
Title Reinforcement Learning for Contact-Rich Assembly
Tasks

Author(s) Beltran Hernandez, Camilo Cristian

Citation 大阪大学, 2022, 博士論文

Version Type VoR

URL https://doi.org/10.18910/89650

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Reinforcement Learning for Contact-Rich
Assembly Tasks

CRISTIAN CAMILO BELTRAN-HERNANDEZ

SEPTEMBER, 2022

Reinforcement Learning for Contact-Rich
Assembly Tasks

A dissertation submitted to

THE GRADUATE SCHOOL OF ENGINEERING SCIENCE

OSAKA UNIVERSITY

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN ENGINEERING

BY

CRISTIAN CAMILO BELTRAN-HERNANDEZ

SEPTEMBER, 2022

Abstract

General-purpose industrial robot manipulators play a more significant role in modern

manufacturing industries, particularly in high-mix low-volume (HMLV) production in-

dustries. Part mating and insertion, also called Peg-In-Hole (PIH) tasks, are very com-

mon in the manufacturing industry. Though PIH tasks have been extensively researched,

safely solving high-precision assembly in an ever-changing environment remains an open

problem. Traditional methods require the design of manual engineered controllers and

expertise to finetune the controller’s parameters for a particular task. In HMLV produc-

tion, where the task specifications change frequently, traditional methods are unfeasible

due to the high cost required to redesign and finetune controllers for each new task.

Reinforcement Learning (RL) is a promising solution to the automation problem.

RL methods have been proven successful at solving manipulation tasks autonomously.

However, RL is still not widely adopted on real robotic systems because working with real

hardware entails additional challenges, especially when using rigid position-controlled

manipulators. These challenges include needing a robust controller to avoid undesired

behavior that risks damaging the robot and its environment and constant supervision

from a human operator. The main contributions of this dissertation are; first, we pro-

posed a learning-based force control framework combining RL methods with traditional

force control to enable learning on industrial position-controlled robotic manipulators

on real-world hardware. Second, a simulation-to-real (sim2real) method is proposed to

reduce the burden of learning RL policies directly on real hardware. A physics simula-

tor is used to emulate the robot dynamics and to provide the RL agent with a rich and

diverse set of task conditions, after which the learned policies are transferred and fine-

tune on the real robot. The proposed method is designed to enable the robotic agent to

tackle assembly tasks even in the presence of uncertainty of the task’s goal. Finally, we

present a study for accelerating robot learning of contact-rich manipulation tasks based

on Curriculum Learning (CL) combined with Domain Randomization (DR). The main

idea is to guide the learning process by presenting the RL agent with tasks in increasing

order of difficulty. The proposed methods have been empirically evaluated with various

challenging industrial assembly scenarios in simulation and a real-world experimental

setup. The results of such evaluations show the effectiveness of our proposed methods

even when tackling high-precision contact-rich insertion tasks.

Contents

List of Figures VIII

List of Tables X

Abbreviations XI

List of Symbols XVI

1 Introduction 1

1.1 Background and motivation . 1

1.2 Objectives . 3

1.3 Dissertation Outline . 3

2 Literature Review 5

2.1 Force Control . 5

2.2 Reinforcement learning . 7

2.2.1 Reinforcement learning and force control 9

2.2.2 Reinforcement Learning for high-precision assembly tasks 10

I

II CONTENTS

2.2.3 Learning with real-world robot manipulators 11

2.2.4 Domain Randomization . 12

2.2.5 Curriculum Learning . 12

3 Learning force control for contact-rich manipulation tasks

with rigid position-controlled robots 15

3.1 Introduction . 15

3.2 Methodology . 17

3.2.1 Reinforcement Learning . 18

3.2.2 System overview . 19

3.2.3 Force control implementation . 21

3.2.4 Fail-safe mechanism . 25

3.2.5 Task’s reward function . 26

3.3 Experiments . 27

3.3.1 Technical details . 28

3.3.2 Action spaces for learning force control 28

3.3.3 Safe learning . 31

3.3.4 Real robot experiments . 33

3.4 Discussion . 35

4 Variable compliance control for robotic peg-in-hole assembly:

A deep-reinforcement-learning approach 39

4.1 Introduction . 39

CONTENTS III

4.1.1 Problem Statement . 40

4.2 Methodology . 42

4.2.1 System Overview . 42

4.2.2 Learning Adaptive-Compliance Control 43

4.2.3 Speeding Up Learning . 46

4.3 Experiments and results . 48

4.3.1 Experiment Setup . 48

4.3.2 Training . 48

4.3.3 Evaluation . 49

4.3.4 Generalization . 51

4.3.5 Ablation Studies . 55

4.4 Discussion . 58

5 Accelerating Robot Learning of Contact-Rich Manipulations:

A Curriculum Learning Study 61

5.1 Introduction . 61

5.2 Materials and Methods . 64

5.2.1 Problem Statement . 64

5.2.2 System Overview . 64

5.2.3 Compliance Control in Task Space 66

5.2.4 Domain Randomization . 68

5.2.5 Curriculum Learning . 68

IV CONTENTS

5.3 Experiments and results . 72

5.3.1 Experimental Setup . 72

5.3.2 Training . 73

5.3.3 Learning performance . 74

5.3.4 Evaluating learned Policies . 76

5.3.5 Real-world experiments . 78

5.4 Ablation studies . 82

5.4.1 Reward Functions . 82

5.4.2 Force Controller Position PID types 83

5.5 Discussion . 85

5.6 Conclusions . 86

6 Discussion 87

6.1 Contributions . 87

6.2 Open Challenges and Future Work . 89

References 91

Acknowledgements 107

Publications 109

List of Figures

3.1 Proposed learning force control scheme. The input to the system is a goal

end-effector pose, xg. The policy actions are trajectory commands, ax,

and parameters, ap, of a force controller. 19

3.2 Proposed approach to solve contact-rich tasks. Assuming knowledge of

the goal pose of the robot’s end-effector, a simple P-controller can be

designed. Our approach aims to combine this knowledge with the policy

to generate the motion trajectory. 22

3.3 Proposed scheme for learning PID parallel position/force control. The

RL agent controls the controller parameters PD gains, PI gains, and the

selection matrix, S. 23

3.4 Proposed scheme for learning admittance control. A PD controller is in-

cluded to regulate the input reference motion trajectory. The RL agent

controls the PD gains, as well as, the admittance model parameters (in-

ertia, damping and stiffness). 24

3.5 Learning curve of training session with active penalization of violation of

the safety constraints. Peg-insertion scenario on simulation. 30

3.6 Learning curve of training without penalizing violation of safety con-

straints on the reward function. Peg-insertion scenario on simulation. . . 31

V

VI LIST OF FIGURES

3.7 Ring-insertion task. Hole clearance of 0.2 mm. Cumulative reward per

step of 20,000-steps training sessions of A-13pd and P-14 policy models. 33

3.8 Peg-insertion task. Hole clearance of 0.05 mm. Cumulative reward per

step of 20,000-steps training sessions of A-13pd and P-14 policy models. 35

3.9 A-13pd: policy performance evolution on peg-insertion task. On the

left, performance of the initial policy tried by agent. On the right, per-

formance of the learned policy after training. All values correspond to

the insertion direction only. Only 160 steps are displayed for space con-

straints. Insertion task divided into three phases: a search phase before

contact (Yellow), a search phase after initial contact (Red) and an inser-

tion phase (Green). 36

4.1 Insertion task with uncertain goal position. 41

4.2 Our proposed framework. On the basis of estimated target position for

an insertion task, our system learns a control policy that defines motion-

trajectory and force-control parameters of an adaptive compliance con-

troller to control an industrial robot manipulator. 42

4.3 Control policy consisting of three networks. First, proprioception infor-

mation is processed through a 2-layer neural network. Second, force/-

torque information is processed with a temporal convolutional network.

Lastly, extracted features from first two networks are concatenated and

processed on a 2-layer neural network to predict actions. 45

4.4 Real experiment environment with a 6-degree-of-freedom UR3e robotic

arm. Cuboid peg and task board hole had a nonsmooth surface with 1.0

mm clearance. 49

4.5 figure . 50

LIST OF FIGURES VII

4.6 Performance of learned policy (sim2real + retrain) on 3D-printed cuboid-

peg-insertion task. Insertion direction was aligned with y axis of robot

coordinate system. Relative distance from robot’s end effector to goal

position and contact force is shown. The 24 policy actions besides the

corresponding axis are also shown. 51

4.7 (left to right) High-, medium-, and low-stiffness environments. 53

4.8 Several insertion tasks with different degrees of complexity. (A) Metal

ring (high stiffness) with 0.2 mm of clearance. (B) Electric outlet requir-

ing high insertion force. (C) Local-area-network (LAN) port, delicate

with complex shape. (D) Universal serial bus (USB). 54

4.9 Comparison between learning from scratch and learning from a policy

learned on simulation: learning curve for 3D-printed cuboid-peg insertion

task on real robot with random initial positions. 56

4.10 Comparison between policy architectures: learning curve for cuboid-peg

insertion task with random initial positions. 57

4.11 Comparison of policies with different inputs. Learning curve for cuboid-

peg insertion task with random initial positions and random desired in-

sertion force. 58

5.1 Overview of the system used for this study. The input is the goal pose,

optionally the desired contact force can be defined, otherwise is considered

as 0 N. 63

5.2 Visualization of the reward function components. 66

5.3 Real experiment environment with a 6-degree-of-freedom UR3e robotic

arm. WRS2020 Task board is shown, along side the three insertion tasks

used for validation, motor pulley, bearing, and shaft. Each task has

industrial level sub-mm tolerances. 74

VIII LIST OF FIGURES

5.4 Simulated peg-in-hole environments. The cylinder, hexagonal prism, cuboid

and triangular prism were used during training. The trapezoid prism and

the star prism were used for testing. 75

5.5 Learning curve comparison using the cumulative reward of the overall

training session. Each method was trained three times. The results are

aggregated as the average cumulative reward and corresponding standard

deviation, represented by the bold line and the shadow region. 76

5.6 Real-world experimental scenarios. Left: 3D printed primitive shape-

pegs, different from the ones used for training in simulation. Right:

Industrial level insertion tasks from the WRS2020 Robotics Assembly

Challenge. 78

5.7 Agents performance on WRS2020 insertion tasks. For clarity, only the

z-axis (Insertion direction) distance error and contact force are displayed.

Comparison was made for each task when both methods successfully com-

pleted the task. 81

5.8 Performance of both methods where both failed to complete the task

within the time limit. 82

5.9 Learning curve comparison. 83

5.10 Learning curve comparison. 84

List of Tables

3.1 Policy models with different action spaces. 29

3.2 Collision detected during training session. 32

4.1 Randomized training conditions. 50

4.2 Comparison of learning from scratch, straightforward sim2real, and sim2real

+ retraining (Ours). Test performed on a 3D printed cuboid peg insertion

task assuming knowledge of the true goal position. 52

4.3 Comparison of learning from scratch, straightforward sim2real and sim2real

+ retraining (Ours) with different degrees of goal-position uncertainty er-

ror. Test performed during 3D-printed cuboid-peg insertion task. 52

4.4 Success rate of 3D-printed-cuboid insertion task with different degrees of

contact stiffness. 53

4.5 Success rate of learned policy on several insertion tasks. 54

5.1 Domain Randomization parameters and their maximum range of values 69

5.2 Evaluation of learned policies on novel conditions. 77

5.3 Evaluating learned policies on the real-world environment, using 2 toy

scenarios not seen during training on simulation. 80

IX

X LIST OF TABLES

5.4 Evaluating learned policies on the real-world environment, using 2 toy

scenarios not seen during training on simulation. 81

5.5 Success rate on novel tasks on the simulated environment. 83

5.6 Success rate on novel tasks on the simulated environment. 84

Abbreviations

CL Curriculum Learning

CNN Convolutional Neural Network

DOF Degrees of freedom

DR Domain Randomization

DRL Deep Reinforcement Learning

F/T Force-Torque

ROS Robot Operating System

RL Reinforcement Learning

SAC Soft Actor Critic

TCN Time Convolutional Network

sim2real Simulation to Real World

PID Proportional Integral Derivative

PD Proportional Derivative

PI Proportional Integral

UR3e Universal Robots 3 e-series

USB Universal Serial Bus

XI

XII LIST OF TABLES

LAN Local Area Network

WRS World Robot Summit

HMLV High-Mix Low-Volume

DDPG Deep Deterministic Policy Gradient

PIH Peg-In-Hole

MDP Markov Decision Process

IK Inverse Kinematics

CPU Central Processing Unit

GPU Graphics Processing Unit

ROS Robot Operating System

GDR Domain Randomization with Gaussian probability distribution

UDR Domain Randomization with Uniform probability distribution

List of Symbols

ẍ Robot’s end-effector acceleration

ẍ Robot’s end-effector velocity

q̇max Joint velocity limit

η Scalar part of a Quaternion

γ Learning discount factor

R Real numbers

A Action space

O Observation space

P Transition probability distribution

R Reward function

ω Natural frequency, admittance controller

ϕ Cartesian orientation vector

π Policy

Ψ Randomization space

ψi Randomization parameter ith

ψhigh
i Upper-bound defined for randomized value of ithparameter

XIII

XIV LIST OF SYMBOLS

ψlow
i Lower-bound defined for randomized value of ithparameter

p Cartesian position vector

θ Policy parametrization weights

ε Vector part of a Quaternion

ζ Damping ratio, admittance controller

a Action

ap Policy’s action for force controller parameters

ax Policy’s action in translation/rotation of robot’s end-effector

amax Maximum value of an action

bd Desired damping, admittance controller

ep Episode number

epmax Maximum number of episodes

Fg Desired insertion force

Fext Wrench measured at tip of the robot’s end-effector, from Force/Torque sensor

Fmax Contact force limit

kd Desired stiffness, admittance controller

Kx
d Derivative gain of position PD

Kf
i Integral gain of force PI

Kf
p Proportional gain of force PI

Kx
p Proportional gain of position PD

L Curriculum’s level difficulty

Lep Curriculum’s level difficulty for current episode

LIST OF SYMBOLS XV

Lm Linear mapping, reward function

Lstep Step size for curriculum’s level difficulty increment or decrement

Lthlddown Threshold to decrease curriculum’s level difficulty

Lthldup Threshold to increase curriculum’s level difficulty

md Desired inertial, admittance controller

o Observation

p0 Probability distribution over initial states

qc Joint configuration

qc Target joint configuration

r Reward

rd Dynamic reward based on curriculum’s level of difficulty

S Parallel position-force controller’s Selection matrix

s State

T Time horizon

t Time step

wi Reward weights

x Cartesian pose of the robot’s end-effector

x′
g Goal Pose

x0 Initial state

xc Cartesian pose command

xe Relative pose error with respect to goal pose

xg Goal Pose

XVI LIST OF SYMBOLS

xmax Maximum distance from goal

S State space

Chapter 1

Introduction

1.1 Background and motivation

In recent decades, a trend of declining and aging population has countries around the

world facing the problem of labor shortage [1, 2]. Many industries are affected, particu-

larly labor-intensive industrial production processes. A promising approach to address

this problem is through automation [3].

In the past, manufacturing industries were driven by mass production of products

which motivated the development of assembly lines to tackle the production demands.

While such assembly line required many workers, typically, each worker needed to focus

on a single repetitive task, which would rarely change. Therefore, automation of such

tasks could be achieved either through the development of specialized machinery [4] or

through the use of general purpose robotic manipulators programmed to repeat a se-

quential series of instructions [5]. However, modern market conditions have pushed man-

ufacturing industries towards the production of high-mix low-volume (HMLV) products

[6]. HMLV production is difficult to solve with assembly lines, as the task specification

changes frequently. In consequence, assembly line automation methods are ineffective.

In contrast to assembly lines, assembly cells have been proposed to tackle HMLV pro-

duction [7]. In an assembly cell a worker is in charge of the partial or full assembly of a

1

product, i.e., a worker needs to be able to solve many tasks. Thus, in order to automate

assembly cells, a robotic system needs to be able to solve several open challenges such

as, high precision and careful control of the interaction forces between the robot and the

manipulated objects (to avoid damaging the product or the robot), efficient set up to

new working environments and the ability to adapt to changes in the task specifications.

This dissertation is aimed towards the industrial automation through general-purpose

robotic manipulators. As most industrial robots are only joint position controlled, this

work is focused on these type of robots. In joint position-control robots, the lowest-level

control available the user allows to define target angles and speed of each joint. These

type of robots tend to exert high joint torques to achieve precise motion trajectories.

Solving contact-rich manipulation tasks with position-control robots is particularly chal-

lenging as small errors in a motion trajectory, such as contacting a surface, can result

in large contact forces (i. e., a collision). Therefore, a safe and precise control of the

interaction forces between the robot is essential to solve assembly tasks with industrial

robots.

Reinforcement learning (RL) methods are a promising approach to address the chal-

lenge of industrial automating, where an agent is encourage to achieve a desired behavior

through rewards and/or punishments [8]. RL has been proven to be effective at learning

complex behaviors to solve challenging tasks from playing Atari video games at super-

human level [9] to solving dexterous manipulation tasks with a multi-fingered robotic

hand [10]. However, RL methods typically require a large amount of data (interaction)

to learn a given task. Furthermore, RL is still not widely adopted on real applications

(real hardware) as it requires tackling additional challenges, such as the need of robust

controllers, the risk of tear and wear of training directly on real hardware, and in many

cases the need of constant human supervision during training.

The work presented in this dissertation address the following challenges; learn-

ing to solve high-precision contact-rich assembly tasks with industrial position-control

robotic manipulators though RL. Improving learning efficiency by exploiting the ben-

efits of physics simulators and domain transfer (sim2real) techniques such as Domain

CHAPTER 1. INTRODUCTION 2

Randomization (DR) and Curriculum Learning (CL).

1.2 Objectives

The general objectives of this dissertation are as follows;

1. The integration of RL with rigid position-control robots to solve assembly tasks.

In particular, we focus on the tasks of part mating and part insertion, which are

very common in the manufacturing industry. The goal is to develop a safe learning

framework to train and/or deploy RL policies directly on real-world hardware.

2. The development of RL-based methods to learn force control policies that can

deal with the dynamic interaction of the robot with its working environment when

solving high-precision contact-rich tasks such that neither the robot nor the ma-

nipulated parts are damage during the execution of the tasks. Additionally, the

aim is to enable the robotic agent to handle task uncertainty, and to generalization

to similar novel tasks, not seen during the training phase.

1.3 Dissertation Outline

This dissertation is organized as follows.

In Chapter 3, towards enabling RL methods to be applied to industrial position-

controlled robots, a RL framework is introduced. The design of the framework is dis-

cussed and evaluated with a study of the ideal Action Spaces of the robotic agent for

contact-rich manipulation tasks. Finally, the implementation of the RL framework for

real-world applications is discuss; a fail-safe mechanism is designed and developed to

enable industrial robot manipulator to tackle contact-rich assembly tasks.

In Chapter 4, a simulation-to-real (sim2real) method is proposed to reduce the

burden of training RL policies on real hardware. The proposed method is designed to

enable the robotic agent to tackle assembly tasks even in the presence of uncertainty of

CHAPTER 1. INTRODUCTION 3

the task’s goal. A more robust policy representation is also presented in this chapter.

Finally, the robustness of the proposed method and its generalization capability are

evaluated on challenging real-world tasks not presented during training.

Chapter 5 is focused on addressing the problem of sample efficiency of RL methods.

To this end, a Curriculum Learning (CL) study is presented. The overall idea is to guide

the training of the RL agent in order to reduce the time required to learn an optimal

control policy. In this chapter, a CL-based method is proposed and evaluated. The

proposed method, compared to the methods proposed in previous chapters, is shown to

be more sample efficient and to generalized better to novel task, not seen during the

training phase.

Finally, in Chapter 6, the achievements and limitations of the proposed methods

presented in this dissertation are discussed, as well as, open challenges and ideas for

future work.

CHAPTER 1. INTRODUCTION 4

Chapter 2

Literature Review

2.1 Force Control

For industrial assembly tasks, where the robot end effector has to manipulate an ob-

ject and interact with a complementary object or surface, controlling the interaction

forces between the robot manipulator and its environment is critical for success. In this

dissertation, these interaction tasks with the environment are referred as contact-rich

manipulation tasks.

General purpose industrial robot arms are typically position controlled. A position-

controlled robot refers to a robot where the lowest-level controller available to the user

allows only the control of the angle (position) of each joint. A contact-rich manipulation

task could be successfully executed with position control alone if the task were accurately

planned. This would require an accurate model of both the robot manipulator and the

environment geometry and dynamics. The robot manipulator can be modeled with

enough precision, but a detailed description of the environment is difficult to obtain.

To solve a manipulation task, for example, a part mating task, the motion trajectory

plan should have an accuracy much greater than the tolerances of the task. For high-

precision manipulation tasks, a position control approach is not feasible in practice.

Errors in the modeling of the robot or its environment would lead to errors in the motion

5

trajectory planned. In turn, the motion plan errors may result in unexpected contact

with the environment causing the end effector to deviate from the desired trajectory.

Consequently, the position control system attempts to reduce the deviation, by applying

higher torque to the robot joints. Ultimately, the contact forces increase until either the

robot or the parts are damaged. This issue can be overcome if a compliant behavior is

ensured during the interaction [11].

A compliant behavior can be achieved either in a passive way by placing a compliant

mechanical device between the robot end effector and the environment, or in an active

way by devising a suitable interaction control strategy. A typical passive compliance

method consists of a mechanical device called remote center compliance (RCC) [12]

which is placed between the robot’s wrist and end effector. For a part mating task

(peg insertion), the passive compliance provided by the RCC lets the end effector move

perpendicularly to the peg’s axis and rotate freely so as to reduce resistance. However,

the passive method does not work well with high-precision assembly [13]. On the other

hand, active compliant methods correct position errors by controlling the interaction

forces between the robot end effector and the environment. The contact force is the

quantity describing the state of the interaction. To actively control the contact force, it

is necessary to measure it. A typical approach is to mount a Force-Torque (F/T) sensor

on the robot manipulator, between the wrist and the end effector. In general, these

methods use the measured external forces and moments, and design control strategies

on the basis of dynamic models of the task to minimize contact force. These active

compliance methods are referred as force control.

Force control methods address the problem of interaction between a robot manipu-

lator and its environment, even in the presence of some uncertainty (geometric and dy-

namic constraints) on contact-rich tasks. In this dissertation, we consider two common

force control methods, first, a parallel force-position controller [14] and an admittance

controller [15]. These methods provide direct control of the interaction through contact

force feedback and a set of parameters, which describe the dynamic interaction between

the manipulator and the environment. Solutions for high-precision contact-rich manip-

ulation tasks have been proposed based on these force control approaches; Force control

CHAPTER 2. LITERATURE REVIEW 6

based approaches has been proposed to solve assembly task, mainly considering the

Peg-In-Hole (PIH) task [16, 17, 18, 19, 20, 21, 22]. Nevertheless, most of these assembly

methods are not practical to use in real applications. Model parameters need to be

identified, and controller gains need to be tuned. In both cases, the process is manually

engineered for specific tasks, which requires a lot of time, effort, and expertise. These

approaches are also not robust to uncertainties and do not generalize well to variations

in the task specifications. Other approaches attempt to address this problem by either

scheduling variable gains [23, 24], using adaptive methods for setting the gains [25, 26],

or learning the gains from human demonstrations [27, 28]. This dissertation address the

challenge of solving high-precision contact-rich manipulation task by combining tradi-

tional force control methods with Reinforcement Learning (RL) methods. Through RL

the motion trajectory and parameters of the force controller are learned. Details of such

approach are presented in Chapter 3.

2.2 Reinforcement learning

Reinforcement learning (RL) is a machine learning with the primary goal of producing

autonomous agents that learn optimal behaviors through interaction with their envi-

ronment. The core concepts of the RL problem are the agent, the policy, the reward,

and the environment. The agent observe its environment and takes actions according

to some rules, the policy [8]. The actions taken by the agent change the state of the

environment, and then, the agent is rewarded, or punished, with a numerical value. The

goal in RL is for the agent to explore the space of possible sequence of actions and from

it find a good, if possible optimal, policy. An optimal policy is one that maximizes the

cumulative reward obtain by the agent during its life-time. In an episodic setting, where

the task is repeated at the end of each episode, the optimal policy maximizes the total

reward per episode.

In the past, although RL had some successes [29, 30], such approaches lacked scal-

ability, i. e., they were limited to low-dimensional problems. The limitations were due to

issues such as, memory complexity, computational complexity, and sample complexity

CHAPTER 2. LITERATURE REVIEW 7

[31]. In the last decade, the rise of deep learning have enable us to tackle such complex-

ity issues by relying on the powerful function approximation and representation learning

properties of deep neural networks [32]. With these new tools, RL has proven to be

effective a learning complex behaviors to tackle challenging tasks. Notable examples of

this are, first, the development of an algorithm that could learn to play a range of Atari

2600 video games at a superhuman level, directly from image pixels [9, 33]. Convinc-

ingly demonstrating that RL agents could be train on high-dimensional observations,

solely based on a reward signal. Second, AlphaGo [34], a hybrid Deep Reinforcement

Learning (DRL) system used to master the game of Go, a task considerably difficult

due to the high number of possible states (board configurations) and similarly high

number of possible actions for each state. In this case too, the RL based system was

proven to achieve superhuman level of expertise by defeating the human world cham-

pion. Third, RL was used to master the game of StarCraft II, a multi-agent video game

with complex decision-making mechanics [35]. Nevertheless, the RL was able to achieve

a Grandmaster level of expertise.

In robotics, RL enables robots to autonomously discover optimal behaviors through

trial-and-error interactions with its environment. Traditional control methods required

the detailed design of solutions to a task, carefully crafting the sequence of actions the

robot need to take to achieve a certain goal. With RL, instead, the designer of a control

task provides feedback to the robot through a numerical reward given for each action

taken. The reward serves as a measure of the performance of robot towards a given

task [36]. In the context of robotics, RL methods have also been proven successful at

autonomously learning complex behaviors in a variety of tasks ranging from playing a

game of table tennis [37, 38, 39, 40], controlling Unmanned Aerial Vehicles [41, 42],

locomotion [43, 44] to solving robotic manipulation tasks such as grasping [45, 46, 47,

48, 49], pick-and-place (e. g., block staking) [50, 51, 52, 53], and assembly [54, 55,

56, 57, 58, 59]. In particular, the task of interest of this dissertation are the subset

of assembly task comprising part coupling and part insertion also referred as Peg-In-

Hole tasks. Plenty of methods have been proposed to accelerate automation of robotic

assembly tasks, such as PIH tasks. From search strategies to align the peg with the hole

CHAPTER 2. LITERATURE REVIEW 8

[60, 61, 62], to learning-based methods [63, 64, 65].

The following sections discuss in more detail the most related work to the works

presented in this dissertation.

2.2.1 Reinforcement learning and force control

Previous research has studied the use of RL methods to learn force control parameters

(gains). Buchli et al. [66] uses policy improvements with path integrals (PI2) [67] to

refine initial motion trajectories and learn variable scheduling for the joint impedance

parameters. Similarly, Bogdanovic et al. [68], proposed a variable impedance con-

trol in joint-space, where the gains are learned with Deep Deterministic Policy Gradient

(DDPG) [69]. Likewise, Martín-Martín et al [70], proposed a variable impedance control

in end-effector space (VICES). However, in all these cases, access to the robot manip-

ulator’s low-level control of joint torques is assumed, which is not available for most

industrial manipulators. Instead, we focus on position-controlled robot manipulators

and provide a method to learn manipulation tasks using force feedback control where

the controller gains are learned through RL methods. Luo et al. [57] propose a method

for achieving peg-in-hole tasks on a deformable surface using RL and validated their

approach on a position-controlled robot. They propose learning the motion trajectory

based on the contact force information. However, the tuning of the compliant con-

troller’s parameters is not taken into account. In Chapter 3, we are proposing a method

for learning not only the motion trajectory based on force feedback but simultaneously

fine-tuning the compliant controller’s parameters.

The representation of the action space is fundamental for the RL problem. Both

Bogdanovic [68] and Martín-Martín [70] study the importance of different action repre-

sentation in RL for contact-rich robot manipulation tasks. In a similar way, in Chapter 3,

an empirical study is presented, comparing different choices of action space based on

force feedback control methods for rigid robots on contact-rich manipulation tasks.

CHAPTER 2. LITERATURE REVIEW 9

2.2.2 Reinforcement Learning for high-precision assembly tasks

RL can be applied to robotic agents to learn high-precision assembly skills instead of

only transferring human skills to the robot program [71]. Recent studies showed the

importance of RL for robotic manipulation tasks [72, 73, 51], but none of these methods

can be applied directly to high-precision industrial applications due to the lack of fine

motion control.

In [74], an RL technique was used to learn a simple peg-in-hole insertion opera-

tion. Similarly, Inuo et al. [54] proposed a robot skill-acquisition approach by training

a recurrent neural network to learn a peg-in-hole assembly policy. However, these ap-

proaches used a finite number of actions by discretizing the action space, which has

many limitations in continuous-action control tasks [69], as is the case for robot control,

which is continuous and high-dimensional.

Xu et al. [75] proposed learning dual peg insertion by using the deep deterministic

policy gradient [76] (DDPG) algorithm with a fuzzy reward system. Similarly, Fan et

al. [59] used DDPG combined with guided policy search (GPS) [77] to learn high-

precision assembly tasks. Luo et al. [57] also used GPS to learn a peg-in-hole tasks on a

deformable surface. Nevertheless, these methods learn policies that control the motion

trajectory only while they require the manual tuning of force control gains; therefore,

they do not scale well to variations of the environment.

Ren et al. [78] proposed the use of DDPG to simultaneously control position and

force control gains, but they assumed the geometric knowledge of the insertion task,

which made the learned policies inflexible to be applied to different insertion tasks. To

solve high-precision assembly tasks, our approach focused on learning policies that simul-

taneously control the robot’s motion trajectory and actively tune a compliant controller

to unknown geometric constraints.

Buchli et al. [66] accomplished variable stiffness skill learning on robot manipulators

by using an RL algorithm call-policy improvement with path integrals (PI2). However,

the method was formulated for torque-control robots. Another similar approach was to

CHAPTER 2. LITERATURE REVIEW 10

use a flexible robot so as to focus only on the motion trajectory, as in [79]; however, rigid

position-controlled robots are still more widely used. Therefore, we focus on industrial

robot manipulators, which are mainly position-based-controlled.

Abu- Dakka et al. [80] proposed a learning method based on iterative learning

control (ILC). Their method is focus on transferring manipulation skills from demon-

strations that provide a reference trajectory and force profile. In this work, we present

a method that can learn manipulation skills without prior knowledge of a reference tra-

jectory or force profile. However, our method supports the use of such prior knowledge

to speed up the learning phase.

In Chapter 4, a robust RL-based framework is proposed to solve high-precision

assembly tasks with position-controlled robots even in the presence of uncertainty of

the goal pose.

2.2.3 Learning with real-world robot manipulators

Some research projects have explored the capabilities of RL methods on real robots by

testing them on a large scale. On the one hand, Levine et al. [46] and Pinto et al.

[73], both in which a massive amount of data was collected for learning robotic grasping

tasks. However, in both works, a high-level objective, the grasp posture, is learned from

the experience obtained. In contrast, for contact-rich tasks it is require to learn direct

low-level controller to, for example, reduce the contact force between the robot and the

environment for safety reasons. On the other hand, Mahmood et al. [81] propose a

benchmark for learning policies on real-world robots, so different RL algorithms can

be evaluated on a variety of tasks. Nevertheless, the tasks available in [81] are either

locomotion tasks with a mobile robot or contact-free tasks with a robot manipulator.

In this work, we propose a framework for learning contact-rich manipulation tasks with

real-world robot manipulators based on force control methods.

Alternative research approach have explicitly focused on the domain transfer of

assembly tasks from simulation to real-world environments (sim2real). In [82], a meta-

CHAPTER 2. LITERATURE REVIEW 11

RL technique is applied to transfer experiences and generalize better to the real world.

In [83], system identification of the real robot (KUKA LBR iiwa) with its simulated

counterpart is performed to improve sim2real transferability. While RL-based policies

have been proposed and proven to have the potential to solve assembly tasks in the real

world, there is still a lack of adoption of such methods in real industrial assembly tasks.

One reason for this gap between research and industry is the sample efficiency of such

learning methods; a large amount of interaction of the agent with its environment is

still necessary to learn robust policies. In this dissertation, we aim to contribute to this

area by proposing a more sample-efficient approach based on Curriculum Learning (CL)

and Domain Randomization (DR), i.e., less time is required to train a successful policy

without decreasing its transferability capabilities.

2.2.4 Domain Randomization

In the context of machine learning, DR has been proposed as a technique to improve

domain transfer, such as going from one task to a harder one or moving from a simulated

environment to a real-world environment, in particular for training vision-based models

[84] or sim2real models [10]. In [85] an empirical study is presented to examine the effects

of DR on agent generalization. Their results show that DR may lead to suboptimal,

high-variance policies, which [85] attributes to the uniform sampling of environment

parameters. Following those results, in Chapter 5, a method is proposed combining DR

with CL and the improved performance of such approach is empirically studied.

2.2.5 Curriculum Learning

The concept of CL in the context of machine learning was first proposed by Bengio et

al. [86]. CL can be understood as learning from easier to harder tasks, i.e., the order

in which information is presented affects the policy’s ability to learn. A comprehensive

survey on Curriculum Learning applied to Reinforcement Learning has been presented

in [87]. Most CL approaches have been validated mainly on simulated environments,

such as toy examples (e.g., grid worlds, cart-pole, and low-dimensional environments),

CHAPTER 2. LITERATURE REVIEW 12

video games, and simulated robotic environments. Few research works have focused

on real-world robotic environments, such as in [88] where a robot is trained to shoot

a ball into a goal, [89, 90] where reaching tasks with a robot arm are tackled, and

[91] which focused on two tasks moving a cube to a target pose and cube stacking.

Most recently, [92] presented a CL method focused on a specific automotive production

task, trained on simulation, and transferred to its real-world equivalent. Similarly, [93]

proposes a method to enable a robot to conduct anchor-bolt insertion, a peg-in-hole task

for holes in concrete. On the other hand, the study presented in Chapter 5 is focuses on

tackling various real-world complex industrial assembly insertion tasks, trained only on

toy peg-in-hole simulated environments. Furthermore, we make an exhaustive study on

the performance of several approaches to combine DR and CL. As a result, we propose

a method to accelerate learning and domain transfer to real-world environments by an

adaptive curriculum that affects how DR and the reward signal are considered during

training.

CHAPTER 2. LITERATURE REVIEW 13

CHAPTER 2. LITERATURE REVIEW 14

Chapter 3

Learning force control for

contact-rich manipulation tasks

with rigid position-controlled

robots

This thesis chapter originally appeared in the literature as

Beltran-Hernandez, C. C., Petit, D., Ramirez-Alpizar, I. G., Nishi, T., Kikuchi,

S., Matsubara, T., & Harada, K. (2020). Learning force control for contact-

rich manipulation tasks with rigid position-controlled robots. IEEE Robotics

and Automation Letters, 5(4), 5709-5716.1

3.1 Introduction

In the age of the 4th industrial revolution, there is much interest in applying artificial

intelligence to automate industrial manufacturing processes. Robotics, in particular,

holds the promise of helping to automate processes by performing complex manipula-
1© 2020 IEEE Reprinted, with permission, from all authors.

15

tion tasks. Nevertheless, safely solving complex manipulation tasks in an unstructured

environment using robots is still an open problem[94].

Reinforcement learning (RL) methods have been proven successful in solving ma-

nipulation tasks by learning complex behaviors autonomously in a variety of tasks such

as grasping [45, 46], pick-and-place [51], and assembly [55]. While there are some in-

stances of RL research validated on real robotic systems, most works are still confined

to simulated environments due to the additional challenges presented by working on

real hardware, especially when using rigid position-controlled robots. These challenges

include the need for a robust controller to avoid undesired behavior that risk collision

with the environment, and constant supervision from a human operator.

So far, when using real robotic systems with RL, there are two common approaches.

The first approach consists of learning high-level control policies of the manipulator. Said

approach assumes the existence of a low-level controller that can solve the RL agent’s

high-level commands. Some examples include agents that learn to grasp [45, 46] or to

throw objects [95]. In said cases, the agent learns high-level policies, e.g., learns the

position of the target object and the grasping pose, while a low-level controller, such

as a motion planner, directly controls the manipulator’s joints or end-effector position.

Nevertheless, the low-level controller is not always available or easy to manually engineer

for each task, especially for achieving contact-rich manipulation tasks with a position-

controlled robot. The second approach is to learn low-level control policies using soft

robots [96, 97, 98], manipulators with joint torque control or flexible joints, which are

considerably safer to work with due to their compliant nature, particularly in the case of

allowing an RL agent to explore its surroundings where collisions with the environment

may be unavoidable. Our main concern with this approach is that most industrial robot

manipulators are, by contrast, rigid robots (position-controlled manipulators). Rigid

robots usually run on position control, which works well for contact-free tasks, such

as robotic welding, or spray-painting [99]. However, they are inherently unsuitable for

contact-rich manipulation tasks since any contact with the environment would be con-

sidered as a disturbance by the controller, which would generate a collision with a large

contact force. Force control methods [11] can be used to enable the rigid manipulator to

CHAPTER 3. LEARNING FORCE CONTROL 16

perform tasks that require contact with the environment, though the controller’s param-

eters need to be properly tuned, which is still a challenging task. Therefore, we propose

a method to safely learn low-level force control policies with RL on a position-controlled

robot manipulator.

This chapter presents three main contributions. First, a control framework for

learning low-level force control policies combining RL techniques with traditional force

control. Within said control scheme, we implemented two different conventional force

control approaches with position-controlled robots; one is a modified parallel position/-

force control, and the other is an admittance control. Secondly, we empirically study

both control schemes when used as the action space of the RL agent. Thirdly, we devel-

oped a fail-safe mechanism for safely training an RL agent on manipulation tasks using

a real rigid robot manipulator. The proposed methods are validated on simulation and

real hardware using a UR3 e-series robotic arm.

This chapter is structured as follows. Section 3.2 presents in detail each component

of the proposed method. The experimental setup and the evaluation of the proposed

method is described in Section 3.3. Finally, in Section 3.4 a discussion of the work

presented in this chapter is presented.

3.2 Methodology

The study presented in this chapter deals with high precision assembly tasks with a

position-controlled industrial robot. Due to the difficulty of obtaining a precise model

of the physical interaction between the robot and its environment, RL is used to learn

both the motion trajectory and the optimal parameters of a compliant controller. The

RL problem is described in Section 3.2.1. The architecture of the system and the

interaction control methods considered are explained in Section 3.2.2, Section 3.2.2, and

Section 3.2.3. Finally, our safety mechanism that allows the robot to learn unsupervised

is described in Section 3.2.4.

CHAPTER 3. LEARNING FORCE CONTROL 17

3.2.1 Reinforcement Learning

Reinforcement Learning is an area of machine learning concerning sequential decision

making to maximize a numerical reward signal. The main idea is that an agent can learn

from experience, from interacting with its environment. As described in [8], the learner

(agent) is not told how to behave, i. e., which actions to take, but instead must discover

which actions yield the highest reward by trying them. We consider the problem of RL

modeled as a Markov Decision Process (MDP) defined by M = {S,A,P, r, γ, p0, T}. S

is the state space, A the action space, P the transition probability distribution defining

p(s(t+1) | s(t),a(t)), r : S ×A → R the reward function, p0 the probability distribution

over initial states, γ ∈ [0, 1] a discount factor, and T the time horizon (maximum

number of time steps per episode). In other words, the environment is described by

a state s ∈ S. The agent can perform actions a ∈ A, and perceives the environment

through observations o ∈ O, which may or not be equal to s. We consider an episodic

interaction of finite time steps with a limit of T time steps per episode, after which the

environment is reset to a previous initial state or some variation of it described by p0.

During an episode, at each time step t, the agent find itself in a state s(t), ob-

serves the environment o(t), then takes actions a(t) according to some rules (a policy)

πθ(a(t) | o(t)), which is parameterized by weights θ. In turn, the agent receives a nu-

merical reward r(t) for taking such action and transitioning to a new state s(t + 1).

This process repeats until a termination criteria is met, e. g., the fixed time horizon T

is reached. Given an stochastic dynamics p(s(t + 1) | s(t),a(t)) and a reward function

r(s,a), the aim is to find an optimal policy πθ∗ that maximizes the expected sum of

future rewards given by

θ∗ := arg min
θ

Etraj

T∑
t=0

γtr(st, πθ(st)),

where the expectation is taken from the possible trajectories

traj = (s0, πθ(s0), ...sT , πθ(sT)) due to the random nature of MDPs [100].

In this dissertation, we consider the agent as a robotic manipulator. The actions

available to this robotic agent are Cartesian position commands and Force control pa-

CHAPTER 3. LEARNING FORCE CONTROL 18

rameters, as described in Section 3.2.3. The main observations are the position of the

robot’s end-effector, its velocity and the wrench measured at the tip of the end-effector.

Additional observations are also considered in Chapter 4 and Chapter 5.

Soft Actor Critic

In this dissertation, the state-of-the-art model-free RL method called Soft Actor Critic

(SAC) [101] is used. SAC is an off-policy actor-critic DRL algorithm based on the max-

imum entropy reinforcement learning framework. SAC aims to maximize the expected

reward while optimizing a maximum entropy. The SAC agent optimizes a maximum en-

tropy objective, which encourages exploration according to a temperature parameter α.

The core idea of this method is to succeed at the task while acting as randomly as possi-

ble. Since SAC is an off-policy algorithm, it can use a replay buffer to reuse information

from recent rollouts for sample-efficient training. We use the SAC implementation from

TF2RL2.

3.2.2 System overview

Figure 3.1: Proposed learning force control scheme. The input to the system is a goal

end-effector pose, xg. The policy actions are trajectory commands, ax, and parameters,

ap, of a force controller.

2TF2RL: RL library using TensorFlow 2.0. https://github.com/keiohta/tf2rl

CHAPTER 3. LEARNING FORCE CONTROL 19

Our proposed method aims to combine a force control with RL to learn contact-rich

tasks when using position-controlled robots. Figure 3.1 describes the proposed control

scheme combining an RL policy and a force control method. We assume knowledge of

the goal pose of the robot’s end-effector, xg. Both the policy and the force controller

receive as feedback the pose error, xe = xg − x, and the contact force Fext. The velocity

of the end-effector, ẋ, is also included in the policy’s observations. The F/T sensor

signal is filtered using a simple low-pass filter.

The force control method has two internal controllers. First, a PD controller that

generates part of the motion trajectory based on the pose error, xe. Second, a force

feedback controller that alters the motion trajectory according to the perceived contact

force, Fext.

The RL policy has two objectives. First, to generate a motion trajectory, ax.

Figure 3.2, shows how a simple P-controller (from the force control method) would not

be enough to solve the task without producing a collision with the environment. For

most cases, the P-controller trajectory would just attempt to penetrate the environment,

since knowledge of the environment’s geometry is not assumed. Nevertheless, the P-

controller trajectory is good enough to speed up the agent’s learning since it is already

driven towards the goal pose. Therefore, to achieve the desired behavior, the nominal

trajectory of the robot is the combination of the P-controller trajectory with the policy’s

trajectory. The second objective of the policy is to fine-tune the force control methods

parameters, ap, to minimize the contact force when it occurs. We defined a collision

as exceeding a maximum contact force in any direction. Therefore, contact with the

environment is acceptable, but the policy’s second goal is to avoid collisions. The policy

also controls the P-controller’s gains; thus, the policy decides how much to rely on the

P-controller trajectory.

Pose Control Representation

The pose of the robot’s end-effector is given by x = [p, ϕ], where p ∈ R3 is the position

vector and ϕ ∈ R4 is the orientation vector. The orientation vector is described using

CHAPTER 3. LEARNING FORCE CONTROL 20

Euler parameters (unit quaternions) denoted as ϕ = {η, ε}; where η ∈ R is the scalar

part of the quaternion and ε ∈ R3 the vector part. Using unit quaternions allows the

definition of a proper orientation error for control purposes with a fast computation

compared to using rotation matrices [102].

The position command from the force controller is xc = [pt, ϕt], where pt is the

commanded translation, and ϕt is the commanded orientation for the time step t. The

desired joint configuration for the current time step, qc, is obtain from an Inverse Kine-

matics (IK) solver based on xc.

Learning force control

Two of the most common force control schemes are considered in these work, parallel

position/force control [14] and admittance control [15]. The main drawback of said

control schemes is the requirement to tune the parameters for each specific task properly.

Changes in the environment (e.g., surface stiffness) may require a new set of parameters.

Thus, we propose a self-tuning process using RL method.

The policy actions are a = [ax,ap], where ax = [p, ϕ] are position/orientation

commands, and ap are controller’s parameters. ap is different and specific for each type

of controller, see Section 3.2.3 and Section 3.2.3 for details. The policy has a control

frequency of 20 Hz while the force controller has a control frequency of 500 Hz.

3.2.3 Force control implementation

PID parallel Position/Force Control

Based on [14], we implemented a PID parallel position/force control with the addition

of a selection matrix to define the degree of control of position and force over each

direction, as shown in Figure 3.3. The control law consists of a PD action on position,

CHAPTER 3. LEARNING FORCE CONTROL 21

Figure 3.2: Proposed approach to solve contact-rich tasks. Assuming knowledge of the

goal pose of the robot’s end-effector, a simple P-controller can be designed. Our approach

aims to combine this knowledge with the policy to generate the motion trajectory.

a PI action on force, a selection matrix and the policy position action, ax,

u = S(Kx
p xe +Kx

d ẋe) + ax+

(I − S)(Kf
pFext +Kf

i

∫
Fextdt)

(3.1)

where u is the vector of driving generalized forces. The selection matrix is

S = diag(s1, ..., s6), sj ∈ [0, 1]

where the values correspond to the degree of control that each controller has over a

given direction.

Our parallel control scheme has a total of 30 parameters, 12 from the position PD

controller’s gains, 12 from the force PI controller’s (PI) gains, and 6 from the selection

matrix S. We reduced the number of controllable parameters to prevent unstable behav-

ior and to reduce the system’s complexity. For the PD controller, only the proportional

gain, Kx
p , is controllable while the derivative gain, Kx

d , is computed based on the Kx
p .

Kx
d is set to have a critically damped relationship as

Kx
d = 2

√
Kx

p

Similarly, for the PI controller, only the proportional gain, Kf
p , is controllable, the

integral gain Kf
i is computed with respect to Kf

p . In our experiments, Kf
i was set

empirically to be 1% of Kf
p . In total, 18 parameters are controllable. In summary, the

policy actions regarding the parallel controller’s parameters are ap = [Kx
p ,K

f
p , S].

CHAPTER 3. LEARNING FORCE CONTROL 22

To narrow the agents choices for the force control parameters, we follow a similar

strategy as in [68]. Assuming we have access to some baseline gain values, Pbase. We

then define a range of potential values for each parameter as [Pbase−Prange, Pbase+Prange]

with the constant Prange defining the size of the range. We map the agent’s actions ap

from the range [−1, 1] to each parameter’s range. Pbase and Prange are hyperparameters

of both controllers.

Figure 3.3: Proposed scheme for learning PID parallel position/force control. The RL

agent controls the controller parameters PD gains, PI gains, and the selection matrix,

S.

Admittance Control

is used to achieve a desired dynamic interaction between the manipulator and its en-

vironment. The admittance controller for position-controlled robots implemented is

based on [103]. The admittance control is implemented on task-space instead of the

robot joint-space. It follows the conventional control law

Fext = mdẍ+ bdẋ+ kdx (3.2)

where md, bd, and kd represent the desired inertia, damping, and stiffness matrices

respectively. Fext is the actual contact force vector. x, ẋ, ẍ are the displacement of the

manipulator’s end-effector, its velocity and acceleration respectively.

CHAPTER 3. LEARNING FORCE CONTROL 23

The admittance relationship can be expressed in Laplace-domain, adopting conven-

tional expression of a second-order system as

X

F
(s) = 1/md

s2 + 2ζωns+ ωn
(3.3)

where ζ is the damping ratio and ωn is the natural frequency, and they can be

expressed by the admittance parameters as

ζ = bd

2
√
kdmd

ωn =
√
kd

md

(3.4)

Figure 3.4: Proposed scheme for learning admittance control. A PD controller is in-

cluded to regulate the input reference motion trajectory. The RL agent controls the PD

gains, as well as, the admittance model parameters (inertia, damping and stiffness).

We are proposing a variable admittance controller, where the inertia, damping,

and stiffness parameters are learned by the RL agent. Additionally, a PD controller

is included in our admittance control. The PD controller with the policy action, ax,

generates the nominal trajectory as explain in Section 3.2.2. The complete admittance

control scheme is depicted in Figure 3.4. The PD gains are also controlled by the policy

at each time step.

For the admittance control scheme, there are a total of 30 parameters; 12 from the

position PD controller’s gains and 18 from the inertia, damping, and stiffness parame-

ters. Similarly, as mentioned in Section 3.2.3, we reduced the number of controllable

parameters to prevent unstable behavior of the robot and reduce the system’s complex-

ity. Following the same strategy described in Section 3.2.3, of the PD controller, only

CHAPTER 3. LEARNING FORCE CONTROL 24

the proportional gain, Kx
p , is controllable. Additionally, we considered the inertia pa-

rameter for each direction as a constant, 0.1 kg·m2 in all our experiments as a similar

payload is used across tasks. Furthermore, we compute the damping with respect to

the inertia parameter and the stiffness parameter by defining a constant damping ratio.

From (3.4) we have that

bd = 2 ζ
√
kd ∗md

Therefore, only the stiffness parameters are controllable. In total, the controllable

parameters of the admittance control are reduced to 12 parameters; 6 PD gains and

6 stiffness parameters. In summary, the policy actions regarding the admittance con-

troller’s parameters are ap = [Kx
p , kd]

3.2.4 Fail-safe mechanism

Most modern robot manipulators already include a layer of safety in the form of an

emergency stop. Nonetheless, the emergency stop exists at the extreme ends of the robot

limits and completely interrupts the entire training session if triggered. To reactivate

the robot, a human operator is required. To alleviate this inconvenience, we propose a

mechanism that allows the robot to operate within less extreme limits. Thus, training of

an RL agent can be done directly on the position-controlled manipulator with minimal

human supervision.

Our system controls the robot as if teleoperating it by providing a real-time stream

of task-space motion commands for the robot to follow. Therefore, we added our safety

layer between the streamed motion command and the robot’s actual actuation. The

fail-safe mechanism validates that the intended action is within a defined set of safety

constraints. As shown in Algorithm 1, for each action we check whether an IK solution

exists for the desired position command, xc, if so, whether the joint velocity required to

achieve the IK solution, qc, is within the speed limit.

If any of these validations are not satisfied, the intended action is not executed on

CHAPTER 3. LEARNING FORCE CONTROL 25

the robot, and the robot remains in its current state for the present time step. Finally,

we check if the contact force at the robot’s end-effector is within a defined range limit.

If not, the episode ends immediately.

The first two validations are proactive and prevent unstable behaviors of the ma-

nipulator before they occur. In contrast, the third validation is reactive, i.e., only after

a collision has occurred (the force limit has been violated), the robot is prevented from

further actions.

Algorithm 1 Safe Manipulation Learning
1: Define joint velocity limit q̇max

2: Define contact force limit Fmax

3: Define initial state x0

4: Define goal state xg

5: for n = 0,· · · , N − 1 episodes do

6: for t = 0,· · · , T − 1 steps do

7: Get current contact force: Fext

8: xe = xg − x

9: Get Observation: o = [xe, ẋ, Fext]

10: Compute policy actions: πθ(ax,ap|o)

11: xc = control_method(xe,ax,ap, Fext)

12: qc = IK_solver(xc)

13: if qc not exists then continue

14: if |(qt − qc)/dt| > q̇max then continue

15: if Fext > Fmax then break

16: Actuate qc on robot

17: Reset to x0

3.2.5 Task’s reward function

For all the manipulation tasks considered, the same reward function was used:

CHAPTER 3. LEARNING FORCE CONTROL 26

r(s,a) =w1Lm(∥xe/xmax∥1,2) + w2Lm(∥a/amax∥2)+

w3Lm(∥Fext/Fmax∥2) + w4ρ+ w5κ
(3.5)

where xmax, amax, and Fmax are defined maximum values. Lm(y) = y 7→ x, x ∈

[1, 0] is a linear mapping to the range 1 to 0, thus, the closer to the goal and the lower

the contact force, the higher the reward obtained. || · ||1,2 is L1,2 norm based on [96].

The xe is the distance between the manipulator’s end-effector and the target goal at

time step t. a is the action taken by the agent. Fext is the contact force. ρ is a penalty

given at each time step to encourage a fast completion of the task. κ is a reward defined

as follows

κ =

200, Task completed

−10, Safety violation

0, Otherwise

(3.6)

Finally, each component is weighted via w, all w’s are hyperparameters.

3.3 Experiments

We propose a framework for safely learning manipulation tasks with position-controlled

manipulators using RL. Two control schemes were implemented. With the following

experiments, we seek to answer the following questions: Can a high-dimensional force

controller be learned by the agent? Which action space, based on the number of ad-

justable controller’s parameters provides the best learning performance?

A description of the materials used for the experiments is given in Section 3.3.1. An

insertion task was used for evaluating the learning performance of the RL agents with the

proposed method on a simulated environment, described in Section 3.3.2. Finally, the

proposed method is validated on a real robot manipulator with high-precision assembly

tasks.

CHAPTER 3. LEARNING FORCE CONTROL 27

3.3.1 Technical details

Experimental validation was performed both in a simulated environment using the

Gazebo simulator [104] version 9 and on real hardware using the Universal Robot 3

e-series, with a control frequency of up to 500 Hz. The robotic arm has a Force/-

Torque sensor mounted at its end-effector and a Robotiq Hand-e gripper. Training was

performed on a computer with CPU Intel i9-9900k, GPU Nvidia RTX-2800 Super.

3.3.2 Action spaces for learning force control

Each control scheme proposed in Section 3.2 has a number of controllable parameters.

The curse of dimensionality is a well known problem in RL [8]. Controlling few di-

mensions, number of parameters, makes the task easier to learn at the cost of losing

dexterity.

In the following experiment, several policy models were evaluated. Each model

has a different action space, i.e., a different number of controllable parameters. We

evaluate the learning performance of the models described in Table 3.1, four models per

control scheme. Each policy model has the same six parameters to control the position

and orientation of the manipulator, ax, but a different number of parameters to tune

the controller’s gains, ap. From now on, we refer to each model by the name given in

Table 3.1.

For a fair comparison, the action spaces were evaluated on a simulated peg-insertion

environment so that we could guarantee the exact same initial conditions for each train-

ing session. The task is to insert a cube-shaped peg into a task board, where the hole

has a clearance of 1 mm.

Each policy model was trained for 50.000 (50k) steps with a maximum of 150 steps

per episode. The complete training session was repeated three times per model. Since

the policy control frequency was set at 20 Hz, each episode lasts a maximum of 7.5

seconds. The episode ends if 1) the maximum number of time steps is reached, 2) a

minimum distance error from the target pose is achieved, 3) or if a collision occurs. In

CHAPTER 3. LEARNING FORCE CONTROL 28

Table 3.1: Policy models with different action spaces.

Control

Scheme

Name
Pose

Gains

PD
PI /

Stiffness

Selection

Matrix S

ax ap

Parallel

P-9 6 1 1 1

P-14 6 1 1 6

P-19 6 6 6 1

P-24 6 6 6 6

Admittance

A-8 6 1 1 -

A-13 6 1 6 -

A-13pd 6 6 1 -

A-18 6 6 6 -

general, a complete training session takes about 50 minutes, including reset times.

Results

The comparison of learning curves for each policy model evaluated is shown in Figure 3.5.

In the figure, the average cumulative reward per episode across the training sessions

(bold line) is displayed along with the standard deviation error (shaded colored area).

The results have been smoothed out using the exponential moving averages, with a 0.6

weight, to show the tendency of the learning curves.

From Figure 3.5, the overall best performance is achieved with the policy models

combined with the parallel control scheme. By the end of the training session, these

families of policies can yield higher rewards than the policy models combined with the

admittance control scheme.

For the parallel control scheme, the model with the worst performance is P-9; it

can be seen that there is not enough control of the controller’s parameters to learn a

CHAPTER 3. LEARNING FORCE CONTROL 29

Steps

R
e
w
a
rd

Figure 3.5: Learning curve of training session with active penalization of violation of

the safety constraints. Peg-insertion scenario on simulation.

good policy consistently. On the other hand, the model P-24 has the slowest learning

rate, but by the end of the training session, it can consistently learn a good policy. The

policy model P-14 has the fastest learning rate and overall best performance.

For the admittance control scheme, the models A-13pd and A-18 have the best

overall performance, with A-13pd yielding a cumulative reward as high as P-14 by the end

of the training session. The model A-8, similar to P-9, has one of the worst performance;

again, the lack of controllable parameters seems to have a big impact on learning a

successful policy.

It is worth noting that for both control schemes, the models P-14 and A-13pd have

the best overall performance. They provide the best trade-off between system complexity

and learn-ability. On the other hand, the models with the largest number of parameters

P-24 and A-18 can learn successful policies, but they require a longer training time to

achieve it.

The parallel models’ learning curve has larger standard deviation. One factor that

contributes to these results is the selection matrix S, which highly affects the per-

formance of the controller. Small changes of this parameter can make the behavior

completely different. The agent’s random exploration of this parameter can result in

CHAPTER 3. LEARNING FORCE CONTROL 30

very different results during the learning phase.

3.3.3 Safe learning

The developed fail-safe mechanism was not only evaluated as a mechanical safety that

enables the real robot to explore random action without human supervision. We validate

the usefulness of providing information to the robot about the safety constraints viola-

tions. Thus, we compare the proposed reward function Equation (3.5) with a variant

that does not provide any punishment when a safety constraint is violated, i.e., κ gives

a reward if the task is completed or zero otherwise, see Equation (3.6). We trained all

policy models with this modified reward function.

R
e
w
a
rd

Steps

Figure 3.6: Learning curve of training without penalizing violation of safety constraints

on the reward function. Peg-insertion scenario on simulation.

Results

Figure 3.6 shows the comparison of the learning curves of all models with a reward

function that does not penalize violation of safety constraints. The results clearly show

that the overall performance considerably decreases. The learning speed also decreases,

as can be noted by comparing the performance of, for example, the model A-13pd.

Learning with active penalization helps the agent learn policies that yield rewards of

CHAPTER 3. LEARNING FORCE CONTROL 31

Table 3.2: Collision detected during training session.

Model
avg. # of collisions across training sessions

Penalization No penalization Difference

A-8 326 455 -39%

A-13 350 408 -16%

A-13pd 300 462 -54%

A-18 451 457 -1%

P-9 187 369 -98%

P-14 121 206 -70%

P-19 183 392 -115%

P-24 219 337 -43%

+100 by 12,000 steps while it takes as much as 20,000 steps without penalization to

achieve similar performance. Parallel control models show similar results. Moreover, the

learning curves are nosier, meaning that the models can not reliably find a successful

policy.

Additionally, we counted the average number of collisions detected during training

sessions for each policy model. Table 3.2 shows the training session results using the

proposed reward function with active penalization of the safety constraints and the

reward function without penalization. In all cases, we see a high decrease in the number

of collisions when actively penalizing collisions. In other words, the training session

can be considered safer when the robot gets feedback on the undesired outcomes, i.e.

when safety constraints are violated. Particularly, in the case of the parallel control

scheme, the models have difficulty understanding that collisions are a poor behavior;

thus, those models keep getting stuck on episodes that finish too soon due to collision.

These results also highlight that the models A-13pd and P-14 do not only learn faster

than other models but also produce the lowest number of collisions within their family of

policies. On the other hand, the policy models with the highest number of parameters,

A-18 and P-24, are able to learn successful policies at the cost of producing the highest

number of collisions.

CHAPTER 3. LEARNING FORCE CONTROL 32

steps

R
e
w
a
rd

Figure 3.7: Ring-insertion task. Hole clearance of 0.2 mm. Cumulative reward per step

of 20,000-steps training sessions of A-13pd and P-14 policy models.

3.3.4 Real robot experiments

Our proposed method was validated on real hardware using two high-precision assembly

tasks. The first task involves an insertion task of a metallic ring into a bolt with

a clearance of 0.2 mm, as shown in Figure 3.7. The second task is a more precise

insertion task of the metallic peg into a pulley, with a clearance of 0.05 mm, as shown

in Figure 3.8. Another robotic arm holds the pulley, and the center of the pulley is

slightly flexible, which makes contact less stiff than the ring-insertion task. However,

since the clearance is smaller, the peg is likely to get stuck if the peg is not adequately

aligned, increasing the difficulty of solving the task. The best policy models from the

previous experiment were used for training, P-14, and A-13pd. Both models were trained

for 20,000 steps, twice. The episodes have a maximum length of 200 steps, about 10s.

Ring-insertion task results

From Figure 3.7, both models A-13pd and P-14 can quickly learn successful policies that

solve the task. The high stiffness of the ring and bold makes the task more likely to result

in a collision. The model P-14 produced an average of 45 collisions per training session,

while A-13pd produced 34. Despite firmly grasping the ring with the robotic gripper,

CHAPTER 3. LEARNING FORCE CONTROL 33

the position/orientation of the ring can still slightly change. These slight changes can

explain the drops in performance during the training session. However, the agents can

adapt and learn to succeed in the task.

Peg-insertion task results

From Figure 3.8, we can see that it takes a lot more learning time to find a successful

policy for both policy models compare to the ring-insertion task. While both policy

models find a successful policy after about 13k steps, A-13pd achieved better consistent

performance. As mentioned above, the physical interaction for this task is less stiff; thus,

the average collisions per training session were fewer than in the ring-insertion task. For

models A-13pd and P-14, the average number of collisions was 4 and 26, respectively.

The evolution of the policy model A-13pd, across a training session, is shown in

Figure 3.9. The figure displays the observation per time step of only the insertion

direction. The actions, ax and ap = [Kx
p , kd] are also displayed. Observations and

actions have been mapped to a range of [1, -1]. The peg-insertion task has three phases.

A search phase before contact (Yellow). A search phase after initial contact (Red).

An insertion phase (Green). On the left, the initial policy, we can clearly see that the

insertion was not successful even after 200 steps, as well as a rather random selection

of actions. On the contrary, on the right side, the task is being solved at around 130

steps. On top of that, the controller’s parameters kd and Kx
p have a clear response to

the contact force perceived. After the first contact with the surface (Red), kd and Kx
p

are dramatically reduced, as a result, decreasing motion speed and reducing stiffness

of the manipulator, which reduces the contact force. Then, when the peg is properly

aligned (Green), kd and Kx
p are increased to apply force to insert the peg -against the

friction of the insertion- and to finish the task faster.

CHAPTER 3. LEARNING FORCE CONTROL 34

steps

R
e
w
a
rd

Figure 3.8: Peg-insertion task. Hole clearance of 0.05 mm. Cumulative reward per step

of 20,000-steps training sessions of A-13pd and P-14 policy models.

3.4 Discussion

In this work, we have presented a framework for safely learning contact-rich manipulation

tasks using reinforcement learning with a position-controlled robot manipulator. The

agent learns a control policy that defines the motion trajectory, as well as fine-tuning the

force control parameters of the manipulator’s controller. We proposed two learning force

control schemes based on two standard force control methods, parallel position/force

control, and admittance control. To validate the effectiveness of our framework, we

performed experiments in simulation and with a real robot.

First, we empirically study the trade-off between control complexity and learning

performance by validating several policy models, each with a different action space,

represented by a different number of adjustable force control parameters. Results show

that the agent can learn optimal policies with all policy models considered, but the best

results are achieved with the models A-13pd and P-14. These models yield the highest

reward during training, proving to be the best trade-off between system complexity and

learn-ability.

Second, results on a real robot showed the effectiveness of our method to safely learn

high-precision assembly tasks on position-controlled robots. The first advantage is that

CHAPTER 3. LEARNING FORCE CONTROL 35

Figure 3.9: A-13pd: policy performance evolution on peg-insertion task. On the left,

performance of the initial policy tried by agent. On the right, performance of the learned

policy after training. All values correspond to the insertion direction only. Only 160

steps are displayed for space constraints. Insertion task divided into three phases: a

search phase before contact (Yellow), a search phase after initial contact (Red) and an

insertion phase (Green).

the fail-safe mechanism allows for training with minimal human supervision. The second

advantage is that including information about the violation of safety constraints on the

reward function helps speed up learning and reduce the overall number of collisions

occurred during training.

Finally, in the usual peg insertion task, the motion trajectory is essential when the

robot is in the air, while the force control parameters become essential when the peg

is in contact with a surface or the hole. Results show that our framework can learn

policies that behave accordingly on the different phases of the task. The learned policies

can simultaneously define the motion trajectory and fine-tune the compliant controller

to succeed in high-precision insertion tasks.

One of the limitations of our proposed method is that the performance is highly

dependent on the choice of the controller’s hyperparameters, more specifically, the base

and range values of the controller’s gains. In our experiments, we empirically defined said

hyperparameters. However, to address said limitation, an interesting avenue for future

research is to obtain these hyperparameters from human demonstrations, and then refine

the force control parameters using RL. Additionally, for simplicity, we assume knowledge

CHAPTER 3. LEARNING FORCE CONTROL 36

of the goal pose of the end-effector for each task. However, vision could be used to get

a rough estimation of the target pose to perform an end-to-end learning, from vision to

low-level control, as proven in previous work [96].

CHAPTER 3. LEARNING FORCE CONTROL 37

CHAPTER 3. LEARNING FORCE CONTROL 38

Chapter 4

Variable compliance control for

robotic peg-in-hole assembly:

A deep-reinforcement-learning

approach

This thesis chapter originally appeared in the literature as

Beltran-Hernandez, C. C., Petit, D., Ramirez-Alpizar, I. G., & Harada, K.

(2020). Variable compliance control for robotic peg-in-hole assembly: A

deep-reinforcement-learning approach. Applied Sciences, 10(19), 6923. Spe-

cial Issue "Machine-Learning Techniques for Robotics".

4.1 Introduction

Autonomous robotic assembly is an essential component of industrial applications. In-

dustrial robot manipulators are playing a more significant role in modern manufacturing

industries with the goal of improving production efficiency and reducing costs. Though

peg-in-hole assembly is a common industrial task that has been extensively researched,

39

safely solving complex high-precision assembly in an unstructured environment remains

an open problem [94].

To reduce human involvement and increase robustness to uncertainties, the most

recent research has been focused on learning assembly skills either from human demon-

strations [105] or directly from interactions with the environment [8]. The present

research focuses on the latter.

The main contribution of the work presented in this chapter is a robust learning-

based framework for robotic peg-in-hole assembly given an uncertain goal position.

Our method enables a position-controlled industrial robot manipulator to safely learn

contact-rich manipulation tasks by controlling the nominal trajectory and, at the same

time, learning variable force control gains for each phase of the task. The basis of this

work is built upon the work described in Chapter 3. More specifically, the contributions

of this chapter are:

• A robust policy representation based on time convolutional neural networks (TCN).

• Faster learning of control policies via domain transfer-learning techniques (sim2real)

to greatly improve the training efficiency on real robots.

• Improved generalization capabilities of the learned control policies via domain

randomization during the training phase on simulation. Although the effects of

domain randomization have been researched [106, 10], to the best of our knowledge,

we are the first to study the effects of sim2real with domain randomization on

contact-rich real-robot applications with position-controlled robots.

The effectiveness of the proposed method is shown through extensive evaluation with a

real robotic system on a variety of contact-rich peg-in-hole insertion tasks.

4.1.1 Problem Statement

Similar to Chapter 3, we considered a peg-in-hole assembly task that required the mating

of two components. One of the components was grasped and manipulated by the robot

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 40

Figure 4.1: Insertion task with uncertain goal position.

manipulator, while the second component had a fixed position either via fixtures to an

environment surface or by being held by a second robot manipulator. Figure 4.1 provides

a 2D representation of the considered insertion tasks and the components assumed to be

available to solve the task. The proposed method was designed for a position-controlled

robot manipulator with a force/torque sensor at its wrist. Typically, these insertion

tasks can be broadly divided into two main phases [62], search and insertion. During

the search phase, the robot aligns the peg within the clearance region of the hole. In

the beginning, the peg is located at a distance from the center of the hole in a random

direction. The distance from the hole is assumed to be the “positional error”. During

the insertion phase, the robot adjusts the orientation of the peg with respect to the hole

orientation, and pushes the peg to the desired position. We focused on both phases of

the assembly task with the following assumptions:

• The manipulated object was already firmly grasped. However, slight changes of

object orientation within the gripper were possible during manipulation.

• There was access to imperfect prediction of the target end-effector pose (as shown

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 41

in Figure 4.1) or a reference trajectory and its degree of uncertainty.

• The manipulated object was inserted in a direction parallel to the gripper’s orien-

tation.

We considered the second assumption fair given the advances in vision-recognition tech-

niques, where the 6D pose of objects could be estimated from single RGB images

[107, 108] or RGB images with depth maps (RGB-D) [109, 110]. The high accuracy

of the predictions are in many cases enough for robot manipulation. Moreover, this

second assumption included the specific case of using an assembly planner [111, 112],

where even if the initial position of the objects is known, the inevitable error through-

out the manipulation (e.g. pick-and-place, grasping, and regrasping) that makes the

position/orientation of the manipulated objects uncertain during the insertion phase. A

reference trajectory could be similarly obtained from demonstrations [52, 113, 114] when

a complex motion is required to achieve the insertion. The last assumption allowed for

defining a desired insertion force that may vary for different insertion tasks without loss

of generalization.

4.2 Methodology

4.2.1 System Overview

Figure 4.2: Our proposed framework. On the basis of estimated target position for

an insertion task, our system learns a control policy that defines motion-trajectory and

force-control parameters of an adaptive compliance controller to control an industrial

robot manipulator.

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 42

Our proposed system aims to solve assembly tasks with an uncertain goal pose.

Figure 4.2 shows the overall system architecture. There were two control loops. The

inner loop was an adaptive compliance controller; we chose to use a parallel position-

force controller that was proven to work well for this kind of contact-rich manipulation

tasks [115]. The inner loop ran at a control frequency of 500 Hz, which is the maximum

available in Universal Robots e-series robotic arms1. Details of the parallel controller are

provided in Section 4.2.2. The outer loop was an RL control policy running at 20 Hz

that provided subgoal positions and the parameters of the compliance controller. The

outer loop’s slower control frequency allowed for the policy to process the robot state

and compute the next action to be taken by the manipulator, while the inner loop’s

precise high-frequency control would seek to achieve and maintain the subgoal provided

by the policy. Details of the RL algorithm and the policy architecture are provided

in Section 4.2.2. Lastly, the input to the system was estimated target position and

orientation for the insertion task.

Motion commands xc sent to the adaptive compliance controller corresponded to

the pose of the robot’s end effector. The pose was of the form x = [p, ϕ], where p ∈ R3

is the position vector, and ϕ ∈ R4 is the orientation vector. The orientation vector

was described using Euler parameters (unit quaternions), denoted as ϕ = {η, ε}, where

η ∈ R is the scalar part of the quaternion and ε ∈ R3 the vector part.

4.2.2 Learning Adaptive-Compliance Control

The Reinforcement Learning (RL) method used in this chapter is the same as described

in the previous chapter, Section 3.2.1. In this section, a novel policy representation is

presented. Additionally, the reward function has been updated and the details described

below.

1Robot details at https://www.universal-robots.com/e-series/

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 43

Multimodal Policy Architecture

The control policy was represented using neural networks, as shown in Figure 4.3. The

policy input was the robot state. The robot state included the proprioception informa-

tion of the manipulator and haptic information. Proprioception included the pose error

between the current robot’s end-effector position and predicted target pose xe, end-

effector velocity ẋ, desired insertion force Fg, and actions taken in the previous time

step at−1. Proprioception feedback was encoded with a neural network with 2 fully

connected layers with activation function RELU to produce a 32-dimensional feature

vector. For force-torque feedback, we considered the last 12 readings from the six-axis

F/T sensor, filtered using a low-pass filter, as a 12 x 6 time series:

[F 0
ext, . . . , F

12
ext], where F i

ext = [Fx, Fy, Fz,Mx,My,Mz] (4.1)

The F/T time series was fed to a temporal convolutional network (TCN) [116] to produce

another 32-dimensional feature vector. The feature vectors from proprioception and

haptic information were concatenated to obtain a 64-dimensional feature vector, and

then fed to two fully connected layers to predict the next action.

The policy outputs actions for a parallel position-force controller. The policy pro-

duces two type of actions, a .= [ax,ap], where ax = [p, ϕ] are position/orientation

subgoals, and ap are parameters of the parallel controller. The specific parameters

controlled by ap are described in Section 4.2.2.

Compliance Control in Task Space

Our proposed method uses a common force-control scheme combined with a reinforcement-

learning policy to learn contact-rich manipulations with a rigid position-controlled robot.

For the family of contact-rich manipulation tasks that require some sort of insertion, the

parallel position-force control [14] performs better and can be learned faster than using

an admittance control scheme when combined with an RL policy, as shown in Chapter 3.

The details of the compliance controller has also been presented in Section 3.2.3

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 44

Figure 4.3: Control policy consisting of three networks. First, proprioception informa-

tion is processed through a 2-layer neural network. Second, force/torque information is

processed with a temporal convolutional network. Lastly, extracted features from first

two networks are concatenated and processed on a 2-layer neural network to predict

actions.

Task’s reward function

For all considered insertion tasks, the same reward function was used:

r(s,a) = w1Lm(∥(Fext − Fg)/Fmax∥2) + w2κ, (4.2)

where Fg is the desired insertion force, Fext is the contact force, and Fmax is the defined

allowed maximal contact force. Lm(y) = y 7→ x, x ∈ [1, 0] is a linear mapping in the

range 1 to 0; thus, the closer to the goal and the lower the contact force, the higher the

obtained reward. || · ||1,2 is an L1,2 norm based on [72]. κ is a reward defined as follows:

κ =

100 + ((1 − t/T) ∗ 100), Task completed

−50, Collision

0, Otherwise

(4.3)

During training, the task was considered completed if the Euclidean distance between

the robot’s end-effector position and the true goal position was less than 1 mm. The

agent was encouraged to complete the task as quickly as possible by providing an extra

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 45

reward for every unused time step with respect to the maximal number of time steps per

episode T . Moreover, we imposed a collision constraint where the agent was penalized

for colliding with the environment by giving it a negative reward and by finishing the

episode early. This collision constraint encourages safer exploration, as shown in our

previous work [115]. We defined a collision as exceeding force limit Fmax. Therefore,

a collision detector and geometric knowledge of the environment were not necessary.

Lastly, each component was weighted via w; all ws were hyperparameters.

4.2.3 Speeding Up Learning

Two strategies were adopted to speed up the learning process. First, the exploitation

of prior knowledge using the idea of residual reinforcement learning. Second, we used

a physics simulator to train the robot on a peg-insertion task and transfer the learned

policy directly to the real robot (sim2real).

Residual Reinforcement Learning

To speed up the learning of the control policy for insertion tasks that require complex

manipulation, we used residual reinforcement learning [117, 118]. The goal is to leverage

the training process by exploiting prior knowledge. With the assumption of an estimated

target position or a reference trajectory, we could manually define a controller xg. Then,

said controller’s signal would be combined with policy action ax. The objective was to

avoid training the policy from scratch, and avoid the exploration of the entire parameter

space. The position command sent to the robot was

xc = (x′
g + xf) + ax, (4.4)

where x′
g is the reference trajectory process through a PD controller, ax is the policy

signal on the position, and xf is the response to the contact force, as shown in Figure 3.3.

The first two terms came from the parallel controller. Therefore, the policy would just

need to learn to adjust the reference trajectory to achieve the task.

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 46

From Simulation to Real World

The proposed method works on the robot’s end-effector Cartesian task-space, which

makes it easier to transfer learning from simulation to the real robot or even between

robots [119]. For most insertion tasks, a simple peg-insertion task was used for training

on a physics simulator. We used simulator Gazebo 9 [104]. To close the reality gap

between the physics simulator and real-world dynamics, we used domain randomization

[84]. During training on the simulator, the following aspects were randomized:

• Initial/goal end-effector position: having random initial/goal positions helps the

RL algorithm to find policies that generalize to a wide range of initial-position

conditions.

• Object-surface stiffness: The RL agent also needs to learn to fine-tune the force-

controller parameters to obtain a proper response to the contact force. Therefore,

randomizing the stiffness of the manipulated objects helps it find policies that

adapt to different dynamic conditions.

• Uncertainty error of goal pose prediction: On a real robot, the prediction of the

target pose comes from noisy sensory information, either from a vision-detection

system or from known prior manipulations (grasp and regrasp). Thus, during

training on the simulation, we emulated this error by using normal Gaussian dis-

tribution with mean zero and standard deviation of a maximal distance error (for

position and orientation).

• Desired insertion force: For different insertion tasks, a specific contact force is

necessary for insertion to succeed. As we considered insertion force an input to

the policy, during training, we randomized this value for each episode.

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 47

4.3 Experiments and results

4.3.1 Experiment Setup

Experimental validation was performed on a simulated environment using Gazebo sim-

ulator [104] version 9, and on real hardware using a Universal Robot 3 e-series with a

control frequency of up to 500 Hz. The robotic arm had a force/torque sensor mounted

at its end effector, and a Robotiq Hand-e parallel gripper. In both environments, train-

ing of the RL agent was performed on a computer with an Intel i9-9900k CPU and

Nvidia RTX-2800 Super GPU. To control the robot agent, we used the Robot Op-

erating System (ROS) [120] with the Universal Robot ROS Driver2. The experiment

environment on the real robot is shown in Figure 4.4.

4.3.2 Training

During the training phase, the agent’s task was to insert a cuboid peg into a task board

on the simulated environment. The agent was trained for 500, 000 time steps, which,

on average, takes about 5 hours to complete. During training, the environment was

modified after each episode by randomizing one or several of the training conditions

mentioned in Section 4.2.3. The range of values used for the randomization of the

training conditions is shown in Table 4.1. The random goal position was selected from

a defined set of possible insertion planes, as depicted in Figure 4.5.

After training on the simulation, the learned policy was refined by retraining on

the real robot for 3% off the simulation time steps, which took about 20 minutes, to

further account for the reality gap between simulated and real-world physics dynamics.

2ROS driver for Universal Robot robotic arms developed in collaboration be-

tween Universal Robots and the FZI Research Center for Information Technology

https://github.com/UniversalRobots/Universal_Robots_ROS_Driver

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 48

Figure 4.4: Real experiment environment with a 6-degree-of-freedom UR3e robotic arm.

Cuboid peg and task board hole had a nonsmooth surface with 1.0 mm clearance.

4.3.3 Evaluation

The learned policy was initially evaluated on the real robot with a 3D-printed version

of the cuboid peg in the hole-insertion task with the true goal pose. During evalua-

tion, observations and actions were recorded. Figure 4.6 shows the performance of the

learned policy (sim2real + retrain). The figure shows the relative position of the end

effector with respect to the goal position, the contact force, and the actions taken by

the policy for each Cartesian direction normalized to the range of [-1, 1], as described in

Section 4.2.2. As shown in Fig. 4.1, the insertion direction was aligned with the y axis

of the robot’s coordinate system. In Figure 4.6, we highlighted three phases of the task.

Blue corresponds to the search phase in free space before contact with the surface, yellow

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 49

Figure 4.5: figure

Simulation environment. Overlay of randomizable goal positions.

Condition Value range

Initial position

(relative to goal)

Position (mm) [-40, 40]

Orientation (°) [-10, 10]

Uncertainty error
Position (mm) [-2, 2]

Orientation (°) [-5, 5]

Desire insertion force (N) [0, 10]

Stiffness

(in Gazebo: surface/friction/ode/kp)
[7.0 × 10−4, 1.0 × 10−5]

Table 4.1: Randomized training conditions.

is the search phase after initial contact with the environment, and green corresponds to

the insertion phase. During the search phase, and particularly on the insertion direction

(y axis), we could clearly observe that the learned policy properly reacted to contact

with the environment by quickly adjusting the force control parameters. On top of that,

during the insertion phase, the learned policy changed its strategy from just minimizing

contact force to a mostly position-control strategy to complete insertion. This behavior

is proper for this particular insertion task, as there is little resistance during the inser-

tion phase, but it is not the desired behavior for other insertion tasks, as we discuss

later in Section 4.3.4.

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 50

Figure 4.6: Performance of learned policy (sim2real + retrain) on 3D-printed cuboid-

peg-insertion task. Insertion direction was aligned with y axis of robot coordinate sys-

tem. Relative distance from robot’s end effector to goal position and contact force is

shown. The 24 policy actions besides the corresponding axis are also shown.

Additionally, we compared the performance of the learned policy as a combination

of sim2real and refinement on the real robot versus just learning on the real robot

or just directly transferring the learned policy from the simulation (sim2real) without

further training. We evaluated these policies on a 3D-printed version of the cuboid-peg-

insertion task. Policies were tested 20 times with a random initial position assuming a

perfect estimation of the goal position (true goal). Table 4.2 shows the results of the

evaluation. The three policies had a very high success rate, but the policy transfer from

the simulation had difficulty with the real-world physics dynamics. As expected, the

policy retrained from the simulation gave the best overall performance time.

4.3.4 Generalization

Now, to evaluate the generalization capabilities of our proposed learning framework, we

use a series of environments with varying conditions.

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 51

Method Success Rate Avg. Time Steps Avg. Time (sec)

Scratch 100% 109.6 5.48

Sim2real 95% 75.3 3.77

Ours 100% 65.6 3.28

Table 4.2: Comparison of learning from scratch, straightforward sim2real, and sim2real

+ retraining (Ours). Test performed on a 3D printed cuboid peg insertion task assuming

knowledge of the true goal position.

Varying degrees of Uncertainty error

First, the learned policies are evaluated on the 3D printed cuboid peg insertion task

where there is a degree of error on the estimation of the goal position. To clearly

compare the performance of the different methods with different degrees of estimation

error, we added and offset of position or orientation about the x-axis of the true goal

pose. Nevertheless, for completeness we also evaluate the policies on goal poses with

added random offset of translation, [−1, 1] millimeters, and orientation, [−5°, 5°], on all

directions. On each case, the policies were tested 20 times from random initial positions.

Results are shown in Table 4.3.

Estimation error / Success rate

Position Orientation

Method 1mm 2mm 3mm 4mm 5mm 1° 2° 3° 4° 5° Random

Scratch 0.9 0.9 0.7 0.55 0.35 1.0 0.9 0.8 0.8 0.5 0.8

Sim2real 0.9 0.85 0.85 0.6 0.4 1.0 0.9 0.8 0.8 0.3 0.75

Ours 1.0 1.0 0.95 0.65 0.6 1.0 1.0 1.0 1.0 1.0 0.9

Table 4.3: Comparison of learning from scratch, straightforward sim2real and sim2real

+ retraining (Ours) with different degrees of goal-position uncertainty error. Test per-

formed during 3D-printed cuboid-peg insertion task.

In all cases, the policy learned from the simulation with domain randomization and

fine-tuned on the real robot gave the best results. If the difference between the physics

dynamics on the simulation and the real world was too big, learning from scratch could

yield better results than only transferring the policy from the simulation, as can be

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 52

Figure 4.7: (left to right) High-, medium-, and low-stiffness environments.

Method/Stiffness High Medium Low

Scratch 100% 70% 40%

Sim2real 95% 100% 100%

Ours 100% 100% 100%

Table 4.4: Success rate of 3D-printed-cuboid insertion task with different degrees of

contact stiffness.

seen when the uncertainty error on orientation was too big (5°); where the friction with

the environment makes the task much harder, such contact dynamics are difficult to

simulate.

Varying Environment Stiffness

Second, the learned policy was also evaluated on different stiffness environments. Fig-

ure 4.7 shows the 3 environments considered for evaluation. High stiffness was the

default environment. Medium stiffness was achieved by using a rubber band to hold

the cuboid peg between the gripper fingers, adding a degree of static compliance. In

addition to that, for the low-stiffness environment, a soft foam surface was added to

further decrease stiffness. The policies were evaluated from 20 different initial positions,

results are reported in Table 4.4.

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 53

Varying Insertion Tasks

Lastly, we evaluate the learned policy on a series of novel insertion tasks, none seen

during training, to assess its generalization capabilities. These insertion tasks included

challenges such as adapting to a very hard surface (high stiffness), requiring a minimal

insertion force to perform the insertion, and a complex peg shape for mating the parts.

The different insertion scenarios are depicted in Figure 4.8.

Figure 4.8: Several insertion tasks with different degrees of complexity. (A) Metal ring

(high stiffness) with 0.2 mm of clearance. (B) Electric outlet requiring high insertion

force. (C) Local-area-network (LAN) port, delicate with complex shape. (D) Universal

serial bus (USB).

Task Success rate Insertion force

Ring 80% 5N

Electric Outlet (x) 75% 10N

Electric Outlet (y) 75% 10N

LAN port (x) 55% 5N

LAN port (y) 60% 5N

USB 80% 8N

Table 4.5: Success rate of learned policy on several insertion tasks.

For each task, the learned policy was executed 20 times from random initial posi-

tions and assuming perfect estimation of the goal position. Table 4.5 shows the success

rate of the learned policy on these novel tasks, along with the desired insertion force

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 54

set for each task. As the insertion force was defined as a policy input, we could define

specific desired insertion force for each task. Even though the policy was only trained

by using the simpler cuboid-peg insertion task, mainly in simulation and shortly refined

on a real robot with a 3D-printed version of the same task, the learned policy achieved

a high success rate in novel and complex insertion tasks.

Compared to the cuboid-peg insertion task, on these novel insertion tasks, the peg

was more likely to become stuck during the task’s search phase, as the surrounding

surface near the hole was not smooth and may have had crevices. The extra challenges

were not present during the training phase, which reduced the capability of the learned

policy to react in an appropriate way. The insertion task of the LAN port was the most

challenging for the policy due to the complex shape of the LAN cable endpoint. If just

one corner of the LAN adapter was stuck, the insertion could not be completed even if

large force was applied.

Additionally, we tested the policy on different insertion planes for the electric outlet

and the LAN port tasks. In both cases, success rate was similar due to training with

the randomized insertion planes. However, the policy was slightly better with insertions

on the y-axis plane due to retraining (on the real robot) only being done on this axis.

4.3.5 Ablation Studies

In this section, we evaluate the individual contribution of some components added to

the proposed learning framework.

Learning from Scratch vs Sim2real

The inclusion of transfer learning from the simulation to the real robot for the proposed

learning framework was evaluated. We compared the learning performance of training

the agent on the real robot from scratch versus learning starting from a policy learned

on simulation. Training from scratch was performed for 50,000 steps, while retraining

from the simulation lasted 15,000 steps. Figure 4.9 shows the learning curve for both

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 55

training sessions. Learning from scratch required at least 50,000 steps to succeed at

the tasks most of the time. In contrast, learning from the pretrained policy on the

simulation achieved the same performance in under 5000 steps. The policy from the

simulation still required some training to fine-tune the controller to real-world physics

dynamics, which are difficult to simulate, as can be seen from the slow start and the

drops in cumulative reward.

Figure 4.9: Comparison between learning from scratch and learning from a policy

learned on simulation: learning curve for 3D-printed cuboid-peg insertion task on real

robot with random initial positions.

Policy Architecture

We evaluated the contribution of the policy architecture introduced in our method (see

Section 4.2.2) by comparing it to a policy with a simple neural network (NN) with two

fully connected layers as used in previous work [115]. We trained both policies on the

cuboid-peg insertion task on the simulation and compared their learning performance.

Figure 4.10 shows the learning curve of both policy architectures for a training session of

70,000 time steps. From the figure, is clear that, with our newly proposed TCN-based

policy, the agent was able to learn faster and exploit better rewards. The TCN-based

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 56

policy learned a successful policy (25,000) about 15,000 steps faster than the simple

neural-network (NN)-based policy did (40,000). Additionally, the TCN-based policy

converged to a higher cumulative reward than that of the simple NN-based policy.

Figure 4.10: Comparison between policy architectures: learning curve for cuboid-peg

insertion task with random initial positions.

Policy Inputs

Lastly, we evaluated the choice of inputs for the policy. We compared our proposed policy

architecture with all inputs, as defined in Section 4.2.2, with two variants. First, we

considered the policy without the inclusion of prior action at−1. Second, we considered

the policy without knowledge of desired insertion force Fg. The training environment

was the cuboid-peg insertion task on the simulation with a random initial position and

random desired insertion force. In the case of the policy that did not have Fg as input,

the cost function still accounted for the desired insertion force.

Figure 4.11 shows the comparison of the learning curves. Most notable is the poor

performance of the policy that lacked the knowledge of prior action at−1. Prior-action

information is critical for the agent to more quickly converge to an optimal policy. Addi-

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 57

Figure 4.11: Comparison of policies with different inputs. Learning curve for cuboid-peg

insertion task with random initial positions and random desired insertion force.

tionally, knowledge of Fg enables the agent to find policies that yield higher cumulative

rewards, and to learn faster.

4.4 Discussion

We proposed a learning framework for position-controlled robot manipulators to solve

contact-rich manipulation tasks. The proposed method allows for learning low-level

high-dimensional control policies on real robotic systems. The effectiveness of the learned

policies was shown through an extensive experiment study. We showed that the learned

policies had a high success rate at performing the insertion task under the assumption

of a perfect estimation of the goal position. The policy correctly learned the nominal

trajectory and the appropriate force-control parameters to succeed at the task. The

policy also achieved a high success rate under varying environmental conditions in terms

of uncertainty of goal position, environmental stiffness, and novel insertion tasks.

While model free reinforcement-learning algorithm SAC was used in this work, the

proposed framework can easily be adapted to other RL algorithms. The choice of SAC

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 58

was due to its sample efficiency as an off-policy algorithm. The pros and cons of using

other learning algorithms would be interesting future work.

One limitation of our learning framework is the selection of the force-control pa-

rameter range (see Section 4.2.2). The choice of a wide range of values may allow for

the policy to adapt to very different environments, but it also increases the difficulty

of learning a task, as small variations in the action may cause undesired behaviors, as

was the case during the first 20,000 to 30,000 steps of training (see Figure 4.10). On

the other hand, a narrow range would make it easier and faster to learn a task, but it

may not generalize well to different environments. Defining a range is much easier than

manually finding the optimal parameters for each task, but it is still a manual process.

Therefore, another interesting future study would be to use demonstrations to learn a

rough estimation of the optimal force parameters to further reduce training times.

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 59

CHAPTER 4. SIM2REAL VARIABLE COMPLIANCE CONTROL 60

Chapter 5

Accelerating Robot Learning of

Contact-Rich Manipulations:

A Curriculum Learning Study

5.1 Introduction

Reinforcement Learning (RL) has been proven to be successful at learning complex

behaviors to solve a variety of robotic contact-rich tasks [8, 36, 121]. However, RL

solutions are still not widely adopted in real-world industrial tasks. One reason is that

RL still requires an expensive and large amount of robot interaction with its environment

to learn a successful policy. The more complex the target task is, the more interaction

(samples) is required.

To tackle this problem, domain transfer methods such as Domain Randomization

(DR) and Curriculum Learning (CL) have been introduced. The concept of CL, where

the learning process can be made more efficient by following a curriculum that defines an

order in which tasks should be learned, has been introduced in previous works [86, 122].

Additionally, DR of visual and physical properties of a task has been shown to improve

the performance of tasks in novel domains [84, 10]. However, most of these results have

61

been only validated in simulated environments, from video games to robotic toy tasks, or

in real-world toy environments. In this work, we tackle the problem of improving sample

efficiency and performance when learning real-world complex industrial assembly tasks

with rigid position-controlled robots. To this end, we seek to answer the question:

Does the order in which the different environments (or tasks) are presented to the agent

(through DR) affect the training sample efficiency and performance of the learned policy?

We hypothesize that on top of DR, guiding a RL agent’s training with a curriculum

(presenting tasks in increasing order of difficulty) towards the desired behavior can

increase sample efficiency. The reasoning is that the curriculum helps reduce the overall

exploration needed to achieve the desired goal while DR enhances domain transferability.

This chapter presents a study of the combination of CL with DR. More specifically,

we compare different curricula designs and different approaches at sampling values for

DR. As a result, we propose a novel method that significantly outperforms our previous

work [123]. In [123], only DR is used to improve sim2real transferability without CL.

Experimental results in simulation and real-world environments show that our novel

method can be trained with only a fifth of the training samples required by our previous

method and still successfully learn to solve the target insertion tasks. Furthermore, the

learned policies transferred to the real world achieved high success rates (up to 86%)

on industrial level insertion tasks, with tolerances of ±0.01 mm, not seen during the

training.

This chapter’s contributions are as follows:

• A study of the application of Curriculum Learning to a learning framework for

rigid robots solving contact-rich manipulation tasks.

• A novel learning framework combining curriculum learning with domain random-

ization to accelerate learning and domain transfer.

• An improved reward function to guide the learning of force sensor-based contact-

rich manipulation tasks. The reward perceived by the agent is dynamically dis-

counted by the curriculum’s level of difficulty. For our target domain, the idea

CHAPTER 5. CURRICULUM LEARNING STUDY 62

Figure 5.1: Overview of the system used for this study. The input is the goal pose,

optionally the desired contact force can be defined, otherwise is considered as 0 N.

is to encourage the agent to learn to solve the hardest tasks as discussed in Sec-

tion 5.2.5.

• An empirical study of the different methods considered in this chapter was con-

ducted. Novel tasks not seen during training were used to validate the performance

of each method, both in simulation and in the real world, including complex indus-

trial insertion tasks. Additionally, we study the impact of different components of

our proposed method in the Appendix.

Additionally, the system developed in this chapter has been open sourced 1 for benefit

of the research community.

The rest of this chapter is organized as follows, related work is discussed in ??.

The case study for this work and the proposed method are explained in Section 5.2.

Experimental results and comparisons with alternative methods and our previous work

are shown in Section 5.3. Ablation studies are described in the Appendix.

1At https://github.com/cambel/robot-learning-cl-dr

CHAPTER 5. CURRICULUM LEARNING STUDY 63

5.2 Materials and Methods

5.2.1 Problem Statement

In the present study, we consider the peg-in-hole assembly task that requires the mating

of two components. One of the components is grasped and manipulated by the robot

manipulator, while the second component has a fixed position via fixtures to a support

surface. The proposed method is designed for position-controlled robot manipulators

with access to force/torque information at the robot’s end-effector (e.g., F/T sensor at

the robot wrist), especially those robots where low-level torque control is not available.

Thus, sensor-based force control is necessary to realize contact-rich manipulation tasks

for such a type of robot.

5.2.2 System Overview

Our propose method aims to improve the sample efficiency of the training phase. Fig-

ure 5.1 shows the overall system architecture which is based on the work presented in

Chapter 4. There are two control loops. The inner loop has an adaptive compliance con-

troller; we choose to use a parallel position-force controller that was proven to work well

for this kind of contact-rich manipulation tasks, as shown in Chapter 3. The inner loop

runs at a control frequency of 500 Hz, which is the maximum available in the Universal

Robots e-series robotic arms2. The outer loop runs at a lower control frequency to ac-

count for the computation time required by the learning algorithm. The Reinforcement

Learning (RL) method is the same as described previously in Section 3.2.1. Our sys-

tem considers control of the 6 degrees of freedom of the Cartesian space at the robot’s

end-effector (position and orientation). To our previous learning control framework (see

Section 4.2.2), we added the PID gains scheduling approach discussed in Section 5.2.3.

Additionally, a new dense reward function is proposed and described in Section 5.2.2.

Similarly, a DR method based on CL is implemented on top of this learning control

framework, see Section 5.2.4 and Section 5.2.5.
2Robot details at https://www.universal-robots.com/e-series/

CHAPTER 5. CURRICULUM LEARNING STUDY 64

Reward function

On one hand, in our previous work [123], the reward function is defined only in terms of

the contact force and distance between the current position of the robot’s end-effector

and the target position. The reason is to encourage the agent to get closer to the target

position; the faster, the better, while discouraging any contact force. On the other hand,

in this work, we propose the inclusion of the velocity of the robot’s end-effector in the

reward signal. While it is ideal that the agent achieves the task as fast as possible, high

speeds are not desirable when the robot is close to the environment or in contact with

it, as it can generate large contact forces. Thus, the proposed reward function has the

following shape:

r(s,a) = w1rxv + w2rF + w3ρ (5.1)

where rxv is the component of the reward associated with the position and velocity of

the robot’s end-effector. rxv aims to encourage the agent to get closer and keep closer

to the target position. Besides, the agent is encourage to move faster, if it is far from

the target pose, or slower when it is close to the target pose. rxv is defined as:

rxv = (1 − tanh(5|x|)(1 − |ẋ|) + (|ẋ|/2)2 (5.2)

Where x is the distance between the robot’s end-effector and the target position, and ẋ

is its velocity. A visualization of this reward component is shown in Figure 5.2a. The

component of the reward Eq. (5.1) associated with the contact force is defined as:

rF = −1/(1 + e−15|Fg−Fext|+5) (5.3)

where Fg is the desired insertion force, Fext is the contact force. The reward is always

negative as a discount reward to encourage minimal contact force. However, due to the

nature of the task, contact with the environment is unavoidable, so an S shape function

is proposed to allow small contact forces while strongly discouraging large ones. A

visualization of this reward component is shown in Figure 5.2b The position, velocity

and contact force are normalized by the maximum value allowed for each one. Finally,

CHAPTER 5. CURRICULUM LEARNING STUDY 65

(a) Visualization of the position-velocity-

based component of the reward function.

rxv in Equation (5.2)

(b) Visualization of the contact-force-based

component of the reward function. rF in

Equation (5.3)

Figure 5.2: Visualization of the reward function components.

ρ is defined as follows:

ρ =

500, Task completed

−200, Collision

−1, Otherwise

(5.4)

The task was considered completed if the Euclidean distance between the robot’s end-

effector and goal positions was less than 1 mm. The agent is encouraged to complete

the task as quickly as possible by discounting the reward for every time step taken.

Similar to our previous work [115], we imposed a collision constraint where the agent

was penalized for colliding with the environment by giving it a large negative reward

and immediately ending the episode. A collision is defined as exceeding the force limit

Fmax. Fmax is a hyper-parameter that was defined as 50N in simulation or 30N in the

real robot. Lastly, each component was weighted via w; all ws are hyperparameters.

The performance of our new reward signal approach versus the reward signal proposed

in our previous work [115] is shown in Section 5.4.1.

5.2.3 Compliance Control in Task Space

The agent’s action space is based on our previous work , Section 3.2.3, which consists of

learning the force control parameters of a traditional sensor-based force feedback con-

CHAPTER 5. CURRICULUM LEARNING STUDY 66

troller. More specifically, we learn the parameters of a parallel position-force controller.

The parallel position-force control requires the fine-tuning of three sets of parame-

ters; gains of a PID for position tracking, gains of a PI for force tracking, and a selection

matrix that defines the degree of control between force and position. The controller

follows the control law shown in Eq. (5.5)

xc = S(Kx
p xe +Kx

d ẋe + ax) + (I − S)(Kf
pFe +Kf

i

∫
Fedt), (5.5)

where Fe = Fg − Fext (goal contact force minus sensed contact force), xe = xg − x

(goal pose minus current pose), ax represents an arbitrary translation/rotation given

by the agent, a change to the control law presented in Section 3.2.3 is introduced in

this chapter, where the action ax is constrained by the selection matrix S. This change

reduces the risk of executing a dangerous undesired behavior on the robotic system. xc

is the commanded positions to the robot. The selection matrix is

S = diag(s1, ..., s6), sj ∈ [0, 1]

The parameters to be learned are Kx
p , Kf

p , S, and ax. One for each of the 6 Cartesian

degrees of freedom. The remaining parameters Kx
d and Kf

i were defined proportionally

to the Kx
p and Kf

p respectively. Therefore, the action space consists of 24 parameters.

Each parameter is bounded to a continuous range of valid values. More details are

provided in Section 3.2.3.

PID Gains Scheduling

An additional concept is explored in this chapter, PID gains scheduling [124]. Parallel

force control for sub-millimeter tolerance insertion tasks tends to get stuck in the region

very close to the alignment of the peg onto the hole. In the presence of very small

position errors, the PID position controller barely generates any signal. On the other

hand, the PI controller overcome the position PID controller due to small contact forces

or noise coming from the F/T sensor. Therefore, on insertion tasks with sub-millimeter

tolerances, the force controller does not move towards the target pose due to small

CHAPTER 5. CURRICULUM LEARNING STUDY 67

resistance from the contact with the environment. To address this issue, we introduce

PID gains scheduling, where once xe has been reduced to a position error of less than

1 cm, the PID gains are then scaled up based on the position error Kx
p = Kx

p ∗ (1/xe).

As xe approaches zero, the value of Kx
p has a hyperbolic growth, thus the value of Kx

p

is bounded to be maximum kn = 10 times its current value (the agent’s chosen value).

Section 5.4.2 provides a comparison between the use of a traditional PID versus the

PID gains scheduling on our proposed method.

5.2.4 Domain Randomization

Domain randomization (DR) [84] is a popular method in robot learning to increase the

generalization capabilities of policies trained in simulation, facilitating the transfer of

the policy to a real-world robotic agent with minimal to no further refinement of the

policy. In principle, the goal of DR is to provide enough variability to the simulated

environment during training to generalize better to real-world conditions. In robot

learning, DR randomizes a set of numerical parameters, Nr, of a physics simulator.

With each parameter ψi being sample from a randomization space Ψ ∈ RNr . Each

parameter is bounded on a close interval {[ψlow
i , ψhigh

i]}Nr
i=1. For every episode, a new

set of parameters is sample from the randomization space ψi ∈ Ψ. The most common

approach is to draw sample uniformly from the randomization space. In this work, the

randomized aspects of the peg-in-hole tasks are defined in Table 5.1.

5.2.5 Curriculum Learning

Curriculum Learning comes from the notion that the order in which information is

organized and presented to a learner impacts the learner’s performance and training

speed. This idea can be observed in the way humans learn, starting with simple concepts

and gradually progressing to more complicated problems[125, 122]. CL can also be

observed in the way we train animals [126].

In this work, we follow the notion that starting with easier tasks can help the agent

CHAPTER 5. CURRICULUM LEARNING STUDY 68

Condition Set

Initial position

(relative to goal)

Position (mm) [-50, 50]

Orientation (°) [-30, 30]

Peg shape [Cylinder, Cuboid, Hexagon prism, Triangular prism]

Hole Clearance (mm) [3.0, 5 × 10−1]

ϵ: Distance from full insertion (mm) [1.5 × 101, 1]

Friction

(in Gazebo: surface/friction/ode/mu)
[1, 5]

Stiffness

(in Gazebo: surface/friction/ode/kp)
[5.0 × 10−4, 1.0 × 10−6]

Table 5.1: Domain Randomization parameters and their maximum range of values

learn better when presented with more difficult tasks later on. We consider the CL

problem in the context of DR, where the goal is to reduce the training time by guiding

the learning process without loosing domain transferability. Then, the problem becomes

how to select parameters from the randomized space Ψ to guide the agent’s training.

To this end, we consider four main approaches:

• Curriculum-based DR: The DR parameter’s range of values is determined by the

curriculum.

• The curriculum’s evolution: a linear approach vs an adaptive approach.

• The DR sampling strategy: a Uniform distribution (UDR) vs a Gaussian distri-

bution (GDR).

• A dynamic reward function based on the curriculum vs a standard reward function.

Curriculum-based Domain Randomization

We tackle the problem of defining a strategy to reduce the complexity of choosing a value

for each randomization parameter. Though each parameter of the randomized space ψ

can be considered a degree of freedom that can be controlled to define the training tasks,

CHAPTER 5. CURRICULUM LEARNING STUDY 69

adding new parameters would increases the difficulty of choosing the sequence of tasks

to train the agent. Therefore, in order to simplify the problem while preserving the

benefits of domain randomization, we propose the following approach: we represent the

difficulty level L of a task as a numerical value in a close interval [0, 1], from easiest to

hardest. Then, a sub-set of each randomization parameter ψi is defined based on the

difficulty level Lep at the beginning of each episode during training:

ψi : [ψlow
i , ψlow

i + ψhigh
i ∗ Lep] (5.6)

where we assume that the parameter’s set ψi is defined in ascending order, such that,

at low and at high, the task is relatively the easiest and the hardest, respectively. The

parameters considered in this work and their corresponding set are shown in Table 5.1.

Adaptive Curriculum Learning

We consider two approaches to update the curriculum difficulty; on the one hand, the

naive approach is to monotonically increase the difficulty in a linear way, regardless of

the agent’s performance, i.e.,

Lep = ep/epmax (5.7)

with Lep being a constraint equal to 1 if the current episode number exceeds a

defined maximum number of episodes. On the other hand, we propose an adaptive

curriculum based on the agent’s performance P during the last few episodes. The

agent’s performance is computed as the success rate of the last few episodes. Based on

the agent’s performance, the curriculum’s level is updated by a defined step size Lstep.

Two thresholds are also defined. If the agent’s performances surpass Lthld_up or fall

below Lthld_down such thresholds, then the curriculum’s level is increased or decreased

respectively. Algorithm 2 describe our adaptive curriculum approach.

CHAPTER 5. CURRICULUM LEARNING STUDY 70

Algorithm 2 Adaptive Curriculum Learning Evolution
1: P = 0

2: for Every episode ep do

3: Update ψ based on Lep ▷ Eq. (5.6)

4: Sample task from ψ

5: // +1: success, -1: failure

6: P += rollout current policy π on task

7: Update policy

8: if P ≥ Lthld_up then

9: Lep += Lstep

10: P = 0 ▷ Consider newest rollouts

11: else if P ≤ Lthld_down then

12: Lep −= Lstep

13: P = 0 ▷ Consider newest rollouts

Domain Randomization Sampling Strategy

We consider the type of distribution from which the randomized parameters are sampled.

Instead of the typical uniform distribution (UDR), we propose the use of a Gaussian

distribution (GDR), N (µ, σ2), with the mean being centered around the current cur-

riculum’s level Lep, and variance is a hyperparameter. The reason behind this choice is

to keep increasing the general difficulty of the task with the increment of the difficulty

level, but with a small probability, the curriculum can generate an easier task than the

difficulty level to reduce the catastrophic forgetting problem [127, 128].

Dynamic Reward Function

Lastly, for our target task domain, we consider desirable for the RL agent to learn to

handle the hardest conditions to improve transferability to the real-world environment.

To this end, we propose and evaluate a dynamically evolving reward with respect to the

curriculum level difficulty. More specifically, the reward r, as defined in Section 5.2.2,

CHAPTER 5. CURRICULUM LEARNING STUDY 71

is scaled by the current difficulty level Lep; thus, the full reward would be obtained only

when the agent reaches and maintains the hardest level.

rd
t = r ∗ Lep (5.8)

where rd
t stands for the dynamic reward at time t. In other words, at each time step,

the reward obtained by the agent is a fraction of the full possible reward for reaching

such state.

5.3 Experiments and results

Through the following experiments, we aimed to understand the performance of our

proposed method compared to alternative approaches, in terms of sample efficiency and

generalization. To that end, experiments were performed with novel tasks not seen

during training in simulation and in the real-world environment, using insertion tasks

with medium grade industrial-level tolerances (±0.01 mm).

The baseline used throughout these experiments was based on our previous work

[123], which mainly focused on the use of DR to enhance domain transferability. This

experimental section focus on comparing the different curricula designs, sampling strate-

gies for DR, and curriculum-based dynamic reward. As such, our previous work [123] has

been updated to include the new reward function and PID gain scheduling approach,

proposed and described in Section 5.2.2 and 5.2.3 respectively, which is used as the

baseline in this study. Ablation studies of these components of our proposed method

are discussed in the Appendix.

5.3.1 Experimental Setup

A simulated environment was used both for training and validation. The Gazebo sim-

ulator [104] version 9 was used. The choice of simulation environment is discussed in

Section 5.5. Two real-world environments were used for validation purpose only; no

CHAPTER 5. CURRICULUM LEARNING STUDY 72

further re-training was performed on the target domains3. The components of the real-

world setup is described in Figure 5.3. Both environments consist of a Universal Robot

3 e-series robot arm with a control frequency up to 500 Hz. The robotic arm had a

force/torque sensor mounted at its end-effector. In the simulation, the peg was consid-

ered as part of the robot’s end-effector, as shown in Figure 5.4. The real-world robot

simply used a Robotiq Hand-e parallel gripper. For the toy environments described in

Section 5.3.5, this parallel gripper and a cuboid holder facilitate achieving a strong and

stable grasp, similar to the simulation environment. However, for the industrial inser-

tion tasks, we avoided the used of custom-made holders for the real-wold tasks, which

increased the difficulty of the tasks as discussed in Section 5.3.5.

Our implementation of the RL agent that controlled both the simulated and real

robot was developed on top of the Robot Operating System (ROS) [120] with the Univer-

sal Robot ROS Driver4. In both environments, training of the RL agent was performed

on a computer with an Intel i9-10900X CPU and NVIDIA® Quadro RTX™ 8000 GPU.

See the accompanying video 5

5.3.2 Training

The training phase consisted of the repeated execution of the insertion task using a

variety of peg shapes and physical parameters of the simulator, as described in Table 5.1.

An episode was defined as a maximum of 1000 time steps, with each step being 50 ms.

Early termination of an episode occurs under three conditions; 1) the target goal is

3Despite Gazebo’s simulation of the high-stiffness robot being accurate, the robot controllers respond

faster than the real robot (maybe due to safety speed reduction on the side of the real robot controller,

which we have not modify). Therefore, a minimal calibration is required. From our experience, scaling

the reference trajectory or the command send to the controller by a factor of two worked well enough.

A rough similarity between the simulation and real robot controller is enough to enable straightforward

sim2real transfer.
4ROS driver for Universal Robot robotic arms developed in collaboration be-

tween Universal Robots and the FZI Research Center for Information Technology

https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
5Graphical abstract and experimental results: https://youtu.be/_FVQC5OcGjs

CHAPTER 5. CURRICULUM LEARNING STUDY 73

Figure 5.3: Real experiment environment with a 6-degree-of-freedom UR3e robotic arm.

WRS2020 Task board is shown, along side the three insertion tasks used for validation,

motor pulley, bearing, and shaft. Each task has industrial level sub-mm tolerances.

reached, the peg inserted, and within ϵ distance from the full insertion, as described in

Table 5.1. 2) the robot collides with the task board, i.e., a large contact force is sensed

at any point during the task (more than 50 N in simulation or more than 30 N with

the real-world robot). 3) the agent gets stuck, thus, the cumulative reward decreases to

less than a set value Rmin.

5.3.3 Learning performance

First, we compare the learning performance of the approaches presented in Section 5.2.5,

5.2.5, and 5.2.5:

• Baseline: DR without curriculum learning (No Curriculum), as described in Sec-

tion 5.3.

• Linear curriculum with Uniform distribution for DR (Linear Curriculum UDR).

• Linear curriculum with Gaussian distribution for DR (Linear Curriculum GDR).

CHAPTER 5. CURRICULUM LEARNING STUDY 74

(a) Cylinder. (b) Hexagonal (c) Cuboid

(d) Triangular (e) Trapezoid (f) Star

Figure 5.4: Simulated peg-in-hole environments. The cylinder, hexagonal prism, cuboid

and triangular prism were used during training. The trapezoid prism and the star prism

were used for testing.

• Adaptive curriculum with Uniform distribution for DR (Adp. Curriculum UDR).

• Adaptive curriculum with Gaussian distribution for DR (Adp. Curriculum GDR).

Each training session had a maximum of 100, 000 time steps, one-fifth of the training

time required in our previous work [123]. As described in Section 5.2.4, each episode is

generated with a different set of values for the randomization parameters. Figure 5.5

shows the cumulative reward per method during a complete training session. Each train-

ing session was repeated with different random seeds. The average value and standard

deviation are shown as the bold line and shadow region, respectively. The results are a

preliminary highlight of the significant improvement of applying Curriculum Learning

compared to the baseline, which relied primarily on Domain Randomization alone. Fur-

thermore, the adaptive curricula had a considerable performance above a simple linear

increment of the curricula difficulty. Finally, using a Gaussian distribution instead of a

CHAPTER 5. CURRICULUM LEARNING STUDY 75

Uniform distribution for the sampling of Domain Randomization parameters also signif-

icantly improves the agents’ performance during learning. The dynamic reward (DyRe)

approach discussed in Section 5.2.5 is not included here as the scale of the reward is

different.

Figure 5.5: Learning curve comparison using the cumulative reward of the overall train-

ing session. Each method was trained three times. The results are aggregated as the

average cumulative reward and corresponding standard deviation, represented by the

bold line and the shadow region.

5.3.4 Evaluating learned Policies

Next, we evaluated the performance of the learned policies on novel conditions not seen

during training. Each policy was executed 100 times with different initial conditions

and randomized parameters (with a fixed random seed for a fair comparison). More

specifically, the peg shapes used for testing were a trapezoid prism and star prism, as

shown in Figure 5.4. The trapezoid introduces a non-symmetric-shaped peg. The star

prism peg is more challenging due to its sharp corners that make the peg prone to getting

stuck during the aligning phase, making the overall insertion task harder to complete

during the allowed time limit of 50 seconds (same time limit as during training).

CHAPTER 5. CURRICULUM LEARNING STUDY 76

The results are shown in Table 5.2. They include a comparison of the overall

success rate and the average time needed to complete the task; failure cases are not

included in the computation of the average time. Two main conclusions can be drawn

from these results; 1) A curriculum may seem to have a better learning performance,

but the resulting policy may not transfer well to novel environments, as is the case

with the Linear Curricula methods. Such linear curriculum approaches performed just

slightly better than not using a curriculum at all. 2) The most successful methods are

not necessarily the fastest. Our simulation environment did not handle very well friction

between the peg and the task board, due to the high stiffness of the robot joints. In

this almost friction-less world, the Adp. Curriculum UDR method is able to solve the

tasks between 20% to 50% faster than our best method Adp. Curriculum GDR DyRe.

However, the success rate of our method is at least 19% higher. The main reason for

such results is that since contact force and collision avoidance have higher priority than

speed during learning, our proposed method moves slower when the peg gets closer to

the task board so the contact force is reduced. This conclusion is further supported by

the real-world experimental data described next in Section 5.3.5.

Method
Trapezoid Prism Star Prism

Success

Rate

Avg.

Time(s)

Success

Rate

Avg.

Time(s)

No Curriculum 0.88 9.585 0.627 11.304

Linear Curriculum UDR 1.00 9.817 0.696 9.152

Linera Curriculum GDR 1.00 11.650 0.775 11.780

Adp. Curriculum UDR 1.00 6.881 0.706 6.875

Adp. Curriculum GDR 1.00 8.460 0.794 8.013

Adp. Curriculum

UDR DyRe
1.00 8.429 0.873 11.602

Adp. Curriculum

GDR DyRe
1.00 8.400 0.902 11.544

Table 5.2: Evaluation of learned policies on novel conditions.

CHAPTER 5. CURRICULUM LEARNING STUDY 77

(a) Trapezoid and star prism pegs

(b) Motor Pulley, Shaft, and Bearing.

Figure 5.6: Real-world experimental scenarios. Left: 3D printed primitive shape-pegs,

different from the ones used for training in simulation. Right: Industrial level insertion

tasks from the WRS2020 Robotics Assembly Challenge.

5.3.5 Real-world experiments

We performed two sets of experiments to evaluate the transferability of the learned

policies to the real world and to novel tasks. The experiments were performed using the

baseline (No Curriculum) method and our newly proposed method (Adp. Curriculum

DyRe GDR), which achieved the best results from the evaluation in simulation. The first

set of tasks consisted of the same trapezoid and star prism-shaped pegs as the simulation

experiments, which were not presented during training. A simplified peg was 3D printed

using PLA material, as shown in Figure 5.6a. The second set of tasks consisted of novel

CHAPTER 5. CURRICULUM LEARNING STUDY 78

industrial level insertion tasks (See Figure 5.6b), similarly, these tasks were unseen

during training in simulation. Both sets of tasks had sub-millimeter tolerances. Thirty

trials were performed per method and task. The success rate and average completion

time were measured where the initial position and orientation of the robot’s end-effector

at each trial were different and randomly sampled from a fixed random seed to fairly

compare both methods. Each trial had a 500-time steps limit, i.e., 25 s.

Primitive Shaped Pegs

The 3D printed pegs were designed with a cuboid holder, as shown in Figure 5.6a, to

increase the stability of the grasp. As a result, the stiffness of the contact is very high,

as the task board was also firmly fixed to the workspace. Additionally, there is high

friction due to the PLA material used for 3D printing and the imperfections on the

printed surface. The high stiffness and friction made the task challenging. The results

are shown in Table 5.3. As mentioned before, for this test, the baseline was also trained

with only one-fifth of the samples shown to be needed [123] to learn a successful policy.

Thus, the learned policy’s less refined force control tends to apply too much force to

complete the task quickly, but the high friction and the corners of the star-shaped hole

cause the peg to get stuck easily. Therefore, the baseline method struggled to align the

star prism peg and to get unstuck. On the other hand, our newly proposed approach

successfully adapted to the real-world environment and succeeded at the novel tasks

without further re-training the policies, just a straightforward sim-to-real transfer.

Industrial Level Insertion Tasks

The second set of tasks used for evaluation consisted of 3 insertion tasks with industrial

level tolerances. These were chosen from the assembly task used in the Industrial Robots

Assembly Challenge of the World Robot Summit 2020 edition [129]. The tasks, as shown

in Figure 5.6b, were the insertion of a pulley into a motor shaft, a shaft into a bearing,

and a bearing into a plate. Similar to the previous tasks, the learned policies were

directly transferred from the simulation environment without further training. These

CHAPTER 5. CURRICULUM LEARNING STUDY 79

Method
Trapezoid Prism Peg Star Prism Peg

Success

Rate

Avg.

Time(s)

Success

Rate

Avg.

Time(s)

No Curriculum 1.000 6.500 0.000 -

Adp. Curriculum

DyRe GDR
1.000 5.465 1.000 6.023

Table 5.3: Evaluating learned policies on the real-world environment, using 2 toy sce-

narios not seen during training on simulation.

tasks are considerably more challenging as the grasp’s stability significantly impacts the

success. All three manipulated objects are round and grasped directly with a standard

parallel gripper. Thus, torques applied along the direction of the grasp could easily

change the object’s orientation in the gripper. Small orientation changes significantly

affect these very tight insertion tasks.

The results are shown in Table 5.4. Our newly proposed method (Adp. Curriculum

DyRe GDR) achieved a high success rate in all the tasks. For the motor pulley and the

shaft tasks, our method also solves the task faster by finding the right fit faster. Our

method is less likely to get stuck as it applies less contact force as shown in Figure 5.7

and 5.8 In the case of the bearing task, the baseline method, when successful, is slightly

faster as it tends to apply higher contact force and move faster once the parts are

aligned. However, the same high contact force makes it harder to find the proper

alignment, thus resulting in a very low success rate. As a result, our newly proposed

method outperforms the baseline method, achieving a much higher success rate. These

results are better appreciated in the supplemented video6.

Learning Force Control

In addition to the success rate and time to completion, we compare the detailed per-

formance of the two methods. Figure 5.7 shows the performance of both methods side
6Supplemental video: https://youtu.be/_FVQC5OcGjs

CHAPTER 5. CURRICULUM LEARNING STUDY 80

Method
Motor Pulley Shaft Bearing

Success

Rate

Avg.

Time(s)

Success

Rate

Avg.

Time(s)

Success

Rate

Avg.

Time (s)

No Curriculum 0.400 8.258 0.667 9.199 0.267 6.819

Adp. Curriculum

DyRe GDR
0.867 7.250 0.833 7.015 0.700 7.212

Table 5.4: Evaluating learned policies on the real-world environment, using 2 toy sce-

narios not seen during training on simulation.

by side for the three industrial insertion tasks. For simplicity, only the z-axis (i.e., the

insertion direction), distance error (mm), and contact force (N) are displayed. As shown

in Figure 5.7, our proposed method is more time-efficient and applies less contact force

to the coupling part. Less contact force is desirable to avoid damage to either the assem-

bly part or the robot. Similarly, Figure 5.8 shows the comparison of trials where both

agents fail to complete the task on time. Though both agents failed, our method again

shows a reduced exertion of contact force. In both cases, our method applies about 30%

less contact force.

(a) Motor Pulley (b) Shaft (c) Bearing

Figure 5.7: Agents performance on WRS2020 insertion tasks. For clarity, only the

z-axis (Insertion direction) distance error and contact force are displayed. Comparison

was made for each task when both methods successfully completed the task.

CHAPTER 5. CURRICULUM LEARNING STUDY 81

(a) Motor Pulley (b) Shaft (c) Bearing

Figure 5.8: Performance of both methods where both failed to complete the task within

the time limit.

5.4 Ablation studies

In this section we compare the performance of the proposed method where the improve-

ments presented in this work; the new dense reward function (Sect. 5.2.2), and the

addition of a PID gains scheduling to the force controller (Sect. 5.2.3). Similar to the

experimental setup described in Section 5.3.4, each method was evaluate on simulation

by executing their corresponding learned policy over a 100 trials for each task.

5.4.1 Reward Functions

The newly proposed dense reward function includes the robot’s end-effector velocity

combined with the error position. Our aim is to encourage the agent to move faster while

being far from the target pose, but to move slower when closer to the target position

to reduce the risk of high contact forces. For a fair comparison, the implementation of

the Old reward function method and our proposed New reward function were identical

except for the type of reward function. Both methods are based on our proposed method

(Adp. Curriculum GDR DyRe), as described in Section 5.2.5. Figure 5.9 shows the

comparison of the training session, and the overall cumulative reward for each method.

In addition, both approaches were tested on two novel tasks on simulation, the same

tasks described in Section 5.3.4. The results, displayed in Table 5.5, shows a significant

improvement in performance. Our approach using the New reward achieved a higher

CHAPTER 5. CURRICULUM LEARNING STUDY 82

success rate. Additionally, our approach also was more efficient at solving the tasks. In

average, the task are solved at least twice as fast.

Figure 5.9: Learning curve comparison.

Method
Trapezoid

Prism Peg

Star

Prism Peg

Success

Rate

Avg.

Time(s)

Success

Rate

Avg.

Time(s)

Old

Reward
0.98 14.979 0.85 12.271

New

Reward
1.000 5.465 1.000 6.023

Table 5.5: Success rate on novel tasks on the simulated environment.

5.4.2 Force Controller Position PID types

Furthermore, we updated the PID position controller of our force controller to enhance

the performance of the agent when the position error is very small. Similarly, both

method were identical except for the implementation of the PID position controller

and based on our proposed method (Adp. Curriculum GDR DyRe), as described in

CHAPTER 5. CURRICULUM LEARNING STUDY 83

Section 5.2.5. The results of evaluating each method on novel tasks not seen during

training are shown in Figure 5.10, for the learning curve, and in Table 5.6. The results

show a considerable improvement of performance when using our proposed PID gain

scheduling approach. The success rate achieved by our PID gain scheduling approach

is about twice the achieved with the Normal PID approach. On top of that, our PID

gain scheduling approach can solve the tasks in less than half the time required by the

Normal PID approach.

Figure 5.10: Learning curve comparison.

Method
Trapezoid

Prism Peg

Star

Prism Peg

Success

Rate

Avg.

Time(s)

Success

Rate

Avg.

Time(s)

Normal

PID
0.780 12.798 0.500 13.949

PID gains

Scheduling
1.000 5.465 1.000 6.023

Table 5.6: Success rate on novel tasks on the simulated environment.

CHAPTER 5. CURRICULUM LEARNING STUDY 84

5.5 Discussion

Training a reinforcement learning agent with a curriculum that starts from easier tasks

with reduced risk of encountering fatal states (e.g., a collision during a manipulation

task) improves the learning sample efficiency and overall performance. In this case study,

in particular, we integrate CL to contact-rich peg insertion tasks. A task is defined by

various physical parameters as described in Table 5.1. We aim to allow the agent to

carefully explore more states by presenting tasks in increasing order of difficulty, e.g.,

by reducing the stiffness of the contact between the peg and the board, the agent is

less likely to apply excessive contact force to the environment (i.e., a collision). At

the same time, starting with easier tasks, such as a shorter distance from the initial

position to goal one, reduces the overall exploration. The curriculum is design around

a domain randomization approach to preserve and enhance the domain transferability

benefits from DR. Nevertheless, the type of curricula is very relevant for achieving better

performance, both in terms of sample efficiency and success rate, as seen in the results

in Sect. 5.3.5.

From our previous work [123], we demonstrated that with sufficient domain randomization-

based training in simulation (at least 500, 000 time steps or about 8 hours) and further

retraining in the real-robot environment, it is possible to learn policies that adapt to

novel domains successfully. The present chapter introduce a study on Curriculum Learn-

ing to tackle the problem of sample-efficiency, and the need to retrain in the target do-

main. The experimental results on the real-robot environment confirms that our newly

proposed method is effective in learning contact-rich force control tasks. Despite that

our proposed method was trained only in simulation with one-fifth of the training time

used in our previous work [123] and without further retraining, it achieves a high success

rate on novel tasks, including challenging industrial insertion tasks with sub-millimeter

tolerances.

CHAPTER 5. CURRICULUM LEARNING STUDY 85

5.6 Conclusions

This chapter has studied the application of different approaches that combine Curricu-

lum Learning with Domain Randomization to learn contact-rich manipulation tasks,

particularly assembly tasks such as peg insertion. Based on such a study, we proposed

to improve sample efficiency and generalization by training an agent purely in simulation,

with the training being guided with CL and enhanced with DR. Additionally, this work

introduced two enhancements to our learning framework, a new dense reward function

and a PID gain scheduling approach, described in Section 5.2.2 and 5.2.3 respectively,

and validated in the Appendix.

The learning framework proposed in this work is based on our previous work [123]

where a combination of sim2real with DR was proposed. Our previous methods still

required a considerably large amount of agent’s interaction with its environment and

additional refinement in the real-world environment to learn a robust policy. On the

contrary, our novel approach can be trained purely in simulation with only toy insertion

tasks. Empirical results showed that with our proposed method a successful policy can

be learned using only one-fifth of the samples needed in our previous work. Such policies

can be straightforwardly transferred to real-world environments and still achieve a high

success rate, up to 86%, on novel complex industrial insertion tasks not seen during

training.

CHAPTER 5. CURRICULUM LEARNING STUDY 86

Chapter 6

Discussion

6.1 Contributions

In this dissertation, a Reinforcement Learning (RL) framework for industrial position-

controlled robotic manipulators has been proposed. The proposed framework has been

designed to enable safe interactions of a real-world robotic agent. More specifically,

the proposed learning framework enables robotic manipulators to learn how to solve

high-precision contact rich manipulation task, such as insertion tasks. To solve such

tasks, the robot needs to carefully control the interaction forces between the parts being

manipulated. To that end, in Chapter 3, we have proposed a learning framework that

combines RL with traditional force feedback control.

A drawback of Machine Learning methods, including RL, is the requirement of a

large amount of data to learn. The demand for such data increases with the increment

of the tasks complexity. The complex contact-rich tasks considered on this dissertation

demand a considerable amount of data, i. e., experience, from the robotic agent to learn

a successful policy. Despite that we have presented a learning framework that allows

training of RL policies directly on real hardware, the requirement of large amount of

interactions with the environment risk wear and tear of the robot. Similarly, the ran-

dom nature of the initial policies and the need for exploration put the robot and its

87

environment at risk of damage. For this reason, the second objective of this dissertation

was the proposal of methods to reduce such risk by exploiting the capabilities of simula-

tion environment that can emulate to a great level of fidelity the dynamics of a robotic

manipulator and the contacts between objects. Furthermore, simulation environments

are easier to manipulate and change, which allow us to train the robotic agent on a wide

variety of environmental conditions that in turn facilitates the learning of a more robust

policy and the generalization to novel but similar tasks, not present during training. In

Chapter 4, we have proposed a Sim2Real approach to learn policies in simulation and

transfer them to a real-world environment, where the policies can be further trained

(finetune) if needed. The proposed method has been evaluated on several conditions

to show the robustness of the policy to uncertainty of the task. Additionally, the pro-

posed method was evaluated on novel task not seen during training to demonstrate the

generalization capabilities of our method.

Although, the method proposed in Chapter 4 significantly reduces the need to train

policies directly on real hardware, the learning process itself still requires a considerable

amount of experience to find a successful policy, which can take several hours. To address

this problem, in Chapter 5, we focus on the concept of Curriculum Learning (CL). The

idea is based on the notion that the order in which information is presented to a learner

affects is ability to learn. In particular, by starting training with easier tasks, an agent

can learn better and quicker when presented with harder and more complex tasks later

on. Thus, in Chapter 5 a study of CL applied to our learning framework for contact-rich

tasks is presented. Then, a new method based on CL is presented. The proposed method

is evaluated on a variety of complex industrial-level insertion tasks. The effectiveness of

the method is compared to the proposed method presented in Chapter 4. The results

show a considerable improvement of the new method, by learning faster, up to five times

faster, and better, even when evaluated on task not seen during the training phase.

CHAPTER 6. DISCUSSION 88

6.2 Open Challenges and Future Work

The main limitation of the method presented in Chapter 5 is the assumption that the

domain randomization parameter ranges are organized in order from easy to difficult.

Prior knowledge is required to determine the difficulty of a physical parameters on a given

task. Such prior knowledge is task-specific and not necessarily easy to obtain or even

impossible to determine manually. For example, considering only the peg-in-hole task

and the stiffness between the peg and the task board, a low-stiffness can intuitively seem

easier to handle for a high-stiffness robot arm, as less careful force control is required

to achieve the task without generating large contact forces. However, depending on the

material and how low the stiffness is, the peg may get stuck, or the task board may be

deformed to such an extent that the task becomes impossible to solve. To tackle this

problem, an interesting future avenue is to add a layer of learning, following works such

as [85, 130]. The main idea of this line of research work is to train a neural network

to define the RL agent’s tasks. In other words, the network learns to choose the best

values for the randomization parameters at each episode to increase the performance of

the learned policy. The approaches differ in how the new network is trained, and how the

agent’s performance is defined, such as the cumulative reward, success rate, or another

evaluation metric. Following these self-learned curricula approaches reduces the burden

on prior knowledge, though as discussed in [85], a self-learned curriculum can provide

an insight into incompatibilities between the task and randomization ranges. Therefore,

such approaches may allow the use of many other parameters of the physics simulator

for domain randomization, potentially increasing the transferability to novel domains.

Nevertheless, the possible downside is the requirement of longer training sessions due to

the added complexity.

Another future avenue to further improve the presented work is the choice of a simu-

lation environment. At the time of writing this chapter, there are various physics engine

simulators available that simulate the contact dynamics between bodies with different

degrees of accuracy, among other capabilities. Our choice of the Gazebo simulator was

motivated by its realistic simulation of rigid position-controlled robots. Additionally, the

CHAPTER 6. DISCUSSION 89

availability of ROS controllers that worked the same in the simulated and the real-world

robot reduces the implementation burden and facilitates sim2real transfer. Nonetheless,

other simulators provide better contact dynamics and are better adapted for Reinforce-

ment Learning applications, such as Mujoco [131], or Nvidia Isaac Sim [132]. Working

with such simulators would be a significant improvement, as Domain Randomization is

also easier to implement for vision-based learning methods and physical parameters of

the simulated environment.

CHAPTER 6. DISCUSSION 90

References

[1] N. Yashiro, “Aging of the population in japan and its implications to the other

asian countries,” Journal of Asian Economics, vol. 8, no. 2, pp. 245–261, 1997.

[2] R. B. Freeman, “Is a great labor shortage coming? replacement demand in the

global economy,” 2006.

[3] L. Kugler, “Addressing labor shortages with automation,” Communications of the

ACM, vol. 65, no. 6, pp. 21–23, 2022.

[4] G. Boothroyd, Assembly automation and product design. CRC press, 2005.

[5] P. Akella, M. Peshkin, E. Colgate, W. Wannasuphoprasit, N. Nagesh, J. Wells,

S. Holland, T. Pearson, and B. Peacock, “Cobots for the automobile assembly

line,” in Proceedings 1999 IEEE International Conference on Robotics and Au-

tomation (Cat. No. 99CH36288C), vol. 1. IEEE, 1999, pp. 728–733.

[6] B. Wang, “The future of manufacturing: a new perspective,” Engineering, vol. 4,

no. 5, pp. 722–728, 2018.

[7] I. Tomašević, D. Stojanović, D. Slović, B. Simeunović, and I. Jovanović, “Lean in

high-mix/low-volume industry: a systematic literature review,” Production Plan-

ning & Control, vol. 32, no. 12, pp. 1004–1019, 2021.

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, 2nd ed.

MIT press, 2018.

91

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level

control through deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–

533, 2015.

[10] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pa-

chocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al., “Learning dexterous

in-hand manipulation,” The International Journal of Robotics Research, vol. 39,

no. 1, pp. 3–20, 2020.

[11] B. Siciliano and L. Villani, Robot force control. Springer Science & Business

Media, 2012, vol. 540.

[12] D. E. Whitney, “Quasi-Static Assembly of Compliantly Supported Rigid Parts,”

Journal of Dynamic Systems, Measurement, and Control, vol. 104, no. 1, pp.

65–77, 03 1982. [Online]. Available: https://doi.org/10.1115/1.3149634

[13] T. Tsuruoka, H. Fujioka, T. Moriyama, and H. Mayeda, “3d analysis of contact

in peg-hole insertion,” in Proceedings of the 1997 IEEE International Symposium

on Assembly and Task Planning (ISATP’97)-Towards Flexible and Agile Assembly

and Manufacturing-. IEEE, 1997, pp. 84–89.

[14] S. Chiaverini and L. Sciavicco, “The parallel approach to force/position control

of robotic manipulators,” IEEE Transactions on Robotics and Automation, vol. 9,

no. 4, pp. 361–373, 1993.

[15] N. Hogan, “Impedance control: An approach to manipulation,” in 1984 American

Control Conference, June 1984, pp. 304–313.

[16] H. Qiao, B. Dalay, and R. Parkin, “Fine motion strategies for robotic peg-hole

insertion,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal

of Mechanical Engineering Science, vol. 209, no. 6, pp. 429–448, 1995.

[17] T. Arai, N. Yamanobe, Y. Maeda, H. Fujii, T. Kato, and T. Sato, “Increasing effi-

ciency of force-controlled robotic assembly:–design of damping control parameters

considering cycle time–,” CIRP annals, vol. 55, no. 1, pp. 7–10, 2006.

REFERENCES 92

[18] H.-C. Song, Y.-L. Kim, and J.-B. Song, “Automated guidance of peg-in-hole as-

sembly tasks for complex-shaped parts,” in 2014 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems. IEEE, 2014, pp. 4517–4522.

[19] K. Zhang, M. Shi, J. Xu, F. Liu, and K. Chen, “Force control for a rigid dual

peg-in-hole assembly,” Assembly Automation, 2017.

[20] H.-C. Song, Y.-L. Kim, and J.-B. Song, “Guidance algorithm for complex-shape

peg-in-hole strategy based on geometrical information and force control,” Ad-

vanced Robotics, vol. 30, no. 8, pp. 552–563, 2016.

[21] K. Zhang, J. Xu, H. Chen, J. Zhao, and K. Chen, “Jamming analysis and force

control for flexible dual peg-in-hole assembly,” IEEE Transactions on Industrial

Electronics, vol. 66, no. 3, pp. 1930–1939, 2018.

[22] M. Car, A. Ivanovic, M. Orsag, and S. Bogdan, “Impedance based force control for

aerial robot peg-in-hole insertion tasks,” in 2018 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 6734–6739.

[23] V. Mallapragada, D. Erol, and N. Sarkar, “A new method of force control for un-

known environments,” International Journal of Advanced Robotic Systems, vol. 4,

no. 3, p. 34, 2007.

[24] D. Mitrovic, S. Klanke, and S. Vijayakumar, “Learning impedance control of an-

tagonistic systems based on stochastic optimization principles,” The International

Journal of Robotics Research, vol. 30, no. 5, pp. 556–573, 2011.

[25] Y. Li and S. S. Ge, “Impedance learning for robots interacting with unknown

environments,” IEEE Transactions on Control Systems Technology, vol. 22, no. 4,

pp. 1422–1432, 2013.

[26] M.-C. Chien and A.-C. Huang, “Adaptive impedance control of robot manipulators

based on function approximation technique,” Robotica, vol. 22, no. 4, pp. 395–403,

2004.

REFERENCES 93

[27] M. Racca, J. Pajarinen, A. Montebelli, and V. Kyrki, “Learning in-contact control

strategies from demonstration,” in 2016 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 688–695.

[28] Y. Fukumoto and K. Harada, “Force control law selection for elastic part assembly

from human data and parameter optimization,” in 2018 IEEE-RAS 18th Interna-

tional Conference on Humanoid Robots (Humanoids). IEEE, 2018, pp. 1–7.

[29] G. Tesauro et al., “Temporal difference learning and td-gammon,” Communica-

tions of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[30] J. BAXTER, “A chess program that learns by combinin td (λ) with game-tree

search,” in Proc. 15th Int. Conf. Machine Learning, 1998, pp. 28–36.

[31] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman, “Pac model-free

reinforcement learning,” in Proceedings of the 23rd international conference on

Machine learning, 2006, pp. 881–888.

[32] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep

reinforcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34,

no. 6, pp. 26–38, 2017.

[33] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, Z. D. Guo,

and C. Blundell, “Agent57: Outperforming the atari human benchmark,” in In-

ternational Conference on Machine Learning. PMLR, 2020, pp. 507–517.

[34] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering

the game of go with deep neural networks and tree search,” nature, vol. 529, no.

7587, pp. 484–489, 2016.

[35] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,

D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al., “Grandmaster level in

starcraft ii using multi-agent reinforcement learning,” Nature, vol. 575, no. 7782,

pp. 350–354, 2019.

REFERENCES 94

[36] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A

survey,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–

1274, 2013.

[37] K. Mülling, J. Kober, O. Kroemer, and J. Peters, “Learning to select and generalize

striking movements in robot table tennis,” The International Journal of Robotics

Research, vol. 32, no. 3, pp. 263–279, 2013.

[38] J. Peters, J. Kober, K. Mülling, O. Krämer, and G. Neumann, “Towards robot

skill learning: From simple skills to table tennis,” in Joint European Conference

on Machine Learning and Knowledge Discovery in Databases. Springer, 2013,

pp. 627–631.

[39] J. Tebbe, L. Krauch, Y. Gao, and A. Zell, “Sample-efficient reinforcement learning

in robotic table tennis,” in 2021 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2021, pp. 4171–4178.

[40] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser, “Learning

synergies between pushing and grasping with self-supervised deep reinforcement

learning,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, 2018, pp. 4238–4245.

[41] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and

E. Liang, “Autonomous inverted helicopter flight via reinforcement learning,” in

Experimental robotics IX. Springer, 2006, pp. 363–372.

[42] W. Koch, R. Mancuso, R. West, and A. Bestavros, “Reinforcement learning for

uav attitude control,” ACM Transactions on Cyber-Physical Systems, vol. 3, no. 2,

pp. 1–21, 2019.

[43] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast quadrupedal

locomotion,” in IEEE International Conference on Robotics and Automation,

2004. Proceedings. ICRA’04. 2004, vol. 3. IEEE, 2004, pp. 2619–2624.

REFERENCES 95

[44] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco: Dynamic loco-

motion skills using hierarchical deep reinforcement learning,” ACM Transactions

on Graphics (TOG), vol. 36, no. 4, pp. 1–13, 2017.

[45] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen,

E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine, “Scalable deep rein-

forcement learning for vision-based robotic manipulation,” in Proceedings of The

2nd Conference on Robot Learning, vol. 87. PMLR, 2018, pp. 651–673.

[46] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-eye

coordination for robotic grasping with deep learning and large-scale data col-

lection,” The International Journal of Robotics Research, vol. 37, no. 4-5, pp.

421–436, 2018.

[47] C. C. Beltran-Hernandez, D. Petit, I. G. Ramirez-Alpizar, and K. Harada, “Learn-

ing to grasp with primitive shaped object policies,” in 2019 IEEE/SICE Interna-

tional Symposium on System Integration (SII). IEEE, 2019, pp. 468–473.

[48] W. Gao, L. Graesser, K. Choromanski, X. Song, N. Lazic, P. Sanketi, V. Sind-

hwani, and N. Jaitly, “Robotic table tennis with model-free reinforcement learn-

ing,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS). IEEE, 2020, pp. 5556–5563.

[49] S. Joshi, S. Kumra, and F. Sahin, “Robotic grasping using deep reinforcement

learning,” in 2020 IEEE 16th International Conference on Automation Science

and Engineering (CASE). IEEE, 2020, pp. 1461–1466.

[50] M. P. Deisenroth, C. E. Rasmussen, and D. Fox, “Learning to control a low-cost

manipulator using data-efficient reinforcement learning,” Robotics: Science and

Systems VII, vol. 7, pp. 57–64, 2011.

[51] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for

robotic manipulation with asynchronous off-policy updates,” in 2017 IEEE in-

ternational conference on robotics and automation (ICRA). IEEE, 2017, pp.

3389–3396.

REFERENCES 96

[52] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Overcom-

ing exploration in reinforcement learning with demonstrations,” in 2018 IEEE

international conference on robotics and automation (ICRA). IEEE, 2018, pp.

6292–6299.

[53] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik,

T. Lampe, Y. Tassa, T. Erez, and M. Riedmiller, “Data-efficient deep rein-

forcement learning for dexterous manipulation,” arXiv preprint arXiv:1704.03073,

2017.

[54] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana, “Deep

reinforcement learning for high precision assembly tasks,” in 2017 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS). IEEE, 2017,

pp. 819–825.

[55] G. Thomas, M. Chien, A. Tamar, J. A. Ojea, and P. Abbeel, “Learning robotic

assembly from cad,” in 2018 IEEE International Conference on Robotics and Au-

tomation (ICRA). IEEE, 2018, pp. 1–9.

[56] F. Li, Q. Jiang, S. Zhang, M. Wei, and R. Song, “Robot skill acquisition in

assembly process using deep reinforcement learning,” Neurocomputing, vol. 345,

pp. 92–102, 2019.

[57] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, and A. M. Agogino, “Deep reinforcement

learning for robotic assembly of mixed deformable and rigid objects,” in 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE, 2018, pp. 2062–2069.

[58] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar, and

P. Abbeel, “Reinforcement learning on variable impedance controller for high-

precision robotic assembly,” in 2019 International Conference on Robotics and

Automation (ICRA). IEEE, 2019, pp. 3080–3087.

REFERENCES 97

[59] Y. Fan, J. Luo, and M. Tomizuka, “A learning framework for high precision in-

dustrial assembly,” in 2019 International Conference on Robotics and Automation

(ICRA). IEEE, 2019, pp. 811–817.

[60] H. Park, J.-H. Bae, J.-H. Park, M.-H. Baeg, and J. Park, “Intuitive peg-in-hole

assembly strategy with a compliant manipulator,” in IEEE ISR 2013. IEEE,

2013, pp. 1–5.

[61] S. R. Chhatpar and M. S. Branicky, “Search strategies for peg-in-hole assemblies

with position uncertainty,” in Proceedings 2001 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems. Expanding the Societal Role of Robotics

in the the Next Millennium (Cat. No. 01CH37180), vol. 3. IEEE, 2001, pp.

1465–1470.

[62] K. Sharma, V. Shirwalkar, and P. K. Pal, “Intelligent and environment-

independent peg-in-hole search strategies,” in 2013 International Conference on

Control, Automation, Robotics and Embedded Systems (CARE). IEEE, 2013, pp.

1–6.

[63] V. Gullapalli, J. A. Franklin, and H. Benbrahim, “Acquiring robot skills via re-

inforcement learning,” IEEE Control Systems Magazine, vol. 14, no. 1, pp. 13–24,

1994.

[64] J. Luo and H. Li, “A learning approach to robot-agnostic force-guided high preci-

sion assembly,” in 2021 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). IEEE, 2021, pp. 2151–2157.

[65] A. Y. Yasutomi, H. Mori, and T. Ogata, “A peg-in-hole task strategy for holes

in concrete,” in 2021 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2021, pp. 2205–2211.

[66] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, “Learning variable impedance

control,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 820–

833, 2011.

REFERENCES 98

[67] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning of motor skills in

high dimensions: A path integral approach,” in Robotics and Automation (ICRA),

2010 IEEE International Conference on. IEEE, 2010, pp. 2397–2403.

[68] M. Bogdanovic, M. Khadiv, and L. Righetti, “Learning variable impedance control

for contact sensitive tasks,” IEEE Robotics and Automation Letters, vol. 5, no. 4,

pp. 6129–6136, 2020.

[69] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv

preprint arXiv:1509.02971, 2015.

[70] R. Martín-Martín, M. Lee, R. Gardner, S. Savarese, J. Bohg, and A. Garg, “Vari-

able impedance control in end-effector space. an action space for reinforcement

learning in contact rich tasks,” in International Conference of Intelligent Robots

and Systems (IROS), 2019.

[71] C. Yang, C. Zeng, Y. Cong, N. Wang, and M. Wang, “A learning framework

of adaptive manipulative skills from human to robot,” IEEE Transactions on

Industrial Informatics, vol. 15, no. 2, pp. 1153–1161, 2018.

[72] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-eye

coordination for robotic grasping with deep learning and large-scale data col-

lection,” The International Journal of Robotics Research, vol. 37, no. 4-5, pp.

421–436, 2018.

[73] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp from 50k

tries and 700 robot hours,” in 2016 IEEE international conference on robotics and

automation (ICRA), 2016, pp. 3406–3413.

[74] M. Nuttin and H. Van Brussel, “Learning the peg-into-hole assembly operation

with a connectionist reinforcement technique,” Computers in Industry, vol. 33,

no. 1, pp. 101–109, 1997.

[75] J. Xu, Z. Hou, W. Wang, B. Xu, K. Zhang, and K. Chen, “Feedback deep de-

terministic policy gradient with fuzzy reward for robotic multiple peg-in-hole as-

REFERENCES 99

sembly tasks,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp.

1658–1667, 2018.

[76] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. A. Riedmiller,

“Deterministic policy gradient algorithms,” in ICML, 2014.

[77] S. Levine and V. Koltun, “Guided policy search,” in International Conference on

Machine Learning, 2013, pp. 1–9.

[78] T. Ren, Y. Dong, D. Wu, and K. Chen, “Learning-based variable compliance

control for robotic assembly,” Journal of Mechanisms and Robotics, vol. 10, no. 6,

2018.

[79] M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei, A. Garg, and

J. Bohg, “Making sense of vision and touch: Self-supervised learning of multi-

modal representations for contact-rich tasks,” in 2019 International Conference

on Robotics and Automation (ICRA). IEEE, 2019, pp. 8943–8950.

[80] F. J. Abu-Dakka, B. Nemec, J. A. Jørgensen, T. R. Savarimuthu, N. Krüger, and

A. Ude, “Adaptation of manipulation skills in physical contact with the environ-

ment to reference force profiles,” Autonomous Robots, vol. 39, no. 2, pp. 199–217,

2015.

[81] A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra, “Bench-

marking reinforcement learning algorithms on real-world robots,” in Proceedings

of The 2nd Conference on Robot Learning, vol. 87. PMLR, 29–31 Oct 2018, pp.

561–591.

[82] G. Schoettler, A. Nair, J. A. Ojea, S. Levine, and E. Solowjow, “Meta-

reinforcement learning for robotic industrial insertion tasks,” in 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020,

pp. 9728–9735.

[83] M. Kaspar, J. D. M. Osorio, and J. Bock, “Sim2real transfer for reinforce-

ment learning without dynamics randomization,” in 2020 IEEE/RSJ Interna-

REFERENCES 100

tional Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp.

4383–4388.

[84] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain

randomization for transferring deep neural networks from simulation to the real

world,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2017, pp. 23–30.

[85] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull, “Active domain random-

ization,” in Conference on Robot Learning. PMLR, 2020, pp. 1162–1176.

[86] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,”

in Proceedings of the 26th annual international conference on machine learning,

2009, pp. 41–48.

[87] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone, “Cur-

riculum learning for reinforcement learning domains: A framework and survey,”

Journal of Machine Learning Research, vol. 21, pp. 1–50, 2020.

[88] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda, “Purposive behavior acqui-

sition for a real robot by vision-based reinforcement learning,” Machine learning,

vol. 23, no. 2, pp. 279–303, 1996.

[89] A. Baranes and P.-Y. Oudeyer, “Active learning of inverse models with intrinsically

motivated goal exploration in robots,” Robotics and Autonomous Systems, vol. 61,

no. 1, pp. 49–73, 2013.

[90] S. Luo, H. Kasaei, and L. Schomaker, “Accelerating reinforcement learning for

reaching using continuous curriculum learning,” in 2020 International Joint Con-

ference on Neural Networks (IJCNN). IEEE, 2020, pp. 1–8.

[91] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. Wiele, V. Mnih,

N. Heess, and J. T. Springenberg, “Learning by playing solving sparse reward

tasks from scratch,” in International conference on machine learning. PMLR,

2018, pp. 4344–4353.

REFERENCES 101

[92] L. Leyendecker, M. Schmitz, H. A. Zhou, V. Samsonov, M. Rittstieg, and

D. Lütticke, “Deep reinforcement learning for robotic control in high-dexterity

assembly tasks-a reward curriculum approach,” in 2021 Fifth IEEE International

Conference on Robotic Computing (IRC). IEEE, 2021, pp. 35–42.

[93] A. Y. Yasutomi, H. Mori, and T. Ogata, “Curriculum-based offline network train-

ing for improvement of peg-in-hole task performance for holes in concrete,” in

2022 IEEE/SICE International Symposium on System Integration (SII). IEEE,

2022, pp. 712–717.

[94] O. Kroemer, S. Niekum, and G. D. Konidaris, “A review of robot learning for

manipulation: Challenges, representations, and algorithms,” Journal of machine

learning research, vol. 22, no. 30, 2021.

[95] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossingbot: Learning

to throw arbitrary objects with residual physics,” IEEE Transactions on Robotics,

vol. 36, no. 4, pp. 1307–1319, 2020.

[96] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep vi-

suomotor policies,” The Journal of Machine Learning Research, vol. 17, no. 1, pp.

1334–1373, 2016.

[97] G. Schoettler, A. Nair, J. Luo, S. Bahl, J. A. Ojea, E. Solowjow, and S. Levine,

“Deep reinforcement learning for industrial insertion tasks with visual inputs

and natural rewards,” in International Conference on Machine Learning (ICML),

2019.

[98] L. Johannsmeier, M. Gerchow, and S. Haddadin, “A framework for robot manipu-

lation: Skill formalism, meta learning and adaptive control,” in 2019 International

Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 5844–5850.

[99] K. Lynch and F. Park, Modern Robotics: Mechanics, Planning, and Control.

Cambridge University Press, 2017.

REFERENCES 102

[100] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel, “Rl

Θ2: Fast reinforcement learning via slow reinforcement learning,” arXiv preprint

arXiv:1611.02779, 2016.

[101] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor,” Interna-

tional Conference on Machine Learning (ICML), vol. abs/1801.01290, 2018.

[102] R. Campa and K. Camarillo, “Unit quaternions: A mathematical tool for mod-

eling, path planning and control of robot manipulators,” in Robot Manipulators,

M. Ceccarelli, Ed. IntechOpen, 2008.

[103] D. A. Lawrence, “Impedance control stability properties in common implemen-

tations,” in Proceedings. 1988 IEEE International Conference on Robotics and

Automation, 1988, pp. 1185–1190 vol.2.

[104] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source

multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), vol. 3. IEEE, 2004, pp. 2149–2154.

[105] M. Kyrarini, M. A. Haseeb, D. Ristić-Durrant, and A. Gräser, “Robot learning of

industrial assembly task via human demonstrations,” Autonomous Robots, vol. 43,

no. 1, pp. 239–257, 2019.

[106] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and

D. Fox, “Closing the sim-to-real loop: Adapting simulation randomization with

real world experience,” in 2019 International Conference on Robotics and Automa-

tion (ICRA). IEEE, 2019, pp. 8973–8979.

[107] S. Zakharov, I. Shugurov, and S. Ilic, “Dpod: 6d pose object detector and refiner,”

in Proceedings of the IEEE International Conference on Computer Vision, 2019,

pp. 1941–1950.

[108] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “Pvnet: Pixel-wise voting

network for 6dof pose estimation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2019, pp. 4561–4570.

REFERENCES 103

[109] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolutional

neural network for 6d object pose estimation in cluttered scenes,” in Robotics:

Science and Systems (RSS) 2018, 06 2018.

[110] T. Hodan, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zabulis, “T-

less: An rgb-d dataset for 6d pose estimation of texture-less objects,” in 2017

IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE,

2017, pp. 880–888.

[111] K. Harada, K. Nakayama, W. Wan, K. Nagata, N. Yamanobe, and I. G. Ramirez-

Alpizar, “Tool exchangeable grasp/assembly planner,” in International Conference

on Intelligent Autonomous Systems. Springer, 2018, pp. 799–811.

[112] E. Masehian and S. Ghandi, “Asppr: A new assembly sequence and path plan-

ner/replanner for monotone and nonmonotone assembly planning,” Computer-

Aided Design, p. 102828, 2020.

[113] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman, “Relay policy learn-

ing: Solving long-horizon tasks via imitation and reinforcement learning,” in Con-

ference on Robot Learning. PMLR, 2020, pp. 1025–1037.

[114] Y. Wang, K. Harada, and W. Wan, “Motion planning of skillful motions in

assembly process through human demonstration,” Advanced Robotics, vol. 0,

no. 0, pp. 1–15, 2020. [Online]. Available: https://doi.org/10.1080/01691864.

2020.1782260

[115] C. C. Beltran-Hernandez, D. Petit, I. G. Ramirez-Alpizar, T. Nishi, S. Kikuchi,

T. Matsubara, and K. Harada, “Learning force control for contact-rich manipula-

tion tasks with rigid position-controlled robots,” IEEE Robotics and Automation

Letters, pp. 1–1, 2020.

[116] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling,” arXiv preprint

arXiv:1803.01271, 2018.

REFERENCES 104

[117] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea,

E. Solowjow, and S. Levine, “Residual reinforcement learning for robot control,”

in 2019 International Conference on Robotics and Automation (ICRA), May 2019,

pp. 6023–6029.

[118] T. Silver, K. R. Allen, J. B. Tenenbaum, and L. P. Kaelbling, “Residual policy

learning,” ArXiv, vol. abs/1812.06298, 2018.

[119] G. Bellegarda and K. Byl, “Training in task space to speed up and guide rein-

forcement learning,” in 2019 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2019, pp. 2693–2699.

[120] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA workshop on

open source software, vol. 3. Kobe, Japan, 2009, p. 5.

[121] H.-n. Wang, N. Liu, Y.-y. Zhang, D.-w. Feng, F. Huang, D.-s. Li, and Y.-m. Zhang,

“Deep reinforcement learning: a survey,” Frontiers of Information Technology &

Electronic Engineering, vol. 21, no. 12, pp. 1726–1744, 2020.

[122] K. A. Krueger and P. Dayan, “Flexible shaping: How learning in small steps

helps,” Cognition, vol. 110, no. 3, pp. 380–394, 2009.

[123] C. C. Beltran-Hernandez, D. Petit, I. G. Ramirez-Alpizar, and K. Harada, “Vari-

able compliance control for robotic peg-in-hole assembly: A deep-reinforcement-

learning approach,” Applied Sciences, vol. 10, no. 19, p. 6923, 2020.

[124] V. Veselỳ and A. Ilka, “Gain-scheduled pid controller design,” Journal of process

control, vol. 23, no. 8, pp. 1141–1148, 2013.

[125] G. B. Peterson, “A day of great illumination: Bf skinner’s discovery of shaping,”

Journal of the experimental analysis of behavior, vol. 82, no. 3, pp. 317–328, 2004.

[126] B. F. Skinner, “Reinforcement today.” American Psychologist, vol. 13, no. 3, p. 94,

1958.

REFERENCES 105

[127] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist net-

works: The sequential learning problem,” in Psychology of learning and motiva-

tion. Elsevier, 1989, vol. 24, pp. 109–165.

[128] R. M. French, “Catastrophic forgetting in connectionist networks,” Trends in cog-

nitive sciences, vol. 3, no. 4, pp. 128–135, 1999.

[129] “Industrial robotics category assembly challenge rules and regulations,” 2021,

https://wrs.nedo.go.jp/wrs2020/challenge/download/Rules/DetailedRules_

Assembly_EN.pdf (accessed on Apr 1th, 2022).

[130] M. Svetlik, M. Leonetti, J. Sinapov, R. Shah, N. Walker, and P. Stone, “Automatic

curriculum graph generation for reinforcement learning agents,” in Proceedings of

the AAAI Conference on Artificial Intelligence, vol. 31, 2017.

[131] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based

control,” in 2012 IEEE/RSJ international conference on intelligent robots and

systems. IEEE, 2012, pp. 5026–5033.

[132] J. Liang, V. Makoviychuk, A. Handa, N. Chentanez, M. Macklin, and D. Fox,

“Gpu-accelerated robotic simulation for distributed reinforcement learning,” in

Conference on Robot Learning. PMLR, 2018, pp. 270–282.

REFERENCES 106

Acknowledgements

First and foremost, I am extremely grateful to my supervisor Professor Kensuke Harada

for accepting me as a student in the Robotic Manipulation laboratory for the last five

years, as a research student, masters course student, and a Ph.D. student. His invaluable

advice, continuous support, and patience helped me reach this stage. I am also deeply

indebted to my Ph.D. advisors Dr. Ixchel Ramirez-Alpizar and Dr. Damien Petit, for

their invaluable supervision, support, and tutelage during the course of my Ph.D. degree.

I am also grateful to Professor Mario Arbulu for his selfless support and recommenda-

tions which help me start this journey in Japan. Additionally, this endeavor would not

have been possible without the generous support from the Monbukagakusho Scholarship

Program from the Ministry of Education, Culture, Sports, Science and Technology of

Japan (MEXT), who financed my research.

Special thanks to FUJIFILM for the financial support of my research projects. In

particular, thanks to Kikuchi Shinichi and Takuya Nishi for the research collaboration

and advice. I would also like to extend my sincere thanks to Dr. Felix Von Drigalski

and Dr. Masashi Hamaya for their guidance and mentorship during my internship at

OMRON SINIC X. To everyone from the team O2AC, thank you for welcoming me to

such an amazing team which allowed me to have an incredible experience at the World

Robot Summit 2020 Assembly Challenge.

I would also like to thanks Associate Professor Weiwei Wan, Assistant Professor

Keisuke Koyama, and Specially Appointed Assistant Professor Takuya Kiyokawa for

their help and suggestions on my research. To all the member of Harada Laboratory I

have met during these five years, thank you very much for your support and for making

my life as an international student easier.

107

I have many, many people to thank for the emotional support. I cannot begin

to express my gratitude and appreciation for their friendship. To my friends, Nestor,

Felipe, David, and Geraldine thank you so much for always being there to listen to me

and for cheering me up with your memes. Special thanks to my host family Takeo and

Chieko for adopting me like a child. I am very grateful for your unwavering support and

encouragement.

Most importantly, none of this could have happened without my family. Special

thanks to my parents Ernesto and Jeni, for their guidance and unconditional support

without which I wouldn’t be here. To my brother and sister, and my extended family,

for your encouragement and support, thank you so much. To my partner Kanako and

her family, I cannot thank you enough for all the patience, support, and cheering during

the hard times, thank you so much.

ACKNOWLEDGEMENTS 108

Publications

Journal Papers:

1. Beltran-Hernandez, C.C., Petit, D., Ramirez-Alpizar, I.G., & Harada, K.

(2022). Accelerating Robot Learning of Contact-Rich Manipulations: A Curricu-

lum Learning Study. In Review IEEE Transactions on Robotics. (Preprint: ArXiv,

abs/2204.12844.)

2. Beltran-Hernandez, C.C., Petit, D., Ramirez-Alpizar, I.G., & Harada, K.

(2020). Variable Compliance Control for Robotic Peg-in-Hole Assembly: A Deep

Reinforcement Learning Approach. Applied Sciences. 10(19):6923.

Special Issue "Machine-Learning Techniques for Robotics".

DOI:10.3390/app10196923

3. Beltran-Hernandez, C. C., Petit, D., Ramirez-Alpizar, I. G., Nishi, T., Kikuchi,

S., Matsubara, T., & Harada, K. (2020). Learning force control for contact-rich

manipulation tasks with rigid position-controlled robots. IEEE Robotics and Au-

tomation Letters, 5(4), 5709-5716.

DOI: 10.1109/LRA.2020.3010739

4. Wang, Y., Beltran-Hernandez, C. C., Wan, W., & Harada, K. (2021). Hy-

brid trajectory and force learning of complex assembly tasks: A combined learning

framework. IEEE Access, 9, 60175-60186. DOI: 10.1109/ACCESS.2021.3073711

5. Wang, Y., Beltran-Hernandez, C. C., Wan, W., & Harada, K. (2022). An

Adaptive Imitation Learning Framework for Robotic Complex Contact-Rich Inser-

tion Tasks. Frontiers in Robotics and AI, 414.

DOI: 10.3389/frobt.2021.777363

109

6. von Drigalski, F. W. H. E., Kasaura, K., Beltran-Hernandez, C. C., Hamaya,

M., Tanaka, K., & Takamitsu, M. (2022). Uncertainty-aware manipulation plan-

ning using gravity and environment geometry. In Review. IEEE Robotics and

Automation Letters. To appear in IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS) 2022.

7. von Drigalski, F. W. H. E., Beltran-Hernandez, C. C., Nakashima, C., Hu,

Z., Akizuki, S.; Ueshiba, T., Hashimoto, M., Kasaura, K., Domae, Y., Wan, W.,

& Harada, K. (2022). Team O2AC at the World Robot Summit 2020: Towards

Jigless, High-Precision Assembly In Review. Advanced Robotics Special Issue on

Industrial Robot Technology - Selected Papers from World Robot Summit 2020.

International Conference Papers (with peer-review):

1. Beltran-Hernandez, C. C., Petit, D., Ramirez-Alpizar, I. G., Nishi, T., Kikuchi,

S., Matsubara, T., & Harada, K. (2020). Learning force control for contact-rich

manipulation tasks with rigid position-controlled robots.

In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Published at IEEE Robotics and Automation Letters.

2. Beltran-Hernandez, C. C., Petit, D., Ramirez-Alpizar, I. G., & Harada, K.

(2019). Learning to Grasp with Primitive Shaped Object Policies.

In IEEE/SICE International Symposium on System Integration (SII), Paris, France.

DOI:10.1109/SII.2019.8700399

3. Wang, Y., Beltran-Hernandez, C. C., Wan, W., & Harada, K. (2021). Robotic

imitation of human assembly skills using hybrid trajectory and force learning. In

2021 IEEE International Conference on Robotics and Automation (ICRA) (pp.

11278-11284). IEEE.

4. Arbulu, M., Mateus, P., Wagner, M., Beltran, C., & Harada, K. (2018, Decem-

ber). Industry 4.0, Intelligent Visual Assisted Picking Approach.

In International Conference on Mining Intelligence and Knowledge Exploration

(pp. 205-214). Springer, Cham. Romania. DOI:10.1007/978-3-030-05918-7_18

PUBLICATIONS 110

Local Conference papers (without peer-review):

1. Beltran, C., Petit, D., Ramirez, I., Matsubara T., & Harada, K. (2019). Hybrid

position-force control with reinforcement learning. In 第20回 計測自動制御学会

システムインテグレーション部門講演会 SI2019.

2. Beltran, C., Petit, D., Ramirez, I., & Harada, K. (2019). Learning to Grasp

with Primitive Shaped Objects. In The 1st International Symposium on Symbiotic

Intelligent Systems, Osaka, Japan.

3. Beltran, C., Petit, D., Ramirez, I., Matsubara T., & Harada, K. (2019).

Reinforcement Learning Framework for Real-World Robotic Arm.

In The 37th Annual Conference of the Robotics Society of Japan RSJ, Tokyo,

Japan.

4. Beltran, C., Petit, D., Ramirez, I., Wan W., & Harada, K. (2018).

Learning Grasp with Guided Policy Search.

In The 36th Annual Conference of the Robotics Society of Japan RSJ, Nagoya,

Japan.

5. Wang, Y., Beltran-Hernandez, C. C., Wan, W., & Harada, K. (2020). Com-

pleting Robotic Assembly Skills with Force Control via Combined Learning. In日

本ロボット学会学術講演会予稿集.

PUBLICATIONS 111

Patents:

1. Kensuke Harada (原田研介), Cristian Camilo Beltran-Hernandez

(クリスティアンカミロ ベルトランエルナンデス), Kikuchi Shinichi(菊池慎市),

Takayuki Nishi (西敬之) (2019).

ロボットの制御装置、制御方法、及びプログラム. 出願番号（国際出願番

号）：特願2020-109801 / 公開番号（公開出願番号）：特開2021-091079.

Awards:

• As part of team O2AC, 3rd place at Industrial Assembly Challenge at World

Robot Summit 2020, and Japanese Society of Artificial Intelligence Award.

• Best Oral Presentation (優秀講演賞), 第20回計測自動制御学会システムインテ

グレーション部門講演会 (SI2019)

• Finalist of Best Paper Award, in the IEEE/SICE International Symposium on

System Integration (SII), 2019.

• Finalist of International Session Best Paper Award, in The 36th Annual Confer-

ence of the Robotics Society of Japan (RSJ), 2018.

PUBLICATIONS 112

