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Abstract 

 

    Marangoni convection develops along an interface between two fluids due to variation of 

surface tension caused by temperature and/or concentration gradients, which is called 

thermal and/or solutal Marangoni convection. It develops during crystal growth whenever 

there exists surface tension gradients. However, Marangoni convection may adversely affect 

the crystal quality by forming growth striations by temperature fluctuations and solutal 

gradients. Therefore, it is important to investigate the dual effects of thermal and solutal 

Marangoni convection. Due to the opaqueness of semiconductor melt and expensive 

experiment equipment, numerical simulation provides an effective tool to examine 

Marangoni flow and make mechanism of heat and mass transfer available, with assumption 

of zero-gravity condition to eliminate effect of natural convection in the simulation. A 

floating-zone (FZ) system in a cylindrical shape growing SiGe is selected as the numerical 

domain. By creating temperature and concentration gradients in the same/ opposite directions 

along the free surface and choosing a full zone or half zone, thermal and solutal Marangoni 

convection are observed in the same/ opposite directions. 

    Firstly, numerical simulation of thermal and solutal Marangoni convection in a full 

floating zone under zero gravity has been performed to investigate the actual process of 

crystal growth with heating coils outside the melt. In the system, thermal and solutal 

Marangoni convection develop along the free surface in the same/opposite directions 

depending on the region selected. The ambient temperature outside the system is taken as a 

Gaussian profile, and the radiative heat transfer is considered dominant. The features of 

concentration pattern in the floating zone vary due to different Marangoni numbers. The flow 

velocity field exhibits two or four main vortices along the free surface by effects of 

suppression or augmentation of the two Marangoni flows. 

    Secondly, the separated lower-half zone is selected as the numerical domain with thermal 

and solutal Marangoni convection developing in the opposite directions. Due to the 

complexity of the opposite-direction flow, the supercomputer is required to conduct the 

simulation. Compared to the study of thermal and solutal Marangoni convection in the same 
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direction in a half floating zone, the flow patterns of opposite directions behave diversely in 

various regimes with 2D axisymmetric flow, chaotic flow, oscillatory rotating flow, 3D 

steady flow, and even switching flow under different Marangoni ratios and combinations of 

(MaC, MaT). Furthermore, two kinds of flow transitions are predicted with the increase of 

|𝑀𝑎T| depending on value of MaC. 

    Thirdly, numerical simulation of thermal and solutal Marangoni convection in a floating 

half zone with radiation effects under zero gravity has been performed. The ambient 

temperature is kept constant and radiation due to heat loss and heat gain is considered as 

dominant heat transfer from the ambience. Transition mode maps, based on concentration 

distribution with respect to Marangoni ratio and ambient temperature have been developed 

to investigate the radiation effects at unequal or equal (MaC, MaT) values. Furthermore, two 

sorts of oscillatory modes are observed in the same-direction Marangoni flows under either 

heat loss or heat gain. While two kinds of stabilizing effects are predicted under heat loss in 

the opposite-direction Marangoni flows. 

    This thesis demonstrates the characteristics of thermal and solutal Marangoni convection 

developing in a full or half floating zone during crystal growth of SiGe with different heating 

boundaries under zero gravity. Unique findings, such as characteristic flow patterns, as well 

as transition mode predictions and suppressions of flow instability, would contribute to the 

control of unsteady Marangoni convection and obtaining the crystal with higher quality. 
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Chapter I  General Introduction 

 

1.1  Semiconductor material of SiGe  

    Silicon-germanium (SiGe) single crystal is an important semiconductor with many unique 

properties [1, 2], such as “fast data processing”, “lower energy consumption”, and “potential” 

for use in the bandgap and lattice parameter engineering. It has broad applications in the field 

of material technology. SiGe can be grown by different techniques in industry [3], like 

Floating-Zone (FZ) [4, 5], Bridgeman [6, 7], and Czochralski [8, 9]. However, when it comes 

to the crystal growth of SiGe, the instability including gravitational effect, surface tension 

gradients, volume change, melt wetting, and impurity inhalation can alter the quality of 

crystal growth, among which two major problems are segregation and convection. 

    The segregation coefficients of Si and Ge vary a lot, with Si larger than 0.3 and Ge smaller 

than 5. Besides, since the density of germanium (𝜌Ge = 5.35 g cm3⁄ ) is much larger than that 

of silicon (𝜌Si = 2.33 g cm3⁄ ), such a large density difference may cause gravitational 

segregation (due to strong natural convection) in the melt which could be a dominant factor 

in affecting the growing crystal. According to the unique physical properties, advanced 

liquid-phase and solid-phase crystallization process of group IV semiconductors have been 

reviewed in [10].  

 

1.2  Flow phenomenon during crystal growth 

    The flow phenomenon during crystal growth [11] is quite complicated due to the various 

components of the flow, including natural convection [12] induced by the temperature or 

concentration gradients, Marangoni convection along the free surface caused by variation of 

surface tension and forced convection by some external conditions, such as exerting 

magnetic fields or rotation of growing crystal. These flows mainly exist in different regions 

of the melt part but can interact with each other tightly. 

    Heat convection is the most universal form of natural convection. The temperature 

gradients of fluid in the gravity field can cause the buoyancy flow. When the temperature 

gradient is normal to the gravity, any temperature gradient in the horizontal direction may 
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induce heat convection. If directions are the same, the flow becomes more complicated 

because of the existence of viscous force. Apart from natural convection by temperature 

gradients, the concentration differences of solutes can also induce density differences, which 

may further generate buoyancy flow [13]. Normally, these two kinds of natural convections 

exist simultaneously during crystal growth of a binary compound. The combined effects are 

much more intricate than the individual effect. 

    Marangoni convection is mainly induced by variation of surface tension along the free 

surface. In a crystal growth system on the Earth, the buoyancy flow is dominant due to 

gravitational effect. However, under microgravity or in a small growth system, Marangoni 

convection becomes notable and is obvious to observe. The phenomenon of Marangoni 

convection will be discussed in the next part. 

    In the Czochralski method, the rotation of crucible and growing crystal is required for a 

higher quality. The rotation can produce forced convection, which can be beneficial to the 

interface with lower oxygen transport [14]. When the two planes rotate, the fluid between 

the planes rotates at an average speed as a rigid body. The fluid also tends to flow towards 

the faster plane. Also, the forced convection can be applied to control the flow instability or 

suppress the unsteady flow, such as control of Marangoni convection by external magnetic 

fields [15, 16]. 

    Sometimes, different convections exist simultaneously during crystal growth. If exerting 

external conditions, we may find that the flows can interact with each other. Under normal-

gravity conditions and in the presence of free surface, if the size is not limited, both buoyancy 

convection and Marangoni convection play an important role in determining the flow 

structure and can interact in a very complex way even if the flow is steady. Some studies 

focus on the phenomenon of interacting flows. Hirata et al. [17] investigated the effect of 

gravity (natural convection) on Marangoni convection in a liquid bridge and observed 

temperature oscillations under not only 1 g but also microgravity conditions. Bég et al. [18] 

investigated hydromagnetic Marangoni flow in a Darcian porous semiconductor melt 

enclosure with buoyancy and heat generation effects by combining and comparing various 

dimensionless numbers, which finds applications in crystal growth of semiconductor and 



3 
 

hydromagnetic materials. From this point of view, a deep understanding of mixed 

convections is beneficial to material processing and even flow control. 

 

1.3  Marangoni convection 

    There are many examples of Marangoni convection in our daily life. One is “Tears of 

wine”, as shown in Fig. 1-1 [19]. Since water has a higher surface tension than that of wine 

(ethanol), when alcohol evaporates from the region of a thinner glass wall, the surface tension 

gradient generates. The wine climbs up spontaneously forming a firm. Due to the effect of 

gravity, the wine tears down. So, we call this phenomenon “Tears of wine”, which can be 

demonstrated by the mechanism of Marangoni convection. 

 

 

Fig. 1-1 Marangoni phenomenon of “Tears of wine ”. [19] 

 

    Marangoni convection is a fluid flow developing along an interface between two fluids 

due to the variation of surface tension caused by temperature or concentration gradients. This 

flow is called respectively thermal or solutal Marangoni convection. When both gradients 

present, the flow is called thermo-solutal Marangoni convection. Marangoni convection 

develops in crystal growth whenever there exists a free surface with temperature and/or 

concentration gradients along it. 

    Fig. 1-2 briefly shows Marangoni convection caused by temperature differences between 

two planes [20]. From figure below, we can see Marangoni convection develops when there 
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exists a temperature difference (higher temperature on top plane and lower temperature on 

bottom plane). A smaller temperature difference (ΔT) makes Marangoni flow steady. By 

increasing ΔT, the flow becomes oscillatory with periodic variation. A greater ΔT beyond the 

critical value induces the turbulent flow with chaotic and random variation. It is known that 

changing temperature difference along the free surface can alter the flow state, whether to be 

steady or unsteady. Several studies have indicated the onset of the time-dependent [21, 22] 

convection and oscillatory flows [23, 24]. 

 

 

Fig. 1-2 Marangoni convection caused by temperature differences between two planes. [20] 

 

    To sense the strengths of thermal and solutal Marangoni convection, the non-dimensional 

thermal and solutal Marangoni numbers (MaT and MaC) are introduced, which are the ratios 

of surface tension gradient to viscous force. Details of Marangoni numbers will be discussed 

in Chapter II. 

    Changing (increasing or decreasing) the temperature differences along the free surface can 

lead to the flow transition from one state to another state. In fact, transitions of Marangoni 

convection also depend on Pr numbers [25]. With a higher Pr-number fluid, the 2D 

axisymmetric flow transits to oscillatory flow directly after exceeding the critical number 

MaC, as shown in Fig. 1-3. With a lower Pr-number fluid, there are two stages of transitions, 

with the first stage from 2D axisymmetric flow to 3D steady flow beyond MaC1 and second 
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stage further transiting to oscillatory flow over MaC2. Both the transition paths undergo 

turbulent flow once Marangoni number is extremely high. Correspondingly, some studies 

focus on Marangoni convection under different Pr numbers [26, 27, 28]. Christopher et al. 

[29] investigated effects of Prandtl number on Marangoni convection over a flat surface and 

analyzed how heat transfer variation changes with different Pr numbers. Arafune et al. [30] 

investigated thermal Marangoni convection in fluids with various Prandtl numbers 

(𝜊[10−3]~𝜊[103] ) inside a rectangular open boat experimentally and numerically. By 

calculating dimensionless numbers, it is available to determine which convection is dominant. 

Since most of Pr numbers of semiconductor materials are of the order of 𝜊[10−3]~𝜊[10−2], 

we focus on the situation with a small value of Pr in our research. 

 

 

Fig. 1-3 Transitions of Marangoni convection with respect to Pr number (= 𝜈 𝛼⁄ ). MaC means critical 

Marangoni number. [25] 

 

1.4  Effects of Marangoni convection on crystal growth 

    Marangoni convection may become turbulent and chaotic once Marangoni number is 

extremely large, which can adversely affect the growing crystal. There are three aspects to 

measure the quality of growing crystal: purity, uniformity, and integrity. The purity requires 

the less useless impurity. The uniformity means the useful dopants distribute uniformly in 

the growing crystal. The integrity permits the dislocation density [31] within the allowable 
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range. During crystal growth, the dominant defect is the formation of growth striations [32, 

33]. 

    Marangoni convection developing in the FZ melt may become unstable, and lead to 

growth instabilities such as growth striations (growth rate variations) which affect crystal 

quality adversely [34]. On the one hand, growth striations can develop by variation of growth 

rate, which is caused by temperature fluctuations. On the other hand, solutal gradients can 

induce free surface deformation to a concave interface, which further exacerbates the 

uniformity defects of growth striations [35]. For example, in the SiGe system, the large 

separation of liquidus and solidus curves leads to a significant segregation of Ge in front of 

the growing interface during growth. The growth rate and the overall mixing of the melt are 

the key factors determining the strength of solutal Marangoni convection. Therefore, it is 

important to simultaneously examine the mechanisms of both thermal and solutal Marangoni 

convections during crystal growth to minimize the adverse effects of such flow instabilities. 

    From this point of view, we focus on the investigation of Marangoni effects and contribute 

to obtaining crystals with better quality. Meanwhile, to separate the natural convection [36] 

from Marangoni convection in the melt, and to shed light on the effect of Marangoni 

convection alone, it is necessary to consider the system under zero-gravity or microgravity 

environments. 

 

1.5  Microgravity experiments and numerical simulations 

     In the microgravity environment, the strength of natural convection is very weak due to 

the reduced gravity and strength of Marangoni convection in a floating zone becomes 

comparable with that of natural convection. A series of experiments of Marangoni 

convection have been performed on the International Space Station (ISS) [37, 38, 39]. For 

example, microgravity experiments on thermocapillary convection in a liquid bridge, called 

Marangoni Experiment in Space (MEIS), are reported in [40]. Kang et al. [41] investigated 

the instability of Marangoni convection experimentally under microgravity and found three 

types of surface configurations depending on the volume ratio, with further investigation on 

different waves. In fact, the real microgravity environment may also consist of a spectrum 
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of accelerations at different frequencies ranging from zero to hundreds of Hertz. These 

deviations are known to be the origin of convective contribution to mass transfer. 

    Although the microgravity environment may serve as an indispensable research platform 

to study the instability mechanism of Marangoni convection [42], the availability of such 

microgravity experiments is very rare, and the equipment is very costly. They also require 

very complex systems to be developed. Besides, it is difficult to directly observe the flow 

phenomenon in the experiment due to the opaqueness of semiconductor melt. Numerical 

simulation makes it available by using the visualization software to analyze the flow pattern 

prominently. Thus, method of numerical simulation may provide an inexpensive but 

effective tool in examining the effects of Marangoni flows in a FZ system. 

 

1.6  Control of Marangoni convection 

    The flow regime in the liquid is the dominating factor for heat and mass transfer during 

crystal growth. Thus, the efforts of controlling the flow intensity and bifurcations has become  

an important issue to obtain crystals with higher uniformity. There are several methods of 

controlling the flow instability by applying external conditions. 

    Since molten semiconductors are excellent electrical, one primary method of controlling 

Marangoni flow is to exert magnetic fields [43, 44, 45]. The motion of electrically conducting 

melt under magnetic fields induces electric currents. Lorentz forces, resulting from the 

interaction between electric currents and magnetic fields, affect the flow. Typically, an 

increase in Hartmann number [46] would decelerate Marangoni flow. Apart from the 

traditional horizontal and vertical magnetic fields, more complex ones are developed to better 

perform the investigation of flow mechanism and control of unsteady flow, such as cusp 

magnetic fields, rotating magnetic fields, and inclined magnetic fields [47, 48]. 

    Melt flow control can be realized by other methods. For example, rotating or accelerating 

the crystal/crucible in the Czochralski crystal growth [49] or exerting appropriate vibrations 

[50, 51] is available to control the unsteady flow. Crystal/crucible rotation can alter 

Marangoni convection by the existing centrifugal force. Even in a FZ system, the adoption 

of co-rotation or counter-rotation of top and bottom planes can affect the flow instability 

under some circumstances. In a Czochralski growth, Noghabi et al. [52] investigated effect 
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of crystal and crucible rotations on melt convection and indicated that the melt flow regime 

would be strongly sensitive to the rotation speeds and low deflection can be achieved at 

certain combinations of rotation rates. Alternatively, Marangoni convection and vibrations 

can produce the flows of opposite directions in some cases, which further reduces the flow 

strength. Meanwhile, vibrations are not restricted to electrically conductive melts, which 

means it can be widely applied in the flow control, as well as in a FZ system. Lyubimova et 

al. [53] investigated control of thermocapillary and solutocapillary flows in a FZ system by 

applying axial vibrations and found that vibrations can behave a stabilizing effect in the form 

of increasing critical Marangoni numbers for all unsteady modes, while a destabilization 

effect at a high intensity of vibration. 

    Although individual method can be used to realize the flow control, in most cases, there 

applies  a combination of magnetic fields, crucible rotation or vibrations to comprehensively 

influence the convection, behave optimal in suppression of flow instability, and even provide 

uniform crystal-growth rate as shown in [54, 55].  

 

1.7  Relevant study on Marangoni convection 

    Various physical systems or simplified models are selected to perform research on 

Marangoni convection, such as a weld pool [56], a thin film [57], a rectangular cavity [58], 

and an annular pool [59]. And there are many studies focusing on the mechanism of 

Marangoni convection and determining appropriate external conditions to control the 

unsteady flows [60, 61, 62, 63]. The following studies are cited to briefly describe some 

findings in research.  

    Imaishi et al. [64] predicted flow bifurcations as the temperature difference increases in a 

liquid bridge at smaller Prandtl numbers in their study. Li et al. [65] investigated three types 

of oscillatory Marangoni flows in half-zone liquid bridges of low Pr-fluids by proper 

orthogonal decomposition (POD) using method of snapshots and determined oscillatory 

disturbances with characteristic eigenfunctions. Li et al. [66] also studied change in the 

oscillation mode by time evolutions of thermocapillary flows in a short half-zone of molten 

tin with low Pr number. Wide surveys of this aspect can be found in [67, 68]. Since the 

combined thermal and solutal Marangoni convection can affect the melt flow and quality of 
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growing crystal, investigation of dual effects of two flows becomes prevalent. Several studies 

concentrate on thermal and solutal Marangoni flows that co-exist in a floating zone or a 

rectangular cavity [69, 70]. Mendis et al. [71, 72] performed a global linear stability analysis 

to further determine the onset of thermal and solutal Marangoni convection and critical 

transition in a half-zone liquid bridge. These studies are conducted with respect to the relative 

contributions of thermal and solutal Marangoni convection. In this thesis, we also take the 

dual Marangoni effects with different strengths into consideration.  

    In our previous study, Minakuchi et al. [73, 74] investigated the relative contributions of 

thermal and solutal Marangoni convection of the same direction in a half-zone system under 

zero gravity by numerical simulation, and showed the co-existence of two flows significantly 

affects the flow pattern and azimuthal wave number (m). Augmented effects with m-fold 

symmetry and oscillatory rotating tendency are dominantly observed at large Marangoni 

numbers. Minakuchi et al. [75] also performed numerical investigation on hysteresis 

phenomenon of flow patterns induced by thermal and solutal Marangoni convection in a half-

zone system under zero gravity. It is found that the hysteresis behavior of flow field with 

about 24% difference between critical values in the hysteresis diagram. These results and 

findings are based on the assumption of the same flow direction of thermal and solutal 

Marangoni convection 

    Meanwhile, we are more interested in the mixed thermal and solutal Marangoni 

convection of opposite directions in a half floating zone and the overall  flow pattern in a full 

floating zone to determine whether the flow behaves similarly or differently. Furthermore, 

investigation by changing the heating boundary conditions from “adiabatic free surface” to 

“radiative heat transfer” is also considered an important factor to determine the radiation 

effects on Marangoni convection, especially under conditions of heat loss or heat gain, which 

constitutes our main objective of this thesis. Finally, the obtained findings and discussions 

are necessary to gain further insight into the mechanism of thermal and solutal Marangoni 

convection during crystal growth under different conditions. Besides, with the help of 

supercomputers supported by Kyushu University, Japan, the subsequent calculations have 

been performed. 
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1.8  Outlines of thesis 

    This thesis aims to give insight into the combined thermal and solutal Marangoni 

convection developing in a floating zone with different heating boundaries under zero gravity 

by numerical simulation. 

    In Chapter II, the numerical methods including model simplifications and assumptions, 

governing equations, boundary conditions, and numerical schemes are presented. Also, non-

dimensional thermal Marangoni number (MaT), solutal Marangoni number (MaC), and 

Marangoni ratio (𝑅𝜎) are introduced. 

    In Chapter III [76], numerical simulation of thermal and solutal Marangoni convection 

in a full floating zone under zero gravity has been performed. With the assumption of 

ambient temperature in a Gaussian profile in the vertical direction, the features of 

temperature distribution, concentration pattern, and flow velocity field at different 

combinations of (MaC, MaT) in a full zone are shown. 

    In Chapter IV [77], the lower-half zone is selected as the numerical domain with thermal 

and solutal Marangoni convection developing in the opposite directions. The characteristic 

flow regimes under various combinations of (MaC, MaT), such as 2D axisymmetric flow, 

chaotic flow, oscillatory rotating flow, 3D steady flow, and switching flow in a transition 

state are determined, and the flow transitions are predicted with the increase of |𝑀𝑎T| 

depending on value of MaC. 

    In Chapter V [78],  numerical simulation of thermal and solutal Marangoni convection in 

a floating half zone with radiation effects of heat loss and heat gain under zero gravity has 

been performed. Transition mode maps, based on concentration distribution with respect to 

Marangoni ratio and ambient temperature, have been developed. Two sorts of oscillatory 

modes in the same-direction Marangoni flow and two kinds of stabilizing effects in the 

opposite-direction Marangoni flows are also predicted. 

    The conclusions of this thesis and future perspectives are summarized in Chapter VI. 

 

 

 



11 
 

Chapter II  Numerical Methodology 

 

2.1  Floating-zone (FZ) method 

    Marangoni convection is widely observed in the melt during crystal growth of the binary 

compound. We choose a floating-zone (FZ) system to grow the crystal of SiGe. Compared 

to other growing techniques, such as Bridgeman and Czochralski, the FZ method is widely 

used due to main advantage of being a crucible-contamination-free technique, which means 

it is free from incorporating impurities, improving the quality of growing crystal. 

    Fig. 2-1 describes schematically Marangoni convection developing in the SiGe melt of a 

FZ system. Between the feed crystal and seed crystal is the melt part, where Marangoni 

convection can be observed. The blue arrows represent thermal Marangoni convection and 

the yellow arrows stand for solutal Marangoni convection. In an actual process of crystal 

growth, by moving the heating coils upwards slowly, the melt is formed by the localized 

heating and single crystal grows vertically from the seed crystal. Our simulation study of 

Marangoni convection is based on the melt part in a floating-zone system. 

 

 

Fig. 2-1 Schematic view of the floating-zone system used for SiGe crystal growth. Between the feed 

and seed crystal is the melt where thermal and solutal Marangoni convection develop. 

 

    However, under Earth conditions, the crystal can easily drop down if the melt gets too 

large, which limits the potential diameter under Earth’s gravity [79]. In space, the maximum 
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zone height is given by the circumference of crystal. Therefore, the microgravity or zero-

gravity environment is feasible for growing crystals with higher zone heights and larger 

diameters, which enables the production of crystals that exhibit unique properties. This 

pioneering research is leading to the next-generation commercial crystal products.  

 

2.2  Liquid bridge 

    Fig. 2-2 shows detailed information of thermal and solutal Marangoni convection in a melt, 

which develop along the free surface due to variation of surface tension by temperature or 

concentration gradients. The direction of Marangoni convection is from the region with a 

lower surface tension to the one with a higher surface tension. Given that the heating coils 

are set outside the melt in an actual manner, the highest temperature (with smallest surface 

tension) locates almost middle of the zone, giving rise to thermal Marangoni convection in 

the vertical direction. Besides, in terms of different materials of Si and a mixture of SiGe that 

are put near the feed and seed crystal respectively, we assume solutal Marangoni convection 

is monodirectional from the bottom to the top due to the segregation coefficient of Si and Ge.  

 

 

(a)                                       (b) 

Fig. 2-2 Marangoni convection develops in the melt due to variation of surface tension by temperature 

or concentration gradients, (a) thermal Marangoni convection, (b) solutal Marangoni convection. 
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    Note that if different regions are selected, thermal and solutal Marangoni convection can 

be either in the same direction or opposite directions. If we select the upper half zone, two 

convections are in the same direction, while in the opposite direction if the lower half zone 

is considered. Therefore, in the following discussions, we would like to consider the full zone 

as well as the separated half zone to focus on the flow mechanism in different regions. 

    In order to easily understand the flow characteristics, it is necessary to simplify the floating 

zone system as a cylindrical “liquid bridge” [80, 81] with two coaxial planes, as shown in 

Fig. 2-3. The liquid bridge has some unique properties, such as the applied temperature is 

known a priori in the analysis and the interface is generally considered adiabatic with 

isothermal plane areas.  The cylindrical coordinate system is located at the center of the 

bottom plane with the radial (r), azimuthal (θ), and vertical (z) directions. The radius and 

length of liquid bridge are a = 0.01 m and L = 0.005 m in a half-zone system (L = 0.01 m for 

a full zone), respectively. It is assumed that (i) the melt, a mixture of silicon and germanium, 

is incompressible and Newtonian; (ii) the solid/liquid interfaces are flat; (iii) the system is 

under zero gravity. Since we carry out the numerical simulation under zero gravity, and also 

due to small Capillary number of the melt, we assume that (iv) the melt between two planes 

do not deform and remains cylindrical during simulations. 

 

 

Fig. 2-3 Configuration of a cylindrical liquid bridge. 

 

2.3  Governing equations 

    The governing equations of the flow in SiGe melt are the well-known continuity, 

momentum, energy, and mass transfer equations, given by:  

                                                                      ∇ ∙ 𝒗 = 0                                                                     (1) 
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𝜕𝒗

𝜕𝑡
+ 𝒗 ∙ ∇𝒗 = −

1

𝜌
∇𝑝 + 𝜈Δ𝒗                                              (2) 

                                                           
𝜕𝑇

𝜕𝑡
+ 𝒗 ∙ ∇𝑇 = 𝛼∆𝑇                                                                (3) 

                                                           
𝜕𝐶

𝜕𝑡
+ 𝒗 ∙ ∇𝐶 = 𝐷∆𝐶                                                                (4)                                               

where v = (𝑣𝑟 , 𝑣𝜃 , 𝑣𝑧)  is the flow velocity, t is time, 𝜌  is density, p is pressure, T is 

temperature, C is the molar fraction of silicon in the SiGe melt, while ν and α represent the 

kinematic viscosity and thermal diffusivity of the melt, respectively, and D is the diffusion 

coefficient of C. 

 

2.4  Boundary conditions 

    As for the boundary conditions at the height of z = 0 and z = L, the no-slip condition with 

𝑣𝑟 = 𝑣𝜃 = 𝑣𝑧 = 0 is applied for the flow velocity field both on the top and bottom planes of 

the melt. The condition of pure silicon is imposed on the top plane (𝐶top = 1), while a 

concentration value of SiGe (𝐶bottom < 1) is set on the bottom plane. For the case of thermal 

and solutal Marangoni flows in a half floating zone in the same direction, higher temperature 

is set on the bottom plane and a lower temperature value is set on the top plane. The above 

selected temperature values on the planes are reversed to develop flows in opposite directions, 

by inducing opposite thermal and solutal gradients along the free surface. If a full floating 

zone is considered, the ambient temperature varying by vertical position in the vertical 

direction is required to give rise to the thermal Marangoni convection. Details of boundary 

conditions of top and bottom planes will be described in the following chapters. 

    The boundary conditions of Marangoni flow in the r, θ, z directions on the free surface 

(𝑟 = 𝑎) are given as: 

    𝑣𝑟 = 0                                                                      (5) 

𝜇 [𝑟
𝜕

𝜕𝑟
(𝑣𝜃

𝑟
)] =

1

𝑟
(

𝜕𝜎

𝜕𝑇

𝜕𝑇

𝜕𝜃
+

𝜕𝜎

𝜕𝐶

𝜕𝐶

𝜕𝜃
)                                             (6) 

𝜇
𝜕𝑣𝑧

𝜕𝑟
=

𝜕𝜎

𝜕𝑇

𝜕𝑇

𝜕𝑧
+

𝜕𝜎

𝜕𝐶

𝜕𝐶

𝜕𝑧
                                                   (7) 

where μ is the viscosity of the melt, and 𝜕𝜎 𝜕𝑇⁄  (< 0) and 𝜕𝜎 𝜕𝐶⁄  (> 0) are the surface 

tension coefficients of temperature and concentration, respectively. 
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    The surface tension along the free surface is considered as the following linear function 

with temperature and concentration: 

                                         𝜎(𝑇, 𝐶) = 𝜎0 − 𝜎T(𝑇 − 𝑇0) − 𝜎C(𝐶 − 𝐶0)                                     (8) 

where 𝜎0, 𝑇0, and 𝐶0 are the reference surface tension, reference temperature, and reference 

concentration, respectively. 𝜎T and 𝜎C is the same as 𝜕𝜎 𝜕𝑇⁄  and 𝜕𝜎 𝜕𝐶⁄  correspondingly. 

    The temperature boundary condition on the free surface varies by different heating 

conditions. Basically, with an adiabatic free surface, it follows “zero gradient” in the radial 

direction as shown below. 

                                                               
𝜕𝑇

𝜕𝑟
= 0                                                                      (9) 

    With the consideration of radiation effects from the ambience, it follows “radiative heat 

transfer” by neglecting the connective heat transfer due to its weakness. 

                                                        −𝑘
𝜕𝑇

𝜕𝑟
= 𝜀𝜎SB(𝑇4 − 𝑇𝑎

4)                                                       (10) 

where k is the thermal conductivity of melt, ε is the emissivity, and σSB is the Stefan-

Boltzmann constant. Ta is the ambient temperature, which can be either constant or as a 

function of height, 𝑇𝑎(𝑧). 

    The concentration boundary condition on the free surface is considered as “zero gradient”: 

                                                                     
𝜕𝐶

𝜕𝑟
= 0                                                                      (11) 

    Some details of physical properties of binary compound of SiGe is shown in Table 2-1, 

where Pr ( = 𝜈 𝛼⁄ ) and Sc ( = 𝜈 𝐷⁄ ) stand for Prandtl number and Schmidt number, 

respectively. Pr and Sc number are kept constant in the whole study. 

 

Table 2-1 Physical properties of binary compound of SiGe. [82] 

Property Symbol Value 

Kinematic viscosity ν [m2/s] 1.40 × 10-7 

Thermal diffusivity 𝛼 [m2/s] 2.20 × 10-5 

Diffusion coefficient D [m2/s] 1.00 × 10-8 

Prandtl number Pr 6.37 × 10-3 

Schmidt number Sc 14.0 
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2.5  Marangoni numbers 

    Non-dimensional thermal and solutal Marangoni numbers are defined as below, with the 

ratio of surface tension gradient to viscous force, to describe the strength of Marangoni 

convection. 

𝑀𝑎T = |
𝜕𝜎

𝜕𝑇
| ∙

∆𝑇𝐿

𝜇𝜈
                                                       (12) 

𝑀𝑎C = |
𝜕𝜎

𝜕𝐶
| ∙

∆𝐶𝐿

𝜇𝜈
                                                       (13) 

    In a floating zone system, ΔT and ΔC are the temperature and concentration differences, 

mostly defined as differences between two planes, which primarily induce thermal and 

solutal Marangoni convection. These definitions are equivalent to the capillary Reynolds 

numbers and are presented in a different expression in some studies [83, 84]. 

    The Marangoni ratio (𝑅𝜎) is presented to describe the comparative strength of solutal 

Marangoni convection to thermal Marangoni convection. Normally, when 𝑅𝜎 = 1 , two 

Marangoni flows are of equivalent strength. 𝑅𝜎  is discussed in detail in the following 

sections. 

                                                              𝑅𝜎 =
𝑀𝑎C

𝑀𝑎T
                                                               (14) 

 

2.6  Numerical schemes 

    The governing equations (1-4) are discretized by the Finite Volume Method (FVM) and 

solved by the PISO algorithm in the OpenFOAM software.  

    The FVM is a method for representing and evaluating the partial differential equations in 

the form of algebraic equations. The values are calculated at discrete places on a meshed 

geometry. The finite volume refers to the small volume surrounding each node point on a 

mesh. In the FVM, the volume integrals in a partial differential equation that contain a 

divergence term are converted to the surface integrals, using the divergence theorem. These 

terms are then evaluated as the fluxes at the surfaces of each finite volume. Because the flux 

entering a given volume is identical to that leaving the adjacent volume, this method is 

conservative. 
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    The PISO algorithm (Pressure Implicit with Splitting of Operator) is proposed without 

iterations and with large time steps and a lesser computing effort. It is an extension of the 

SIMPLE algorithm used in computational fluid dynamics (CFD) to solve the Navier-Stokes 

equations. PISO is a pressure-velocity calculation procedure for the Navier-Stokes equations 

developed originally for non-iterative computation of unsteady compressible flow, but it has 

been adapted successfully to steady-state problems. The PISO involves one predictor step 

and two corrector steps and is designed to satisfy mass conservation using predictor-corrector 

steps. 

    The computation is carried out by using the open-source software OpenFOAM. The solver 

applied in the simulation is “icoTSmaFoam”, improved from the basic “icoFoam”. Euler 

scheme, QUICK scheme, and Gauss linear scheme are applied respectively to the terms 

involving time derivative, divergence, and Laplacian in the governing equations. The 

computational mesh applied in a half zone simulation is shown in Fig. 2-4, with 40, 160, and 

60 meshes in the r, θ, z directions, respectively. In a full zone simulation, the mesh number 

in the z-direction is doubled to 120 to improve the calculation accuracy. The mesh has been 

refined due to the complicated flow near the free surface and top/bottom plane when we 

consider the opposite effects of thermal and solutal Marangoni convection. 

 

 

Fig. 2-4 Computational mesh applied in a half zone simulation. The mesh number in the r, θ, z 

directions are 40, 160, and 60, respectively. The total mesh number is 384,000. 
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    The details of the non-uniform grid refinement, numerical schemes, and validation of the 

solver using OpenFOAM can be found in the previous research [85, 86]. Details of mesh 

dependency are shown in the following chapters. 
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Chapter III  Thermal and Solutal Marangoni Convection in a Full 

Floating Zone 

 

    In this chapter, numerical simulation of thermal and solutal Marangoni convection in a full 

floating zone under zero gravity has been performed to investigate the actual process of 

crystal growth with heating coils outside the melt. In the system, thermal and solutal 

Marangoni convection develop along the free surface in the same/opposite directions 

depending on the region selected. The ambient temperature outside the system is taken as a 

Gaussian profile, and the radiative heat transfer is considered dominant. 

 

3.1  Full floating zone 

    In a full floating zone, the heating coils are placed outside the melt part, by moving along 

with the growing crystal they provide the intended applied temperature profile to the free 

surface, as shown in Fig. 2-1 in Chapter II. Since the radiative heat transfer is mainly 

responsible for inducing the flow in the zone, it must be taken into account properly in the 

model. Although there are several heating-profile models as heating source, either can be 

heat power or ambient temperature distribution, used in a floating zone in the vertical 

direction around the equatorial plane [87], the Gaussian temperature profile would be more 

suitable to accommodate the contribution of heating coils to the floating zone, and most of 

the studies applied Gaussian temperature profile [88, 89, 90]. In this profile, the equatorial 

plane receives the maximum heat from the surroundings and the top and bottom planes of 

the zone receive less heat. 

    To the best of our knowledge, there are only a few studies in literature considering the 

contributions of both thermal and solutal Marangoni convective flows in a full floating zone. 

Thus, to shed further light on the subject, the present study simulated a full zone system with 

radiative heat transfer under zero gravity including the effects of both thermal and solutal 

Marangoni convective flows in the melt. 
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3.2  Numerical methods 

    A full floating zone is simplified as a cylindrical liquid bridge, as shown in Fig. 3-1. Model 

assumptions, governing equations and numerical schemes are the same as those listed in 

Numerical Methodology in Chapter II. However, minor differences are listed below about 

the boundary conditions, especially the temperature field. 

    The temperature on both top and bottom planes is constant at a lower value of TC. The 

ambient temperature (Ta) profile (distribution) as a function of height gives rise to the thermal 

Marangoni convection along the free surface. The Gaussian thermal profile (heat source) is 

assumed outside the floating zone in the vertical direction as 

𝑇a = 𝑇C + (𝑇H − 𝑇C)𝑒𝑥𝑝 [− (
𝑧−𝐿 2⁄

𝑎
)

2

]                                          (15) 

where TC is the melting point, TH is the maximum ambient temperature, L is the length of 

liquid bridge (L = 0.01 m), and a is the typical width of distribution (a = 0.003 m). The 

temperature boundary condition on the free surface follows “radiative heat transfer”, as 

shown in Equation (10) in Chapter II. The aspect ratio (As = L/R) of liquid bridge is 1.0. Pr 

and Sc number are 6.37 × 10-3 and 14.0, respectively. 

    Besides, although the definition of MaT is the same as the one in Equation (12) in Chapter 

II, ∆T differs in the temperature difference between the maximum ambient temperature (TH) 

and melting point (TC). 

 

 

Fig. 3-1 Numerical model of liquid bridge as a full floating zone. 
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3.3  Mesh dependency 

    Before simulation, the mesh dependency has been tested at MaC = 1786 and MaT = 2800 

by using different numerical mesh sizes in the r, θ, and z directions as shown in Table 3-1. 

The parameter of Tmax stands for the maximum calculated temperature on the free surface. 

U1ave and U2ave are the average velocities in the z-direction at the sampling points of (0.99R, 

0, 0.25L) and (0.99R, 0, 0.75L) in the liquid bridge.  

 

Table 3-1 Numerical results with different mesh sizes at MaC = 1786 and MaT = 2800. 

 Mesh Tmax [K] U1ave [m/s] U2ave [m/s] 

1 40r × 120θ × 100z 1277.10 -0.00358 0.00369 

2 40r × 120θ × 120z 1277.12 -0.00361 0.00370 

3 40r × 120θ × 160z 1277.23 -0.00371 0.00374 

4 40r × 160θ × 120z 1277.13 -0.00368 0.00373 

5 40r × 160θ × 160z 1277.24 -0.00375 0.00379 

6 60r × 160θ × 120z 1277.13 -0.00369 0.00372 

 

    From the above table, it is seen that values of Tmax, U1ave, and U2ave are close at different 

mesh sizes. Given that the Marangoni flow develops along the free surface, the mesh in the 

θ and z directions should be adequate. Meanwhile, to save simulation time and cost, the mesh 

size of 40 × 160 × 120 in the r, θ, and z directions, respectively, is applied in the simulation, 

as shown in Fig. 3-2. 

 

 

Fig. 3-2 Computational mesh applied in a full zone simulation. The mesh number in the r, θ, z 

directions are 40, 160, and 120, respectively. The total mesh number is 768,000. 
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3.4  Temperature distribution along the free surface 

    Fig. 3-3(a) shows the computed temperature field at MaT = 2800 and MaC = 1072, which 

is 2D symmetric in the z-direction. In this profile, the heat is concentrated on the equatorial 

plane of the liquid bridge, and the regions near the top and bottom planes receive the lowest 

heat from the ambiance. Fig. 3-3(b) and (c) show the snapshots of temperature field in the 

central r-z plane at MaT = 700 and 2100, respectively. The temperature distribution is almost 

symmetric with the equatorial region receiving the largest heat. The temperature gradients 

are almost existing in the vertical direction near the free surface, where thermal Marangoni 

convection dominants. 

 

 

(a) 

 

                                  (b)                                                                      (c) 

Fig. 3-3 (a) Temperature field of liquid bridge at MaT = 2800 and MaC = 1072. (b) Snapshots of 

temperature field in the central r-z plane at MaT = 700 and MaC = 1072. (c) Snapshots of temperature 

field in the central r-z plane at MaT = 2100 and MaC = 1072. 
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    Fig. 3-4 shows the temperature distribution on the free surface at different MaT values, 

which is in the Gaussian profile. These temperature differences on the free surface give rise 

to the development of the thermal Marangoni convection in the zone. 

    As seen in Figs. 3-3 and 3-4, the temperature distribution is not affected by Marangoni 

convection in the range of present simulation due to the small Pr number. 

 

 

Fig. 3-4 Temperature distribution along the free surface at different MaT values. 

 

3.5  Thermal and solutal Marangoni convection in a full floating zone at MaC = 1072 

and different MaT values. 

    Fig. 3-5 shows the snapshots of the computed Si concentration distribution along the r-θ 

plane from the top view at the height of z/L = 0.25 and z/L = 0.75 at MaC = 1072 and MaT = 

700, 1400, 2100, and 2800. The bottom graphs in Fig. 3-5 are taken from the height of z/L = 

0.25, where the thermal and solutal Marangoni convective flows are in the opposite direction 

(lower part of the liquid bridge). The 2D axisymmetric flow pattern is observed at a smaller 

MaT value (MaT = 700). As MaT increases, the flow pattern behaves chaotically at MaT = 

1400 or 2100 with the irregular azimuthal wave. It becomes diverging at MaT = 2800. In the 

lower liquid region, we may consider the flow pattern varies due to different MaT values. 

Meanwhile, the top graphs in Fig. 3-5 are taken from the height of z/L = 0.75, where the 

thermal and solutal Marangoni convective flows are in the same direction (upper part of the 
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liquid bridge). In this region, at a larger MaT (MaT = 1400 or 2100), the azimuthal wave 

pattern can be observed, which is quasi-symmetric, and the augmented effect of thermal and 

solutal Marangoni convection gives rise to a flow instability. In the middle part of Fig. 3-5, 

the flow patterns at the central r-z plane are shown at various MaT values. The strength of 

thermal and solutal Marangoni convection becomes stronger and more complex with the 

increase of MaT. 

 

 

          (a) MaT = 700        (b) MaT = 1400       (c) MaT = 2100      (d) MaT = 2800 

Fig. 3-5 Snapshots of Si concentration distribution at the r-θ plane at the height of z/L = 0.25 (Bottom) 

and 0.75 (Top), and central r-z plane (Middle) at MaC = 1072 with different MaT values at t = 500 s. 

 

    Fig. 3-6 shows the computed velocity vectors at the central r-z plane from the front view 

at MaC = 1072 and different MaT values at t = 500 s. When MaT is small (MaT = 700), there 

are two vortices along the free surface near the top plane, which means the flow in the lower 

region is suppressed. With the increase of MaT, there appear four vortices along the free 

surface near both the top and bottom planes. As MaT increases further, the flow becomes 

stronger near the top and bottom planes. 
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                                     (a) MaT=700                              (b) MaT=1400 

 

                                     (c) MaT=2100                            (d) MaT=2800 

 

Fig. 3-6 Flow velocity vectors at the central r-z plane at MaC = 1072 and different MaT values at t = 

500 s. 

 

    Fig. 3-7 shows the vertical time-averaged velocity on the free surface at MaC = 1072 and 

MaT = 0, 700, 1400, 2100, and 2800. At MaT = 0, the magnitude of pure solutal Marangoni 

convection is weak, and the consideration of thermal Marangoni convection can affect the 

shape of the free surface velocity. At MaT = 700, the velocity is very weak in the lower region, 

where thermal and solutal Marangoni convection are suppressed. At the higher MaT values, 

the peak value of velocity appears around the height of 0.2 L and 0.8 L, where the strong 

vortices form in these regions. The velocity fluctuates around zero when we observe the 

sampling point at the middle height of the liquid bridge (z/L = 0.5). Therefore, from the 

bottom to the top plane, the variation of the vertical velocity undergoes a sharp increase to a 

peak value then reduces to zero in the middle, and a reverse increase to a peak value again 

near the top plane. Additionally, it is noted that very small vortices develop near the bottom 

plane, especially at larger MaT values. 
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Fig. 3-7 Time-averaged free surface velocity at MaC = 1072 and different MaT values. 

 

3.6  Thermal and solutal Marangoni convection in a full floating zone at MaC = 1786 

and different MaT values. 

    Fig. 3-8 shows the snapshots of the Si concentration distribution along the r-θ plane from 

the top view at the height of z/L = 0.25 and z/L = 0.75 at MaC = 1786 and MaT = 700, 1400, 

2100, and 2800. The bottom graphs are taken from the height of z/L = 0.25, which show a 

transition from a 2D axisymmetric flow to a chaotic flow, with an irregular azimuthal wave 

pattern pulsating in the θ-direction. The top graphs are taken from the height of z/L = 0.75, 

and as seen, the patterns are much simpler and gentler compared with those at z/L = 0.25 at 

the larger MaT values. 

    Fig. 3-9 shows the computed flow velocity vectors at the central r-z plane from the front 

view at MaC = 1786 and different MaT values at t = 500 s. Comparing them with those in Fig. 

3-6, we see that the flow becomes stronger. As also seen, there are two vortices at MaT = 700 

and 1400 which are smaller than the value of MaC calculated, while four vortices form at the 

larger MaT values with higher instability. 

    Fig. 3-10 shows the vertical velocity at the sampling points of (0.99R, 0, 0.25L), (0.99R, 

0, 0.50L), and (0.99R, 0, 0.75L) at MaC = 1786 and MaT = 1400 and 2800. At a smaller MaT 

value, the vertical velocity near the lower sampling point of the liquid bridge becomes around 

zero after slight fluctuations. The velocity at the upper point is larger than that of the lower 

point, with the augmentation of thermal and solutal Marangoni flow. At a larger MaT value, 
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the velocity field at the sampling points shows fluctuations with time. The time-averaged 

velocity values of the symmetric points at (0.99R, 0, 0.25L) and (0.99R, 0, 0.75L) are similar. 

 

 

          (a) MaT = 700       (b) MaT = 1400      (c) MaT = 2100      (d) MaT = 2800 

Fig. 3-8 Snapshots of Si concentration distribution at the r-θ plane at the height of z/L = 0.25 (Bottom) 

and 0.75 (Top) at MaC = 1786 with different MaT values at t = 500 s. 

 

 

Fig. 3-9 Flow velocity vectors at the central r-z plane at MaC = 1786 and different MaT values at t = 

500 s. 
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Fig. 3-10 Vertical flow velocity at the sampling points of (0.99R, 0, 0.25L), (0.99R, 0, 0.50L), and 

(0.99R, 0, 0.75L) at MaC = 1786 and MaT = 1400 (left) and 2800 (right). 

 

3.7  Summary 

    The characteristics of the concentration pattern in the zone vary due to the varying thermal 

and solutal Marangoni numbers, as well as the characteristic azimuthal wave. The flow 

velocity field exhibits two or four main vortices along the free surface by effects of 

suppression or augmentation of thermal and solutal Marangoni convection. These vortices 

get stronger at higher thermal Marangoni numbers. 
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Chapter IV  Characterization of Thermal and Solutal Marangoni 

Convection of Opposite Directions in a Half Floating Zone 

 

    In this chapter, numerical simulation of thermal and solutal Marangoni convection of 

opposite directions in a half floating zone under zero gravity has been performed. The 

separated lower-half zone is selected as the numerical domain with considering various 

combinations of (MaC, MaT). Due to the complexity of the opposite-direction flow, the 

supercomputer is required to conduct the simulation.  

 

4.1  Relevant studies on the combined thermal and solutal Marangoni convection 

    Since solutal Marangoni convection plays an important role in crystal growth by the FZ 

method, as stated in Chapter I, it is necessary to consider the dual effects of thermal and 

solutal Marangoni convection in a half floating zone. 

    Some studies focused on the dual effects of two Marangoni convections. Chen et al. 

[83] studied thermal and solutal Marangoni convection in a two-dimensional (2D) 

rectangular cavity where the thermal and solutal Marangoni flows are opposite to each other 

with equal magnitudes. It is predicted that a no-flow state remains stable up to a critical 

thermal Marangoni number. Wu et al. [91] also investigated thermal and solutal Marangoni 

convection in a rotating cylinder where the thermal and solutal Marangoni flows were in 

opposite directions with equal strengths. They proposed to control instability by disk rotation. 

    In our previous study, Minakuchi et al. [73, 74] investigated the combined effects of 

thermal and solutal Marangoni convection in a half floating zone. In their system, the thermal 

and solutal Marangoni flows developing in the melt are in the same direction (upper-half 

zone). Their study predicts that the concentration pattern becomes three-dimensional (3D) 

and unsteady under a large temperature difference along the free surface. The predicted 3D 

flow pattern also shows an m-fold symmetry in the azimuthal direction (where m is the 

azimuthal wave number), and m increases if the flow loses its stability further.  

    However, the overall characterization of thermal and solutal Marangoni convective flow 

of opposite directions in a liquid bridge has not been reported in the literature. We guess the 
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phenomenon would be different from that of the same direction. Therefore, we focus on the 

phenomenon of thermal and solutal Marangoni convection of opposite directions (lower-half 

zone) at various Marangoni ratios and explore the unique characteristics of flow regimes that 

are different from those of the same direction. 

 

4.2  Half floating zone 

    A lower-half floating zone is selected as the numerical domain to investigate the 

mechanism of the combined thermal and solutal Marangoni convection of opposite 

directions in the melt. A half zone model simulates half of a real floating zone. The presence 

of heating coins in a full zone model is simulated by heating one of the supporting planes, 

where heat transfer is neglected through the free surface. Surface tension-driven force 

induces Marangoni convection with a single toroidal vortex. 

 

 

Fig. 4-1 Configurations of a half floating zone (left) and a full floating zone (right). [87] 

 

    The configurations of a half and full floating zone and their differences are shown in Fig. 

4-1 [87] and Table 4-1 below. The dominant difference is whether a heater is set outside the 

floating zone and thus thermal boundary condition is different, depending on whether heat 

transfer between floating zone and ambience is taken into consideration. In this chapter, we 

assume an adiabatic free surface between top and bottom planes to emphasize the flow 

phenomenon itself inside a half floating zone without consideration of heat transfer from 

ambience, which ensures that thermal Marangoni convection develops due to the temperature 
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difference between two planes. Effects of heat transfer in a half floating zone will be 

discussed in Chapter V. 

 

Table 4-1 Comparison of a half floating zone in the present research and a full floating zone. 

 Half zone Full zone 

Heater × Heating coils 

Surface heating × 
Ambient temperature / Heat 

flux 

Boundary condition Adiabatic Radiative heat transfer 

Thermal Marangoni 

convection 

ΔT between the cold and 

hot plane 

ΔT between the cold planes 

and hot free surface 
 

    This half zone model has distinct advantages. In particular, the ends of domain are 

isothermal, the interface is adiabatic and the applied temperature difference driving thermal 

Marangoni convection can be fixed a priori in the analysis. If under normal-gravity 

conditions, the upper half of the full zone is influenced by buoyancy force so that Marangoni 

convection can hardly be recognized. On the other hand, the lower half is less affected by 

buoyancy since the upper temperature is higher. Consequently, Marangoni convection 

dominates in the lower half zone. For this reason, the lower half zone is preferred in the 

normal-gravity research. 

 

4.3  Numerical methods 

    A half floating zone is simplified as a cylindrical liquid bridge, as shown in Fig. 4-2. 

Model assumptions, governing equations and numerical schemes are the same as those listed 

in Numerical Methodology in Chapter II. However, minor differences are listed below about 

the boundary conditions, especially the temperature field. 

    In order to create thermal and solutal Marangoni convections of opposite directions, a 

higher temperature was imposed on the top plane, while a lower temperature on the bottom 

plane. Because of the negative value of surface tension coefficient of temperature (𝜕𝜎 𝜕𝑇⁄ <

0), thermal Marangoni convection is from the top to the bottom plane. To the contrary, 
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solutal Marangoni convection flows from the bottom to the top plane by imposing a mixture 

of Si and Ge on the bottom and pure Si on the top, due to the positive value of surface tension 

coefficient of concentration (𝜕𝜎 𝜕𝐶⁄ > 0). 

 

 

Fig. 4-2 Configuration of a cylindrical half-zone liquid bridge. The bottom plane is cooler, and the 

top plane is hotter. The bottom plane has a lower concentration of silicon. 

 

    To emphasize the opposite flow directions of thermal and solutal Marangoni convection. 

definitions of thermal and solutal Marangoni number are adjusted to make MaT negative and 

MaC positive. These slight changes are suitable in the whole chapter. 

𝑀𝑎T =
𝜕𝜎

𝜕𝑇
∙

∆𝑇𝐿

𝜇𝜈
                                                       (12-1) 

𝑀𝑎C =
𝜕𝜎

𝜕𝐶
∙

∆𝐶𝐿

𝜇𝜈
                                                       (13-1) 

where ∆𝑇 = 𝑇𝑡𝑜𝑝 − 𝑇𝑏𝑜𝑡𝑡𝑜𝑚  > 0  and ∆𝐶 = 𝐶𝑡𝑜𝑝 − 𝐶𝑏𝑜𝑡𝑡𝑜𝑚 > 0  are the temperature and 

concentration differences between top and bottom planes. 

    Furthermore, in this chapter, Marangoni ratio (𝑅𝜎 = 𝑀𝑎T 𝑀𝑎C⁄ ) is negative since MaT < 

0. MaC is ranged from 0 to 1786, and MaT varies from 0 to −3500. The negative symbol only 

represents the direction of thermal Marangoni flow is opposite to solutal one. Pr and Sc 

number are 6.37 × 10−3 and 14.0, respectively. The aspect ratio of liquid bridge is 0.5. 

 

4.4  Dimensionless governing equations and boundary conditions 

    In this chapter, all of the numerical results are analyzed in a dimensionless form. Thus, 

dimensionless governing equations and boundary conditions are given below. 
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    Governing equations of (1) ~ (4) are given in a dimensionless form below using the 

following characteristic values, length L, time 𝐿2 𝜈⁄ , and velocity 𝜈 𝐿⁄ : 

∇ ∙ 𝑣∗ = 0                                                          (D-1) 

𝜕𝑣∗

𝜕𝑡∗
+ 𝑣∗ ∙ ∇𝑣∗ = −∇𝑝∗ + ∇2𝑣∗                                      (D-2) 

𝜕𝑇∗

𝜕𝑡∗
+ 𝑣∗ ∙ ∇𝑇∗ =

1

𝑃𝑟
∇2𝑇∗                                                (D-3) 

𝜕𝐶∗

𝜕𝑡∗ + 𝑣∗ ∙ ∇𝐶∗ =
1

𝑆𝑐
∇2𝐶∗                                                (D-4) 

where (∙)∗ represents the dimensionless variable. 

    Boundary conditions of Marangoni convection of (5) ~ (7) in a dimensionless form are 

given as: 

𝑣𝑟
∗ = 0                                                              (D-5) 

𝑟∗ 𝜕

𝜕𝑟∗ (
𝑣𝜃

∗

𝑟∗) =
1

𝑟∗ (𝑀𝑎T
𝜕𝑇∗

𝜕𝜃∗ + 𝑀𝑎C
𝜕𝐶∗

𝜕𝜃∗)                                     (D-6) 

    
𝜕𝑣𝑧

∗

𝜕𝑟∗ = 𝑀𝑎T
𝜕𝑇∗

𝜕𝑧∗ + 𝑀𝑎C
𝜕𝐶∗

𝜕𝑧∗                                             (D-7) 

    Dimensionless temperature and concentration gradients in the radial direction along the 

free surface follows “zero-gradient”: 

𝜕𝑇∗

𝜕𝑟∗ = 0                                                              (D-8) 

𝜕𝐶∗

𝜕𝑟∗ = 0                                                              (D-9) 

 

4.5  Characterization of thermal and solutal Marangoni convection of opposite 

directions 

    The computed flow regimes are summarized in Fig. 4-3 with respect to different thermal 

and solutal Marangoni numbers. The flow regimes in this map are identified in the r-θ plane 

at z/L = 0.5. The black dashed line represents the condition of 𝑅𝜎 = −1. In terms of creating 

the initial condition at different MaC and MaT values, at first, MaC is increased in time with 

a constant rate of ΔMaC/Δt* ≈ 32.1 and then stays constant at MaC = (179, 357, 536, 714, 

893, 1072, 1250, 1429, 1607, 1786) in order to investigate the fully developed Marangoni 

convection with MaT = 0. Then, MaT is decreased from 0 to −3500 with −ΔMaT/Δt* ≈ 62.5 
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at each MaC, and the statistical equilibrium state is achieved corresponding to the constant 

values of MaC and MaT. 

    When MaT is decreased, the temperature field is almost steady with an axisymmetric 

structure, as shown in Fig. 4-4. This prediction is due to the very low Pr value of the 

melt. Fig. 4-5 shows the computed temperature deviations from the quasi-laminar linear 

profile (T* = z*) in the z-direction at r/a = 0, 0.50, and 0.99 for (MaC, MaT) = (1072, −3500). 

As seen, the deviations are within ±5%, which means that the temperature field almost 

remains 2D axisymmetric. Therefore, in the rest of this study, we only focus on the 

concentration and velocity fields. 

 

 

Fig. 4-3 (MaC, MaT) map of flow regimes. 

 

    When only solutal Marangoni convection is considered (MaT = 0), i.e., the points in the 

first row (from top) of Fig. 4-3, the flow is 2D axisymmetric when MaC is small (MaC < 

1200). The concentration patterns become 3D unsteady at higher values of MaC ≳ 1200 with 

pulsations as shown in Fig. 4-6. The concentration field pulsates as traveling waves of 

expansion and compression in a period of 𝑇p
∗ = 0.35 with the azimuthal wave number (m = 
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4). The critical value of MaC at MaT = 0 is roughly 1100, which is in agreement with that of 

Minakuchi et al [73]. 

 

 

Fig. 4-4 Nondimensional temperature distribution in the vertical r-z plane, T*(r, z), at MaC = 1072: 

(a) MaT = −1400, (b) MaT = −2100, (c) MaT = −2800, and (d) MaT = −3500. 

 

 

Fig. 4-5 Temperature deviations from the quasi-laminar profile (T* = z*) in the vertical direction 

with r/a = 0, 0.50, and 0.99 at (MaC, MaT) = (1072, −3500). 

     

    When we consider both thermal and solutal Marangoni flows, the flow regime becomes 

more complicated, which is highly dependent on the Marangoni ratio 𝑅𝜎 and the quantitative 

relationship between MaC and MaT. The flow regimes can be characterized as follows: 
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(I) 2D axisymmetric flow: at −1 < 𝑅𝜎 < 0 with MaC > −MaT. 

(II) 3D steady flow with a symmetric azimuthal wave: at 𝑅𝜎  < −1 with 

small MaC (MaC ≲ 360). 

(III) Periodic flow: at 𝑅𝜎 ≈ −1, where −MaT is approximately equal to MaC. 

(IV) Chaotic flow: at 𝑅𝜎 < −1 with moderate |MaT| at MaC ≳ 530. 

(V) Oscillatory flow with a rotating azimuthal wave: at 𝑅𝜎  < −1 with large |MaT| 

at MaC ≳ 530. 

    In the following subsections, the concentration pattern in each flow regime, i.e., (I) - (V), 

and the critical transitions are examined in detail. 

 

 

Fig. 4-6 Nondimensional concentration distribution of Si in the r-θ plane at z/L = 0.5 and the 

vertical r-z plane with 3D pulsating traveling waves during a period at (MaC, MaT) = (1429, 0): 

(a) 𝑡∗ 𝑇p
∗⁄  = 0, (b) 1/3, and (c) 2/3. 

 

4.6  Transition from a 2D axisymmetric regime (regime I) to a 3D steady regime (regime 

II) with a symmetric azimuthal wave 

    When MaC > −MaT (−1 < 𝑅𝜎 < 0), a 2D axisymmetric steady flow regime is observed. 

The corresponding concentration field is shown in Fig. 4-7(a) and (b). In this case, since the 

thermal and solutal Marangoni flows are in opposite directions, they are competing and 

weakening each other gradually with the increase in |MaT|. The concentration pattern in the 

central r-z plane indicates that Marangoni convection is weak along the free surface.  
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Fig. 4-7 (a, b) Nondimensional concentration distribution of Si with −1 < 𝑅𝜎 < 0 (MaC > −MaT) in 

the r-θ plane at z/L = 0.5 and the vertical r-z plane: (a) (MaC, MaT) = (714, −350) and (b) (MaC, MaT) 

= (1607, −1050). (c) Nondimensional concentration distribution of Si in the radial direction at z/L = 

0.02 of regime I. 

 

    Fig. 4-7(c) presents the computed concentration distribution of Si at z/L = 0.02 (near the 

bottom) in the r-direction under different values of 𝑅𝜎. This plot is important and can be 

used to make predictions for the uniformity of the growing crystal. Under the condition of 

−1 < 𝑅𝜎 < 0, the concentration distribution tends to be constant and uniform in the central 

region (r* < 0.50), while we see some weak fluctuations near the free surface (0.75 < r* < 1). 

As seen, if 𝑅𝜎 is close to −1 (MaC = −MaT), the concentration distribution is very uniform, 

i.e., 𝑅𝜎 = −0.98. It can be concluded that the condition of −1 < 𝑅𝜎 < 0 is beneficial in growing 
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crystals with higher uniformity, which resulted from the fact that the competing thermal and 

solutal Marangoni flows are weakening each other in this case. 

    When only thermal Marangoni convection is considered, i.e., the points in the first column 

(from left) of Fig. 4-3, as |MaT| is greater than 2450, the flow regime is 3D stationary and 

steady with the m-folded symmetric azimuthal wave as shown in Fig. 4-8(a). When MaC is 

relatively small (i.e., MaC ≲ 360), the wave number changes as |MaT| increases, as shown 

in Fig. 4-8(b)-(e). Fig. 4-9 shows the relationship between azimuthal wave number (m) and 

thermal Marangoni number (MaT) with respect to solutal Marangoni number (at MaC = 0, 

179, and 357). As MaT decreases beyond MaT ≈ −1000, the azimuthal wave number also 

decreases, i.e., from m = 4 to 3 at MaC = 179 and from m = 7 to 3 at MaC = 357. Therefore, 

in regime II, we predict that a relatively higher MaC value (i.e., MaC = 357) can give rise to 

the steady flow regime with higher azimuthal wave numbers (m = 5 ∼ 7). 

    Note that an isolated switching flow is shown in Fig. 4-3 at (MaC, MaT) = (357, −3500). 

At this point, the azimuthal wave is similar to the pattern of regime II; however, it varies 

chaotically with time and the wave pattern becomes irregular, as shown in Fig. 4-10. 

 

 

Fig. 4-8 Nondimensional concentration distribution of Si at relatively small MaC (MaC ≲ 360, regime 

II) in the r-θ plane at z/L = 0.5 and the vertical r-z plane: (a) (MaC, MaT) = (0, −2800), (b) (179, 

−1750), (c) (179, −3150), (d) (357, −1400), and (e) (357, −2100). 
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Fig. 4-9 Azimuthal wave number (m) as a function of thermal Marangoni number (|MaT|) with respect 

to MaC (MaC = 0, 179, 357) for the case of a 3D steady convective flow (0 ≲ MaC ≲ 360, regime II). 

 

 

Fig. 4-10  Nondimensional concentration distribution of Si with time at (MaC, MaT) = (357, −3500) in 

the r-θ plane at z/L = 0.5 and the vertical r-z plane: (a) t* = 3.472, (b) t* = 3.696, (c) t* = 3.920, (d) t* = 

4.144, and (e) t* = 4.368. 

 

4.7  The periodic flow – regime III 

    At MaC ≈ −MaT (𝑅𝜎  ≈ −1), the computed concentration field of Si, shown in Fig. 4-

11(a) and (b), exhibits a 2D axisymmetric pattern with weak and periodic oscillations. In 

this case, the strengths of thermal and solutal Marangoni flows are roughly equal and the 

total combined Marangoni flow strength is weakened due to their competing effects. 
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However, since these two flows do not eliminate their opposing effects completely, there 

still remains a weak and periodic flow in the liquid bridge. 

 

 

Fig. 4-11 (a, b) Nondimensional concentration distribution of Si with 𝑅𝜎 = −1 (MaC = −MaT) in the r-

θ plane at z/L = 0.5 and the vertical r-z plane: (a) (MaC, MaT) = (1250, −1250) and (b) (MaC, MaT) = 

(1607, −1607). (c) Velocity in the vertical direction, 𝑣𝑧
∗, at the sampling point (0.99a, 0, 0.5L) of 

regime III. 

 

    Fig. 4-12 shows the flow velocity variation, which is represented by the difference of the 

maximum and minimum flow velocities and the non-dimensional time period (𝑇p
∗) of the 

periodic flow at the sampling point (0.99a, 0, 0.5L). As Ma (= MaC = −MaT) increases, the 

fluctuation increases monotonically. It is almost linear above Ma ≳ 700. On the other hand, 

the time period of the fluctuation decreases, which means that it oscillates with higher 

frequencies, i.e., f* = 49.6 for MaC = −MaT = 1429 and f* = 62.4 for MaC = −MaT = 1786. 

The flow is relatively weak even at a large Ma, and therefore, the whole concentration pattern 
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remains 2D axisymmetric. When MaC is small enough (MaC ≲ 360), the vertical velocity at 

the sampling point is very small and stays constant at around zero and the periodic fluctuation 

is hardly observed. 

 

 

Fig. 4-12 Dependency of the flow velocity amplitude and time period at 𝑅𝜎 = −1 (MaC = −MaT) at 

the sampling point (0.99a, 0, 0.5L): —•— (black): the velocity amplitude, (𝑣𝑧
∗)max − (𝑣𝑧

∗)min and – 

– ∆– – (red): the time period, 𝑇p
∗. 

 

4.8  The bypass transition from the regime of a 2D axisymmetric flow to a 3D chaotic 

flow (regime IV) 

    When MaC ≳ 530 and 𝑅𝜎 < −1, the flow becomes chaotic and an irregular azimuthal wave 

develops (regime IV in Fig. 4-3). This bypass transition develops as follows. 

    As |MaT| increases, the flow reaches regime III (𝑅𝜎 ≈ −1) and further regime IV at MaC = 

1072. The 2D axisymmetric flow develops into a periodic flow and suddenly becomes 3D 

chaotic with a time-dependent irregular azimuthal wave (regime IV). This is 

a bypass transition that skips the regime of 3D steady-state (regime II) due to the observed 

strong nonlinearity. The chaotic flow also tends to rotate slightly when |MaT| is greater than 

2800 at MaC = 1072. As |MaT| further increases up to 3500, the rotating traveling wave 

overtakes, but the flow is still chaotic. The details of the rotating mode at larger |MaT| values 

will be discussed in the following subsection. 
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    The sequence of transitions from regime I to regime V is summarized in Fig. 4-13. The 

plot shows the time variation of the vertical flow velocity 𝑣𝑧
∗ at the sampling point (0.99a, 0, 

0.5L) at MaC = 1072. When 0 < |MaT| < 700, the flow is steady state (regime I). At 

−MaT = MaC = 1072, the flow velocity fluctuates periodically around zero as explained 

earlier (regime III). When |MaT| > MaC, the flow behaves chaotic, as shown in Fig. 4-

15(a) and (b). However, as MaT reaches −3500, the fluctuation becomes quasi-periodic, 

which corresponds to the appearance of the rotating traveling wave in the concentration field 

in the azimuthal direction. 

 

 

Fig. 4-13 Dependency of MaT on the vertical velocity, 𝑣𝑧
∗, at the sampling point (0.99a, 0, 0.5L) 

at MaC = 1072. 

 

    Fig. 4-14 shows the computed flow velocity vectors in the vertical r-z plane at MaC = 

1072 and different values of MaT = 0, −1072, −2450, and −3500 at t* = 2.80. When only 

solutal Marangoni convection is considered (MaT = 0), the flow along the free interface is 

from the bottom to the top. As MaT equals to −1072, there are two corner circulations near 

the free surface in Fig. 4-14(b). The upper circulation near the top corner is driven by thermal 

Marangoni convection, whose direction is from the top to the bottom along the free surface, 

while the lower one is driven by solutal Marangoni convection. As mentioned earlier, these 

opposite flows approximately balance and weaken each other’s strength. As MaT further 
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decreases (MaC < − MaT), there appears a reversed flow from the top to the bottom along the 

free surface, as shown in Fig. 4-14(c). Once |MaT| is sufficiently large, the total thermal and 

solutal Marangoni convection become stronger and the circulation extends to the central 

region of the liquid bridge, as shown in Fig. 4-14(d). 

 

 

Fig. 4-14 Flow velocity vectors in the vertical r-z plane at t* = 2.80 for MaC = 1072 and (a) MaT = 0 

(regime I), (b) MaT = −1072 (regime III), (c) MaT = −2450 (regime IV), and (d) MaT = −3500 (regime 

V). 

 

4.9  The oscillatory flow with a rotating azimuthal wave (regime V) 

    A transition from a chaotic flow to an oscillatory rotating flow occurs when |MaT| is far 

larger than MaC. The chaotic concentration pattern and vertical flow velocity under MaC < 

−MaT are shown in Fig. 4-15, which correspond to regime IV in Fig. 4-3. The non-uniform 

concentration distribution is strongly disturbed by the increment in |MaT|. The azimuthal 

wave becomes irregular, and the wave number changes in time. 

    As |MaT| increases further, the flow develops into regime V, becoming an oscillatory flow 

with the rotating azimuthal wave. When 𝑅𝜎 < −1 with larger |MaT|, it is an oscillatory rotating 

flow with the azimuthal wave number, m = 3, as shown in Fig. 4-16(a) and (b). Meanwhile, 

the flow velocity in the z-direction at the sampling point is quasi-periodic, as shown in Fig. 

4-16(c). For these cases, the rotating traveling wave emerges. As shown in Fig. 4-17, the 

non-dimensional angular flow velocity, 𝑣𝜃
∗ , is periodic with a clear time period. The non-
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dimensional time period is approximately at 𝑇p
∗ = 0.52 at (MaC, MaT) = (893, −3150) and 𝑇p

∗  

= 0.84 at (MaC, MaT) = (1429, −3500), which is much longer than those of the periodic flow 

of regime III in Fig. 4-12 since the oscillation mechanism is different. 

 

 

Fig. 4-15 (a, b) Nondimensional concentration distribution of Si with 𝑅𝜎 < −1 (MaC < −MaT) in the r-

θ plane at z/L = 0.5 and the vertical r-z plane with moderate |MaT|: (a) (MaC, MaT) = (1072, −1750) 

and (b) (MaC, MaT) = (1429, −2800). (c) Flow velocity in the vertical direction, 𝑣𝑧
∗, at the sampling 

point (0.99a, 0, 0.5L) at of regime IV. 

 

 

Fig. 4-16 (a, b) Nondimensional concentration distribution of Si with 𝑅𝜎 < −1 (MaC < −MaT) in the r-

θ plane at z/L = 0.5 and the vertical r-z plane with large |MaT|: (a) (MaC, MaT) = (893, −3150) and (b) 

(MaC, MaT) = (1429, −3500). (c) Flow velocity in the vertical direction, 𝑣𝑧
∗, at the sampling point 

(0.99a, 0, 0.5L) at of regime V. 
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Fig. 4-17 Angular velocity, 𝑣𝜃
∗ , in the azimuthal direction at the point of (0.80a, 0, 0.5L). 

 

4.10  Summary 

    By investigating the flow patterns at various combinations of (MaC, MaT) values, 

distinctive flow regimes of  2D axisymmetric flow, chaotic flow, oscillatory rotating flow, 

3D steady flow, and even switching flow have been determined. Furthermore, two kinds of 

flow transitions are predicted with the increase of |𝑀𝑎T| depending on the value of MaC. 

Furthermore, thermal and solutal Marangoni convection in this system can be suppressed 

almost completely when MaC is approximately equal to −MaT (MaC ≈ −MaT) and the flow 

becomes periodically stable with weak fluctuations. 
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Chapter V  Radiation Effects on Thermal and Solutal Marangoni 

Convection in a Floating Half-zone 

 

    In this chapter, numerical simulation of thermal and solutal Marangoni convection in a 

floating half zone with radiation effects of heat loss and heat gain under zero gravity has 

been performed. The ambient temperature is kept constant and radiation due to heat loss and 

heat gain is considered as the dominant heat transfer from the ambience.  

 

5.1  Radiation effects in a floating half zone 

    In an actual floating zone, there is heat transfer along the melt free surface and it needs to 

be taken into account. There have been some studies taking the effect of radiative heating in 

the form of heat loss or heat gain from the ambience. For instance, Zhang et al. [92] 

investigated the effect of radiation on thermal and solutal Marangoni convection in a shallow 

rectangular cavity subject to mutually perpendicular temperature and concentration gradients. 

It was found that the critical transition of flow destabilization depends on the strength of heat 

flux and the trend of critical Marangoni number varies from heat loss to heat gain. Shitomi 

et al. [93] investigated the effect of radiative heat transfer on thermocapillary convection in 

long liquid bridges of a high-Pr-number liquid under microgravity and proposed a modified 

heat transfer ratio to define flow patterns and observed the development of unique secondary 

vortices under strong heat loss and heat gain. These studies show the role of radiative heat 

transfer in Marangoni flows and provide an insight for further research in a floating-zone 

system, showing how the flow and concentration patterns are affected by radiation. Jin et al. 

[76] studied thermal and solutal Marangoni convection in a full floating-zone in which 

radiation was induced by the Gaussian temperature distribution along free surface. Its effects 

on flow patterns and flow characteristics were examined. The conclusion of this work was 

that radiation can affect the behavior of Marangoni flow and change its flow modes 

correspondingly. 

    As stated above, to the best of our knowledge, there are few studies examining the 

radiation effects on thermal and solutal Marangoni convection in a floating half zone. To 
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gain further insight into radiation effects or flow control with respect to heat loss and heat 

gain, a floating half-zone is considered in the present study. The system is simulated to 

predict the concentration modes at various Marangoni numbers under either heat loss or heat 

gain. We considered thermal and solutal Marangoni flows both in the same direction and in 

opposite directions in separate half zones. 

 

5.2  Numerical methods 

    The numerical model of a floating half zone is shown in Fig. 5-1. Model assumptions, 

governing equations and numerical schemes are the same as those listed in Numerical 

Methodology in Chapter II. However, minor differences are listed below about the boundary 

conditions, especially the temperature field. 

    Due to the imposed concentration gradient along the free surface, the solutal Marangoni 

convection is from bottom to top. When higher temperature is set on the bottom plane, 

thermal Marangoni convection is also from bottom to top. This means that two flows are in 

the same direction. To create flows in opposite directions, higher temperature is set reversely 

on the top plane.  

    In the model, the ambient temperature (Ta) is set perpendicular to the melt free surface for 

the intendent radiative heat transfer to the melt. The ambient temperature is assumed to be 

uniform on the free surface under each heat loss or heat gain case for simplicity, ranging 

from 500 K to 3000 K. Ta of 500 K, 1000 K, and 1500 K represent heat loss while Ta of 2000 

K, 2500 K, and 3000 K indicate heat gain. This assumption is reasonable for a half-zone 

model. However, more complex heating conditions have been imposed for mainly full-zone 

models as stated in [87]. The temperature boundary condition on the free surface follows 

“radiative heat transfer”, as shown in Equation (10) in Chapter II. 

    Marangoni ratio (𝑅𝜎) is ranged from 0 to 1 (0 < 𝑅𝜎 ≤ 1). When 𝑅𝜎 = 1, two Marangoni 

flows are of equivalent strengths. MaC is ranged from 0 to 2500, and MaT varies from 0 to 

3500. The aspect ratio (As = L/a) of liquid bridge is 0.5. Pr and Sc number are 6.37 × 10-3 

and 14.0, respectively. 
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Fig. 5-1 Schematic view of the computational domain of a floating half-zone. Thermal and solutal 

gradients along the melt free surface determine the directions of thermal and solutal Marangoni flows. 

 

5.3  Mesh dependency 

    Mesh dependency has been done to test the optimal mesh in the simulation. From Table 

5-1, it is seen that the values of Tave and Uave are approximative at different mesh sizes. To 

save simulation time and cost and reach an accurate level, the mesh size of 40 × 160 × 60 in 

the r, θ, and z directions, respectively, is applied in the simulation. 

 

Table 5-1 Numerical results by different mesh sizes at (MaC, MaT) = (2500, 2500) at Ta = 2000 K in 

the same-direction thermal and solutal Marangoni flow. 

Mesh Tave [K] Uave [m/s] 

1      𝟒𝟎𝒓 × 𝟏𝟐𝟎𝜽 × 𝟒𝟎𝒛 1701.20 0.00556 

2      𝟒𝟎𝒓 × 𝟏𝟔𝟎𝜽 × 𝟒𝟎𝒛 1701.22 0.00557 

3      𝟒𝟎𝒓 × 𝟏𝟔𝟎𝜽 × 𝟔𝟎𝒛 1701.71 0.00554 

4      𝟔𝟎𝒓 × 𝟏𝟔𝟎𝜽 × 𝟔𝟎𝒛 1701.69 0.00540 

5      𝟔𝟎𝒓 × 𝟏𝟖𝟎𝜽 × 𝟔𝟎𝒛 1701.70 0.00543 

Tave: Time-averaged temperature in a fully developed state at the sampling point. 

Uave: Time-averaged vertical velocity in a fully developed state at the sampling point. 
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5.4  Radiation effects at unequal (MaC, MaT) numbers with lower 𝑹𝝈 values 

    In this section, we consider two cases of unequal Marangoni numbers: at (MaC, MaT) = 

(1250, 2800) with 𝑅𝜎 = 0.45  and at (MaC, MaT) = (500, 2500) with 𝑅𝜎 = 0.20  under 

different Ta values. From now on in the manuscript, for convenience, when the thermal and 

solutal Marangoni flows are in the same direction the flow will be called the “same-direction 

flow or convection”, when the thermal and solutal flows are in opposite directions, the flow 

will be called the “opposite-direction flow or convection”. 

 

 
(a)                    (b)                   (c)                    (d)                    (e)                     (f) 

 
(g)                    (h)                    (i)                    (j)                     (k)                     (l) 

 
Fig. 5-2 Top view snapshots of computed Si concentration distribution at the central r-θ plane at 

(MaC, MaT) = (1250, 2800) with 𝑅𝜎 = 0.45 under different Ta, (a-f) in the same-direction flow, (g-l) 

in the opposite-direction flow. (a, g) Ta = 500 K, (b, h) Ta = 1000 K, (c, i) Ta = 1500 K, (d, j) Ta = 

2000 K, (e, k) Ta = 2500 K, (f, l) Ta = 3000 K. 

 

    Fig. 5-2(a-f) shows the top view snapshots of computed Si concentration distribution at 

the central r-θ plane at (MaC, MaT) = (1250, 2800) with 𝑅𝜎 = 0.45 under different Ta values 

for the same-direction flow. Under heat loss (a-c), the concentration distribution exhibits an 

oscillatory rotating structure with regular azimuthal wave at the wave number of m = 7. At a 

strong heat loss of Ta = 500 K, the wave is relatively less distinct in the azimuthal direction. 

In the case of heat gain, the distribution is a 2D axisymmetric structure. It appears that the 
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structure changes from oscillatory rotating to 2D axisymmetric (“critical transition”) when 

weak heat loss is replaced by weak heat gain (c-d). Similarly, Fig. 5-2(g-l) presents the 

computed concentration distributions for the opposite-direction flow. Apart from the case of 

a strong heat gain of Ta = 3000 K, the structure behaves chaotic with an irregular azimuthal 

wave in all cases either under heat loss or heat gain. The azimuthal wave becomes more 

distinct at Ta = 2500 K on the periphery, indicating the possibility of a critical transition at 

this Ta value. The concentration distribution transits to an oscillatory rotating pattern under 

strong heat gain as seen in Fig. 5-2(l). 

    The variation of vertical flow velocity component for the same-direction flow is shown in 

Fig. 5-3(a) and that for the opposite-flow in Fig. 5-3(b). As seen in Fig. 5-3(a), under heat 

loss, the vertical flow velocity exhibits periodic fluctuations after t = 500 s, which is 

corresponding to the oscillatory rotating pattern. Under heat gain, the flow velocity remains 

almost constant with time. With the increase of Ta, the flow strength tends to decrease. As 

seen in Fig. 5-3(b), on the other hand, the vertical flow velocity in the opposite-direction 

flow exhibits almost chaotic and irregular fluctuations over time. Similarly, at higher Ta 

values, the velocity magnitude also tends to decrease. Note that the velocity profile is more 

complex and shows violent fluctuations in the case of heat loss, compared to that of heat gain. 

This illustrates that heat loss can destabilize flow structures and lead to more complex flow 

modes. 

 

 

                                      (a)                                                                     (b) 

Fig. 5-3 Variation of vertical flow velocity component with time at the sampling point at (MaC, MaT) 

= (1250, 2800) with 𝑅𝜎 = 0.45, (a) in the same-direction flow, (b) in the opposite-direction flow. 
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    Fig. 5-4(a) presents the computed surface velocity (vertical flow velocity along the free 

surface) distribution in the same-direction flow. The surface velocity distribution exhibits 

similar profile in all cases except the case of strong heat gain at Ta = 3000 K. At higher Ta, 

the maximum velocity (Umax) appears closer to the top plane. As Ta reaches 3000 K, there is 

a reverse flow near the bottom plane below the height of z = 0.001 m. Similarly, Fig. 5-4(b) 

shows the variations for the case of opposite-direction flow. By comparison with that of the 

same-direction flow, it is seen that the velocity profile is different with increased instability, 

and Umax gets closer to the bottom plane. The similarity between two flows is that there still 

exists a distinctly reverse flow at Ta = 3000 K. This observation indicates that a second vortex 

may form under strong heat gain in both cases. From these figures, we can also note that with 

the increase of Ta, the surface velocity value at the middle height (z = 0.0025 m) becomes 

smaller, which shows the same trend of the sampling point velocity given in Fig. 5-3. 

Furthermore, the smaller velocity values at higher Ta values are the indication of a critical 

transition to almost a constant distribution, i.e., a transition from an oscillatory rotating 

structure to a 2D axisymmetric structure in the same-direction flow, and a transition from 

chaotic to oscillatory rotating in the opposite-direction flow. These observations show that 

the behavior of both vertical velocities (surface and sampling point) is in accordance with 

those concentration distributions presented in Fig. 5-2. 

 

 

(a)                                                                    (b) 

Fig. 5-4 Vertical flow velocity along the free surface at (MaC, MaT) = (1250, 2800) with 𝑅𝜎 = 0.45 

at t = 700 s, (a) in the same-direction flow, (b) in the opposite-direction flow. 
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    Fig. 5-5(a-c) shows the snapshots of computed Si concentration distribution at the central 

r-z plane at (MaC, MaT) = (1250, 2800) with 𝑅𝜎 = 0.45 under heat gain. The concentration 

distribution is symmetric with two main vortices for the same-direction flow. However, it 

appears a second weak vortex developing along the free surface near the bottom plane at Ta 

= 3000 K. As seen from Fig. 5-5(e, f), a second weak vortex also develops near the top plane 

at Ta = 2500 K or 3000 K in the opposite-direction flow. By comparison of two distributions, 

one can say that heat gain may make it easier for the development of a secondary vortex in 

the case of opposite-direction flow. The secondary vortex becomes larger at higher Ta values. 

The formation of a secondary vortex is discussed in the following section by examining the 

temperature distribution along the free surface. 

 

 

(a)                                             (b)                                             (c) 

 

                      (d)                                             (e)                                              (f) 

 

Fig. 5-5 Front view snapshots of computed Si concentration distribution at the central r-z plane at 

(MaC, MaT) = (1250, 2800) with 𝑅𝜎 = 0.45 under heat gain, (a-c) in the same-direction flow, (d-f) in 

the opposite-direction flow. (a, d) Ta = 2000 K, (b, e) Ta = 2500 K, (c, f) Ta = 3000 K. 

 

    Fig. 5-6 presents temperature distribution along the free surface in the same-direction flow 

at (MaC, MaT) = (1250, 2800) at different Ta values. As seen from this figure, at higher Ta 

values, the temperature distribution has non-linear profiles, with the highest temperature 

(Tmax) being at the height of z = 0.001 m to 0.002 m. An almost linear temperature distribution 

at Ta = 1500 K changes to non-linear profiles with increasing temperature. Although the very 

fine computed temperature profile at 1500 K shows a very slight deviation from a linear 
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distribution, since this cannot be notable in the figure, we call it “assumed-linear” profile to 

show its evolution to non-linear profiles. The nonlinearity of temperature distribution at 

higher Ta values gives rise to a temperature gradient along the free surface. Since Tmax is 

located slightly above the bottom plane, the thermal gradients formed in the vertical direction 

at higher Ta values induce secondary vortices. This is the reason we see the development of 

secondary vortices. Now, looking at the results presented in Figs. 5-4, 5-5 and 5-6, one can 

state that the strong heat gain at a higher Ta value may give rise to a reverse flow due to the 

non-linear temperature distribution along the free surface. This shows that the heat gain has 

a significant role in altering Marangoni flows in the melt. 

 

 

Fig. 5-6 Temperature distribution along the free surface in the same-direction flow at (MaC, MaT) = 

(1250, 2800) at different Ta values. 

 

    Next, we discuss the effect of radiation at a lower 𝑅𝜎  value: 𝑅𝜎 = 0.20. Fig. 5-7(a-f) 

presents the top view snapshots of computed Si concentration distribution at the central r-θ 

plane at (MaC, MaT) = (500, 2500) at different Ta values in the case of same-direction flow. 

In this case, the concentration distributions are of 2D axisymmetric under either heat loss or 

heat gain. The vertical flow velocity also remains constant as seen in Fig. 5-8(a). In the case 

of opposite-direction flow, the distributions exhibit several critical transitions as seen in Fig. 

5-7(g-l), indicating the possibility of instability to some degree. Under strong heat loss or 

strong heat gain at Ta = 500 K or 3000 K, in both flows the concentration fields show 

oscillatory rotating patterns. They are regular with m = 4 under heat loss while asymmetric 
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with m = 3 under heat gain. As Ta increases from 500 K to 2000 K, it exhibits an oscillatory 

pattern with weak fluctuations in shape, with m varying between 4 and 5. At Ta = 2500 K, 

the structure becomes chaotic abruptly. Thus, from the snapshots in Fig. 5-7(g-l), we can 

conclude that the concentration distribution undergoes a series of complex transitions under 

different heating conditions. The azimuthal wave pattern almost keeps the overall profile 

under heat loss while it behaves chaotic or asymmetric under heat gain. Although the 

structure becomes multiple in the case of opposite-direction flow at a lower 𝑅𝜎 values, the 

velocity fluctuations at the sampling point in Fig. 5-8(b) are not as severe as those in Fig. 5-

3(b) because MaC value is much smaller than MaT value. 

 

 

(a)                    (b)                    (c)                    (d)                    (e)                    (f) 

 

          (g)                     (h)                   (i)                     (j)                     (k)                    (l) 

 

Fig. 5-7 Top view snapshots of computed Si concentration distribution at the central r-θ plane at 

(MaC, MaT) = (500, 2500) with 𝑅𝜎 = 0.20 under different Ta, (a-f) in the same-direction flow, (g-l) 

in the opposite-direction flow. (a, g) Ta = 500 K, (b, h) Ta = 1000 K, (c, i) Ta = 1500 K, (d, j) Ta = 

2000 K, (e, k) Ta = 2500 K, (f, l) Ta = 3000 K. 
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                                     (a)                                                                      (b) 

Fig. 5-8 Variation of vertical flow velocity component with time at the sampling point at (MaC, MaT) 

= (500, 2500) with 𝑅𝜎 = 0.20, (a) in the same-direction flow, (b) in the opposite-direction flow. 

 

5.5  Radiation effects at equal (MaC, MaT) numbers with a higher 𝑹𝝈 value (𝑹𝝈 = 𝟏) 

    In this section, we consider two cases of equal Marangoni numbers: (MaC, MaT) = (750, 

750) and (2500, 2500) with a higher 𝑅𝜎 value (𝑅𝜎 = 1). To describe the radiation magnitude 

under different heating conditions of heat loss and heat gain, based on the “Modified Heat 

Transfer Ratio” introduced in [93], we define a new ratio in this part, the “Radiation Ratio” 

(𝜑), as 

𝜑 =
𝑄LB

𝑚𝑎𝑥(|𝑄T|,|𝑄B|)
                                                            (16) 

where QLB is the radiative heat from melt to ambience, QT is the heat from top plane to the 

melt, and QB is the heat from melt to the bottom plane. 𝜑 > 0 and 𝜑 < 0 represent heat loss 

and heat gain, respectively. 

    Fig. 5-9 describes the relationship between 𝜑 (radiation ratio) and Ta. Points above the 

dashed line represent heat loss while those below the dashed line account for heat gain. The 

radiation is stronger at the smaller MaT = 750. As the magnitude of heat loss or heat gain 

increases, the absolute value of 𝜑 increases along with them. 
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Fig. 5-9 Radiation ratio (𝜑) as a function of ambient temperature (Ta) at (MaC, MaT) = (750, 750) and 

(2500, 2500) under various heating conditions. 

 

 

         (a)                     (b)                    (c)                    (d)                    (e)                    (f) 

 

          (g)                     (h)                    (i)                    (j)                     (k)                    (l) 

 

Fig. 5-10 Top view snapshots of computed Si concentration distribution at the central r-θ plane at 

(MaC, MaT) = (750, 750) with 𝑅𝜎 = 1 under different Ta, (a-f) in the same-direction flow, (g-l) in the 

opposite-direction flow. (a, g) Ta = 500 K, (b, h) Ta = 1000 K, (c, i) Ta = 1500 K, (d, j) Ta = 2000 K, 

(e, k) Ta = 2500 K, (f, l) Ta = 3000 K. 
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    Fig. 5-10(a-f) shows the top view snapshots of computed Si concentration distribution at 

the central r-θ plane at (MaC, MaT) = (750, 750) with 𝑅𝜎 = 1 under different Ta in the same-

direction flow. The concentration field exhibits a 2D axisymmetric structure under heat loss 

and medium heat gain up to Ta = 2500 K. However, there is a critical transition to an 

oscillatory rotating pattern with m = 13 under strong heat gain at Ta = 3000 K. It is observed 

that the concentration distribution inside the melt tends to remain asymmetric, which 

oscillates with time.  

 

 

(a)                                                                   (b) 

Fig. 5-11 (a) Variation of vertical flow velocity component with time at the sampling point at (MaC, 

MaT) = (750, 750) with 𝑅𝜎 = 1 in the same-direction flow. (b) Si concentration distributions in the 

radial direction at the height z = 0.0025 m. 

 

    Fig. 5-11(a) gives an insight to this phenomenon in the flow velocity field. For instance, 

constant velocity accounts for the axisymmetric structure, and the profile with periodic 

fluctuations accounts for the oscillatory rotating pattern at Ta = 3000 K. Although most of 

the structures are axisymmetric in Fig. 5-10(a-f), it is difficult to determine the concentration 

distribution or uniformity in the radial direction. Fig. 5-11(b) presents the computed Si 

concentration distributions in the radial direction at the height of z = 0.0025 m, with almost 

similar profile forms at each Ta value. To make the differences more notable, the coefficient 

of variance (CV) is introduced. This coefficient is defined as CV = 𝜎Si 𝐶S̅i⁄  with the ratio of 

standard deviation to the mean of Si concentration. We calculated CV as 4.60%, 4.55%, 

4.41%, 4.11%, 5.10%, and 7.13% at Ta = 500 K, 1000 K, 1500 K, 2000 K, 2500 K, and 3000 
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K, respectively. As seen CV has a minimum value at Ta = 2000 K. This implies that a weak 

heat gain may lead to a comparatively better concentration uniformity. 

    The computed Si concentration distributions shown in Fig. 5-10(g-l) in the case of the 

opposite-direction flow exhibit 2D axisymmetric structures under heat loss. Considering this 

together with the results given in Fig. 5-12(a), we can state that the flow strength at the 

sampling point is very weak, which means thermal and solutal Marangoni flows nearly offset 

each other since we used the same MaC and MaT values. Under heat gain, however, the 

stability of symmetry is destroyed with the chaotic behavior (large fluctuations) of the fluid 

flow. We note that the velocity profile fluctuations appear in a two-stage variation, with a 

huge increase at Ta = 2000 K in the first stage, and then the velocity decreases around zero 

with time-dependent irregular fluctuations in the second stage as Ta further increases to 2500 

K or 3000 K. This two-stage phenomenon is also observed if the sampling point moves in 

the azimuthal direction at the same height with similar flow fluctuations in the velocity field. 

    From Fig. 5-12(b), we see that the velocity along the free surface under heat loss is very 

weak, while a reverse flow is observed under heat gain. Comparing these with the results in 

Fig. 5-4(b), we note that the magnitude of reverse flow is larger at 𝑅𝜎 = 1. At the midpoint, 

the velocity is approximately zero for all heating cases. Umax near the bottom plane is 

approximately twice of that near the top plane under heat gain. 

 

 

(a)                                                                          (b) 

Fig. 5-12 (a) Variation of vertical flow velocity component with time at the sampling point at (MaC, 

MaT) = (750, 750) with 𝑅𝜎 = 1 in the opposite-direction flow. (b) Vertical flow velocity along the 

free surface at t = 700 s in the opposite-direction flow. 
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                     (a)                                             (b)                                             (c) 

 

                     (d)                                             (e)                                             (f) 

 

Fig. 5-13 Snapshots of computed Si concentration distribution at the central r-z plane at (MaC, MaT) 

= (750, 750) with 𝑅𝜎 = 1 under heat gain in the opposite-direction flow, (a-c) front view, (d-f) side 

view. (a, d) Ta = 2000 K, (b, e) Ta = 2500 K, (c, f) Ta = 3000 K. 

 

 

(a)                                            (b)                                             (c) 

 

Fig. 5-14 Computed concentration distribution along the exterior free surface under different heating 

conditions in the opposite-direction flow. (a) Ta = 1000 K, (b) Ta = 2000 K, (c) Ta = 3000 K. 

 

     Fig. 5-13 shows the snapshots of computed Si concentration distribution at the central r-

z plane at (MaC, MaT) = (750, 750) with 𝑅𝜎 = 1 under heat gain in the opposite-direction 

flow. At Ta = 2000 K, there is a chaotic distribution with a tendency of vortex formation 

along the free surface. At higher Ta values, the distribution becomes asymmetric with four 

vortices of almost equal size, which is different from the one observed in Fig. 5-5. As 

explained earlier, the additional vortices developed are induced by the maximum temperature 

at the midpoint on the free surface under a strong heat gain. Fig. 5-14 presents the 
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concentration distribution along the exterior free surface under different heating conditions 

in the opposite-direction flow. In the case of heat loss at Ta = 1000 K, the isolines are parallel 

to each other with an axisymmetric steady structure. This steady-state structure becomes 

chaotic as heat loss changes to heat gain, with significant instabilities. 

 

 

          (a)                    (b)                    (c)                    (d)                    (e)                    (f) 

 

          (g)                    (h)                    (i)                     (j)                    (k)                    (l) 

 

Fig. 5-15 Top view snapshots of computed Si concentration distribution at the central r-θ plane at 

(MaC, MaT) = (2500, 2500) with 𝑅𝜎 = 1 under different Ta, (a-f) in the same-direction flow, (g-l) in 

the opposite-direction flow. (a, g) Ta = 500 K, (b, h) Ta = 1000 K, (c, i) Ta = 1500 K, (d, j) Ta = 2000 

K, (e, k) Ta = 2500 K, (f, l) Ta = 3000 K. 

 

    Fig. 5-15(a-f) shows the top view snapshots of computed Si concentration distribution at 

the central r-θ plane at (MaC, MaT) = (2500, 2500) with 𝑅𝜎 = 1 under different Ta values in 

the same-direction flow. Under heat loss, the peripheral wave pattern behaves oscillatory 

rotating with m varying from 6 to 7 in the azimuthal direction. The internal pattern also 

presents an asymmetric structure with m’ = 2. Similarly, under heat gain, the transition from 

an oscillatory rotating pattern to a 2D axisymmetric structure takes place at Ta values higher 

than 2500 K. Note that the interior wave pattern regains its axisymmetric structure with m’ 

= 0 in the case of heat gain. Compared with those structures at the lower (MaC, MaT) = (750, 
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750) in Fig. 5-10(a-f), it is concluded that the transition is totally reversed at the higher (MaC, 

MaT) values when 𝑅𝜎 = 1, i.e., from an oscillatory rotating pattern to an axisymmetric 

steady one. 

    As seen in Fig. 5-16(a), the vertical velocity in all cases at the sampling point exhibit 

periodic fluctuations with time, which are in agreement with the corresponding oscillatory 

rotating patterns. However, the fluctuation amplitude becomes weaker and more frequent 

under strong heat gain at Ta = 3000 K. Although the concentration field is 2D axisymmetric, 

the corresponding flow velocity still exhibits small oscillations at this temperature. This 

implies that the flow is in a quasi-critical state, and at higher Ta values, the velocity profile 

would be constant corresponding to a pure axisymmetric structure in the concentration field. 

Fig. 5-16(b) provides further insight to the characteristics of vertical velocity at different Ta 

values in the same-direction flow. The degree of reduction in Umax under heat gain is far 

larger than that of under heat loss. In the frequency profile, f increases significantly at values 

from 2500 K to 3000 K, coinciding with the structure conversion described earlier. This 

shows the velocity fluctuation frequency can be a tool to identify the critical transition. 

 

 

(a)                                                               (b) 

Fig. 5-16 (a) Variation of vertical flow velocity component with time at the sampling point at (MaC, 

MaT) = (2500, 2500) with 𝑅𝜎 = 1 in the same-direction flow. (b) Frequency (f) and maximum 

velocity (Umax) as a function of ambient temperature (Ta). 

 

    Fig. 5-15(g-l) describes the opposite-direction flow at (MaC, MaT) = (2500, 2500) 

with 𝑅𝜎 = 1. Similar to those observed in Fig. 5-10(g-l), in this case the concentration field 
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experiences a transition from an axisymmetric structure to a chaotic one. The strong heat 

gain has a significant effect on the mode by altering the temperature distribution. Contrary 

to the weak flow observed at a smaller (MaC, MaT) value, the vertical velocity at a larger 

(MaC, MaT) value in Fig. 5-17(a) exhibits regularly periodic fluctuations around zero under 

heat loss and weak heat gain at Ta = 2000 K. At higher Ta values, the flow becomes a one-

stage chaotic fluctuation with a higher magnitude. The second stage of chaotic transition 

observed in Fig. 5-12(a) does not appear in this case. It may be speculated that, at further 

higher Ta values, i.e., Ta > 3000 K, it may be probable to see the second stage of chaotic 

transition. The periodic vertical velocity variations shown in Fig. 5-17(a) are enlarged in Fig. 

5-17(b) to observe the scale of magnitudes more clearly. As seen, at higher Ta values under 

heat loss, the amplitudes tend to become larger. Based on these results, the weak periodic 

structure is adopted to distinguish various concentration distributions. 

 

 

(a)                                                                     (b) 

Fig. 5-17 (a) Variation of vertical flow velocity component with time at the sampling point at (MaC, 

MaT) = (2500, 2500) with 𝑅𝜎 = 1  in the opposite-direction flow. (b) Velocity shows periodic 

fluctuations from t = 650 s to 700 s. 

 

5.6  Transition mode map under heat loss and heat gain 

    Fig. 5-18 summarizes the structures of concentration distributions and their transitions, 

with the assumption of 𝑀𝑎C ≤ 𝑀𝑎T  in the same-direction flow, with respect to ambient 

temperature (Ta) and Marangoni ratio (𝑅𝜎). As seen, there are 2D axisymmetric, 3D steady, 

and oscillatory rotating structures in this map. At a lower 𝑅𝜎 value, the mode is almost 2D 
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axisymmetric no matter how low or high Ta value is. At a medium or higher 𝑅𝜎  value, the 

mode changes from an oscillatory rotating pattern to a 2D axisymmetric one under heat gain. 

In some cases, there occurs a second reverse transition from a 2D axisymmetric structure to 

an oscillatory rotating one. With respect to heat loss or heat gain, it is observed that the 

concentration field tends to lose its stability with a non-symmetric pattern under strong heat 

loss at a higher 𝑅𝜎 value. Even the internal structure becomes non-symmetric, as described 

in Fig. 5-15. Under heat gain, the mode prone to experience a critical transition and a second 

vortex may form along the free surface at very high Ta values. This indicates that heat gain 

may have a stabilizing effect on the Marangoni flows. 

 

 

Fig. 5-18 Transition mode map based on concentration distribution with respect to Marangoni ratio 

(𝑅𝜎) and ambient temperature (Ta) in the same-direction flow. Ambient temperature of 500 K, 1000 

K, and 1500 K refer to heat loss and 2000 K, 2500 K, and 3000 K refer to heat gain. Adi. refers to the 

adiabatic condition. Plots at 𝑅𝜎 = 1 are determined by (MaC, MaT) = (2500, 2500).  

 

    Although we observe an oscillatory rotating pattern either under heat loss or heat gain in 

the concentration field, the behaviors of two cases are quite different, as shown in Fig. 5-

19(a-d). The wave pattern is regular under heat loss with m = 5 and the rotating mode is 

dominant with weak oscillations. We call this oscillatory Mode I. However, under heat gain, 

the oscillatory rotating mode becomes more complex, with explicit oscillations as well as 
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with a non-symmetric interior pattern. We call it oscillatory Mode II. The wave number also 

shows a fluctuating behavior due to the strong oscillation effects.  

 

 

(a)                       (b)                       (c)                       (d) 

 

 

         (e) 

Fig. 5-19 Top view snapshots of computed Si concentration distribution at the central r-θ plane at 

various combinations of (𝑇a, 𝑅𝜎) from oscillatory rotating pattern, (a) (𝑇a, 𝑅𝜎) = (500, 0.57), (b) 

(𝑇a, 𝑅𝜎) = (3000, 0.57), (c) (𝑇a, 𝑅𝜎) = (1500, 0.80), (d) (𝑇a, 𝑅𝜎) = (3000, 0.80). (e) Vertical flow 

velocity with time at the sampling point in the same-direction flow. 

 

    Furthermore, given that the formation of this oscillation after the 2D axisymmetric 

structure in the map, it can be concluded that the oscillatory Mode II is developed by 

transition from the 2D axisymmetric structure at higher Ta values, representing enhanced 

rotating oscillations under strong heat gain. To the contrary, oscillatory Mode I is in a 

relatively stable state. Fig. 5-19(e) further demonstrates the features of these two oscillatory 
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modes. The fluctuations of Mode II are more complex, with higher frequencies. At (𝑇a, 𝑅𝜎) 

= (3000, 0.57), the vertical velocity exhibits much higher fluctuation frequencies compared 

to those at a lower Ta value. Besides, a jagged-shaped fluctuation appears at (𝑇a, 𝑅𝜎) = (3000, 

0.80), which exacerbates the flow instability by the strong heat gain. For these two oscillatory 

rotating modes, the angular frequency (𝑓𝜃) is calculated. Under heat loss, 𝑓𝜃 takes values of 

0.021 Hz and 0.042 Hz at (𝑇a, 𝑅𝜎) = (500, 0.57) and (1500, 0.80), respectively. Under heat 

gain, 𝑓𝜃 is 0.064 Hz and 0.066 Hz at (𝑇a, 𝑅𝜎) = (3000, 0.57) and (3000, 0.80), respectively. 

Similarly, the angular frequency value under heat gain is higher than that of heat loss. This 

explains the complex and irregular behavior of Mode II under heat gain. Overall, the two 

oscillatory rotating modes correspond to totally different flow states. Thus, this makes 

necessary the need for a future investigation of oscillatory Mode II to gain more insight into 

the flow mechanism. 

    Fig. 5-20 summarizes the structures of concentration distributions and their transitions, 

with the assumption of 𝑀𝑎C ≤ 𝑀𝑎T in the opposite-direction flow, described in the same 

way. There are 3D steady, oscillatory, oscillatory rotating, chaotic, and weak periodic 

structures (with velocity-field features) in this map. The presence of various structures means 

that the opposite-direction flow becomes multiple, especially at a lower or higher 𝑅𝜎 value. 

At a higher 𝑅𝜎 value, the transition tends to move from a weak periodic structure to a chaotic 

one with the increase of Ta. At a lower 𝑅𝜎 value, the concentration distribution exhibits a 3D 

steady structure under heat loss, while oscillatory one under heat gain. Meanwhile, it behaves 

quite irregular at 𝑅𝜎 = 0.20 , exhibiting multiple structures by changes in the heating 

conditions. The concentration pattern is hardly affected at a medium 𝑅𝜎  value in this 

transition mode map with a consistent chaotic feature. Considering the above results given 

in the case of the opposite-direction flow, one can state that the azimuthal wave becomes 

distinct and even rotating as in the mode of oscillatory rotating pattern under strong heat gain. 
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Fig. 5-20 Transition mode map based on the concentration distribution with respect to Marangoni 

ratio (𝑅𝜎) and ambient temperature (Ta) in the opposite-direction flow. Ambient temperature of 500 

K, 1000 K, and 1500 K refer to heat loss and 2000 K, 2500 K, and 3000 K refer to heat gain. Adi. 

refers to the adiabatic condition. Plots at 𝑅𝜎 = 1 are determined by (MaC, MaT) = (2500, 2500). 

 

    In Fig. 5-20, it is concluded that there exists a critical transition from a chaotic structure 

to weak periodic one at a higher 𝑅𝜎 value with the decrease of Ta. Fig. 5-21 describes this 

transition with some snapshots of Si concentration distributions at 𝑅𝜎 = 0.80. The flow is 

stabilized with weak oscillations in the azimuthal direction from the chaotic structure, which 

is resulted from the fact that the MaC and MaT values are getting closer to each other, 

offsetting each other’s effect significantly. Although the stabilizing phenomenon is 

simultaneously observed in Fig. 5-7(g-i), the transition was due to the small MaC value. This 

indicates the concentration field is overall in a relatively steady state. 

    Compared with Fig. 5-18, the transition mode in the opposite-direction flow is much more 

complex with multi-directional conversions, and two sorts of stabilizing effects under heat 

loss are observed. However, as mentioned above, at a lower 𝑅𝜎 value, the transition mode 

appearing in an irregular manner may be function of the values of MaC and MaT numbers. 

Although 𝑅𝜎 is constant at 0.20, different combinations of (MaC, MaT) may contribute to it, 

as long as we keep the ratio as 𝑀𝑎C 𝑀𝑎T⁄ = 0.20 . Therefore, it feels that a further 

investigation is needed on this issue, especially focusing on lower 𝑅𝜎 values. 
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                                 (a)                           (b)                                         (c) 

 

Fig. 5-21 Stabilizing effect on Si concentration distribution at (MaC, MaT) = (1400, 1750) with 𝑅𝜎 =

0.80 under heat loss in the opposite-direction flow at (a) 500 K, (b) 1000 K, and (c) 1500 K.  

 

5.7  Summary 

    Transition mode maps, based on concentration distribution with respect to Marangoni ratio 

(𝑅𝜎) and ambient temperature (Ta) have been developed to investigate the radiation effects 

at unequal or equal (MaC, MaT) values. Furthermore, two sorts of oscillatory modes are 

observed in the same-direction Marangoni flows under either heat loss or heat gain. While 

two kinds of stabilizing effects are predicted under heat loss in the opposite-direction 

Marangoni flows. 
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Chapter VI  Conclusions and Future Perspectives 

 

    The conclusions of each Chapter (Chapter III, IV, and V) are presented in the following 

subsections. The future perspectives are listed in the end of this chapter. 

 

6.1  Thermal and solutal Marangoni convection in a full floating zone 

    A numerical simulation study of thermal and solutal Marangoni convection in a full 

floating zone under zero gravity has been conducted, and cases of MaC = 1072 and 1786 and 

MaT = 700, 1400, 2100, and 2800 are investigated. 

 

• The computed temperature field exhibits a Gaussian thermal profile and generates 

the thermal Marangoni convection in the zone. 

• At smaller MaT values, the combined thermal and solutal flow patterns are suppressed 

to two vortices, that are mainly located in the upper half zone. At higher MaT values, 

the flow becomes enhanced, and four vortices develop along the free surface. 

• The characteristics of the concentration pattern in the zone vary due to the varying 

thermal and solutal Marangoni numbers, as well as the characteristic azimuthal wave. 

 

    This section gives an overall insight into thermal and solutal Marangoni convection in a 

full floating zone, which approximates the actual process of crystal growth by FZ method. 

The results indicate that the flow pattern varies due to the region selected, with the 

consideration of thermal and solutal Marangoni convection in the same or opposite directions. 

 

6.2  Characterization of thermal and solutal Marangoni convection of opposite 

directions in a half floating zone 

    A numerical simulation study of the thermal and solutal Marangoni convection of opposite 

directions developing in a half floating zone has been performed under the assumption of 

zero gravity and adiabatic free surface. 

 

• The flows develop into various regimes depending on the values of MaC and MaT: 

Regime I develops for −1 < 𝑅𝜎  < 0 (MaC > −MaT) in which the flow is 2D 
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axisymmetric steady; regime II for 𝑅𝜎 < −1 (MaC < −MaT) at MaC ≲ 360, where the 

flow becomes 3D steady with an m-folded symmetry in the azimuthal direction; 

regime III for 𝑅𝜎 ≈ −1 (MaC ≈ −MaT) with the flow fluctuating periodically with a 

very weak amplitude; regime IV for 𝑅𝜎  < −1 (MaC < −MaT) at MaC ≳ 530 with 

moderate |MaT| in which the flow is 3D chaotic; and regime V with large |MaT|, where 

the flow becomes quasi-periodic oscillatory rotating with the time-dependent 

azimuthal wave number between m = 3 and 4. 

• The predicted flow transition mechanism depends on MaC. When MaC is small 

(MaC ≲  360), the transition occurs and the 2D axisymmetric flow of regime I 

becomes 3D steady in regime II as |MaT| increases. When MaC is large (MaC ≳ 530), 

the flow exhibits two critical transitions as |MaT| increases. The first transition is from 

the 2D axisymmetric flow (regime I) to the 3D chaotic flow (regime IV), and the 

second one is from the chaotic flow to the oscillatory rotating flow (regime V). 

• The strength of combined thermal and solutal Marangoni convection can be 

suppressed almost completely when −MaT is approximately equal to MaC due to the 

opposing effects of thermal and solutal Marangoni flows developing in the liquid 

bridge of the FZ growth of SiGe. 

 

    This chapter focuses on the lower-half zone with the assumption that thermal and solutal 

Marangoni convection are in the opposite direction. Compared to the flow in the same 

direction, characteristic and unique flow regimes of chaotic flow and 3D steady flow are 

newly determined. Flow transitions are predicted depending on value of MaC. 

 

6.3  Radiation effects on thermal and solutal Marangoni convection in a floating half-

zone 

    A numerical simulation study of thermal and solutal Marangoni convection in a floating 

half zone with radiation effects under zero gravity has been conducted. Transition mode 

maps based on the concentration distribution are developed for the same-direction and 

opposite-direction flows with the assumption of 𝑀𝑎C ≤ 𝑀𝑎T. 
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• In the same-direction Marangoni flows, the transition tends to occur at a medium or 

higher 𝑅𝜎  value under the condition of heat gain from an oscillatory rotating pattern 

to a 2D axisymmetric structure, which improves the flow stability. The concentration 

distribution behaves oscillatory rotating again under the strong heat gain in some 

cases, the rotating mode however behaves quite differently. 

• In the opposite-direction Marangoni flows, the transition mainly occurs at a lower or 

higher 𝑅𝜎 value with the increase of Ta from heat loss to heat gain. At a lower 𝑅𝜎 

value, the transition mode becomes more complex and irregular. At a lower or higher 

𝑅𝜎 value, strong heat loss can stabilize the concentration field by changing the mode 

into a relatively steady state. 

• In the same-direction Marangoni flows with 𝑅𝜎 = 1 at lower Ma (Ma = MaC = MaT) 

values, there is a critical transition from a 2D axisymmetric structure to an oscillatory 

rotating pattern with the increase of Ta. While, at higher Ma values, it behaves 

reversely from an oscillatory rotating pattern to a 2D axisymmetric structure with the 

increase of Ta. 

• In the opposite-direction Marangoni flows with 𝑅𝜎 = 1 , the concentration 

distributions become chaotic under heat gain. At lower Ma (Ma = MaC = MaT) values, 

the sampling velocity irregularly fluctuates around zero under strong heat gain, while 

at higher Ma values, the flow loses its stability as transiting from a periodic mode to 

a chaotic one. Additionally, at lower Ma values under strong heat gain, the four 

vortices forming along the free surface are almost of equal size, as the consequence 

of the induced temperature distribution in the vertical direction. 

• In the transition mode maps, two sorts of oscillatory rotating modes are observed in 

the same-direction Marangoni flows under either heat loss or heat gain, while two 

kinds of stabilizing effects are predicted under heat loss in the opposite-direction 

Marangoni flows. 

 

    This chapter concentrates on the radiation effects of heat loss and heat gain on thermal and 

solutal Marangoni convection in a floating half-zone. Transition mode behaves quite 

different in the same/opposite-direction flow. Different oscillatory rotating modes and 
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stabilizing effects are discovered due to radiation effects. However, it needs more 

investigating for its complex formation mechanisms. 

 

6.4  Future perspectives 

    The work presented in this thesis has shown the characteristics of thermal and solutal 

Marangoni convection in: (1) a full floating zone, (2) a lower-half floating zone, and (3) a 

floating half zone with radiation effects. However, there still needs further investigation for 

flow mechanism and application of flow control. 

• As discussed in Chapter V, we find two sorts of oscillatory rotating modes in the 

same-direction Marangoni flow under either heat loss and heat gain and two kinds of 

stabilizing effects under heat loss in the opposite-direction Marangoni flow. The 

formation or transition mechanisms are necessary to consider because they behave 

quite differently. 

• Both the numerical results in a full or half floating zone present unsteady flow pattern 

either in an oscillatory rotating mode or a chaotic mode in some cases, which may 

adversely affect the uniformity of growing crystal. Therefore, it is hoped that the 

unsteady flow pattern can be controlled or suppressed by exerting external conditions, 

such as rotations of top/bottom plane. 
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