEEOEEREE o 25kED. 2D o 25T, 3CHk 20
K AUTIBIES R o & L7k, EHIGE D Un BREYEIX e D a fFICTHEE CTE 5. ME LT
K & < 720UEZ OFEERAREIIR X < 720, ENIEEEBIRE D Un R RFEEME S K
ELRD. Tbh, FEHIRNED Un SREEEN KRR &2 DEOHEEITIE, RIS R 2 E
DI KNE(Opa) 2 RO DH T EMMETH H. 7233, Table 4-2 ITMRISE DM KAE )Y Rayleigh 57473
DA D In R EBMEEZ RN E > THEE LTERERE2 D00 THS.

a=nv2 E,/logen +0.5vn{1 - erf(,/logen)}] (4-21)

Table 4-2 Proportionality constant o for calculating the 1/n th maximum average value of the short-term

response.
n loge(n) x=4 [loge(n)] ERF(x) o
1 0.000 0.000 0.000 1.25
3 1.099 1.048 0.862 2.00
5 1.609 1.269 0.927 2.25
10 2.303 1.517 0.968 2.55
100 4605 2.146 0.998 3.34
200 5.298 2.302 0.999 3.54
500 6.215 2.493 1.000 3.79
1000 6.908 2.628 1.000 3.97

Table 4-2 12 LAUE, 171000 F K FHMMED a 13 3.97 TH D23, D40 - BIRIHFEERIZ B T
KAEZS Rayleigh 23464 % 2385 MOV TIE 4.6.5 Sl BN TR~ 5.

SETOFMICED &, 200 « B IHFERICE T 2 M EIGE O R ZEIX4-17)5 2 3
Ay DT X > T, Figd-1010R L2 £ 9 12@-17) XD F 1 I TR E 2 PHE A B 0 IR T 5.
F72, ZTONHILE-19) 0 E (420U TREDERDAMATH D, 4, 4-19)X, 420Uz Tk=E
S T RIS Dy BB V ONFEMEZ py, 73BAE V OFERAEEZ oy & T2 &, MR O 5y BE
VIRREZEWSTND 1/1000 4 —F —OFARER L 72 500 ValL, VIIERGAHT 2 Z &2 HOTRA
THEETE 5.

Vm = /J.V + 30V (4‘22)
29O LT, 422 ATHEE SN DMRISE D HAEIL S 420 - JRE DRI W TE L D RK

LW HUEZ 52 5. Lk, ZO Ve ZIERISE O BIEO R KE & 9.
PUFIZ, HEISED Un e REBEO R KM EZ 4-19)=X, (4-20)2U3 L 0V4-22)=0% WV CHEE T
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LFBEEEEDD.

Do 1Y - BEIFEHKOE AT~ T A8 (0),S2(0)FRET 5.

@@-DNRE4-3)RUTT, MIBISEODBIE? ZFHT 5. ZIVDIMERIGE O 5 HUE O FEIE wy
T, ZAUTME-200UTF T B FEEIME 4 ([THHY T 5.

@(4-19)2 T, MIERISE DO EUE D Sy 8l %R 5.

@uy & oy 2 (@4-22)=UTRA L, IMEISE DS BUIED R KIE Ve ZRD 5. Vi OFFHREZHY, 2
Wl 2o, & T 5.

OFHIRE OFEHER M o & Un IR OBIRA 2 (1/n S ffi=axc) B & Woy,e & F
T, EHISED Un BRFEED KB Z 0x0, ([ THEET 5.

4.6.3  FIIGE OIFEHER 2B 0y, 0 O ST B

AREITIE, EHISERERAEOMPEEMEZNNT, onaROTBZ R,

4.6.1 Hi? Fig.4-10 |2~ L7c o OMEREE B A AW E, 4.62 HiIOO~@O TR R AR D
B TR &N T20,,13 0.215G THDH. ZiuE, FHE 0.191G I T 12.8%I1F &K&W, F
bbb, SRy - JBEIHFEEIC ISV TIE, WAL T AOFIHIC XL o TE U 2 RIS AR
WRZEEOIXDLDE 2 BET D5 L, MR OFM L 72 2EIFBUR O FIETHE LRSI~
TR&EL 5.

150 | 1.0

ue=0.220G _! 1

o mean value . 08 g
O i | kL
3 o . . 06 o
o | ———- CDF by simulation =
2 ., CDF by theory 104 T
" ——— PDF by theory 2
(eq.(4-20)) {02 3

800 005 o040 o045 o020 025 04p°
Standard Deviation of Acceleration (G)

Fig.4-11 Probability distribution of standard deviations of vertical acceleration at F.P. in actual
seas (Tp=16.8s and Tw=9s).

2T, 90 OWHRFEMIEZTITRE OFLEE 720 % 9 FITEE L TRED L TR
BT 25L&, Figd-11 IRT X 9 1T B TN AR 220 O 1L 0.220G L 725, —F, Ome
1% 0258G T, EHMEICK LT 173% BRIV, HIE0, Wi AT~ T AOFHHOE TR
TX7R0,

¥, AR %A Figd-10 OFFR LD &, KFERDO X ST A7 ~ T LD FEIAE-S <
FEEMISEIREERAEOIT L OXIIREL Y, BT D0, bREWV. ZDOZ LiE, WA
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7 b7 & AP ARARISE B D 3 B D o (T DALERFR OB MBER T L 2R LTV D,

4.6.4 FLHISE O 1n 5 RSEEIE D fie KA O FAfFAT 1]

ARHITIX, Tabled-1 DUFE - ARV TEBISE O Un S RVIIE O Fe KB % R 74511 %
R

Table 4-1 1%, KRB AEZMAT T 2HELZBEL TEY, ZOHEOHSWEEEITH 6 7
Thon. ZOWSR - EHCRREDS 1 Frfkle L, A2 DORIZ 600 MBI T 5B XD, DX
O IR FINERIC IV TRAT DMISEFEERZORRIELE LT, 1/600 KX FEEEZRD L. £
D= HDOHIEE ald, 3.84 (Rayleigh 0 DREIZ L D) THD 2.

Fig.4-10 {278 L7 SRIZIB W T 1/600 i KFEMED R KIEIX, FEROG@DOFIEICHES &, 3.84X
0.215G=0.826G T 5. ZDEN & HBIEZ B 7256, IR ESCREAM O RMEL R < &
B 7RI E R T D Z L AR LT D,

465 9HkV - EEOHFERIZIET 2 RIS ERKE DS Rig/RT A —X2

ATE BN B R KRB A RO 212H 72 0 FIATFHFEEZ AV 2551F, Un RKRXFHEOFE HO
72 OIS B R 22 IS L BE SR 0% #NT 5. Z O HF O EIGIC R T 5 el EEI,
2 DBERHIAR STV D MKIEIRIE OS54 )Y Rayleigh fEESAMIEEITE 5 & LTR®D
TEE TR D, ZHUE, AT T AOHBUREBOIEN Y 2 EFKT D3 Rig/ST7 A—H|Z
EIN, R0 X9 ITBKIEIRIED Rayleigh ARl TE 2858133 NlIE/NT A—27030 (=
Pl THDH. 22T, MEIHFEOREGICE T 28 INTE AT 8T LD RiE/RT
A= L I EBOBIRIZ OV TRETT 5.

ISR HIE A O 1n e KEEMEZ R D 572D D HHFIELK o &7~ T Table 4-2 1%, AMAISZE DMK
filiA% Rayleigh 0 #il2HE 9 EAE L CHEE S D. LLZRR S, 240 « BIEOHMAERICES T D0
RAEHIGE 23 Rayleigh 23266 9 DMIARBA T, Table 42 T/RL7Z a 2D F i H TE 20060
I A ET HETH D, 5 HJELEGHIR ISR N DT —Z 2t LTIz & 25, v
R/ ST A =213 0.6~09 (20 LTz W o Db H 5. REICIE, MREHISEOmK
EDOFAAIZDONT, MEREERBICET 230 RiF/ST A —2 OBLE b Ot 2R 5.

(1) FRIARISZE DR RAE DM 58 BB DT

RIS B DR RAE OHEREE LRI f(OIE, MMRISEANRT BT LS, e (0) DHHILDYES V) AR
FTHEDe (N RIEANT A—=2) ZHWTRAOTERT Z LN TE 5.

I x2 Ja-¢3) _i x [(1-¢?)
fx(x) = J2mmg exp (_ 2m082) + mg x eXp( ZmO) [0'5 + erf{s \’ mg }] (4-23)

ZIZT, mo: IMERIEE AR R T ADORE—RAV B, erf(x) : @K kX) , THD.
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(00}
m, = f 0" * Spesp(w) dw , mg is variance.
0

. (4-24)
erf(x)—\/_f exp( )dz , erf(0)=(0>

0.5

(424D, pep(@)iF, FRIANT hT LTHS.
AN

L, & DEBLZ/RT 572012, (4-23) A5 IEMIC T, = x/ fmy DEBEREZITH & kK 2D
WFHND.

p(§) = =exp (-

2) + MZ - exp (— g) [0.5 + erf{gw/ (1- 82)}] (4-25)

SRR C T S - TR B FE IS p(O) D (d-25)RU L AUE, Figd-1229107 X 51 & B
p(ODEALD R TE 5.

0.7
0.6 e=0
p(Q) 0.2
0.5

0.4
0.

-2 -1

0 1

2 3 4 4
Fig.4-12 Probability density function of extreme value by bandwidth parameter &

() AR 1T LDAY RIEST A= e l2o0T

ARG T AOEDOYEN Y Z#ordeld, AT b TLD nKE—AL b my ZHNTHKRA DT
FIN5.

2

m
2

e= |1-—

) 0<e<1
MmoMmy

1 x?
: narrow band spectrum = f,(x) = m—x exp< ) (

0

(4-26)
2my

1 x?
: wide band spectrum = f.(x) = ex <— —)
p fx T P\ " 2m, )
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%1 u

T b b, & - 0DRFIBAMERIEFLD Rayleigh M=% EEBIECT, & » 1D HHHAE 2R R
O Gaussian ffe % B (EHMEREERIE) ThHhH. 29 LT e MM DO5H OIS ZE DR
KEIIBEF OB ERM TR T Z N TE, ZRENOMREERBRBKORMEEZHET 5.

L L, FEERICBWTIZD X ) 2efidim/e Z L3 CTH Y, eld Figd-12 (T X o RN
IEEERD T2, IMARISE OB IX@E-23) U TSR 2 A5 2 Lick b,

IS E ORBRAE3 (4.-23)AHE D & LTRE, ZOMBKEN H 8 x 28 2 HHERITKRATH 5.

% = fx <’>° fr(x)dx (4-27)

£, MKRMED Un K VFEEL, /(TR TH 5.

fx xfx(x)dx
S fe(x)dx

X1/n =

f Ooxfx (x)dx (4-28)

Xy m EMRISEICBT RO L 72D 0 IRE— X bmy (MIKIGE AR b T LD5y
W) 1, @20 TRLUE IUn SKRTEEIEZ RO D120 DBIEE o Z WD & UL T OBRN S
5.

_ X1
mm=aﬁ%-+a=—%§ (4-29)
0

(4-27)~(4-29)UZ LAu, aldellXoTET D, 728, MEISEDOMAKED Rayleigh 53471
WEIHED o ik, Tabled-2 DEBY THD.

() FEIHFOREENIGICB T DIERIGE AT T LDy RIg/RT A—4

FEEE R < EHITRIZAT 5 72i2lE, MBI BT 2 RIS EORKIED & D K 5 7o Amlcie
IMEHMDUEND D, AROEEBY, TOMKE (I/n ZKKRKFEHE) Z2ROLT-OD alie &5
BERERA DB, Lo THBKENMEZRD D201, £F1E e & a ORRE ONERD 2T IER
L. ZhuE, LTFOFIEICTRD DL ENTES.

D27 XD e EX'HRDO TP THIET, LD In%ERDD.

@x B LU n Z2@-28)RUMRALTHENT DL T, XpnaRDD.

@429 icx; ZRAL Ta kD 5.

@DZDOXHCLTRDTL alE, OICTRELLE TG LIZETH 5.

IEfE7R o 2155 72DI21%, 270 « BURIHFBEICB W T e R ED L DI MT o0 NEEL R
5. ZIZT, WITHHHEHICIB W TR LN DMMBISEART N T LD ¢ %, 1,000 FlOE R A~
7L?A%mwky::v—yay:;of%mﬁé.::Tm;mm¢1@ﬁ%%@mtw(ﬁ
FW ) 3m - B — 7 5 16.8 FD JONSWAP U A~ [T 1) « B (A 2m - FE05)E
IO P-MBE AT N T 1) (D06 L, MDA 24kt TR 2 MiAT L72RHZA T ShE TN
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WEIRED AR NT LD e—HlE LTRDZ., 29 LTRDONT- e 1T/IMEE 0.30, FAMHE
% 037 £ LT, ZOXMWNIC Fig4-13 O TEURTIER A EZ L TW5D. ZOFHfEIE, 033 T
HoT.

4.0 n=1000
3.5
n=100 O
3.0 “\\\
2.5 n=10
e
=8
5 20 (5 n= \\\\
1.5 4\\
1.0 n=1
\
\\
0.5
0.0
0O 01 02 03 04 05 06 07 08 09 €1
40.0
30.0
03~0.37
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e
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Fig.4-13 Change in Proportionality constant o to band width parameter € and distribution of .

F 72, Fig4-13 ([T EEROTFIETRD = a & e OBFRE, n BT m > L. Bl2iE, n=3
T, &=0 OFFD 12 2.0 (KHFDOHE]) &72->TEY, Tabled-2 D a DIEE EHTDH. ZOKNDL,
e MREILRDITHED a IFRAITNSLS DT ENbND. LiL, ZORIZEIIL e 23 0.4 FREE
FTHE a DEALIFNEL (=0 D 0=2 IZxF LT e=0.4 ® o 1% 0.98 f%), n=1 OLFHZERE =0 O
CEEICTHD. LR oT, e=0.33 DIFAD a i e=0 (Rayleigh /34 DHA) DOEFOEIZET
INSTRMEIZ IR 203, DTSV ARSI & o T, MRS ORBARAE O/ NG 58
HRET, THVIBAENSEZ DL e N 04 FTRhROLIF e DENITE D a D/NE /2B L EEES
5EX0%, 20D a xMWTHEREEZHEE EHITHR) §X&2E325.

BEETIZ, FRICHWVDEANRT N T LEZAPIE AT T L7200 & Lichaofe ETm
HWEISEANRT T LD e BRDIZE A, =016 1272 o72. HRY « AEOAMIE AT N T 4
ERAWTRERD =033 12T, BMIERD e I3 BI/NEL 20, [MRISEOMKEIZL—Y
— A9 D EARE] L pEk I TR HNTWS o D4 MED Figd-13 12X - THERTX 5.
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47 SRV - AR AT T AOERY Ey, BRI OB TN R AF TR
471 WHEART R T LAOERY Ey,, ERRIRISEIZONT

IR ERPE DAY T NZERDE NS DH Z LT, (4-8)RH 3 HONMAHREFRIZIE U T
(4-9)XD L FIROHIPH T, Figd-2 (TR T L O ITHEEO G KL AT T LS (0)BFET D. —T7,
HEART T LD —7 B3I TWD Z & Tl AT T ACER LB 20
et n s, Q)AHEIHIBr LY, Me—DS, (w)D3[S1(w) + Sp(w)I &> TRES.

ARHEITIE, 4.5 #HiTHRNTZFAESE (£10%ME) ZHNTHr00 LEEDOE AT T LADE
Y EORBELRET S, T CTOMPEARY T AOELY ORE (ERVE) X, >RAVor
— 7 R & BB ORI Ol (yop = Te/Ty) TERTDOH ET D, ZONBKEWEAIL, WK
AR T LADOE =T PN TV DO AT T AOERLEH TINS5, 2B, K
ORI Tldy o OHEIPHZ 1.0~2.0 & L7z, ZOFPHAREIE, >R VITEFICLIEREY LE
DB AN ZNZ BB L TiR/INDy % 1.0 &L, ROy, XA FEEIE B DS
NENEEDND I RY - BEEZZRICANT20 & L.

E’ S(w) : Composi
L : iposite 0.50+
o S(W) e JONSWAP 0 0L WS (@) + S @)y
& 040 (T —168sec) = Si(w)+Sy(w)
= 0.30f P 3 0.30F ,
S = (W PM > 0200 WSi(@) (@)
0.20 (T, =4sec.) ’
0.10}f B 0.10 .
1 1 0-0 :
098 05 40 15 w 20 8.0 : : :
ﬂv S(w) : Composi —
050_ . poszte 050- { S (w)+ S (w) }2
Nm o40- It 77T S(w)swell : JONSWAP T 0.40r ! ; (w)+S (w)
§0.30_ (Tp7]6.8sec.) 50.30_ 5 2

- S(w)wave i P-M

>

~ -
1 0.20 (T, =7sec.) 0.20
0.10r e 0.10r
EREETI - 0.0
0'08.0 Og S 1.0 1.5 w 20 8

Fig.4-14 Example of calculating the effect of the difference in the overlapping range of both wave spectra

}

2.0

on the generation of the composite wave spectra.

Fig4-14 1%, 2RV AT N T LD E— 7 EJEH Tp=16.8 #HIIx LT, B AT FT L0
ER R A Tw=4 7 (EBEDIK) & 78 (TEOX) DHBAEOERIEART 745 (FOK) %
RHEL-FIThD. ThbL, ZORICLIEE-)RITHE ALY hF A0 —2 (Figd-14 DI
B~ F o 7 LT /NREDOERT) 23E-SWCEZR 584y (Figd-14 £ O REIOHEPH) 23 K&
WIEEBRIE AT T DAERO ETFREFHIILND Z E2BEKRL TS, SR~ 8T A
DAEREFHPIERT 2 &, EREINTHEART FTLADIELOENKEL 2D, TOD, Tk
HAWIEAMRISE OB TRIFER OIS D E B R L, bITPCUERO MBS L 230X EK e
KBRHHDEBZZD. LoT, 200 ERAEDOWART FT LDOEZRY BED, MIKISEORMT
W2 W= RIS & DR DR R RITT 0% EEAICHER L7221 T 72 57200,
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Fiz, AR 2 A o OBRGTHINIGZE B D IR TCIE K 4y (= Raw/pgla (B? /L)1,
Table 4-1 |Z/R L2 FICHBIT 2 MEDHETH SH. LI > T, KEIORMT TiT—2>DmEH ok
PUHENSZERIEIC R LT o0 LR D AT N T AEFfliae B X TR, WA NTLE
RIS E B D 3 SO — 7 OFrERRICZ K - T, Figd-9()IZmR L7 EARTIE M E O
AN ED LI ITENT D20 EHET D.

4.7.2  FHRIBE FHRHUE NG B A F O T HEE A

Fig4-15 1%, ©— 27 BTN 10D 2R A7 8T L (JONSWAP) & 2438 JH T, 725 5
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Fig.4-15 Relationship between the positions of the peak of swell, wind wave, and added resistance when the

peak wave period of the swell wave spectrum is 10 seconds.
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Fig.4-16 Relationship between the positions of the peak of swell, wind wave, and added resistance when the

peak wave period of the swell wave spectrum is 12 seconds.
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Fig.4-17 Relationship between the positions of the peak of swell, wind wave, and added resistance when the

peak wave period of the swell wave spectrum is 14 seconds.
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Probability that the mean added resistance will be within =210% of the average value

1.1 ' . '
10 Swell: 10sec. |Average: 27.6kN Variance : 16.8(kN)?2
" |Wind Waves: 7sec. ' /L\ '
R . N\
0.8 [{Gaussian probability density function| / i
< 07 . ; :
é 0.6 l/: /1 ! N\ ' \\
W . ~/ K +10% D\
Y /N AN
' AL | i
0.3 l//|248kN|. | #1| 30.4kN
AN
N
0.1 ~ ! ! ! ~
0.0 1 1 1

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Mean added resistance at significant wave height of 1 m (kN)

Fig.4-18 Schematic diagram for determining the probability that the mean added resistance falls within =10%

of the average value.
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Fig.4-19 The probability that an individual mean added resistance falls within +10% of the mean value of the

added resistance distribution.

Fig.4-19 Dyyy = 2054, BikO L B0 3 28— 7 OALEBBRAAMEICELL L TS, R 3
DOLFFEIE TIED 5 &, Figd-15 ODHA, Figd-16 QDA Figd-17 @D ITHRE L
TWo. UT, O~Q@DFKRMITKH L TELREELDD.

(@)3 2O —27 RODORRICH 256

ZOEMETIE, 20V EAXT FF LOE—7 Tk L TR AT T LD E—27 BB D
(VIR E IS Z OTPEEEIC T 2 AB RIS <2 5. Lo T, BERIZBW Ty, = 21
725 EMAREHISEILTIIECRETE S, 772005, vl 2 A UIHEROFEH TR OFE

-90 -



MEDEEMRD.

(b3 DO E—7 BQDORERIZH L2555

ZOEMETIE, ODOHEEIZEITW D2, MEELISEEIZODSE LV 68, (0) DEBITEKAF L
TW5H7, TEROEMITRIFIELZE S ITIXmE AT R 7 A0 —7 NS GIZEEL TV T
AP AN

(©)3 S2DE—27 BRODERIZH D56

ZDOFMETIE, MEEIISEMEIES, (@) DEENIKE KFT D720, REREOHFIEC L 54
EEDIXL D EIREV. 2D, HEROEEFRITFETRE 2 PIMEIC X 25T E L <, i
RIS DTSR AT RISk & AW T B 2 B iR 2 B8 L2l LE TH 5.

473 AKREMFHESE L Ochi-Hubble D 227 kT A L DORIR

Fig4-20 1%, 2RV A7 T LZE[JONSWAP ! : A Im, B — 27 1S 16.8 £, A
WART T LZ[P-M B A I, FEEJE S 7 #512 TARL L 72 1,000 O R 2 ~2 |k
T LAOERE RO RT. ZOKIE, @-17) R TROTZGHRIEAN7 N7 L0 (T70bb,
BRI DS BAE) DA (4.4 HiD Figd-8) %, MAMEIRIEIZBIJ 2 Rayleigh 534 OAE % HW T
BB AN (Hy 3 = Wo2) LIEFERTHS.

RN
o

1.0 ;

Of——_"CDFbmemmbn S
§ 80r———CDF by theory 0.8 ©
& 60— PDF by theory(eq.(4-20)) 0.6 2
g 40} 04 8
“ oot 02 E

0L ' -8.0 ©

02 04 06 08 1 12 14 1.
H,/; of Composite Wave Spectrum (m)

o

Fig.4-20 Distribution of significant wave height of composite wave spectrum.
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Fig.4-21 Comparison of measured and Ochi-Hubble and composite wave spectrum.
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Table 4-3 Statistics on three wave spectra.

Statistics on the spectra Measured Ochi-Hubble Composite
Significant wave height Hy;3 (m) 2.37 2.39 2.37
Mean wave period To; (sec.) 9.4 9.1 8.3
1.2
—— Measured Spectrum (H1/3=2.37m, T01=9.4s)
—— Composite of {JONSWAP+P-M}
1
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Fig.4-22 Comparison with the measured spectrum considering the upper and lower limit range of the

composite wave spectra.
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ALTEEMTRIEIINEED I ko TRESN, BEMTRICE O TR T OREIT IR cx 7
WZ EDURENT. RS T, BIMERICE DR T A —Z 2 fEEMEIC L TIThD &
L, MR A — 2 DSEMURE 288 2 7o R ISR A S K o THEMI NS A —2 28385
EHITRNEARE Lic. e LTINS & SR 2 B OHE R ED W T A —& & LTt
BTV, BMWIBRREMENRKE MBI & ZATRMOEERRL NS Z L &R L. /NS D
1, BMER T — 2 0 bR IR X O A OfeRE B A B PHIEICEAT 2 2 & T
MO BEERBTIEMTUNEZRE L. TOHIEIZL D &, HoESCES 2 BB L 72 W iERkRIEID
TR BRMERICB T DINEMA/ NS b 2 &R Lz, 72, WD 9 Tl E
B RAVI RIS E OIRER 1 & HIRFUEZ B 2 2V R D I SN D ) LIRET 2 2 & T,
AR IRIGZE D IR ST ER 22 & 9 &2 5 A L CRIE R REOAMAINE D IERIEIE SR O 8 % Z 8
TOFEERRE L., =X ) U IRER LT 5 2 LT, ZOFEREROFIEIC L TE
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IEWVEZHEE CE 5 Z LR LT,

INHORMTHIETIVTNY, TOFEFNEFIT S RMAT T OMMOZEE) 2 5 HLAYIZ B A
D HEERE L OT, KEERESICRT 20 FiEE TRT 5 2 & 3BUSEM 72 K75 5
ERLTOICEETHDL I EE2RLTWD. 7235, /NI G OFHIETITERAM % fe 35 BRI TREL
T D MU FHERE L O EICI3 SRR LR A SR D IR T — ¥ OB L BOMRDBLETH 5.
Fz, AL OHEHO LT Dol O RIIFERIE, ok SRR D LmisiEis fe
L7, fHx OR~DOBEMAIZ LRSI TH 5.

RETIE, B GBERD) 2R FEBBHER OBERX Sy & BROIT TELET 52 LT, BRI
2T DR O E R A AMEIC L, B 5 R CREpiEM 2 KB 2 R TRNE LR T
. Fio, BHHEAN O RN KR E VR E XN T, ZOMBEEHPEY TR KIETT 8%
LU D RIZOW T THRETT 5. OREMZRBERFEBUBE R O R & X OMEE#HET 5.
@K i X 4335k D FE Bl =6 A& 254k S W 7= IRF D IS4 0O K B oD il %4«@%@%*@6 O}
RBLHIRCZ O F — Z BT OB BIMR L TR B R T — X ITRRAENRA L7256 OB % 4y
W 2 HIEICOWTHHFT 5.

Ll EORMMREHEMERICET oMM 2 E 2 T, AEMIRICTIRE L2 2 58 L - &
THNE &AL HIEA LR L7208 BRI L7ctk, ARFHRIEICTED L O REMTRIENRE S 5 0
%, PIRHTHRERICE S EHAMRICT 5. RIS, RERREOBH A B LR THEZ O T gin

DIEMURT A HEE LTl & 7.

iR &30 FEEAHATT 2 LMEIKT (BB 4L 508, ZAUTEWVIMRIGE 132 b
T2, ZOMBISEDOEITEM RN R E 2% KFT2, TEAE—E CHITL, M
FUIAARIGE R ZL L. | & U CHEE T 21RO B TRITIE, Ml - iEISEN LT 55
BOREZFETE 2. £ 2T, 1RO WP HIFNAIC FEEEMAT T OMMEER T I24E > TS
BaZCSERPORMTPMEITA L LOICLRT DMENRDH L. AETIE, BARBEZZE LT
EWTRO—HECONTIRARD L L Hiz, TOFIEICE > THEHRE L — Bl &2 0B X 55
PR TORT

52 RRISE ORI HITE

B ORMTHIE O IE, I d Sl e —Efd - —EHSA THITT 2586, MISE
DRBERAED 8> D —TENH ry 2288 2 D R 0 BARHESR O 13U THEIR O & AR FE B =5 L p(H, T) %
AnTKAcL->TEZBND.

21

Q(r>m) =J jfq(r>r1|H,T,H)p(H,T)p*(O)deTdO (5-1)
000

2T, H: AFN&E, T: FEWEEY, 0. MostiE o EHFmoRT /A, qo>r|HT, ) : ik
I DR KA MEE OE 7 2 2 5 R OMeR(EI OEBHER), p*0) : 0 ORI OHEREE R
ThD.
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G-DUT THMEISE O EWEIEME=RQ(r > r) 23R E 203, EEEOFHRIIMATHHE O K HHIR 7
UM L p(H,T) 7% TableS-1 \ZflR 2092 X 5 1TAH R & 20 8 B 2 368 Y 72 R O BE AR X
FUTEIRBHBE T —7 L E L THEZLNTWDHDOT, BERESEEZHONTHESNLS DN —
X TdH 5.

Table 5-1 Example of Wave frequency?®?.

Wave Period (sec.)

4 6 8 10 12 14 16 18 sum
0.25 6.00 4.03 2.10 0.99 0.21 0.14 0.00 0.18 13.65
1.25 29.50 79.77 41.40 13.06 2.63 0.18 0.09 0.21 166.84
2.25 16.84 108.86 108.02 37.87 5.36 0.77 0.05 0.52 278.29
3.25 3.30 57.77 114.74 45.03 7.50 0.91 0.13 0.34 229.72
4.25 0.79 24.20 64.76 36.45 9.26 1.93 0.18 0.23 137.80
— 5.25 0.21 6.32 26.31 22.46 6.05 1.07 0.18 0.04 62.64
E 6.25 0.11 5.34 15.53 16.80 6.23 1.29 0.05 0.07 45.42
% 7.25 0.07 2.47 6.86 10.94 3.80 0.84 0.09 0.04 25.11
f 8.25 0.02 2.67 4.35 7.86 412 1.33 0.02 0.04 20.41
® 9.25 0.00 1.61 2.44 5.34 3.78 1.79 0.61 0.14 15.71
3 10.25 0.00 0.00 0.20 0.23 0.36 0.16 0.09 0.00 1.04
= 11.25 0.00 0.02 0.13 0.07 0.43 0.18 0.00 0.00 0.83
12.25 0.00 0.11 0.00 0.39 0.57 0.29 0.00 0.00 1.36
13.25 0.00 0.07 0.00 0.23 0.18 0.04 0.04 0.04 0.60
14.25 0.00 0.07 0.00 0.05 0.16 0.11 0.04 0.05 0.48
15.25 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.05 0.10
16.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sum 56.84 293.31 386.84 197.82 50.64 11.03 1.57 1.95 1000.00

53 PHRFEIVBHER ORFEICONT

BT TIREIRARISE ORBE D72 63, MO RBRFERMEROBENEELTH 5. |l
WD LBy, REPHRFEHMERITZL  OMFEE I > TREBIREERMER L L TALKIA T
5. ZD ) B & o Thie bl 2 & L TR B TW S AEREFEDIRIE®R E & 7, 23D %
D PR FEHRE =R DA E B & & FEBJAH OHBIR DT TER S T % BRI TR DR
2061.64.65) Z- Table 5-2 (277,

Table 5-2 Wave statistics tables??-61-64.65),

: Data Collection Source
No. Name of VYI‘a‘S Scattering Periods Division Num. of Data
able Covering Areas
) Walden 1950.1~ Weather Ship H:0.75~15.75m 1000
(organized by Fukuda) | 1959.12 North Atlantic Sea T:5~17sec. ’
, | Global Wave Statistics | 1854~ Report from Ship H:0~14m 1000
(GWS) 1984 Global TZ 4~13sec. ’
Micro Wave Altimeter of
3 Global Seaway Statistics |1986.11~ | the GEOSAT Satellite H:0~26m 1.000.000
(GSS) 1990.1 T:1~21sec. U
Global
Standard Wave Data 1854~ NO.8,9,15,16 of GWS H:0~17m
4 (IACS) 1984 T:1~19 100,000
North Atlantic Sea : sec.
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Table 5-2 @ No.1 OERFEHSELFIL, AEREFEIZI UV TREBUAIMG IS TEI S 7z 227,497
DWIRT — % % Walden 237387 L TE & 7 10 (FMOERZ ITHEEB S DPMEELZ L7 H DT
B2, No2 %, 130 FMICH7z Dk (B RBHEROW & BOT—5) &t - fER Sz
HER D Ay ink 2 WS HEFE T 2 IR B BUBE R CTH 5. Fig.s-1(D)IZ, GWS O~ » 7 Z/x9. #ivin
THIER BRI A < ERL<MATT 20T, MMEERITHERO R A R L2 < 0T — X BEM
TELZENRIETHD. —J7, ML ATREZRR VD 5 R A BE T THAT T D72, MA@ TR
XSO T —ZNRE D E WS IEEZ AT 5. No3 X, GEOSAT f2#E#io~ 1 7 vk mE
FFCEHAI SN2 m 7 — & A 1SSC(1994) TR S AV = A O AL R PE T DR FE B 3R &
OB Z BB LT, e & A OBIRBBSEERIZER L 72 b DT, Fig5- 1T X 512
WAL T\WD. £72, 4 DOWIRFBHSEERO P CTIXAH LT — % ZHOWTER ST
WD ZERT = FRBNEL L, A 7 S EF TR L TV D 72D L 0 b KIS O X3RO
T—HINGENTWNWDZ ENFFEOETHD. Nod 1%, EHEMEHESHES (International Association
of Classification Societies) (Z & > THRE I NI PIRFEHMHER T, Figs-1(N)DOBKHFEMTHA
GWS Ok 5D 8, 9, 15, 16 O 4WHRAEF L7-t%, AREEIXT A T4, VI E T
SHEOERB AR & LT EREEEEEZH VW TGHE L D TH 2.

ZAD OWRFEBBER OFREDR, ED X D R THET 20 % i 2. Table 5-2 D No.l &
No.2 IIFHBOWIRT —4 THDHDT, ARTIEE VB LWAZEOT —¥ &% CTHx ORFE
179, 728, No.3 & Nod [ IZFEERIOMIRT — & TlidZe\. F7z, NO.2 B L ONO.3 (Tt
fk 2 MK 5y U7 O BRI IR B BIBEER TH D720, 2 2 T TR TEE oWk O K
WRFEBHE R 2 — DG LB ORIRFEBBEREZ VTR EZITI> 2L L35, T7bb,
NO.2 ® GWS (& Fig. 5-1(WIR gz B ST b, 72, [AERIZ NO.3 @ GSS I Fig.5-1(2)I2
AITWHRICE SN TEY, £0% % DI REIIIREBBHER PR E SN TS, 22T, K
FICBIT DRETD =912 GWS (129U Tid Fig.5-1(1) NO.8,9,15,16 @ 4 ik (X o BAKRE) ,
GSS (22T Fig.5-1(2)™ NO120,121,125,126 @ 4 #ik (Kb oB M) %2, ThFh4EEL
TEMERBEBHEREZERTHZ LT 5.
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Fig.5-1(2) Map of area subdivisions for GSSY.

Fig.5-2 1%, Table 5-2 |T/ L7z 4 DOIRFEBUHEER O A FB IR 2RI Bl =R 0 Bl i
EThd., ZOKIZLD L, 10m 225 HERESOBRMEE (P OmRH) 1XZ2ERORIR
FEHERICL > TRES B AR ->TWD. £, Figs3(WITAZRIEE 8m 28 2 554 OiEiEH

RTHDHMN,IACS 3D LNSRETH ADMULD 3 SO IRFEEBEERICBIT A E /NS, —F,
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Fig.5-32)DFEIEm A 12m #2556 ORI TR BIBERIZ L > TRE£RD,
ZIE GSS & GWS O FIE & OBIBEMERICIT 8 FREDOENRLLND. T2RbL, ZAbDM)
BN R KA S BT D RBIHER O IRFBHMERIC L D 2T/ NSV, R PRI E L KT
K E KT IBIT DEWVRIHE L 72 D

10~
. 10—1j s ——\Walden
8 e \% -------- GWS
a9 NS ———-GSS
210 1 UN\"~. |-——-1IACS
B107 NS
% —5§ \ \\
c>_2 10 6 ‘\‘ '\\
L 10_7? < \>
10

0 2 4 6 81012141618 202224262
Significant wave height (m)

Fig.5-2 Exceeding probability of significant wave height of each wave statistics table.

g 0040 exceeding prob. of H;,; =8m
2 0.030

£ 0.
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Fig.5-3(1) Exceeding probability of significant wave height exceeding 8m.

o 0.004 exceeding prob. of H;; =212m|
2 0.003

s 0.

0

< 0.002

°

o 0.001 -
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S 0.000 - . ||

Walden GWS GSS IACS
Fig.5-3(2) Exceeding probability of significant wave height exceeding 12m.

ek LY, GSS LSO T — Z AR BLHIANC K 5 8LHE L O— i b o@#Tth v,
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Z D X D IR ARANISEAL I R T OB IR 2 72 D K m ORI L. — T, GSS D~ A 1
W FEFHE RN HIPR DS 72 < SRR O T — X OBAS N ARETH 5. £ - T, GSS 1T D IRF
BB RIS TREBORIBEL EENTND LB X 5. BRI 5 B RS HAE R £

IZ K> CHIBFBIERDRE B2 D L RIITHRERICRE 2R EL, BRI ROEHEME

IR D. (MR 7TIC2BOHERZ/RT) Lo T, ITHFEORITOBEIRT — & & AT IR%
BHEERORELALETHS.

S BT, Fig5-4(1)~@)% 3 DDLU JEHIX 531231 5 A 26 15 0O FEBUE R 2 IR FE BUAH AL &
BNRT. 723, FHRJAIX I L > THEREORBEERDRESER DD, 350757
OFEENIR 2 TR, TNHDT T T7DEREFELDDHE, T THD.

(DFig.5-4(1) : A3 T~9 F DX 53 DA F60 d DI BMER 1T A I = 25 2~4m (BT
F) OBENEL, MFPAKERTRLE I0m 2 B2 2 0#8EEITHRE LW, £/, F
FE DR BRI T PRI BUHERIZ LD OEWTH 508 L <Aif> T\ 5.

@Fig5-4(2) : SEXI E X 438 9~11 B DOBAIE, T~9 B OA I~ TH I & O R HHERIX
REVANZBEIL T\ 5. E72, 10m 2B 2FREEPHET L. £, AREROHEIE
SRITKET D WIRFE B E R OEVIHME L 72 5. 7235, TACS (K o— G888 X GWS 7
— & 2 O TREEBE - AT L 7oRE R OBIRFEBIBHE R D720, GWS OFBUHERIZITVME &
7o TND.

(OFig5-4(3) : “FEJEEMX 32 13~15 B OLEII A RIS ORBBERN/NE 72528, 10m &
2 DA FRENHE T D HERIZM R TR LI AR S 6~8m 2RUEITE X 5 Lo Ty
WX A3k LT g k& W, E£72, GSS DA #IE B BMER (P o) 23t 3
DOPWIRFEBUAE R OEIZ LR TIEF IR Z V.

T b, FEREAHIX 0N EWVIE EA RS ORBERIIRE <, NS RAREKT DR
B 3 ell LCN DL F 7o, SERRE IR & 22 KO IR BRI/ NSO D3, 10m &2 5 K
EFEREIZZ S FBBLL TV 5.

7k, FBBHEL DIV - REAMOX S (Fig.5-43)) Tlk, 7 —FRRADHERMOX
IR TELS D ZERMBIN TS, ZOMBEICR LT, BIZITERS 20 N L7
FIMRIZ L > CHEHBWS A HET 5 FELHEAT 524 T, ZOBELZEDLZENSHBETE
THELRD . 2O XD RIFIRFEBERITS T 25BN LT, B 0 3R
mm%~mw$®3$ﬁ@&ﬂkﬁ%~&%MWb,tﬁﬁ#fiﬁﬁﬁ%@ﬁﬁ<&é&ﬁ%
W i DR BLRESE S Fig.5-4(3)D Walden 7 — Z ([Tl 7= BUERNZ 720, ZAUXEFEEEIZ 72 H1F CBHE e
ZEEMER L. 2 ii&?ﬁ?~5’ ZRERZ BT U, Z OWHROFHSE D Z &N TE 5 —4H
Thd. £, HHL OTBEFITB X2 H6NRVKE SOPERIZHT 2 RBMEROT I 2L —a v
%&%%%L,GwseW@@n?—&%%vfkﬁ%-E%%E%@@%ﬁ%ﬁ@ﬁ%m%mb
7-.

WU LT, AERE ORI FHNCIZG.- )RR T L 5 I IR R H e =% B B RS B T,
BUR CIEI IR BBEE R & O T2 BUEF E M TN D720, 2 OHEERS B X IR HSE & OF
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FEVARAET 2. BRHITHRER 2 LV FEET7- 2 b OIS 272121, BEFR7RE D 6 B3 2 M5t
ISARAIR T, BWRFBIMERE R 2B TRIEAT 2 2 L EEEL T LB s.

0.140 =
E 0.120 _-’ ,'\‘ Walden(T=7~9sec.)
® P e GWS(T=7~9sec.)
2 0.100 AN —_— 7~
2 .l'. f/\\ N GSS(T=7~9sec.)
o 008071/ ‘\* — — = IACS(T=7~9sec.)
2 0.060F DN |
2 i N =
£ 0.040 Y, A%
3 0.020 AN
o ] <= \3X»

0.000 =

0 2 4 6 8 10 12 14 16
Significant wave height (m)

Fig.5-4(1) Occurrence probabilities of significant wave height of each division of the mean wave period (7 to

9sec.)

0.100
= e Walden(T=9~11sec.
§ 0.080 PR B S R ELEELE GWS(T=9~11sec.)
2 060 N, — — —GSS(T=9~11sec.)
o Y NN — — —ACS(T=9~11sec.)
O 7 ‘
c ’ /\ — \ ‘\
g 0040 I"//, \\\\ \‘ B
3 0.020 /e AR

- / v N ‘~ Q‘

8 ¢" \%.‘.\:.&_

0.000 = n e

0 2 4 6 8 10 12 14 16

Significant wave height (m)

Fig.5-4(2) Occurrence probabilities of significant wave height of each division of the mean wave period (9 to

11sec.).

= 0.005 Walden(T=13~15

L0004 L e GWS(T>13)

- AT T~ |——- GSS(T=13~15)

a 0.003 7 \|———IACS(T=13~15)

8 // ——\\ |

C 4 <

5 0.002 o i s N b

2 0001k 7 AT N2\ \

8§ W NN
0.000L=Lml s e e

> 4 6 8 10 12 14 16
Significant wave height (m)

Fig.5-4(3) Occurrence probabilities of significant wave height of each division of the mean wave period (13

to 15sec.).
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5.4 KU s XA O MR FEBURER D R ) 7 [~ D 52 %8
541 EHITHICHW DR BBHER OEWIC L 558

BERT AR S R TN RIE TR B2 T 572012, AREITIEKE & XAk 038 Bl = 03 & 4
TRFERIZ ED L 9T % KT T ARG T 5. Rk KR O B IR T B =8 0O S8 % fist
T 57212, Table 5-3 (RTINS L TGE-DREZ AN T, @l k- ORShEEkER
D DIRISE DRI TRIZIT S .

T, BRoOYIEEEDIGEME L L THW LA E ETIEE 2 R OMEINE LT 5.
Fz, OLEELWIAE (WA ¢=180" Z ik & EFR) TrtE LSRR R BTN s
BsaZ WD Z & &L, FEMIRA T U7 B TEA BRI o B HIGE G IEL ISSC(1964)H 2~
7 8T LB L ONE DO ELT ST 1A & R OEHES & D738 0 2 HOITE &2 O DN [-n/2~n/2] D]
IZ cosine2 FIZHAT LTV D EIRET D0 (PNI ) ZHWTITS. LT, 0 2o F )M
EFRL, 0=180° DMRE HIAMNDLEIKT DD EHHTHS.

EWFHIX Table 5-2 (128 L7z 4 DOMIRIEBSERMBEICHREZITY, HRBBSHEROBE VI
L EMTMA~ORBELRTT 5. BN RMICER S Lfix 0N D OWRICHEIBET 273,
ZORPLERBLT D - 0ICE B 0FG-D)RoE o EHICBE T 5 EMMREEEEp () EA L
7. Theb b, (5-1) XM TR RITI O F 5 BN AMARE Ot iR & JRFEBHER L O
FEDRITR AT o 72121, EOFEF MO RIMREEREEZ AT 0 IZBT 2y 21T-o TRbHI
. TP L, REITEELWEBREEICE > TRETT 272912 0=180° @ EH 7l #
Q(8 =180°r > r) XU TRD 5.

QO|r>n) = f f q(r>nr|H,T,0)p(H, T)dHIT (5-17)
0 0

Table 5-3 Principal dimensions and calculation condition.

Items Ship-A Ship-B
Type of Ship Container ship
Length (Lpp;m) 321.0 175.0
Breadth (m) 45.6 254
Draft (m) 13.0 9.5
Ship Speed (kt) 24.0 24.0
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Fig.5-5 1%, fEo Bl P Ics T 2iE B IS E OB TEZ w7, MoOEIE, EEM
b (/L) THBH. Ship-B iL Ship-A ([ZLET/INMED 7=, Ship-A LV b K70y B FINsEE
v—7fE (XFHED) BELD. 20— EHBELOBKEO L /L fEiX Ship-A T 1.0 = 321m),
Ship-B T 1.1 =193m) THh 5. T72b b, KAFIT/NUMICHSTREROEICHETT 523, [
FRE DA AIS B RIS 1T VA RTINS < 72 5.

F 72, Fig.5-6 [ZFF7 1A AN DR OFLRTEA BRI O i ISR E OFEMER 2 R 2 H 2K
B H CTHEl - 72l %& "9, Fig5-6 12X D&, Ship-A TITFHHE A 12 B4+, Ship-B TiX 9 B
i EIISEO e —27 (RED 3% 5. BHET OME & FINEERER RO T 6k ~72723,
KRB NN AR CTRAS (RIER) OWICFFTT 228, [FFHREOM e BT R =l
NI R T/NEL< 2D, $bb, /NN Em R COEMITIERE 2 BT 5.

60

© Head seas () — Ship-A

Y ig Vs=24kt | N\ |-——-Ship-B

< 30 7ANEAN

"% 20 A/ \\\‘ \\\\~

N 10 ryj'l \\\QQ
0l—a’

0 0.5 1 1.5 2 25 A/L3

Fig.5-5 Response amplitude functions of vertical acceleration at F.P. in regular head seas (x=180" ).

0.05
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Mean wave period (sec.)

Fig.5-6 Standard deviations of vertical acceleration at F.P. in short-crested irregular head seas (6=180° ).
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Acceleration (Q)
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Fig.5-7(1) Exceedance probability of vertical acceleration at F.P. of Ship-A by using of four wave statistics
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tables.
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— Walden
D250~ e GWS
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2 s
0.5/ Ship-B, 6=180° , Vs=24kt %
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Log4,(Q)

Fig.5-7(2) Exceedance probability of vertical acceleration at F.P. of Ship-B by using of four wave statistics
tables.

Fig.5-7(1)i%, Ship-A 2%} L C Table 5-2 12 TR L7z 4 DORIRBHMEE L 2 H O TR 21T
SRR THD. ZOMIZE D &, V2 IR RIC L 0 BT RICHEDR & 5. R,
GSS 7 — X I L D RMITFHRR (KT O bk LUVMEIZ 2> TWnWd. 2, 26m £TD
BRI EZPERIX Sy & 95 GSS 7 —# Tld, Ship-A O E _ETINEE OEHSE N K E < AR bF
I 12 PLEORFEITRIE R OFRBUEEDN Fig.5-43)D L H I OB RFEISEE R I H~T
RENWEDTHD. (T8 6 D GSS DEMIERFEBBER OHIZSHOZ L))

Fig.5-7(2)I%, Fig.5-7(1) & Rk D F+4# % Ship-B (2D TIT - 72 5 Td % . Ship-B D413 Walden
F—H (MPDOER) ICLDMEENRBE LY. —J7, Ship-A THRbLEELWIER L 2> 7= GSS 7
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— AN bB/NEV. UL, Fig.s-4 (2R L7 R RN R U 7o A 20K s D FE Bl R 2 ek
% &, Ship-B O e B FAILEE QMRS E N K E < 72 5 VR E O 7 #~11 B O3Bk = (Fig.5-
4(1)# L U Fig.5-4(2)) M OBRFBBERDOMEL Y /NS N2 ENFRTH S.

542 FBUEREZENMIETEGEORE

ﬁh@%ﬂﬁbﬂékﬁﬁ@ﬁ@@imﬁ< TRETR A BB JEE 3% 0D RO i K 43 Ik D F BLRe =R D A5
FEEE T3 L 135 2720, KIS R BORBERO/N S 205D, REITRICEZ 585206
ML TEL ZEREETHD.

Z 2T, WIRFEBBEERD & H XA, BLH - ARITRARZENRA L2 2 & 2480E L TR FE B
INEAL LT DR i~ 5. D7D, BRFEHBER D —>DRERIXIITIZT 10 o0
EORBFER o (0=10°) ZAHML THE L TIEEISEORMTHIZITH. ZORBMEERIE, R
TR OREE 2R3 5 BLROMRBHMEELR E L TERD ¥)UR LIEICHIE LTS, NiE
B 2N K 2RI BUHEE R ORREEMAT CIE, AR S H CVEREEE T, 0O —>DWFRIX /3 1T F B
R AT HBA, [N L7 KL DX Sy DIHfeR A /NS < LTRIEDREBMERN 1.0 L 72
D ENCRAUTTHEL TV D.

pw (H, )_ [WUI)+aaH—mJ—nﬂ (5-2)

Z 2T, po(Hy T)IX e OB IRFEBFEREE, p,(H, T)) | TiREE% OB IRFEBEEHE, 6(H - H, T —
T;)IZ Dirac D7 V2 B TH 5.
ﬁ%ﬁﬁﬁ%%@ﬁ%ﬁﬁw4&ﬁifﬁ@k%%&@ﬁﬁ%ﬁ%%ﬁﬁ%@ﬂf@&ﬁ%ﬁ%
REFEL L THNWD Z LT, BEBERNE LEHAOREL T, AEORFIL, FHEESO
%%E“ﬁ%%ﬁwwmsﬂ%m52®wﬁ)@&ﬁ%ﬁﬁﬁ%%mw

Fig.5-8 I3 TR 2 NT 2B E X5y & L T[18~20m] X7 &8N, (N3 2 F-HI JE X
O3 % [8~19 B D#H THix & 2 C, iR 0=10° Dz L7-RTH 5. Z oL, A
AN L2 ORI TR R (0=10° FFOIGEE) Acco & FEBUEEZ AN L72FE R Acc DL THE
L TCW5%. Fig. 5-8 I XAUiE Ship-A X RHAIT/R LI FH R 12 B H7- 0 OB KL KE L,
Ship-B CIZ LM JEH 9.5 8 (KEMFER) IxT 2B RKE V. T7hbb, HHIGENE—7 &
732 % R JEIX Sy (Fig. 5-6 HUZREITHIR) ICHBUERZ M LT R RENZ LD D.
Fig.5-9 1%, FBIHEEZ (T 2 A X 3 m s g o v — 27 A (Fig. 5-6 FIZKFITH
TR) ZIEON, AN A A IR E XSy 2 [10~21m] D FPH TR~ 28 2 THIEBMESR 0=10° D275 L
TAER T D, FBUERZ NS 56 T E ORERIX PR E 2DV, 0=10EITRE < 72
D, KRIEE X5y ORBERO/N S IRFEN R THICRE < 2 KITT 2 L3R TE L.

DX, REREX S ORBEHMERIT/N S VA, R TR RETRETIRE N LRI,

LinL72ain b, ARFEFNC LAVUTEBEOMAIOEMICH N T 14m 282 5 KE&EICEET 2 L
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WY, ZO/NSRAEITEHE TE S,

1.4
AT~ Ship-A
s N — ——- Ship-B
< »
512 AN 6 =180°
< 4 RN Vs=24kt
: gl ~<

7 8 9 10 11 12 13 14 15 16 17 18 19
Mean wave period (sec.)

Fig.5-8 Effect of changing mean wave period on long-term prediction.

1.6
15 Sh!p—A 6 =180° , Vs=24kt -
§ 1.4 ____Shlp_B _
-
-
< I //"/ -
1 e —
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Significant wave height (m)

Fig.5-9 Effect of changing significant wave height on long-term prediction.
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543 WRFBUERICE ENDRAEDRE

(5-2) & W2 WNE D 202 X 20k DRREEfRMTiE (LI, 1RO FIELFRT) 1Tk b &, x4t
RN U 7 5283 U e K 5 ST BN 7= Ky DR BIERICE TR ST L1272 b, 4, IR
BREER DB D X550, B - =T —IC X DWIRT —FPNRALLEZ EEZEELTHDL. 208
A, 15m O EZE 3m EERTHE IR EBREL D LIFBE I, 2O T —TELDOXSFIC
LEFELHZ LIRS, FOREZRE LT, BUENE BN DREMITO—>0HikEE LTLUT 24
£T5.

+—
@ o+t | Costdo-1) | Ciow1do) | Ciow1do+1)
w £
© o
S - Adding probability to the hatching division
:é’ ; i=ig | (iodo-1) (io.o) (igdo+1) (i0,jo) will reduce the probability in the
-S o surrounding divisions to keep the overall
2
c ) o o o probability at 1.0.
2 ig—q | Go-1do-1) | (o-1do) | Cio-1do+1)

Jo-1 Fo  _ Jow

j:division of mean wave period

Fig.5-10 Definition of i-line and j-column for calculation grid around the point adding probability.

&5 X 5 @&ﬁ%ﬁﬁéua®%4%HMLTﬁMéﬁé%Q,%@WM®%@iH DX5y
WZORBE KT 5. Fig5-10 1%, WIRFEBBER) DMLY 5 X5 &2 D ok &
HLIHARTH L. ZOROLEBY, FERERNZET D OISR A2 AN L 7o R DX 53 (i0jg) &
ZDOEMD 8 X3 ThD &L, TOMDXIDIFHMERITELSERV. Fo, BIRDO BRI B
“@%CIO%%%b&Hﬂi@EﬁV®T(hmiﬁﬁﬁﬁ%HMbt BIZ O O R B

KIFMEOND. LIeno>T, &2y OFBIfERZ S T2 B OB LWOBIRFEBLIHESR P(H,T)
X, kTEIND.

pn(Hi:Tj) = Po(Hio;Tjo) ta, (Hi =Hypand T; = jo)
a
pn(Hi,Tj) = Po(Hi'Tj) 5’ (around [HiO'TjOD (5-3)

pn(Hi:Tj) = pO(Hi;Tj) , (otherwise)

ZIT, H: i KyORES, T:j Koo, PH,T); AU YT VOBIRESR MR (H
REANT DDA Y CF NV OPRFEBHEROMER), o T 2HBEE, ThHo.
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Fig.5-11 1%, GSS 7—# %AV U F /L OIRFBBER & L TGS-3)RUT L > T o 2L ZHKIR
FHBHE R 2 AV CTEM TR AT /R TH 5. REHFEIL, 0=10° 2 5 H[24~26m] « -
B4 RO XEFAAIM LTS, ZoRIZED &, 5-2)XEHAWDHEkDH1E (KT O (2
HA_TAREHRRDO HE (PO FER) 134 OF L OWRIEBBEE R 2 V758 (K o— 58
HR) ATV, DR D HIEIC X D REMATIE, BRFEBBERITIEAT DRZEDRE 2 K& OITHH
LTW5.

1.8 - - - : - : - - -
S ~ Ship-A, 6 =180" , Vs=24kt
g .\.\'\\\\\\

-'E 1 .4 - \'\_\-\\\ ~

3 1.2 =

S the Proposal method

< 1.0]—=———the Conventional method
08 — ——=Dby Original wave data

B =7 |—091.0(Q) | | —6

Fig.5-11 Comparison of long-term prediction calculated by the conventional method and the proposal one.

5.5 SRREHITZ B E L R TRNE

5.1 ISR ARIZE B0, A LVESIHEE UG ARSI T A L 503, S BICHESN
L < 725 &M RHIBNT X D ROECZA R GREATERR) 2T 5. 20 &9 5 KSR T OEMLIR
W BB LR THMEZ RO 572012, IR~ OF 2 AT Lt LUWIESICEE T 51
2, TOXIRWENEZ D & TSN DWHEA B L CHATT 5. ] ZEaaies LIRS TR
DITEERET .

551 HHITHEROKE

SERIBRICEE T DA E OS2 [BhEE 2 Mty CREUEAN) 21T o 7256, SRS+
% IR BB R OMERRIX S (1, 7) IZIEZ OIAITINE B FH O a2 1272 5. T 70bh, B
R IR IS HLE L R DO BRI RS AR ET DR LI A D 2 LN TED. 2D X1, i
MA 7S 8 % RS 2 1SR A BEIVES:  (Avoidance sea) & EFT .

Avoidancesea H > Hjyy, T > Ty (5-4)

T, (Hpp Ty 13, HELOHIE 24T 5 [RFUBSR TH 5.
7E, G-HRTEEPKREL 2D LWHABITRELS 25 2 LB LRI A HE L TRE L.
IR E B 2 D EPEHE (H/A) BDREL 2D EHRMPEHE L RDHDT, MR L->TiEdHHH
WZK UCT < Ty B WENUER & T XREGAVH 5.
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R (723080 13, FHAEEORE SZ2RTHMAIRTH L. —RITEERAENKE <
VT, MIRISEDORREGREL 25, ZOBRZ/RT 2D, HEHMAISE ORI
U=z fES 5. B ERIEPEDTRVIMAIGE O B — 7 Hoi@m Ry, koL —U —41h
THEUTE 22 ENHMbNTND.

2
_ __
q(r >n|H,T,0) = exp( 2R{A, T,9)2> (5-5)

ZI°TC, R(H,T,0) [FMBERH,T,0 \ZB1T 2MEIEEDOFEERZETH 5.
AEARE, IRISE DB =7 28 re X DHER q 15 gor LV /NE T2 LD ITH (BU - 4281)
SN2, WMDY 5.

Q(T > rcrlHr T,@) < cer (5'6)

T, 1y (FEENESR T COMMBIEEDOWRIE, g0 1 ZIMEISEOBEOBIBMERTHD. I DR,
G-5AN IR AED EREIXRDO LB 0127 5.

7"C T

Rpax = 77— 5-7
Y _ZlogeQCr ( )

(5-6)XDBIHREHRURI L 5V, (57D Rypgye % AR FEHER 2 (CSDR) D&\ 5. i
S DR AR A T TR A BRTESR L L, O FBMER Hyj, Ty T0 5.

R(H,T,0) > Ryax (5-8)

2T, RE@ R OIS B I THIE R R TROTHEEMEI LT, ORI TR 2 Fk
CHBICEIVBEMSNDGEE LD ZENMONTND. Ryg Xl H T DEIT, T 6 IERIER
Br L Ltﬂfu‘ﬁiﬁi FHEIE CROTAMAIGE 2 I 5 2 & TRENUIBS ORE D L 0 BUEMIZAT
5. ZOHE, MIGEEICHANTRMRISE 2R S TEER ORISR 25720, RET
HHEMESND. B BEOBRIZONTE, SHBOMERELIZ 5.

552 SRl ZBE LEHTE - NEEeET v —
IAEDSBERTER IS DR DRV L& 2 T2A, BHER TOMBISE 2 EE T2 BB T2,
, WERTIEG COMMIBIRBMERIIE r LART LN TE D, —JF, WIREIMRITARBS L
LTK%E&@T*, WIRFBERIIZOEEMND. ZOBEXHFICIL2EMTHNEE, [ RKEH A
LR UT-EH T IR, (5-D)ROMIKISE O HEIEHR & R EBMREEITRO LB
WZERfLEIND.

qo(r >r|H,T,0) in Moderate sea

q(r >n|H,T,0) = {
0 in Avoidance sea (5-9)

p(H,T) = p,(H,T)
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Z ZC, Avoidance sea [THEHIESR DO Z L TH Y, (5-8)RNDOFMETHT- TS ThH 5. Moderate sea
IZENLSNDOWRTHD. q, &p, 1 LEIEI, FHRBEHL AT \WIGE ORMAISE ORI
REWRFHERELZTHD.

553 JRABHIAZ B S L2 E oo BT

552 fi T, KB ABSE LZEMTENEE LT EEEeET V) 2L L. 22T,
BN B BE LT 2 FEORMTHEEZ R, -ORUCTIRELZEEErET /L EDOENIC
DNTIRRD,

(1) BEMTES: CAMAINE D RIS IRIME A B 2 57 L — RAEER AT T Vv —

INATEBN 2N = 126 L CRIEZ BIF, Fig.5-12 OFERO L B 0 ITHEHER 2T R F TlEicsk L
THIBIZHEINL, £O0%—EIZR5. ZiuL, FRBRNORRIBROEITHENREL 2D
(2, W Hyy £ CIREOE - 2842 2 L <M 525, & Hyy, VAT, BOE - 282
THZEICLY, BEEFEEN—EICRD (Thbh, BRENZIGEY =20 rn 28252 L%
Ger AT CTRFELBD OB 2) ZE2EW%T .

RS O, BERTE D% Fig5-12 IO SN AIEHERZETET /UL EITV, BHITRIE R
DEBVITRLT.

2

=\

i

r>r|R(H,T,0)) in Moderate sea
q(T>T1|H,T,9)={QO( 1| )
qo( > 11| Rppax) in Avoidance sea (5-10)

p(H,T) = po(H,T)

(5-10)3iF, BEMLIBESIZIEE L CTH 2 DM 2T 50O TIER <, EHRYEZ B2 20 X9
(IS « BEH ATV R BT 2RI DR THET A TH D, ZORITBWNT, BLWEREZ T
BIZFREET A (5-9)NE TR D, B, ZOET/MINEOKEICKT 2B EEETH 2 &
HTE L. BIZIE, BIBLVISENEMSND KO 23EREIE 2 BT 256138, RERAITE
(2R LTGRO & B 0 I T 5.

Linear & Limitation

o o
-
-
‘—

; - . . . .
: Non-linear & Limitation

Hlim H

Fig.5-12 Limitation for standard deviation of ship response®.
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(2) BMIERIEBLRAVET L — R rET L —
(5-9) R ARG OB PRI O SRR TSR 26 1 &5 IR LT, R G2 1
BLARWLODOL LT, ZOWROFIEEEELZ L LT HRMTRIET LV THD.
q(r >n|H,T,0) =q,(r >r|H,T,0)
poCH,T)

p(HT)=< ¢
0 in Avoidance sea

in Moderate sea (5-11)

[
(v
A

Tim Hiim
¢=J J po(H,T) dHAT
0 0

ThD. p(H,T) OF 1T, MREEBEOSFIAOEYZ 1 I2TH-00FETH 5.
INHOEMTHOET ML, WIS K& COEMER RSB O R TH 5 RN
X DML 2, BEESE EORMBEICEN L TR D LD TH D.

5.54 R THIE T VORI L
AEITIE, TNENOET ML D2 EMTPRIEEMER) D KE S 2L TA DL, fEO7-9IZ,
HEWRRHERD 3 DD/NF A—XH T,0% R \ZHENT A, TNEFNOETF NI AEHTRNT,

wATEREND.

SRR 72 L Q=quﬁMHMmmMR
0
R
. . max R
WY o Q4 =f qo(r>r1|R)p0( )dR
0
Rmax
AL Q= [ a0l > nlRpRIR
0
=@Qu(r>m)

Rmax
B A e 2 @a{” 4o > 1 R)Py (R)AR
0

+f Go(r > 711 Rma)Po (R)AR
R

max

= @Qu(r >11) + qo(r > 11|Rppar) (1 — )

[
(v
A

Rmax
Q= f po(R)dR
0

ThHD.
w72 LET L OEMTRIRL, SFHOERICHEZIL, B q,(r >1|R) @ R 2T 5 V4%
RKOHATHD., B2 LET LD R=0~00 OFHDOFHIZX LT, WMRE2TET/NILR=
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O~Rpqx PHEIFHD 72D T, LN Qu(r > 1) 1 Q(r > 1) KV EHREEFEANRAN D72/ E
2%, Febb, WD L.
Qa<@Q
£/, MERBEBEBOERND o<1 R2OT, RYuxT LA YaxT L2 k5 L

Qp < W4

ThHd. ISEErET IV EIRIEERZETE T L ORRIE

Qs < Q¢

ThHZEITEATHD. BREeET NV ERIUERERATT VA2 LRD7-012, WHDEE R
T5 &

Qa—0Qc = {QA - qo(r > rllRmax)}(l - (P)

BEBNAHD, THIE Q4 Lq, PRESICEVEANENTS. LiEn-T, &EFAOTHE
BOKESIRO LBV ICRD.

Qp <Qc <Q4<Q for Q> qo(r>ri|Rpmay)

(5-12)
Qp < Q4 <Qc<Q for Q4 <q,(r>11|Rmax)

FRIUERENR AT 7 /WL, BHIRAOREIIS LTI R TOET LV EUET H. RETREDILE
Y r 7 U3EE LW RO 2 AREIC L72ESMETH Y, KO TRME (RHE@EER &S /D
SWTHIE) 2525.

5.5.5 EWITHIET L ORAER
PUFIZ, TRREHZ 58 L7 BRI 2 BTl Z2RT. 708, AMFHIIX Table 5-2 THe b7 —
RN, IO EIFHOBERRX 532 H 925 No.3 D GSS 7 — X &% 5.

(a) 14m Z 8 % 2 H RIS 2 WEIERIZROE L7286

Fig.5-13(1)3B L TNQ2)IZ, 14m L 0 K& 224 Fll = X o7 DR LB WX 05 2 WS & L7286
D, (5-9 REE2ET L) ITXDEH TR (Ship-A 35 LU Ship-B, M, fiE 24kt) ZoR
T bbb, BEMOVIW AT O RN OEZIE S Him % 14m & UTEE L7oRER (K oI5
Toh o, KHPIZIE, BEiEE 2 VRO g7k Gl LET L PO XEMfFE 0 8#8) 12X 5
fa R a2 O CORY. £, BBMERDPREIVNEE X ORMTHA~OZELHERT 5720, 1m
LUN OB I m 2 L 72 /E S (P ofk#t) 0FRET 5. Zhuk, B&RESD Im BUFOWE: T
1X(5-9)XD q(r>rHTOHZ LI LT, WX THRELEMHBRETHS.

q(r >r|H,T,0) =0 for H<1m (5-13)
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Fig.5-14 1%, iR Q23 10% L 725 ME ETIEEZ ik L2 D Th 5. Table5-4 1%, #EHT
Lo RT3 & L 22 WEHI TPRIOZRLIZBEDTH S.

GSS 7 —# OGE, S L L2 14m K0 b RE VKSR SO T —Z HEIT T — Z i
IZX L CE % 0.11%Td 5. Table 5-4 @ Ship-A OFERIZ K D &, & OWFSIERRIX 5y % BT L 7255 5
VIBET L 722 WMESR D IEIC X AFRERICHA~RT 0931 5 THDH. F7z, Fig.5-13(1)F LW Fig.5-14 I
X5 EHAZBE LR TRICE W TSR 0=10%, 37205 20 FIC 1 FOHEGTELS
Ship-A OHNE L TFILEEIL 1.154g TH D, ZD 1.154g & WV ) fEZRE 7 L ORI Tl (XEff &
DEFR) ICHRATD L, TOBIBHERIT 0=1074, T72bb 33 FIC 1 mRETIHBRRMELRD.

T = 2RI LT 0.11% D/ S 22 EIE ORI @ Z2 RS 5 720 TRUITFIIEIRE S BT 52
ERbD. —F, BREEN Im LLTOT —% OEIGIE, BEERD 141%THDH. T ORERKX
SR LT BRI TR R & & 5 TRWDEERZ R L7273, Table 5-4 @ & 380 ZITBLN 2.

1-4 ----- *:---the Conventional method
N ———Avoidance(H>14m)
%o ————Neglect(H=1m)

Acceleration (g)

OO0 00O -
ION D O 0O
/ I

| Ship—A, 6 =180° , Vs=24kt N
-7 -6 -5 -4 -3 -2 -1 0
Log,o(Q)

Fig.5-13(1) Exceeding probability in case of avoiding some sea conditions of wave statistics table (Ship-A).

oo

— 2T T - x:---the Conventional method
220 Avoidance(H>14m)
————Neglect(H=1m)

Acceleration
o (@)

o o
O O

Ship-B, 6=180° , Vs=24k \1‘\*

- -7 -6 -5 -4 -3 -2 -1 0
Log,o(Q)

Fig.5-13(2) Exceeding probability in case of avoiding some sea conditions of wave statistics table (Ship-B).

Fig.5-13(2)# & U Fig.5-14 12 L AUiE, Ship-B (2O T % Ship-A & [FIEEDB TH %703, BEMTIES
BE DT Ship-A K0 &/hSWv. ZHud, UTOZ ERFKEE X%, Ship-B OMyE LN
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RGBT A R 9 7 (Fig.s-6 #2M) H7=v T, RAMICAR 513 EEBREMEIE N
&< 72 %. Table5-5 1%, EMI PRI T2 IRFEBUBEEE R O KL & KO IRO B 273, ARICE
WToNy F U7 LKL, RS 14m L0 HRE G REENREIT 2 O EEH A
1B3RHEYHLREVKSTHDZLEERLTND. Ship-B OFEMIHEEHERFHEA~DRENKZ O
B ETIEERSSEEA Y — 7 L2 9 B OREETIC ISV THEIRF BB € v 072 ikt
WER L 1372567, TOMELE U TGO ZEN NS 2oTz.

728, Ship-A O I EEYIEAMEIL 12 ICH D e — 7 AT 10 B ~16 R I1HE
RN E EFE > TWD T2, REEBHEFHREICRELSFET 5. 207, Table5-5 D
v F U T LRGSR OB A BT 5 - BELZRWEAEOZENKRE .

3.0
2.5
2.0
1.5
1.0
0.5
0.0

Bl Ship-A H# Ship-B

Acceleration(g)

Avoidance(H>14m) Conventional Neglect(H=1m)
method

Fig.5-14 Influence of avoiding some sea conditions of wave statistics table in Q=10% ( 6 =180° , Vs=24kt).

Table 5-4 Ratio of proposed method to conventional one.

Ship No. Avoidance(H>14m)+ | Neglect(H= Im)+
Conventional method | Conventional method
Ship-A 0.931 1.000
Ship-B 0.982 1.000

Table 5-5 Wave period divisions where waves appear in large wave height divisions exceeding 14m.

Divsion of Division of Significant wave height (m)

Mean wave period (s) ~0.5 ~10.0 ~12.0 ~14.0 ~16.0 ~18.0 ~20.0 ~220 ~240 ~26.0
1| ~ 2 31.17 0 0 0 0 0 0 0 0 0
2| ~ 3 734.5 0 0 0 0 0 0 0 0 0
3] ~ 4| 5448.33 0 0 0 0 0 0 0 0 0
4] ~ 5[ 11330.83 0 0 0 0 0 0 0 0 0
5] ~ 6 11881.17 0 0 0 0 0 0 0 0 0
6] ~ 7| 8499.17 0 0 0 0 0 0 0 0 0
7| ~ 8 4853.5 0 0 0 0 0 0 0 0 0
8| ~ 9] 2621.83 0 0 0 0 0 0 0 0 0
9 ~ 10 1408.33 0 0 0 0 0 0 0 0 0

10| ~ 11 7717 131 0 0 0 0 0 0 0 0
11] ~ 12 429.17 1229.5 300 0 0 0 0 0 0 0
12| ~ 13 229.67 1698.83] 1061.83 68.5 0 0 0 0 0 0
13| ~ 14 119.67 1588 1390 264.83 17.33 0 0 0 0 0
14| ~ 15 63 1120.33] 1314.67 395 72.33 55 0 0 0 0
15| ~ 16 33.83 652 967 431.67 122.33 19.83 15 0 0 0
16| ~ i 19.67 350 594 360.33 148.17 37.17 a 0.17 0 0
17| ~ 18 11.5 183.33 340 250 138.33 50.67 10.83 1.33 0 0
18| ~ 19 7 95.33 191.83 162.83 109.5 54 17 3.17 0.33 0
19| ~ 20 417 50.5 107.67 103.67 80.67 48.67 20.33 5.33 1 0.17
20( ~ 21 2.33 27.17 59 62 55.67 39.17 20.67 7.33 1.67 0.33
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Fig.5-15 1%, AIGE OB YBEESR qo>r|H 1) L A &L EOBFRE RT. ZOFFEICIE, R
5 7 & Q=10%KsD 1239g & LT, FHEEHN 12 ok BS S B RFEZ AW, 2
ORI XD &, AFEED Im LT ORFORESEE#HE=RIT q(r>r|H TO=0 T 5. R
riic, ZoEEXMEEZRIN LIZEM TR EZ 5 CRVWEMTRNCEN BN e hoTo, FTz
FHEBEAERIIAREEPRELSRDICONTRAICKREL 2V, ARESD 2m 2825 L2
W35, Lo, 14m £ 0 RE722F R & KA R 2 B THITIE, 2o omiiE
WHERZ qr>r|HT0)=0 &3 578, BEHTLRWRER S ITENELS.

INHOZ &, NERERIEROBEIRFEERSE T — & O3 2 BH TR~ Z 2T/ S
<, BHITHNC L o TIREE RSO T — ZREEZ M ESE LN EETHDL Z & &R
LTW5.

0.00005
: Ship-A, 6=180° , Vs=24kt
% 0. 00004_‘ Mean wave period : 12sec. /
gommm_q I 01 rapidly grows. /
() 1T
éoooooz_ ;. qr1 gradually|grows. — ~~ _
$ 0.00001
O
g _

0.00000

0 2 4 6 8 10 12 14 16

Significant wave height (m)

Fig.5-15 Change in exceeding probability of short-term ship response to significant wave height.

(b) [RFIEAENR 0 O BETHES: 2 52 LT 45

Ship-A DFHREHER

R B TOIR EE Z BTG aR E ORRRISE & T 556, LIRS ™ X D LB L 72 Dk
RIS Ot 1% 0.8g, FMAINE ORRAE OB R, 1X 0.001 THD. :h%@ﬁ%@nﬁ:ﬁ
AT 5 &, EIRTAEER 7SR max (X 0.215g & 70 5. IRIRFEBISHE 2R O K PR X 5y DIFRIC

e TN AR R 22 A3, ﬁ%@ﬁ@ﬁﬁ%@omg%ﬁzéﬁﬁ%ﬁMM%&amfa
Table 5-6 1%, GSS DOUFRMIZFH S A7 Ship-A DY b TN EE 0D %8 I8 TE A KR IR th i Y (R 72
s RPOKMCHATZMHRITINT, M L FIE AR AE(R 22 23 @ IR SR R 22 0.215g %
ER-TERY, EERE 0D, 2k, RPTOAKEI TR BEIMERPE e OWRTH L. =
DFRIZED QDKM (BREED 14m 22 5 Xy ZRHER L T5) (ICHRDB L, Ny F
ZNC TR LTSI T HI[12 B~ 15 B CF 2 Si[ 12~ 14m] D PSR X 5312 F CREMLMESR 235K LT
W5,

-118 -



Table 5-6 Standard deviations of vertical acceleration at F.P. of each class division of wave statistics table to

set sea condition to be avoided (Ship-A, 6 =180°, Vs=24kt ).

Division of significant wave height (m)
~5.0 [~6.0 [~7.0 [~8.0 [~9.0 [~10.00~12.0/~14.0l~16.0[~18.0~20.0| ~22.0[ ~24.0~26.0
~g| 0.036] 0.044
~9] 0.059] 0.072] 0.085

~10[ 0.074] 0.091] 0.107] 0.124 wave occurence probability
~11] 0.081] 0.099] 0.117[ 0.135] 0.153] 0.171 is zero.
~12] 0.086] 0.105] 0.124] 0.143] 0.162] 0.181] 0.209

~13] 0.086{ 0.105] 0.124| 0.143] 0.162( 0.181] 0.209] 0.247
~14] 0.081{ 0.099) 0.117{ 0.135] 0.153[ 0.171] 0.198] 0.234] 0.27
~15] 0077/ 0.094) 0.111] 0.128( 0.145| 0.162) 0.187] 0.221] 0.255( 0.289
~16] 0.072( 0.088) 0.104f 0.12] 0.136/ 0.152] 0.176| 0.208] 0.24| 0.272] 0.304
~17] 0.068( 0.083)] 0.098( 0.113] 0.128[ 0.143] 0.165[ 0.195] 0.225{ 0.255| 0.285[ 0.315 unit:g
~18] 0.063| 0.077| 0.091] 0.105] 0.119( 0.133] 0.154) 0.182] 0.21] 0.238( 0.266] 0.294
~19] 0.059| 0.072) 0.085( 0.098] 0.111[ 0.124) 0.143[ 0.169] 0.195} 0.221] 0.247( 0.273] 0.299
~20] 0.054| 0.066) 0.078( 0.09] 0.102( 0.114) 0.132[ 0.156] 0.18[ 0.204] 0.228 0.252| 0.276 0.3
~21] 0.05| 0.061] 0.072] 0.083| 0.094( 0.105] 0.121] 0.143] 0.165] 0.187] 0.209] 0.231) 0.253] 0.275

Division of mean wave period
(sec.)
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Fig.5-16 Exceeding probability estimated by sea conditions to be avoided that set by using critical standard
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deviation of response.
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Ship-B @ &+ FifkE
—77, Ship-B DEE TlX R (T K > THEFUES AR ET D &, Table 5-7 D L 91T, Ship-A (2t
NCHEHIES DS Sm~6m DA i im O FER X 72 E TILKRT 5.

Table 5-7 Standard deviations of vertical acceleration at F.P. of each class division of wave statistics table to

set sea condition to be avoided (Ship-B, 6 =180°, Vs=24kt).

Division of significant wave height (m)
~50 [~6.0 [~7.0 [~8.0 [~9.0 [~10.0/~12.0(~14.0/~16.0]~18.00~20.0|~22.0/~24.0(~26.0
~8] 0.161[ 0.197

~9]| 0.178] 0.217] 0.257 —
~10l 0189102311 0273 0312 wave occurence probability
~11] 0.183] 0.224| 0.265| 0.306| 0.347| 0.387 is zero.

~12] 0.173] 0.212] 0.25| 0.288] 0.327] 0.365[ 0.423
~13] 0.161] 0.196] 0.232] 0.268] 0.303| 0.339] 0.393 0.464
~14] 0.143| 0.175/ 0.207] 0.239] 0.271] 0.303f 0.35[ 0.414)| 0.478
~15/ 0.131] 0.16/ 0.19]0.219] 0.248] 0.277| 0.321| 0.379] 0.437| 0.496
~16] 0.119] 0.145] 0.172] 0.198] 0.224| 0.251] 0.29] 0.343] 0.396| 0.449| 0.501
~17] 0.107] 0.131] 0.155] 0.179] 0.203] 0.227] 0.262| 0.31| 0.358) 0.405| 0.453| 0.501}| unit: g
~18] 0.097{ 0.118 0.14] 0.162] 0.183| 0.205] 0.237| 0.28) 0.323] 0.366( 0.409( 0.452
~19] 0.087]| 0.106) 0.126] 0.145) 0.164| 0.183) 0.212] 0.251| 0.29( 0.328] 0.367( 0.405| 0.444
~20] 0.08]0.097) 0.115] 0.133] 0.15/ 0.168) 0.195} 0.23]| 0.265| 0.301] 0.336f 0.372]| 0.407( 0.442
~21] 0.073] 0.089| 0.105] 0.121] 0.137] 0.153| 0.178| 0.21] 0.242] 0.275{ 0.307| 0.339] 0.372] 0.404

Division of mean wave period
(sec.)
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Fig.5-17 Exceeding probability estimated by sea conditions to be avoided that set by using critical standard

deviation of response.
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Fig.5-18 Exceeding probability estimated by sea conditions to be avoided that set by using a wave height

limitation on the weather routing calculation.
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Mean wave period (sec.)
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Fig.5-19 Pattern diagram that show setting method of sea conditions to be avoided.
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Fig.5-20 Relationship of acceleration and significant wave height and ship speed to operation criteria of Ship-

B.
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Steady force and moment due to waves | Ship motions, accelerations, etc. |

-Wind resistance coefficient
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Fig.5-21 A calculation flow of long-term prediction which considered nominal speed loss.
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Fig.5-22 Significant values of vertical acceleration at F.P. in wind-generated waves in case of three ship speeds.

Mean added resistance (ton)

18
16
14
12
10

O N &~ O O

Vs=20.2kt, 6=180°

6 8 10 12 14 16 18 20
Mean wave period Tw (sec.)

Fig.5-23 The mean added resistance which navigated by 20.2kt in wind-generated irregular head waves.
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OB FTARE W LD D2, ZhUE Fig.5-23 Of RICAHLZY THD.

Table 5-8 Wave Frequency of North Atlantic Ocean by Walden (in winter).

Wave Period (sec.)

4 6 8 10 12 14 16 18 sum
0.25 6.00 4.03 2.10 0.99 0.21 0.14 0.00 0.18 13.65
1.25 29.50 79.77 41.40 13.06 2.63 0.18 0.09 0.21 166.84
2.25 16.84 108.86 108.02 37.87 5.36 0.77 0.05 0.52 278.29
3.25 3.30 57.77 114.74 45.03 7.50 0.91 0.13 0.34 229.72
4.25 0.79 24.20 64.76 36.45 9.26 1.93 0.18 0.23 137.80
—_ 5.25 0.21 6.32 26.31 22.46 6.05 1.07 0.18 0.04 62.64
E 6.25 0.11 5.34 15.53 16.80 6.23 1.29 0.05 0.07 4542
% 7.25 0.07 2.47 6.86 10.94 3.80 0.84 0.09 0.04 25.11
g 8.25 0.02 2.67 4.35 7.86 412 1.33 0.02 0.04 20.41
© 9.25 0.00 1.61 2.44 5.34 3.78 1.79 0.61 0.14 15.71
3 10.25 0.00 0.00 0.20 0.23 0.36 0.16 0.09 0.00 1.04
= 11.25 0.00 0.02 0.13 0.07 0.43 0.18 0.00 0.00 0.83
12.25 0.00 0.11 0.00 0.39 0.57 0.29 0.00 0.00 1.36
13.25 0.00 0.07 0.00 0.23 0.18 0.04 0.04 0.04 0.60
14.25 0.00 0.07 0.00 0.05 0.16 0.11 0.04 0.05 0.48
15.25 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.05 0.10
16.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sum 56.84 293.31 386.84 197.82 50.64 11.03 1.57 1.95 1000.00

Table 5-9 The attainable ship speed which navigated by 20.2kt in wind-generated irregular head waves.

Mean wave period Tw(sec.)

H1/3(m) 4 6 8 10 12 14 16 18
0.25 20.0 20.0 20.0 200 200 20.0 200 200
1.25 19.9 19.9 19.8 19.8 19.9 19.9 19.9 19.9
225 19.7 19.7 19.6 19.6 19.7 19.7 19.8 19.8
325 194 19.4 19.2 19.2 19.4 195 19.6 19.7
425 19.1 19.0 18.6 18.7 19.0 19.3 194 19.6
525 18.7 18.5 18.0 18.1 18.6 19.0 19.2 19.4
6.25 18.2 18.0 17.2 17.4 18.1 18.6 19.0 19.3
7.25 17.6 17.3 16.3 16.6 17.5 18.2 18.7 19.1
8.25 16.9 16.5 15.2 15.8 16.9 17.8 18.4 18.9
9.25 16.1 15.6 14.1 14.9 16.2 17.3 18.1 18.6

10.25 15.2 14.5 12.8 13.9 15.5 16.8 17.7 18.4
11.25 14.2 13.2 11.2 12.8 14.7 16.2 17.3 18.1
12.25 12.9 11.4 9.1 11.6 13.9 15.7 16.9 17.9
13.25 10.6 8.0 7.2 10.2 131 151 16.5 17.6
14.25 0.0 5.6 6.2 8.7 12.2 14.5 16.0 17.3
15.25 0.0 0.0 0.0 74 11.3 13.8 15.6 17.0
16.25 0.0 0.0 0.0 6.5 10.3 13.2 15.1 16.7
EWTREITOICHzo> T, HEM LS Table 5-8 (TR TG - WRBDOHIE Vo (25 DR

RISEE OREI DG ORI AT Fig.5-22 1R L7 B FINEE) 25RO TEM 2Tl b
2. ARFETIE, IROWHEPHOME CRHE S =K - BRI OSSN 2 AV, Mk X
DRASENE N LT & & OMERERISEEL KD TN D.
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Fig.5-24 Ship speed in the three significant wave height divisions shown by hatching in Table 5-9 (in wind-

generated irregular waves, 0 =180" ).
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Fig.5-25 Comparison between the long-term prediction considering nominal speed loss and the conventional
method which assume navigating at a constant ship speed (in wind-generated irregular waves, 0

=180° ).
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BHZDHZ Lo TAL DEORF P15 5. AR TIX, BEOREICERT 5.
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5B CHBEBEBIIANRY T LT — ) BERTHZ LI o THRkDDHZ LN TE D (Wiener—
Khintchine D EH) 728, RRHIRERINT —& & AT 8T AEFEODITLEEREH THSH. 2
F 6 M3, RIEESFHOBIR T — 2 fifAric B CARBIBIS Wl 2R LTz, £/, =028 5
H CAH BB I AL RS O HUE T, ZAUIARBAIBRR 25l 2 720 OFEIE & L CEER
BETH 2. FA—MEIRETH LN KEDOARNHAIRRYN T — 2 Zfifir4 5 2 & T, EIRBIZ BT
Do BB ORHERER T 5. T ORERZ HWAURT R OHEECRHMER FIRETH 523, 5256
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T RHRIRRZE LRI R OB OO, 2175 2Lz AL T5. Znboairz@m T, HOH
BIBEE S A BN Z B OMFHI A 722 Z L 2R

6.2 HCFEBERE & RHAIRERY & AT N T A
6.2.1 TEHF T X LNEEOH CFEB R
EH T A LR D B CHBEBEER(OIE, kXick-oTHEZ BN 5.

T
R(7) = ’Il"l—l;go% J x(®)x(t + 7)dt (6-1)
-r

ZZC, T: iR, ThD.
£, R@IZARZ FTLS()E 7=V =Wk Zpt. bbb, kA ThHs.

o) [oe]

R(t) = fS(a))ei“’wa S(w) = i f R()e @Tqr (6-2)
’ 21
22T, o: MAEEE RO): sHfE, Tho.

(6-1)FF L N6-2) AT LAUFXR@ I ARHRNRE R Fx(t) & A7 b T AS(w) EFEONDIT 2 BE% L
R0, IHIL(62)REHHLT 5 L RXEHES.

R(7) = Z S(w;)Aw cos(w;T) (6-3)
i=1

(6-2): B LON6-3): TN THEE 2 Z L 1E, AHAIRE RSN IE L72S(w) 23 5-2 b i, filig
RERICE > TR@OVBHEETEHZ L THD.

Fig.6-1 1%, 3% JEH 8 # 1ISSC20 & JONSWAP A2 kT A 0B L OENENDE AT |k
T b TR L7 AHHRERSR S (B #6005 3m, FEEE ) 8 7)) Z/~7. Fig6-21%, =
B AT T L% (6-3) UMRA L TRD 72 B OB (358 ; P O ITER O — 2 %
W AHMHTAY) THDH. Fig6-2 12 L, ISSC LV IR AT ~ T 5D JONSWAP A7 5
LT X5 B CHHBEBEIE ISSC Db D LV HIHEA/NS VY. JONSWAP A7 FJ AEH R 2+
B3 5720l LIZUIEHOWSILDA, 90 Iidd 2RHICAR L WENRRELIHE TH 5.
Fig.6-2 OFERIE, 5240 2317 TA U7 O RJAMIR S BBIEE T h 2 HRIZEDR T 5 F 92 L
BT D, 20X D ICHRMARERERYIN D 21 TR AR R WERAE D S 6, B AR
IIAHRNEEN A o9 2 ECEHERBEETH S.

LI#, ISSC A~ T A% EMSE, JONSWAP AX7 kT Lk 9l fEOW AT hT A
LTS,
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0.35

T Wave Spectrum [ISSC(1964) ] 035 ———Wave Spectrum-[JONSWAP-]
0.3 03 \
ISSC I \ JONSWAP
0.25 0.25
N 0.2 :; 0.2 ’ \
3015 3 015
0.1 \ 0.1 \
0.05 f \\ 0.05 \
0 EEES 0 -/
0 0.5 1 15 w (1/s) 2 0 0.5 1 15 w (1/s)
An example of time series of the irregular wave by ISSC spectrum (H, ;=3m, T=8sec.)
3
, ISSC
1
E
o i
=
X 0 dp 200 0,0 400 0
-1
-2
sec.
3 (sec.)
An example of time series of the irregular wave by JONSWAP spectrum (H,;=3m, T,=8sec.)
3
5 JONSWAP
1
E
0
:;' 0 ap 0{ 300 490 0
-1
-2
sec.
3 (sec.)
Fig.6-1 Wave spectra and time series of irregular waves.
Autocorrelation function calculated using Wave Spectrum(ISSC, H, ;5=3m, T,=8sec)
ISSC
E
=
E
=

Fig.6-2 Autocorrelation function of an irregular wave.
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622 HCHIBIBISEEICHT 2 ALY kT A REERI - R 208 - R O

HIEiO L B0, ROIBAHABERIINLHETE 50, (6:3)REMNTH AR b T A0 bE
BTX5. (6:3)R LN THBEICHET LI, TEXA2DR0ERO n TORENREE L
W REITIE, AR T AOE L - 8 A8 - B EEY A CARBAR R ORI &
DOFEE DL KT Tt 5.

Table 6-1 Calculation results of the autocorrelation function with different integration ranges, division

frequencies, and number of integration terms in the wave spectrum.

Case Integration Division | Number of Theoretical Value of R(0) divided
NO. range frequency | integration R(0) value of by Theoretical value
(Aw) term (n) variance (%)
1 0.385~1.895 0.01 152 0.5550 98.7
2 0.405~1.005 0.1 7 0.4726 84.0
3 0.405~1.305 0.1 10 0.5270 93.7
4 0.405~1.505 0.1 12 0.5407 0.5625 96.1
[l 5 0.405~1.805 0.1 15 0.5500 97.8
6 0.3~1.9 0.1 17 0.5552 98.7
7 0.4~1.5 0.05 23 0.5428 96.5
e Case-1(Aw=0.01,n=152) Case-2(Aw=0.1,n=7)
0.6 Case-3(Aw=0.1,n=10) —— Case-4(Aw=0.1,n=12)
A eeseeCase-5(Aw=0.1,n=15) Case-6(Aw=0.1,n=17)
0.4 | . CE R Case-7(Aw=0.05,n=23) ----Case-8(Aw=0.1,n=12(Different range))
0.2
0
0
-0.2
-0.4
-0.6

Fig.6-3 Effect of frequency range, division frequency, and number of integral terms of wave spectrum on time

series of autocorrelation function.

Table 6-1 D7 —Z NO.1 I&, AT T LOBRIATRD 72 RODBAHANERER I B R DT
R(1) & TE LRV —Bd 5 K O ICERESEMFO [JRBEEH - 8 A A6 - BB % 5 2 712356
Tho.

Table 6-1 |2 ZAUiE, FHAIKOSEAE ROV ZHEZET D &, 7F—A 1IZHRT Ao FREWVR 0 O
FEEPHAMEFE L THDL 7 —A 6 @ RONIFLTHD. o OFAZHED S &, RO)DSEGHYHIE
(DI, BEAE &) DT 2 O T, BOFIIZEWERRWV. ok, B E OEAEE LT 10%
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BEZFRETUE, 7Fr—RA3~7—2X7THLRW. —F, &7 —AD RO)DHRI|ZHES « ik L
7= Hb DN Fig6-3 ThoH., 7—A1 (KFER) 2o O - Ao - BT E MOy —2 L0 b
LWMEZHWTWS T2, DIEOHEOHEAEL 55, £72, Fig.6-3 TIXA T — A DFRERFIDOFEMAH
BT W=, RISy — 2 1 & DlEATT .

Fig. 6-4 (1) 33X Fig.6-4 (2) ([CLHiE, 7 —A 71T o OFRESHEIIL 04~1.5 LD LIVD, Ao
IS — A 2~6 IZHRT/NE L r—2 1 ORSRINCIT. 7 —A 11T n=152 & HIEI L3 r— A
71X n=23 LA7eu. 7eds, ROMEIE o OFENHIPHZRL VIAATZHEIC XY B E DA 96.5% L
LN 7roT.

0.6 ——Case-1(Aw=0.01,n=152) - - -Case-2(Aw=0.1,n=7)

30
-0.6
0.6 —— Case-1(Aw=0.01,n=152) - - -Case-3(Aw=0.1,n=10)

30
-0.6
0.6 ——Case-1(Aw=0.01,n=152) - - -Case-4(Aw=0.1,n=12)

30

Fig.6-4 (1) Comparison between Case-1 and other cases.
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0.6

0.6

——Case-1(Aw=0.01,n=152) - - -Case-5(Aw=0.1,n=15)

30

——Case-1(Aw=0.01,n=152) - - -Case-6(Aw=0.1,n=17)
25 30

——Case-1(Aw=0.01,n=152) - - -Case-7(Aw=0.05,n=23)

——Case-1(Aw=0.01,n=152)
——Case-4(Aw=0.1,n=12)
- - -Case-8(Aw=0.1,n=12(Different range))

25

Fig.6-4 (2) Comparison between Case-1 and other cases.
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PLEoEBZIZ L, B OB ORERINZIZZ VDO XL RH D H DD, ROOME L HY)D E—
7 D—BER L OEYEE OV 72 S 2 BT E, Table 6-1 IS KBHHTRLIZA—R 5 BRED
VR CH 5.

6.3 FHAIRFER & FHRIRRZE O BER

631 ¥Ia2l—TalilibT—FDIELoEHE

AAEZ 31T 2 AR BRI AR S B0 52Uk T 0 SEIMEHAITTIE, & O OFHAIR M & el 3
FEEISEWVRERDE LN EE 2R TE e ben. 6.1 filck~7= L0, RHEHIZE) A7
9 2 FRIC O BUER N & 5. Fl 20X, AHAREESRS OMKEAY Rayleigh 7343 2 & S RGED
TTHLN, WD X D ITHFREEH, 3 XE O3 EEe2 DT IR FRHERAE) O 4 f5OE & L THE
EOTED.

H1/3=4VO-2 (6_4)

F7o, MAEBYAY/ N S W E P HTE N R O R ISHS B D 72 03 0 43 BRfE I L4
HETHD. ZOFEE, IO KREUCICEE > THRATIZER RS OEE T 2 HE NI 720
BETHD. 77205, FHREHRSCHRBRER I IZHIKI D & 5 IV TRBEE O B HUE 2 B L 72
U722 B 720,

IR, ARETHERAZIIEICT 272012, ERICBOWTERRERIZTT 5 Ha 288 L GhR5.

(1) ST HAE D MR I3
TR MR Ox ()22 T REF7Z 0 1 U772 xp () O Wil o 21, IR THEAETE 2.

UxT =

T
f [xr () — #xT (6-5)
0

ﬂl»—k

T DT, i (OO THETH B

1.1
1 ' | Thin solid lines:Simulation by Eq.(6-5)
0.9 | Thick solid line:Theoretical value of variance
. )

\ A | Dashed lines:Time to make a frequency distribution chart
0.8 w

— 0.7
E e
3
go.s
= 0.4
o
= 0.3
0.2

0.1 <4:: i

0

Measurement time (sec.)

0 100 200 300 400 5S00 600 700 800 900 1000 1100 1200 1300

Fig.6-5 Temporal fluctuation of variance of time series of irregular waves (ISSC).
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(6-5)RUZBNT T2 DA ITEDO S BAENF H AL 5 D3, MR CIXEAE & 23T B 7o 4 i &
5. ZOTOEZIFN, FHUORKEEEAT 5. Uk, T ZaHRRE S, e & G
MEOBREHL T D701, ALY hT 4 (ISSC, A 3m, FHHEY 8 F) % H
WTARL L72EEUE (200 77— ) OARKHANERSRY] (At: 02F), BFERFIDOR S 4,200 #) D5y
BiEEHEST 2. b, AHAERRIIZERT 55512 Ao ZFMBICT 2 LT = 2n/w DFFH
IR TR CIRERAIDE D IR S D . FHIRERHIR &G O E BEM 41T 5 12572V 4,200 B O T
MR UAECRNE DR TRAMET, 2 2 TIEEEE AV T Ao ZAREMEICOEIT D HikE
Lo TS, ZO L DT L CTARK SN AHHETKEFER SO —F173, Fig6-1 ThH 5.

Fig.6-5 1% 0~Ti, 0~Ta, = + +, 0~Tn LFHHIRFHERE T 2R 4 IZES LN 5, (6-5)RUTToyr?
EHEE LB CTH 5. XF D 0.5625m> 125 [V 72 KO FERRIE Rayleigh 534 & R E L 7= B G 70 BLE C,
T REWE B o2 DIEL DX FIRE VR, T 2R T DIV EER BRI 28 703 5.
iz, HIZHREI TR LT T=600 P E TOIEL DX N RKE L.

4, Lpp=300m DALY 15.55kt THIET 235E 2 HET H L, 600 FRHIIZ 4,800m (2.6 mile, 16
) T Z LT/ 5. AREIRTIE, <A LR X MEARNCERREBIZEL TEBLERH LHT-D
BB & > TIEZBRGT S, LEBN- T, EEICE LR S TRl ZBnThE, b
W OFHAIR R IHECR TREZRE TH 5. URZMMMAOIREE TIX Imile 2 232 B THIE T 5D T, ~A
JVARA MHIZZT OFHHITIHIE S D E N REWAHRAIRGRSNT — 2 PG I 5. ERr—RED
ESOXANNSWSBIEEEDIZIE, A VR SO Z &)z 2.6 mile L EOHiEIC L - TEF
JIRREFE) 2 fle R L 72 1 AUiE e S 7200,

2D £ K RBRORERF A & & T MG NN BV T, HUEDIX S o & DR & EHA
R O BR 2 CRANCHYRET 5 Z L BNNET, 2 TIEOBIEDO S &2 W TOBEDIES » &
& FHRIRER O BAfR & Mt 5 .

Fig.6-6 I L, Fig.6-5 O BN T L7 dHAIRER R TIZBIT Doy 2O fER L2 Th 5.
ZORICE ST, o3RO BIEE PHE L LIZIERSMTH DL 2L, THEL DT EHHY
BUE\CENEF T2 Z £y D. Fig6-5 38 X OV Fig.6-6 OFERI%, R FHU O 85A X3RS 5
BOXLDENREVDOTEMENONTBENIRER BTG ISNL AR LTS, —F, RRFH
IS5 5N D BRI EGR  BEO B EF T 20T, WTFNORMR S EEICITVVE S 72
5.
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100 sec. after the start of measurement 200 sec. after the start of measurement
Average value : 0.547m? Average value : 0.548m?
60 60
50 || FEE R 50
> g
c 40 [ 40
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o 30 g 30
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20 20
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SHINAIRRERNIR T SHAMMIRRERI XS
O O O OO O O O o o o O O OO OO o o o o o
Divisions of Variance (m?) Divisions of Variance (m?)
300 sec. after the start of measurement 600 sec. after the start of measurement
Average value : 0.548m? Average value : 0.551m?
60 60
50 50
z z
c 40 e 40
g g
& 30 Z 30
s s
20 20
10 10
0 - ™~ 0 f
o NS = 0L NGO WO MO®ON W NS 0N OO MmN
c 9 NMMI 1NN ONg R o NMMI NN ON g XD
O 0o oo oo o o o o - -IE- - I - I - I - -} o o
Divisions of Variance (m?) Divisions of Variance (m?)
900 sec. after the start of measurement 1,200 sec. after the start of measurement
Average value : 0.547m? Average value : 0.549m?
60 60
50 50 :
> >
S 40 § 40
$ r 3
Z 30 g 30
s o
20 20
10 10
0 0 1
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o9 NMMI NN ON g XD c 9 NMMI 1NN ON g XA
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Divisions of Variance (m?) Divisions of Variance (m?)

Fig.6-6 Distributions of variance values by time, obtained by simulating irregular wave time series (ISSC).
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Fig.6-7 35 X OV Fig.6-8 1%, 942V xtjisd JONSWAP i 27 + 7 L& HWCREED Y R =2 L—v
I EITOTRERTH D, ARG I1SSC 12 L BHEHE (Fig6-5 B XL O Fig6-6) &L+ 2 &
JONSWAP |Z X 50 BIEDIZ B DX 3R E <, EONBIEITHEGR D BAE~IOR LTV < B2 DR
FEVY. Table 6-2 1%, & FHHUIRFHEIR T & AL72 /0 BB /041 O FEEIE poim & AR HER ZEME ogm 2 1G5
IZFE LT RRITE Y, JIONSWAP OFHAIRFHIZ 5 DR HER 7Y ISSC DA L HRE L,
DRV METIZHBIT 2 0BUEDOIURA IR T LV bESLHTH D Z & BEMERICHf L 72 -

Thin solid lines:Simulation by Eq.(6-5)
jin Thick solid line:Theoretical value of variance
Dashed lines:Time to make a frequency distribution chart

Measurement time (sec.)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Fig.6-7 Temporal fluctuation of variance of time series of irregular waves (JONSWAP).
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100 sec. after the start of measurement 200 sec. after the start of measurement
Average value : 0.579m? Average value : 0.571m?
60 60
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300 sec. after the start of measurement 600 sec. after the start of measurement
Average value : 0.569m? Average value : 0.576m?
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Fig.6-8 Distributions of variance values by

(JONSWAP).
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Table 6-2 Mean and standard deviation of the distribution of variance values by measurement time.

ISSC JONSWAP
Measurement time U sim 0 sim M sim O sim
(sec) (m®) (m®) (m®) (m?)
100 0.547 0.1205 0.579 0.1662
200 0.548 0.0808 0.571 0.1085
300 0.548 0.0628 0.569 0.0837
600 0.551 0.0207 0.576 0.0289
900 0.547 0.0195 0.571 0.0252
1200 0.549 0.0132 0.573 0.0183

(2) S BAEOZETE & FHRRER R o BIfR

Fig.6-6 35 X O Fig.6-8 1D BUVIEERIE, Table6-2 (/R L7232 2 L—3 3 1T K » T4 Bl
DBEE SR O TIIE psim & FEHERZEE ogim 2 WV CTEMRSMICEB LR TH D, ZORE%E A
WoH e, LUTOX S nthnT& 5.

DFig.6-9 \ZR" T X 91T, poim (KT DFFA AREZRFHNT — 2 DX 52X O L FREZ E# IS
BIFD simt206m & L, B TFRIENICEEN DR RTET A AR EZE 2 ETIRELZ B X 55
T — 2 IXEHR ISR T B IS & L CERIT 5.

@205m % psim THEI0 72 ME(%) & DB OLENE & ERT H. BEESA K VT L, FHIRREITKR
AR

Lower limit of significant data . Upper limit of significant data
. 4|.l5|m -

3
3

2.5
2

< 15~

N N e
/ o \

0O 01 02 03 04 05 06 07 08 09 1

Fig.6-9 Schematic diagram of how to determine the range of variation with significant measurement data

selected using the fact that the variance values follow a normal distribution.
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Fig.6-10 Relation between the occurrent band for variance around the mean value of variance and measuring

time.
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Fig.6-11 Time series of square value of autocorrelation function.
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Fig.6-12 Time trend of variance of the variance value (ISSC).
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Fig.6-13 Distributions of variance of variance values by time, obtained by simulating irregular wave time

series (ISSC).
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Time trend of variance of the variance value (Hi/3=3m, To=8sec.)
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Fig.6-14 Comparison of time trend of variance of the variance value calculated by using autocorrelation

function and simulation's one (ISSC).
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Fig.6-15 Time trend of variance of the variance value (JONSWAP).
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Fig.6-16 Distributions of variance of variance values by time, obtained by simulating irregular wave time




Encounter wave spectrum
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Fig.6-17 Schematic representation of the relationship between the spectrum of the encountered wave and

added resistance in regular waves.
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Fig.6-18 Relationship between the accuracy band € (%) and record length Tp.
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b5, LLEICENE, 270 0H 2R T TOFHINEEHRH & 2+ 0 ek T2 K o BT &
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B, BlzIX, FEME=F Y TRFOKET) - B - il TR SO L O IEENEE L D
FHAE B 2B 2 F ) fEn, O 43 i ds K OFHIRER R & HARREORIfRITRA D THEE T X 5.
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Var[nr] = TLZT (1 - %)R(r)dr ]
s (2 |

(6-10)z0& (6-11)F D T & € DEHRAUTINT, FIEITFFARRAE e (SRCF] U TR R 23
W4 5755, S AEOE I e © 2 Tl ILFIT 5 O TEHAKGE 2 (R EF9 5 7 O OFHAIR A3 204
IR T DR CREREVRH H.

(6 —11)

(3) AKREBRIC I T B A

L EOBIRIE, AR RIS 2l ST 5 kERBRICBVNTHLEHATES. 4, e &L
T 10%5FERT 2 b D L L, EOHEOFHNRERH - HUERHAFRMOR S 27 A —4 & L TR
B 5D.

Z 2T, Lpp=300m DOXfEEMM 15.55kt (Fn=0.147) T, AFEIEE 3m, FHEEL 8 #oiFES:
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HAMATT 2 EARE L THRBEIBRIC A 77— L Z' D LTz, Table 6-3 OGS (ISSC Xfiin) 12 &4
X, 100m OFRERAKEIZIUNT Lpp=3m OFAU A2 RHAE I ThE S CGGHII L7256, ¢ &
10%LL FIZT R_REGEAIE B MOT — XN LE (RFONNyF 7)) ThHhDH. BHOT—H
ZRLEKT D70 DITIX, Fn=0.147 BFO3E L 0.8m/s D72 59m OEFEBEA L E T 1 [l Ol TlE
W CTH 5. MBI D RILOFHAFTRERIFA 4 S0m & 48E (Fig.6-19 M) 35 &, D
CEL2FEIOMENKETHDH. Fio, BRMOY A ANKEL RDHIZEREMEICR D720, F
HIRFFERIIIE N D . —J7, JONSWAP XfISOSA ITFHIRFRE - AERBIIRE <8N 5.

ZDXHIT, AKRERAEER TITERNC ¢ & Tn OBMRZ EEANICHEE L TRINE, FHlfEEZ &
SEIC B FEBREH I (GHARER] & MLERERORRE) DAlRes 72 5.

Table 6-3 Record length and running frequency in e=10%.
<{GCorresponding to ISSC>

Model ship length | Scale | Ship speed | Record length Running Running
(Lpp; m) (Ly/L,) (m/s) Tm (sec.) distance (m) | frequency
3 100.0 0.80 73 59 2
3.5 85.7 0.86 79 68 2
4 75.0 0.92 85 78 2
45 66.7 0.98 90 88 2
5 60.0 1.03 95 98 2
{Corresponding to JONSWAP>

Model ship length | Scale | Ship speed | Record length Running Running
(Lpp; m) (Ly/L,) (m/s) Tm (sec.) distance (m) | frequency

3 100.0 0.80 141 113 3

3.5 85.7 0.86 153 132 3
4 75.0 0.92 163 151 4
45 66.7 0.98 173 169 4
5 60.0 1.03 182 188 4

The length of tank = 100m

The model ship
>

An irregular wave

Distance that can be measured =50m

Fig.6-19 Measurable range in the test tank.
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Fig.6-20 Relationship between mean wave period and damping coefficient .
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Fig.6-21 Relationship between the distribution of the values of the sum of squares of variances and the x2

distribution with 1 degree of freedom.
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Fig.6-22 Encounter wave spectra by heading angle.
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Fig.6-23 Autocorrelation functions by encounter wave spectrum.
Table 6-4 Results of [a,m,] by calculation conditions.
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Fig.6-24 Relationship between the accuracy band € (%) and record length Ty, by calculation conditions.
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51X RIOS O 1 7T A a3 SNBSS, F7- 2021 0 DITEHRELAITNRE
D NN THIEIZE>TEBY £J.RIOS DY AT LAY R— b A NN— {22 CHEITZZ & T,
RIOS i U TEL D L 2PN OTEA DY AT A& LUE L2, F ORI NS X
0[5 E TOMRRBEEAGHUUCE LD THATUIEI N? | EOBFEEHEZE L. £90H 2
EHdH D, RIOS (ZHIT DB EL LV RIOS ¥ AT AT X » TEHE L2 iE RO — AR
IS ETIHEWTER D £7°. RIOS D A7 ABRFEITR L THIRCIC ZHRETH & £ L 72 NG
A, FIRIESRA, BHEELEBLI RV AT AR — AU AN—L L TEBITHRBIELLTE
TEARERILG CYIE, KRICRKFHINRE) AR (4, X=v 27 V) a—va VHRASH) 12
HHELET.

FEARDRIE LE T, SR AFZEEEICTIHME 720 £ U smaRoc ik (4R, IR E T3S
) 726 2005 I HHITE N B ASES T¥%2 0 LCV(Life Cycle Value)lZ B3 2 W58 D —#F Db
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PKFEIHE E L. ZOMTE2ITO 2 & THMOATEZE L COMEREIHMIAER SN TWD Z &M
BL< 00, WEW IR EHC T ERE OHEE « EBRBEMT NG SN DRk SH LU E LT,
D% b IR 2 OfFHT - BIFIEEZKIEHIAS, ZNOE2ZTT 52 & TRHHOHIF DI 1
FIZORRo721E0 0 T, T7 7 EOIESOEICBW TS RERT 2 LRV E-. DT, &
FERIRIKICRAL L B £

2011 AR KBRSZ R F O ML BEESEA LD, [5IREMO TR O I Eaghi <, FAEDFRE
WFRDOYR— 2 LTINRND? ] EOREELTAE, 5SHEMT LR PE~OIFREEICHEDL S
HCHEELE PELLOHEMREZE LT, HHOBMBOARTR2MaNEL bhrofe X 9B
T RFETIHE, WHHPEREIFZEIE 0 T <, WK IRBLOMRNE, BFEIMERED R L, BEE O
T 4=V BV RET 47, A RIRICSMEETHEE L., 20X RREREE 52T
TEWE Ll B AEICERBL 7. £, AR - IR A 7Y > RSO 253
JEIZSZ T AT &, iR BRI IERS 9 2 P98I0 LU C—# IS asam & A7 R G, RS,
FAREITIR, M EARZ T U L Lo ATREMIR SO IR LR L B E3. s
FIZRDFAEE~OKIET, HTET LM B FAFZF 4R, BfEIIRAst~ U 7
7)) ICHREHBLET.

Z DOFITEETOMRN TR E2D, 2016 0 HBEIZE H £ T SR208, SR233 WfFE % ~— A
ELIEEME=XY VI T— SR AT D SIREMR SR S LFEBAR LT £7. Y4
PHE Y25 O FORERIG, Ml AL, B O ER, WMIEFK, FFABRKBIO~T Ty
7RI, FHMERK &%, AT 2T LB ZE U RO MEREREM O 7B DV TE L OF T
REmMAENDLZENTEE L. #B, TOFEME=HX Y IT—FRIT > AT KILEIR R
RO & B HRFUEANE 7 121%, RIOS ¥ AT MM X HFHBEEREZHNTWD Z & 28 L £

FETHDIEMFEZLE, PR LICELDD LI ICHENTHEZOZOTXTITED N
B TIRE e ATHE £ LN A ZIZ L0, <02 ICTREEE E L2 L, LAY
WG L B R

BB, K LaEELDDHITHIZ>T, WAWAREERHIIHD T T TER0ZF DREME H 5
WEARGR ST 2 FZN@wm I E BT, £, HV EH LWL BEAZF T mED =
TAAKRIEH LT
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T8 1 fMMEEL S 2 L—2 322D\ T

IR, B2 ETRLEQR2DXNZHWMAAERES R 2 L— 3 VORBIIZ DWW TR 5.

fHk 1-1 ARICER T 2B IS L 5890 iR
FEHHE P AT L TS IMRISIE- T2 0L LT, 7T H0Xe), #EIC K DRI - #17) -
F— A2 MXr,Yr,Mr), MR T1(Xn, Xp, Yo,Mp) 35 J N « BT K 2 44 T1(Xa, Ya,Ma, Xw, Yw,Mw)
BV, MITEN D ONDEY G TRRECEFAIRID) THATT 5. Z OEFRIRIRICHIT DI
fERT 27« == A bO# Y HEWHRAL, K TRASND.
Xy+Xp+ X+ Xy +Xp +Xp =0
Yo+ Y, + Yy + Yz =0 (Al-1)
Mp + My + My, + My =0
(AL-DRZMET 5 X THRYVIRLEHEEZT TR Z LT, Ml V, FU 7 Mo B LOREA §
EtET 5.

k12 90 BV HRBRAOREHORE L
(D) PR PR
IR OMEIEGT Xu 13, MGV — 7 2 O TR OB E A MBI TR 5.

QKU 7 MZEBHEPL - T— A2 MitH
RUZ MZEBEPL -0 - E— A2 M Xp, YoBEOMp)E, KU 7 Mg a, AKfRE Lwl, it
&8 B, MEREBUKAL, da), HEACBBLUN, XKMEYV &Lzt kX THS.,
Xp=—Xpy Cyxy
1 2
Yp=-—py, Ly, -d-V2-C
D 2Pw WL YH (A1-2)
1
Mp =—3PW‘LWL2 d -V Cyy
Cyy =13-a?

Cyyg =Ky-a+K, -|a|~a

2d

CMH = [04
Ly,

K1=Z'd+14CBLB s
WL WL (A1-3)

K, =6.6(1-Cp )%—0.08

d=(d;+d, )2

BRI X DHHL - B— A v FEHE
IS RIZAE R 32 BUEHRPT X « BUERES) YA B L OEEE— A2 h Mal, KX TH 5.
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1 2
X 4 =_3pa'AT'UA Cxy

YA:%pa'AL'UAZ'CYA (AL4)
M, =%Pa ‘A Log U 4% Chy
T T, pa: ZEKUERE, U MIRTEGE, Ap: K EIERBEEE, Arc K BB R, Loa :
2R, CXA:}E&E#&W@&, Cya : EUEHEIIEREL, Cua: BUEE— AV MR, THD.
I % G 2 DRSBTS 5T 5 8545502 KD T, (A1-4)RUC & 0 RIS L 2880 - B L O — A
NERT S, AR EERPTAREL, R RS TR S X OVRERSTE — A v MRS, &
5 ORI R—RZTT =4 T =7 ML L TR &, W dle 0N T 55455k %
T RO TBL . 2D X IR U JBERSL - BT - E— A > MEEZAL-HRUTRAL T,
IRf % Zl) 2 DJRHIZ 35T 2 JBAEHST - Bi1(Xa, Ya)r E— AL P MaZEH T 5.
225, AHREGH(UL) & AR (W1, Akt G (U,,,) & MR (V)36 K OMEH R ()12 & 0, K
T TRD S

XW=XWO_9

Uy = \/UVZV + V7 + 20U,V cos xy, (A1-5)

—1 Sinyy
14

-9
T,y TEOS Xw

Y = tan

ZIT, Vy EV) i, 0 #HEK, Uw : BEGE, w0 : db& 0° & LcfEsdim, Tho.

(DFEIC K DHEDT - = — A 2 BEHR 7980
FEZ KDL - B) - B— A2 PXe, YeBEU ML, RAUZL->TRDS.

Xgr = —(1 —tg)Fysind
Ya ==+ ay)Fycosé
Mg = —(Dgr + ayDygr)Fy cos§
ay = 2.32C2 — 0.904Cy + 0.0276
Dyr = 9.64C3 — 8.22C5 + 0.0077
(1—tg) = 0.28Cz + 0.55

(A1-6)

1 6.13A
Fy = SPw e 25ARVR sind

Ve = (1 —w)V(1+ 3.651%)0> (A1-7)

§=1— a-w)v
NP

ZIT, 5:HEA, Ar: ARMEIHFE, A fET AT B, Vo RPKAE, N EERE, (1-w) @ BRI
B, P: 7uXTEyF, Cp: HIARE, D : FEOTHIIHL, D HED x JERE, THD.
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GVEIZ X DWIRER T« T— A FOFE

BIZ Lo TAELDWEREF 1+ T— A ML, MEHm x i) o dMEmc,), #irm (y
Hl) ROy DS IRE HARR ) (Yy), WS EISEST A (2 #hlE1 D ) Aoy S IEIRE R [BIHEE— A & b (My,) & W
5.

WS K D IRy (= Xy )IT, JRBEA ZE R 1m (2 2RI Z Ry, /HY jaw, DRV A
FWE Im (ST DIRGUEIN & R o /HY j35, BBAFRBERZ Hisw, 570 AR Z Hiss & L2
L, wATHRHEEND.

_ RAWw(VJ T; X) 2

X
ww H12/3W 1/3W
X, _ RAWs(VJ T;X) 2 (Al - 8)
ws H12/35 1/3S

Xws = Xww + Xws

BAZ KGNS, RO FIEIZTRD 5.

— JRRIE T OB NG Z B EHEE - BRPUE NI R IE BN R T 2 iy R B A K
R BE > TV D ESDILTWD DT, 2L &1 x CHLAIE PTG E B -
5.

— AHLHEE T O SR N B HEE L, A PR UR IS E B E A~ b T AOEPE
DEHFROES S WEDOFIEIZL > TRD D, AT N T A, LUTFIZRT ITTC(1978) T
BEINEXZHND. Eo, HRomBEEIEL COS? x nfié T 5.

<JEGE AT N T L>

_ _ 2
S(w) = 173H12/3T‘4a)‘5exp{—691(Ta))‘4}Ecosz)( (41-9)

<R AT NT L>
S(w) = 173H; ;3T *w %exp{—691(Tw) ~*} (A1 —10)

— A & DR B, M, SEEEEY, HSWAE TR L CUYRRIREEDEE R D S
—ROTAEICH FZEE Em(EE & 9 R0 BNO A2 HT 5.
— JEJE OSEHREUE N & 9 A OEHIRTUEINE A2 & LabE T, EHEPEnEZ kD 5.

Thhbb, HOWMHEEREE, FHEREY, HaVMA)k JUWUEREGRER)IC I 1T 2 T
HINEIE, o U TBIKIKREE, Mk, HmE, EEH) 2fa Lz TR ERER DY OF
PIRHUE M & O RFER T — 7 VAR L TR &, MR - MvERAB I3 1T 281X T — & filiflik
WXk THEIMT S, FAFERTFIHIZE ST, Yy EM, OREEIT.
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Ora=aVE Vo5 )
T XTHES Xe 1, AR REA 1), WKEEEZ pw, 7T EEKE N, 7T EE
% Dp, 7ONTHIMEEE Kr & T5 LR ERD.

Xp=(1-t)p,-N*-D,* K (Al-11)

BRI — & THIAT L TV 256, Bit—H#—8Eic KnidmdskE s &, (A1-12)x o 2k
HTEER T BNk E DT, ZDEED Kr 5 POC(Propeller Open Characteristics)2> 52K £ 0, (Al-11)
NI TTENTHN Xe DNREMTE D, 28, Ke =713 kAaEET 2608 L, 20 Z0ER
iR DRI Z A1 7 —42 & LTEL.

N U4

2
—>Kr=ay+a,-J+a,-J
N~Dp T 0 ! 2

(A1-12)
- Xp=(-t)p, N*-D,* Ky

ek 1-3 890 BV HROMEE

7, AL-DROFE AL F =00 “RHEXOME LT, FUZ MiazkH5d, RIS, £
OFEREHNTHEA S ZHIMT S, KEolma b %, AL-DROE XA T S, F—XEi0
RIELH, MV EZLESEHES L a2HHTS. ZOFIRELHEVIETZ LT, MEV,
RUZ Mo LOWEMA § ORKREZRD D, Xw BHFERRI (Fm, WA, HmE) 12, Xan
RERPL (EGE, R ) 12X 0BT 5.

RFUZ7 Mg aZRkdd ZkGRAL, LN Tho.

1
{EPwLde -V2(Dg + aHDHR)Kz}OCICZ|
1 -
+ {E,DWLWLd . VZ(DR + aHDHR)Kl - Zd(l + aH)} a (Al 13)

+{(1 + ay)(My + My) — (Ya + Yy)(Dg + ayDyr)} = 0

E7o, #EA S ITRAUT L > TRD D

1
8§ ==sin™? [ -
2 (Dg + ayDyg)Fy

My + My — pyLy,d - VZ“)] ]

, Fy (A1-14)
Fy = T .
jprWLd V2

ZIT, BUEE—A Y b Mal3AERHEGED 5, BIREFFEEE — A & b Mw I3 &E O ZRIZH
Bl 572, EIEAELOM RIS THEMITRMICRE S 2 5.

10 BENFREAEDELIML 201, LTOFIEET5.
O MROYIHIEY, L RO AV E & > R T 5.
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@ iR 2R A, LREAS, ZHIHT 5.
@ Vi, ay, 8, O ORIE T NX, 2B T D, (VX)) = Vi, Xy
X=X, +Xy+Xp+Xy+Xp
Xy - BUEHHT
Xy R HHT+ BHITE AT
Xp - EHEHT

Xy I KDt
Xp: AT A b

@ FIEFMIIOIEAIZELY, MEOMESZH T TO X S IThEAEIET 5.
X;1>0 , Vh=V+AV
X, <0 , Vo=V -AV
® V,ORORWLAa, EREAS, ZHH LT, Btk FM X, 2 RDD. Vo, X3) = Vipr, Xes1
® [REEIC, BT DOIEA TIEEZ & SI1c@hind.
X, >0 , 3=N+AV
X, <0 , Vy=V,—AV
@ —OHIDHIE TR X, EBLAT v T ORIE ST A1) X OFF 5B EET 5 E T, D~O D K
LEHEZITH. T72bb, MEOHITRAIC LV HET 5.
X Xx+1 =<0
:@:ﬁ?%hﬁﬁ‘_,m%ﬁﬂﬂ7/xﬁé% HFIET D
@®¥UE%T¢%%&‘/@ L72REIS, RIS T Z — RGBT 5. VIZ CODOHESM A LT
AT TDE, Vo=W+V5)/2 [Vige = (Ve + Vk+1)/2]7§f15jm“é it B,
z @ﬂ'u HORHIUA a; LAER 63 ZFM L, BIRAM) X3 2 RDTIEL. - Vo, Xkt

A

MR IZ3 9 DRIR N
— — — - BRISEBIL =R

A& AR AX

Fig.A1-1 Procedure for calculating converging ship speeds.

© Vi X1), Vit Xis1)r (Viewz, Xis2) D RIS K0, VR & R4 I 10 110 T — 7 % i (b4 %
Z e, gk AmAnEe CPHFREANREIND) LDV ERD 5.
INHEHEIC L0 SR E o iRV OO fAa* L REFAS 2RO 5.
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% 1-4  FTHE B L OREREE &0 H H

PP —HE ) — BB LR, (AL-D)R OV IR USEIZ TRV, §, o)l L > Txfgel L4k
FLIRTLICH T 2 B3PI Rr S HEED R n 235k £ 5. DLEICk Y, EERcBT 220V BEH PR
BTE5. 61T, BANKRENWTBENEE L K #5252 LT, KimDQ-DUT TREHHE
ENHETE D,

ek 1-5  FREHHE B

PUFIZ, AMfatEsEs 2 = L—3 3 I Ko TH B HERA (Pure Car Carrier) (2413 5 JELD 28
DOFFH % 79, Table A1-2 3 X OV Fig. A1-2 1F, Table Al-1 (-3 XS m3 [BldR 5L — E w2 TR
i & IR R 2N —E DYESR T A S — E THUT IR A (AN E 00 T, JEGE I A & (LR & R L)
INEAL LT OfE - K2 - BHLA T TS ) - REHEE OB LA HEE LT —HITh 5.

Table Al-1 Principal dimensions and calculation conditions.

Kind of ship PCC

Lpp 190m

Breadth 32.2m

Ship speed 19.3kt

Ship course 0° (Northward)
Wind speed 2m/s

Wind direction 0° ~360° (1° steps)
Significant wave height of swell 5m

Mean wave period of swell 10sec.

Mean wave direction of swell 0°

Significant wave height of wind wave 5m

Mean wave period of wind wave 8sec.

Mean wave direction of wind wave Same as wind direction

Table A1-2 An example of the ship performance simulation.

.Wlm.i Ship speed| Drift angle Rudder Truque Engine FOC
Direction (kt) (deg) angle (KN-m) output (ke/h)
(deg.) (deg.) (kW)

0 16.04 0.00 0.00 1318.7 12980.4 [ 27258.8

10 15.97 0.30 0.08 1323.0 13023.1 27348.6

20 15.97 0.66 0.20 1323.2 13025.3 27353.1

30 16.04 1.03 0.37 1318.8 12982.2 27262.7

40 16.21 1.36 0.56 1307.7 12872.3 27031.8

50 16.45 1.61 0.77 1292.2 12719.9 26711.8

60 16.75 1.76 0.97 12732 12533.2 26319.7

70 17.08 1.80 1.13 12514 12318.2 25868.3

80 17.44 1.74 1.25 1228.3 12090.7 253904

90 17.79 1.60 1.30 1205.1 11862.1 249104

100 18.05 1.40 1.27 1187.6 11690.2 245494

110 18.28 1.17 1.17 11729 11545.2 242450

120 18.45 0.91 1.01 1161.2 11430.5 24004.0

130 18.56 0.67 0.81 1153.8 11358.1 23852.0

140 18.63 0.44 0.59 1149.3 113129 237571

150 18.67 0.25 0.37 1146.9 112894 [ 23707.8

160 18.66 0.11 0.18 1147.3 11293.7 23716.7

170 18.64 0.03 0.05 1148.8 11308.6 23748.0

180 18.61 0.00 0.00 1150.9 11329.0 [ 23790.8
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—— Ship speed(kt) — — Drift angle(deg.) «-++- Engine output(kW)
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Fig.A1-2 An example of the ship performance simulation.

Table A1-2 3 L TN Fig. A1-2 (2 KX, FEXFEMZ 60° ~90° (2B WT KU 7 MMk KOREA D
KEDD, AR T &3 X OTHEFE J7 1 AR A 23 0° DOFEZN K & U, Fig. A1-3 12 KA iEsEz (90° )
BT DRI M (0° ) OBEITH R TERL TN H72®, FU 7 M - fEARKE <
72 B FAREEE 607 ~90° (ZBWTHNENFEIE LTS,

AFHEGITIE, FU 7 MORIC X DGR EAHEENERE I KT T BN S o Te )y, FU 7
NREANRE L 2D &, Rl EICRIBENE U 5 7= O EOBLS ) b ORFRMLETH
5.

25

0° (head)

20

15

10

180° (follow)

Mean added resistance due to waves (kN)

0 5 10 15 20 25 30
Mean wave period (sec.)

FigA1-3 Calculations of mean resistance wind-generated waves.
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F8#2 TONSRAREZBOHFEE

gk 2-1  FEpEK

7 R ZHENASOFRNEE S, M EREEC AR EOZLIZ L > T2 Z 2 E#B L T\ 5. ZDZ%
O Lk, TuRXTMAEELE) &S,

7' a T EHN~OFENEE ORI E B O E T AL, OB iES) & MAEES OFI & L
TEATHAET LI ENTES. 4, H2VWEAEK 0, 7 a7 HN~OFNIEE LB IR «,
ZTONM B LTDL, TOXTHN~OHMANEELE ()X, "X TEZONS.

u(t)=ué+u6~, +uy, +uw=u0~cos(a)et+ﬂ) (A2-1)

T IT, U IR, Upl3HEEAL, Wl E R, o, iR T e ST LB T D ASHE & O
VaBRE LI, X7 aXTMAEEESOMET RS TH 5.

(A2-DRUT L D &, HAEELEBEORIE v, & T ONH B 1, W EMEETOME T K OIR
ECTHEZBND. UTF, £Duy L g 2RDD.

fikiESh Y, KX ThD.

f(t): o cos(a)et + 85)
(

Ht)zﬁa -cos(a)et+89) (A2-2)
1//t):z//a -cosa)et+el/,)
J?\‘){_i %\: \y P?‘/‘770, ‘tyg‘—?/l) :/) 7kﬁ&‘§45 E‘L\{EEG Li, Jﬁ/ﬁo ﬁ‘%(xG,yG,zG)
DOREECH 5. HEWA 1 1%, EEZ 07 &L, AfE90° , fEa 180° &3 5.
< Lep >
Ip
—» Surge+
0 X
—>
Xa
%a M
X
T
)Yaw+
2y

Fig.A2-1 Coordinate system.
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(A2-2) % —MIsr L CHEM D 2RO D &, kil 8D,

&t)=-w,-£, .sin(a)et + €§)=we &, -cos(a)et+ Y +%)
é(t)z —w, -0, -Sin(a)et + ‘90): w, -0, 'COS(a)et +éep + %)

(A3-3)
W'(t)z -0, Y, sin(a)et +é&y, )= @, W, - sin(a)et +e, + %)
—F, NFHEOEERT vy g, 1L, KX THZLNS.
b, :g—g‘le_kz -sin(a)et —kx-cosy—ky- sin;() (A2-4)

@
AR O E I OME OKPEHE) 1L, (A2-4)RE X IZTHn T2 2L TRAe 5.

w :%:&e_kz (= k-cos y)-cos(w,t —kx -cos y —ky-sin )
Ox (4] (A2-5)
=-¢, -w-cos;(-esz -cos(a)et—kx-cosl—ky-sin;()zuWO -cos(wet+a)

uWO:—QVa-a)-cos;(-e_kz , a=—kx-cosy—ky-siny (A2-6)
T, M OBAOT e NI kO =T 4 v EIZH D DT, T aXT 1 3EEND
x=—lp, y=0, z=dp, DNEIZHD. £z, MEOFEIZE D AFEARELZZ 1T T, MET
ENR VRN T D ERMOENTND., ZD®D, (A2-6)RD ¢ \ZEDREBEEEZFE Lk
WiT7ewn., ZZTIE—BERAXDOE TEEOREDZR L T, ZOFEONRTFIA—2L L TTo &
X THHDTC(o,x) T D&, REHFIZRITH(A2-6) TR E 2D,

g ==Clo,7)- &y -w-cosy-e™P  a=k-lp-cosy (A2-7)

(A2-3) D6 (1) & y(e) %, MEHNOEERSCELTEKIET 5. 4, BELG |V IHERN 0
ﬁébk&%KGb%ﬁﬁWhT%ﬂtu%Pﬁu%67ﬂm7ﬁ,H@QQ@f&<PﬁK@
15, 29 LTHHENIZ L 2 7 e RILEDOED, 7a T i N ORHENIC X DR M
RO 72 %

pitching
center of gravity G '\e

\ 4

PP" becomes the velocity component
p' in the longitudinal-wise of the ship.

Fig.A2-2 Velocity component in the longitudinal direction of the ship caused by the angular velocity of

pitching.
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EOIE~T XTI ONME d,c(cd, -25) 2 T5L, GP LTuXTHWMORTRA LT,
d g DRI TH 5.

U

G d G
G,
r Sino

RN O T aXINEP mnb FTALE 7 aXTli~D®Ei & 7T aXThoRZmE P a L
L7-&x, PP L PP ORTMHITA THD. kv, FuFEOMEM~DE L itk
0 OEURIFKAUZTROABZ N TE A,

sina=}zzpp — PP"=r@-sinag=—~
PP ro sina

sina =

49 -sina = d -0

ZZTCTEXRERHMY T D2 LT, eI RAEEORHRIC & DR ITIA S Yy DR %

/{'B;%)
dPP" do : :
7:dpG'E:dpG'9:”é = uy=dy0 .dpg=d,-z; (A2-8)
i, THIOEA T 3 O X 512G 7b ¥ HHNC ypg BHFNEMRIC T 2T 335 5.

L=, ﬁﬂah@%ﬁ.\ ERRRIZE DRRBE y pe 23 L 73— & 7o TIRNE FEILIC K D AR E 5 R FE N
BT, (—HEOEAIE, TuXTEnt X2 —TF A4 LD DL A= Z e THD.)

==VpGV (A2-9)

v

Longitudinal speed due to
angular velocity of yaw

v

Fig.A2-3 Velocity component in the longitudinal direction of the ship caused by the angular velocity of yawing.
Lo T, MEINC £ 25 7 0 T A O R T MR IRA L 72 %

Ug =0, S -cos(a)et+8(’§)

u; =dpg O=dpg -, -0, -cos(a)et+g[9)
Uy, =-YpG W ==YpG @V, ~COS(a)et+€{//) (A2-10)
=&, +7/2

cr=es+7m[2 , ep=eg+n/2 , &,
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(A2-1HUZ, (A2-5), (A2-7)AB L (A2-10XERA LT, oG %2 — e LCEH
T 5.

u(t)z U -cos(a)et +,6’)
=ué+u9-+u,/; +u,,
=0, ~§a‘cos(wt+gé)+dp(;~a) -0, cos(w,t + &)
—VpG @ W, cos(a)t+€ )+uw0 cos(a) t+a) (A2-11)

g ==Clo.) ¢y w-cos - P

a=k-lp-cosy—k-ypg-siny , k=2x/A

nE, Lo LBY —WO T eI e 2 —F 4 L EICHDBDT, ype =0 THDH. LN
T, —ERIITRE RN OREITAE U, BUF, (A2-1)R a2 HERIHT 5.

u(t)=ug -cos(wt+ f)=w, &, -cos(a)et+5(’§ )+ dpg-,-0,-cos(w,t+e))
—VpG W W, 'COS(a)ef+8‘;/ )+ 0 - cos(w,t + )
= [%(fa rcoségz +dpg 0, coSEG —YpG W4 COSEY, )+ Uy ~cosa]cosa)et

- - -, 1 (A2-12)
a)e<§a -sinég+dpg -0, -sincg —ypg W, singy, )+ U, - Sin a]sm w,t

= \/XCZ +XS2 cos(a)et+,b’)

Xc=w, ( @ cosez+dpg-0,-coseg—ypG W, cosgy,)+u 0 COST

sta)( “Sings +dpg -0, singg —ypg W, sing, |+ ) U, -sina

_ -1 Xg
p=tan (/QJ (A2-13)

Uy :_C(a)’){)'ga 'a)'cosl'e_kidp
a=k-lp-cosy—k-ypg-siny , k=2xn/2

2O LT, FuxTRANEELRBOMRIE L AHNFRTE D, kB, ZOXNTKREL T BT
A@EE@@Eﬁﬁi Fig.A2-1 DJERE Y5 Y x IOED KW Th b, Thbb, ZITHOT A
NEEEEL, MAERFICEE LG AE2 EE LTWD I EICEENLETHS.
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ek 22 FREHE G
LUF, RIOS ¥ A7 MZHI1T HFHREE] (=27 T, HeRE, #his 20.13kt, mBokiEg) 27
1| Lpp 175m
2| B 25.4m
3 | draft 9.8025m
4 | Dp 6.5625m
5 | Distance from midship to Propeller position -8.3m
6 | Distance from center line to Propeller shaft center Om
7 | Distance from base line to Propeller shaft center 3.5m
8 | Distance from midship to center of gravity -3.5m
9 | Height of center of gravity 7.77875m
10 | Distance from center line to center of gravity Om
11 | Wave amplitude 1m
12 | Coefficients of quadratic approximation for Kr A0=0.4857, A1=-0.3215, A2=-0.1176
(Kr=Ao+A*J+A2*J2)
13 | Coefficients of quadratic approximation for Kq Bo=0.0679, B1=-0.0262, B2=-0.0257
(Kq=Bo+B1*J+B2*J2)
14 | Propeller rotation 100rpm
15 | (1-w) 0.697

N
N

=
()

Up-L/[Za*V(g-L)]

o

180
120

-60
-120
-180

phase (deg.)
o

Non-dimensional value of response amplitude of propeller
inflow velocity fluctuation (20.13kt,180° )

M

0.5

1 1.5 AL 2

Phase of response of propeller inflow velocity fluctuation

0.5

(20.13kt,180° )

AL

Fig.A2-4 An Example which calculated the propeller inflow velocity fluctuation in regular waves.
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83 EBEICE T HMIKEEDTRERIRF RS DERK

FEHI P AT USIARIES) L CO DA T, 7 e XTI EKERRE 2 4 2 BT 5. 7Tk
KED/NS (T XTI RKEISEDL) b L, TuaXTIRNELL 2D ENMbNTWS. o
T, ZOBRENHEEICED L DITHEE RITTHEMEREOGRO 3.8 §)yT 572Dl E e
FEIAT AT 2 7 e R T ALEIZ IS T DA AN O ABLANRE R IOV T IEIC DWW TR~ 5.

ok 3-1  AEXIZENL

SN, AR B DL X) & KE DM AR EEMRE R T b0 Th 5. Thbb,
RENL 2, () i BACE (P A, .0, .0.) TOETFHAOKKERZ 2, (;P), KEOELE
s, P)ETHE, WA THRSNS.

Z,(e:P)=2,(t;P)=¢,(t; P) (A3-1)

$7) Pﬁ(ﬁ Lol )1 5 LT A EOIEER 2, (- p) 1 TR CQ), SR 00), B
FE () BB TOFO £ 510 K32 LIS CE B,

Z,(t;P)=gle)= 1, -0()+ ¢, - 9(0) (A3-2)
(A3-2):\&(A3-1):UTHRA LT, MRKALZ, (¢, P) ZIRATRD 5.
Zr (t"P): g(t)_ gx ' 9(1‘)—1— fy ' ¢(t)_ gw(t;P) (A3'3)

qé’w Y

Heading angle

X ® P (Ix. ly, Iz)

ZV

Fig.A3-1 Coordinate system

L, TaXRIAEICB T AHEMEMEHET 2 2B 2 5. OS5 AILX, TrXJidty
&~54yim%5@f,Pﬁmwwgﬂwgwkwﬁ%hﬂdwﬁiﬁm&@5.#&b%,&
A& b,

Z,(6:P)=clt)- 1, -6()-¢,(t:P) (A3-4)
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A T ofmEEsh 2 HEE T 5 &, E TR L OREENOREE SN S D. E TR
DIRIE ENAHE ¢, o, HHBNOIRIELMHEZ 0, 0y BLOWRIELZ L L, ZOBRESVE
WHE w, & LT25EA, (A3-HRIRKDO LI ITEETES.

Z, (t; P) =G, cos(a)et +é )— (-0, cos(a)et + 59)— Swa cos(a)et -kl cos;() (A3-5)

TR AL D JE P OSBRSS A KD D 72012, WRITRT A ORI & 2D =M O BRI A v
T(A3-5)3 % cos fisr & sin NI RE LT, fMHRMENOEEZz, EMifl e, ZHEHETIHIRICER

T5. —AOfEEZO =MBEAKORERAZ, RATHS.

cos(A + B)= cos Acos B —sin Asin B
( (A3-6)

cos A—B):cos Acos B +sin Asin B

(A3-6)7 % (A3-5)UTRA LT, cosmet & sinmet (277 « BEELL, FE cosot TE L H D LKA
2155,

Z,. =g, (cos W, -COS E. —SIN Wl -SIN & )— l.0, (cos @,t-COSEp —SIN W, 15N &y )—

3
Swa [cos W,t- cos(kf  COS ;()— sin @, t - sin(kﬁ  COS ;()]
=[gacose, — L0, c0869 =Gy cos(kﬁx cos ;() COS W, t +

[— Gasine.+/0,0,sinep +¢,, sin(kﬁx cos ;()]sin @, t

2 (A3-7)

=Zycos COS DL+ Z ). i sin Wl = \/Zrcos2 +Z,in COS(a)el‘-l-é‘Z,,)

=Z,, cos(a)et+8zr)

_ -1 erin

£, =tan =L
7 cos

(A3-N)K DA N OHRNE Zra & NIAH ezr &2 HWT, WRENTIRAR 2D FIEIZ K o THIZEN ORI
AR5 %2 AR 5.

%32 T rRIAEITB T DAHRIEM O ABAIRER ST — Z DA

RIEIIC T, FHR BN OJFMBUSEBIE SR E 72D T, Z 2 TIEZ ORREREINE RS E AV,
FAXH N DO AHHRNR R AN T — & & RS 5 FEZ R~ AKFEE, AT b7 A0 BEORHA]
RERENT — 2 Z AT 5 FlEZ, MEIGE AT BT D005 ORI RIS R R 51 A B i
THHLOTHD.

b2 1 R TRHA SN BER ORI Z 7~ 8T ¢, () 13, —RICEROIERE O ERGHE
LLTRTZLENTED. T74bb, kATHD.

n

cy(t)=lim Y ¢,; cos(m;t + &;) (A3-8)

N0 =]

ZIT, ¢ IO DOER, o, = 22/7; 1 IO EREL, & (3RS ONAE (0~27) T
HD.
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¥, A OWRE, () DRE ZDEIGE, AT T AEWVWI S ICLsTRENS.

AT 8T LS (o) THFHIICIT —o0 <o <0 OFEFFIZER IND D, ZIUTERBEHTHL) 0 @
DEDEY % EOEFITHVIEL, Zhzd 0 OIEOHMICORERTIHAENEL DT, DL
IREZRBIZEIDbDZE S(0) EFTE, 0=0<0 TiEsw)=250) 720, kXEE5.

Sw (t) = fw cos(a)t +eN S (a))&u

A3-9
=[] cos(at + £}y 28(w)ow (A3-9)

F770%, BERIE L Tice B,
cult)= lim 3 cos(@;t + &(; )W2S(@; Jow, (43-10)

Nn—»0 i=1
TR AN ORERY 2 AT 25808, (A3-9)=UTH 1T 2 JHH O/ ENE L n 1XMER Cld /s
SAHBO mEE L2 ERKNERD.

5 (t)= 3 cos(w;t + &(e; )25 (o, Jow; (A3-11)

i=1
ZZT, g X0~ 2nfllCoAT o —kRELELTH 5.
F7, BIZIEKA TR ISSC AT b7 A% A3-1DRURATIUE, AT T ARG
L 7o RIS R RS 7 — 2 AR T E 5.

Ty (wTp\ > wTo\ "%
.xw)=01uﬁ35%(53) em%}044(55> } (A3-12)

—F, HDHMEIGED AT NT A Sk(o)E, (A3-12)RKOPE AT KT L S(o) & M RIE B
AN E > THRAUZTRD 5.

A
Ssr(w) = [ (w)

2

] S(w) (A3-13)
ZIT, IFHAREORRIE CTH 5.

(A-IDRDE AT T LZ(A3-1)RNOMBILEANRT N7 ATEEHADHZ LT, MERISE
DAHANRERFNBR AU TERLTE 5.

m

Zpp(t) = 2 cos[wt + Ezrp T e(w)]v2Ssr (w;)dw; (A3-14)

i=1
ZIT, Zp I T ARG NLE IS T DR B DO A KIRIRERS, eap (X7 2T ALENZ I T D AHXE
MLONH, o dXHSWEEE, Tho.
¥, 2RV - BUEIHAREICI T DFEZ1T O 5EIE, KD 431 FlBOE IR ANY B
7 28, (w) % (A3-13) DS (NN L2tk I UE R .

A(w)]?

a

A@T

SSR(w)=[ . {8:(@) + 8,() + 25, (@)S, (@)cos[e, (@) — £2(@)]}  (A3-15)

Sn(w) = [
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ZIT, S$1(@): DRV DEANT FT 4, Sy(w) 1 MEDHEANT F T4, g(w): 2RV DT
2 LA, ey () : JBIED T X MK, ThD.
723, S0 - MEIHAEROHREOSE, (A3-15XOMHITKATH L.

/Zségu) cos[g; (w)] + /Z.S'é_gu) cos[g,(w)]
/Zsé—((‘)w) sin[g; (w)] + /255_2)(») sin[e,(w)]

PEizky, 570 « BURIHERRIZE T 2 RIGEDORRINE, S1(w), S;(w)BEITT &4
NAHDZ e, (w) — &(w)]Z2 525 Z & T, (A3-14)X~(A13-16) A2 HWTERTHZ ENTES.

&(w) = —tan™?! (A3-16)

% 3-3  BEHE A

Fig.A3-2 1%, 7RI (EICHBIT D EMISEDRERINZ LR LTI TH 5. Lpp=175m O
a T AR RRNE S CFZE S 3m, FEEER 10 #) % Vs=20.1kt ICTHATL TV D &
TORRTHD. HIENISERRIVERIZ AN AT R T A1, (A3-12)2D I1SSC(1964)%
AR NI LTHD. ZT9 LT, TaxXIAEICBIT HHESEMIGERERINC L - T, Fux7
BHOFES T 0 T EKE DK% %) 2 OBALPHEGR T 5.

w

=

OO0 | IL, oy 1,100

Ol

Relative motion at prop. position
(<)

Fig.A3-2 Example of generated time series of relative displacement response at propeller position.
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T8 4 WIZICERLE=Z20BRINFIDEARY bS5 LD
BEIZHT BHELDE

ARILD 431 ECBNT, [@-RNTRAESEZk=120% 2 ORFARIL, AR w0 & LT
EDLOBRT U IMIMEEZ TS, BITZDERDL L OOEBENEF LWE—DE AT FT
LERESND. ] & D ZEEHIRAT AN N T ARBER LMD EELBRFERETH D
L EBREICT A0, W AT b T ARER S TORWEREHEERIC BT 5/ S R
LT, ERVEDHEBICBIT 2EENIEFIIREI N L 2R T 5.

T, RSN R D0 E T AR b7 AW 20X, Si(e)E HWTAR L7ZRERSIT —
B AT N T LENT L TRDIZART N T LML, \RERIUFBICRD Z E2RT. £, ZODA
&7%§A@@Dswmﬁﬁﬁwéﬁﬁ TIEHARI T LOEBPKREL BT D L ERTZ
LT, ZOHERVEIEIIIHETIMMPEETHL ZLEWHNTTD.

18k 4-1 WORERINERE X OART T LENT O F1EOHETS

WA N7 NEOJEREIC T 528 &5 U DRI, HEORRYIAERS X AT K7 A
FHOZYeFIEZ R L Tk,

KL, BAOBNTZWART N T A > THROFRFRINZ AT A5 TH D,

X; (t)= 151/2Sk (a))da) cos[a)t + & (a))] , k=12 (A4-1)

F7, BREANY FFAS, (@IFRATEBEINS.

$,(0)=5,(@)+5,(0)+25,(0)S, (@) cosley (0)- &3 (@)} = Sy @)+ 5, (0) + Sy(@)  (A4-2)
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Fig. A4-1 1%, (A4-DXDPHE~<7 b T A Solw) & LT ISSC(1964)HH A7 T AEHWT, Fi=
(ARG (I —RRELBIC THE A TRRINZ AR LIZRERTH D, Aeds, T 2 CIEFEERES 7
B AHEEE Im 2 AT b7 ARITRA L TRO L A7 b T A& AT 5. FeEIRIIE At
#028L LT, 0#~1023.8 BT — 2 i%k 5,120 ) DI DORRIN 2 AR L. £72, Fig.Ad-
2 13 Fig.A4-1 ORERFI0 0 F 300 B ORI A LR L= TH 2.

1.2
1
0.8
0.6
0.4
0z e il
0 -
-0.2 ¥
| | I L i | | .
-0.4 I ' = | v | Tim
-0.6
-0.8
-1
1.2

D
—_—~
v
<

water surface fluctuations (m)

Fig.A4-1 Time series of water surface fluctuation erated using ISSC wave spectra and

uniform random numbers.

1.2

gz ,A A a n "\
02 | PN | NV Y AP N
} IHH!UH\HNP I

0.2 0|
-0.4 | -
-0.6 \y
-0.8

water surface fluctuations (m)
o

-1.2

Fig.A4-2 Enlarged view of the time axis from 0 to 300 seconds in Fig. A4-1.

Z OKEEAC DR R I OFFEHE(RZE 0 Z 3R 95 & 0.2452281 (m) T, A H % Hus=40 TR
&, Hip=0.981 (m)Thd. T72b5, A&FMESE 1m MY OARBHER RIS ER TE TWVD.

KIEZEALDRFRINT —Z DB AT N T LERDDHTZDIZ, FFT B LD AT T Lkt
EATo T2, BERFIT — & OEED 5,120 D 7=, 4,096 #H DT — & (212 {#) % A\ 7= FFT T %
fTo7-. Fig.A4-3 1%, VLB ZIT> COWRWED AT N T A THDH. "= T4 Ky
ZHW=R, FigAd-4 OXOICEREEBHNRRENWTZD =7 4V Z— |2 X5 Figbuet 2 iz 7-
(Fig.A4-5).
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0.4

—— Wave spectrum of spectral analysis of the generated time series

0.35 e=|SSC wave spectrum

0.3

0.25

S(w) m3s

0.1 |

0.05 j“ ||”|

0 T T T T T T T
0 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 16 17 1.8 19 2
w (1/s)

Fig.A4-3 Unsmoothed wave spectrum obtained by FFT analysis of the time series in Fig. A4-1.

0.4
0.35 A —1
—— Wave spectrum after the Hanning window processing
0.3 e=|SSC wave spectrum L]
0.25
0.2

S(w) m3s

0.15 A A |

0.1 Mﬁ
)

0 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 16 17 1.8 19 2
w (1/s)

Fig.A4-4 Wave spectrum after the Hanning window processing.

0.4

0.35 A - —
——Wave spectrum after the Hanning window and smoothing processing

0.3 e |SSC Wave spectrum L]

0.25

0.2

S(w) m3s

0.05 / \

0 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 16 17 18 19 2
w (1/s)

Fig.A4-5 Wave spectrum after processing of the Hanning window and smoothing.
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LLEX Y, AR L ORERIIT — 2 5 A7 8T MRFIC T A RS T L&k D FIE
ELT, LA INZ D 2 & TRYRW AT N T AP LND Z ERHRTE .

1k 4-2 Z oD AT N T Ak ERA DY L EDOREEBRIOZ LIz DN T

RITEIIC C, BRI s A7 b T AMiRHT 7 1 7T AOKGEN TE /2. AT, (A4-2)2 Si(o)
& Se(@ERALTS, (@%ERDT, S, (0DAEEICE T LDk T 2R T 5.

(A4- DDA FES elw) %, BLEFI(—ERELEDIC CTERILL T, Z oD AT b T ABNTHE OR %
Fl&A R L7-. Fig.A4-6 1%, JONSWAP 227 kT A(b— 7 JEH 16.8 ) - A%ME 1m)iZ
THR LT DORFRINDO—FI T 5.

1.5

1

o: Al nﬂ\r[\:\r\ﬁnnm\n MR b st Mg
, I\LVUU"V)]@ stol | 1 Laog 1 MVVU"'GUO W alk HUUWW&”V”HJ

-0.5 }
\

—
E———

} Tme (s)

1100

=

-1

water surface fluctuations (m)

-1.5

15 I

0.5

yd AVAWNINRNA AN AA AL\ N
AR A A M A A R Av

0.5 \/

water surface fluctuations (m)

-1.5

Fig.A4-6 Example of wave time series generated by the JONSWAP wave spectrum. (The lower

figure is an enlarged view of the 0-300 second time axis in the upper figure.)

Fig.A4-7 IZ JONSWAP it A7 F T A Si(w) & ISSCH AT F T A So(w)BELW, HHMNT
DA LTe 6 FEEOELES N2 VT 6 FEDORFRINZERMR L, A7 b T AEITICTENEND
WA 8T LEROIFERTHD.

T, ZOoDHE AT FT A Si(0),S2(0)E o T, FNEFN 6 XX —2 DALY T AEERK
L7z, Wiz, b 2A4-2)D Si(0) & SATRA LT, 6 3F =0 DEREANT FT A S,
(@#ZERDD. ZD7=DIZ, [e1(w) —e)] DAFHZESN 2 —KEELE(6 /X F — NIZTERELT 5.

ZOREREHE 2T, WEANXT 8T ANER > TORWEEEROFERWG] 2 1E 0=0.1~0.9)D
INSTREENCHR LT, EAeD A ) HE(0=04~1.0IZB T HEEHNIEFITREI N L 2R L
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O IAGm LOMEHRRE TH 5 Z L 2 AMEIC L TH<.

0.45

S,(w):[T,=16.8sec., H, ;;=1m]
- | S,(w):[T,=7.0 sec., H, 5=1m]

0.35

| JONSWAP S, (w)

o

N o
w w
—

o
N

S(w) (m3s)

o
[=Y
(5]

ISSC S,(w)

o 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 16 17 18 19 2

w (1/s)

Fig.A4-7 Six wave spectra obtained by spectrum analysis of wave time series generated using

six different phase sequences.

0.45

—5Sn-1
0.40 o —Sn-2
X ——sn-3
0-35 i Sn_4
0.30 .7 Sn-5
_ X \ . ——Sn-6
& 025 a\ 3 . e oo Maximum
f_ (M\. - Average
— 0.20 o L.
3 /% ! . ===Minimum
m: 0.15 N\ \ N .-
L
Ly A, O
k // NS
0.05 , = N
’I
0.00 4
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
w (1/s)

Fig.A4-8 S,(0) generated by substituting the six patterns of Si(®), S2(w) and the phase difference sequence
[e1(®) - &2(w)] into eq.(A4-2).

Fig. A4-8 /D, W AT N7 ANER B2 0=0.2~0.4 128D AT N7 LAOEB T/
W, TEANRT T ANRERDE D ©0=0.4~1.0 ODHFHFAD AT F T LAOEETIRKE N &b
N5 IRE, Si(w)E Sxe) 6 /3% —2 DD T, K ORKE R/MER LOEBSEORIE, Th
ZFh 6 KDz 7 oy b LARTERGRN. 22T, 20 18— 00hkEEL LT
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7my kLT

A3, ERVE I FIBICEWTEANT b7 AR PEOR D ICKE S KB 2B L2 R
HLEEbDOTHD.

WERDBATON TV DRI THIL, DTOLEB) THD.

WL A EDHA, WALZ 8T AT ISSC X ITTC TRESNIEEL I NIRRT FT A
RHWS.

(2) 570 L RFENDHFT 5 & 5 2RO MBS E TR, Si(w) & Sx(w) % HifliE LHE L7 AL
7 N7 LERWD., 705, Si(0)=Si(0)+S0), ZHWDONR—EIITHS. ZillL, FigAd
8 DIFHEDP AT R T LA THD.

TR AT O TV D TIEORRE, WEIHEBER O AT T 22 (A4-)XD L HIZEZD

&, BN ZHEONMNAAZES g1 (0) —ex(@)IZ L D AT T AOEEBOFBENER SR, )
L ThD.
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T8k 5 BHKRANY FS LS, (0)DEE (58IE) DHEE

44 HITHNT, BEICAEKR SN D BRIEARY b T LS, (0)DEBOMERE ZEEIL, 4.4 Hio
420U THETEZ D Z La R L. Z0OHEA, 42000 FHEAILS; () + S, ()2 T, /r#iE
I@-19)RUC TERENFHETHIZR V. BLTIZ, 0f ZRDD72DDE-19ROEHOFEM % /1~
7.

UTFOHBFICBWNT, BEON T Z—FFILFigAS-1 IR T LBV RO LI ICERT S.
OARHAE ORI ORAEDORITEEE =12, « £, + ~.m EERBTDH. ZORITEICT X

DI S, R DRRIINERIND. EORRINEZ AR NI AMEFTTH5Z2 LT, m

EOERB AT b T LSy (w))BFFHND.

@Sy (w;) DRl 0 DENEE Aw & L, Syi(w;) D JEBEEBHEI(wnin~0na) % n BIZHET 5. F

7o, B o BT 608EE, =12, - - n & T 5.

i th trial counter
i=1,2, =, [~ " .m

@]
axis counter ® >
j:]J 2) -t )n >

A w

Fig.A5-1 Definition of a counter number of trials (i) for generating composite wave spectra and a counter for

dividing horizontal axis (j).
PLEOERICESD &, BB T BS(0)i, RITEEO m HETFET 5. UF, Zoff

[ZOWTHRERTT 5.
i [B1H OFRITRED j 3B STk TE)Sm(wJ) IR THS.

Spiwy) = Su(w;) + S2(w;) + 2 [S1(wy)S2(w;)cos(1) = 81 (@) + Sz (@) + Geos(ayr) (A1)

ERICBWCERATEICEL T 2 DI 2 7210 T, 0% 1 H, 52 HL> UIB LA
WD EITEHOREEZD.
Fig. A5-1 {2739 & 9 12(AS-1)RD 5 3 TS, (w;) DRl D53 EIE Aw 2T U5 L, RATHEOM
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INETREAA SR TR E 5.

AAj; =2 /Sl(a)j)Sz(wj)cos(aji)Aw = Cjchos(aji) (A5-2)

i A1 B OFATRHT 2 PR DWW AT b T LBRER D G- TEET 5 MEREOERA; L, B
A I L TRATHEABNS.

n

Ay =Z(CjAw) cos(afji) , =14, ,m (A5-3)
j=1
Loz LiF, FBOFITTHRIC L S ITRBIN, (AS-3)RXD i ZLIEZ DT TRV, A
RIZLT, mEEIT LT m EOmBEED 2 FFEMELRD D, HfhA, D 2 FVHE, TRb55
BiEZRD DI, By Z—ilZONWT 2 RPEHEZITO. ZOHFELZI =LDGE LI+ DY
AT TT O 728, RAD L ST 2 DOEZTHIT 5D, LIT, EfF&E A=A Z R T

—2 2 2
A, = A211,1={’ + AZL{’,L#’ = M; + M, (AS5-4)

(AS-4) D FE 1 HIE, kL7 b.

n n n n 2
= Z(C]Aa)) cos(a]l) Z(C]Aa)) cos(afﬂz) = Z(CjAw)z cosz(afﬂ) = z (CjAzw) (A5-5)
J=1 J=1 j=1 j=1

i=f

M, = i(CjAw)z [—cos(aﬂ)cos(aﬂ)]i Z(C Aw )2 [cos(an + aﬂ) + cos(aﬂ a]e)l

. (A5-6)
ZZ (Gw) [cosCay + ) + cos(@, — a,)|_ =0
(A5-5)B L O(AS-60) K& (AS-4)SKUITRAT D &, kXEE5D.
n 2
_ A
. Z( J 2“)) (A5-7)

(AS-DRUE, AR L7Z@E-19RTHD. (AS-DHRE, BARY kT 5SS (0),S,(w) % HVCHE
BTk THD.

A7 = ZZ{[Sl(a)j)Aa)] [5(w;)Aw]} (A5-8)

Thbb, HEOSBIEIIZENZNDE AT T LOHMEZF U TRINEA LTS 2 & THD
ns.
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{14%6 REA BRI ET—X Global Seaway Statistics (GSS)

[Z2DUNT

%5 B THW=REH ORI £ O [ Global Seaway Statistics (GSS) | *Y1%, Young and Holland
23 3 4EfHIZ3572 5 Tradar measurements of the GEOSAT satellite] D HRIZIE SN THED 7= [Atlas of
the oceans] (Zxf L C, Soding 7% North Atlantic J%iR7 — 4 (ISSC1994) |ZX-D < HfiiE % N % T
L7=3iRT — % Th 5. Soding 51X, Atlas of the oceans iR 7 —4% (AO T — %) (¥ EH#A
PEFENTWRNWI EIZERL, 20 A0 T —ZIZLLFD X 9 7o 58T E O & 44
52 LRl

— SRR A O 1EHIE, ISSC @ North Atlantic JZIRT — % (NA T — )& HKIZT5H. NA T —
X1, FigA6-1 OUFEEEIKIC T KA > b NO.125,126,120 (K F D EKHE) 1256 LTz
MR DPIRT — 5 Th 5.

—NA 7 —4% 1%, Table A6-1 D L0 FFRIEE & FARAFORIRFREOBEET — % Th 5.

—NA T =X 00, TOHFWRS & R E B OMBERMGZ Rk 5.

—Z O %E, AREET =4 00525 A0 F— X [l L R A 2 H#ET 5.

—[FIFRZ, BREEDONAT—X %25 LICHIEELRAD.

= g - T
% ’?F_,, .c":L 5“-?".‘ r%:rqﬂ-::
) k _l)\_’:la\----i_"I 'f\-\. LA
[ L L i .
~ peavb i \ e T
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Fig.A6-1 Map of area subdivisions®?.
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Table A6-1 Wave frequency of occurrence in the North Atlantic Ocean®”

T [s] Hy j5[m]
from to FCUM 0.5 1.5 25 35 45 55 65 .'..’3 8.5 9.5 11.0 13.0 15.0 17.0 19.0 21.0 24.0
1.9 31 0.2 2040 0 0 0 0 0 o 0o oo o 0 0 0 0 0 0 0
3.1 43 0.6| 2343 1324 0 0 0 0 o 0 0o 0 O ©O0 0 0 0 0 0
43 5.3 5.3 21165 25562 306 ] 0 0 0 ] 0 0 0 600 0 0 0 0
53 6.2 143 |17770 51668 20543 308 ] 0 0 0 0 0 ] 0 0 0 0 0 0O
6.2 7.1  26.4)14666 38973 5H8152 8922 ] 0 0 ] ] 0 0 6 0 0 0 0 0
71079 41.6(15234 29453 52102 49055 6093 304 o o0 0o 0 O O 0 0 0 0 0
7.9 9.0  57.0| 9918 21472 33742 43660 36309 7464 7L 0 0 0 0 6 0 0 0 0 0
9.0 10.1  75.9| 7894 21221 26655 37214 39675 36189 17120 2768 307 0 0 600 0 0 0 0O
10.1 11.1 85.4 | 3062 8167 11945 14497 15621 15314 13579 9188 3369 714 0 ] 0 0 0 0 ]
11.1 12,1 91.3| 1672 4094 6034 7374 8208 B467 8121 6955 4845 2120 822 0o 0o 0o 0 0 0
12,1 13.2 952 981 2185 3140 3986 4659 4948 4947 4726 4117 3062 2318 215 0 0 U 0 0
13.2 146 97.7| 547 1038 1527 2122 2418 2633 2788 2754 2632 2385 3043 T84 T8 0 0 0 0
14.6 16.4  99.1| 269 412 719 942 1069 1259 1312 1374 1358 1325 2246 1303 378 44 0 0 0
16.4 18.6  99.8| 110 124 290 314 424 -l 1 516 534 559 557 1072 908 544 197 43 3 0
18.6 21.0  100.0 32 32 71 86 106 126 132 151 154 162 327 314 268 187 86 27 §
FCUM 9.8 303 519 687 802 879 929 957 97.4 98.5 99.5 99.8 99.9 100 100 100 100

ZOXE T L TR LN IHIRIEHSEE T — 4 %, Soding 51X [Global Seaway Statistics | & 4
T, —MRICAB LTz, Zeds, EROPEREMIIRAD L KA R T LAD—RE—A L
DA TERINTND. WA T LDO—RE—A Y MTEDFEEER T 1%, oA
A E o, AT NI LES@ETHE, RAUTLSTRODDLHIENTES.

=J.S(a))da),ml =J.a)-S(a))fla)—>a)1 =m—,T1 =—=2r—
m

GSS DEMERFHMERIL, UTDEBY THD

- LR OUEE A Table A6-2 D X 512 NO.1~126 O 126 HHIC/YEI L, HEBNCIIRIEHSEE £ %

ERR LT 5

< PR 1~21 B & 20 fE OFE#R X5 (1 BREIRRNC/EI L, F7oAFREm 0~26m % 22 fHORE
BRSOy ENI R ERIE T H DB L, KRR EE F ) & A 2808 O R R R &
BRELTWD.
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Table A6-2 Wave frequency of occurrence in the No.121 sea area in Fig. A6-1.

Significant wave height H,; (m)

438 843 1306 1764 2204 2688 3132 3520 7923 9463 | 10429 7671 3780 1513

214 406 624 825 1018 1252 1483 1699 3982 5064 5987 5380 3870 2204

104 200 306 398 482 583 687 791 1900 2527 3172 3235 2909 2043

55 102 152 195 235 280 325 372 896 1211 1571 1703 1678 1393

Q 0 — = 0 T

~05 (| ~10| ~15| ~20 | ~25| ~30 | ~35 | ~40 | ~50 | ~60 | ~70 | ~8.0 | ~9.0 | ~10.0
M 1 21 0 0 0 0 0 0 0 0 0 0 0 0 0
e 2 374 78 0 0 0 0 0 0 0 0 0 0 0 0
a 3 2953 3353 724 0 0 0 0 0 0 0 0 0 0 0
n 4 9421 ] 16295 | 20171 6481 0 0 0 0 0 0 0 0 0 0
5 11456 | 22818 | 36176 | 31884 | 16135 2554 0 0 0 0 0 0 0 0
w |6 9339 | 17216 | 26939 | 36633 [ 38357 | 26900 [ 12589 3031 0 0 0 0 0 0
a 7 5053 | 10160 | 16697 [ 22896 | 27567 | 30553 | 28393 | 20701 9547 0 0 0 0 0
v 8 2526 5264 8707 | 12039 | 15114 | 18396 [ 19878 | 18336 | 23673 8118 633 0 0 0
e 9 1453 3028 5045 7034 8763 | 10495 | 11901 | 12772 | 24774 [ 19669 9534 1541 0 0
10 856 1698 2712 3744 4665 5554 6311 6928 | 14771 | 15529 | 13593 7534 1968 155

11

12

13

14

15

16

E.lellllllllllllllllll

31 53 75 96 116 139 162 185 442 592 766 842 860 804
18 28 37 46 57 69 81 93 225 297 373 408 430 425
9 14 18 22 27 33 39 45 110 147 183 199 214 219
5 8 10 12 14 16 19 22 54 72 91 99 107 112
3 5 6 7 8 9 11 12 28 317 48 53 57 60
2 3 4 5 5 6 6 7 16 21 27 30 32 35
T 44331 | 81572 [ 119709 | 124081 (114767 | 99527 | 85017 | 68514 [ 88341 | 62747 | 46407 [ 28695 | 15905 8963
Significant wave height H;,; (m) &5t
~12.0[~140] ~16.0] ~18.0[ ~20.0] ~22.0[ ~240] ~260] "

0 0 0 0 0 0 0 0 21

0 0 0 0 0 0 0 0 452

0 0 0 0 0 0 0 0 7030

0 0 0 0 0 0 0 0 52368

0 0 0 0 0 0 0 Of 121023

0 0 0 0 0 0 0 Of 171004

0 0 0 0 0 0 0 Of 171567

0 0 0 0 0 0 0 Of 132684

0 0 0 0 0 0 0 Of 116009

0 0 0 0 0 0 0 0 86018

395 0 0 0 0 0 0 0 57069

1319 72 0 0 0 0 0 0 35399

1650 297 19 0 0 0 0 0 21303

1570 484 81 4 0 0 0 0 12307

1188 530 137 16 1 0 0 0 7035

706 418 172 39 3 0 0 0 3925

395 291 174 59 8 1 0 0 2207

223 195 140 63 15 3 0 0 1280

129 128 103 58 21 5 1 0 789

77 81 71 49 25 8 1 0 511

7652 | 2496 897 288 73 17 2 0 [ 1000001
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T8k 7 Walden MBRFERMERZRAVHMEITE—A 2 D
RHFPABERODERFTMDONT

1% 7-1  Walden & TACS O IRFE B D L

fEHH T E— A > P ORMTRENE, WEZRFICB O THHERIZH 2 5 2 i AIERE 2D 5
TEOICEETH D, Mt S E— A > ORI TRZAT 5 FRZmEs 22 B RSk D —> & LT, Walden
DR LI AL RO IRFEBUHE R (AGh 5.3 §io Table 5-2) RRLHWHN LM, TORERE
B E 2 TN OREETRE A RO 5 IR EIC /R D, L OFERMOSEEREE D LIX LTS
Shb. $72bh, Walden DIIREUAE T — & % H W - B P RIR R ITE R HEEMEIZ /e 5.

F ORI A E 8 L C, IACS (International Association of Classification Societies : [E BN =18 E)
X GWS (Global Wave Statistics®”) 7 — % % RE U CHIEHE U 72 RIRBHBEE R 2R L, HEtdhS
T— AL FOEMTYHNICHNS Z L2 HIE L TV D, TACS BEDOIGIRIEHMEER 9%, Fig.A7-1
2R GWS WK Xy D BN TR L2 18, 9, 15, 16] D 4 DOUHKOT — X 85t - Hol -
WIEL72bDTHSH. Table A7-11%, TACS FEROWIRFEIMER CTH 5.

180 150 120 90 60 30 0 30 60 90 120 150 180
90 1 1 1 1 Il 1 | |
e
=3 m = . -
- > e .é
N = 3 4
60 s - - o -
6 2 % 8 9 11 2
2P 7 i EN A - |-
3 1
- 20 13 14 15 16 < — M 20 I~
508 4:3
-1 30 21 24 25 e’ &7 28 1 30 I~

30 2 - s
-] 43 31 r 32 i"‘ 33 ‘ 34 35 ,41, 42 43 [~
“ouy = 5 6 0
¢ A 7

/'50 51
v )

.
%0 91 W 93

90
T T
180 150 120 90 60 30 0 30 60 90 120 150 180

Fig. 8.1 Map of Area Subdivisions

Fig.A7-1 Map of area subdivisions of GWS®Y.

-197 -



Table A7-1 Wave frequency of occurrence table proposed by IACS.

ifi wave Zero up cross wave period (sec.)
height (m) 15 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 115 12.5 13.5. 14.5 15.5 16.5 175 18.5| SUM

0-1 0.5 0.0 0.0 1.3 1337 8656 | 1186.0 634.2 186.3 36.9 5.6 07 0.1 0.0 0.0 0.0 0.0 0.0 0.0 3050
1-2 1.5 0.0 0.0 0.0 29.3 986.0 | 4976.0| 77380 | 5569.7 | 2375.7 703.5 160.7 305 5.1 0.8 0.1 0.0 0.0 0.0 22575
2-3 2.5) 0.0 0.0 0.0 22 1975) 21588 | 6230.0 | 74495 | 48604 | 2066.0 644.5 160.2 33.7 6.3 1.1 0.2 0.0 0.0 23810
3-4 3.5) 0.0 0.0 0.0 0.2 34.9 6955 | 3226.5| 56750 | 5099.1 | 2838.0 | 1114.1 337.7 84.3 18.2 3.5 0.6 0.1 0.0 19128
4-5 45 0.0 0.0 0.0 0.0 6.0 196.1 | 13543 | 3288.5| 3857.5| 26855| 1275.2 4551 130.9 319 6.9 1.3 0.2 0.0 13289
5-6 5.5) 0.0 0.0 0.0 0.0 1.0 51.0 4984 | 16029 | 2372.7| 20083 | 1126.0 463.6 150.9 410 9.7 2.1 0.4 0.1 8328
6-7 6.5) 0.0 00 0.0 0.0 0.2 126 167.0 6903 | 12579 | 12686 8259 386.8 140.8 422 109 2.5 0.5 0.1 4806
7-8 7.5 0.0 0.0 0.0 0.0 0.0 3.0 52.1 2701 594.4 703.2 524.9 276.7 1117 36.7 10.2 2.5 0.6 0.1 2586
8-9 8.5) 0.0 0.0 0.0 0.0 0.0 0.7 154 979 255.9 350.6 296.9 174.6 77.6 211 8.4 2.2 0.5 0.1 1309
9-10 9.5) 0.0 0.0 0.0 0.0 0.0 0.2 43 332 101.9 1599 152.2 99.2 48.3 18.7 6.1 1.7 0.4 0.1 626
10-11 10.5 0.0 0.0 0.0 0.0 0.0 0.0 12 10.7 379 67.5 1.7 515 273 114 4.0 12 0.3 0.1 285
11-12 11.5 0.0 0.0 0.0 0.0 0.0 0.0 0.3 3.3 133 26.6 314 247 14.2 6.4 24 0.7 0.2 0.1 124
12-13 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.0 4.4 9.9 12.8 110 6.8 3.3 1.3 04 0.1 0.0 51
13-14 13.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 14 3.5 50 48 3.1 16 0.7 0.2 0.1 0.0 21
14-15 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 1.2 18 18 1.3 0.7 0.3 0.1 0.0 0.0 8
15-16 15.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 04 0.6 0.7 05 03 0.1 0.1 0.0 0.0 3
16-17 16.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 02 02 0.2 0.1 0.1 0.0 0.0 0.0 1
SUM 0 0 1 165 2091 9280 19922 [ 24879 [ 20870 12898 6245 2479 837 247 66 16 3 1| 100000

Table A7-2 X Walden DAL KPEFEDBEIZIIT HIRFEBER A R T R T, BOKHTR LM
XA 0 5 Bo~7 B, @ 1 14.75m~15.75m]iZ 0.02 L /NSVWMETIESH 523, Table A7-1 O
[RAR DBERR X 53 T R S 7 WIS BLIESR MFE L T\ D, £72, Fig.A7-2 33X OV Fig.A7-3 13,
R 5 Fo~T7 B DFERRIX 3361 2 I m Ol R L BB R 2R~ T. ZNHORBLUMIZ X
% &, Walden 7 —Z X IACS 7 — X IZHARD E RIEEOT —ZNEENTND Z LR DOND.

TR T DRGSR TH LS — KRR (HA) BHA=1T THHI e E252 5L, HEM
N TR OGEITI S 10m LA B0 2 ERHET 2 2 E RTINS, TACS 7 — % DA,
P E C D BER Xy DR BERITE r TERBZRIZE > TV 5.

72721, ZHIZIACS OHESEIZHEVEI R ZFATT 5 D Tid/e <, ZORERE D/ S 725 BifE=R
DODEMTRA~OEBORE LI L T 2 LD, MEREORFNCL > TULEETH S.

Table A7-2 Wave frequency of occurrence table proposed Walden (North Atlantic Ocean, whole year).

Division of mean wave period (sec.)

~95 ~7 ~9 ~11 ~13 ~15 ~17117~ sum
~0.75 20.91 11.79 4.57 2.24 0.47 0.06 0.00 0.60 40.64
. ~1.75 72.78 131.08 63.08 17.26 2.39 0.33 0.11 0.77 287.80
E ~2.75 21.24 126.41 118.31 30.24 3.68 0.47 0.09 0.56 301.00
x ~3.75 3.28 49.60 92.69 32.99 5.46 0.68 0.12 0.27 185.09
'%D ~4.75 0.53 16.19 44.36 22.28 4.79 1.14 0.08 0.29 89.66
'; ~5.75 0.12 4.34 17.30 12.89 3.13 0.56 0.13 0.04 38.51
® ~6.75 0.07 2.90 9.90 8.86 3.03 0.59 0.08 0.03 25.46
E ~7.75 0.03 1.39 447 5.22 1.93 0.38 0.04 0.04 13.50
S ~8.75 0.00 1.09 2.55 3.92 1.98 0.50 0.03 0.02 10.09
E+LE> ~9.75 0.00 0.54 1.36 2.26 1.54 0.68 0.20 0.04 6.62
& ~10.75 0.01 0.01 0.10 0.11 0.10 0.05 0.02 0.00 0.40
q; ~11.75 0.00 0.00 0.03 0.08 0.17 0.06 0.00 0.00 0.34
c ~12.75 0.00 0.05 0.00 0.14 0.22 0.06 0.01 0.00 0.48
-g ~13.75 0.00 0.02 0.00 0.07 0.09 0.03 0.00 0.01 0.22
g ~14.75 0.00 0.00 0.00 0.02 0.06 0.02 0.00 0.01 0.11
~15.75 0.00 0.02 0.00 0.01 0.01 0.02 0.01 0.01 0.08
~16.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sum 118.97 345.43 358.72 138.59 29.05 5.63 0.92 2.69 [ 1000.00
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0.8
o The wave height division with an exceeding prob. of 1.0
o is 9 m for IACS and 15.75 m for Walden.
3 0.6
% The wave period division shown in this figure is 5 to 7s..
Y 04
(3]
X
Ll
0.2 eeee+|ACS
00 WALDEN (WHOLE YEAR) Significant wave height (m)

0 2 4 6 8 10 12 14 16

Fig.A7-2 Exceeding Probability of significant wave heights in the mean wave period 5 sec to 7 sec class

divisions.
Significant wave height (m)

010000 o /> 6 8 10 12 14 16
.g' 0.01000 The wave period division shown
4 in this figure is 5 to 7 seconds.
o 0.00100 ‘e,
(8} .
c ‘..
£
5 0.00010
(S}
(8]
o

0.00001

o000 IACS
0.00000 | ——WALDEN (WHOLE YEAR)

Fig.A7-3 Occurrence Probability of significant wave heights in the mean wave period 5 sec to 7 sec class

divisions.
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% 72 BIRFEBIEEOENZ L D2 EH TR~ E

ARHiTIE, Table A7-1 3 LU Table A7-2 DEHIEIRT — % 2 W CTREITHIZ1T 9 . Fig.A7-4 13,
B TH AL T OffErh 178 — A > b ORHIGEE (B & &7 » DA FRIE, Okt, [MIECIREE) T
HoH. ZORNZED L, WES S ICEISEO Y — 2 N 5. £7-, Fig.AT-5 1T M IRIEHMER
I X D EMTRE R (Okt, [APIREE) A/R”7°. FigA7-5(2k 5L, 10° L9128\ T Walden 7 —
HIZ K DFERNDTACS 7T —ZIZ L DFERITK LT 1.66 fi5 & 72> TV 5.

350 \ \ \
_ 300 /\\ Vs=0kt, x=180° |
E 250 /
~ / N
£ 200 N
— 150 NG
< 100 ~—
0
0 2 4 6 8 10 12 14 16 18 20
Mean Wave Period(Sec.)

Fig.A7-4 Significant value of longitudinal bending moment per unit significant wave height (Okt, Head sea).

e | Walden (whole year) 10,000
——Walden (whole year

|

g \\ - —IACS - 8,000

(] \

: ™ 6,000

E - \ !

af = -

= =~ SN

S ~ <2 N 4,000

_8 - %\

Eg 1 L.wl=69m (Full load) o ~\ 2,000

E at mid ship, Okt, x =180 ~—_ 0

-8 -7 -6 -5 -4 -3 -2 -1 0

L0g10(Q)

Fig.A7-5 The influence of differences in wave occurrence frequency tables on long-term prediction.
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e 7-3 K i 2 BT U 72356 0 = 101 7 RS SR

Table A7-3 OFRFEIE, Walden OBEIRFEEMER (JLRTETE, H4E)) ORJEAMN 7 F % TOREM
T, 230 10m Z 25 EDOMERRIX Iy 28T, Z OFRFEER Y O IRFBEEMEEIT 0.011% & /N E 0.
Z O/ SRR RN R TN EOFLE DR B E MT T E, 5.5.5 Hi(a)D B THREHT
H. Thebb, KGN IRV TR A TZMERR X 53 2 85T L CHIAT T 255G ORI TR Z1T 5.

Table A7-3 Designation of short period and large wave height classifications to be avoided in Walden wave

data.
Division of mean wave period (sec.)
~5 ~7 ~9 ~11 ~13 ~15 ~17[17~ sum
~0.75] __ 20.91 11.79 457 2.24 047 0.06 0.00 0.60 | 4064
_ ~1.75] 7278 131.08|  63.08 17.26 2.39 0.33 0.11 077 28780
E ~275| 2124 | 12641 | 11831 30.24 3.68 0.47 0.09 056 | _301.00
- ~3.75 328 | 4960 | 9269 | 32.99 5.46 0.68 0.12 027 | 185.09
2 ~4.75 053 16.19 | 4436 | 2228 479 1.14 0.08 029 8966
< ~5.75 0.12 434 | 1730 |  12.89 3.13 0.56 0.13 004 | 3851
5 ~6.75 0.07 2.90 9.90 8.86 3.03 0.59 0.08 003 | _ 25.46
s ~7.75 0.03 1.39 4.47 5.22 1.93 0.38 0.04 004 | 1350
5 ~8.75 0.00 1.09 2.55 3.92 1.98 0.50 0.03 002] 1009
2 ~9.75 000 0e 1.36 2.26 1.54 0.68 0.20 0.04 6.62
® | _~1075 001 0.01 0.10 0.11 0.10 0.05 0.02 0.00 0.40
e |—~175] 000 0.00 0.03 0.08 0.17 0.06 0.00 0.00 0.34
° [=1278] 000 0.05 0.00 0.14 0.22 0.06 0.01 0.00 0.48
S [ =1375] 000 0.02 0.00 0.07 0.09 0.03 0.00 0.01 0.22
z |_~1475] 000 0.00 0.00 0.02 0.06 0.02 0.00 0.01 0.11
~15.75 0.00 0.02 0.00 0.01 001 0.02 0.01 0.01 0.08
~16.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sum 118.97 | 34543 | 35872 | 13859 |  29.05 5.63 0.92 2.69 | 1000.00
. ‘ ‘ ‘ ‘ ‘ 10,000
|E \ —— Walden (whole year)
-
B ~N - =IAGCS 1 8,000
: \ e+« Walden (avoid large wave heights)
O |tewq,, ™N 6,000
= - ®ee, \
- e,
hﬂ - - S LY °
.E -~ -~ ®eq ° \
o] T ey - oo .\ 4,000
S - - See os
Q =~ -~
§ | Lwi=60m (Full load) T 2,000
2 ||at mid ship, Okt, x =180° 0
(]
>
-8 -7 ) -5 -4 -3 -2 -1 0
L0g10(Q)

Fig.A7-6 Long-term prediction results for the case of avoidance.

Fig.7-6 I%, Table A7-3 DB Z BTG & L CREM TR ZITo 7R ek EB Y DHEIZL D
WP RS R 2 Lz b 0T, B 2T 2 R TRFRITIER B 0 ORERIZE A~ 107

-201 -



SLAULZREWNT 065 5L /hEv. 2ORERIE, 7 vy b L2 IACS 7 —Z12 X 5 KWk 3
L3N TN D, 29 LT, REFROIEFIT/N S REIRFEBUERES R TR R X 2 8% KIF L
TWAZ L5,

PLbicky, RHITRNCH > TUXEARRTITE D 2720 & b 5 Bk X 53 DR <0 x4
AR O JERTL RS A & DN 2 D R IX Sy DR A B ET 5 LM RRRE R E 5.
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18k 8 MABHIICEDHEREERH

4.4 FIZRBWTEMBANRY T L, (0) DO HBIEZ4-19)ATRD,  FOMBREEIZ X 5 (4-20)
RUITRAT D &5, (o) DEFE A DHEEDAAPRED Z L AR LI, ZaUL, MIEEHIGEIZONT
LA TE 5. 22T, FUMBRERIC X 5 (4-20) U2 L TEFRMIC S DI 5.

w&fﬁﬁﬁéhéAﬁﬁﬁﬁKﬁ@ﬁ¢f@ﬁ%@@® FHUEC IR N &1, 4-1) &
(4-2): ATk FE S, @E, FRBICEBEEII G 2 ol 0 IZX L THE—DER G X bd 06, Z0
TEsRAPERS X (4-17) N DR L A U L 91T s, (0) DIERRIMRE AR UL 2 L THRETH DH. (4-2):
OGN EOHEERUT, 5, (0) D@-)NERAT 2 WAL 2D, 72k, @-D)NOMEISE
A Z R D D2 RUC@-8)RERAT D &, RO & 72 5.

Rayw = ZJ RAVEIZ((D) {Sl (w) + Sy(w) + 24/5;(w)S,(w)cos[g; (w) — &, (a))]} dw (A8-1)
0 a

(A8-D)RUZE, FESEIPHD @ 1Tk L THE AT b T LD ZEe (0) — & ()IFERIZMEN & 5 72
W, BN RE D, ADRUTXERKIE ALY b T 2THHIE FRE RS A #h A o8 - B O
BiaRDDHZETHY, ZOEBOMENRIEL BT 5I120T s, (o) DEBEZRFTIIER.
0=0,\2B1F% 5,(0) D% s l0,) L THE, TOHEMAITRRIZE Y RDD ZENTE B,

A= Aw{Sy(wy) + -+ Sp(w)) + -+ Sp(w)}, j=1,-,n (A8-2)

TIT, Mol s, (o) SIS ESOKAEIRR 2 505 U R 2, RIS O EE T AR
WA 8T LD5EE, Tho.

(A8-2)RUZENT, 5, (0) D O=0 BT DIl s, (0, DHERER LD, 22T, (A82)RDfE % (T
MNL7R Aw- S, (0;) 2, THEOTCOITHERER «, Z VT TO X S ITESET.

z=x ++x++x,, j=1-,n (A8-3)

I,k TS 0, A, | ORERERTH S,

il 2 \ZARSL 73 n (B O SRR DTN O W FE BB £ (2) 1%, BREEEH «; OMERBIERIE 1, (x) D
Tl BRIABFESTHZBND. Thbh, (A83)XDOMREEEIIIKATHS.

f(2) = f1(x) * fo(x) % f () * o fry (%)

fm ffl(x) fn(x)< Tilxj>dx1'“dxn—1;j=1,---,71 (A8-4)

—© j=1

D f(2) 27— oML T, & TSRS DTN B D RS w (1) 2R 5.

o)

Y(t) = f exp(itz)f(z) dz (A8-5)

— 0o

512, (A8-5)RUT(AS-3)Rb L ONAS-HX A AT B &, kABBLNS.
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W) = f exp(ita)) fi (xy) doxy f exp(itx,)f, (xy) doxy - f exp(itxn) fo () dxn

—00 —00 —00

(A8-6)
= P1(OP2(8) - P (V)
Thbb, s, (0) DEBEORERE Y ()1, 82 ORMERE Y () ORBOB TR ZENTE S,
A8, (o) DRERBEERIHUT 43.5 FiD@E-15)UTRT LBV 1/ (Va2 —x2)BlL 72> TR Y, ZOF
DT F25 B BASE O R PE B TR ISR 3™ 0 R =V BEERY, (Bit) £ 72

COS(tXJ)

Z

ZIT, G435 Hi TR =028 Ts, (o) BT HXEOETHS. £7-, 0,iE(4-19)
RUICTROONDHEEREMTHD. 29 LT, (A8-6)F Ik L5,

G
dx;, pj = Aa)— =2 (A8-7)

Bj
JoBt) = f

Y(t) = Jo(B1)]o(Bat) =+ Jo(Bnt) = nfo(ﬁjt) B = V2 ,j=12,,n (A8-8)
j=1
PLEX Y, M REISEDAS-1)INOHE 3 TIZEET 2 ReBaEUE, 0 IRy BVEEO FIE TE
BICTEDZENRED. J,(p0) DRFEIT =0 ([ZF1T DRIE 1 1ZFI LT, s,(0) DOAXH DR, &4

W o, CHE HIREL S, 132 Tl DHIROBITF L 2%, TOREL LT, y(0)iE =0 FEEOH
PMEZ FFo. w () OBIFROUT LT, LLF O#mIcrd £ 9 ISk A T A OE TRITE 5.

Y(t) = F exp(—Et?) = exp(—Et?) (A8-9)
I LT, (ASNROBREENRKRENR, 2OXET7—V #4252 & TRAUTTRT LD
IVARFIHICZ OF 3 I T DM RB M A RD D Z LN TE 5.
f(2) = f cos(tz)[exp(—Et?)] dt (A8-10)

0

B, MERIOITRT ERBO AU AREBO 7 — ) Wi BT U AR TH DD, (AS-9)X DAk
KRBT IERERBERKLTHDH. T7hbb, (AS-10)RUIk L 5.

2
fl@) = % \Eexp <— Z—E> (A8-11)

A ARFLHIG 2 O AR I B9 2 fe s B2 BAES (EBL AR ITHE 5 &\ ) (A8- 1) DFERIL, 4.4 Hid
DB IREHEIZ L 542000 59 5. 22T, ZOWAN—HT5720DA8-11)XDOFRE E 1%
WA L7 5.

2
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(72D AR E D & LTz 4.4 BIOFEGRNHERRI 2 B L0 OHEGR T X /2.

L7 o> T, 4200 N0feRBEERRAEH WD Z & T, AREESFHEIIARIND IR
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= (—jt)exp(—Et?) (A9-4)
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[0
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A D AEIR T B4 B 58 U7 =i CEgp rlRe 22 ) (LAtg, =AGE /1) VSIH,T)Z 4 LT
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I FHR TE 5. ARFHRIETIE, MR T 2 #8500 E ICHIRFEBIHE R IR S5 HIRF
BB R pH D E WD . T72bH, BT RIOFIEICHORAD K 5 IR S5
BA%% p(H,T)Z EABEE LT, X IRO7= VSIHT) EHITEbED 2 8T, 5w H1ESRICHEH
T2 L EBELIRO—HEOMEFIME Vi, 2 HIHT 5.

C(®v,(H,T) p(H, T)dHIT
Vm — fo fo OOSl(OO ) p( ) (AIO—I)
fy Jo p(H,T)dHdT

728, VSIHDITRE - LRI L7 B« IS K 2 FFRGuE ey (RUERET, IR,
RHILHRHT, MAEHRPT) (SRR 5 BARE KT (Nominal Speed Loss : NSL) % &8 L CHEE Sh
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S BT, EMUIEEZ B HE LT, i ((HE 6 @ Fig.A6-1 Fa2ZMDZ L) &I p(HT)%
RELTBLL ZENARETH L. TOHAEIE, FWIROFEEME Vi 2 RDI-HIC, Thb &)
U CIEMMIKICHBIT D Ve & HEET DH. ZDHAD Vnldk, kL5,
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1 1 V. (H,T) - p;(H,T)dHdT
" EEV’”FEZH wi(H,T) - p;(H,T) (1. (A102)

£ £ JI;” pi(H, TYAHAT

(A10-2)=U%, HUATT DU OEWEZZE TE 5 803(A10-)RE B 5.

Lpp=175m @ = > 7 Ffis73, Table A10-1 OPIRFEBUHEE R Ok 23 /) 20.13kt THIAT L7235
@%@%ﬁw%ﬁ%tt.ﬁmmmai,@a@w%f@%&Lﬁvm&D%m#.ﬁ7~7»
DIEZ(A10-DFRUTRA LT V23RO D & 19.03kt TH - 72,

(A10-1)2ds L ONA10-2)20E, MUK OWEGUIRI & I IRFE B R B R L > CTEBETH 2L T
— WO R A S WICHAE TE 5 Z E P CTH D, ZOHEE, MEICHE T 5 HICE
W TR EH BB~ A LoV 7pds, SR A 2R D 5 72 DIZ(A10-1)2d 5 WO (A10-2)0 %
BT ABAITIE, WIRFHMEREEREEICE LT 235 filck~5 L0 ORBERH 5.
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Table A10-1 Wave frequency of North Atlantic Ocean in winter by Walden.

p(H,T) Wave Period Tw(sec.)

Hw(m) 4 6 8 10 12 14 16 18
0.25( 6.00E+00| 4.03E+00| 2.10E+00| 9.90E-01| 2.10E-01| 1.40E-01| 0.00E+00| 1.80E-01
1.25| 2.95E+01| 7.98E+01| 4.14E+01| 1.31E+01| 2.63E+00| 1.80E-01| 9.00E-02| 2.10E-01
2.25| 1.68E+01| 1.09E+02| 1.08E+02[ 3.79E+01| 5.36E+00| 7.70E-01| 5.00E-02| 5.20E-01
3.25| 3.30E+00| 5.78E+01| 1.15E+02[ 4.50E+01| 7.50E+00| 9.10E-01| 1.30E-01| 3.40E-01
4.25( 7.90E-01| 2.42E+01| 6.48E+01| 3.65E+01| 9.26E+00| 1.93E+00| 1.80E-01| 2.30E-01
5.25| 2.10E-01| 6.32E+00| 2.63E+01| 2.25E+01| 6.05E+00| 1.07E+00| 1.80E-01| 4.00E-02
6.25| 1.10E-01| 5.34E+00[ 1.55E+01[ 1.68E+01| 6.23E+00| 1.29E+00| 5.00E-02| 7.00E-02
7.25| 7.00E-02| 2.47E+00| 6.86E+00| 1.09E+01| 3.80E+00( 8.40E-01| 9.00E-02| 4.00E-02
8.25| 2.00E-02| 2.67E+00| 4.35E+00[ 7.86E+00| 4.12E+00| 1.33E+00| 2.00E-02| 4.00E-02
9.25| 0.00E+00| 1.61E+00| 2.44E+00[ 5.34E+00| 3.78E+00| 1.79E+00| 6.10E-01| 1.40E-01

10.25 0.00E+00{ 0.00E+00( 2.00E-01{ 2.30E-01| 3.60E-01| 1.60E-01| 9.00E-02| 0.00E+00
11.25 0.00E+00| 2.00E-02( 1.30E-01| 7.00E-02| 4.30E-01| 1.80E-01| 0.00E+00| 0.00E+00
12.25 0.00E+00{ 1.10E-01[ 0.00E+00{ 3.90E-01| 5.70E-01| 2.90E-01| 0.00E+00| 0.00E+00
13.25| 0.00E+00| 7.00E-02| 0.00E+00{ 2.30E-01| 1.80E-01| 4.00E-02| 4.00E-02| 4.00E-02
14.25| 0.00E+00( 7.00E-02( 0.00E+00{ 5.00E-02| 1.60E-01| 1.10E-01| 4.00E-02| 5.00E-02
15.25|/ 0.00E+00| 0.00E+00( 0.00E+00{ 5.00E-02| 0.00E+00| 0.00E+00| 0.00E+00| 5.00E-02
16.25| 0.00E+00{ 0.00E+00{ 0.00E+00{ 0.00E+00| 0.00E+00| 0.00E+00| 0.00E+00| 0.00E+00
Table A10-2 Attainable ship speed in an actual sea.
Vsl(kt) Wave Period Tw(sec.)

Hw(m) 4 6 8 10 12 14 16 18
0.25 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
1.25 19.9 19.9 19.8 19.8 19.9 19.9 19.9 19.9
2.25 19.7 19.7 19.6 19.6 19.7 19.7 19.8 19.8
3.25 19.4 19.4 19.2 19.2 19.4 19.5 19.6 19.7
4.25 19.1 19.0 18.6 18.7 19.0 19.3 19.4 19.6
5.25 18.7 18.5 18.0 18.1 18.6 19.0 19.2 19.4
6.25 18.2 18.0 17.2 17.4 18.1 18.6 19.0 19.3
7.25 17.6 17.3 16.3 16.6 17.5 18.2 18.7 19.1
8.25 16.9 16.5 15.2 15.8 16.9 17.8 18.4 18.9
9.25 16.1 15.6 14.1 14.9 16.2 17.3 18.1 18.6

10.25 15.2 14.5 12.8 13.9 15.5 16.8 17.7 18.4
11.25 14.2 13.2 11.2 12.8 14.7 16.2 17.3 18.1
12.25 12.9 11.4 9.1 11.6 13.9 15.7 16.9 17.9
13.25 10.6 8.0 7.2 10.2 13.1 15.1 16.5 17.6
14.25 0.0 5.6 6.2 8.7 12.2 145 16.0 17.3
15.25 0.0 0.0 0.0 7.4 11.3 13.8 15.6 17.0
16.25 0.0 0.0 0.0 6.5 10.3 13.2 15.1 16.7
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(A11-3)2E, (A112)R%E —Vz < X < VzOFPA TR T 5 2 L ITfiZe B0,

Vz
F@=L/mw (A11-4)
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1 1 1 -2
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