
Title Quantum Algorithms for Derivative Pricing with
Efficient Classical-Quantum Transformations

Author(s) Kubo, Kenji

Citation 大阪大学, 2022, 博士論文

Version Type VoR

URL https://doi.org/10.18910/89655

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Quantum Algorithms for Derivative Pricing with

Efficient Classical-Quantum Transformations

Kenji Kubo

SEPTEMBER 2022

Quantum Algorithms for Derivative Pricing with

Efficient Classical-Quantum Transformations

A dissertation submitted to
THE GRADUATE SCHOOL OF ENGINEERING

SCIENCE
OSAKA UNIVERSITY

in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY IN SCIENCE

BY
KENJI KUBO

SEPTEMBER 2022

Abstract

Derivatives are financial instruments whose payments are determined by ref-
erence to the prices of more fundamental assets, such as stocks, bonds, or
currencies. Since derivatives are financial instruments, their prices need to
be calculated, but in general, a large number of computational resources
are needed to calculate the prices of derivatives. Therefore, there have been
efforts to reduce the amount of computation needed to calculate the prices
of derivatives by using a quantum computer. We focus on two approaches to
derivatives price calculation using quantum computers. One approach is to
use quantum amplitude estimation to speed up Monte-Carlo methods since
derivative prices can be calculated as the expected value of the payoff func-
tion. The other approach is to use a quantum ordinary differential equation
solver to solve the ordinary differential equation obtained by discretizing
the partial differential equation that the derivative price obeys. Even when
using these quantum algorithms, the transformation between classical and
quantum information is often the bottleneck in naive algorithms. In fact,
when using the quantum amplitude estimation, embedding the probability
distribution into the quantum state can become a bottleneck. When using
a quantum ordinary differential equation solver, in addition to embedding
the probability distributions and initial values into the quantum state, the
extraction of the present price of the derivative from the resulting quantum
state also becomes a bottleneck.

In this thesis, we propose quantum algorithms that overcome these bot-
tlenecks in derivative pricing by achieving an efficient classical-quantum
transformation. As a method of transformation from classical to quantum
information, we propose a simulation of the time evolution of probability
distributions using variational quantum simulation. From the stochastic
differential equation, we derive a linear ordinary differential equation that
the probability distribution obeys and show the way to construct a quantum
circuit to simulate the obtained ordinary differential equation by using vari-
ational quantum simulation. This allows us to obtain unitary operators for
embedding the probability distribution of a Markov process into a quantum
state. Compared to other quantum state generation models, this method
has the advantage of obtaining the embedding operators at multiple time
points in a single simulation. As a method for transformation from quantum

i

ii

information to classical information, we propose a quantum algorithm based
on martingales. A martingale is a property in which the present price of the
derivative can be calculated as the expected value of the derivative price at
any future point in time. Using a quantum ordinary differential equation
solver, we solve the partial differential equation that the derivative price
follows to some future point in time instead of solving it to the present. In
addition, we prepare quantum states in which the probability distributions
at that time is embedded. By calculating the inner product of these quan-
tum states using quantum amplitude estimation, the present price of the
derivative can be calculated. Instead of retrieving the present price of the
derivative embedded in the amplitude of one basis of the quantum state,
the expected value can be calculated using all the amplitudes of the quan-
tum state in this way. Therefore, the bottleneck in the transformation from
quantum information to classical information is eliminated, and a significant
speed-up can be achieved compared to the classical algorithm. We also pro-
pose a method to run this algorithm on a noisy intermediate-scale quantum
computer using variational quantum algorithms. The results of this thesis
will be an important breakthrough for quantum algorithms in derivatives
pricing.

Contents

1 Introduction 1

1.1 Derivative pricing . 1

1.2 Quantum algorithm . 1

1.3 Overview of thesis . 3

1.4 Notation . 4

2 Preliminary 5

2.1 Stochastic analysis of derivative pricing 5

2.1.1 Fundamental theorem of asset pricing 6

2.1.2 Feynman-Kac theorem 8

2.2 Classical algorithms for derivative pricing 8

2.2.1 Monte-Carlo method for derivative pricing 9

2.2.2 Finite difference method for Black-Scholes partial dif-
ferential equations . 10

2.3 Quantum algorithms for derivative pricing 13

2.3.1 Quantum amplitude estimation 14

2.3.2 Quantum algorithm for solving ordinary differential
equation systems . 16

2.3.3 Variational quantum simulation 17

2.4 Classical-Quantum transformation 19

3 Variational quantum simulation of the stochastic differential
equation 21

3.1 Introduction . 21

3.2 Trinomial tree-model approximation of the stochastic differ-
ential equation . 24

3.3 Solving stochastic differential equations by variational quan-
tum simulation . 26

3.3.1 Embedding the probability distribution into a quan-
tum state . 26

3.3.2 Reformulating the trinomial tree model and applying
the variational quantum simulation 27

3.3.3 Construction of L(t) 28

iii

iv CONTENTS

3.4 Calculation of Expectation Values 30

3.4.1 Problem Setting . 30

3.4.2 General formula for calculating expectation values . . 30

3.4.3 Pricing of The European Call Option 33

3.5 Possible Advantages of Our Method 34

3.6 Numerical Results . 35

3.6.1 Models . 35

3.6.2 Results . 36

3.7 Conclusion . 38

4 Pricing multi-asset derivatives by finite difference method
on a quantum computer 41

4.1 Introduction . 42

4.1.1 Notations . 45

4.2 Quantum algorithm for solving ODE systems 45

4.3 Approximating the present derivative price as the expected
value of the price at a future time 47

4.4 Quantum method for derivative pricing by FDM 49

4.4.1 Generating the probability vector 50

4.4.2 Generating the derivative price vector 54

4.4.3 Proposed algorithm 57

4.4.4 Toffoli count estimation in a concrete example 61

4.5 Conclusion . 64

5 Pricing of multi-asset derivative with variational quantum
simulation 67

5.1 Introduction . 67

5.2 Preliminary . 69

5.2.1 Related work . 69

5.2.2 Derivative pricing . 70

5.2.3 Finite difference method for the BSPDE 72

5.3 Proposed method . 74

5.3.1 The number of measurements in the SWAP test . . . 76

5.3.2 Computational complexity of proposed method 80

5.4 Numerical Results . 81

5.4.1 Parameter dependencies of VQS results 83

5.4.2 Possibility of initial state generation 85

5.5 Conclusion . 86

6 Conclusion 87

List of Activities 89

1 Papers . 89

2 Presentations and awards . 89

CONTENTS v

3 Patents . 90

Appendix 91
A1 Variational quantum simulation of the stochastic differential

equation . 91
A1.1 Complexity of calculating expectation value 91
A1.2 Definition and construction of the tree-model approx-

imation . 93
A1.3 Mapping to VQS and construction of L(t) 95
A1.4 Evaluating the expectation value 97
A1.5 Error from Piecewise Polynomial Approximation . . . 98

A2 Pricing multi-asset derivatives by finite difference method on
a quantum computer . 99
A2.1 Proof of Lemma 2.2.1 99
A2.2 Proof of Lemma 4.3.1 100

Upper bound the probability that the underlying asset
prices reach the boundaries 100

Upper bound the integral on the outside of the bound-
aries . 102

Proof of Lemma 4.3.1 108
A2.3 Proof of Lemma 4.4.1 110
A2.4 Proof of Lemma 4.4.2 110
A2.5 Proof of Theorem 4.4.1 111
A2.6 How to generate a payoff-Encoded state for a call or

put option . 113
A3 Pricing multi-asset derivatives by variational quantum algo-

rithm . 116
A3.1 Elements of the matrix and the vector of the finite

difference method for the BSPDE 116
A3.2 Decomposition of matrices 117
A3.3 Variational principle for VQS 121
A3.4 Quantum circuits to evaluateMi,j and Vi 121
A3.5 Lower bound of Ξ . 122

Bibliography 125

Acknowledgements 137

Chapter 1

Introduction

1.1 Derivative pricing

Derivatives are financial products “derived” from more fundamental assets
called the underlying assets, such as stocks, bonds, currency, etc., and have
payoffs that depend on the prices of the underlying assets [1, 2]. Because
of the uncertainties in the prices of the underlying assets, there are risks in
holding such assets. Derivatives are designed to control such risks. Since
derivatives are financial instruments, we need to evaluate their prices cor-
rectly. To this end, stochastic analysis is used to model the uncertainty of
the prices of the assets and the derivatives. This allows us to handle the
values and risks as statistics, which can then be quantitatively evaluated.
The theoretical price of a derivative in the simplest model can be obtained
analytically, but it is necessary to perform numerical calculations in gen-
eral cases. Financial risks have become increasingly complex and diverse,
and a variety of derivatives have been developed to hedge these risks. Ac-
cordingly, the calculation of derivative prices has become more complex. In
fact, financial institutions use supercomputers to perform these calculations.
Moreover, asset prices are constantly varying and then, if real-time recalcu-
lation is possible, a higher level of risk management will be achieved. Not
only in academia but in practice, derivatives pricing is an important area of
financial engineering.

1.2 Quantum algorithm

The quantum computer can execute more efficient algorithms for specific
problems than classical computers by actively utilizing the properties of
quantum mechanics. It was originally conceived to solve problems in quan-
tum mechanics efficiently. This is based on the idea that it is necessary
to use a computer that explicitly employs quantum mechanics to simulate
quantum states. In fact, for many-body quantum mechanical Hamiltonian,

1

2 CHAPTER 1. INTRODUCTION

while the resources required to simulate quantum states with a classical com-
puter increase exponentially and make the simulation difficult to perform,
a quantum computer may be feasible in the sense that the resource for the
quantum computation can be reduced to polynomial.

A surprising fact is that efficient quantum algorithms exist for problems
other than quantum mechanics. For example, a quantum algorithm called
Shor’s algorithm [3] is exponentially faster than the classical algorithm for
discrete logarithm problems which is the fundamental part of modern public-
key cryptography. The security of modern public-key cryptography relies on
the computational complexity of the discrete logarithm problem. It is clear
that the impact on the real world will be significant when a quantum com-
puter is realized on a scale that allows Shor’s algorithm to be executed. Of
course, there are many other proposed applications of quantum algorithms
besides quantum simulation and discrete logarithm problems. For example,
quantum algorithms have been proposed for differential equations [4, 5],
stochastic analysis [6], and machine learning [7]. Thus, quantum algorithms
are important not only in terms of academic interest but also in industrial
applications.

The ideal quantum computer has error correction capabilities and is
therefore called a fault-tolerant quantum computer (FTQC). The afore-
mentioned quantum algorithms, such as Shor’s one, assume FTQC. Log-
ical qubits must be constructed to achieve FTQC, and this requires a large
number of physical qubits. While it is a very tough challenge to get large
numbers of qubits to cooperate and work together, the benefits of realiz-
ing FTQC are so great that it is currently being actively developed. On
the other hand, algorithms on noisy intermediate-scale quantum computers
(NISQ) [8] that are not equipped with error correction have also been pro-
posed. In particular, an algorithm called the variational quantum algorithm
is not necessarily guaranteed to have provable quantum speedup, but it has
been expected to be beneficial, especially in quantum chemistry [9].

In this thesis, we discuss applications of quantum algorithms, especially
for financial engineering. In fact, industry demand is great because large
amounts of computational resources are required to solve practical financial
problems and thus, the contribution of quantum algorithms to financial
engineering is expected to be significant.

It is often necessary to avoid bottlenecks in the classical-quantum trans-
formation to achieve efficient quantum algorithms. This bottleneck appears
in general applications of quantum algorithms, not only in financial engineer-
ing. Although quantum computers provide operations on Hilbert spaces of
exponentially large dimensions relative to the number of qubits, it requires
exponentially huge resources to embed arbitrary classical information in the
space [10]. This could result in the loss of quantum speedup. Nevertheless,
functions with favorable properties, such as the density function of a normal
distribution, can be embedded efficiently [11]. There is also the possibility

1.3. OVERVIEW OF THESIS 3

that heuristics can be used to embed classical information efficiently, at least
to an approximation [12, 13, 14, 15, 16, 17]. As for the readout of classical
information from quantum information, if the target quantity is a martin-
gale, an efficient retrieval is also possible. This thesis also discusses such
efficient transformations between classical and quantum information.

1.3 Overview of thesis

Before proceeding to the description of our contributions, we introduce
derivatives and stochastic analysis in Chap. 2. The fundamental theorems
of asset pricing play an important role in derivative pricing. The Feynman-
Kac theorem is also an important theorem that relates stochastic differential
equations to partial differential equations. This chapter also includes an in-
troduction to quantum algorithms as well as classical algorithms for deriva-
tive pricing. Regarding the classical algorithms, the Monte-Carlo method
for computing the expected value and the finite difference method for sim-
ulating the partial differential equation are introduced. On the other hand,
as a quantum approach, we explain the quantum amplitude estimation for
the former task. For the latter task, we explain the quantum ordinary dif-
ferential equation solver and the variational quantum simulation. In the
chapter, we also discuss classical-quantum transformations, which are often
the bottleneck in quantum algorithms.

In Chap. 3, we discuss the algorithm that simulates the probability dis-
tribution of the solution of the stochastic differential equation. This would
enable the efficient transformation of classical information into quantum in-
formation. This chapter is based on [K. Kubo, Y. O. Nakagawa, S. Endo,
and S. Nagayama, Physical Review A 103 (5), 052425 (2021)] and modified
to fit the context.

We present the quantum algorithm that effectively performs the deriva-
tive pricing based on quantum ordinary differential solver and quantum
amplitude estimation in Chap. 4. This algorithm overcomes the bottleneck
of the transformation of quantum information into classical information by
utilizing the fact that the present price of the derivative is estimated by
the expected value in the future point of time. This chapter is based on
[K. Miyamoto, K. Kubo, IEEE Transactions on Quantum Engineering 3,
3100225 (2021)] and modified to fit the context.

The algorithm introduced in Chap. 5 will be a variational version of the
algorithm shown in Chap. 4. Instead of using quantum ordinary differential
equation solver and quantum amplitude estimation, we use the variational
quantum simulation and the SWAP test, respectively. This enables the
quantum algorithm for derivative pricing to run even on small-scale quantum
computers. This chapter is based on [K.Kubo, K.Miyamoto, K.Mitarai,
K.Fujii, arXiv:2207.01277] and slightly modified to fit the context.

4 CHAPTER 1. INTRODUCTION

Finally, we conclude and discuss future perspectives in Chap. 6

1.4 Notation

Here, we introduce the notation used in this thesis.

• R+: A set of all positive real numbers.

• Rd+: A d-times direct product of R+.

• [n]: A set of positive integers less then or equal to n , that is, [n] :=
{1, 2, . . . , n}.

• v∧i: A vector which is made by removing an element vi from v =
(v1, v2, . . . , vn)

⊤ ∈ Rn, that is, v∧i := (v1, v2, . . . , vi−1, vi+1, . . . , vn).

• ‖v‖: A Euclidean norm of a vector v, that is, ‖v‖ =
√∑

i v
2
i .

• |i〉: One of the computational basis states with a binary representation
of i for an integer i.

• |y〉: An unnormalized state where the elements of y are encoded in
the amplitudes for a vector y = (y1, y2, . . . , yn)

⊤ ∈ Cd, that is, |y〉 :=∑n
i=1 yi |i〉.

Chapter 2

Preliminary

2.1 Stochastic analysis of derivative pricing

In this section, we introduce stochastic analysis for derivative pricing. We
consider the derivative that refers to d underlying assets. Although prices
fluctuate according to a variety of factors, we assume the underlying asset
prices S(t) = (S1(t), S2(t), . . . , Sd(t))

⊤ for t ∈ R+ evolve under stochastic
processes.

Here, we introduce the stochastic differential equations. Although they
are called stochastic differential equations, they are indeed integral equa-
tions. We define the integral equations,

Si(t+ s) = S(t) +

∫ t+s

t
µi(u, Si(u))du+

∫ t+s

t
σi(u, Si(u))dWi(u), i ∈ [d]

(2.1)

where µi, σi are real valued functions, and Wi are Brownian motions, which
satisfy dWidWj = ρijdt. ρij is an element of the correlation matrix of the
underlying asset prices and satisfy ρi,i = 1,−1 ≤ ρij ≤ 1, and ρij = ρji. The
stochastic differential equations are abbreviation of Eq. (2.1) and denoted
as

dSi(t) = µi(t, S(t))dt+ σi(t, S(t))dWi(t), i ∈ [d]. (2.2)

A common model for underlying asset prices are Black-Scholes models,
where the prices obey geometric Brownian motions,

dSi(t) = rSi(t)dt+ σiSi(t)dWi(t), i ∈ [d] (2.3)

where r ∈ R+ is a risk-free interest rate, σi ∈ R+ are volatility of the
underlying asset prices, The risk-free interest rate generally depends on time,
but, for simplicity, we assume it is constant.

In this thesis, we assume that derivatives are characterized by the payoff
function fpay(S(T)) at maturity T and the payoff condition. For example,

5

6 CHAPTER 2. PRELIMINARY

a European call option is one of the simplest derivatives, and its holder has
the right to buy an underlying asset at a given price K ∈ R at a given
maturity T . If the underlying asset price at T is higher than K, the holder
can buy the underlying asset at a price K, immediately sell it at a price
S(T), and then obtain S(T)−K. If the underlying asset price at T is lower
than K, the holder can abandon the right to buy the asset and then obtain
0. Thus, the payoff function of the European call option is fpay (S(T)) =
max (S(T)−K, 0). European means that the exercise date is predetermined
as T , and call means that the option is the right to buy. The right to
sell is called put option. Note that there is no payoff condition for the
European options. Barrier options are another type of derivative, and the
payoff condition depends on the barrier level B ∈ R+. The barrier has two
types; knock-out and knock-in. When the prices of underlying assets touch
the knock-out barrier, the right to execute the option vanishes. When the
prices of underlying assets touch the knock-in barrier, the right to execute
option appears. While the derivatives introduced above refer to a single
underlying asset, there also exist derivatives that refer to multiple underlying
assets. Basket option is one of the multi-asset derivatives, and the payoff

function is fpay (S(T)) = max
(
w0 +

∑
i∈[d]wiSi(T)−K, 0

)
, where w0 ∈ R

is a constant and wi ∈ R are weights of the underlying assets. Asian options
have the payoff determined by the average of the underlying asset prices
over the predetermined periods, and thus it cannot be written in the form
of a payoff function at the maturity and payoff condition. However, by
introducing an additional stochastic process, it can be expressed as the payoff
function only at maturity (see [2] for detail). Note that there are derivatives
with more general path dependencies that we do not deal with in this thesis.
Of course, multiple properties of the payoff can coexist, as in the case of
barrier basket options, for example. There are a variety of derivatives other
than those introduced here. Given the stochastic process of underlying assets
and the payoff function of the derivative, we can evaluate the price of the
derivative.

2.1.1 Fundamental theorem of asset pricing

To proceed with the derivative pricing, we need to introduce several concepts
from financial engineering. First, we define arbitrage, which means that
there is a positive probability of obtaining a profit larger than zero without
a probability of loss. On the contrary, the no-arbitrage means that there
is no arbitrage in the market. We also define complete market, in which
the profit and loss of all derivatives are reproducible by the portfolio of the
existing assets. Martingale is a property of a stochastic process, which means
that under some measure, the expected value of the process at any point
in the future is equal to the present value of the process. That is, under
a probability measure Q, a martingale stochastic process M(t), t ∈ [0, T]

2.1. STOCHASTIC ANALYSIS OF DERIVATIVE PRICING 7

satisfies

M(0) = EQ [M(t)] , ∀t ∈ [0, T], (2.4)

where EQ is the expected value of the process under the probability measure
Q. A risk-neutral probability measure is a probability measure under which
the discounted asset price processes are martingale. With these concepts,
we introduce the fundamental theorems of asset pricing.

Theorem 2.1.1 (Fundamental theorem of asset pricing Ⅰ). If there ex-
ists no arbitrage in the market model, there exists a risk-neutral probability
measure in the model.

Theorem 2.1.2 (Fundamental theorem of asset pricing Ⅱ). Consider the
market model with a risk-neutral probability measure. This model is complete
if and only if the risk-neutral measure is unique.

The proofs of the theorems are seen in [2]. We assume that there
exists no arbitrage in the market. Thus, the discounted asset prices can
be a martingale under some measure from Theorem 2.1.1. We also assume
that the market is complete. Then, the risk-neutral measure is unique, and
the cash flows of the derivatives are reproducible by the other assets. The
derivative price is equal to the value of such a portfolio. We can calculate
the derivative price by evaluating the reproduced portfolio.

Consider pricing a derivative with payoff function fpay at maturity T and
some payoff condition. The present prices of underlying assets are given by
S0. From the assumption of a complete market, there exists a portfolio
that reproduces the cash flow of the derivative, and from the theorem 2.1.1,
the discounted value of the portfolio is a martingale under some probability
measureQ. Thus, the discounted derivative price process is also a martingale
under Q, that is, the price of the derivative V satisfies

V (0) = EQ
[
e−rtV (t)

]
, ∀t ∈ [0, T]. (2.5)

At the maturity T , the derivative price V (T) is equal to the payoff function
V (T) = fpay (S(T)). Thus, we can evaluate the derivative price by

V (0) = EQ
[
e−rT fpay (S(T))1NB

∣∣S(0) = S0

]
, (2.6)

where 1NB is a random variable that takes 1 if the payoff condition is satisfied
and 0 otherwise. It should be noted that {S(t)}t∈[0,T] have to be possible
paths of the underlying asset prices with the initial condition S(0) = S0.

One way to calculate derivative prices is to use a Monte-Carlo method to
generate paths under the risk-neutral probability measure and then evaluate
the expected value in Eq. (2.6) with the paths. We will provide details of
the Monte-Carlo method for pricing derivatives in Sec. 2.2.

8 CHAPTER 2. PRELIMINARY

2.1.2 Feynman-Kac theorem

Feynman-Kac theorem represents the relation between a stochastic differen-
tial equation and a partial differential equation. This theorem can be used
to obtain a partial differential equation representing the time evolution of
the expected value, i.e., the time evolution of the derivative price. Although
the Monte Carlo method samples the time evolution of the underlying as-
set price and calculates the expected value, the derivative price can also be
calculated by solving the partial differential equation.

For the derivatives whose prices satisfy Eq. (2.6), we can obtain the
partial differential equation. Now, we introduce the Feynman-Kac theorem.

Theorem 2.1.3 (Feynman-Kac theorem). S(t) is stochastic processes, which
satisfy the stochastic differential equation Eq. (2.2). Let h(u) be a function.
We define the function g(t, s) as

g(t, s) = E
[
e−r(T−t)h(S(T))1NB

∣∣∣S(t) = s
]
, (2.7)

where E is the conditional expected value conditioned by t and s. Then,
g(t, s) satisfies the partial differential equation (PDE)

∂g(t, s)

∂t
+ µ(t, s)

∂g(t, s)

∂si
+

1

2
(σ(t, s))2

∂g(t, s)

∂si∂sj
− rg(t, s) = 0, (2.8)

where si ∈ [li, ui] for li < ui ∈ R+, i ∈ [d] with boundary conditions,

gi(t, s∧i) = gUB
i (t, s1, . . . , si−1, ui, si+1, . . . , sd), (2.9)

gi(t, s∧i) = gLBi (t, s1, . . . , si−1, li, si+1, . . . , sd), (2.10)

and with the terminal condition

g(T, s) = h(s). (2.11)

Note that we may not obtain the partial differential equation for general
payoff functions with path dependence since derivative prices cannot be
expressed in the form of Eq. (2.6).
　

2.2 Classical algorithms for derivative pricing

As described in Sec. 2.1, the present price of derivatives is equal to the ex-
pected value of the payoff function under the risk-neutral probability mea-
sure. The derivative price is also evaluated by solving the PDE. We can
analytically solve the partial differential equation and obtain the closed-
form solution for the simple payoff function, such as the European option.
However, in general, we can not obtain the closed-form solution, and thus we

2.2. CLASSICAL ALGORITHMS FOR DERIVATIVE PRICING 9

need to use numerical methods. Among the various numerical methods for
calculating derivative prices, we focus on the following two approaches. One
is the Monte-Carlo method, by which we simulate the stochastic process of
underlying asset prices and evaluate the expected value. The other is the
discretization of the partial differential equation, by which we numerically
solve the resulting equation iteratively from t = T and obtain the derivative
price at T = 0.

2.2.1 Monte-Carlo method for derivative pricing

The Monte-Carlo method generally means algorithms with random num-
bers. In particular, it is often used to calculate expected values. We here
assume the Black-Scholes (BS) model, i.e. the stochastic process of under-
lying assets obey Eq. (2.3). We generate the sample paths according to
the stochastic differential equation. The Euler-Maruyama approximation
is used as the standard method. In the Euler-Maruyama approximation,
the time to maturity is divided into Nt intervals. In this case, Eq. (2.3) is
approximated by the stochastic difference equation

Si(t+∆t)− Si(t) = rSi(t)∆t+ σiSi(t)zi
√
∆t, (2.12)

where ∆t = T/Nt. {zi} are random variables, which obey standard normal
distribution. The correlation coefficient between zi and zj is ρij . Starting
from t = 0, we generate zi and simulate Eq. (2.12) iteratively and obtain
sample paths {Sl,m}l∈[NT],m∈[Ns], where Sl,m is underlying asset prices at
l∆t =: tl in m-th sample under the risk neutral measure. We evaluate the
expected value of Eq. (2.6) by the sample average as follows.

V0 = EQ

[
e−rT fpay

(
{S(t)}t∈[0,T]

)∣∣∣S(0) = S0

]
' 1

Ns
e−rT

Ns∑
m=1

fpay

(
{Sl,m}l∈[NT]

)
. (2.13)

We assume that the variance of fpay is bounded σ2, that is,

Var
[
fpay

(
{Sl,m}l∈[NT]

)]
≤ σ2. (2.14)

Then the probability that the error in the estimation V̂0 with Ns samples is
ϵ away from the true price is bounded by the Chebyshev’s inequality [18]

P
[∣∣∣V̂0 − V0∣∣∣ ≥ ϵ] ≤ σ2

kϵ2
(2.15)

Then, to estimate V0 up to additive error ϵ with constant success probability,
e.g. 99%, we need to take Ns = O(σ2/ϵ2). That is, Monte-Carlo method

10 CHAPTER 2. PRELIMINARY

requires O(1/ϵ2) samples to obtain the solution within the accuracy ϵ. Note
that the number of samples is independent of the number of assets. This is an
advantage of the Monte-Carlo method. For some stochastic processes, e.g.,
the geometric Brownian motion, there is the closed-form solution of Eq.(2.3),
and thus instead of using the Euler-Maruyama method, it is possible to
sample random variables at any point in time.

2.2.2 Finite difference method for Black-Scholes partial dif-
ferential equations

This subsection is based on Sec. II on [K. Miyamoto, K. Kubo, IEEE Trans-
actions on Quantum Engineering 3, 3100225 (2021) © 2021 IEEE] and
slightly modified to fit the context.

We consider the following problem.

Problem 2.2.1. Let d be a positive integer and T,U1, . . . , Ud, L1, . . . Ld
be positive real numbers such that Li < Ui for i ∈ [d]. Define D :=
(L1, U1), . . . , (Ld, Ud), D̄ := [L1, U1] × · · · [Ld, Ud] and D̂i := [L1, U1] ×
· · · [Li−1, Ui−1] × [Li+1, Ui+1] × · · · × [Ld, Ud] for i ∈ [d]. Assume that a
function V : [0, T]× D̄ → R satisfies the following PDE:

∂

∂t
V (t,S) +

1

2

d∑
i,j=1

SiSjσiσjρij
∂2

∂Si∂Sj
V (t,S) (2.16)

+ r

(
d∑
i=1

Si
∂

∂Si
V (t,S)− V (t,S)

)
= 0 (2.17)

on [0, T)×D and boundary conditions

V (T,S) = fpay(S),

V
(
t, (S1, . . . , Si−1, Ui, Si+1, . . . , Sd)

T
)
= V UB

i (t,S∧i) , for i ∈ [d],

V
(
t, (S1, . . . , Si−1, Li, Si+1, . . . , Sd)

T
)
= V LB

i (t,S∧i) , for i ∈ [d].

(2.18)

Here, t ∈ [0, T],S := (S1, . . . , Sd)
⊤ ∈ D, σ1, . . . , σd, r are positive real con-

stants such that r < 1
2 for i ∈ [d], ρij , i, j ∈ [d] are real constants such that

ρ11 = · · · = ρdd = 1 and the correlation matrix ρ := (ρij)1≤i≤d
1≤j≤d

is sym-

metric and positive definite, and fpay : D → R, V UB : [0, T] × D̂i → R,
and V LB : [0, T] × D̂i → R are given functions. Then, for a given S0 :=
(S1,0, . . . , Sd,0)

⊤ ∈ D, find V0 := V (0,S0).

This partial differential equation is so-called the Black-Scholes partial
differential equation (BSPDE). This is the case when the Feynman-Kac the-
orem introduced in Sec. 2.1.2 is applied to the BS model in Eq. (2.3). As

2.2. CLASSICAL ALGORITHMS FOR DERIVATIVE PRICING 11

discussed in Sec. 2.1, the derivative price is given by the conditional expected
value of the payoff discounted by the risk-free rate. That is, the price of the
derivative in which the payoff fpay(S(T)) arises at maturity T is

V (t,S) = E
[
e−r(T−t)fpay(S(T))1NB

∣∣∣S(t) = S
]

(2.19)

at time t, if S(t) = S. Here, 1NB is a stochastic variable taking 1 if the payoff
condition (e.g., barrier condition) is satisfied or 0 otherwise. As discussed in
Sec. 2.1, V (t,S) satisfies Eq. (2.16) and appropriate boundary conditions.

For a later convenience, we here transform the PDE (2.16) on [0, T)×D
into

∂

∂τ
Y (τ,x) = LY (τ,x)

L :=
1

2

d∑
i,j=1

σiσjρij
∂2

∂xi∂xj
+

d∑
i=1

(
r − 1

2
σ2i

)
∂

∂xi
, (2.20)

on (0, T] × D̃, where τ := T − t,x := (x1, ..., xd)
⊤ := (logS1, ..., logSd)

⊤,
Y (τ,x) := erτV (T − τ, (ex1 , ..., exd)⊤), D̃ := (l1, u1) × · · · × (ld, ud) and
ui := logUi, li := logLi for i ∈ [d]. The boundary conditions become

Y (0,x) = f̃pay(x) := fpay((e
x1 , ..., exd)⊤),

Y (τ, (x1, ..., xi−1, ui, xi+1, ..., xd)
⊤) = Y UB

i (τ,x∧i)

:= V UB
i (T − τ, (ex1 , ..., exi−1 , exi+1 , ..., exd)⊤), for i ∈ [d]

Y (τ, (x1, ..., xi−1, li, xi+1, ..., xd)
⊤) = Y LB

i (τ,x∧i)

:= V LB
i (T − τ, (ex1 , ..., exi−1 , exi+1 , ..., exd)⊤), for i ∈ [d]

(2.21)

The finite difference method (FDM) is a method for solving a PDE by
replacing partial derivatives with finite difference approximations. In the
case of (2.20), the approximation is as follows. First, letting ngr be a positive
integer, we introduce the grid points in the directions of x:

x(k) := (x
(k1)
1 , ..., x

(kd)
d)⊤,

k =
d∑
i=1

nd−igr ki + 1, ki = 0, 1, ..., ngr − 1

x
(ki)
i := li + (ki + 1)hi

hi :=
ui − li
ngr + 1

. (2.22)

Namely, there are ngr equally spaced grid points in one direction, and the
total number of the grid points in D is Ngr := ndgr, except ones on the bound-

aries. For later convenience, we set x
(−1)
i = l1 and x

(ngr)
i = h1. Hereafter,

12 CHAPTER 2. PRELIMINARY

we assume that ngr is a power of 2 for simplicity, whose detail is explained
in Section 4.4, and define mgr := log2 ngr.

Then, (2.20) is transformed into the Ngr-dimensional ODE system

d

dτ
Ỹ (τ) = F Ỹ (τ) +C(τ). (2.23)

with the initial value

Ỹ (0) = (Y (0,x(1)), ..., Y (0,x(Ngr)))⊤ = (f̃pay(x
(1)), ..., f̃pay(x

(Ngr)))⊤ =: f̃pay.
(2.24)

Here, Ỹ (τ), F and C(τ), which newly appear in (2.23), are as follows.
Ỹ (τ) := (Ỹ1(τ), ..., ỸNgr(τ)) ∈ RNgr and its k-th element is an approxi-

mation of Y (τ, x(k)). F is a Ngr ×Ngr real matrix, which is expressed by a
sum of Kronecker products of ngr × ngr matrices, that is,

F := F 2nd + F 1st

F 2nd :=
d∑
i=1

σ2i
2h2i

I⊗i−1 ⊗D2nd ⊗ I⊗d−i

+

d−1∑
i=1

d∑
j=i+1

σiσjρij
4hihj

I⊗i−1 ⊗D1st ⊗ I⊗j−i−1 ⊗D1st ⊗ I⊗d−j

F 1st :=

d∑
i=1

1

2hi

(
r − 1

2
σ2i

)
I⊗i−1 ⊗D1st ⊗ I⊗d−i, (2.25)

where I is the ngr × ngr identity matrix and

D1st :=



0 1
−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1
−1 0


, D2nd :=



−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2


(2.26)

are ngr×ngr tridiagonal matrices. C(τ) := (C1(τ), ..., CNgr(τ))
⊤ is necessary

2.3. QUANTUM ALGORITHMS FOR DERIVATIVE PRICING 13

to take into account the boundary conditions and its k-th element is

Ck(τ) =

d∑
i=1

σ2i
2h2i

[
δki,0Y

LB
i (τ,x

(k)
∧i) + δki,ngr−1Y

UB
i (τ,x

(k)
∧i)
]

+

d−1∑
i=1

d∑
j=i+1

σiσjρij
4hihj

[
−δki,0Y

LB
i (τ,x

(k)
∧i)− δkj ,0Y

LB
j (τ,x(k))∧i

+ δki,ngr−1Y
UB
i (τ,x

(k)
∧i) + δkj ,ngr−1Y

UB
j (τ,x

(k)
∧i)
]

+
d∑
i=1

1

2hi

(
r − 1

2
σ2i

)[
δki,ngr−1Y

UB
i (τ,x

(k)
∧i)− δki,0Y

LB
i (τ,x

(k)
∧i)
]

. (2.27)

Then, let us discuss the accuracy of the approximation (2.23). First, we
make a following assumption.

Assumption 2.2.1. Y (τ,x), the solution of (2.20) and (2.21), is four-times
differentiable with respect to x1, ..., xd and there exist ζ, ξ ∈ R such that

∀i, j, k, l ∈ [d], τ ∈ (0, T),x ∈ D̃,
∣∣∣∣ ∂3Y

∂xi∂xj∂xk
(τ,x)

∣∣∣∣ < ζ,

∣∣∣∣ ∂4Y

∂xi∂xj∂xk∂xl
(τ,x)

∣∣∣∣ < ξ.

(2.28)

We then obtain the following lemma, as proved in Appendix A2.1.

Lemma 2.2.1. Let Y (τ,x) be the solution of (2.20) and (2.21), and Ỹ (τ)
be that of (2.23) and (2.24). Under Assumption 2.2.1, if, for a given ϵ ∈ R+,

hi < min

{
1

dσi

√
3ϵ

2ξT
,
1

σi

√
3ϵ

ζdT

}
, i ∈ [d] (2.29)

then, for any τ ∈ (0, T), the inequality

‖Ỹ (τ)− Y (τ)‖ <
√
Ngrϵ (2.30)

holds, where Y (τ) = (Y (τ,x(1)), ..., Y (τ,x(Ngr)))⊤.

Lemma 2.2.1 means that the root mean square of the differences between
Ỹi(τ) and Y (τ,x(i)) is upper bounded by ϵ.

2.3 Quantum algorithms for derivative pricing

In this section, we introduce derivative price calculation using quantum al-
gorithms. As explained in Sec. 2.2, there are two main approaches to deriva-
tives price calculation: the Monte-Carlo approach and the PDE approach.

14 CHAPTER 2. PRELIMINARY

In the classical Monte-Carlo method, a number of sampling times of O(1/ϵ2)
is needed to calculate the derivative price with an accuracy ϵ. On the other
hand, a quantum algorithm called quantum amplitude estimation can obtain
a solution with precision ϵ with a number of measurements of O(1/ϵ). In
this sense, it is described as a quadratic speedup. In the classical approach
using PDEs, as the number of assets increases, computational complexity
increase exponentially. When the finite difference method is used in the
quantum algorithm, the number of qubits needed to simulate a linear PDE
is O(polylog(Ngr)), so in this sense, the computational complexity is reduced
exponentially.

2.3.1 Quantum amplitude estimation

In Sec. 2.2.1, we introduced the derivative price using the classical Monte-
Carlo method and showed that its error decreases with the square root of
the number of samples. We here show the way to estimate the price of the
derivative using the quantum amplitude estimation introduced in Ref. [19].
For simplicity, we consider the single-asset European call option.

Recall that the present price of the European call option is the expected
value of the payoff function at maturity T , which is given by

V = e−rTE [max (S(T)−K, 0)|S(0) = S0] . (2.31)

The expected value is approximated as

E [max (S(T)−K, 0)|S(0) = S0]

'
2n−1∑
x=0

p(S(T) = x;S(0) = S0)max (x−K, 0) , (2.32)

where p(S(T) = x;S(0) = S0) is the probability that S(T) takes x con-
ditioned on S(0) = S0. We consider the way to calculate this value with
quantum algorithm. We assume that there exists a unitary operator G which
satisfy

G |0〉 =
2n−1∑
j=0

√
p(xj) |j〉 , (2.33)

where p(xj) = p(S(T) = xj ;S(0) = S0). For the BS model, G is con-
structed by Grover-Rudolph method [11]. We define a binary approximation
of max(x −K, 0) as v(xj) : {0, 1}n → {0, 1}n and assume that there exists
R which acts as

R|j〉 |0〉 = |j〉
(√

1− v(xj) |0〉+
√
v(xj) |1〉

)
. (2.34)

2.3. QUANTUM ALGORITHMS FOR DERIVATIVE PRICING 15

By using G and R, we can implement an operator A, which acts on a refer-
ence state with n+ 1 qubits and yields

A(|0〉n+1) =
2n−1∑
j=0

√
p(xj) |j〉

(√
1− v(xj) |0〉+

√
v(xj) |1〉

)
=: |χ〉 . (2.35)

Here, we define an operator

S1 := I⊗n+1 − 2I⊗n ⊗ |1〉 〈1| . (2.36)

Since the any quantum state in the (n + 1)-qubit Hilbert space can be
expressed by the linear combination of |χ〉 and its orthogonal state

∣∣χ⊥〉, we
can express

S1 |χ〉 = cos(θ/2) |χ〉+ eiϕ sin(θ/2)
∣∣∣χ⊥

〉
, (2.37)

where θ, ϕ ∈ [0, 2π]. Note that a measurement of S1 on |χ〉 yields

1− 2

2m−1∑
j=0

p(xj)v(xj) = cos(θ/2). (2.38)

Thus, we can calculate the expected value
∑2m−1

j=0 p(xj)v(xj), i.e., the present
price of the derivative by estimating θ. By constructing an operator Q whose
eigenvalues ±θ, we can estimate θ by the quantum phase estimation. To this
end, we define Sχ := I⊗n+1 − 2 |χ〉 〈χ|. Note that −Sχ reflects across |χ〉.
Sχ can be written as

Sχ = A
(
I⊗n+1 − 2 |0〉n+1 〈0|n+1

)
A†

= AZA†, (2.39)

where Z := I⊗n+1−2 |0〉n+1 〈0|n+1 is a reflection on the computational basis.
We also define an operator

Sψχ
:= I⊗n+1 − 2S1 |χ〉 〈χ| S1 (2.40)

Note that −Sψχ reflects across S1 |χ〉. The operator

Q := SψχS1 (2.41)

is a rotation by an angle 2θ on the plane, and its eigenvalues are e±iθ. By
using quantum phase estimation, we can calculate θ and then, obtain the
expected value by Eq. (2.38). To estimate the present price of the derivative
within the error ϵ, the total number of applications of Sψχ is

Õ (λ/ϵ) (2.42)

where Õ ignores the polylogarithmic factors, and λ is square root of the
upper bound of the variance of the fpay defined in Eq. (2.13). For more
detail, see Ref. [19].

16 CHAPTER 2. PRELIMINARY

2.3.2 Quantum algorithm for solving ordinary differential
equation systems

In this subsection, we outline the algorithm of [4]. This subsection is based
on Sec. III in [K. Miyamoto, K. Kubo, IEEE Transactions on Quan- tum
Engineering 3, 3100225 (2021) © 2021 IEEE] and slightly modified fitting
in the context. This is the algorithm for solving the linear ODE system

d

dt
x(t) = Ax(t) + b, (2.43)

with the initial condition x(0) = xini. Here, x(t) and b are N -dimensional
real-valued vectors and A ∈ RN×N is a constant diagonalizable matrix.
Suppose that we want to find x(T) for some T ∈ R+. The algorithm is
based on the formal solution of (2.43)

x(T) = eATxini + (eAT − IN)A−1b. (2.44)

In order to calculate x(t), we consider the linear equation system on the ten-
sor product space V := Rq+1⊗RN , where Rq+1 corresponds to the auxiliary
space and RN corresponds to the original space on which A operates:

Cm,k,p(Aht)X = e0 ⊗ xini + h

m−1∑
i=0

ei(k+1)+1 ⊗ b. (2.45)

Here, m, p, k are positive integers set large enough (see the statement of
Theorem 4.2.1), q := m(k+1)+p, ht = T/m, X ∈ RN(q+1) and {ei}i=0,1,...,q

is an orthonormal basis of Rq+1. For B ∈ RN×N , the N(q + 1) ×N(q + 1)
matrix Cm,k,p(B) is defined as

Cm,k,p(B) :=

q∑
j=0

eje
⊤
j ⊗ IN −

m−1∑
i=0

k∑
j=1

ei(k+1)+je
⊤
i(k+1)+j−1 ⊗

1

j
B

−
m−1∑
i=0

k∑
j=0

e(i+1)(k+1)e
⊤
i(k+1)+j ⊗ IN −

q∑
j=m(k+1)+1

eje
⊤
j−1 ⊗ I.

(2.46)

Visually, (2.45) is displayed as follows

2.3. QUANTUM ALGORITHMS FOR DERIVATIVE PRICING 17



IN
−Aht/1 IN

. . .
. . .

−Aht/k IN
−IN · · · −IN −IN IN

. . .
. . .

−Aht/1 IN
. . .

. . .

−Aht/k IN
−IN · · · −IN −IN IN

−IN IN
. . .

. . .

−IN IN



X =



xini

htb
0
...
0
...
htb
0
...
0
0
...
0



.

(2.47)

Cm,k,p is designed based on the Taylor expansion of (2.44). The solution of
(2.45) can be written as

X =
m−1∑
i=0

k∑
j=1

ei(k+1)+j ⊗ xi,j +

p∑
j=0

em(k+1)+j ⊗ xm, (2.48)

for some vectors xi,j ,xm ∈ RN , and xm becomes close to x(T), which
we want to find. Note that xm is repeated p times in the solution X,
which enhances the probability of obtaining the desired vector in the output
quantum state of the algorithm.

Although the Cm,k,p(Aht) is an extremely large matrix, the quantum
algorithms for solving linear equation systems (QLS algorithms)[20, 21, 22,
23] can output the solution of (2.45) only with complexity of O(logN),
where N is the number of rows (or columns) in Cm,k,p(Aht).

2.3.3 Variational quantum simulation

In this subsection, we introduce the VQS, which is a variational quantum al-
gorithm to solve linear ODEs [5, 24, 9]. This subsection is based on Sec. II.B
in [Kubo, Miyamoto, Mitarai, and Fujii, arXiv:2207.01277] and slightly mod-
ified fitting in the context. Consider solving the following linear ODE,

d

dt
v(t) = L(t)v(t) + u(t),v(0) = v0. (2.49)

where v(t) = (v1(t), . . . , vNv(t)), v0 = (v0,1, . . . , v0,Nv), u(t) = (u1(t), . . . , uNv(t)) ∈
CNv , and L(t) is an (possibly non-hermitian) operator. To simulate the vec-
tor v(t), we instead simulate an unnormalized quantum state |v(t)〉, which
is the solution of

d

dt
|v(t)〉 = L(t) |v(t)〉+ |u(t)〉 , |v(0)〉 = |v0〉 . (2.50)

18 CHAPTER 2. PRELIMINARY

Here, we make three assumptions. First, L(t) can be decomposed as

L(t) =

NL∑
k=1

λk(t)U
L
k (t), (2.51)

where λk(t) is real, and ULk (t) are quantum gates. Second, |u(t)〉 can be
written as

|u(t)〉 =
Nu∑
l=1

ηl(t)U
u
l (t) |0〉 , (2.52)

where ηl(t) is real, and Uul (t) are quantum gates. Third, there are some
constant αv ∈ C and an quantum gate Uv such that |v0〉 = αvUv |0〉. In
VQS, we approximate |v(t)〉 by an unnormalized ansatz state |ṽ(θ(t))〉 :=
θ0(t)R1(θ1(t))R2(θ2(t)) · · ·RNa(θNa(t)) |v0〉 and determine parameters θ(t) =
(θ0(t), θ1(t), . . . , θNa(t))

⊤ ∈ RNa+1 by the variational principle. Here, Rk(θk) =
Wke

iθkGk are parameterized quantum circuits, Wk are quantum gates, and
Gk ∈ {X,Y, Z, I}⊗n are multi-qubit Pauli gates with n-qubit system. By
McLachlan’s variational principle [25]

min
θ

∥∥∥∥ ddt |ṽ(θ(t))〉 − L(t) |ṽ(θ(t))〉 − |u(t)〉
∥∥∥∥2 , (2.53)

we obtain the differential equation [5]

Na∑
n=0

Mm,nθ̇n(t) = Vm, (2.54)

where

Mi,j = Re

(
∂ 〈ṽ(θ(t))|

∂θi

∂ |ṽ(θ(t))〉
∂θj

)
, (2.55)

Vj =
NL∑
k=1

λk(t)Re

(
∂ 〈ṽ(θ(t))|

∂θj
ULk (t) |ṽ(θ(t))〉

)

+

Nu∑
l=1

ηl(t)Re

(
∂ 〈ṽ(θ(t))|

∂θn
Uul (t) |0〉

)
. (2.56)

We can evaluate each term in Eqs. (2.55)(2.56) by quantum circuits pre-
sented in Appendix A3.4. Then, we solve Eq. (2.54) classically and obtain
θ̇j(t). Note that the number of measurements needed to evaluate Mi,j and
Vi by the Hadamard test within the accuracy ϵ̄ is O(|θ0(t)|2/ϵ̄2). This is
because Mi,j and Vi contain the normalization factor θ0(t) when i > 0 or
j > 0 (see Appendix A3.4). We assume that |θ0(t)| is upper-bounded by

2.4. CLASSICAL-QUANTUM TRANSFORMATION 19

some constant. In the simulation of BSPDE, |θ0(t)|2 is about a ratio of the
sum of the squares of the derivative prices at time T − t to the sum of the
squares of the payoff function at maturity. Since the derivative price is the
expected value of the payoff function, this assumption is satisfied if the value
range of the payoff function is finite. Starting from t = 0, we obtain the
time evolution of θ(t) by repeating

θ(t+∆t)← θ(t) + θ̇(t)∆t, (2.57)

where ∆t is an interval in time direction. Consequently, we obtain |ṽ(θ(t))〉
which approximates |v(t)〉.

Therefore, to ensure a feasible VQS algorithm, both M,kterm(t), and the
depth of the unitaries Uk must be O(poly(n)).

2.4 Classical-Quantum transformation

As described later, the quantum algorithms for derivative pricing intro-
duced above all require the embedding of probability distributions. In ad-
dition, the quantum algorithms for solving differential equations introduced
in Secs. 2.3.2 and 2.3.3 require the retrieval of classical information from the
quantum state since the present price of the derivative is embedded in the
quantum state. In this section, we discuss embedding classical probability
distribution into the quantum state and retrieving classical information from
the quantum state. If these inputs and outputs are not efficient, quantum
speedup will be lost.

There are several previous studies on how to embed classical functions
into quantum states. Ref. [11] has shown a method for embedding functions
that can efficiently compute integrals in classical calculations into the am-
plitude of a quantum state. Specifically, given a log-concave function p(x),
they construct a unitary operator that generates

|ϕ〉 =
2n−1∑
i=0

√
pi |i〉 . (2.58)

where pi is a discretized version of p(x). Moreover, the algorithm shown
in Ref. [26] can embed arbitrary continuous functions by using the adia-
batic theorem and Hamiltonian simulation. Several algorithms have been
proposed for small-scale quantum computers that use heuristics to embed
functions into quantum states. Popular examples are the quantum gener-
ative adversarial network (qGAN) [12, 13, 14, 15] and the quantum circuit
Born machine (QCBM) [16]. The qGAN consists of a generator composed of
a variational quantum circuit and a classical neural network. By interplaying
the generator and the discriminator, qGAN learns a generator that gener-
ates the desired quantum state. In QCBM, a similar generative model can

20 CHAPTER 2. PRELIMINARY

be obtained by optimizing the loss function called the kernelled maximum
mean discrepancy loss. In these algorithms, we optimize the parameters of
a parameterized circuit U(θ) which generate |ϕ(θ)〉 := U(θ) |0〉 such that

| 〈ϕ(θ)|i〉 |2 = pi, i ∈ [0, 2n − 1]. (2.59)

Although the method using heuristics has no guarantee of computational
complexity, it has the potential to be implemented with shallow quantum
circuits compared to the algorithm in Refs. [11, 26]. These algorithms can
be used for state preparation in derivative pricing. However, for path-
dependent derivatives, probability distributions at multiple points in time
may be needed. In that case, it may be necessary to run the algorithms
above for the number of points in the time needed.

On the other hand, to extract a single amplitude from a quantum state,
the Born rule requires a computational complexity that is exponential with
respect to the number of qubits. In fact, Refs. [27, 28, 29, 30] show the
way to obtain a quantum state in which derivative prices are embedded, but
this extraction is a bottleneck. However, as explained in Chap. 4, 5, this
problem can be avoided by utilizing the fact that the derivative price is a
martingale.

Chapter 3

Variational quantum
simulation of the stochastic
differential equation

In this chapter we present a variational quantum algorithm to simulate the
probability distribution of a Markovian stochastic process. As discussed in
Secs. 2.3.1 and 2.3.2, we have to embed the probability distribution into
a quantum state to calculate the expected value. In specific cases such as
Brownian motions, the embedding is performed efficiently [11, 31]. How-
ever, in general cases, the embedding is difficult and would lose the quan-
tum speedup. To overcome this problem, we simulate the time evolution of
the probability distribution derived from stochastic differential equation us-
ing the variational quantum simulation (VQS). VQS approximates the time
evolution of an unnormalized quantum state by the time evolution of low-
dimensional parameters. We can approximate the probability distribution of
a stochastic process at a desired point in time by using this time evolution.
Therefore, this method can be considered as one of the quantum generative
models using variational quantum computation. Unlike other quantum gen-
erative models, it has the advantage that the optimization does not need
to be computed in the algorithm. Furthermore, once the algorithm is ex-
ecuted, we obtain quantum circuits that generate probability distributions
at multiple times. This can be a useful property, especially in pricing path-
dependent derivatives. This chapter is based on [K. Kubo, Y. O. Nakagawa,
S. Endo, and S. Nagayama, Physical Review A 103 (5), 052425 (2021)] with
modifications for fitting in the context.

3.1 Introduction

Stochastic differential equations (SDEs), which describe the time evolution
of random variables, are among the most important mathematical tools for

21

22 CHAPTER 3. VARIATIONAL QUANTUM SIMULATION OF ...

modeling uncertain systems in diverse fields, such as finance [2], physics
[32], and biology [33]. From the expectation values of the simulated random
variables, we can often extract information about the system of interest.
Since the expectation values rarely admit analytical solutions, they are usu-
ally obtained by numerical methods such as the Monte Carlo method [34].
However, those numerical methods incur high computational costs, espe-
cially in high-dimensional problems such as the SDEs of financial applica-
tions [35, 36, 37]. Therefore, a method that can speed-up SDE simulations
is urgently demanded.

Such a speed up can be achieved on quantum computers. Throughout
the past decade, technological developments have realized a primitive form
of quantum computers called noisy intermediate-scale quantum (NISQ) de-
vices [38], which can handle problems that are intractably large for classical
computers [39]. NISQ devices can operate only a few tens to hundreds of
qubits without error correction, so they cannot run quantum algorithms
requiring deep and complicated quantum circuits. Although quantum al-
gorithms are expected to outperform classical ones on specific computing
tasks [40, 3, 20, 41], they usually exceed the capability of NISQ devices.
Accordingly, NISQ devices have been leveraged with heuristic algorithms
that solve real-world problems. For example, in quantum chemistry and
condensed matter physics, the variational quantum eigensolver (VQE) algo-
rithm [42, 43] can calculate the ground-state energies of given Hamiltoni-
ans [44, 45]. Another example is quantum machine learning with variational
quantum circuits [46, 47, 48, 49]. Both algorithms variationally optimize
the tuneable classical parameters in quantum circuits, so the speedups of
the computation over classical computers and the precision of the obtained
results are not guaranteed in general.

Several quantum-computing-based methods obtain the expectation value
of a function that takes an SDE solution as its argument. However, all of
these methods require prerequisite knowledge of the SDE solution. In [29],
the partial differential equation describing the time evolution of the expec-
tation value was simulated by a variational quantum computation, which
requires pre-derivation of the partial differential equation of the expectation
value. In [19] and [15], the probability distribution of the SDE solution was
embedded in the quantum state, and the expectation value was calculated
by a quantum amplitude estimation algorithm (QAE). In this case, it is
needed to be able to sample from the probability distribution of the SDE
solutions.

In this chapter, to solve an SDE with quantum algorithms, we apply
a tree model approximation [50], and hence obtain a linear differential
equation describing the probability distribution of SDE solutions. This
differential equation is then solved by a variational quantum simulation
(VQS) [51, 52, 24, 5, 53]. Note that linear differential equations can be
solved by a quantum linear solver algorithm (QLSA) [20, 54, 55, 4], which

3.1. INTRODUCTION 23

is expected to be quantum-accelerated. However, the QLSA requires a large
number of ancilla qubits and deep circuits and is possibly executable only on
quantum computers with error correction. Our proposed method possesses
several desirable features. First, the probability distribution is simulated
by the tree-model approximation, so the model requires only the SDE. Our
method may be more efficient because it does not require sampling from
the probability distribution of SDE solutions. Second, once the VQS is
performed, the variational parameters are obtained as classical information,
and the probability distribution of the simulation results can be used to
compute various expectation values. We can also compute path-dependent
expectation values because the time series of the probability distribution is
obtained. Third, the algorithm is less resource-intensive than the QLSA.
Since VQS is a variational algorithm, it is difficult to estimate the exact
computational cost, but VQS requires only a few ancilla qubits and calcu-
lates the expectation value for relatively shallow unitary gates at each time
step. The number of qubits and the depth of the circuit are expected to be
much smaller than QLSA. As our method uses a new scheme for embedding
probability distributions in quantum states, the method for computing ex-
pectation values is also new. We additionally found that the expectation
values are more simply determined by our method than by the QAE. The
proposed method facilitates the application of SDEs in quantum computing
simulations and is expected to impact various scientific fields.

The remainder of this chapter is organized as follows. Section 3.2 re-
views the trinomial tree-model approximation and the VQS, before intro-
ducing our method. Our main theoretical results are contained in Secs. 3.3,
3.4. Section 3.3 proposes a VQS-based method that simulates the dynam-
ics of the probability distribution of the stochastic process in the trinomial
tree model. The quantum circuits and operators that perform the VQS
are also constructed in this section. Section 3.4 calculates the expecta-
tion value of the random variable using the state obtained by simulating
SDE with the VQS. Section 3.5 discusses the advantages of our method
and compares them with previous studies. Section 3.6 numerically evalu-
ates our algorithm on two SDE prototypes: the geometric Brownian motion
and the Ornstein-Uhlenbeck process. Conclusions are presented in Section
3.7. Appendix A1.1 analyses the complexity of calculating the expectation
value, and Appendix A1 generalizes our result to a multiple-variable pro-
cess. Appendix A1.5 evaluates the error of expectation values from piecewise
polynomial approximation.

24 CHAPTER 3. VARIATIONAL QUANTUM SIMULATION OF ...

t

…

Figure 3.1: Lattice of the trinomial tree model. Nodes (circles) at (t, x)
represent the events in which X(t) takes the value x. Edges represent the
transition probabilities between the nodes. The stochastic process starts
at node (t0, x0) and “hops” to the other nodes depending on the transition
probabilities.

3.2 Trinomial tree-model approximation of the stochas-
tic differential equation

This section reviews the trinomial tree-model approximation of the SDE [50].
In Sec. 3.3, we combine the trinomial tree-model and VQS into a method
that simulates the SDE by the VQS.

Let us consider a random variable X(t) taking values on an interval
I ⊂ R. We refer to I as an event space. The SDE of a single process
{X(t)}t∈[0,T], which is a time-series of random variables from t = 0 to t = T ,
is defined as [2]

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dW, X(0) = xini ∈ I, (3.1)

where µ(X(t), t), σ(X(t), t) are real valued functions of time t and the vari-
able X(t), and W denotes the Brownian motion. In the main text, our
proposal is applied to a single process (extensions to multi-variables cases
are described in Appendix A1).

The tree model numerically simulates the time evolution of an SDE. Let
us consider an SDE simulation of the process with event space [0, xmax] from
t = 0 to t = T . We discretize the time as ti ≡ i∆t (i = 0, 1, . . . , Nt) and the
event space as xi ≡ i∆x (i = 0, 1, . . . , Nx), where Nt∆t = T and Nx∆x =

3.2. TRINOMIAL TREE-MODEL APPROXIMATION ... 25

xmax. In this discretization scheme, we define a (Nx + 1)× (Nt + 1) lattice
on which each node (i, j) is associated with a probability Prob[X(tj) =
xi] and each edge represents a transition between two nodes, as shown in
Fig. 3.1. Here, we adopt the trinomial tree model, which has three transition
probabilities as follows:

pu(x, t) = Prob[X(t+∆t) = x+∆x |X(t) = x],

pd(x, t) = Prob[X(t+∆t) = x−∆x |X(t) = x],

pm(x, t) = Prob[X(t+∆t) = x |X(t) = x].

These probabilities were chosen to reproduce the first and second moment
(mean and variance, respectively) of the random variable X(t) in Eq. (3.1).
Following the Euler-Maruyama method [37], the SDE is discretized as

X(tj+1)−X(tj) = µ(X(tj), t)∆t+ σ(X(tj), t)
√
∆tz, (3.2)

where z ∼ N(0, 1) and O(∆t2) terms are ignored. The conditional expecta-
tion value and variance are respectively expressed as

E[X(tj+1)−X(tj)|X(tj) = x] = µ(x, tj)∆t,

Var[X(tj+1)−X(tj)|X(tj) = x] = σ2(x, tj)∆t.

The corresponding moments on the trinomial tree model are

E[X(tj+1)−X(tj)|X(tj) = xi] = (pu(xi, tj)− pd(xi, tj))∆x,
Var[X(tj+1)−X(tj)|X(tj) = xi] = (pu(xi, tj) + pd(xj , tj))∆x

2.

Equating these moments and considering the normalization condition pu(x, t)+
pm(x, t) + pd(x, t) = 1, we obtain

pu(xi, tj) =
1

2

(
σ2(xi, tj)

∆x2
+
µ(xi, tj)

∆x

)
∆t, (3.3)

pd(xi, tj) =
1

2

(
σ2(xi, tj)

∆x2
− µ(xi, tj)

∆x

)
∆t, (3.4)

pm(xi, tj) = 1− σ2(xi, tj)

∆x2
∆t. (3.5)

In summary, the trinomial tree-model approximates the original SDE by
discretizing it on the lattice and setting the transition probabilities between
the nodes to reproduce the first and the second moments of the process.

The trinomial tree model simulates the SDE as follows. First, the closest
value to xini in {xi}i∈[0,Nx] is set to xi0 , and the probabilities are set as
Prob[X(t0) = xi0] = 1,Prob[X(t0) = xi ̸=i0] = 0. Next, the probability
distribution of X(t1 = ∆t) is calculated using the transition probabilities
given by Eqs. (3.3)(3.4)(3.5). Repeating this step for X(tj)(j = 2, 3, ..., Nt−

26 CHAPTER 3. VARIATIONAL QUANTUM SIMULATION OF ...

1) yields all probabilities Prob[X(tj) = xi] at node (i, j), from which any
properties related to the process X(t), such as the expectation values of
X(T) under some function f , E[f(X(T))], can be determined. In option-
pricing financial problems, the nodes of the tree model denote the prices of
the option, and the problems are sometimes to be solved in the backward
direction from time t. In such cases, the boundary condition is set at t = T .

3.3 Solving stochastic differential equations by vari-
ational quantum simulation

This section presents one of our main results. The SDE simulated by the
above-described trinomial tree model is reformulated as the non-unitary

dynamics of a quantum state
∣∣∣ψ̃(t)〉 embedding the probability distribution

of the random variable X(t). We explicitly state for the L(t) operator of
the VQS and decompose it by the polynomial number of the sum of easily-
implementable unitaries.

3.3.1 Embedding the probability distribution into a quan-
tum state

To simulate the trinomial tree model of the target SDE by VQS, we de-
fine an unnormalized quantum state containing the discretized probability
distribution of the random variable X(tj):

∣∣∣ψ̃(t)〉 ≡ Nx∑
i=0

Prob[X(t) = xi] |i〉 , (3.6)

where {|i〉}Nx
i=0 is the computational basis. We call this state a directly

embedded state. For simplicity, we assume that Nx = 2n−1, where n is the
number of qubits.

Note that this embedding of the probability distribution into the quan-
tum state differs from most of the literature, in which (aiming for a quantum
advantage) the expectation values of a probability distribution are calculated
using QAE [6]. In the literature, the probability distribution is expressed as
a normalized quantum state

|ψsqrt〉 ≡
∑
i

√
Prob[X(tj) = xi] |i〉 . (3.7)

The expectation value of the distribution, E[f(X(tj))] ≡
∑

i f(xi)Prob[X(tj) =
xi] for some function f , is computed by the QAE. In this embedding method,
VQS cannot be used because the differential equation describing the time
evolution of the quantum state is nonlinear. There are ways to solve the

3.3. SOLVING STOCHASTIC DIFFERENTIAL ... 27

nonlinear differential equation with a quantum algorithm [56, 17, 12], but
they require more complicated quantum circuits.

Because our embedding (3.6) differs from this embedding scheme, we
also developed a method for evaluating its expectation values (see Sec. 3.4).

3.3.2 Reformulating the trinomial tree model and applying
the variational quantum simulation

In the trinomial tree model, the probability Prob[X(tj+1) = xi] is calculated
as

Prob[X(tj+1) = xi] = pu(xi−1, tj)Prob[X(tj) = xi−1]

+ pd(xi+1, tj)Prob[X(tj) = xi+1]

+ pm(xi, tj)Prob[X(tj) = xi]. (3.8)

Substituting the transition probabilities (3.3), (3.4) and (3.5) into this ex-
pression and denoting P (x, t) ≡ Prob[X(t) = x], we get

P (xi, tj+1)− P (xi, tj)
∆t

=
1

2

(
σ2(xi−1, tj)

∆x2
+
µ(xi−1, tj)

∆x

)
P (xi−1, tj)

+
1

2

(
σ2(xi+1, tj)

∆x2
− µ(xi+1, tj)

∆x

)
P (xi+1, tj)

− σ2(xi, tj)

∆x2
P (xi, tj). (3.9)

In the limit ∆t→ 0, one obtains

dP (t)

dt
= L(t)P (t), (3.10)

(L(t))ik =


1
2

(
σ2(xk,t)
∆x2

+ µ(xk,t)
∆x

)
(i = k + 1)

1
2

(
σ2(xk,t)
∆x2

− µ(xk,t)
∆x

)
(i = k − 1)

−σ2(xk,t)
∆x2

(i = k)
0 otherwise

,

(3.11)

where P (t) ≡ (P (x0, t), P (x1, t), . . . , P (x2n−1, t))
T .

As shown in Eq. (3.10), the time evolution of the state
∣∣∣ψ̃(t)〉, or

d

dt

∣∣∣ψ̃(t)〉 = L̂(t)
∣∣∣ψ̃(t)〉 , (3.12)

28 CHAPTER 3. VARIATIONAL QUANTUM SIMULATION OF ...

where

L̂(t) ≡
2n−1∑
i,k=0

(L(t))ik |i〉〈k| , (3.13)

corresponds to the time evolution of the probability distribution {Prob[X(t) =
xi]}2

n−1
i=0 . Equation (3.12) is the essence of our proposal to simulate VQS-

based SDE simulation: specifically, the VQS algorithm applied to Eq. (3.12)

obtains the time-evolved probability distribution as the quantum state
∣∣∣ψ̃(t)〉.

Hereafter, when the distinction is clear in context, we denote the operator
L̂(t) by L(t) as in Eq. (3.10).

3.3.3 Construction of L(t)

As explained in the previous section, in the VQS, we evaluate Eqs. (2.55)
and (2.56), and decomposes L(t) into a sum of easily-implementable uni-
taries (composed of single-qubit, two-qubit, and few-qubit gates). These
evaluations are important for a feasible VQS. This subsection discusses the
explicit decomposition of L(t) given by Eq. (3.13).

To express the operator L(t) in Eq. (3.13), we define operators

V+(n) ≡
2n−2∑
i=0

|i+ 1〉〈i| , V−(n) ≡
2n−1∑
i=1

|i− 1〉〈i| . (3.14)

These operators can be constructed from the n-qubit cyclic increment/decrement
operator

CycInc(n) ≡
2n−1∑
i=0

|i+ 1〉〈i| , CycDec(n) ≡
2n−1∑
i=0

|i− 1〉〈i| , (3.15)

where |−1〉 , |2n〉 are identified with |2n − 1〉 , |0〉, respectively. These gates
are implemented as a product of O(n) Toffoli, CNOT, and X gates with O(n)
ancilla qubits [51]. V+(n)(resp. V−(n)) is constructed from CycInc(n)(resp.
CycDec(n)) and an n-qubit-control Z gate CnZ ≡

∑2n−2
i=0 |i〉〈i|−|2n − 1〉〈2n − 1|,

which can be implemented [41] as a product of O(n2) Toffoli, CNOT, and
single qubit gates. Using 1

2 (C
nZ + I⊗n) =

∑2n−2
i=0 |i〉〈i|, we can show that

V+(n) = CycInc(n) · 1
2

(
CnZ + I⊗n

)
, (3.16)

V−(n) =
1

2

(
CnZ + I⊗n

)
· CycDec(n), (3.17)

meaning that V±(n) can be decomposed into a sum of two unitaries com-

3.3. SOLVING STOCHASTIC DIFFERENTIAL ... 29

posed of O(n2) few-qubit gates. Finally, we define the operator D(n) by

D(n) =
2n−1∑
i=0

i |i〉〈i|

=
2n − 1

2
I⊗n −

n∑
i=1

2n−i−1Zi, (3.18)

where Zi is a Z gate acting on the ith qubit. Therefore, D(n) is a sum of
O(n) unitaries composed of a single-qubit gate. It follows that

V+(n)(D(n))m =
2n−2∑
i=0

im |i+ 1〉〈i| , (3.19)

V−(n)(D(n))m =
2n−1∑
i=1

im |i− 1〉〈i| . (3.20)

Let us recall

L(t) =

2n−2∑
i=0

1

2

(
σ2(xi, t)

∆x2
+
µ(xi, t)

∆x

)
|i+ 1〉〈i|

+

2n−1∑
i=1

1

2

(
σ2(xi, t)

∆x2
− µ(xi, t)

∆x

)
|i− 1〉〈i|

−
2n−1∑
i=0

σ2(xi, t)

∆x2
|i〉〈i| .

Expanding σ2(xi, t) and µ(xi, t) as

σ2(xi, t) =

mσ∑
m=0

aσ,m(t)x
m
i , µ(xi, t) =

mµ∑
m=0

aµ,m(t)x
m
i , (3.21)

we can decompose L(t) as follows:

L(t)

=

mσ∑
m=0

aσ,m(t)(∆x)
m−2

(
V+(n) + V−(n)

2
− I
)
(D(n))m

+

mµ∑
m=0

aµ,m(t)(∆x)
m−1

(
V+(n)− V−(n)

2
− I
)
(D(n))m.

V+(n)(D(n))m, V−(n)(D(n))m and (D(n))m are composed of the sum of
O(nm) unitaries, each composed of O(n2) few-qubit gates. In typical SDEs,
the orders mσ,mµ can be set to small values. For example, geometric Brow-
nian motion case, m = 1 (see Sec. 3.6). Therefore, the L(t) decomposition
realizes a feasible VQE (Eq. (3.12)).

30 CHAPTER 3. VARIATIONAL QUANTUM SIMULATION OF ...

3.4 Calculation of Expectation Values

In the previous section, we propose a method to simulate the SDE by calcu-
lating the dynamics of the probability distribution of a random variable X(t)
using VQS. However, in many cases, the goal of the SDE simulation is not
the probability distribution of X(t), but the expectation value E[f(X(t))]
of X(t) for some function f . In this section, we introduce a means of calcu-
lating this expectation value.

3.4.1 Problem Setting

Given a function f(x) : R → R, we try to calculate the expectation value
E[f(X(T))] of the SDE (3.1) at time t = T . The expectation value can be
explicitly written as

E[f(X(T))] ≡
2n−1∑
i=0

f(xi)Prob[X(T) = xi]. (3.22)

Here, we assume that f(x) in the interval [ak, ak+1] ∈ {[0, a1], . . . , [ad−1, xmax]},
(k = 0, . . . , d − 1) is well approximated by Lth order polynomials fk(x) =∑L

m=0 a
(k)
m xm. The additional error from this piecewise polynomial approx-

imation is evaluated in Appendix A1.5. As x is finite, the range of f is also
finite. Thus, by shifting the function f by a constant, we can ensure that
the range of f is positive and that the expectation value is also positive,
i.e. E[f(X(T))] ≥ 0. In most situations (such as pricing of European call
options as we see in Sec. 3.4.3) the number of intervals d does not scale with
the number of qubits n.

3.4.2 General formula for calculating expectation values

We now on compute the expectation value (3.22) using the quantum state∣∣∣ψ̃(t)〉 (Eq. (3.6)). First, we consider a non-unitary operator satisfying

Sf |0〉 =
2n−1∑
i=0

f(xi) |i〉 (3.23)

and decompose Sf into a sum of easily-implementable unitaries as Sf =∑
i ξiQi with complex coefficients ξi. It follows that〈

ψ̃(t)
∣∣∣ (Sf |0〉〈0|S†

f

) ∣∣∣ψ̃(t)〉 = (E[f(X(T))])2 . (3.24)

As |0〉〈0| = 1
2 (I − C

nZ · Z⊗n) is also a sum of easily-implementable uni-
taries as explained in the previous subsection, the Hermitian observable

3.4. CALCULATION OF EXPECTATION VALUES 31

|0〉 H • H

∣∣∣ψ̃(t)〉 / U

Figure 3.2: Quantum circuit for evaluating the real part of an expectation

value Re
〈
ψ̃(t)

∣∣∣U ∣∣∣ψ̃(t)〉 of a unitary operator U = QiQ
†
i′ , QiC

nZ ·X⊗nQ†
i′ .

The imaginary part of the expectation value Im
〈
ψ̃(t)

∣∣∣U ∣∣∣ψ̃(t)〉 is evaluated

by the circuit with an S† gate inserted to the left of the second H gate.

Sf |0〉〈0|S†
f is decomposed as

Sf |0〉〈0|S†
f =

∑
i,i′

ξiξ
∗
i′

(
QiQ

†
i′ −Qi(C

nZ · Z⊗n)Q†
i′

)
, (3.25)

which is again a sum of unitaries. With this decomposition, the left-hand
side of Eq. (3.24) is computed by evaluating〈

ψ̃(t)
∣∣∣QiQ†

i′

∣∣∣ψ̃(t)〉 , (3.26)〈
ψ̃(t)

∣∣∣Qi(CnZ · Z⊗n)Q†
i′

∣∣∣ψ̃(t)〉 . (3.27)

Because we set E[f(X(T))] ≥ 0, the left hand side of Eq. (3.24) will deter-
mine the expectation value.

There are two options to evaluate the quantities
〈
ψ̃(t)

∣∣∣QiQ†
i′

∣∣∣ψ̃(t)〉 and〈
ψ̃(t)

∣∣∣Qi(CnZ · Z⊗n)Q†
i′

∣∣∣ψ̃(t)〉. The first one is to use the Hadamard test

depicted in Fig. 3.2. The second one is to use quantum phase estimation [57,
58]. The former one requires shallower quantum circuits but is inefficient
in terms of the number of measurements to determine the quantities with
fixed precision. The detailed computational complexity of these methods is
given in Sec. 3.5 and Appendix A1.1.

Next, we explain the construction of the operator Sf in Eq. (3.23) and
its decomposition. We first define an operator

Sχ[0,a]
|0〉 =

2n−1∑
i=0

χ[0,a](xi) |i〉 =
∑

xi∈[0,a]

|i〉 , (3.28)

where χ[0,a](x) is the indicator function valued as 1 for x ∈ [0, a] and 0
for otherwise. Using the binary expansion of a/∆x, we can obtain the
decomposition of Sχ[0,a] hence the decomposition of Sf . As a ∈ [0, xmax],

there exists ka ∈ N such that ∆x2ka−1 ≤ a < ∆x2ka , 0 < ka ≤ n. The
binary expansion of a/∆x is given by a/∆x =

∑ka−1
j=0 sj2

j , sj ∈ {0, 1}. We

32 CHAPTER 3. VARIATIONAL QUANTUM SIMULATION OF ...

define the list of l as l1, l2, . . . , lB(= ka − 1) satisfying sl = 1 in ascending
order, and also define an interval

χal =

2lB +

l−1∑
j=0

sj2
j + 1, 2lB +

l∑
j=0

sj2
j

 (3.29)

for l ∈ {l1, l2, . . . , lB}. Using χal , we devide [0, a/∆x] into disjoint intervals
as follows:

[0, a/∆x] = [0, 2lB] ∪ χal1 ∪ · · · ∪ χ
a
lB
. (3.30)

The indicator operator Sχ[0,a]
is obtained by summing the indicator operators

on each interval. In binary expansion, the kath and the lth bit of i ∈ χal are
1, and the bit below l is either 0 or 1. Accordingly, X should act on the bit
taking 1, and H should act on the bit taking either of {0, 1}. The indicator
operator Sχa

l
on χal is defined as follows:

Sχa
l
|0〉 = |0〉⊗ka−1 ⊗ |1〉

n−ka−l−1⊗
j=0

|sn−ka−j〉 ⊗

 l∑
j=0

|j〉


= 2l/2I⊗ka−1 ⊗X

n−ka−l−1⊗
j=0

Xsn−ka−j
⊗H⊗l |0〉 , (3.31)

where

Xs =
{
X (s = 1)
I (s = 0)

. (3.32)

In addition, we define

Sχ
[0,2ka−1]

|0〉 = 2(ka−1)/2I⊗n−ka+1H⊗ka−1 |0〉 . (3.33)

We can construct Sχ[0,a]
by summing Eqs. (3.31) and (3.33) on each interval.

Sχαk
on interval αk ≡ [ak, ak+1] is

Sχαk
= Sχ[0,ak+1]

− Sχ[0,ak]
, (3.34)

which is a sum of at most O(n) unitaries composed of O(n) gates. Using
Sχαk

, we obtain

Sf =
d−1∑
k=0

L∑
m=0

a(k)m (D(n))mSχαk
. (3.35)

In summary, evaluation of the expectation value is calculated by the
following steps.

3.4. CALCULATION OF EXPECTATION VALUES 33

1. Divide the domain of the target function [0, xmax] into intervals [ak, ak+1] ∈
{[0, a1], [a1, a2], . . . , [ad−1, xmax]}.

2. Approximate the function in each interval [ak, ak+1] by Eq. (3.35).

3. Decompose Sf |0〉 〈0|S†
f into a sum of unitary terms and calculate each

term using the circuits in Fig. 3.2.

As Sχ[ak,ak+1]
, (D(n))m, |0〉 〈0| is the sum of O(n), O(nm) and O(1) unitaries

composed of O(n), O(1) and O(n2) gates, respectively, Sf |0〉 〈0|S†
f is the

sum of O(d2n2L+2) unitaries and each Qi is composed of at most O(n4)
gates.

When the target function f on each interval is written by a low-degree
polynomial (i.e., L is small), especially by a linear function (as in the pric-
ing of European call options shown below), our algorithm can efficiently
calculate the expectation value because the number of unitaries O(d2n2L+2)
gets not so large. When the function f is approximated by the polyno-
mial, we can estimate the error of the expectation value stemming from
that approximation. If we want to suppress the error below ϵ, the num-

ber of unitaries becomes O(x2maxϵ
− 2

L+1n2L+2) (the derivation is presented in

Appendix A1.5). Note that as L is increased, ϵ−
2

L+1 becomes smaller while
n2L+2 becomes larger. The number of unitaries, therefore, is not monotonic
with respect to L, and there may be an optimal L for the desired accu-
racy. We note that evaluation of expectation values of those unitaries can
be performed completely in parallel by independent quantum devices.

3.4.3 Pricing of The European Call Option

As a concrete example, we present the pricing of a European call option
with the BS model. The price of a European call option with strike price K,
risk-free interest rate r ≥ 0, and maturity T ≥ 0 is defined by the conditional
expected value

e−rTEQ [max(XT −K, 0)|X0 = x0] . (3.36)

Stochastic processes are assumed to follow geometric Brownian motion in
the BS model, but are described by more complex mechanisms in other
models. Even in these models, the expression Eq. (3.36) of the price of the
European call option is the same with the present case as in Eq. (2.6).

Setting the probability distribution of XT conditioned by X0 = x0 as
{Prob [XT = xi|X0 = x0]}2

n−1
i=0 , the expectation value is

e−rTEQ [max(XT −K, 0)|X0 = x0]

= e−rT
2n−1∑
i=0

Prob [XT = xi|X0 = x0]max(xi −K, 0).

(3.37)

34 CHAPTER 3. VARIATIONAL QUANTUM SIMULATION OF ...

For simplicity, we assume ∆x = 1 and K = 2k < 2n − 1, k ∈ N. We thus
obtain

Smax(i−K,0) = (D(n)−KI)Sχ[K,2n−1]
. (3.38)

In this case, there are only two intervals [0,K − 1] and [K, 2n−1], and the
polynomial in each interval is of first-order degree at most. Therefore, we
can calculate the price of the European call option by Eq. (3.24).

3.5 Possible Advantages of Our Method

In this section, we discuss the advantages of our method compared to pre-
vious studies, as well as the possible quantum advantages.

In general, the SDEs addressed in this chapter can be transformed into
a PDE of the function ef (x, t), where ef (x, t) gives the expectation value
E[f(X(T−t))|X(0) = x], by Feynman-Kac formula as described in Sec. 2.1.2.
In fact, the authors of [29] performed a variational quantum computation
of a PDE of this function. We point out two advantages of our method
compared with this strategy using Feynman-Kac formula. First, the re-
sulting PDE by Feynman-Kac formula must be solved backwardly in time
from t = T to t = 0, with the initial condition at t = T being related to
the functional form of f(X). It is not trivial to prepare the initial state
|ψ(T)〉 corresponding to the initial condition; the authors of [48] executed
an additional VQE to prepare the initial state. Second, when using the
Feynman-Kac formula, the initial condition of the PDE is different for each
function f for which we want to calculate the expectation value E[f(X(T))].
If we want to calculate a different expectation value E[f ′(X(T))], we need to
run the whole algorithm simulating the PDE with the different initial state
corresponding to f ′. On the other hand, in our method, once we perform
VQS, we obtain the probability distribution of X(T) as a quantum state and
the corresponding variational parameters to reproduce it. We only need to
redo the part of the expectation value calculation (Sec. 3.4) for different f ′.

The authors of [19] embedded the probability distribution by quantum
arithmetic. Their embedding, proposed in [11], requires O(2n) gates to em-
bed the probability distribution into an n-qubit quantum state. To moderate
the gate complexity, the authors of [15] embedded the probability distribu-
tion using a quantum generative adversarial network, which requires only
O(Poly(n)) gates. The probability distribution function can also be approx-
imated by a lth-order piecewise polynomial, which can be embedded with
O(ln2) gates even in quantum arithmetic [59]. However, both methods re-
quire prior knowledge of the probability distribution to be embedded. In
contrast, our method does not require prior knowledge of the embedding
probability distribution since our method simulates the time evolution of a
given SDE.

3.6. NUMERICAL RESULTS 35

We now compare the computational cost to calculate expectation values
with previous studies. In [19] and [15], by employing QAE, the expecta-
tion value (Eq. (3.22)) was calculated by using an oracle that is complex
quantum gate reflecting the functional form of f for O(1/ϵ) times, where
ϵ is the precision for the expectation values. The classical Monte Carlo
method requires O(1/ϵ2) sampling for precision ϵ, so their methods pro-
vide a second-order acceleration. On the other hand, our method measures
the expectation value of each term of Eq. (3.25) using the Hadamard test
(Fig. 3.2) or the quantum phase estimation (QPE) [57, 58]. As shown in
Appendix A1.1, the total number of measurements to obtain the expectation
value with precision ϵ is O(1/γϵ2) for the Hadamard test and O(log(1/γϵ))
for QPE, where γ is some factor. We note that the depth of the circuit
is O(1/γϵ) in QPE, which is in the same order as the QAE whereas our
method requires not an complicated oracle but a relatively-small unitary.
Hence, when the factor γ is not too small, our method combined with QPE
can also exhibit quantum advantage for the evaluation of the expectation
values. The factor γ depends on the parameters of the polynomial approxi-

mation (a
(m)
k , d, L), the domain of the approximated function xmax, and the

probability distribution {Prob[X = xi]}2
n−1
i=0 . The detailed evaluation of γ

is described in Appendix A1.1.

3.6 Numerical Results

In this section, our algorithm is applied to two stochastic processes, namely,
geometric Brownian motion and an Ornstein-Uhlenbeck process, which are
commonly assumed in financial engineering problems. Geometric Brownian
motion simply models the fluctuations of asset prices, and the Ornstein-
Uhlenbeck process is a popular model of interest rates.

3.6.1 Models

Geometric Brownian motion is equivalent to setting µ(X(t), t) = rX(t),
σ(X(t), t) = σX(t) in Eq. (3.1), where r and σ are positive constants.

The Ornstein–Uhlenbeck process is equivalent to setting µ(X(t), t) =
−η(X(t)−r), σ(X(t), t) = σ in Eq. (3.1), where η, r and σ > 0 are constants.

The ansatz circuit is identical for both models and shown in Fig. 3.3.
As the amplitudes of the quantum state must be real, the ansatz contains
only CNOT and RY gates. This depth-k circuit repeats the entangle blocks
composed of CNOTs and RY gates k times. The parameters of geometric
Brownian motion were r = 0.1, σ = 0.2,∆x = 1, and t ∈ [0, 4] and those
of the Ornstein–Uhlenbeck process were r = 7, σ = 0.5, η = 0.01,∆x =
1, and t ∈ [0, 4]. We simulate the quantum circuits without noise using
numpy [60] and jax [61]. We set the number of qubits n = 4 and the
number of repetitions of entangle blocks k = 2, 3.

36 CHAPTER 3. VARIATIONAL QUANTUM SIMULATION OF ...

|0〉 RY (θ1) • RY (θk,1)

|0〉 RY (θ2) • RY (θk,2)

|0〉 RY (θ3) • RY (θk,3)

|0〉 RY (θ4) • RY (θk,4)

_ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _ _ _ _ _

repeat k times

Figure 3.3: In a depth-k circuit, CNOT and RY gates (enclosed by dashed
lines) are repeated k-times. The circuit has 4(k + 1) parameters.

3.6.2 Results

Panels (a) and (b) of Fig. 3.4 present the numerical simulations of geo-
metric Brownian motion and the Ornstein-Uhlenbeck process, respectively.
In comparison, we also provide a probability density function (PDF) for
the solution of the SDE equation obtained by solving the Fokker-Planck
equation [62] analytically. We can see that our method describes the time
evolution of the probability distribution well. Note that in the range where t
is small, the probability is locally distributed and the width of the difference
is large relative to the spread of the distribution. Therefore, the error due to
the finite difference method is also large. This error may be suppressed by
varying the width of the difference in time and space, instead of limiting the
grid to equally spaced intervals. We leave the suppression of errors when t
is small as a future work.

We calculated the means (Fig. 3.4(c),(d)) and variances (Fig. 3.4(e),(f))
of the resulting distributions. We also present the mean and variance ob-
tained from the analytical solution and the solution of (3.10) using the
Runge-Kutta method. Because of the approximation with the tree model,
even the results of the Runge-Kutta method slightly differ from the analyt-
ical solution. In the case of VQS with k = 2, we see that the error from
the analytical solution is larger than that of the k = 3 case. This is because
the number of VQS parameters is less than the number of lattice points in
the event space when k = 2, i.e., the degrees of freedom of ansatz are less
than the degrees of freedom of the system, and thus the errors due to the
ansatz appear. In the case of k = 3, the number of parameters in ansatz is
sufficient, and thus the results are closer to the results of the Runge-Kutta
method.

3.6. NUMERICAL RESULTS 37

0 2 4 6 8 10 12 14
x

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

t=0.0 analytical
t=2.0 analytical
t=4.0 analytical
t=0.0 VQS with tree, k=2
t=2.0 VQS with tree, k=2
t=4.0 VQS with tree, k=2

(a) Dynamics of geometric Brownian motion

0 2 4 6 8 10 12 14
x

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

t=0.0 analytical
t=2.0 analytical
t=4.0 analytical
t=0.0 VQS with tree, k=2
t=2.0 VQS with tree, k=2
t=4.0 VQS with tree, k=2

(b) Dynamics of Ornstein-Uhlenbeck process

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

M
ea

n

VQS with tree, k=2
VQS with tree, k=3
analytical
RK with tree

(c) Time dependence of mean in geometric
Brownian motion

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

4.00

4.02

4.04

4.06

4.08

4.10

4.12

M
ea

n

VQS with tree, k=2
VQS with tree, k=3
analytical
RK with tree

(d) Time dependence of mean in Ornstein-
Uhlenbeck process

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0

1

2

3

4

5

6

7

Va
ria

nc
e

VQS with tree, k=2
VQS with tree, k=3
analytical
RK with tree

(e) Time dependence of variance in geometric
Brownian motion

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.0

0.2

0.4

0.6

0.8

1.0

Va
ria

nc
e

VQS with tree, k=2
VQS with tree, k=3
analytical
RK with tree

(f) Time dependence of variance in Ornstein-
Uhlenbeck process

Figure 3.4: (a), (b): Exact solutions of the SDE (solid lines) and numerical
simulation of our algorithm (circles); (c), (d): time dependence of the means
and (e), (f) variances of the encoded probability distributions. Dashed lines
show the numerical solutions of VQS with a k = 2, 3 depth ansatz. Dotted
lines show the numerical Runge-Kutta solutions of the linear differential
equation (Eq. (3.10)). Solid lines show the exact solutions of the SDE. (a),
(c), (e): Geometric Brownian motion with parameters r = 0.1, σ = 0.2. (b),
(d), (f): Ornstein-Uhlenbeck Process with parameters r = 7, σ = 0.5, η =
0.01.

38 CHAPTER 3. VARIATIONAL QUANTUM SIMULATION OF ...

3.7 Conclusion

This chapter proposed a quantum-classical hybrid algorithm that simulates
SDEs based on VQS. A continuous stochastic process was discretized in a
trinomial tree model and was reformulated as a linear differential equation.
The obtained differential equation was solved with VQS, obtaining quantum
states representing the probability distribution of the stochastic processes.
As our method can embed the probability distribution of the solution of a
given SDE into the quantum state, it is applicable to general SDEs. We
note that our methods can apply to the Fokker-Plank equation, which also
gives the time-evolution of the probability distributions of SDE solutions.

Because the embedding methods of the probability distribution differ in
the proposed method and the conventional quantum algorithm, we proposed
another method for computing the expectation value. We approximated the
functions to calculate expectation values by piecewise polynomials and con-
structed operators corresponding to the polynomial in each interval. The op-
erators were constructed as sums of unitary operators, which are composed
of easily-implementable gates. The expectation value was then computed
using the sum of unitary operators. Our algorithm was validated in classical
simulations of geometric Brownian motion and the Ornstein-Uhlenbeck pro-
cess. Both processes were well simulated by the algorithm. Our algorithm
is expected to efficiently simulate other stochastic processes, provided that
L(t) can be written as a polynomial linear combination of unitary matrices.

Let us summarize the computational cost of our method presented in
this work. Our method consists of two parts; one is to perform VQS to
simulate the SDE, and the other is to calculate the expectation value of the
SDE solution. In the part of running VQS, we decompose matrix L(t) in
Eq. (3.10) into a sum of O(nmmax) different unitaries composed of O(n2) few-
qubit gates, where mmax is the largest order of the polynomial expansion of
µ, σ in Eq. (3.21). At each time step of VQS, the vector Vk in Eq. (2.56) is
evaluated as a sum of O(nmmax) measurement results of the circuits depicted
in Fig. 2. As mmax is typically finite and small (∼ 1, 2) in most practical
applications, the computational cost (i.e., the number of gates in quantum
circuits, the number of different circuits to run) of the simulation of SDE
is O(Poly(n)). In contrast, QLSA [20, 54, 55, 4] requires much deeper and
more complex quantum circuits and a large number of ancilla qubits because
it uses the Hamiltonian simulation and the quantum Fourier transform. This
is an advantage of our method leveraging the variational quantum algorithm.

In the part of the expectation value evaluation of the SDE solution, we
evaluate it by running different O(d2n2L+2) quantum circuits, where d and
L are the number of intervals and the order of the piecewise polynomial
approximation of the function f in Eq. (3.22), respectively. Each circuit is
constructed to compute an expectation value 〈ψ|U |ψ〉 of a unitary U that
contains O(n4) quantum gates. When we adopt the Hadamard test (Fig. 3.2)

3.7. CONCLUSION 39

as such a quantum circuit, the number of measurements to suppress statis-
tical error of the expectation value below ϵ is O(1/γϵ2), where γ is a factor
defined in Appendix A1.1. This O(1/ϵ2) scaling is the same as the classical
Monte Carlo method to compute the expectation values from the probabil-
ity distribution of the SDE solution. When we choose the QPE-type circuit
to evaluate 〈ψ|U |ψ〉, the number of measurements becomes O(log(1/γϵ))
while the depth of the circuit in terms of U is O(1/γϵ). This situation can
provide a quantum advantage for computing the expectation value of the
SDE solution. The error from the piecewise polynomial approximation of f
can be made small by increasing d or L, which is detailed in Appendix A1.5.
Since it is difficult to accurately estimate the error caused by ansatz, it is
also difficult to accurately estimate the overall error. Therefore, quantum
speedup is not mathematically rigorous as with other variational quantum
algorithms.

This study focused on computational finance because financial engineer-
ing is among the most popular applications of stochastic processes. Pricing
of derivatives, and many other problems in financial engineering, satisfy the
conditions of the proposed method. However, as the stochastic processes
themselves are quite general, the proposed method is expected to contribute
to solving problems in various fields.

Chapter 4

Pricing multi-asset
derivatives by finite
difference method on a
quantum computer

In this chapter, we present the quantum algorithm that calculate the price
of the multi-asset derivative with finite difference method on a fault-tolerant
quantum computer. As described in Sec. 2.2.2, the finite difference method
requires O(ndgr) grid points for pricing d-asset derivatives. Several previous
studies [27, 28, 29, 30], use quantum computer to simulate the time evolution
of the derivative price with the finite difference method to avoid this expo-
nential growth of the required resource. However, the resulting outcomes
of these quantum algorithms are quantum information, i.e., the quantum
states where the derivative prices are embedded. The present price of the
derivative is one element of the quantum state vector. Thus, to obtain the
derivative price as a classical information, we need to estimate the element,
but it would take exponential number of measurement. As a result, the
quantum speedup would be lost. To overcome this issue, we utilize the mar-
tingale of the derivative price, i.e. the fact that the present value of the
derivative can be calculated by the expected value at arbitrary future time.
This chapter is based on [K. Miyamoto, K. Kubo, IEEE Transactions on
Quantum Engineering 3, 3100225 (2021) © 2021 IEEE] with modifications
for fitting in the context. The content of Secs. II and III of [K. Miyamoto,
K. Kubo, IEEE Transactions on Quantum Engineering 3, 3100225 (2021) ©
2021 IEEE] is in Secs. 2.2.2 and 2.3.2 respectively, and this chapter depends
on the sections.

41

42 CHAPTER 4. PRICING OF MULTI-ASSET...

4.1 Introduction

Recently, people are witnessing the great advance of quantum computing1,
which can speedup some computational tasks compared with exiting clas-
sical computers, and taking a strong interest in its industrial applications.
Finance is one of promising fields. Since large financial institutions per-
form enormous computational tasks in their daily business2, it is naturally
expected that quantum computers will tremendously speedup them and
make a large impact on the industry. In fact, some recent papers have
already discussed applications of quantum algorithms to concrete problems
in financial engineering: for example, derivative pricing[19, 63, 64, 65, 29,
66, 31, 67, 68, 69, 27, 28, 30, 70], risk measurement[71, 72, 73], portfolio
optimization[74, 75, 76], and so on. See [77, 78, 79] as comprehensive re-
views.

Among a variety of applications, we here consider the quantum method
for derivative pricing. Especially, we focus on the approach based on solving
the partial differential equation (PDE) by finite difference method (FDM).
Let us describe the outline of the problem. First of all, we explain what
financial derivatives, or simply derivatives are. They are products whose
values are determined by prices of other simple assets (underlying assets)
such as stocks, bonds, foreign currencies, commodities, and so on. They can
be characterized by payoffs paid and/or received between parties involved
in a derivative contract, whose amounts are determined by underlying asset
prices. One of the simplest examples of derivatives is an European call (resp.
put) option, the right to buy (resp. sell) some asset at the predetermined
price (strike) K and time (maturity) T . This is equivalent to the contract
that the option buyer receives the payoff fpay(ST) = max{ST −K, 0} (call)
or max{K−ST , 0} (put) at T , where St is the underlying asset price at time
t. Besides this, there are many types of derivatives, some of which contain
complicated contract terms and are called exotic derivatives.

Since large banks hold a large number of exotic derivatives, pricing them
is crucial for their business. We can evaluate a derivative price by modeling
the random time evolution of underlying asset prices by some stochastic
processes and calculating the expected values of the payoff3 under some
probability measure. Since analytical formulas for the derivative price are
available only in limited settings, we often resort to numerical methods. One
of major approaches is Monte Carlo simulation. That is, we generate many
paths of underlying asset price evolution on some discretized time grid, and
then take the average of payoffs over the paths. We can also take another

1For readers who are unfamiliar to quantum computing, we refer to [41] as a standard
textbook.

2For readers who are unfamiliar to financial engineering or, more specifically, derivative
pricing, we refer to [1, 2]

3Strictly speaking, the payoff must be divided by some numeraire.

4.1. INTRODUCTION 43

approach: since the expected value obeys some PDE, which is called the
Black-Scholes (BS) PDE, we can obtain the derivative price by solving it4.
More concretely, starting from the maturity T , at which the derivative price
is trivially determined as the payoff itself, we solve the PDE backward to
the present, and then find the present value of the derivative.

We should choose the appropriate approach according to the nature of
the problem. For example, PDE approach is suitable for derivatives whose
price is subject to some continuous boundary conditions. One prominent
example is the barrier option. In a barrier option contract, one or multiple
levels of underlying asset prices, which are called barriers, are set. Then,
they determine whether the payoff is paid at the maturity or not. For
example, in a knock-out barrier option, the payoff is not paid if either of
barriers is reached once or more by T , regardless of ST

5. This means that
the price of the knock-out barrier option is 0 at barriers. Such a boundary
condition is difficult to be strictly taken into account in the Monte Carlo
approach because of discretized time evolution, but it can be dealt with in
the PDE approach.

Although the PDE approach is suitable in these cases, it is difficult to
apply it to multi-asset derivatives, that is, the case where the number of un-
derlying assets d is larger than 1. This is because of the exponential growth
of complexity with respect to d, which is known as the curse of dimension-
ality. We can see this as follows. The BS PDE is (d+1)-dimensional, where
d and 1 correspond to asset prices and time, respectively. In FDM, which is
often adopted for solving a PDE numerically, the discretization grid points
are set in the asset price directions, and partial derivatives are replaced with
matrices which correspond to finite difference approximation. This converts
a PDE into a linear ordinary differential equation (ODE) system, in which
the dependent variables are the derivative prices on grid points and the in-
dependent variable is time. Then, we solve the resulting ODE system. The
point is that this calculation contains manipulations of the matrices with ex-
ponentially large size, that is, ndgr×ndgr, where ngr is the number of the grid

points in one direction. Since we have to take ngr proportional to ϵ
−1/2 in

order to accomplish the error level ϵ, as shown later, the time complexity of
this approach grows as O(poly(ϵ−d/2)) = O((1/ϵ)poly(d)). Besides, the space
complexity also grows exponentially, since we have to store the derivative
prices on grid points in calculation. This makes the PDE approach, at least
in combination with FDM, intractable on classical computers.

4For comprehensive reviews of the PDE approach for derivative pricing, we refer to
[80, 81] as textbooks.

5There are also knock-in barrier options, where the payoff is paid only if either of barri-
ers is reached at least once by T . We can price an knock-in barrier option by subtracting
the price of the corresponding knock-out barrier option from that of the corresponding
European (that is, no-barrier) option, since a combination of a knock-in barrier option
and a knock-out barrier option is equivalent to an European option.

44 CHAPTER 4. PRICING OF MULTI-ASSET...

Fortunately, quantum computers might change the situation. This is be-
cause there are some quantum algorithms for solving linear ODE systems,
whose time complexities depend on dimensionality only logarithmically[55,
4, 82, 83]. This means that, in combination with these algorithms, we can re-
move the exponential dependency of time complexity of FDM on dimension-
ality. In fact, some quantum algorithms for solving PDE, including not only
FDM-based ones but also different approaches, have already been proposed,
and quantum speedup is obtained in some cases[45, 22, 84, 85, 86, 87, 88, 89].
Note also that the space complexity can be also reduced exponentially, since,
using a n-qubits system, we can encode a vector with exponentially large
size with respect to n into the amplitudes of the quantum state.

In light of the above, this chapter aims to speedup FDM-based pricing
of multi-asset derivatives, utilizing the quantum algorithm. Although one
might think that this is just a straightforward application of an existing
algorithm to some problem, there is a nontrivial issue specific for derivative
pricing.The issue is how to extract the present value of the derivative from
the output of the quantum algorithm. By solving the BS PDE up to the
present (t = 0) using the quantum algorithm, we obtain the vector V (0),
which consists of the derivative prices on the grid points in the space of
the underlying asset prices. However, it is given not as classical data but
as a quantum state |V (0)〉, in which the elements of V (0) are encoded as
amplitudes of computational basis states. On the other hand, typically, we
are interested in only one element of V (0), that is, V0, the derivative price
for the present underlying asset prices. This means that we have to obtain
the amplitude of the specific computational basis state in |V (0)〉. Since the
amplitude is exponentially small if the number of the grid point is expo-
nentially large, reading it out requires exponentially large time complexity,
which ruins the quantum speedup.

We circumvent this issue by solving PDE up to not the present but
some future time tter. The key observation is that V0 can be expressed as
the expected value of its price6 at an arbitrary future time. Concretely,
we may take the following way. First, we generate two states: |V (tter)〉, in
which the derivative prices at tter are encoded, and |p(tter)〉, in which the
probability distribution of underlying asset prices at tter are encoded. Then,
we estimate the inner product 〈p(tter)|V (tter)〉, which is an approximation
of V0. Note that the amplitude of each basis state in |V (tter)〉 contains
information to determine V0 differently from |V (0)〉, in which the amplitude
of one specific basis state is the sole necessary information. This leads to
much smaller time complexity in the above way than reading V0 out from
|V (0)〉.

In the following sections, we describe the entire process of the above
calculation: setting tter, generating |V (tter)〉 by the quantum algorithm,

6Again, strictly speaking, the price must be divided by some numeraire.

4.2. QUANTUM ALGORITHM FOR SOLVING ODE SYSTEMS 45

generating |p(tter)〉, and estimating V0. Besides, we estimate the complexity
of the proposed method. We see that, in the expression of the complexity,
there are not any factors like (1/ϵ)poly(d) but only some logarithmic factors
to the power of d, which means substantial speedup compared with classical
FDM.

The rest of this chapter is organized as follows. Sections 4.2 is prelim-
inary one, which outline the quantum algorithm for solving ODE systems.
Here, we also discuss how to set tter in Section 4.3, taking into account the
probability that underlying assets reach the barrier. Section 4.4 presents
the main result, that is, the quantum calculation procedure for V0 and its
complexity. Section 4.5 summarizes this chapter. All proofs are shown in
the appendix.

4.1.1 Notations

Here, we explain the notations used in this chapter.

• In: The n× n identity matrix.

• ‖ · ‖: The Euclidean norm for a vector and the spectral norm for a
matrix. We call each of them a “norm” simply.

• µ(A): The logarithmic norm associated with ‖ · ‖ for a n × n matrix
A, that is, µ(A) := limh→0+(‖In + hA‖ − 1)/h.

• |i〉: A state on a multi-qubit register.

• |̄i〉: A state on one qubit.

• ‖ |ψ〉 ‖: The norm of a (unnormalized) state |ψ〉.

When a matrix A has at most s nonzero entries in any row and column,
we say that the sparsity of A is s. If a state |ψ〉 satisfies ‖ |ψ〉 − |ψ′〉 ‖ < ϵ,
where ϵ is a positive real number and |ψ′〉 is another state, we say that |ψ〉
is ϵ-close to |ψ′〉.

4.2 Quantum algorithm for solving ODE systems

In this chapter, we consider the Problem 2.2.1. To solve the problem, we
use the finite difference method introduced in Section 2.2.2 and the quantum
algorithm for solving ODE systems introduced in Section 2.3.2.

The quantum algorithm in [4] leverages the algorithm in [23]. In order to
use it to solve Eq. (2.44), [4] assumes that the following oracles (i.e. unitary
operators) are available:

46 CHAPTER 4. PRICING OF MULTI-ASSET...

• OA,1
For the matrix A, given a row index j and an integer l, this return
ν(j, l), the column index of the l-th nonzero entry in the j-th row:

OA,1 : |j〉 |l〉 7→ |j〉 |ν(j, l)〉 (4.1)

• OA,2
For the matrix A, given a row index j and a column index k, this
return the (j, k) entry:

OA,2 : |j〉 |k〉 |z〉 7→ |j〉 |k〉 |z ⊕Ajk〉 (4.2)

• Oxini

This prepares 1
∥xini∥ |xini〉 under the control by another qubit:

Oxini :

{
|0̄〉 |0〉 7→ 1

∥xini∥ |0̄〉 |xini〉
|1̄〉 |ψ〉 7→ |1̄〉 |ψ〉 for any |ψ〉

(4.3)

• Ob

When b 6= 0, this prepares 1
∥b∥ |b〉 under the control by another qubit:

Ob :

{
|0̄〉 |ψ〉 7→ |0̄〉 |ψ〉 for any |ψ〉
|1̄〉 |0〉 7→ 1

∥b∥ |1̄〉 |b〉
. (4.4)

When b = 0, this is an identity operator.

Then, we present the theorem (Theorem 9 in [4]), which states the query
complexity of the quantum algorithm for solving ODE systems discussed in
Sec. 2.3.2, with a slight modification.

Theorem 4.2.1. (Theorem 9 in [4], slightly modified) Suppose A = V DV −1

is an N×N diagonalizable matrix, where D = diag(λ0, λ1, ..., λN−1) satisfies
Re(λj) ≤ 0 for any j ∈ 0, 1, ..., N − 1. In addition, suppose A has at most
s nonzero entries in any row and column, and we have oracles OA,1, OA,2
as above. Suppose xini and b are N -dimensional vectors with known norms
and we have oracles Oxini and Ob as above. Let x evolve according to the
differential equation (2.43) with the initial condition x(0) = xini. Let T > 0
and g := maxt∈[0,T] ‖x(t)‖/‖x(T)‖. Then there exists a quantum algorithm

that produces a state
∣∣∣Ψ̃〉, which is ϵ-close to

|Ψ〉 := 1√
〈Ψgar|Ψgar〉+ (p+ 1)‖x(T)‖2

|Ψgar〉+
p(k+2)∑
j=p(k+1)

|j〉 |x(T)〉


(4.5)

4.3. APPROXIMATING THE PRESENT DERIVATIVE PRICE... 47

using

O

(
κV sT‖A‖ × poly

(
log

(
κV sT‖A‖

ϵ

)))
(4.6)

queries to OA,1, OA,2, Ox, and Ob. Here, κV = ‖V ‖ · ‖V −1‖ is the condition
number of V , p = dT‖A‖e, k = b2 log Ω/ log(log Ω)c, Ω = 70gκV p

3/2(‖xini‖+
T‖b‖)/ϵ‖x(T)‖, and |Ψgar〉 is an unnormalized state which takes the form

of |Ψgar〉 =
∑p(k+1)−1

j=0 |j〉 |ψj〉 with some unnormalized states |ψ0〉, |ψ1〉, . . . ,∣∣ψp(k+1)−1

〉
and satisfies 〈Ψgar|Ψgar〉 = O(g2(p+ 1)‖x(T)‖2).

The modifications from Theorem 9 in [4] are as follows. First, in [4], it is as-
sumed that we perform post-selection and obtain |x(T)〉 /‖ |x(T)〉 ‖ (strictly
speaking, a state close to it). On the other hand, in Theorem 4.2.1, the out-
put state is not purely |x(T)〉 /‖ |x(T)〉 ‖ but contains |x(T)〉 as a part in
addition to the unnecessary state |Ψgar〉. This is because, in this chapter, we
use the algorithm of [4] as a subroutine in the quantum amplitude estimation
(QAE)[6, 90, 91, 92, 93], as explained in Section 4.4, and the iterated sub-
routine in QAE must be an unitary operation. This means that we cannot
perform post-selection, since it is a non-unitary operation. Note also that,
we do not perform amplitude amplification for |Ψ1〉, which is done before
post-selection in [4], and thus a factor g, which exists in the expression of the
complexity (112) in [4], has dropped from (4.6) in this chapter. Moreover,
the meaning of the closeness ϵ is different between Theorem 4.2.1 in this

chapter and Theorem 9 in [4]. In the former, ϵ is the closeness between
∣∣∣Ψ̃〉

and |Ψ〉, which corresponds to δ in [4]. On the other hand, Theorem 9 in [4]
refers to the closeness of the state after post-selection to |x(T)〉 /‖ |x(T)〉 ‖.
This difference also makes (4.6) different from (112) in [4].

4.3 Approximating the present derivative price as
the expected value of the price at a future time

As we explained in the preliminary, we aim to calculate V0 as the expected
value of the discounted price at some future time. Concretely, we set tter ∈
(0, T) and calculate

V0 = e−rtter
∫
Rd
+

dSϕ(tter,S)pNB(tter,S)V (tter,S), (4.7)

where ϕ(t,S) is the probability density function of S(t), and pNB(t,S) is
the conditional probability that the no event which leads to extinction of
the payoff happens by t given S(t) = S. Although (4.7) holds for any tter,
for the effective numerical calculation, tter should be set carefully. Recall-
ing our motivation to evade exponential complexity to read out V0, which
is explained in the beginning of this chapter, we want to set tter as large

48 CHAPTER 4. PRICING OF MULTI-ASSET...

as possible. On the other hand, there are some reasons to set tter small
because of existence of boundaries. First, note that it is difficult to find
pNB(tter,S) explicitly in the multi-asset case. However, for sufficiently small
tter, pNB(tter,S) is nearly equal to 1, since the payoff is paid at least if S(t)
does not reach any boundaries and the probability that S(t) reaches any
boundaries can be neglected for time close to 0. Besides, note that we ob-
tain the derivative prices only on the points in boundaries by solving PDE.
For small tter, we can approximately calculate V0 using only the information
in boundaries, since the probability distribution of S(tter) over the bound-
aries is negligible. In summary, we should set tter as large as possible in the
range of the value for which the probability distribution of S(tter) is almost
confined within the boundaries. For such tter, we can approximate

V0 ≈ e−rtter
∫
D
dSϕ(tter,S)V (tter,S), (4.8)

or, equivalently,

V0 ≈ e−rT
∫
D̃
dxϕ̃(tter,x)Y (τter,x), (4.9)

where τter := T − tter and ϕ̃(t,x) is the probability density of x(t) under the
BS model (2.3) and will be explicitly given later.

Considering the above points, we obtain the lemma, which shows a cri-
terion to set tter. First, we make an assumption, which is necessary to upper
bound the contribution from the outside of the boundaries to the integral
(4.7).

Assumption 4.3.1. There exist positive constants A0, A1, ..., Ad such that
fpay in Problem 1 satisfies

fpay(S) ≤
d∑
i=1

AiSi +A0 (4.10)

for any S ∈ D.

That is, we assume that the payoff is upper bounded by some linear func-
tion, which is the case for many cases such as call/put options on linear
combinations of S1, ..., Sd (i.e. basket options). Then, the following lemma
holds.

Lemma 4.3.1. Consider Problem 1. Under Assumption 4.3.1, for any
ϵ ∈ R+ satisfying

log

(
Ãd(d+ 1)

ϵ

)
> max

{
2

5

(
1− 2r

σ2i

)
log

(
Ui
Si,0

)
,
2

5

(
1− 2r

σ2i

)
log

(
Si,0
Li

)}
, i ∈ [d],

(4.11)

4.4. QUANTUM METHOD FOR DERIVATIVE PRICING BY FDM 49

where Ã = max{A1

√
U1S1,0, ..., A1

√
UdSd,0, A0}, and

ϵ < 2d(d+ 1)×max{A0, A1S1,0, ..., AdSd,0}, (4.12)

the inequality ∣∣∣∣V (0,S0)− e−rT
∫

˜̃D
dxϕ̃(tter,x)Y (tter,x)

∣∣∣∣ ≤ 2ϵ (4.13)

holds, where

tter := min


2
(
log
(
U1
S1,0

))2
25σ21 log

(
2Ãd(d+1)

ϵ

) , ..., 2
(
log
(
Ud
Sd,0

))2
25σ2d log

(
2Ãd(d+1)

ϵ

) , 2
(
log
(
S1,0

L1

))2
25σ21 log

(
2Ãd(d+1)

ϵ

) ,
. . . ,

2
(
log
(
Sd,0

Ld

))2
25σ2d log

(
2Ãd(d+1)

ϵ

)
 . (4.14)

and

˜̃D :=

[
1

2

(
l1 + x

(0)
1

)
,
1

2

(
x
(ngr−1)
1 + u1

)]
×· · ·×

[
1

2

(
ld + x

(0)
d

)
,
1

2

(
x
(ngr−1)
d + ud

)]
.

(4.15)

The proof is given in Appendix A2.2. Note that, in (4.13), the region of
the integral is slightly different from D̃, the interior of the boundary in the
x domain. This is just for interpreting the finite-sum approximation of the
integral as the midpoint rule and explained in the proof of Lemma 4.4.1.

4.4 Quantummethod for derivative pricing by FDM

In this section, we finally present the quantum method for derivative pricing
by FDM. Our idea is calculating the present derivative price V0 as (4.7), the
expected value of the price at the future time tter. As explained in Section
4.3, we approximate (4.7) as (4.9). In fact, we have to approximate (4.9)
further, since we obtain the derivative prices only on the grid points by
solving PDE using FDM. Therefore, we approximate (4.9) as

V0 ≈ e−rT
Ngr∑
k=1

pkỸk(τter), (4.16)

where pk is the existence probability of x(tter), the log prices of underlying
assets at tter, on the k-th grid point and explicitly defined soon. In other
words, we calculate

V0 ≈ e−rTp · Ỹ (τter), (4.17)

where p := (p1, ..., pNgr)
⊤. Hereafter, we discuss how to estimate this inner

product.

50 CHAPTER 4. PRICING OF MULTI-ASSET...

4.4.1 Generating the probability vector

Firstly, let us discuss how to generate p, a vector which represents ϕ̃(tter,x),
the probability distribution of x(tter), as a quantum state. As we will see
below, although we aim to generate a quantum state in which the amplitudes
of basis states are proportional to ϕ̃(tter,x), we can apply the method to
generate a state in which amplitudes are square roots of probabilities[11,
31], since ϕ̃(tter,x) can be regarded as the square roots of the probability
densities under another distribution.

Concretely speaking, we aim to generate the vector

p := (p1, ..., pNgr)
⊤,

pk := ϕ̃(tter,x)
d∏
i=1

hi (4.18)

where ϕ̃(t,x), the probability density of x(t), is explicitly given as

ϕ̃(t,x) :=
1

(2πt)d/2
(∏d

i=1 σi

)√
det ρ

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
,

µ :=

((
r − 1

2
σ21

)
t, ...,

(
r − 1

2
σ2d

)
t

)⊤

Σ := (σiσjρij)1≤i≤d
1≤j≤d

, (4.19)

that is, the density of the d-dimensional normal distribution with the mean
µ and the covariance matrix Σ. Actually, we generate this vector as a
normalized quantum state, that is,

|p̄〉 :=

Ngr∑
k=1

pk
P
|k〉 ,

P := ‖p‖ =

√√√√Ngr∑
k=1

p2k. (4.20)

Here, note that (ϕ̃(t,x))2 is φ(x) times a constant independent of x, where

φ(x) :=
1

(πt)d/2
(∏d

i=1 σi

)√
det ρ

exp

(
−1

2
(x− µ)⊤

(
1

2
Σ

)−1

(x− µ)

)
,

(4.21)
is the probability density function for another d-dimensional normal distri-
bution. Therefore, |p̄〉 is approximately the state |φ〉, where φ(x) is encoded
into the square roots of the amplitudes, that is,

|φ〉 := 1√
Q

Ngr∑
k=1

√
qk |k〉 . (4.22)

4.4. QUANTUM METHOD FOR DERIVATIVE PRICING BY FDM 51

Algorithm 1 Generate |p̄〉
1: Prepare d mgr-qubit registers and initialize all qubits to |0̄〉, which means

the initial state is |0〉 · · · |0〉︸ ︷︷ ︸
d

.

2: for i = 1 to d do
3: for j = 1 to mgr do
4: Using k1, ..., ki−1 indicated by the first, ..., (i − 1)-th registers,

respectively, and k
[1]
i , ..., k

[j−1]
i , the bits on the first, ..., (j− 1)-th qubits

of the i-th register, respectively, rotate the j-th qubit in the i-th register
as

5:

|0̄〉 →
√
fi,j(k1, ..., ki−1; k

[1]
i , ..., k

[j−1]
i) |0̄〉+

√
1− fi,j(k1, ..., ki−1; k

[1]
i , ..., k

[j−1]
i) |1̄〉 .

(4.25)
This transforms the entire state into

1√
Q

ngr−1∑
k1=0

· · ·
ngr−1∑
ki−1=0

1∑
k
[1]
i =0

· · ·
1∑

k
[j]
i =0

√
qi,j(k1, ..., ki−1; k

[1]
i , ..., k

[j]
i) |k1〉 · · · |ki−1〉

∣∣∣k̃〉 |0〉 · · · |0〉︸ ︷︷ ︸
d−i

,

(4.26)

where k̃ is an integer whose mgr-bit representation is k
[1]
i · · · k

[j]
i 0 · · · 0︸ ︷︷ ︸

mgr−j

.

6: end for
7: end for

Here,

qk :=

∫ x
(k1+1)
1

x
(k1)
1

dx1 · · ·
∫ x

(kd+1)

d

x
(kd)

d

dxdφ(tter,x), for k =
d∑
i=1

nd−igr ki+1, ki = 0, 1, ..., ngr−1,

(4.23)
which is close to φ(tter,x

(k))
∏d
i=1 hi, and

Q :=

∫ x
(ngr+1)
1

x
(0)
1

dx1 · · ·
∫ x

(ngr+1)

d

x
(0)
d

dxdφ(tter,x), (4.24)

which is close to 1.

Then, the task is boiled down to generating |φ〉. This can be done by the
multivariate extension of the method of [11] for univariate distributions. The
concrete procedure is Algorithm 1. Here, note that |k〉 can be decomposed
as

|k〉 = |k1〉 · · · |kd〉 , (4.27)

52 CHAPTER 4. PRICING OF MULTI-ASSET...

where each |ki〉 is a state on a mgr-qubit register (recall that ngr = 2mgr),
and |ki〉 can be further decomposed as

|ki〉 =
∣∣∣∣k[i]i 〉 · · · ∣∣∣∣k[mgr]

i

〉
, (4.28)

where we write the n-bit representation of i ∈ {0, 1, ..., 2n − 1} as i[1] · · · i[n]
with i[1], ..., i[n] ∈ {0, 1}. Besides, note that Algorithm 1 requires us to
compute

fi,j(k1, ..., ki−1; k
[1]
i , ..., k

[j−1]
i) :=

qi,j(k1, ..., ki−1; k
[1]
i , ..., k

[j−1]
i , 0)

qi,j−1(k1, ..., ki−1; k
[1]
i , ..., k

[j−1]
i)

(4.29)

for i ∈ [d] and j ∈ [mgr], where

qi,j(k1, ..., ki−1; b1, ..., bj) :=

∫ xR1,j(b1,...,bj)
xL1,j(b1,...,bj)

dx1
∫ x(ngr+1)

2

x
(0)
2

dx2 · · ·
∫ x(ngr+1)

d

x
(0)
d

dxdφ(t,x) ; i = 1∫ x(k1+1)
1

x
(k1)
1

dx1 · · ·
∫ x(ki−1+1)

i−1

x
(ki−1)

i−1

dxi−1

∫ xRi,j(b1,...,bj)
xLi,j(b1,...,bj)

dxi

×
∫ x(ngr+1)

i+1

x
(0)
i+1

dxi+1 · · ·
∫ x(ngr+1)

d

x
(0)
d

dxdφ(t,x) ; 2 ≤ i ≤ d− 1∫ x(k1+1)
1

x
(k1)
1

dx1 · · ·
∫ x(kd−1+1)

d−1

x
(kd−1)

d−1

dxd−1

∫ xRd,j(b1,...,bj)
xLd,j(b1,...,bj)

dxdφ(t,x) ; i = d

,

(4.30)

and

xLi,j(b1, ..., bj) := x
(kL)
i , kL :=


0 ; j = 0

b1 · · · bj 0 · · · 0︸ ︷︷ ︸
mgr−j

; j = 1, ...,mgr

xRi,j(b1, ..., bj) := x
(kR)
i , kR :=


ngr ; j = 0

b1 · · · bj 1 · · · 1︸ ︷︷ ︸
mgr−j

+1 ; j = 1, ...,mgr
,

(4.31)

for i ∈ [d], j = 0, 1, ...,mgr and b1, ..., bj ∈ {0, 1} (note that q1,0 = Q). Such
a fi,j can be actually computed as follows. Neglecting the contribution from
the outside of the boundary, we see that

fi,j(k1, ..., ki−1; k
[1]
i , ..., k

[j−1]
i) ≈

∫ 1
2
(xLi,j(b1,...,bj)+x

R
1,j(b1,...,bj))

xLi,j(b1,...,bj)
dxiφ

mar
i (xi; k1, ..., ki−1)∫ xRi,j(b1,...,bj)

xLi,j(b1,...,bj)
dxiφmar

i (xi; k1, ..., ki−1)
,

(4.32)

4.4. QUANTUM METHOD FOR DERIVATIVE PRICING BY FDM 53

where

φmar
i (xi; k1, ..., ki−1) :=

∫ +∞

−∞
dxi+1 · · ·

∫ +∞

−∞
dxdφ((x

(k1)
1 , ..., x

(ki−1)
i−1 , xi, xi+1, ..., xd)

⊤)

(4.33)
is the marginal density given by integrating out xi+1, ..., xd and fixing x1, ..., xi−1.
We can regard this as an univariate normal distribution density function of
xi (times a constant independent of xi), and therefore compute (4.32) by
the method presented in [31].

At the end of this subsection, let us evaluate the error of (4.17) as an
approximation for (4.9). As preparation, we evaluate the normalization
factor P as follows:

P 2 =

Ngr∑
k=1

(
ϕx(t,x

(k)
gr)
)2(d∏

i=1

hi

)2

≈
∏d
i=1 hi

(4πt)d/2
(∏d

i=1 σi

)√
det ρ

∫
Rd

dxφ(x)

=

∏d
i=1 hi

(4πt)d/2
(∏d

i=1 σi

)√
det ρ

≈
∏d
i=1∆i

(4π)d/2Ngr
√
det ρ

, (4.34)

where

∆i :=
ui − li
σi
√
tter

, i ∈ [d]. (4.35)

Besides, we make an additional assumption.

Assumption 4.4.1. For Y (τ,x), the solution of (2.20) and (2.21), and
ϕ̃(t,x), the probability density function of x(t) under the BS model (2.2),
there exists η ∈ R such that

∀i, j ∈ [d], τ ∈ (0, T),x ∈ D̃,
∣∣∣∣ ∂2

∂xi∂xj
(ϕ̃(T − τ,x)Y (τ,x))

∣∣∣∣ < η. (4.36)

Then, we obtain the following lemma, which guarantees us that we can
approximate the integral by the finite sum over the grid points.

Lemma 4.4.1. Consider Problem 1. Under Assumptions 2.2.1, 4.3.1 and

54 CHAPTER 4. PRICING OF MULTI-ASSET...

4.4.1, for a given ϵ ∈ R+ satisfying (4.11) and (4.12), if we set

hi < h̃i := min

{
(4π)d/8(det ρ)1/8

dσi(
∏d
i=1∆i)1/4

√
ϵ

2ξT
,

(4π)d/8(det ρ)1/8

σi(
∏d
i=1∆i)1/4

√
ϵ

ζdT
,

1(∏d
i=1(ui − li)

)1/2
√

24ϵ

dη

 , i ∈ [d]

(4.37)

the following holds ∣∣∣e−rTp · Ỹ (τter)− V0
∣∣∣ < 4ϵ, (4.38)

where p is defined as (4.18), Ỹ is the solution of (2.23).

The proof is given in Appendix A2.3.

4.4.2 Generating the derivative price vector

Next, let us consider how to generate V , the vector which encodes the grid
derivative prices at tter. Precisely speaking, since we solve (2.23), we actually
obtain the vector Ỹ , which encodes the approximations of Y (τter,x) on the
grid points. Furthermore, by the algorithm presented in Section 2.3.2, we
obtain not Ỹ itself but some quantum state like (4.5), which contains a state
corresponding to Ỹ along with a garbage state.

For the precise discussion, let us firstly make some assumptions in order
to satisfy preconditions to use the quantum algorithm. The first one is as
follows:

Assumption 4.4.2. C(τ) in (2.23) is independent of τ .

Then, hereafter, we simply write C(τ) as C. We make this assumption in
order to fit the current setting to [4], which considered solving (2.43) for
constant A and b (note that F in (2.23) is constant). Although C(τ) is not
generally time-independent, the assumption is satisfied in some cases:

• In some cases, a derivative is far in-the-money for a party at some
points on the boundary, and this means that the party would receive a
constant payoff K at the maturity with high probability. For example,

– The payoff is the cash-or-nothing type.

– The payoff is capped, that is, the payoff function takes the form
of fpay(S) = min{f(S),K} with some function f(S).

In these cases, we can approximate that V (t,S) ≈ e−r(T−t)K, which
means that Y (τ,x) ≈ K, on the points.

4.4. QUANTUM METHOD FOR DERIVATIVE PRICING BY FDM 55

• If a boundary corresponds to a knock-out barrier, V (t,S) = 0 on it.

Of course, there are many cases where C(τ) is time-dependent, and it is
desirable to expend our method to such cases. We leave this as a future
work.

The second assumption is as follows:

Assumption 4.4.3. For F in (2.25), the following oracles OF,1 and OF,2
are available:

OF,1 : |j〉 |l〉 7→ |j〉 |νF (j, l)〉 , (4.39)

where j ∈ [Ngr], l ∈ [sF], sF is the sparsity of F , and ν(j, l) is the column
index of the l-th nonzero entry in the j-th row,

OF,2 : |j〉 |k〉 |z〉 7→ |j〉 |k〉 |z ⊕ Fjk〉 , (4.40)

where j, k ∈ [Ngr] and z ∈ R. Besides, for f̃pay in (2.24) and C in (2.27),
we know their norms and the following oracles Of̃pay

and OC are available:

Of̃pay
:

 |0̄〉 |0〉 7→ 1
∥f̃pay∥

|0̄〉
∣∣∣f̃pay〉

|1̄〉 |ψ〉 7→ |1̄〉 |ψ〉 for any |ψ〉
, (4.41)

OC :

{
|0̄〉 |ψ〉 7→ |0̄〉 |ψ〉 for any |ψ〉
|1̄〉 |0〉 7→ 1

∥C∥ |1̄〉 |C〉
, (4.42)

for C 6= 0 and OC is an identity operator for C = 0.

Since F is explicitly given as (2.25), the sum of the Kronecker products
of tridiagonal matrices, construction of OF,1 and OF,2 is straightforward.
On the other hand, f̃pay and C are highly problem-dependent, and so are
Of̃pay

and OC . Therefore, we just assume their availability in this chapter,
referring to some specific cases. Although the gate complexity preparing a
state in which a general vector is amplitude-encoded is exponential in the
qubit number [?, 94, 95, 96, 97, 98, 99], it can be efficiently performed in
the following cases.

• By the analogy with preparation of |p̄〉, we see that we can prepare
|f̃pay〉
∥f̃pay∥

if we can efficiently calculate∫ 1
2
(xLi,j(b1,··· ,bj)+xRi,j(b1,··· ,bj))

xLi,j(b1,··· ,bj)
dxi

∫ ui

li

dxi+1

· · ·
∫ ud

ld

dxd

(
f̃pay((x

(k1)
1 , · · · , x(ki−1)

i−1 , xi, xi+1, · · · , xd)⊤)
)2

/∫ xRi,j(b1,··· ,bj)

xLi,j(b1,··· ,bj)
dxi

∫ ui

li

dxi+1 · · ·
∫ ud

ld

dxd

(
f̃pay((x

(k1)
1 , · · · , x(ki−1)

i−1 , xi, xi+1, · · · , xd)⊤)
)2

,

(4.43)

56 CHAPTER 4. PRICING OF MULTI-ASSET...

where xLi,j and x
R
i,j are defined as (4.31), for i ∈ [d], j ∈ {0, 1, · · · ,mgr−

1}, k1, · · · , kd ∈ {0, 1, · · · , ngr − 1} and b1, · · · , bj ∈ {0, 1}. Although
it is difficult to analytically calculate this in general, there are some
cases where it is possible. An example is the case where fpay de-
pends on only one underlying asset price, say S1 (and other assets are
relevant to the barrier), and has a simple function form, e.g. the
call-option-like fpay(S) = max{S1 − K, 0} and the put-option-like
fpay = max{K − S1, 0}. In Appendix A2.6, we consider this case
in more detail. We here only note that, in this case, (4.43) can be
expressed with elementary functions and approximately calculated by
a series of arithmetic operations, which requires only logarithmically
many gates with respect to calculation accuracy.

• If all boundaries correspond to knock-out barriers, C = 0, and there-
fore OC is just an identity operator.

Then, we obtain the following lemma, whose proof is presented in Ap-
pendix A2.4.

Lemma 4.4.2. Consider the ODE system (2.23). Assume that Assumptions
2.2.1, 4.3.1, 4.4.1, 4.4.2 and 4.4.3 are satisfied. Let ϵ be any positive real
number satisfying (4.11) and (4.12), and ϵ′ be any positive real number.

Then, there exists a quantum algorithm that produces a state
∣∣∣Ψ̃〉 ϵ′-close to

|Ψ〉 := 1√
〈Ψgar|Ψgar〉+ (p+ 1)‖Ỹ (τter)‖2

|Ψgar〉+
p(k+2)∑
j=p(k+1)

|j〉
∣∣∣Ỹ (τter)

〉 ,

(4.44)
where Ỹ (τter) is a vector satisfying (4.38), using

O

(
C × poly

(
log

(
C
ϵ′

)))
(4.45)

queries to OF,1, OF,2, Of̃pay
, and OC . Here,

C := max


√∏d

i=1∆id
2Ξσ2maxτter

(4π)d/4(det ρ)1/4
, dη

d∏
i=1

(ui − li)

×κV d4σ2maxτter
ϵ

, (4.46)

κV = ‖V ‖ · ‖V −1‖ is the condition number of V which diagonalizes F
(i.e. V FV −1 is a diagonal matrix), σmax := maxi∈[d] σi, Ξ := max{ξ, ζ/d},
τter := T−tter, tter is defined as (4.14), p := dτter‖F‖e, k := b2 log Ω/ log(log Ω)c,
Ω = 70gκV p

3/2(‖fpay‖+ T‖C‖)/ϵ‖Ỹ (τter)‖, and |Ψgar〉 is an unnormalized

state which takes the form of |Ψgar〉 =
∑p(k+1)−1

j=0 |j〉 |ψj〉 with some unnor-

malized states |ψ0〉 , |ψ1〉 , ...,
∣∣ψp(k+1)−1

〉
and satisfies

〈Ψgar|Ψgar〉 = O(g2(p+ 1)‖Ỹ (τter)‖2) (4.47)

with g := maxτ∈[0,τter] ‖Ỹ (τ)‖/‖Ỹ (τter)‖.

4.4. QUANTUM METHOD FOR DERIVATIVE PRICING BY FDM 57

4.4.3 Proposed algorithm

Finally, based on the above discussions, we present the quantum method to
calculate the present derivative price V0. Our strategy is calculating this as
(4.17). More concretely, we aim to subtract the information of p · Ỹ (τter)
from |Ψ〉 in (4.44), the output state of the algorithm of [4].

In order to do this, we first modify the algorithm slightly. That is, we
aim to solve not (2.45) but the following one by the QLS algorithm:

C̃m,k,p(Fht)X = e0 ⊗ f̃pay + ht

m−1∑
i=0

ei(k+1)+1 ⊗C +

p+1∑
i=1

em(k+1)+p+i ⊗ γ.

(4.48)
Here, m, p, k are integers defined in the statement of Lemma 4.4.2, q :=
m(k+1)+2p+1, ht = τter/m, X ∈ RNgr(q+1), {ei}i=0,1,...,q is an orthonormal
basis of Rq+1, and γ := (γ, ..., γ)⊤ ∈ RNgr for some γ ∈ R+. Hereafter, we
make the following assumption on γ:

Assumption 4.4.4. We are given γ ∈ R+ satisfying

1

2
Ȳ (τter) < γ < 2Ȳ (τter), (4.49)

where

Ȳ (τter) :=

√√√√ 1

Ngr

Ngr∑
k=1

(Y (τter,x(k)))2. (4.50)

This means that γ is comparable with the root mean square of Y (τter,x) on
the grid points. Besides, the Ngr(q + 1)×Ngr(q + 1) matrix C̃m,k,p(Fht) is
now defined as

C̃m,k,p(Fht) :=

q∑
j=0

eje
⊤
j ⊗ INgr −

m−1∑
i=0

k∑
j=1

ei(k+1)+je
⊤
i(k+1)+j−1 ⊗

1

j
Fht

−
m−1∑
i=0

k∑
j=0

e(i+1)(k+1)e
⊤
i(k+1)+j ⊗ INgr −

m(k+1)+p∑
j=m(k+1)+1

eje
⊤
j−1 ⊗ INgr

, (4.51)

or, equivalently,

C̃m,k,p(Fht) =

(
Cm,k,p(Fht) 0

0 INgr(p+1)

)
. (4.52)

58 CHAPTER 4. PRICING OF MULTI-ASSET...

Visually, (4.48) is displayed as follows



INgr

−Fht/1 INgr

. . .
. . .

−Fht/k INgr

−INgr
· · · −INgr

−INgr
INgr

. . .
. . .

−Fht/1 INgr

. . .
. . .

−Fht/k INgr

−INgr
· · · −INgr

−INgr
INgr

−INgr
INgr

. . .
. . .

−INgr
INgr

INgr

. . .

INgr



X =



f̃pay

htC
0
...
0
...

htC
0
...
0
0
...
0
γ
...
γ



.

(4.53)

The solution of (4.48) is

X =
m−1∑
i=0

k∑
j=1

ei(k+1)+j⊗
˜̃Y i,j+

p∑
j=0

em(k+1)+j⊗
˜̃Y (τter)+

p+1∑
j=1

em(k+1)+p+j⊗γ,

(4.54)

for some vectors ˜̃Y i,j ,
˜̃Y (τter) ∈ RNgr , and ˜̃Y (τter) becomes close to Ỹ (τter).

Note that, in X, ˜̃Y (τter) and γ are repeated (p+ 1)-times. Then, applying

the quantum algorithm, we can generate the quantum state
∣∣∣Ψ̃mod

〉
ϵ-close

to

|Ψmod〉 :=
1

Z

|Ψgar〉+
p(k+2)∑
j=p(k+1)

|j〉
∣∣∣Ỹ (τter)

〉
+

p(k+3)+1∑
j=p(k+2)+1

|j〉 |γ〉

 ,

Z :=

√
〈Ψgar|Ψgar〉+ (p+ 1)‖Ỹ (τter)‖2 + (p+ 1)Ngrγ2. (4.55)

Note that the query complexity for generating
∣∣∣Ψ̃mod

〉
is (4.45), similarly to∣∣∣Ψ̃〉. This is because the complexity of the QLS algorithm depends only on

the condition number and sparsity of the matrix and the tolerance[23], and
the condition number and sparsity of C̃m,k,p(Fht) is same as Cm,k,p(Fht).

Using
∣∣∣Ψ̃mod

〉
, we can estimate p · Ỹ (τter). The outline is as follows.

First, we estimate the inner product

〈Ψmod|Π|Ψmod〉 =
√
p+ 1

PZ
p · Ỹ (τter), (4.56)

where

|Π〉 := 1√
p+ 1

p(k+2)∑
j=p(k+1)

|j〉 |p̄〉 , (4.57)

4.4. QUANTUM METHOD FOR DERIVATIVE PRICING BY FDM 59

Algorithm 2 Calculate e−rτterp · Ỹ (τter)

Require:
1: γ ∈ R+ satisfying (4.49).
2: ϵ ∈ R+ satisfying (4.11) and (4.12).
3: ϵ1 ∈ R+ satisfying (4.61).
4: ϵ2 ∈ R+ satisfying (4.62).
5: ϵΨ̃mod

∈ R+ satisfying (4.65).
6: Accesses to the oracle UΨ̃mod

such that (4.58) and (4.64) and its inverse.
7: Accesses to the oracle UΠ such that (4.59) and its inverse.

8: Estimate the amplitude of |0〉 |0〉 in the state U †
ΠUΨ̃mod

|0〉 |0〉 by QAE
with tolerance ϵ1. Let the output be E1.

9: Estimate the square root of the probability that we obtain either of

p(k+2)+1, ..., p(k+3)+1 when we measure the first register of
∣∣∣Ψ̃mod

〉
by QAE with tolerance ϵ2. Let the output be E2.

10: Output e−rτter
γ
√
NgrPE1

E2
=: ω, where P is given by (4.34).

by estimating the amplitude of |0〉 |0〉 in U †
ΠUΨ̃mod,ϵ

|0〉 |0〉 using QAE. Here,
UΨ̃mod

and UΠ are the unitary operators such that

UΨ̃mod
|0〉 |0〉 =

∣∣∣Ψ̃mod

〉
, (4.58)

and
UΠ |0〉 |0〉 = |Π〉 , (4.59)

respectively. Note that, if we can generate |p̄〉, we can also generate |Π〉, since
this is just a tensor product of 1√

p+1

∑p(k+2)
j=p(k+1) |j〉 and |p̄〉. Next, by QAE,

we estimate the probability that we obtain j ∈ {p(k+2)+1, ..., p(k+3)+1}
in the first register when we measure

∣∣∣Ψ̃mod

〉
, and then obtain an estimation

of γ
√

(p+ 1)Ngr/Z. Finally, using E1 and E2, the outputs of the first and
second estimations, respectively, we calculate

e−rTγ
√
NgrPE1

E2
(4.60)

as an estimation of e−rTp · Ỹ (τter). We present the detailed procedure
is described as Algorithm 2. Here, taking some ϵ ∈ R+, we require the
tolerances ϵ1 and ϵ2 in calculating E1 and E2 be

ϵ1 = O

(2π)d/2
√
det ρϵ

g
(∏d

i=1∆i

)
V̄

 , (4.61)

ϵ2 = O

(
ϵ

gV0

)
(4.62)

60 CHAPTER 4. PRICING OF MULTI-ASSET...

respectively, where

V̄ (tter) :=

√√√√ 1

Ngr

Ngr∑
k=1

(V (tter,S(k)))2,

S(k) := (S
(k)
1 , ..., S

(k)
d)⊤ := (exp

(
x
(k1)
1

)
, ..., exp

(
x
(kd)
d

)
)⊤

for k =
d∑
i=1

nd−igr ki + 1, ki = 0, 1, ..., ngr − 1

(4.63)

is the root mean square of the derivative prices on the grid points at time
tter. Besides, we require that

‖
∣∣∣Ψ̃mod

〉
− |Ψmod〉 ‖ < ϵΨ, (4.64)

where
ϵΨ = O (max{ϵ1, ϵ2}) . (4.65)

These requirements guarantee the overall error to be smaller than ϵ. We
formally state these points along with the complexity of the procedure in
Theorem 4.4.1, whose proof is presented in Appendix A2.5.

Theorem 4.4.1. Consider Problem 1. Assume that Assumptions 2.2.1,
4.3.1, 4.4.1, 4.4.2, 4.4.3 and 4.4.4 are satisfied. Then, for any ϵ ∈ R+

satisfying (4.11) and (4.12), Algorithm 2 outputs the real number ω such
that

|ω − V0| = O(ϵ) (4.66)

with a probability higher than a specified value (say, 0.99). In this procedure,

O (D × poly (logD)) (4.67)

queries to OF,1, OF,2, Of̃pay
, and OC , where

D := max


√∏d

i=1∆id
2Ξσ2maxτter

(4π)d/4(det ρ)1/4
, dη

d∏
i=1

(ui − li)


×max


(∏d

i=1∆i

)
V̄

(2π)d/2
√
det ρ

, V0

× gκV d
4σ2maxτter
ϵ2

, (4.68)

σmax := maxi∈[d] σi, Ξ := max{ξ, ζ/d}, τter := T − tter, tter is defined

as (4.14), ∆i is defined as (4.35), g := maxτ∈[0,τter] ‖Ỹ (τ)‖/‖Ỹ (τter)‖,

V̄ (tter) :=
√

1
Ngr

∑Ngr

k=1(V (tter,S(k)))2, and κV = ‖V ‖ · ‖V −1‖ is the con-

dition number of V , which diagonalizes F .

4.4. QUANTUM METHOD FOR DERIVATIVE PRICING BY FDM 61

Let us make some comments. First, note that the upper bound of the
complexity (4.67) does not have any factor like (1/ϵ)poly(d), which means
the tremendous speedup with respect to ϵ and d compared with the classical
FDM. On the other hand, the exponential dependence on d has not com-
pletely disappeared. In fact, (4.67) contains some constants to the power of
d, and factors such as

∏d
i=1(ui − li) and

∏d
i=1∆i, that is, the d-times prod-

uct of ui − li or ∆i. Recall that ui − li = log(Ui/Li) is the width between
boundaries in the direction of xi, the logarithm of the i-th underlying asset
price, and ∆i is that divided by σi

√
tter, which roughly measures the extent

of the probability distribution of xi at time tter. Therefore, these factors are
just logarithmic factors to the power of d. Also note that, in (4.67), there is
a factor of O(d6), which is polynomial but rather strongly dependent on d.

Second, we note that some calculation parameters are difficult to be
determined in advance of pricing. For example, although we have assumed
that we know γ such that (4.49) holds in advance, it is difficult because we
do not know Ȳ (τter). Besides, although we set p = d‖F‖τtere in using the
algorithm of [4], it is difficult to set p to this specific value since we can
upper bound ‖F‖ but cannot calculate it precisely. Even in [4], the way to
set p = d‖F‖τtere is not presented. Similar discussion can be applied to other
parameters: k, hi, and so on. Fortunately, the algorithm works not only for
such specific values of the parameters but also for comparable values. The
factor 1/2 and 2 in (4.49) can be replaced with comparable values (say,
1/3 and 3), which results in change of the complexity only by some O(1)
factor. p larger than but comparable with d‖F‖τtere (say, 2d‖F‖τtere) results
in comparable computational accuracy and complexity with those for p =
d‖F‖τtere. In reality, we may perform computation for various parameter
values and search the appropriate ranges of the parameters, for which the
calculated derivative price seems to converge. In the practical business, once
we find a set of appropriate calculation parameters, we can continue to use it
with periodic check of convergence, since we typically perform pricing many
times in different but similar settings on model parameters (e.g. σi) and
contract terms (e.g. barrier level).

4.4.4 Toffoli count estimation in a concrete example

By now, we have evaluated the oracle call number in the proposed algorithm
using big-O notation. Now, taking a simple concrete problem setting and as-
suming some typical values of parameters, we estimate the time complexity
of the proposed algorithm, based on the resource estimation for the oracle
implementation. This will help to assess the feasibility of actual applications
in the future. We measure time complexity by counting the number of costly
gates in the implementation. Concretely, we take the number of Toffoli gates
(the Toffoli count) as a metric, as [59]. The concrete setting we consider is
as follows. As a pricing target, we consider the following derivative contract.

62 CHAPTER 4. PRICING OF MULTI-ASSET...

It refers to d underlying asset prices S(t) = (S1(t), . . . , Sd(t))
⊤. The payoff

function depends on only S1 like a put option: fpay(S) = max{K − S1, 0}
with a strike K ∈ R+. All assets including S1 are involved in the barrier con-
dition. For every i ∈ [d], two barriers Li and Ui such that Li < Si,0 < Ui are
set for the ith underlying asset, and, for i = 1, L1 < K < U1 is also required.
Then, the option expires with no payoff if either of asset prices reaches either
of its barriers by the maturity T , and, otherwise, the above payoff occurs.
That is, for every underlying asset, double knock-out barriers are set. Such
double knock-out options are often traded in the actual financial market

for the single asset case, d = 1. In this setting, the state
∣∣∣f̃pay〉 /‖f̃pay‖ in

which the payoff is amplitude encoded can be generated as described in Ap-
pendix A2.6. Besides, as mentioned in Section 4.4.1, OC is now an identity
operator, and therefore, we will neglect it hereafter. Then, we can estimate
the Toffoli count as follows. In the proposed algorithm, UΨ̃mod

is iteratively
called in QAE, and, also inside UΨ̃mod

, the oracles OF,1, OF,2, and Of̃pay
are

repeatedly called. Among them, Of̃pay
, which corresponds to generation of

the state
∣∣∣f̃pay〉 /‖f̃pay‖, contains many time-consuming computations such

as exponential and arcsin, as explained in the Appendix A2.6, and, there-
fore, makes a dominant contribution to time complexity. Although UΠ is
called iteratively in QAE and corresponds to generation of the state |p̄〉, it is
just one state generation and, therefore, makes a smaller contribution than
many calls to Of̃pay

in UΨ̃mod
. Consequently, using the estimate of Toffoli

count of Of̃pay
pay in the Appendix A2.6 we can estimate the total Toffoli

count of the proposed algorithm as nTof,1 := 1.3 × 104 ×mgr times (4.67).
As elaborated in Appendix A2.6, the main contribution to the Toffoli count
comes from calculation of arcsin.

Let us get a concrete value for it, assuming reasonable values of param-
eters. We replace the symbols in (4.67) and (4.68) as follows.

• We set

∆i =
ui − li
σi
√
tter

= 5

√
2 log

(
Kd(d+ 1)

ϵ

)
(91)

for every i ∈ [d]. Note that this is the infimum of ∆i under (4.14)
with Ã = K. Also note that we can set Ã = K because fpay(S) =
max{K − S1, 0} ≤ K.

• We set ui − li = 1 for every i ∈ [d]. This means that the ratio of the
upper and lower barrier is Ui/Li = e ∼ 2.7, which is conceivable in an
actual contract.

• We set ϵ/K = 0.01, which corresponds to the 1% price error tolerance
relative to the strike.

4.4. QUANTUM METHOD FOR DERIVATIVE PRICING BY FDM 63

d Toffoli-count

1 6.2× 109

2 9.8× 1012

3 2.8× 1015

4 3.4× 1017

5 3.4× 1019

Table 4.1: The estimates of the Toffoli-count of the proposed algorithm for
various d in the setting described above. © 2021 IEEE

• We set

hi =
1

dσmax

√
T

√
3ϵ

2Ξ
, (4.69)

which satisfies (2.29).

• We set σmarT = 1, which is conceivable for years-long derivatives in
the actual market [1].

• We replace V̄ and V0 withK. This in fact contributes to the estimation
conservatively, since V̄ and V0 are smaller than K, which follows from
the fact that a payoff larger than K never arises in the contract.

• We also replace Ξ and η with K, expecting the moderate variation of
the derivative price over the space of underlying asset prices7.

• We also expect the moderate variation of the derivative price over
time, and set g = 1 for simplicity.

• We expect that underlying asset prices have moderate correlations and
that therefore det ρ is not apart from 1 so much. We now set det ρ = 1
for simplicity.

• Since the leading part with respect to 1/hi in F is symmetric, we
expect that κV is close to 1. Note that, when F is symmetric, V is
unitary and therefore κV = 1. We now set κV = 1 for simplicity.

Then, we obtain the estimate for the total Toffoli-count. In Table 1, we
show the value of nTof,1D for d = 1 to 5, omitting the O(polylog(D)) factor
in (4.66).

7In fact, the payoff function, which is the initial condition of the current PDE solving,
often has several nonsmooth points, e.g. the strike for a call/out option. Fortunately,
there are some techniques to cope with such points and suppress the numerical errors
from them, such as tuning placement of grids [100, 101]. In this chapter, we do not go
into such technical details but simply assume that this issue is appropriately handled.

64 CHAPTER 4. PRICING OF MULTI-ASSET...

As this shows, we need a huge number of Toffoli gates even for the mod-
erate underlying asset number d and the error tolerance ϵ/K. Considering
the resent estimation 170µsec for the runtime of one Toffoli gate in a fault-
torelant machine [102], the runtime of the proposed algorithm is formidably
long. Although, in theory, the proposed method eventually surpasses the
classical method with the time complexity of O((1/ϵ)poly(d)) for a small ϵ
and a large d, it might be difficult to provide some practical quantum ad-
vantage. This is similar to the discussion in [102]

4.5 Conclusion

In this chapter, we studied how to apply the quantum algorithm of [4]
for solving linear differential equations to pricing multi-asset derivatives by
FDM. As we explained, FDM is an appropriate method for pricing some
types of derivatives such as barrier options, but suffers from the so-called
curse of dimensionality, which makes FDM infeasible for large d, the number
of underlying assets, since the dimension of the corresponding ODE system
grows as ϵpoly(d) for the tolerance ϵ, and so does the complexity. We saw
that the quantum algorithm for solving ODE systems, which provides the
exponential speedup with respect to the dimensionality compared with clas-
sical methods, is beneficial also for derivative pricing. In order to address
the specific issue for derivative pricing, that is, extracting the present price
from the output state of the quantum algorithm, we adopted the strategy
that we calculate the present price as the expected value of the price at some
appropriate future time tter. Then, we constructed the concrete calculation
procedure, which is combination of the algorithm of [4] and QAE. We also
estimated the query complexity of our method, which does not have any
dependence like (1/ϵ)poly(d) and shows tremendous speedup with respect to
ϵ and d.

We believe that this algorithm is the first step for the research in this
direction, but there remains many points to be improved. First, we should
consider whether the assumptions we made can be mitigated. For ex-
ample, although we assume that C(τ) is time-independent (Assumption
4.4.2), some products do not fit to this condition: e.g., when we consider
the upper boundary condition in the case of the European-call-like payoff
fpay(S) = max{S −K, 0} with some constant K, V (t, S) ≈ S − e−r(T−t)K
and therefore Y (τ,x) = erτV (t,S) cannot be regarded as constant for large
S. In order to omit this assumption, we might be able to extend the algo-
rithm of [4] so that it can be applied to time-dependent C(τ)8

8Actually, the algorithm in [83], which is based on the spectral method, can deal with
time-dependent C(τ). However, in order to apply this algorithm, V (t,S) must be smooth
enough in the direction of t. On the other hand, in practice, the BS model parameters
are often not smooth: for example, piece-wise constant volatilities are often used, which

4.5. CONCLUSION 65

Another important aspect is pricing early-exercisable derivatives. American-
type (resp. Bermudan-type) derivatives, in which either of parties can ter-
minate the contract at any time (resp. at either of some predetermined
dates) before the final maturity T , are widely traded and their pricing is
important for banks. FDM is suitable and often used for pricing such prod-
ucts, since it determines the derivative price backward from T and can take
into account early exercise. However, it is not straightforward to apply
the quantum method proposed in this chapter to pricing early-exercisable
products. This is because, at exercisable date texe, we need the operation
V (texe,S) = max{V (texe+0,S), fpay(S)}, where V (texe+0,S) is the deriva-
tive price right after texe, but nonlinear operations on amplitudes such as
the max function cannot be implemented on a quantum computer naively.

Including these points, we will investigate the possibility that the quan-
tum FDM speedups pricing for the wider range of derivatives with fewer
resources in the future work.

deteriorates smoothness of V (t,S). In such a case, the algorithm of [4] is expected to be
more suitable than that of [83], since the formal solution (2.44) is valid also for piece-wise
constant model parameters. That is, if

A =

{
A1 ; 0 ≤ t ≤ tdis

A2 ; tdis < t ≤ T
, b =

{
b1 ; 0 ≤ t ≤ tdis

b2 ; tdis < t ≤ T
,

with some tdis ∈ (0, T), x(t) can be written as

x(t) =

{
eA1txini + (eA1t − IN)A−1

1 b1 ; 0 ≤ t ≤ tdis

eA2(t−tdis)x(tdis) + (eA2(t−tdis) − IN)A−1
2 b2 ; tdis < t ≤ T

.

Chapter 5

Pricing of multi-asset
derivative with variational
quantum simulation

In Sec. 4, we discuss the quantum algorithm for pricing multi-asset derivative
by FDM. The algorithm is constructed on the QLSA and thus requires the
FTQC. To make the algorithm feasible to run on a small quantum computer,
we use variational quantum algorithm. This chapter present the variational
quantum algorithm for pricing multi-asset derivatives by FDM based on
[K.Kubo, K.Miyamoto, K.Mitarai, K.Fujii, arXiv:2207.01277] and slightly
modified to fit the context.

5.1 Introduction

Quantum computers actively utilize quantum phenomena to solve large-scale
problems that could not be performed with conventional classical comput-
ers. In recent years, applications of quantum computers have been discussed
in financial engineering. Specifically, the applications include portfolio opti-
mization [76, 74, 75], risk measurement [103, 71, 72, 104, 73], and derivative
pricing [19, 63, 64, 65, 29, 28, 27, 105, 67, 68, 69, 31, 106, 30]. Comprehensive
reviews of these topics are presented in Refs. [78, 77, 79, 107].

Among these applications, we consider the pricing of derivatives. Deriva-
tives are the products that refer to the prices of underlying assets such as
stocks, bonds, currencies, etc., and their payoff depends on the prices of the
assets. For example, a European call option, one of the simplest derivatives,
has a predetermined maturity T > 0 and strike price K, and its holder gets
paid back max(S(T)−K, 0) for the asset price S(T) at T . For such a sim-
ple derivative, the theoretical price can be computed analytically in some
models such as the Black-Scholes (BS) model [35]. If one wishes to calculate
prices for derivatives with more complex payoffs, numerical calculations are

67

68 CHAPTER 5. PRICING OF MULTI-ASSET...

required [1].

There are many algorithms for numerical calculations. For the pricing of
certain types of derivatives, such as barrier options, it is suitable to solve the
partial differential equations (PDE) called Black-Scholes PDE (BSPDE) [2]
by discretizing them using the finite difference method (FDM). However,
in the case of multi-asset derivatives, the number of grid points increases
exponentially with respect to the number of referenced assets, making price
calculation difficult. When the number of assets is d and the number of grid
points is ngr for one asset, the total number of grid points is ndgr. If we take

ngr in proportion to ϵ−1/2 to achieve the error level ϵ (see Lemma II.1 in
[108]), classical FDM requires the computational complexity of O((1/ϵ)O(d)).

To overcome this difficulty, several methods [29, 27, 28, 30] have been
proposed to efficiently solve the BSPDE using quantum computers. How-
ever, when solving the discretized BSPDE with these quantum algorithms,
the target derivative price is embedded in the amplitude of one basis of the
resulting quantum state, so it requires exponentially large computational
complexity to extract it as classical information. Ref. [108] has shown that
the complexity can be substantially reduced using the fact that the present
derivative price can be calculated as the expected value of the discounted
derivative price at a future point in time. They calculate the inner product
of the state in which the future derivative prices are embedded and the state
in which the probability distribution is embedded using the quantum ampli-
tude estimation (QAE) [6]. Instead of retrieving one of the amplitudes of the
output state of the quantum algorithm, the present price of the derivative
can be efficiently calculated since all of the amplitudes can be used. In fact,
the complexity of the method proposed in Ref. [108] does not have a factor
like (1/ϵ)O(d), but has only poly(1/ϵ, d). This means that their method has
substantial speedup compared to the classical FDM.

However, it should be noted that their method is constructed on the
quantum ordinary differential equation (ODE) solver [4] and the QAE, which
requires a large-scale quantum computer with error correction. In addition,
it is assumed that we are given the oracle that generates a quantum state
in which the boundary conditions of the BSPDE are encoded in amplitudes.
As the derivatives are currently dealt with in practice, it is desirable to
calculate derivative prices even with a small-scale quantum computer closer
to realization.

In this chapter, we propose a variational quantum algorithm for pricing
multi-asset derivatives. This is the way to exploit the essential feature pro-
posed in Ref. [108] with variational quantum algorithms and hence thought
to work with near-term quantum computers. Our algorithm has the follow-
ing three parts; embedding the probability distribution of the underlying
asset prices into the quantum state, solving the BSPDE with boundary con-
ditions, and calculating the inner product. For the first part, we can use

5.2. PRELIMINARY 69

the quantum generative algorithms [15, 14, 12, 13, 17] or variational quan-
tum simulation (VQS) for the Fokker-Planck equations [5, 24, 9, 70, 30],
which describe the time evolution of the probability density functions of the
stochastic processes. For the second part, we discretize the BSPDE using
the FDM and solve it using VQS. For the third part, we evaluate the square
of the inner product of the states, obtained by the first and the second parts
of our method, using the SWAP test [109]. Taking the square root of the
output of the SWAP test and discounting by the interest rate, we obtain
the present price of the derivative. Although there is no guarantee of overall
computational complexity due to the heuristic nature of the variational algo-
rithm, we show that the number of measurements of the SWAP test has no
factors like (1/ϵ)O(d), which means that our method can avoid the bottleneck
of retrieving derivative prices from the quantum state. Since our algorithm
requires quantum circuits with O(poly(d log(1/ϵ)) few-qubit gates, even a
small-scale quantum computer would be able to perform derivatives pric-
ing with our method. We perform numerical calculations for a single asset
double barrier option and confirm that our method is feasible.

This chapter is organized as follows. Sec. 5.2 is the preliminary section.
We summarize the related works in Sec. 5.2.1. In Sec. 5.2.2 we introduce
derivative pricing using the BSPDE with boundary conditions. We also
introduce FDM to discretize the BSPDE and obtain an ODE in Sec. 5.2.3.
Sec. 2.3.3 gives an introduction to VQS, which is an algorithm for solving
the ODE. In Sec. 5.3, we describe the proposed method. We estimate the
number of measurements required by the SWAP test in Sec. 5.3.1 and the
whole time complexity of the proposed method in Sec. 5.3.2. We show
the feasibility of our method through numerical simulations in Sec. 5.4.
Conclusions are given in Sec. 5.5.

5.2 Preliminary

5.2.1 Related work

In this subsection, we explain the existing algorithms for solving the BSPDE
with quantum computers. Ref. [27] transforms the BSPDE into a Schrödinger
equation, discretize the Hamiltonian by FDM, and solves it by diagonaliza-
tion of discretized momentum operator with a quantum Fourier transforma-
tion. Refs. [28, 29, 30] solve the discretized Schrödinger equation by VQS,
which is a variational quantum algorithm for solving ODEs. In the previous
studies mentioned above, the time complexity required to solve the BSPDE
depends on the grid points only logarithmically. However, there is still a
problem that cannot be overlooked; extracting the calculated result from
quantum computers may take exponentially long time with respect to d.
Solving the BSPDE from the maturity (t = T) to the present (t = 0) with
these quantum algorithms yields unnormalized state |V (0)〉 whose elements

70 CHAPTER 5. PRICING OF MULTI-ASSET...

are the derivative prices on the grid points of underlying asset prices. Note
that, typically, we are interested in only one element of |V (0)〉, the deriva-
tive price on the grid point corresponding to the present underlying asset
prices. However, since |V (0)〉 has O((1/ϵ)O(d)) elements, the amplitude cor-
responding to V0 in (normalized) |V (0)〉 is exponentially small. Therefore,
the exponential time complexity is required to retrieve V0 as classical infor-
mation, and the quantum speedup will be lost.

Ref. [108] shows the algorithm to overcome the problem. They prepare
the state |p(tter)〉 in which the probability distribution of underlying asset
prices on the grid points at a certain time tter ∈ [0, T] is embedded in
the amplitudes. Then, they discretize the BSPDE using FDM, solve it
not to t = 0 but t = tter with quantum ODE solver, and obtain the state
|V (tter)〉. The inner product of these quantum states, which can be obtained
by QAE, corresponds to the expected value of the derivative price at tter
by E [V (tter)] '

∑
i∈G pi(tter)Vi(tter) = 〈p(tter)|V (tter)〉. Discounting this

expected value by the risk-free interest rate yields the present price of the
derivative [1].

Our algorithm is a variational version of Ref. [108]. Instead of using
the quantum ODE solver and QAE, we use VQS and the SWAP test, re-
spectively. This enables derivatives pricing by BSPDE to be realized on a
small-sized quantum computer.

5.2.2 Derivative pricing

To evaluate the price of a derivative, we need to model the dynamics of the
prices of the underlying asset. We adopt the BS model [35], in which the
prices of the underlying assets are assumed to follow geometric Brownian
motions. That is, we suppose that the prices of d underlying assets at
t ∈ [0, T] are stochastic processes S(t) = (S1(t), S2(t), . . . , Sd(t))

⊤ ∈ Rd+
that, under the risk-neutral measure, obey stochastic differential equations

dSi(t) = rSi(t)dt+ σiSi(t)dWi(t). (5.1)

Here, r > 0 is the risk-free interest rate, σi > 0 are volatility of the under-

lying assets, and they satisfy 0 < r <
σ2
i
2 for all i ∈ [d]. Wi(t) are Brownian

motions that satisfy dWidWj = ρijdt, (i, j) ∈ [d] × [d] with the correlation
matrix (ρij)1≤i,j≤d, which satisfies ρii = 1 and −1 < ρij = ρji < 1 for i 6= j.

Derivatives are characterized by the payoff function fpay at the maturity
and the payoff conditions, which must be satisfied in order for the payoff to
arise. We describe the typical cases of the payoff functions and the payoff
conditions later. The price of the derivative is obtained as the conditional
expected value of the payoff, conditioned on the price of the underlying
assets, discounted by the risk-free rate [2]. That is, given the underlying
asset prices at time t as s = (s1, . . . , sd)

⊤ ∈ Rd+, and the payoff function at

5.2. PRELIMINARY 71

maturity T as fpay(S(T)), the price of the derivative is

V (t, s) = EQ

[
e−r(T−t)fpay(S(T))1NB

∣∣∣S(t) = s
]
, (5.2)

where EQ is the expected value under the so-called risk-neutral measure.
Note that S(T) is a vector of random variable resulting from the time evo-
lution of Eq. (5.1) from t to T with the condition S(t) = s. 1NB is a random
variable that takes 1 if the payoff conditions are satisfied or 0 otherwise.

The goal of derivative pricing is to find the present price of the derivative,
that is, V (0, s0), where s0 = (s1,0, . . . , sd,0)

⊤ ∈ Rd+ is the present price of the
underlying assets. To this end, we use the BSPDE, which describes the time
evolution of V (t, s) [2]. That is, the derivative price V (t, s) is the solution
of the BSPDE

∂

∂t
V (t, s) +

1

2

d∑
i,j=1

σiσjsisjρij
∂2

∂si∂sj
V (t, s)

+ r

(
d∑
i=1

si
∂

∂si
V (t, s)− V (t, s)

)
= 0 (5.3)

on [0, T)×D with the boundary conditions

V (T, s) = fpay(s), (5.4)

V (t, (s1, . . . , si−1, ui, si+1, . . . , sd)
⊤)

=: V UB
i (t, s∧i), for i ∈ [d], (5.5)

V (t, (s1, . . . , si−1, li, si+1, . . . , sd)
⊤)

=: V LB
i (t, s∧i), for i ∈ [d]. (5.6)

where ui, li are upper and lower bounds of the i-th asset price respectively,
and D := (l1, u1) × · · · × (ld, ud). V

UB
i , V LB

i are upper and lower boundary
conditions for the i-th asset. The boundary conditions in some typical cases
of the payoff function and the payoff condition are as follows.

1. If an up and out barrier is set on the i-th asset, the payoff is zero if
the asset price Si(t) exceeds ui at least once before maturity, and then
the boundary condition is

V UB
i (t, s∧i) = 0. (5.7)

Similarly, if an down and out barrier is set on i-th asset, the payoff is
zero if the asset price falls below li at least once before maturity, and
then, the boundary condition is

V LB
i (t, s∧i) = 0. (5.8)

72 CHAPTER 5. PRICING OF MULTI-ASSET...

2. Suppose that the payoff at maturity T is given by

fpay(S(T)) = max(a0 +
d∑
i=1

aiSi(T), 0), (5.9)

with a0, . . . , ad ∈ R. This is the case with many derivatives. In this
form of payoff function, upper boundary or lower boundary can be
set depending on the values of a0, . . . , ad. In some cases, if either
of {Si(t)}i∈[d] is sufficiently high or low at some time t ∈ (0, T), the
payoff at T is highly likely to be positive. For example, in the case
of the basket call option, that is, a0 < 0, a1, . . . , ad > 0, if S(t) =
s such that si � −a0/ai for some i ∈ [d], fpay(S(T)) is likely to
be positive. In this situation, the derivative price is approximately

equal to EQ

[
e−r(T−t)

(
a0 +

∑d
i=1 aiSi(T)

)
|S(t) = s

]
= e−r(T−t)a0 +∑d

i=1 aisi. Thus, we can set

V UB
i (t, s∧i) = e−r(T−t)a0 +

∑
1≤j≤d,j ̸=i

ajsj + aiui, (5.10)

for sufficiently large ui. In some other cases, e.g. when ai < 0 and
aj > 0 for j 6= i, we can set

V LB
i (t, s∧i) = e−r(T−t)a0 +

∑
1≤j≤d,j ̸=i

ajsj + aili, (5.11)

for sufficiently small li.

5.2.3 Finite difference method for the BSPDE

Consider solving Eq. (5.3) using the FDM. In the FDM, we discretize the
PDE with respect to the underlying asset prices and obtain the ODE. Then,
we can use a numerical solver for ODEs, such as the Euler method, Runge-
Kutta method, etc [110]. Note that the BSPDE is often simplified by log-
transforming the asset prices as in [108]. However, it is more convenient not
to perform a log-transformation to solve the BSPDE by VQS. This is be-
cause our formulation presented in Sec. 5.3 can only handle linear boundary
conditions with respect to si as shown in Appendix A3.2, but a logarithmic
transformation will result in the terms like esi . Thus, we do not perform the
log-transformation in this work.

First, the value range of each underlying asset price si is split into ngr

5.2. PRELIMINARY 73

grids. That is, we take

x(k) =
(
x
(k1)
1 , . . . , x

(kd)
d

)⊤
, (5.12)

x
(ki)
i := li + (ki + 1)hi, (5.13)

k =

d∑
i=1

nd−igr ki + 1, (5.14)

ki := 0, . . . , ngr − 1, (5.15)

hi :=
ui − li
ngr + 1

. (5.16)

for i ∈ [d]. By this discretization, we approximate V (t, s) by a vector

V (t) :=
(
V (t,x(1)), V (t,x(2)), . . . , V (t,x(Ngr))

)⊤
, (5.17)

where Ngr = ndgr. We also replace the differentials by differences as,

∂V (t,x(k))

∂si
→ V (t,x(k) + hiei)− V (t,x(k) − hiei)

2hi
, (5.18)

∂2V (t,x(k))

∂s2i
→ 1

h2i

(
V (t,x(k) + hiei) + V (t,x(k) − hiei)

−V (t,x(k))
)

(5.19)

∂2V (t,x(k))

∂si∂sj
→ 1

4hihj

(
V (t,x(k) + hiei + hjej)

+ V (t,x(k) − hiei − hjej)
− V (t,x(k) − hiei + hjej)

−V (t,x(k) − hiei + hjej)
)
, (5.20)

where ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
d−i

)⊤, i ∈ [d] is a unit vector of the i-direction.

Introducing V̄ (τ,x(i)) := V (T−t,x(i)), i ∈ [d] and V̄ (τ) :=
(
V̄ (τ,x(1)), V̄ (τ,x(2)), . . . , V̄ (τ,x(Ngr))

)⊤
,

we eventually obtain the ODE

d

dτ
V̄ (τ) = F V̄ (τ) +C(τ) (5.21)

and initial condition

V̄ (0) =
(
fpay(x

(1)), . . . , fpay(x
(Ngr))

)⊤
. (5.22)

74 CHAPTER 5. PRICING OF MULTI-ASSET...

Here, F is an Ngr ×Ngr real matrix,

F := F 1st + F 2nd − rI⊗d (5.23)

F 2nd :=
d∑
i=1

σ2i
2h2i

I⊗i−1 ⊗D2nd
xi ⊗ I

⊗d−i

+
d−1∑
i=1

d∑
j=i+1

σiσjρij
4hihj

× I⊗i−1 ⊗D1st
xi ⊗ I

⊗j−i−1 ⊗D1st
xj ⊗ I

⊗d−j (5.24)

F 1st := r

d∑
i=1

1

2hi
I⊗i−1 ⊗D1st

xi ⊗ I
⊗d−i, (5.25)

where I is a ngr×ngr identity matrix, D1st
xi , D

2nd
xi are ngr×ngr real matrices.

C(τ) is a vector corresponding to the boundary conditions. The elements
of the D1st

xi , D
2nd
xi , and C(τ) are shown in Appendix A3.1. ngr has to be

proportional to O(ϵ−1/2) to obtain the present price of the derivative within
the accuracy ϵ [108]. Then, the dimension of V̄ (τ) is O((1/ϵ)d/2). Thus, it
becomes difficult to solve the BSPDE discretized by FDM using the classical
algorithm when multiple assets need to be considered.

5.3 Proposed method

In this section, we describe the variational quantum algorithm for derivative
pricing and the computational complexity of the proposed method. The
overall algorithm is shown in Algo. 3. We assume that ndgr = 2n with the
n-qubit system.

Algorithm 3 Derivative Pricing with Variational Quantum Algorithms

1: Prepare apUp such that apUp |0〉 = |ψp〉 '
∑Ngr

k=1 pk(tter) |k〉 by VQS for
Fokker-Planck equation or quantum generative models.

2: Prepare αV UV such that αV UV |0〉 = |ψV 〉 '
∑Ngr

k=1 fpay(x
(k)) |k〉 by

quantum generative models.
3: Calculate |ṽ(θ(τter))〉 by performing VQS from τ = 0 to τ = τter.
4: Perform the SWAP test and get an estimation of |〈ψp|ṽ(θ(τter))〉|2
5: V0 ← e−rtter 〈ψp|ṽ(θ(τter))〉.

First, we set τter = T − tter, where tter is defined in Eq. (4.14). We also
set Nτ , which is the number of steps for VQS. To perform VQS, we need to
represent the operator corresponding to F in Eq. (5.23) and the operator G̃

such that G̃ |0〉 = |C〉 =
∑Ngr

k=1Ck(τ) |k〉 by a linear combination of quantum
gates, respectively, because of the assumptions Eqs. (2.51) and (2.52). Such

5.3. PROPOSED METHOD 75

decomposition can be obtained in a similar way to Ref. [70, 30] and is shown
in Appendix A3.2. F can be represented as a sum of O(d2n4) unitaries each
of which requires at most O(n2) gates to be implemented. G̃ for typical
boundary conditions discussed in Sec. 5.2.3 can be represented by O(d3n2)
unitaries, which require at most O(n2) gates to be implemented.

Second, we prepare the unnormalized state

|ψp〉 := αpUp |0〉
' |p(tter)〉

=

Ngr∑
k=1

pk(tter) |k〉 , (5.26)

where αp ∈ C, and Up is an quantum gate. pk(tter) is a probability that
the underlying asset prices is on x(k) at tter. We can obtain such αp and Up
by solving the Fokker-Planck equation, which describes the time evolution
of the probability density function, using VQS [70, 30]. Alternatively, they
can also be obtained by quantum generative models [15, 14, 12, 13, 17]
since the probability density function of the underlying asset price at any
t ∈ [0, T] can be obtained analytically under the BS model (see Eq. (5.41)
in Sec. 5.3.1).

Third, we prepare αV ∈ C and UV such that αV UV |0〉 =: |ψV 〉 approxi-
mates the initial state of the discretized BSPDE, that is,

|ψV 〉 '
∣∣V̄ (0)

〉
=

Ngr∑
k=1

fpay(x
(k)) |k〉 (5.27)

To find such αV and UV , we can use the quantum generative models [15,
14, 12, 13, 17].

Fourth, we solve the BSPDE from τ = 0 to τter using VQS and obtain
an unnormalized state

|ṽ(θ(τter))〉 '
∣∣V̄ (τter)

〉
=

Ngr∑
k=1

V̄k(τter,x
(k)) |k〉 (5.28)

where

|ṽ(θ(τter))〉 := θ0(τter)R1(θ1(τter))R2(θ2(τter))

· · ·RNa(θNa(τter)) |ψV 〉 (5.29)

{Rk}k∈[Na] are parameterized quantum circuits, and θ(τter) := (θ0(τter), . . . , θNa(τter))
⊤ ∈

RNa+1 is the variational parameters. Note that θ0(0)R1(θ1(0))R2(θ2(0))RNa(θNa(0))
should be an identity operator to satisfy |ṽ(θ(0))〉 '

∣∣V̄ (0)
〉
. For exam-

ple, the ansatz shown in Fig. 5.1 in Sec. 5.4 with even number of layers

76 CHAPTER 5. PRICING OF MULTI-ASSET...

can be used as {Rk}k∈[Na] that satisfies this condition with the parameters

θ(0) = (0, . . . , 0)⊤ since RY gates are identity for the parameters, and CZ
layers cancel each other and also become identity.

Finally, we use the SWAP test [109] for two normalized states Up |0〉,
R1(θ1(τter)) · · ·RNa(θNa(τter))UV |0〉 and obtain

|〈ψp|ṽ(θ(τter))〉|2

= |αpαV θ0(τter)|2

×
∣∣∣〈0|U †

pR1(θ1(τter)) · · ·RNa(θNa(τter))UV |0〉
∣∣∣2 . (5.30)

The present price of the derivative is approximated by the inner product〈
p(tter)

∣∣V̄ (τter)
〉
discounted by the risk-free rate. We can approximate the

inner product by the square root of the result of the SWAP test and obtain
the present price of the derivative by

V0 ' e−rtter 〈ψp|ṽ(θ(τter))〉 . (5.31)

For the third and fourth parts, we may take a slightly different approach.
That is, we find θ(0) such that∣∣V̄ (0)

〉
' θ0(0)R1(θ1(0))R2(θ2(0)) · · ·RNa(θNa(0)) |0〉 (5.32)

and obtain

|ṽ(θ(τter))〉 = θ0(τter)R1(θ1(τter))R2(θ2(τter))

· · ·RNa(θNa(τter)) |0〉
'
∣∣V̄ (τter)

〉
(5.33)

using VQS. This approach may reduce the number of gates by eliminating
UV , but since the ansatz for the initial state also serves as the ansatz for
VQS, the number of gates required for the ansatz may become larger. For
this reason, it is difficult to say which approach is better in general, but we
adopt the one in Algo. 3 for the numerical simulation in Sec. 5.4.

5.3.1 The number of measurements in the SWAP test

In this subsection, we estimate the number of measurements required for
the SWAP test. For simplicity, we consider the case where |ṽ(θ(τter))〉 =∣∣V̄ (τter)

〉
and |ψp〉 = |p(tter)〉. We perform the SWAP test for two nor-

malized states |p̃〉 and
∣∣∣ ˜̄V 〉 such that |p(tter)〉 = α |p̃〉 ,

∣∣V̄ (τter)
〉
= β

∣∣∣ ˜̄V 〉,

5.3. PROPOSED METHOD 77

where

α =

√√√√Ngr∑
k=1

pk(tter)2, (5.34)

β =

√√√√Ngr∑
k=1

V̄ (τter,x(k))2. (5.35)

To obtain the value of the inner product
∣∣∣〈p̃∣∣∣ ˜̄V 〉∣∣∣2 with precision ε̄, the

SWAP test requires O(1
ε̄2
) measurements [109]. When we have the estima-

tion
˜∣∣∣〈p̃∣∣∣ ˜̄V 〉∣∣∣2 such that∣∣∣∣∣∣∣∣〈p̃∣∣∣ ˜̄V 〉∣∣∣2 − ˜∣∣∣〈p̃∣∣∣ ˜̄V 〉∣∣∣2∣∣∣∣∣ < ε̄, (5.36)

the estimation of the inner product of unnormalized states
˜∣∣〈p(tter)∣∣V̄ (τter)

〉∣∣2
satisfies ∣∣∣∣∣∣〈p(tter)∣∣V̄ (τter)

〉∣∣2 − ˜∣∣〈p(tter)∣∣V̄ (τter)
〉∣∣2∣∣∣∣ < α2β2ε̄. (5.37)

Thus, O(α
4β4

ε2
) measurements are required to obtain

∣∣〈p(tter)∣∣V̄ (τter)
〉∣∣2 with

precision ε := α2β2ε̄. Note that since we can classically calculate α by the
analytical form of p(t, s), and β is calculated by αV θ0(τter), we can determine
the number of measurements before the SWAP test from VQS results.

To estimate the number of measurements of the SWAP test, we estimate
α2β2, which is calculated as

α2β2 =

Ngr∑
k=1

pk(tter)
2

Ngr∑
k=1

V̄ (τter,x
(k))2


=

Ngr∑
k=1

pk(tter)
2

Ngr∑
k=1

fpay(x
(k))2


×
∑Ngr

k=1 V̄ (τter,x
(k))2∑Ngr

k=1 fpay(x
(k))2

. (5.38)

Although it is difficult to estimate the factor
∑Ngr

k=1 V̄ (τter,x
(k))2/

∑Ngr

k=1 fpay(x
(k))2

in advance, we assume that the factor is bounded by some constant ζ. This
assumption means that the rate of change in derivative prices over time
is suppressed by a certain constant. Under the assumption, we estimate

78 CHAPTER 5. PRICING OF MULTI-ASSET...(∑Ngr

k=1 fpay(x
(k))2

)(∑Ngr

k=1 pk(tter)
2
)
. We assume that fpay(x) for x ∈ D is

upper bounded by some constant B. For example, in the case of the basket
call option,

fpay(x) = max(a0 +
d∑
i=1

aixi −K, 0)

≤ a0 +
d∑
i=1

aixi

≤ a0 +
d∑
i=1

aiui (5.39)

holds. From this assumption, we obtain

Ngr∑
k=1

fpay(x
(k))2 ≤

Ngr∑
k=1

B2

= NgrB
2. (5.40)

On the other hand, the probability density function of d-dimensional
geometric Brownian motion with x(0) = x0 := (x0,1, . . . , x0,d)

⊤ is

p(t,x) =
1

(2πt)d/2
(∏d

i=1 σixi

)√
det ρ

× exp

(
−1

2
(lnx− µ)⊤Σ−1(lnx− µ)

)
, (5.41)

where

µ =

((
r − σ21

2

)
t− x0,1, . . . ,

(
r −

σ2d
2

)
t− x0,d

)⊤
. (5.42)

The square of probability density function is

p(t,x)2 =

 1

(2πt)d/2
(∏d

i=1 σixi

)√
det ρ

2

× exp
(
−(lnx− µ)⊤Σ−1(lnx− µ)

)
=

γ(t)∏d
i=1 xi

1

(2πt)d/2
(∏d

i=1
σixi
2

)√
det ρ

× exp

(
−1

2
(lnx− µ)⊤

(
1

2
Σ

)−1

(lnx− µ)

)

=
γ(t)∏d
i=1 xi

φ(t,x), (5.43)

5.3. PROPOSED METHOD 79

where

γ(t) =
1

(8πt)d/2
∏d
i=1 σi

, (5.44)

and φ(t,x) is a probability density function of some log-normal distribution.
Using the probability distribution function, the square sum of the discretized
density function is represented by

Ngr∑
k=1

pk(tter)
2 =

Ngr∑
k=1

(
p(tter,x

(k))
)2(d∏

i=1

hi

)2

=

Ngr∑
k=1

γ(tter)∏d
i=1 x

(ki)
i

φ(tter,x
(k))

(
d∏
i=1

hi

)2

≤ γ(tter)∏d
i=1 li

Ngr∑
k=1

φ(tter,x
(k))

(
d∏
i=1

hi

)2

' γ(tter)∏d
i=1 li

d∏
i=1

hi

∫
Rd
+

φ(tter,x)dx

=
γ(tter)∏d
i=1 li

d∏
i=1

hi

=
γ(tter)∏d
i=1 li

1

Ngr

d∏
i=1

(ui − li). (5.45)

From Eqs. (5.40) and (5.45), we obtain

α2β2 ≲ ζB2 1

(8πtter)d/2

d∏
i=1

1

σi

(
ui
li
− 1

)
=: Ξ. (5.46)

Since tter is lower bounded by

tter = min


2
(
log
(
u1
s1,0

))2
25σ21 log

(
2Ãd(d+1)

ϵ

) , . . . , 2
(
log
(
ud
sd,0

))2
25σ2d log

(
2Ãd(d+1)

ϵ

)
2
(
log
(
s1,0
l1

))2
25σ21 log

(
2Ãd(d+1)

ϵ

) , . . . , 2
(
log
(
sd,0
ld

))2
25σ2d log

(
2Ãd(d+1)

ϵ

)
 ,

≥ 2 (logχmin)
2

25σ2max

(
log

2Ãd(d+ 1)

ϵ

)−1

, (5.47)

80 CHAPTER 5. PRICING OF MULTI-ASSET...

where σmax := maxi∈[d] {σi}, and χmin := mini∈[d] {ui/si,0} ∪ {si,0/li}, we
obtain

Ξ ≤ ζB2

×
(

5

4π2
ξmax − 1

logχmin

σmax

σmin

)d(
log

2Ãd(d+ 1)

ϵ

)d/2
, (5.48)

where σmin := mini∈[d] {σi}, and ξmax := maxi∈[d] {ui/li}1. We find that the
number of measurements required by the SWAP test is

NSWAP =
ζ2B4

ε2

(
5

4π2
ξmax − 1

logχmin

σmin

σmax

)2d
(
log

2Ãd(d+ 1)

ϵ

)d
. (5.49)

Note that NSWAP does not have the dependency of the form like (1/ϵ)O(d),
which means that the proposed method achieves a significant speedup over
classical FDM with respect to ϵ and d, when the other parts of the proposed
method are sufficiently efficient.

Here, we consider the limit of tter → 0. This corresponds to retrieving
one amplitude of the computational basis from |V (0)〉 as in [27, 29]. In this
case, the probability density function (Eq. (5.41)) is a delta function, which
means that the present price of the underlying assets is x0 with probability
1. Assuming that x0 is on a grid point with the index k0, pk(0) is 1 for
k = k0 and 0 otherwise, and the sum of the squares of pk(0) is 1. As a
result, α2β2 is upper-bounded as follows,

α2β2 ≤ ζNgrB
2 (5.50)

Thus, the number of the measurement is proportional to Ngr = ndgr, and the
quantum speedup will be lost.

5.3.2 Computational complexity of proposed method

Here, we discuss the computational complexity of our algorithm. We as-
sume that the number of quantum gates required for preparing |p(tter)〉 and∣∣V̄ (0)

〉
are Np

gate and NV
gate respectively. We also assume that the number

of measurements required to prepare |p(tter)〉 and
∣∣V̄ (0)

〉
are Np

measure and
NV

measure respectively. N
p
gate, N

V
gate, N

p
measure, and NV

measure depend on the im-
plementation of the generative models, but we assume that all of them are
O(poly(d log(1/ϵ))). This means that we assume that the generative models

1When ξmax is close to 1, one may find it strange that as Ξ decreases exponentially with
respect to the number of assets d, and then, the number of measurements also decrease
exponentially. We show that such an exponential decrease does not occur by evaluating
the lower bound of Ξ. See Appendix A3.5 for details.

5.4. NUMERICAL RESULTS 81

efficiently generate the (unnormalized) quantum states. Note that VQS re-
quires controlled versions of ULk , U

u
l in Eq. (2.56), or those of RUv where R

is defined in Eq. (A142) (see Appendix A3.4). Since ULk and Uul are terms of
the linear combination of F and G̃, respectively, they are made by O(n2) =
O(d log(1/ϵ)) gates. Thus, O(poly(d log(1/ϵ)) gates are required for the con-
trol unitaries of ULk and Uul . Assuming RUv is made by O(poly(d log(1/ϵ))
gates, the controlled-RUv gate requires O(poly(d log(1/ϵ)) gates. Conse-
quently, quantum circuits containing O(poly(d log(1/ϵ)) quantum gates is
required for VQS. We assume that the number of measurements to esti-
mate Mi,j and Vi are NVQS

measure. The number of quantum gates to per-
form the SWAP test is O(poly(d log(1/ϵ))) since the SWAP test requires
O(n) = O(d log(1/ϵ)) quantum gates in addition to the quantum gates to
generate |p(tter)〉 and

∣∣V̄ (τ)
〉
[109]. The number of measurements for the

SWAP test is NSWAP in Eq. (5.49). The summary of the complexities of the
proposed method is shown in Table 5.1.

Part of the algorithm # of quantum gates # of measurements

Preparing |pter〉 Np
gate Np

measure

Preparing
∣∣V̄ter

〉
NV

gate NV
measure

VQS O(poly(d log(1/ϵ))) NVQS
measureNτ

SWAP test O(poly(d log(1/ϵ))) NSWAP in Eq.(5.49)

Table 5.1: The complexities of the proposed method.

Note that, although there remains the exponential dependency with re-
spect to d in NSWAP, the time complexity does not have any factor like
(1/ϵ)O(d), as discussed in Sec. 5.3.1. This is the possible advantage of our
method since the complexity of the classical FDM and conventional quantum
algorithm have a factor like (1/ϵ)O(d).

5.4 Numerical Results

In this section, we validate the proposed method using numerical calcula-
tions. This experiment focuses on a single asset double knock-out barrier
option, which contains both up and out and down and out conditions. Ac-
cording to [111], the analytical solution for the single asset double barrier

82 CHAPTER 5. PRICING OF MULTI-ASSET...

option Ṽ with an upper bound u and a lower bound l is

Ṽ (t) = S0

∞∑
n=−∞

{(
un

ln

)c
[N (d1n)−N (d2n)]

−
(
un+1

lnS0

)c
[N (d3n)−N (d4n)]

}
−Ke−rτ

×
∞∑

n=−∞

{(
un

ln

)c−2 [
N (d1n − σ

√
τ)−N (d2n − σ

√
τ)
]

−
(
un+1

lnS0

)c−2 [
N (d3n − σ

√
τ)−N (d4n − σ

√
τ)
]}

, (5.51)

where

d1n =
ln
(
S0
K

(
u
l

)2n)− (r + σ2

2

)
τ

σ
√
τ

, (5.52)

d2n =
ln
(
S0

u2n−1

l2n

)
−
(
r + σ2

2

)
τ

σ
√
τ

, (5.53)

d3n =
ln
(
u2n+2

KS0l2n

)
−
(
r + σ2

2

)
τ

σ
√
τ

, (5.54)

d4n =
ln
(
S0

u2n+1

l2n

)
−
(
r + σ2

2

)
τ

σ
√
τ

, (5.55)

c =
2r

σ
+ 1, (5.56)

and N (·) is the cumulative distribution function of the standard normal
distribution. We compare the results obtained by the proposed method with
the analytical solution. We use the Euler method for the time evolution of
the parameter (Eq. (2.54)). The step size for the Euler method is ∆τ =
2.5× 10−5. The parameters are r = 0.001, σ := σ1 = 0.3, T = 1, S0 = 1, l :=
l1 = 0.5, u := u1 = 2.0,K = 1. The ansatz of VQS for solving the BS model
is shown in Fig. 5.1. This ansatz repeats m parameterized layers consisting
of n RY gates and an entanglement layer consisting of CZ gates. The ansatz
have n(m+1) parameters. We do not consider noise and statistical errors in
the simulation of quantum circuits. In addition, we assume that the initial
state

∣∣V̄ (0)
〉
and |p(t)〉 for all t ∈ [0, T] are given. For the simulation of

quantum states, we use NumPy [60].

5.4. NUMERICAL RESULTS 83

|0〉 RY (θ1,0) • • RY (θ1,m)

|0〉 RY (θ2,0) • • RY (θ2,m)

|0〉 RY (θ3,0) • • RY (θ3,m)

...
...

...
...

|0〉 RY (θn,0) • • RY (θn,m)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
×m

Figure 5.1: In a depth-m circuit, CZ and RY gates (enclosed by dashed
lines) are repeated m-times. The circuit has n(m+ 1) parameters.

5.4.1 Parameter dependencies of VQS results

Before discussing our results, we show the results using the classical FDM in
Fig. 5.2. The plotted curves are V (0, S0) ' e−rtE [V (t, S)|S(0) = S0] at each
t ∈ [0, T], where V (t, S) is calculated by classical FDM and the expectation
is taken with respect to the analytical p(t, s). The error from the analytical
solution increases as t increases for t ≥ tter. This is because, in the range
greater than tter, the probability that the underlying asset price exceeds or
falls under the boundary conditions is higher. As the number of the grid
points increases, the derivative price by FDM gets closer to the analytical
solution at tter. Since S0 = 1 is not on the grid points, the error increases
when the probability distribution approaches the indicator function with
t→ 0.

Fig. 5.3 shows the present price of the derivative calculated by our pro-
posed method. We perform VQS on the simulator and obtain |ṽ(θ(τ))〉,
which is an approximation of

∣∣V̄ (τ)
〉
. Taking the inner product between

|ṽ(θ(τ))〉 and |p(t)〉, which is calculated by Eqs. (5.26) and (5.41), we ob-
tain the estimation of the present price of the derivative. In the 4 qubits
case, the result of VQS is a good approximation to the classical FDM solu-
tions of 16 grid points. The use of the larger number of qubits, i.e., the larger
ngr, gives us solutions that are closer to the analytical solution as in the case
of the classical FDM. In the case of 6 qubits with 4 layers, the number of
parameters is 30, which is smaller than the number of grid points of 64, but
the solution is somewhat close to the classical FDM. Due to computational
time requirements, we do not run simulations of larger sizes. However, we
find that the solution obtained with more layers better approximates the
classical FDM solution.

84 CHAPTER 5. PRICING OF MULTI-ASSET...

0.0 0.2 0.4 0.6 0.8 1.0

t

0.095

0.100

0.105

0.110

0.115

e
−
rt
E

[V
(t
,S

)|S
(0

)
=
S

0
]

Euler: 16 grid points
Euler: 32 grid points
Euler: 64 grid points
Analytical solution
tter

Figure 5.2: The estimated price of the single-asset double barrier option by
classical FDM.

0.0 0.2 0.4 0.6 0.8 1.0

t

0.095

0.100

0.105

0.110

0.115

e
−
rt
〈 p

(t
)|V̄

(τ
)〉

4 qubits, 2 layers
4 qubits, 4 layers
5 qubits, 2 layers
5 qubits, 4 layers
6 qubits, 2 layers
6 qubits, 4 layers

Analytical solution
tter

Figure 5.3: The estimated price of the single-asset double barrier option by
the proposed method.

5.4. NUMERICAL RESULTS 85

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

x

0.0

0.2

0.4

0.6

0.8

1.0

m
ax

(x
-K

, 0
)

fitted
true

Figure 5.4: Target initial condition for single assets (solid line) and the
initial state obtained by fidelity maximization (circle dots). Parameters
are fpay(x) = max (x−K, 0) ,K = 1. The value corresponding to fidelity
satisfies |1− α−2

0 |
〈
V̄ (0)

∣∣u(θ0)〉 |2| ≤ 1.2× 10−5.

5.4.2 Possibility of initial state generation

To solve the terminal value problem of the BSPDE, it is necessary to pre-
pare the (unnormalized) initial state

∣∣V̄ (0)
〉
=
∑

k fpay(x
(k)) |k〉, which we

assumed to be given in the previous subsection. Here, we show by simulation
that for a typical fpay, we can approximate the initial state

∣∣V̄ (0)
〉
using

an appropriate ansatz. To show that the initial state can be approximated

by |ν(θ0)〉 = α0R0(θ0) |0〉, where α0 =
√∑

k fpay(x
(k))2 and R0(θ0) is the

ansatz shown in Fig. 5.1, we adopt L-BFGS-B to find θ0 such that

max
θ0
|
〈
V̄ (0)

∣∣ν(θ0)〉 |2, (5.57)

with SciPy [112]. For the calculation of the gradient, we use the parameter
shift rule [46]. We choose the parameters as K = 1, l = 0.5, u = 2 and the
ansatz with 6 qubits and 6 layers. By doing maximization of Eq. (5.57),
the value α−2|

〈
V̄ (0)

∣∣ν(θ0)〉 |2, which corresponds to fidelity, should asymp-
totically converge to 1. The result for a payoff function of the single asset
call option fpay(x) = max(x −K, 0) is shown in Fig. 5.4. We can see that
the ansatz approximates the payoff function well. Indeed, the result satisfies
|1− α−2

0 |
〈
V̄ (0)

∣∣ν(θ0)〉 |2| ≤ 1.2× 10−5.

Note that this optimization does not correspond to real physical oper-
ations. What we show is that there exists θ0 that at least approximates∣∣V̄ (0)

〉
well, and we leave the efficient search algorithm for such θ0 to future

work.

86 CHAPTER 5. PRICING OF MULTI-ASSET...

5.5 Conclusion

In this chapter, we simulate the BSPDE by VQS and obtain the state which
embeds the solution of the BSPDE |V (tter)〉 at tter, and utilizing the fact
that the derivative price is a martingale, we calculate the derivative price by
the inner product of the state |V (tter)〉 and the state |p(tter)〉 which embeds
the probability distribution. Although it is difficult to accurately estimate
the complexity due to the heuristic nature of variational quantum compu-
tation, at least in the numerical simulation, we confirm that the proposed
method can be performed for the one-asset double barrier option and that
the derivative price can be obtained with better accuracy by increasing the
number of qubits and the number of layers of ansatz. We see that the com-
putational complexity is obtained by Table 5.1 under certain assumptions,
and the complexity with respect to ϵ is O(1/ϵ2 (log(1/ϵ))d). This means
that there would be a significant improvement compared to the classical
FDM and conventional quantum algorithms whose complexity has factors
like (1/ϵ)O(d). Furthermore, we show that an oracle that generates an initial
state with embedded payoff functions for typical payoff functions could be
represented using an appropriate ansatz.

In this paper, we simply assumed that the initial state of the BSPDE and
the state with embedded probability distribution are effectively generated by
some variational quantum algorithms. We will confirm this point in future
work.

Chapter 6

Conclusion

In this thesis, we have proposed a quantum algorithm that efficiently com-
putes derivative prices via efficient classical-quantum information conver-
sion. Although quantum amplitude estimation and quantum ordinary differ-
ential equation solvers are employed to speed up the computation of deriva-
tives pricing, there may exist bottlenecks in the transformation from classical
to quantum information and from quantum information to classical infor-
mation. By alleviating these bottlenecks, our algorithm will be possible to
efficiently calculate derivative prices. This would enable complex calcula-
tions of derivative prices that could not be performed before and also enable
real-time calculations of the present price of the derivatives.

In Chap. 3, we have shown that a variational quantum calculation can
be used to simulate the time evolution of a probability distribution to embed
the classical probability distribution of the solution of a stochastic differen-
tial equation. This allows the embedding of classical information into the
quantum state, which is needed for quantum algorithms such as quantum
amplitude estimation. In other quantum state generation models such as
quantum generative adversarial networks, it is necessary to solve an opti-
mization problem at each time point to embed probability distributions at
multiple time points. Our method has the advantage that we can embed
probability distributions at multiple time points in a single simulation.

In Chap. 4, we have shown an algorithm for derivative pricing using
FDM on a fault-tolerant quantum computer. In this algorithm, we pro-
posed a method to calculate the present price of the derivative from the
inner product of the quantum states, using the fact that the present price of
the derivative can be approximated using the expected value of the deriva-
tive price at any future time. After the discretization of the Black-Scholes
equation with FDM, the quantum ordinary differential equation solver is
used to solve the equation to a certain time in the future. In addition, we
prepare a quantum state in which the probability distribution at that point
in time is embedded. By calculating the inner product of the quantum

87

88 CHAPTER 6. CONCLUSION

state of the solution of the quantum ordinary differential equation solver
and the quantum state in which the probability distribution is embedded
using quantum amplitude estimation, we can approximate the present price
of the derivative. Although classical FDM requires a computational com-
plexity of O((1/ϵ)O(d)) to compute the derivative price of a d asset with an
accuracy ϵ, this quantum algorithm requires only poly(1/ϵ, d), which means
that significant speedup is achieved.

In Chap. 5, we have proposed a variational quantum algorithm for deriva-
tive pricing exploiting the key idea of Chap. 4. Instead of using the quantum
ordinary differential equation solver and quantum amplitude estimation, we
use variational quantum simulation and the SWAP test. This enables deriva-
tive pricing by FDM even on noisy intermediate-scale quantum computers.
Although it is difficult to accurately estimate the computational complexity
of the algorithm due to the nature of variational computation, at least in
the numerical simulation, we have confirmed that our algorithm is feasible
and could reduce the complexity compared to the classical FDM.

Since derivatives price calculation is a practically important issue, the
speedup achieved by quantum algorithms will have a significant impact, and
further research will be accelerated in the future. The application of quan-
tum algorithms to financial engineering has just begun, and there are still
a lot of challenges. One of these is the evaluation of X-value adjustments
(XVA), which is a generic term for complex risk assessment adjustments
that take into account defaults, financial regulations, etc. These are prob-
lems similar to derivative pricing with more complex structures that require
greater computational resources. The same bottleneck in the transforma-
tion of classical-quantum information would also exist for these problems.
Furthermore, stochastic analysis, especially martingales, plays an important
role in financial engineering other than derivatives pricing, and thus our al-
gorithm may be effective in this regard. Numerical calculation of expected
values appears in various fields other than finance. Since it is necessary to
embed probability distributions into quantum states to compute expected
values by quantum computation, we hope that our algorithm will be utilized
beyond finance. Further investigation of more efficient quantum algorithms
will also be a future task.

List of Activities

1 Papers

• K. Kubo, Y. O. Nakagawa, S. Endo, and S. Nagayama, “Variational
quantum simulations of stochastic differential equations”, Physical Re-
view A 103 (5), 052425 (2021)

• K. Miyamoto, K. Kubo, “Pricing multi-asset derivatives by finite dif-
ference method on a quantum computer”, IEEE Transactions on Quan-
tum Engineering 3, 3100225 (2021)

• K. Kubo, K. Miyamoto, K. Mitarai, K. Fujii, “Pricing multi-asset
derivatives by variational quantum algorithms”, arXiv:2207.01277

• N. Shirai, K. Kubo, K. Mitarai, and K. Fujii, “Quantum tangent ker-
nel”, arXiv:2111.02951

2 Presentations and awards

• K. Kubo, Y. O. Nakagawa, S. Endo, and S. Nagayama, “Variational
quantum simulations of stochastic differential equations”, Asian Con-
ference on Quantum Information Science 2021, Online Japan (2021)

• 久保健治, 永山翔太, “デリバティブ価格決定問題へのNISQアルゴリズ
ムの応用可能性と課題”, 第 41回量子情報技術研究会 (2019)

• 久保健治, “金融分野への量子コンピュータの応用”, Q-LEAP 分野横断
ワークショップ 量子コンピュータ研究開発の現在とこれから (2020)

• 久保健治, 中川 裕也, 遠藤傑, 永山翔太, “変分量子計算による確率微分
方程式のシミュレーション” 第 1回量子ソフトウェア研究発表会 (2020)
学生奨励賞受賞

• 久保健治, 宮本幸一, “変分量子シミュレーションによる多資産デリバ
ティブの価格決定”, 第 45回量子情報技術研究会 (2021)

89

90 CHAPTER 6. LIST OF ACTIVITIES

• 宮本幸一, 久保健治, “Pricing Multi-asset Derivatives by Finite Differ-
ence Method on a Quantum Computer”,第 56回 2021年度冬季JAFEE
大会 (2022)

• 宮本幸一,久保健治, “Pricing multi-asset derivatives by finite difference
method on a quantum computer”, 第 5回量子ソフトウェア研究発表会
(2022)

3 Patents

• 宮本幸一, 久保健治, “量子コンピュータを用いた有限差分法によるマル
チアセットデリバティブの時価評価手法”, 特許出願番号 2021-154441

Appendix

A1 Variational quantum simulation of the stochas-
tic differential equation

A1.1 Complexity of calculating expectation value

This Appendix derives the computational complexity of calculating the ex-
pectation by Eq. (3.24). To limit the error ϵ in expectation value E =√〈

ψ̃
∣∣∣Sf |0〉 〈0|S†

f

∣∣∣ψ̃〉, we show the upper limit of error ϵ′ of the expectation

value for each term in Eq. (3.25), and find the number of measurements and

gate complexity required to achieve this error. We assume that Sf |0〉 〈0|S†
f

can be written as a linear combination of NU unitary operators as follows

Sf |0〉 〈0|S†
f =

NU∑
i=1

βiUi, (A1)

where {Ui} are unitary operators. We denote the error of expectation values
〈ψ|Ui |ψ〉, where |ψ〉 is the normalized state,

|ψ〉 = 1√∑2n−1
j=0 p2j

∣∣∣ψ̃〉 , (A2)

where pj = Prob[X(t) = xi]. We define the error as ϵ′ of the expectation
value of each term in a state |ψ〉. That is, the estimated expectation value
of each term ũi satisfies

|ũi − 〈ψ|Ui |ψ〉| ≤ ϵ′. (A3)

91

92 APPENDIX

The error in the linear combination of expectation values is determined as∣∣∣∣∣
NU∑
i=1

βiũi − 〈ψ|
NU∑
i=1

βiUi |ψ〉

∣∣∣∣∣ =

∣∣∣∣∣
NU∑
i=1

βi (ũi − 〈ψ|Ui |ψ〉)

∣∣∣∣∣
≤

NU∑
i=1

|βi| |(ũi − 〈ψ|Ui |ψ〉)|

≤ ϵ′
NU∑
i=1

|βi| . (A4)

Denoting the estimation of E as Ẽ, we have∣∣∣Ẽ − E∣∣∣ ≤ 2n−1∑
j=0

p2j
ϵ′
∑NU

i=1 |βi|
Ẽ + E

∼
2n−1∑
j=0

p2j
ϵ′
∑NU

i=1 |βi|
2E

. (A5)

To upper bound the error ϵ in E, the error ϵ′ must satisfy following condition:

ϵ′ ≲ 2ϵE∑2n−1
j=0 p2j

∑NU
i=1 |βi|

= γϵ, (A6)

where γ ≡
(
2E/

∑2n−1
j=0 p2j ·

∑NU
i=1 |βi|

)
.

The Hadamard test (Fig. 3.2) requires O(1/ϵ′2) measurements to limit
the error in the expectation value to ϵ′, and the depth of the quantum circuit
is O(1) in terms of the unitary U(= QiQ

†
i′ , QiC

nZ ·X⊗nQ†
i′) except for the

circuit to prepare the quantum state. On the other hand, the number of
measurements to achieve the same accuracy with QPE is O(log(1/ϵ′)), but
the depth of the quantum circuit in terms of the unitary U is O(1/ϵ′) [57, 58].
The total number of measurements is equal to the number of measurements
for each term multiplied by NU . Note that NU = O(d2n2L+2) with Lth-
order piecewise polynomial approximation of the function f with d intervals
(see Sec. 3.4.2). Therefore, the total number of measurements required to
calculate the expectation value is O(d2n2L+2/γϵ2) by Hadamard test and
O(d2n2L+2 log(1/γϵ)) by QPE. QPE requires extra U gates, the number of
which is O(1/γϵ).

Finally, we provide the estimation of the value of γ as follows. The factor∑2n−1
j=0 p2j satisfies

∑2n−1
j=0 p2j ≤ 1 and then γ ≥ 2E/

∑NU
i=1 |βi|. To evaluate∑NU

i=1 |βi|, we use Eq. (3.25) and obtain

NU∑
i=1

|βi| = 2
∑
l,l′

|ξlξ∗l′ | = 2
∑
l,l′

|ξl||ξl′ |. (A7)

A1. VARIATIONAL QUANTUM SIMULATION OF... 93

We estimate the upper limit of sum of absolute values of coefficients in
Eq. (3.35) to evaluate

∑
l |ξl|. From Eq. (3.18), the absolute values of coeffi-

cients of (D(n))m is at most O(2nm) = O(xmmax). As Sχαk
is a linear combina-

tion of Sχα
l
, the absolute values of coefficients of Sχαk

is at most O(2(ka−1)/2)

from Eq. (3.33). Since ka satisfies 0 < ka ≤ n by definition, O(2(ka−1)/2) =

O(
√
xmax). The largest |ξl| is as large asO

((
maxkmaxm

(
|a(k)m |xmmax

))√
xmax

)
from Eq. (3.35). Thus, we obtain

NU∑
i=1

|βi| ≲ O

([
max
k

max
m
|a(k)m |xmmax

]2
d2n2L+2xmax

)
. (A8)

Therefore, γ is larger than the ratio of E and the right-hand side of Eq. (A8).

A1.2 Definition and construction of the tree-model approx-
imation

Let us consider a SDE with D variables,

dXd(t) = µd(Xd, t)dt+ σd(Xd, t)dWd, (A9)

for X1(t), . . . , XD(t), where {Wd}Dd=1 describes the Brownian motion with
correlation Corr[Wk,Wl] = ρkl. For simplicity, we assume an event space

of each variable Xd(t) as [0, x
(d)
max] , and divide it into Nx + 1 points; that

is, x
(d)
i ≡ i∆x(d),∆x(d) ≡ x

(d)
max/Nx (d = 1, . . . , D). The time period of

the simulation, t ∈ [0, T], is divided into Nt + 1 points, tj ≡ j∆t; that is
∆t ≡ T/Nt.

We define a lattice of the tree model for Eq. (A9) with nodes (i1, . . . , iD; j)

representing the random variables (X1(tj), . . . , XD(tj)) = (x
(1)
i1
, . . . , x

(D)
iD

),
where id = 0, . . . , Nx, j = 0, . . . , Nt, d = 1, . . . , D. The node transitions
during time tj → tj+1 are of three types:

(1) (i1, . . . , iD; j) → (i1, . . . , iD; j + 1),

(2) (i1, . . . , iD; j) → (i1, . . . , ik ± 1, . . . , iD; j + 1),

(3) (i1, . . . , iD; j) → (i1, . . . , ik ± 1, . . . , il ± 1, . . . , iD; j + 1),

where 1 ≤ k < l ≤ D. Type (1), (2) and (3) transitions occur to nodes
with identical variable values, to nodes where one-variable Xk hops to its
adjacent values, and to nodes where two variables (Xk and Xl) hop to their
adjacent values, respectively. The transition probabilities associated with
type (1), (2) and (3) transitions are respectively given by

pm(x
(1)
i1
, . . . , x

(D)
iD

, t),

p
(k)
u,d(x

(1)
i1
, . . . , x

(D)
iD

, t),

p
(k,l)
uu,ud,du,dd(x

(1)
i1
, . . . , x

(D)
iD

, t),

94 APPENDIX

where the subscript u(d) corresponds to the sign +(−).
The transition probabilities can be determined identically to those of the

one-variable SDE. The SDE (A9) at at (X1(tj), . . . , XD(tj)) = (x
(1)
i1
, . . . , x

(D)
iD

)
is discretized as

Xd(tj+1)−Xd(tj) = µd(Xd(tj), t)∆t+ σd(Xd(tj), t)
√
∆tzd, (A10)

where {zd}Dd=1 is sampled from the multi-variable Gaussian distribution,
E[zd] = 0,Var[zd] = 1,Corr[zk, zk] = ρkl. The first and second first and
second conditional moments satisfy

E[Xd(tj+1)−Xd(tj)|Xd(tj) = x] = µd(x, tj)∆t,

(A11)

Var[Xd(tj+1)−Xd(tj)|Xd(tj) = x] = σ2d(x, tj)∆t

(A12)

for d = 1, . . . , D and the covariance of the variables satisfies

Cov[Xk(tj+1)−Xk(tj), Xl(tj+1)−Xl(tj)

|Xk(tj) = x,Xl(tj) = y]

=σk(x, tj)σl(y, tj)ρkl∆t

(A13)

for 1 ≤ k < l ≤ D. The corresponding quantities in the tree model are

E[Xd(tj+1)−Xd(tj)|Xd(tj) = x]

=

(
p(d)u − p

(d)
d +

d−1∑
k=1

(
p(k,d)uu − p(k,d)ud + p

(k,d)
du − p(k,d)dd

)
+

D∑
l=d+1

(
p(d,l)uu + p

(d,l)
ud − p

(d,l)
du − p

(d,l)
dd

))
∆x(d) (A14)

Var[Xd(tj+1)−Xd(tj)|Xd(tj) = x]

=

(
p(d)u + p

(d)
d +

d−1∑
k=1

(
p(k,d)uu + p

(k,d)
ud + p

(k,d)
du + p

(k,d)
dd

)
+

D∑
l=d+1

(
p(d,l)uu + p

(d,l)
ud + p

(d,l)
du + p

(d,l)
dd

))(
∆x(d)

)2
(A15)

for d = 1, . . . , D and

Cov[Xk(tj+1)−Xk(tj), Xl(tj+1)−Xl(tj)

|Xk(tj) = x,Xl(tj) = y]

=
(
p(k,l)uu − p

(k,l)
ud − p

(k,l)
du + p

(k,l)
dd

)
∆x(k)∆x(l).

(A16)

A1. VARIATIONAL QUANTUM SIMULATION OF... 95

As is the same for the case of a single variable we set the transition am-
plitudes by equating Eqs. (A11),(A12),(A13) with (A14),(A15),(A16).

If the solutions of p
(k)
u,d, p

(k,l)
uu,ud,du,dd are proportional to ∆t, the linear differ-

ential equation can be derived by taking the limit of ∆t → 0 (as in the
one-dimensional case Eq. (3.10)).

When D > 1, one should note the numbers of variables and conditional

expressions. As the numbers of pm, p
(k)
u,d, p

(k,l)
uu,ud,du,dd are 1, 2D, 2D(D − 1),

respectively, the number of independent variables is 2D2 under the normal-
ized probability conditions. On the other hand, the number of equations
of the mean, variance, and covariance are D,D,D(D − 1)/2, respectively,
so the total number of equations is D(D + 3)/2. When D > 1, the num-
ber of variables exceeds the number of conditions, so an infinite number of
transition probabilities satisfy the condition.

Here, we show there is indeed a solution of the transition amplitudes
which admit taking limit ∆t→ 0 and obtain the linear differential equitation

of the probability distributions of the SDE. Fixing p
(k)
dd = p

(k)
ud = p

(k)
du = 0,

the number of variables becomes D(D + 3)/2, which is slightly asymmetric
(because we consider only pkuu to be nonzero), but agrees with the number
of conditional expressions. In this case, the transition probabilities are

p(k,l)uu =
σkσlρkl

∆x(k)∆x(l)
∆t, (A17)

p(d)u =
1

2

(
σ2d(

∆x(d)
)2 +

µd
∆x(d)

)
−
∑
k ̸=d

σkσdρkd
∆x(k)∆x(d)

,

(A18)

p
(d)
d =

1

2

(
σ2d(

∆x(d)
)2 − µd

∆x(d)

)
, (A19)

pm = 1−

 D∑
d=1

 σ2d(
∆x(d)

)2 −∑
k ̸=d

σkσdρkd
∆x(k)∆x(d)


−
∑
k ̸=l

σkσlρkl
∆x(k)∆x(l)

∆t

= 1−
D∑
d=1

σ2d(
∆x(d)

)2∆t. (A20)

Here, we omit the arguments of µd and σd to simplify the notation.

A1.3 Mapping to VQS and construction of L(t)

In the multivariate case, we can construct L(t) as described in Sec. 3.3. For
notational simplicity, we denote |i1, . . . , iD〉 = |i〉,|i1, . . . , id−1, id ± 1, id+1, . . . , iD〉 =

96 APPENDIX

|i± ed〉,|i1, . . . , ik + 1, . . . , il + 1, . . . iD〉 = |i+ ek + el〉 .Using Eqs. (A17) (A18) (A19)
and (A20), we obtain

L(t) =
1

2

D∑
d=1

2n−2∑
id=0

∑
i−d

[
σ2d(

∆x(d)
)2 +

µd
∆x(d)

−
∑
k ̸=d

σkσdρkd
∆x(k)∆x(d)

 |i+ ed〉 〈i|

+
1

2

D∑
d=1

2n−1∑
id=1

∑
i−d

(
σ2d(

∆x(d)
)2 − µd

∆x(d)

)
× |i− ed〉 〈i|

+
∑
k ̸=l

2n−2∑
ik,l=0

∑
i−k,i−l

σkσlρkl
∆x(k)∆x(l)

× |i+ ek + el〉 〈i|

−
D∑
k=1

∑
i

σ2d(
∆x(d)

)2 |i〉 〈i| (A21)

where
∑

i denotes the sum of im ∈ {0, . . . , 2n − 1} for all m ∈ {1, . . . , D},∑
i−d

is the sum of im ∈ {0, . . . , 2n − 1} for all m 6= d, and
∑

i−k,−l
is the

sum for im ∈ {0, . . . , 2n − 1} for all m 6= k, l.

Here, we expand σk(x
(k), t), µk(x

(k), t) as

σk(x
(k), t) =

mσk∑
m=0

a(k)σ,m(t)(x
(k))m, (A22)

µk(x
(k), t) =

mµk∑
m=0

a(k)µ,m(t)(x
(k))m. (A23)

We also define the operators

V
(k)
+ (n) = I⊗k−1 ⊗ V+(n)⊗ I⊗D−k, (A24)

V
(k)
− (n) = I⊗k−1 ⊗ V−(n)⊗ I⊗D−k, (A25)

D(k)(n) = I⊗k−1 ⊗D(n)⊗ I⊗D−k. (A26)

A1. VARIATIONAL QUANTUM SIMULATION OF... 97

These operators satisfy the following equations:

V
(k)
+ (n)(D(k)(n))m =

2n−2∑
ik=0

∑
i−k

imk |i+ ek〉 〈i|

(A27)

V
(k)
− (n)(D(k)(n))m =

2n−1∑
ik=1

∑
i−k

imk |i− ek〉 〈i|

(A28)

V
(k)
+ (n)(D(k)(n))mkV

(l)
+ (n)(D(l)(n))ml

=

2n−2∑
ik=1

2n−2∑
il=1

∑
i−k,−l

imk
k iml

l |i+ ek + el〉 〈i| . (A29)

Using these operators, we can rewrite L(t) as

L(t) =

D∑
d=1

mσd∑
mk=0

mσd∑
ml=0

a(d)σ,mk
a(d)σ,ml

(
∆x(d)

)mk+ml−2

×

(
V

(k)
+ + V

(k)
−

2
− I

)
(D(d)(n))mk+ml

+

D∑
d=1

mµd∑
mk=0

mµd∑
ml=0

a(d)µ,mk
a(d)µ,ml

(
∆x(d)

)mk+ml−1

×

(
V

(k)
+ − V (k)

−
2

)
(D(d)(n))mk+ml

+
∑
k ̸=d

mσk∑
mk=0

mσl∑
ml=0

a(k)σ,mk
a(l)σ,ml

(
∆x(k)∆x(l)

)−1

×V (k)
+ (n)(D(k)(n))mkV

(l)
+ (n)(D(l)(n))ml .

(A30)

As V
(k)
+ (n)(D(k)(n))m, V

(k)
− (n)(D(k)(n))m are the sums of O(nm) unitaries

composed of O(n2) few-qubit gates, Eq. (A30) is feasible decomposition of
L(t).

A1.4 Evaluating the expectation value

To perform computation of the expectation value, we construct a mul-
tivariate indicator operator. In the D dimensional case, the domain of

the function is
∏D
i=1[0, x

(i)
max]. In each dimension, we divide [0, x

(i)
max] into

d intervals {[a(i)0 , a
(i)
1], , . . . , [a

(i)
d−1, x

(i)
max]} and obtain dD regions I({ki}) =

98 APPENDIX

∏D
i=1[a

(i)
ki
, a

(i)
ki+1]. The indicator operator on I({ki}) is represented by the

tensor product of the one-dimensional indicator operator Eq. (3.23), i.e.,

SχI({ki})
=

D⊗
i=1

Sχ
[a

(i)
ki

,a
(i)
ki+1

]
. (A31)

Thus, we can construct

Sf =
∑
{ki}

mki∑
m=0

a(ki)m (D(n))mSχI({ki})
. (A32)

Note that Sf |0〉 〈0|S†
f is the sum of O(n2D(m+1)) unitaries and each Qk in

Eq. (3.25) is composed of O(n4) gates. In general, the number of sums
grows exponentially with the dimensions. However, the number of sums can
be kept small if only a few of those variables are needed to compute the
expectation value. Thus, when the number of sums required to construct
Sf is independent of the dimension D of the random variable, our algorithm
may be particularly effective.

A1.5 Error from Piecewise Polynomial Approximation

In this subsection, we evaluate the error of the expectation value E[f(X(T))]
from the polynomial approximation of the function f .

As in the main text, we divide [0, xmax] into d intervals {[0, a1], . . . , [ad−1, xmax]}.
For simplicity, we assume the equally-spaced intervals, so the width of the
intervals is h = xmax/d, We ignore the errors in the probability density func-
tion p(x) that come from the tree model approximation of the SDE and the
incompleteness of the ansatz of VQS because we focus on the error derived
from the piecewise polynomial approximation of f .

We define the Lth order residual term of the Taylor expansion of f
around ak = kh as

RLk (x) =
1

(L+ 1)!
f (n)(c)(x− kh)L+1, (A33)

where x ∈ [ak, ak+1] = [kh, (k + 1)h] and c ∈ [x, (k + 1)h]. As x −
kh ≤ h, RLk (x) is O(hL+1). When we approximate f on [ak, ak+1] by the
Lth order Taylor expansion gL(x), the error of expectation value Ef =

A2. PRICING MULTI-ASSET DERIVATIVES BY... 99

∑2n−1
i=0 f(xi)p(xi) is

|Ef − Eg|

=

∣∣∣∣∣
d−1∑
k=1

∫ (k+1)h

kh
f(x)p(x)dx−

d−1∑
k=1

∫ (k+1)h

kh
gL(x)p(x)dx

∣∣∣∣∣
=

∣∣∣∣∣
d−1∑
k=1

∫ (k+1)h

kh
RLk (x)p(x)dx

∣∣∣∣∣
≤ max

k

[
max

kh≤x≤(k+1)h

(∣∣RLk (x)∣∣)] · d−1∑
k′=1

∫ (k′+1)h

k′h
p(x)dx

= max
k

[
max

kh≤x≤(k+1)h

(∣∣RLk (x)∣∣)]
= O(hL+1)

To suppress the error below ϵ, it is necessary to set d > xmaxϵ
− 1

L+1 . From the
discussion in Sec. IV, Sf |0〉 〈0|S†

f is the sum of O(d2n2L+2) unitaries. Thus,

we can see that Sf |0〉 〈0|S†
f is the sum of O(x2maxϵ

− 2
L+1n2L+2) unitaries.

A2 Pricing multi-asset derivatives by finite differ-
ence method on a quantum computer

A2.1 Proof of Lemma 2.2.1

First, we prove the following property of F in (2.25).

Lemma A2.1. For F in (2.25), the logarithmic norm satisfies µ(F) < 0.

Proof. Since the matrix (ρij)1≤i,j≤d is positive-definite, so is the matrix
(σiσjρij)1≤i,j≤d. Then, as mentioned in the proof of Theorem 5.1 in [27],

µ(F 2nd) < 0. Besides, since F 1st is anti-symmetric, µ(F 1st) = 0. Combining
this,

µ(F) ≤ µ(F 1st) + µ(F 2nd) < 0. (A34)

Using this, we can prove Lemma 2.2.1.

Proof of Lemma 2.2.1. Because of (2.28), for i ∈ [d],∣∣∣∣ ∂∂xiY (τ,x)− Y (τ,x+ hiei)− Y (τ,x− hiei)
2hi

∣∣∣∣ < ζ

6
h2i , (A35)

100 APPENDIX

and ∣∣∣∣ ∂2∂x2i Y (τ,x)− Y (τ,x+ hiei)− 2Y (τ,x) + Y (τ,x− hiei)
h2i

∣∣∣∣ < ξ

12
h2i .

(A36)
hold, and, for i, j ∈ [d] such that i 6= j,∣∣∣∣ ∂2

∂xi∂xj
Y (τ,x)− 1

4hihj
(Y (τ,x+ hiei + hjej)− Y (τ,x+ hiei − hjej)

−Y (τ,x− hiei + hjej) + Y (τ,x− hiei − hjej))| <
ξ

6
hihj (A37)

holds, where ei, i ∈ [d] is the d-dimensional vector whose i-th element is 1
and the others are 0. Therefore, we see that

|LY (τ,x(k))− (FY (τ) +C(τ))k| <

d∑
i=1

ξ

24
σ2i h

2
i +

d∑
i=1

d∑
j=i+1

ξ

6
σiσj |ρij |hihj

+

d∑
i=1

ζ

6

∣∣∣∣r − 1

2
σ2i

∣∣∣∣h2i
<

ϵ

T
, (A38)

where (FY (τ) +C(τ))k is the k-th element of FY (τ) +C(τ) and we used
(2.29). Since

d

dτ
(Ỹ (τ)−Y (τ)) = F Ỹ (τ)+C(τ)−LY (τ) = F (Ỹ (τ)−Y (τ))+FY (τ)+C(τ)−LY (τ),

(A39)
where LY (τ) := (LY (τ,x(1)), ...,LY (τ,x(Ngr)))T , we finally obtain

‖Ỹ (τ)− Y (τ)‖ ≤ eτµ(F)‖Ỹ (0)− Y (0)‖

+

∫ τ

0
e(τ−τ

′)µ(F)‖FY (τ ′) +C(τ ′)− LY (τ ′)‖dτ ′

≤
√
Ngrϵ (A40)

by (2.1) in [113]. Here, we used Ỹ (0) = Y (0), µ(F) < 0 and (A38).

A2.2 Proof of Lemma 4.3.1

Upper bound the probability that the underlying asset prices
reach the boundaries

In order to prove Lemma 4.3.1, we weed some subsidiary lemmas. First, we
prove the following one on the probability that the underlying asset prices
reach the boundaries.

A2. PRICING MULTI-ASSET DERIVATIVES BY... 101

Lemma A2.2. Let ϵ be a positive real number. For Si, i ∈ [d] in (2.2) and
any t ∈ (0, t̃u], where

t̃u :=

(
log
(
Hi
Si,0

))2
σ2 log ϵ−1

, (A41)

the following holds

P

(
max
0≤s≤t

Si(s) ≥ Hi

∣∣∣∣ Si(t) = s

)
≤ ϵ if s <

√
Si,0Hi. (A42)

Similarly, for any t ∈ (0, t̃l), where

t̃l :=

(
log
(
Si,0

Li

))2
σ2 log ϵ−1

, (A43)

the following holds

P

(
min
0≤s≤t

Si(s) ≤ Li
∣∣∣∣ Si(t) = s

)
≤ ϵ if s >

√
Si,0Li. (A44)

Proof. It is well-known (see e.g. [2]) that Si(t) can be written as

Si(t) = Si,0 exp

(
σiWi(t)−

(
1

2
σ2i − r

)
t

)
. (A45)

Therefore, we see that

Si(t) = Hi ⇔ Bi(t) :=Wi(t)−
(
σi
2
− r

σi

)
t =

log
(
Hi
Si,0

)
σi

(A46)

and

Si(t) =
√
Si,0Hi ⇔ Bi(t) =

log
(
Hi
Si,0

)
2σi

. (A47)

Using a formula on the distribution of the maximum of a Brownian bridge
with drift (THEOREM 3.1 in [114]), we obtain

P

max
0≤s≤t

Bi(s) ≥
log
(
Hi
Si,0

)
σi

∣∣∣∣∣∣Bi(t) =
log
(
Hi
Si,0

)
2σi

 = exp

−2

t

log
(
Hi
Si,0

)
σi

log
(
Hi
Si,0

)
2σi

 .

(A48)
Then, for t ∈ (0, t̃u], we obtain (A42). The later part of the statement is
proven similarly.

Using Lemma A2.2, we can prove the following.

102 APPENDIX

Lemma A2.3. Consider S1, ..., Sd in (2.2). Let ϵ be a positive real number.
Then, for any S := (s1, ..., sd)

T ∈ Dhalf , where

Dhalf := (
√
L1S1,0,

√
U1S1,0)× · · · × (

√
LdSd,0,

√
UdSd,0), (A49)

and any t ∈ (0, tb], where

tb := min


(
log
(
U1
S1,0

))2
σ21 log

(
2d
ϵ

) , ...,

(
log
(
Ud
Sd,0

))2
σ2d log

(
2d
ϵ

) ,

(
log
(
S1,0

L1

))2
σ21 log

(
2d
ϵ

) , ...,

(
log
(
Sd,0

Ld

))2
σ2d log

(
2d
ϵ

)
 ,

(A50)
the following holds

pNB(t,S) ≥ 1− ϵ, (A51)

where pNB(t,S) is defined below (4.7).

Proof.

pNB(t,S)

≥ P (S(u) does not reach any boundaries by t | St = S)

= 1− P (S(u) reaches either of boundaries by t | St = S)

≥ 1−
d∑
i=1

P

(
max
0≤u≤t

Si(u) ≥ Hi

∣∣∣∣ Si(t) = si

)
−

d∑
i=1

P

(
min
0≤u≤t

Si(u) ≤ Li
∣∣∣∣ Si(t) = si

)
≥ 1− d× ϵ

2d
− d× ϵ

2d
= 1− ϵ, (A52)

where we used Lemma A2.2 at the last inequality.

Upper bound the integral on the outside of the boundaries

Besides, we need the following lemmas, in order to upper bound the contri-
bution from the outside of the boundaries to the integral (4.7).

Lemma A2.4. Consider Si, i ∈ [d] in (2.2). Let H be a real number such
that H > Si,0 and ϵ be a positive real number satisfying

log

(
1

2ϵ

)
>

4

5

(
1 +

2r

σ2i

)
log

(
H

Si,0

)
. (A53)

Then, for any t ∈ (0, tcu),∫ ∞

H
sϕi(t, s)ds < ϵSi,0e

rt,

∫ ∞

H
ϕi(t, s)ds < ϵ (A54)

holds, where ϕi(t, s) is the probability density of Si(t) and

tcu :=
8
(
log
(
H
Si,0

))2
25σ2i log

(
1
2ϵ

) . (A55)

A2. PRICING MULTI-ASSET DERIVATIVES BY... 103

Proof. Because of (A45) and the basic property of the Brownian motion,
the probability density of xi(t) = logSi(t) is

1√
2πtσi

exp

(
− 1

2σ2i t

(
x−

(
r − 1

2
σ2i

)
t

)2
)
. (A56)

Therefore, we see that∫ ∞

H
sϕi(t, s)ds

=

∫ ∞

log(H/Si,0)
ex

1√
2πtσi

exp

(
− 1

2σ2i t

(
x−

(
r − 1

2
σ2i

)
t

)2
)
dx

=
Si,0√
2πtσi

ert
∫ ∞

log(H/Si,0)
exp

(
− 1

2σ2i t

(
x−

(
r +

1

2
σ2i

)
t

)2
)
dx

<
Si,0e

rt

2
exp

(
− 1

2σ2i t

(
log

(
H

Si,0

)
−
(
r +

σ2i
2

)
t

)2
)
. (A57)

Here, we used
2√
π

∫ ∞

c
e−y

2
dy < e−c

2
, (A58)

which hold for any c ∈ R+. Besides, because of (A53) and (A55),

(
r +

σ2

2

)
t <

(
r +

σ2

2

) 8
(
log
(
H
Si,0

))2
25σ2 log

(
1
2ϵ

) <
1

5
log

(
H

Si,0

)
(A59)

holds for t ∈ (0, tcu). Combining (A55), (A57) and (A59), we obtain

∫ ∞

H
sϕi(tcu, s)ds <

Si,0e
rt

2
exp

(
− 1

2σ2i t

16

25

(
log

(
H

Si,0

))2
)
< ϵSi,0e

rt

(A60)
for t ∈ (0, tcu).

On the other hand,∫ ∞

H
ϕi(tcu, s)ds

=

∫ ∞

log(H/S0)

1√
2πtσ

exp

(
− 1

2σ2t

(
x−

(
r − 1

2
σ2
)
t

)2
)
dx

<
1

2
exp

(
− 1

2σ2t

(
log

(
H

S0

)
−
(
r − σ2

2

)
t

)2
)
, (A61)

104 APPENDIX

where we used (A58) again. Combining this and
(
r − σ2

i
2

)
t < 1

5 log
(
H
Si,0

)
,

which holds for t ∈ (0, tcu) because of (A59), we obtain

∫ ∞

H
ϕ(tcu, s)ds <

1

2
exp

(
− 1

2σ2i t

16

25

(
log

(
H

Si,0

))2
)
< ϵ. (A62)

Lemma A2.5. Consider Si, i ∈ [d] in (2.2). Let L be a real number such
that L < Si,0 and ϵ be a positive real number satisfying

log

(
1

2ϵ

)
>

4

5

(
1− 2r

σ2i

)
log

(
Si,0
L

)
. (A63)

Then, for any t ∈ (0, tcl),∫ L

0
sϕi(t, s)ds < ϵSi,0e

rt,

∫ L

0
ϕi(t, s)ds < ϵ (A64)

holds, where ϕi(t, s) is the probability density of Si(t) and

tcl :=
8
(
log
(
Si,0

L

))2
25σ2i log

(
1
2ϵ

) . (A65)

Proof. Similarly to (A57), for t ∈ (0, tcl),∫ L

0
sϕi(t, s)ds

=

∫ log(L/Si,0)

−∞
ex

1√
2πtσi

exp

(
− 1

2σ2i t

(
x−

(
r − 1

2
σ2i

)
t

)2
)
dx

=
Si,0√
2πtσi

ert
∫ log(L/Si,0)

−∞
exp

(
− 1

2σ2i t

(
x−

(
r +

1

2
σ2i

)
t

)2
)
dx

<
Si,0e

rt

2
exp

(
− 1

2σ2i t

(
log

(
Si,0
L

)
+

(
r +

σ2i
2

)
t

)2
)

<
Si,0e

rt

2
exp

(
− 1

2σ2i t

(
log

(
Si,0
L

))2
)

< ϵSi,0e
rt, (A66)

where we used (A58) at the first inequality and (A65) at the last inequality.

A2. PRICING MULTI-ASSET DERIVATIVES BY... 105

On the other hand,∫ L

0
ϕ(t, s)ds

=

∫ log(L/Si,0)

−∞

1√
2πtσi

exp

(
− 1

2σ2i t

(
x−

(
r − 1

2
σ2i

)
t

)2
)
dx

<
1

2
exp

(
− 1

2σ2i t

(
log

(
Si,0
L

)
+

(
r − σ2i

2

)
t

)2
)
, (A67)

where we used (A58) again. Then, for t ∈ (0, tcl), (A67) and

(
σ2i
2
− r
)
t <

(
σ2i
2
− r
) 8

(
log
(
Si,0

L

))2
25σ2i log

(
1
2ϵ

) <
1

5
log

(
Si,0
L

)
, (A68)

which follows (A63), lead to∫ L

0
ϕi(t, s)ds <

1

2
exp

(
− 1

2σ2i t

16

25

(
log

(
Si,0
L

))2
)
< ϵ. (A69)

Combining these lemma, we obtain the following.

Lemma A2.6. Consider S1, ..., Sd in (2.2) under Assumption 4.3.1. For
any ϵ ∈ R+ satisfying

log

(
Ãd(d+ 1)

ϵ

)
> max

{
2

5

(
1− 2r

σ2i

)
log

(
Ui
Si,0

)
,
2

5

(
1− 2r

σ2i

)
log

(
Si,0
Li

)}
, i = 1, ..., d,

(A70)
where Ã = max{A1

√
U1S1,0, ..., Ad

√
UdSd,0, A0}, the following holds

e−rtter
∫
Rd
+\Dhalf

dSϕ(tter,S)V (tter,S) ≤ ϵ, (A71)

where tter is defined as (4.14) and Dhalf is defined as (A49).

Proof. First, note that, under Assumption 4.3.1, for S = (S1, ..., Sd)
T ∈ Rd+,

V (tter,S) = E[e−r(T−tter)fpay(S(T))1NB|S(tter) = S]

≤ E

[
e−r(T−tter)

(
d∑
i=1

AiSi(T) +A0

)∣∣∣∣∣S(tter) = S

]

=
d∑
i=1

AiSi +A0e
−r(T−tter). (A72)

106 APPENDIX

Therefore, we obtain

e−rtter
∫
Rd
+\Dhalf

dSϕ(tter,S)V (tter,S) ≤
d∑
i=1

Aie
−rtter

∫
Rd
+\Dhalf

dSSiϕ(tter,S)

+A0e
−rT

∫
Rd
+\Dhalf

dSϕ(tter,S).

(A73)

We can evaluate A1e
−rtter

∫
Rd
+\Dhalf

dSS1ϕ(tter,S) as follows

A1e
−rtter

∫
Rd
+\Dhalf

dSS1ϕ(tter,S) ≤ A1e
−rtter

∫
S1≥
√
U1S1,0

dSS1ϕ(tter,S)

+ A1e
−rtter

∫
S1≤
√
L1S1,0

dSS1ϕ(tter,S)

+
d∑
i=2

A1e
−rtter

∫
√
L1S1,0≤S1≤

√
U1S1,0

Si≥
√
UiSi,0

dSS1ϕ(tter,S)

+

d∑
i=2

A1e
−rtter

∫
√
L1S1,0≤S1≤

√
U1S1,0

Si≤
√
LiSi,0

dSS1ϕ(tter,S)

. (A74)

In the right hand side, the first term is A1e
−rtter

∫∞√
U1S1,0

dS1S1ϕ1(tter, S1),

where ϕi(t, Si) is the marginal density of Si(t), and therefore

A1e
−rtter

∫
S1≥
√
U1S1,0

dSS1ϕ(tter,S) ≤
ϵS1,0A1

2d(d+ 1)Ã
≤ ϵ

2d(d+ 1)
(A75)

holds from Lemma A2.41. Similarly, from Lemma A2.5, the second term is
bounded as

A1e
−rtter

∫
S1≤
√
L1S1,0

dSS1ϕ(tter,S) ≤
ϵ

2d(d+ 1)
. (A76)

On the other hand, from Lemma A2.4, we see that the third term is bounded

1Note that

8

(
log

(√
UiSi,0

Si,0

))2

25σ2
i log

(
2Ãd(d+1)

ϵ

) =
2
(
log

(
Ui
Si,0

))2

25σ2
i log

(
2Ãd(d+1)

ϵ

) , 8
(
log

(
Si,0√
LiSi,0

))2

25σ2
i log

(
2Ãd(d+1)

ϵ

) =
2
(
log

(
Si,0

Li

))2

25σ2
i log

(
2Ãd(d+1)

ϵ

) .

A2. PRICING MULTI-ASSET DERIVATIVES BY... 107

as

d∑
i=2

A1e
−rtter

∫
√
L1S1,0≤S1≤

√
U1S1,0

Si≥
√
UiSi,0

dSS1ϕ(tter,S)

≤
d∑
i=2

A1

√
U1S1,0

∫
√
L1S1,0≤S1≤

√
U1S1,0

Si≥
√
UiSi,0

dSϕ(tter,S)

≤
d∑
i=2

A1

√
U1S1,0

∫ ∞

√
UiSi,0

dsϕi(tter, s)

≤
d∑
i=2

ϵA1

√
U1S1,0

2d(d+ 1)Ã

≤
d∑
i=2

ϵ

2d(d+ 1)

=
ϵ(d− 1)

2d(d+ 1)
(A77)

and, similarly, the fourth term is bounded as

d∑
i=2

A1e
−rtter

∫
√
L1S1,0≤S1≤

√
U1S1,0

Si≤
√
LiSi,0

dSS1ϕS(tter,S) ≤
ϵ(d− 1)

2d(d+ 1)
(A78)

by Lemma A2.5. In summary,

A1e
−rtter

∫
Rd
+\Dhalf

dSS1ϕ(tter,S) ≤
ϵ

d+ 1
(A79)

holds. A2e
−rtter

∫
Rd
+\Dhalf

dSS2ϕ(tter,S), ..., Ade
−rtter

∫
Rd
+\Dhalf

dSSdϕ(tter,S)

are bounded similarly.
On the other hand, by Lemmas A2.4 and A2.5,

A0e
−rtter

∫
Rd
+\Dhalf

dSϕ(tter,S)

≤
d∑
i=1

(
A0e

−rtter
∫
Si≥
√
UiSi,0

dSϕ(tter,S) +A0e
−rtter

∫
Si≤
√
LiSi,0

dSϕ(tter,S)

)

≤
d∑
i=1

ϵA0e
−rtter

d(d+ 1)Ã

≤ ϵ

d+ 1
(A80)

holds.
Summing up all terms, we obtain (A71).

108 APPENDIX

Proof of Lemma 4.3.1

Then, we finally prove Lemma 4.3.1.

The proof of Lemma 4.3.1. Note that tter satisfies

tter < min


(
log
(
U1
S1,0

))2
σ21 log

(
2d(d+1) ˜̃A

ϵ

) , ...,
(
log
(
Ud
Sd,0

))2
σ2d log

(
2d(d+1) ˜̃A

ϵ

) ,
(
log
(
S1,0

L1

))2
σ21 log

(
2d(d+1) ˜̃A

ϵ

) ,

...,

(
log
(
Sd,0

Ld

))2
σ2d log

(
2d(d+1) ˜̃A

ϵ

)
 , (A81)

where ˜̃A := max{A0, A1S1,0, ..., AdSd,0}. Besides, we can see that

∣∣∣∣V (0,S0)− e−rT
∫

˜̃D
dxϕ̃(tter,x)Y (τter,x)

∣∣∣∣
=

∣∣∣∣V (0,S0)− e−rtter
∫
D̂
dSϕ(tter,S)V (tter,S)

∣∣∣∣
=

∣∣∣∣e−rtter ∫ dSRd
+
ϕ(tter,S)pNB(tter,S)V (tter,S)− e−rtter

∫
D̂
dSϕ(tter,S)V (tter,S)

∣∣∣∣
=

∣∣∣∣e−rtter ∫
Dhalf

dSϕ(tter,S)pNB(tter,S)V (tter,S)

+e−rtter
∫
Rd
+\Dhalf

dSϕ(tter,S)pNB(tter,S)V (tter,S)

− e−rtter
∫
Dhalf

dSϕ(tter,S)V (tter,S)− e−rtter
∫
D̂\Dhalf

dSϕ(tter,S)V (tter,S)

∣∣∣∣∣
≤

∣∣∣∣e−rtter ∫
Dhalf

dSϕ(tter,S)pNB(tter,S)V (tter,S)

−e−rtter
∫
Dhalf

dSϕ(tter,S)V (tter,S)

∣∣∣∣
+

∣∣∣∣∣e−rtter
∫
Rd
+\Dhalf

dSϕ(tter,S)pNB(tter,S)V (tter,S)

−e−rtter
∫
D̂\Dhalf

dSϕ(tter,S)V (tter,S)

∣∣∣∣∣ ,
(A82)

A2. PRICING MULTI-ASSET DERIVATIVES BY... 109

where

D̂ :=

[
exp

(
1

2

(
l1 + x

(0)
1

))
, exp

(
1

2

(
x
(ngr−1)
1 + u1

))]
×

· · · ×
[
exp

(
1

2

(
ld + x

(0)
d

))
, exp

(
1

2

(
x
(ngr−1)
d + ud

))]
. (A83)

The first term in the last line in (A82) is bounded as∣∣∣∣e−rtter ∫
Dhalf

dSϕ(tter,S)pNB(tter,S)V (tter,S)− e−rtter
∫
Dhalf

dSϕ(tter,S)V (tter,S)

∣∣∣∣
= e−rtter

∫
Dhalf

dSϕ(tter,S)(1− pNB(tter,S))V (tter,S)

≤ e−rtterϵ
˜̃A(d+ 1)

∫
Dhalf

dSϕS(tter,S)V (tter,S)

≤ e−rtterϵ
˜̃A(d+ 1)

∫
Rd
+

dSϕS(tter,S)V (tter,S)

≤ e−rtterϵ
˜̃A(d+ 1)

∫
Rd
+

dSϕS(tter,S)

(
d∑
i=1

AiSi +A0e
−r(T−tter)

)

=
ϵ

˜̃A(d+ 1)

(
d∑
i=1

AiSi,0 +A0e
−r(T−tter)

)
≤ ϵ, (A84)

where we used Lemma A2.3 and (A81) at the first inequality, and (A72)
at the third inequality. On the other hand, the second term of (A82) is
bounded as∣∣∣∣∣e−rtter

∫
Rd
+\Dhalf

dSϕ(tter,S)pNB(tter,S)V (tter,S)− e−rtter
∫
D̂\Dhalf

dSϕ(tter,S)V (tter,S)

∣∣∣∣∣
=

∣∣∣∣∣e−rtter
∫
Rd
+\D̂

dSϕ(tter,S)pNB(tter,S)V (tter,S)

− e−rtter
∫
D̂\Dhalf

dS(1− pNB(tter,S))ϕ(tter,S)V (tter,S)

∣∣∣∣∣
≤ e−rtter

∫
Rd
+\D̂

dSϕ(tter,S)pNB(tter,S)V (tter,S)

+ e−rtter
∫
D̂\Dhalf

dS(1− pNB(tter,S))ϕ(tter,S)V (tter,S)

≤ e−rtter
∫
Rd
+\Dhalf

dSϕ(tter,S)V (tter,S)

≤ ϵ, (A85)

110 APPENDIX

where we used Lemma A2.6 and tter < tc at the last inequality. Combining
these, we obtain (4.13).

A2.3 Proof of Lemma 4.4.1

Proof. The following holds∣∣∣e−rTp · Ỹ (τter)− V0
∣∣∣ ≤ e−rT

∣∣∣p · (Ỹ (τter)− Y (τter)
)∣∣∣

+ e−rT
∣∣∣∣p · Y (τter)−

∫
˜̃D
dxϕ̃(tter,x)Y (τter,x)

∣∣∣∣
+

∣∣∣∣e−rT ∫ ˜̃D
dxϕ̃(tter,x)Y (τter,x)− V0

∣∣∣∣ . (A86)

The first term can be evaluated as

e−rT
∣∣∣p · (Ỹ (τter)− Y (τter)

)∣∣∣
≤ e−rT ‖p‖ ×

∥∥∥Ỹ (τter)− Y (τter)
∥∥∥

< e−rT

√∏d
i=1∆i

(4π)d/4
√
Ngr(det ρ)1/4

√
Ngr

(4π)d/4(det ρ)1/4√∏d
i=1∆i

ϵ

= e−rT ϵ

< ϵ, (A87)

where we used (4.34), (4.37), and Lemma 2.2.1. In order to bound the second
term, we note that p·Y (τter) is an approximation of

∫
˜̃D
dxϕ̃(tter,x)Y (τter,x)

by the midpoint rule. Then, according to [89],∣∣∣∣p · Y (τter)−
∫

˜̃D
dxϕ̃(tter,x)Y (τter,x)

∣∣∣∣ < 1

24

(
d∑
i=1

h2i

)
×

(
d∏
i=1

(ui − li)

)
× η

(A88)
holds under Assumption 4.4.1, and therefore

e−rT
∣∣∣∣p · Y (τter)−

∫
˜̃D
dxϕ̃(tter,x)Y (τter,x)

∣∣∣∣ < e−rT ϵ < ϵ (A89)

under (4.37). The third term can be bounded as (4.13) by Lemma 4.3.1.
Combining (A87), (A89) and (4.13), we obtain the claim.

A2.4 Proof of Lemma 4.4.2

Proof. Applying the algorithm in [4] to the ODE system (2.23) with hi
satisfying (4.37), we obtain (4.44). Since smaller hi’s lead to larger ‖F‖,

A2. PRICING MULTI-ASSET DERIVATIVES BY... 111

and then larger complexity, we take as large hi’s as possible, that is,

hi =
ui − li⌈
ui−li
h̃i

⌉ = Θ(h̃i) (A90)

Then, we can evaluate the complexity by substituting s and ‖A‖ in (4.6)
with the sparsity and norm of F , respectively. The sparsity of F is O(d2),
since the matrices constituting F as (2.25) have sparsity at most 4 and the
total number of them is O(d2). Besides,

‖F‖ = O

max


√∏d

i=1∆id
2Ξσ2max

(4π)d/4(det ρ)1/4
, dη

d∏
i=1

(ui − li)

× d2σ2max

ϵ

 (A91)

for hi = Θ(h̃i), as we will show soon. Using these, we obtain (4.45) by
simple algebra.

The remaining task is to show (A91). Note that

‖F‖ ≤
d∑
i=1

σ2i
2h2i
‖D2nd‖+

d−1∑
i=1

d∑
j=i+1

σiσj
4hihj

‖D1st‖2 +
d∑
i=1

1

2hi

∣∣∣∣r − 1

2
σ2i

∣∣∣∣ ‖D1st‖

=
d∑
i=1

2σ2i
h2i

+
d−1∑
i=1

d∑
j=i+1

σiσj
hihj

+
d∑
i=1

1

hi

∣∣∣∣r − 1

2
σ2i

∣∣∣∣ . (A92)

Here, we used ‖D1st‖ = 2, ‖D2nd‖ = 4, which follows the fact that the
eigenvalues of the n× n tridiagonal Toeplitz matrix

b c
a b c

. . .
. . .

. . .

a b c
a b

 ,

where a, b, c ∈ C, are b+2
√
ac cos

(
jπ
n+1

)
, j = 1, ..., n[115]. Then, substitut-

ing hi in (A92) by h̃i, we obtain (A91) by simple algebra.

A2.5 Proof of Theorem 4.4.1

Proof. First, we show that, for ϵ1, ϵ2 and ϵΨ satisfying (4.61), (4.62) and
(4.65), respectively, Algorithm 2 outputs ω such that (4.66). For this, we

begin with writing
∣∣∣Ψ̃mod

〉
, the state which we obtain by applying the QLS

algorithm of [23] to (4.48), in the form of∣∣∣Ψ̃mod

〉
:=

1

Z̃

(∣∣∣Ψ̃gar

〉
+
∣∣∣Ψ̃1

〉
+
∣∣∣Ψ̃2

〉)
, (A93)

112 APPENDIX

where
∣∣∣Ψ̃gar

〉
,
∣∣∣Ψ̃1

〉
and

∣∣∣Ψ̃2

〉
are the unnormalized states in the forms of

∣∣∣Ψ̃gar

〉
:=

p(k+1)−1∑
j=0

|j〉 |ψj〉 ,
∣∣∣Ψ̃1

〉
:=

p(k+2)∑
j=p(k+1)

|j〉 |ψj〉 ,
∣∣∣Ψ̃2

〉
:=

p(k+3)+1∑
j=p(k+2)

|j〉 |ψj〉 ,

(A94)
with some unnormalised states, respectively, and

Z̃ :=

√〈
Ψ̃gar

∣∣∣Ψ̃gar

〉
+ 〈Ψ1|Ψ1|Ψ1|Ψ1〉+ 〈Ψ2|Ψ2|Ψ2|Ψ2〉 (A95)

. Because of (4.64), we see that

|
〈
Π|Ψ̃mod

∣∣∣Π|Ψ̃mod

〉
− 〈Π|Ψmod|Π|Ψmod〉 | < ϵΨ. (A96)

Then, since E1, the output of the step 1 in Algorithm 2, satisfies

|E1 −
〈
Ψ̃mod

∣∣∣Π∣∣∣Ψ̃mod

〉
| < ϵ1, (A97)

we obtain
|E1 − 〈Ψmod|Π|Ψmod〉 | < ϵ1 + ϵΨ. (A98)

Similarly, since ∥∥∥∥∥∥ 1Z̃
∣∣∣Ψ̃2

〉
− 1

Z

p(k+3)+1∑
j=p(k+2)+1

|j〉 |γ〉

∥∥∥∥∥∥ < ϵΨ (A99)

because of (4.64) and ∣∣∣∣∣∣E2 −
‖
∣∣∣Ψ̃2

〉
‖

Z̃

∣∣∣∣∣∣ < ϵ2, (A100)

we obtain∣∣∣∣∣∣E2 −

∥∥∥∥∥∥ 1Z
p(k+3)+1∑
j=p(k+2)+1

|j〉 |γ〉

∥∥∥∥∥∥
∣∣∣∣∣∣ =

∣∣∣∣∣E2 −
γ
√
(p+ 1)Ngr

Z

∣∣∣∣∣ < ϵ2 + ϵΨ. (A101)

Using (A98) and (A101), we see that ω := e−rTγ
√
NgrPE1/E2 satisfies∣∣∣ω − e−rTp · Ỹ (τter)

∣∣∣ < e−rTPZ√
p+ 1

(ϵΨ + ϵ1) +
e−rT (p · Ỹ (τter))Z

γ
√
(p+ 1)Ngr

(ϵΨ + ϵ2),

(A102)
by simple algebra. Here, note that, because of (4.47) and Assumption 4.4.4,

Z = O

(
g
√

(p+ 1)NgrȲ (τter)

)
= O

(
g
√

(p+ 1)Ngrγ

)
(A103)

A2. PRICING MULTI-ASSET DERIVATIVES BY... 113

holds. Thus, if ϵ1, ϵ2 and ϵΨ satisfy (4.61), (4.62) and (4.65), respectively,
combining (A102), (A103) and (4.34) leads to

∣∣∣∣∣e−rTγ
√
NgrPE1

E2
− e−rTp · Ỹ (τter)

∣∣∣∣∣ = O(ϵ). (A104)

Finally, this and (4.38) yield (4.66).

Next, let us show that Algorithm 2 with such ϵ1, ϵ2 and ϵΨ has the

complexity (4.67). We just multiply the complexity of generating
∣∣∣Ψ̃mod

〉
once, which is given by (4.45) with ϵ′ = ϵΨ, by the number of the generation,
which is O(max{1/ϵ1, 1/ϵ2}) since the QAE with O(1/δ) queries outputs the
estimation with the error of O(δ) with a success probability higher than a
specified value (say, 0.99) [6, 18]. By simple algebra, we obtain (4.67).

A2.6 How to generate a payoff-Encoded state for a call or
put option

Here, let us consider how to generate a quantum state
∣∣∣f̃pay〉 /‖f̃pay‖ in

which a payoff vector f̃pay is is amplitude encoded, for a simple case where
the payoff function depends on only one asset price S1 and takes the call-
option-like form of fpay(S1) = max{K − S1, 0}, the following discussion
can be applied with a slight modification. As mentioned in Section 4.4.1,
creation of such a state is possible by a procedure like Algorithm 1, if we can
compute (4.43) on a quantum circuit. In the current case, this boils down
to

f1,j(b1, . . . , bj) =∫ 1
2
(xL1,j(b1,...,bj)+x

R
1,j(b1,...,bj))

xL1,j(b1,...,bj)
dx1 (max{c(ex1 −K), 0})2∫ xR1,j(b1,...,bj)

xL1,j(b1,...,bj)
dx1 (max{c(ex1 −K), 0})2

(163)

where xL1,j and x
R
1,j are defined as (4.31), j = 0, 1, . . . ,mgr−1 and b1, . . . , bj ∈

{0, 1}. When the denominator of this is 0, we regard it as 0. By straightfor-
ward calculation, we obtain f1,0 = fATM

0 and, for j ∈ [mgr−1], f1,j(b1, . . . , bj)
as (A105), shown at the bottom of this page.

114 APPENDIX

f1,j(b1, . . . , bj)

=


0, if Bj < BK

j

fATM
j , if Bj = BK

j
1
2
K2δj−2K(exp(1

2
δj)−1) exp(xL)+ 1

2
(exp(δj)−1) exp(2xL)

K2δj−2K(exp(δj)−1) exp(xL)+ 1
2
(exp(2δj)−1) exp(2xL)

=: f ITM
j (b1, . . . , bj), if Bj > BK

j

(A105)

fATM
j

:=

 0, if xLK + 1
2δj ≤ k

K2(xLK+ 1
2
δj−k)−2K(exp(xLK+ 1

2
δj)−K)+ 1

2(exp(2x
L
K+δj)−K2)

K2(xLK+δj−k)−2K(exp(xLK+δj)−K)+ 1
2(exp(2x

L
K+2δj)−K2)

, otherwise

(A106)

Here, fATM
j is given as (A106), shown at the bottom of this page, k :=

logK, δj := 2−j (u1 − l1), xL is the abbreviation of xL1,j (b1, . . . , bj), B is the

positive integer with the j-th bit representation b1, · · · , bj , BK
j is the positive

integer with the j-bit representation
(
BK
j

)[1]
· · ·
(
BK
j

)[j]
satisfying xLK ≤

k < xLK+δj , and x
L
K := x

(0)
1 if j = 0 and xLK := xL1,j

((
BK
j

)[1]
, . . . ,

(
BK
j

)[j])
otherwise.

f1,j (b1, . . . , bj) can be calculated by the quantum circuit in Fig. 1. This
receives Bj on the top register as an input and outputs f ITM

j (b1, . . . , bj)
onto the bottom register, using some ancillary registers. Here, the “Bj =
BK
J ” gate is just a multiple controlled NOT gate and outputs 1 if Bj =

BK
J and 0 otherwise, the “Bj > BK

J ” gate is virtually a subtracter [31]
and outputs 1 if Bj > BK

j and 0 otherwise, the controlled setter of the

precomputable fATM
j is a collection of CNOT gates, and the controlled

copier, which is made of Toffoli gates, sets f ITM
j (b1, . . . , bj) calculated by

the “calcf ITM
j (b1, . . . , bj)” gate to the bottom register if Bj > BK

j . In this

circuit, calculation of exp
(
xL
)
in the “calcf ITM

j (b1, . . . , bj)” gate, which can
be done as a series of many multiplications and additions, as shown in [59]
is the bottleneck part. Note that there is only one exponential calculation,
since, after we get exp

(
xL
)
, we can calculate calcf ITM

j (b1, . . . , bj) by several
times of four arithmetic operations [116, 117, 118, 119, 120, 121, 122, 123,
124, 125, 126, 127, 128, 129, 130] using exp

(
xL
)
and precomputable factors

such as 1
2 (exp(δj)− 1).

Similarly to Algorithm 2, in order to generate
∣∣∣f̃pay〉 /‖f̃pay‖, we repeat

calculation of f1,j(b1, . . . , bj) and the operation

|0̄〉 →
√
f1,j(b1, . . . , bj)|0̄〉+

√
1− f1,j(b1, . . . , bj)|1̄〉 (A107)

A2. PRICING MULTI-ASSET DERIVATIVES BY... 115

Figure 1: Quantum circuit to calculate f1,j(b1, . . . , bj). The dashed wire
going over a gate means that the corresponding register is not used in the
operation of the gate. An expression in a gate and beside a wire means the
input or the output of the gate.

mgr times. Given f1,j(b1, . . . , bj), we can perform (A107) by square root,
arcsin, and controlled rotation. Among these, arcsin, which is done by a
series of multiplications and additions similarly to exponential [31], is most
costly.2

Consequently, the time complexity of generating
∣∣∣f̃pay〉 /‖f̃pay‖ is roughly

the sum of those of exponential and arcsin times mgr. Let us take the num-
ber of Toffoli gates as a metric of the time complexity, as [59]. According
to that paper, the Toffoli-counts for exponential and arcsin with error up to
10−5 are about 8000 and 5000, respectively, and we therefore estimate the

Toffoli-count for generating
∣∣∣f̃pay〉 /‖f̃pay‖ as 1.3× 104 ×mgr.

2Square root can be implemented with the gate number scaling with the input qubit
number similarly to multiplication [131].

116 APPENDIX

A3 Pricing multi-asset derivatives by variational
quantum algorithms

A3.1 Elements of the matrix and the vector of the finite
difference method for the BSPDE

Here, we show the concrete elements of D1st
xi in Eqs. (5.25)(5.24), D2nd

xi in
Eq. (5.24), and C in Eq. (5.21). D1st

xi and D2nd
xi are written by

D1st
xi =



0 x
(1)
i

−x(0)i 0 x
(2)
i

−x(1)i 0 x
(3)
i

. . .
. . .

. . .

−x(ngr−3)
i 0 x

(ngr−1)
i

−x(ngr−2)
i 0


, (A108)

and

D2nd
xi

=



−2
(
x
(0)
i

)2 (
x
(1)
i

)2(
x
(0)
i

)2
−2
(
x
(1)
i

)2 (
x
(2)
i

)2(
x
(1)
i

)2
−2
(
x
(2)
i

)2 (
x
(3)
i

)2
. . .

. . .
. . .(

x
(ngr−3)
i

)2
−2
(
x
(ngr−2)
i

)2 (
x
(ngr−1)
i

)2(
x
(ngr−2)
i

)2
−2
(
x
(ngr−1)
i

)2


,

(A109)

A3. PRICING MULTI-ASSET DERIVATIVES... 117

respectively. C(τ) corresponds to the boundary conditions, and its elements
Ck(τ) are

Ck(τ) =

d∑
i=1

σ2i
2h2i

[
(li + hi)

2δki,0V̄
LB
i (τ,x

(k)
∧i) + (li + ngrhi)

2δki,ngr−1V̄
UB
i (τ,x

(k)
∧i)
]

+

d−1∑
i=1

d∑
j=i+1

σiσjρij
4hihj

×
[
−(li + hi)(lj + (kj + 1)hj)δki,0V̄

LB
i (τ,x

(k)
∧i)

−(li + (ki + 1)hi)(lj + hj)δkj ,0V̄
LB
j (τ,x

(k)
∧j)

+ (li + ngrhi)(lj + (kj + 1)hj)δki,ngr−1V̄
UB
i (τ,x

(k)
∧i)

+(li + (ki + 1)hi)(lj + ngrhj)δkj ,ngr−1V̄
UB
j (τ,x

(k)
∧j)
]

+ r
d∑
i=1

1

2hi

[
(li + ngrhi)δki,ngr−1V̄

UB
i (τ,x

(k)
∧i)− (li + hi)δki,0V̄

LB
i (τ,x

(k)
∧i)
]
,

(A110)

where V̄ UB
i (τ,x

(k)
∧i) = V UB

i (τ,x
(k)
∧i) and V̄

LB
i (τ,x

(k)
∧i) = V LB

i (τ,x
(k)
∧i).

A3.2 Decomposition of matrices

As discussed in Sec. 5.3, we need to express F and |C(τ)〉 in terms of linear
combination of quantum gates to perform the VQS for the BSPDE. Here, we
show that such decomposition is possible. The decomposition of F is based
on the way shown in Refs. [70, 30]. We also obtain a linear combination of
quantum gates that generates |C(τ)〉 by slightly modifying the decomposi-
tion of F . For simplicity, we assume Ngr = 2n where n is the number of
qubits. D1st

xi , D
2nd
xi in Eqs. (5.25)(5.24) are decomposed as follows,

D1st
xi = liD

1st + hi
(
Dec(n)(J(n) + 2I⊗n)

−Inc(n)
(
J(n) + I⊗n

))
, (A111)

D2nd
xi = l2iD

2nd

+ 2lihi
(
Dec(n)− 2I⊗n + Inc(n)

)
(J(n) + I)

+ h2i
(
Dec(n)− 2I⊗n + Inc(n)

)
(J(n) + I)2. (A112)

118 APPENDIX

Here, we define

D1st := −Inc(n) + Dec(n) (A113)

D2nd := Inc(n) + Dec(n)− 2I⊗n (A114)

J(n) :=
2n−1∑
i=0

i |i〉 〈i| = 2n − 1

2
I⊗n −

n∑
i=1

2n−i−1Zi (A115)

Inc(n) :=
2n−2∑
i=0

|i+ 1〉 〈i| (A116)

Dec(n) :=
2n−1∑
i=1

|i− 1〉 〈i| (A117)

(A118)

where Zi := I⊗i−1⊗Z ⊗ I⊗n−i. Inc(n),Dec(n) are constructed by following
operators

CycInc(n) :=

2n−1∑
i=0

|i+ 1〉 〈i| , (A119)

CycDec(n) :=

2n−1∑
i=1

|i− 1〉 〈i| , (A120)

(A121)

where we define |−1〉 := |2n − 1〉 , |2n〉 := |0〉. CycInc(n),CycDec(n) can
be decomposed into a product of O(n) Toffoli, CNOT, X gates with O(n)
ancilla qubits [132]. With these circuits, we obtain

Inc(n) =
1

2
CycInc(n)(Cn−1Z + I⊗n), (A122)

Dec(n) =
1

2
(Cn−1Z + I⊗n)CycDec(n). (A123)

Cn−1Z :=
∑2n−2

i=0 |i〉 〈i| − |2n − 1〉 〈2n − 1| is an n qubit control Z gate and
can be implemented as a product of O(n2) Toffoli, CNOT, and single-qubit
gates [41]. We can express D1st

xi and D2nd
xi as sums of O(n2) unitary oper-

ators, each of which is a product of O(n2) few-qubit gates. Then, the first
term of Eq. (5.24) is a sum of O(dn2) operators, each of which is made by
O(n2) few-qubit gates. The second term is the sum of O(d2n4) unitary op-
erators each of which is made by O(n2) few-qubit gates. From Eqs. (5.24)
and (5.25), we see that F can eventually be expressed as a sum of O(d2n4)
unitary operators each of which is made by O(n2) few-qubit gates.

It is also necessary to construct a linear combination of unitary operators
that outputs the quantum state |C(τ)〉 =

∑Ngr

k=1Ck(τ) |k〉. Here, we consider

A3. PRICING MULTI-ASSET DERIVATIVES... 119

specific cases where fpay(S(T)) = max(a0+
∑d

i=1 ajSj(T)−K, 0), and some
assets have knock-out conditions. These are the cases where the typical
boundary conditions introduced in Sec. 5.2.2 are compounded. In these
cases, we can write

|C(τ)〉 = G̃ |0〉 = 2nd/2G(τ)H⊗nd |0〉 (A124)

where

G(τ) =
d∑
i=1

σ2i
2hi

[
(li + hi)

2G
(0)
i BLB

i (τ)δUB
i + (li + ngrhi)

2G
(ngr−1)
i BUB

i (τ)δUB
i

]
+

d−1∑
i=1

d∑
j=i+1

σiσjρij
4hihj

×
[
−(li + hi)(ljI

⊗dn + hjJj)G
(0)
i BLB

i (τ)δLBi

−(liI⊗dn + hiJi(n))(lj + hj)G
(0)
j BLB

j (τ)δLBi

+ (li + ngrhi)(ljI
⊗dn + hjJj)G

(ngr−1)
i BUB

i (τ)δUB
i

+(liI
⊗dn + hiJi(n))(lj + ngrhj)G

(ngr−1)
j BUB

j (τ)δUB
i

]
+ r

d∑
i=1

1

2hi

[
(li + ngrhi)G

(ngr−1)
i BUB

i (τ)δLBi − (li + hi)G
(0)
i BLB

i (τ)δLBi

]
,

(A125)

where

δUB
i =

{
0 up and out barrier is set the i-th asset

1 otherwise
, (A126)

δLBi =

{
0 down and out barrier is set to the i-th asset

1 otherwise
, (A127)

120 APPENDIX

and

G
(0)
i = I⊗n(i−1) ⊗ |0〉〈0|⊗n ⊗ In(d−i) (A128)

G
(ngr−1)
i = I⊗n(i−1) ⊗ |1〉〈1|⊗n ⊗ In(d−i) (A129)

BUB
i (τ) = e−rτa0I

⊗nd

+
∑

1≤j≤d,j ̸=i
aj

(
ljI

⊗nd + (ngr − 1)hjJj + I⊗nd
)

+ ailiI
⊗nd (A130)

BLB
i (τ) = e−rτa0I

⊗nd

+
∑

1≤j≤d,j ̸=i
aj

(
ljI

⊗nd + (ngr − 1)hjJj + I⊗nd
)

+ aiuiI
⊗nd (A131)

Ji(n) = I⊗n(i−1) ⊗ (J(n) + I⊗n)⊗ I⊗n(d−i) (A132)

where |0〉〈0|⊗n = 1
2 (I

⊗n −X⊗n · CnZ ·X⊗n) and |1〉〈1|⊗n = 1
2

(
I⊗n + Cn−1Z

)
.

G
(0)
i andG

(ngr)
i are expressed as a sum of O(1) unitary operator each of which

is made by O(n2) few-qubit gates. BUB
i and BLB

i are expressed as a sum
of O(dn) unitary operators, each of which is made by O(n) few-qubit gates.
Thus, G(τ) is a sum of O(d2×n× dn) = O(d3n2) unitary operators each of
which is made by O(n2) few-qubit gates.

A3. PRICING MULTI-ASSET DERIVATIVES... 121

A3.3 Variational principle for VQS

Here, we derive Eq. (2.54) from a variational principle. The square of the
difference between both sides of Eq. (2.50) is

∥∥∥∥ ddt |ṽ(θ(t))〉 − L(t) |ṽ(θ(t))〉 − |u(t)〉
∥∥∥∥2

=

∥∥∥∥ ddt |ṽ(θ(t))〉 − L(t) |ṽ(θ(t))〉
∥∥∥∥2

− 2Re

[
〈u(t)|

(
d

dt
|ṽ(θ(t))〉 − L(t) |ṽ(θ(t))〉

)]
+
∥∥2 |u(t)〉∥∥2

=

∥∥∥∥ ddt |ṽ(θ(t))〉
∥∥∥∥2 − 2Re

[
〈ṽ(θ(t))|L(t) d

dt
|ṽ(θ(t))〉

]
+ ‖L(t) |ṽ(θ(t))〉‖2

− 2Re

[
〈u(t)|

(
d

dt
|ṽ(θ(t))〉 − L(t) |ṽ(θ(t))〉

)]
+ ‖|u(t)〉‖2

= 2Re
∑
j,k

d 〈ṽ(θj(t))|
dθj(t)

d |ṽ(θk(t))〉
dθk(t)

θ̇j θ̇k

− 2Re

[
d 〈ṽ(θ(t))|
dθj(t)

L(t) |ṽ(θ(t))〉+ d 〈ṽ(θ(t))|
dθj(t)

|u(t)〉
]
θ̇j

+ 2Re [〈u(t)|L(t) |ṽ(θ(t))〉] + ‖L(t) |ṽ(θ(t))〉‖2 + ‖|u(t)〉‖2 . (A133)

Then, the first order variation of the r.h.s. of Eq. A133 is

δ

∥∥∥∥ ddt |ṽ(θ(t))〉 − L(t) |ṽ(θ(t))〉 − |u(t)〉
∥∥∥∥2

= 2Re
∑
j,k

d 〈ṽ(θj(t))|
dθj(t)

d |ṽ(θk(t))〉
dθk(t)

θ̇jδθ̇k

− 2Re

[
d 〈ṽ(θ(t))|
dθj(t)

L(t) |ṽ(θ(t))〉+ d 〈ṽ(θ(t))|
dθj(t)

|u(t)〉
]
δθ̇j . (A134)

Thus, we obtain Eq. (2.54).

A3.4 Quantum circuits to evaluate Mi,j and Vi

Here, we show the quantum circuits to evaluateMi,j and Vj . Without loss
of generality, we can set i ≤ j. The terms in Eqs. (2.55) and (2.56) are

122 APPENDIX

written by

Re

(
∂ 〈ṽ(θ(t))|

∂θi

∂ |ṽ(θ(t))〉
∂θj

)
=



θ0(t)
2Re

(
〈v0|R†

1 · · ·R
†
i−1G

†
mR

†
i

· · ·R†
j−1GjRj−1 · · ·R1 |v0〉

)
for 0 < i ≤ j ≤ Na (A135)

θ0(t)Re
(
〈v0|R†

1 · · ·R
†
j−1G

†
jRj−1 · · ·R1 |v0〉

)
for 0 = i < j ≤ Na (A136)

1

for m = n = 0 (A137)

Re

(
∂ 〈ṽ(θ(t))|

∂θi
ULk |ṽ(θ(t)〉

)
=



θ0(t)Re
(
〈v0|R†

1 · · ·R
†
i−1G

†
iR

†
i

· · ·R†
Na
ULk RNa · · ·R1 |v0〉

)
for i 6= 0 (A138)

Re
(
〈v0|R†

1 · · ·R
†
Na
ULk

†
RNa · · ·R1 |v0〉

)
for i = 0 (A139)

Re

(
∂ 〈ṽ(θ(t))|

∂θm
Uul |0〉

)
=


θ0(t)Re

(
〈v0|R†

1 · · ·R
†
i−1G

†
mR

†
i · · ·R

†
Na
Uul |0〉

)
for i 6= 0 (A140)

Re
(
〈v0|R†

1 · · ·R
†
Na
Uul

† |0〉
)

for i = 0 (A141)

We can evaluate these terms using quantum circuits depicted in Fig. 2. Note
that, although the quantum circuit evaluating Eqs. (A140) and (A141)
contains the control-RUv gate, where

R = R1 · · ·Rm−1GmRm · · ·RNa (A142)

for Eq. (A140) and R1 · · ·Ri−1GiRi · · ·RNa for Eq. (A141) respectively, in
the case where all boundary conditions are knock-out barriers, that is, in the
case of |C(t)〉 = 0, we do not need to evaluate Eqs. (A140) and (A141).

A3.5 Lower bound of Ξ

Here, we evaluate the lower bound of Ξ and show that the Ξ does not
decrease exponentially with respect to the number of assets d. Using the
inequality

min(a2, b2) ≤ 1

4
(a+ b)2 (A143)

A3. PRICING MULTI-ASSET DERIVATIVES... 123

for a, b ∈ R+, we obtain

tter ≤ min


2
(
log ui

si,0

)2
25σ2i log

2Ãd(d+1)
ϵ

,
2
(
log

si,0
li

)2
25σ2i log

2Ãd(d+1)
ϵ


≤

(
log ui

li

)2
50σ2i log

2Ãd(d+1)
ϵ

, (A144)

for i ∈ [d]. From Eqs. (5.44)(A144), Ξ is evaluated by

Ξ ≥ ζB2

(
25

4π
log

2Ãd(d+ 1)

ϵ

)d/2 d∏
i=1

ui
li
− 1

log ui
li

(A145)

As easily verified by elementary analysis, for any z > 1,

z − 1

log z
≥ 1 (A146)

holds, and then, we obtain

Ξ ≥ ζB2

(
25

4π
log

2Ãd(d+ 1)

ϵ

)d/2
. (A147)

Thus, we can see that Ξ does not decrease exponentially with respect to d.

124 APPENDIX

(|0〉+ |1〉)/
√
2 • X • H

· · · · · ·
|v0〉 R1 Ri−1 Gi Ri Rj−1 Gj

(a)

(|0〉+ |1〉)/
√
2 • X H

· · ·
|v0〉 R1 Ri−1 Gi

(b)

(|0〉+ |1〉)/
√
2 X • X • H

· · · · · ·
|v0〉 R1 Rj−1 Gj Rj RNa ULk

(c)

(|0〉+ |1〉)/
√
2 • H

· · ·
|v0〉 R1 RNa ULk

(d)

(|0〉+ |1〉)/
√
2 X • X • H

· · · · · ·
|0〉 RUv Uul

(e)

Figure 2: Quantum circuits for evaluating (a) Eq. (A135), (b) Eq. (A136),
(c) Eq. (A138), (d) Eq. (A138), and (e) Eqs. (A140) and (A141). R
is R1 · · ·Ri−1GiRi · · ·RNa for Eq. (A140) and R1 · · ·Ri−1GiRi · · ·RNa for
Eq. (A141) respectively [5].

Bibliography

[1] John C. Hull. Options, Futures, and Other Derivatives, 9th edition.
Pearson, 2014.

[2] Steven E. Shreve. Stochastic Calculus for Finance II. Number 11 in
Springer Finance Textbooks. Springer, 2004.

[3] P.W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proc. 35th Annu. Symp. Found. Comput. Sci., pages
124–134. IEEE Comput. Soc. Press, nov 2002.

[4] Dominic W. Berry, Andrew M. Childs, Aaron Ostrander, and Guom-
ing Wang. Quantum Algorithm for Linear Differential Equations with
Exponentially Improved Dependence on Precision. Communications
in Mathematical Physics, 356(3):1057–1081, 2017.

[5] Suguru Endo, Jinzhao Sun, Ying Li, Simon C. Benjamin, and Xiao
Yuan. Variational Quantum Simulation of General Processes. Physical
Review Letters, 125(1):010501, 2020.

[6] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quan-
tum amplitude amplification and estimation. Contemporary Mathe-
matics, 2002.

[7] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost,
Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature,
549(7671):195–202, 2017.

[8] John Preskill. Quantum Computing in the NISQ era and beyond.
Quantum, 2:79, August 2018.

[9] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin,
Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao
Yuan, Lukasz Cincio, and Patrick J. Coles. Variational quantum al-
gorithms. Nature Reviews Physics, 3(9):625–644, 2021.

[10] Martin Plesch and Časlav Brukner. Quantum-state preparation with
universal gate decompositions. Phys. Rev. A, 83:032302, Mar 2011.

125

126 BIBLIOGRAPHY

[11] Lov Grover and Terry Rudolph. Creating superpositions that cor-
respond to efficiently integrable probability distributions. Technical
report, 2002.

[12] Seth Lloyd and Christian Weedbrook. Quantum generative adversarial
learning. Physical review letters, 121(4):040502, 2018.

[13] Pierre-Luc Dallaire-Demers and Nathan Killoran. Quantum generative
adversarial networks. Physical Review A, 98(1):012324, 2018.

[14] Haozhen Situ, Zhimin He, Yuyi Wang, Lvzhou Li, and Shenggen
Zheng. Quantum generative adversarial network for generating dis-
crete distribution. Information Sciences, 538:193–208, 2020.

[15] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. Quantum gen-
erative adversarial networks for learning and loading random distribu-
tions. npj Quantum Information, 5(1):1–9, 2019.

[16] Jin-Guo Liu and Lei Wang. Differentiable learning of quantum circuit
born machines. Physical Review A, 98(6):062324, 2018.

[17] Oleksandr Kyriienko, Annie E Paine, and Vincent E Elfving. Protocols
for trainable and differentiable quantum generative modelling. arXiv
preprint arXiv:2202.08253, 2022.

[18] Ashley Montanaro. Quantum speedup of Monte Carlo methods. Pro-
ceedings. Mathematical, Physical, and Engineering Sciences / The
Royal Society, 471(2181):20150301, 2015.

[19] Patrick Rebentrost, Brajesh Gupt, and Thomas R. Bromley. Quantum
computational finance: Monte carlo pricing of financial derivatives.
Phys. Rev. A, 98:022321, Aug 2018.

[20] AramW. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algo-
rithm for linear systems of equations. Phys. Rev. Lett., 103(15):150502,
oct 2009.

[21] Andris Ambainis. Variable time amplitude amplification and quan-
tum algorithms for linear algebra problems. In Thomas Wilke
Christoph Dürr, editor, STACS’12 (29th Symposium on Theoreti-
cal Aspects of Computer Science), volume 14, pages 636–647, Paris,
France, February 2012. LIPIcs.

[22] B. D. Clader, B. C. Jacobs, and C. R. Sprouse. Preconditioned quan-
tum linear system algorithm. Phys. Rev. Lett., 110:250504, Jun 2013.

[23] Andrew M. Childs, Robin Kothari, and Rolando D. Somma. Quantum
algorithm for systems of linear equations with exponentially improved

BIBLIOGRAPHY 127

dependence on precision. SIAM Journal on Computing, 46(6):1920–
1950, 2017.

[24] Xiao Yuan, Suguru Endo, Qi Zhao, Ying Li, and Simon C. Benjamin.
Theory of variational quantum simulation. Quantum, 3:191, October
2019.

[25] A.D. McLachlan. A variational solution of the time-dependent
schrodinger equation. Molecular Physics, 8(1):39–44, 1964.

[26] Arthur G. Rattew and Bálint Koczor. Preparing arbitrary continuous
functions in quantum registers with logarithmic complexity, 2022.

[27] Javier Gonzalez-Conde, Ángel Rodŕıguez-Rozas, Enrique Solano, and
Mikel Sanz. Pricing financial derivatives with exponential quantum
speedup, 2021.

[28] Santosh Kumar Radha. Quantum option pricing using wick rotated
imaginary time evolution, 2021.

[29] Filipe Fontanela, Antoine Jacquier, and Mugad Oumgari. Short com-
munication: A quantum algorithm for linear pdes arising in finance.
SIAM Journal on Financial Mathematics, 12(4):SC98–SC114, 2021.

[30] Hedayat Alghassi, Amol Deshmukh, Noelle Ibrahim, Nicolas Robles,
Stefan Woerner, and Christa Zoufal. A variational quantum algorithm
for the feynman-kac formula. Quantum, 6:730, 2022.

[31] Kazuya Kaneko, Koichi Miyamoto, Naoyuki Takeda, and Kazuyoshi
Yoshino. Quantum pricing with a smile: implementation of local
volatility model on quantum computer. EPJ Quantum Technology,
9(1):7, 2022.

[32] N. G. Van Kampen. Stochastic Processes in Physics and Chemistry.
North Holland, 2011.

[33] Darren J. Wilkinson. Stochastic modelling for quantitative description
of heterogeneous biological systems. Nat. Rev. Genet., 10(2):122–133,
2009.

[34] Nicholas Metropolis and S. Ulam. The Monte Carlo Method. J. Am.
Stat. Assoc., 44(247):335–341, 1949.

[35] Fischer Black and Myron Scholes. The pricing of options and corporate
liabilities. J. Polit. Econ., 81(3):637–657, may 1973.

[36] Francis A. Longstaff and Eduardo S. Schwartz. Valuing American Op-
tions by Simulation: A Simple Least-Squares Approach. The Review
of Financial Studies, 14(1):113–147, 2001.

128 BIBLIOGRAPHY

[37] Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochas-
tic Differential Equations. Springer, 1992.

[38] John Preskill. Quantum Computing in the NISQ era and beyond.
Quantum, 2:79, jan 2018.

[39] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C.
Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G.
S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen,
Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth,
Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa
Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P.
Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent
Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang,
Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov,
Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Land-
huis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà,
Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi,
Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman,
Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby,
Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel,
Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger,
Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit
Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao,
Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis.
Quantum supremacy using a programmable superconducting proces-
sor. Nature, 574(7779):505–510, Oct 2019.

[40] Lov K. Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, STOC ’96, page 212–219, New York, NY,
USA, 1996. Association for Computing Machinery.

[41] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge Univer-
sity Press, 2010.

[42] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung,
Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L.
O’Brien. A variational eigenvalue solver on a quantum processor. apr
2013.

[43] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika
Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta.
Hardware-efficient variational quantum eigensolver for small molecules
and quantum magnets. Nature, 549(7671):242–246, sep 2017.

BIBLIOGRAPHY 129

[44] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin,
and Xiao Yuan. Quantum computational chemistry. Rev. Mod. Phys.,
92(1):15003, 2020.

[45] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias De-
groote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim
Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis,
and Alán Aspuru-Guzik. Quantum chemistry in the age of quantum
computing. Chemical Reviews, 119(19):10856–10915, Oct 2019.

[46] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke
Fujii. Quantum circuit learning. Physical Review A, 98(3):032309,
2018.

[47] Maria Schuld and Nathan Killoran. Quantum Machine Learning in
Feature Hilbert Spaces. Phys. Rev. Lett., 122(4):40504, 2019.

[48] Edward Farhi and Hartmut Neven. Classification with Quantum Neu-
ral Networks on Near Term Processors. feb 2018.

[49] Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolu-
tional neural networks. Nat. Phys., 15(12):1273–1278, 2019.

[50] P. P. Boyle. Option valuation using a three-jump process. Int. Options
J., 3:7–12, 1986.

[51] Ying Li and Simon C. Benjamin. Efficient variational quantum simu-
lator incorporating active error minimization. Phys. Rev. X, 7:021050,
Jun 2017.

[52] Sam McArdle, Tyson Jones, Suguru Endo, Ying Li, Simon C. Ben-
jamin, and Xiao Yuan. Variational ansatz-based quantum simulation
of imaginary time evolution. npj Quantum Inf., 5(1):1–15, 2019.

[53] Suguru Endo, Zhenyu Cai, Simon C. Benjamin, and Xiao Yuan.
Hybrid quantum-classical algorithms and quantum error mitigation.
Journal of the Physical Society of Japan, 90(3):032001, 2021.

[54] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari,
and Rolando D. Somma. Exponential improvement in precision for
simulating sparse Hamiltonians. Proc. Annu. ACM Symp. Theory
Comput., pages 283–292, 2014.

[55] Dominic W Berry. High-order quantum algorithm for solving linear
differential equations. Journal of Physics A: Mathematical and Theo-
retical, 47(10):105301, feb 2014.

130 BIBLIOGRAPHY

[56] Michael Lubasch, Jaewoo Joo, Pierre Moinier, Martin Kiffner, and Di-
eter Jaksch. Variational quantum algorithms for nonlinear problems.
Phys. Rev. A, 101:010301, Jan 2020.

[57] Emanuel Knill, Gerardo Ortiz, and Rolando D. Somma. Optimal
quantum measurements of expectation values of observables. Phys.
Rev. A, 75:012328, Jan 2007.

[58] Daochen Wang, Oscar Higgott, and Stephen Brierley. Accelerated
variational quantum eigensolver. Phys. Rev. Lett., 122:140504, Apr
2019.

[59] Thomas Häner, Martin Roetteler, and Krysta M. Svore. Optimizing
Quantum Circuits for Arithmetic. 2018.

[60] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with numpy. Nature, 585(7825):357–362, Sep 2020.

[61] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James John-
son, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke,
Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX:
composable transformations of Python+NumPy programs, 2018.

[62] H. Risken. The Fokker-Planck Equation. Springer-Verlag, Berlin, Hei-
delberg, 1996.

[63] Ana Martin, Bruno Candelas, Ángel Rodŕıguez-Rozas, José D. Mart́ın-
Guerrero, Xi Chen, Lucas Lamata, Román Orús, Enrique Solano, and
Mikel Sanz. Toward pricing financial derivatives with an ibm quantum
computer. Phys. Rev. Research, 3:013167, Feb 2021.

[64] Nikitas Stamatopoulos, Daniel J. Egger, Yue Sun, Christa Zoufal, Ra-
ban Iten, Ning Shen, and Stefan Woerner. Option Pricing using Quan-
tum Computers. Quantum, 4:291, July 2020.

[65] Sergi Ramos-Calderer, Adrián Pérez-Salinas, Diego Garćıa-Mart́ın,
Carlos Bravo-Prieto, Jorge Cortada, Jordi Planagumà, and José I.
Latorre. Quantum unary approach to option pricing. Phys. Rev. A,
103:032414, Mar 2021.

[66] Almudena Carrera Vazquez and StefanWoerner. Efficient State Prepa-
ration for Quantum Amplitude Estimation. may 2020.

BIBLIOGRAPHY 131

[67] Hao Tang, Anurag Pal, Tian-Yu Wang, Lu-Feng Qiao, Jun Gao, and
Xian-Min Jin. Quantum computation for pricing the collateralized
debt obligations. Quantum Engineering, 3(4):e84, 2021.

[68] Shouvanik Chakrabarti, Rajiv Krishnakumar, Guglielmo Mazzola,
Nikitas Stamatopoulos, Stefan Woerner, and William J. Zeng. A
Threshold for Quantum Advantage in Derivative Pricing. Quantum,
5:463, June 2021.

[69] Dong An, Noah Linden, Jin-Peng Liu, Ashley Montanaro, Changpeng
Shao, and Jiasu Wang. Quantum-accelerated multilevel Monte Carlo
methods for stochastic differential equations in mathematical finance.
Quantum, 5:481, June 2021.

[70] Kenji Kubo, Yuya O. Nakagawa, Suguru Endo, and Shota Nagayama.
Variational quantum simulations of stochastic differential equations.
Physical Review A, 103(5):052425, 2021.

[71] Stefan Woerner and Daniel J. Egger. Quantum risk analysis. npj
Quantum Information, 5(1):15, 2019.

[72] Daniel J. Egger, Ricardo Garćıa Gutiérrez, Jordi Cahué Mestre, and
Stefan Woerner. Credit risk analysis using quantum computers. IEEE
Transactions on Computers, 70(12):2136–2145, 2021.

[73] Koichi Miyamoto. Quantum algorithm for calculating risk contribu-
tions in a credit portfolio, 2022.

[74] Patrick Rebentrost and Seth Lloyd. Quantum computational finance:
quantum algorithm for portfolio optimization, 2018.

[75] Iordanis Kerenidis, Anupam Prakash, and Dániel Szilágyi. Quantum
algorithms for portfolio optimization. In Proceedings of the 1st ACM
Conference on Advances in Financial Technologies, AFT ’19, page
147–155, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[76] Mark Hodson, Brendan Ruck, Hugh Ong, David Garvin, and Stefan
Dulman. Portfolio rebalancing experiments using the quantum alter-
nating operator ansatz, 2019.

[77] Román Orús, Samuel Mugel, and Enrique Lizaso. Quantum computing
for finance: Overview and prospects. Reviews in Physics, 4:100028,
2019.

132 BIBLIOGRAPHY

[78] Daniel J. Egger, Claudio Gambella, Jakub Marecek, Scott McFaddin,
Martin Mevissen, Rudy Raymond, Andrea Simonetto, Stefan Wo-
erner, and Elena Yndurain. Quantum computing for finance: State-
of-the-art and future prospects. IEEE Transactions on Quantum En-
gineering, 1:1–24, 2020.

[79] Adam Bouland, Wim van Dam, Hamed Joorati, Iordanis Kerenidis,
and Anupam Prakash. Prospects and challenges of quantum finance,
2020.

[80] Curt Randall Domingo Tavella. Pricing Financial Instruments: The
Finite Difference Method. Wiley, 2000.

[81] Daniel J. Duffy. Finite Difference Methods in Financial Engineering:
A Partial Differential Equation Approach. Wiley, 2006.

[82] Tao Xin, Shijie Wei, Jianlian Cui, Junxiang Xiao, Iñigo Arrazola,
Lucas Lamata, Xiangyu Kong, Dawei Lu, Enrique Solano, and Guilu
Long. Quantum algorithm for solving linear differential equations:
Theory and experiment. Phys. Rev. A, 101:032307, Mar 2020.

[83] Andrew M. Childs and Jin-Peng Liu. Quantum spectral methods
for differential equations. Communications in Mathematical Physics,
375(2):1427–1457, Apr 2020.

[84] Ashley Montanaro and Sam Pallister. Quantum algorithms and the
finite element method. Phys. Rev. A, 93:032324, Mar 2016.

[85] F. Fillion-Gourdeau and E. Lorin. Simple digital quantum algorithm
for symmetric first-order linear hyperbolic systems. Numerical Algo-
rithms, 82(3):1009–1045, 2019.

[86] Pedro C. S. Costa, Stephen Jordan, and Aaron Ostrander. Quantum
algorithm for simulating the wave equation. Phys. Rev. A, 99:012323,
Jan 2019.

[87] Shengbin Wang, Zhimin Wang, Wendong Li, Lixin Fan, Zhiqiang Wei,
and Yongjian Gu. Quantum fast poisson solver: the algorithm and
complete and modular circuit design. Quantum Information Process-
ing, 19(6):170, 2020.

[88] Andrew M. Childs, Jin-Peng Liu, and Aaron Ostrander. High-
precision quantum algorithms for partial differential equations. Quan-
tum, 5:574, November 2021.

[89] Noah Linden, Ashley Montanaro, and Changpeng Shao. Quantum vs.
classical algorithms for solving the heat equation. 2020.

BIBLIOGRAPHY 133

[90] Yohichi Suzuki, Shumpei Uno, Rudy Raymond, Tomoki Tanaka,
Tamiya Onodera, and Naoki Yamamoto. Amplitude estimation with-
out phase estimation. Quantum Inf. Process., 19(2):1–17, 2020.

[91] Scott Aaronson and Patrick Rall. Quantum Approximate Counting,
Simplified, pages 24–32. 2020.

[92] Dmitry Grinko, Julien Gacon, Christa Zoufal, and Stefan Woerner.
Iterative quantum amplitude estimation. npj Quantum Information,
7(1):52, Mar 2021.

[93] Kouhei Nakaji. Faster amplitude estimation. 20(13-14):1109–1123,
2020.

[94] Ville Bergholm, Juha J. Vartiainen, Mikko Möttönen, and Martti M.
Salomaa. Quantum circuits with uniformly controlled one-qubit gates.
Phys. Rev. A, 71:052330, May 2005.

[95] Vivek V Shende, Stephen S Bullock, and Igor L Markov. Synthe-
sis of quantum-logic circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 25(6):1000–1010, 2006.

[96] Martin Plesch and Časlav Brukner. Quantum-state preparation with
universal gate decompositions. Phys. Rev. A - At. Mol. Opt. Phys.,
83(3):1–5, 2011.

[97] Raban Iten, Roger Colbeck, Ivan Kukuljan, Jonathan Home, and
Matthias Christandl. Quantum circuits for isometries. Physical Review
A, 93(3):032318, 2016.

[98] Daniel K Park, Francesco Petruccione, and June-Koo Kevin Rhee.
Circuit-based quantum random access memory for classical data. Sci-
entific reports, 9(1):1–8, 2019.

[99] Israel F Araujo, Daniel K Park, Francesco Petruccione, and Adenil-
ton J da Silva. A divide-and-conquer algorithm for quantum state
preparation. Scientific reports, 11(1):1–12, 2021.

[100] Peter A. Forsyth David M. Pooley, Kenneth R.Vetzal. Convergence
remedies for non-smooth payoffs in option pricing. Journal of Com-
putational Finance, 6:25–40, 2003.

[101] Nat Leung Christina Christara. Analysis of quantization error in finan-
cial pricing via finite difference methods. SIAM J. Numerical Analysis,
56:1731–1757.

[102] Ryan Babbush, Jarrod R. McClean, Michael Newman, Craig Gidney,
Sergio Boixo, and Hartmut Neven. Focus beyond quadratic speedups

134 BIBLIOGRAPHY

for error-corrected quantum advantage. PRX Quantum, 2:010103, Mar
2021.

[103] Koichi Miyamoto and Kenji Shiohara. Reduction of qubits in a quan-
tum algorithm for monte carlo simulation by a pseudo-random-number
generator. Phys. Rev. A, 102:022424, Aug 2020.

[104] Kazuya Kaneko, Koichi Miyamoto, Naoyuki Takeda, and Kazuyoshi
Yoshino. Quantum speedup of Monte Carlo integration with respect
to the number of dimensions and its application to finance. Quantum
Information Processing, 20(5):185, 2021.

[105] Almudena Carrera Vazquez and Stefan Woerner. Efficient state
preparation for quantum amplitude estimation. Phys. Rev. Applied,
15:034027, Mar 2021.

[106] Koichi Miyamoto. Bermudan option pricing by quantum amplitude
estimation and Chebyshev interpolation. EPJ Quantum Technology,
9(1):3, 2022.

[107] Dylan Herman, Cody Googin, Xiaoyuan Liu, Alexey Galda, Ilya Safro,
Yue Sun, Marco Pistoia, and Yuri Alexeev. A survey of quantum
computing for finance, 2022.

[108] Koichi Miyamoto and Kenji Kubo. Pricing multi-asset derivatives by
finite-difference method on a quantum computer. IEEE Transactions
on Quantum Engineering, 3:1–25, 2022.

[109] Juan Carlos Garcia-Escartin and Pedro Chamorro-Posada. swap test
and hong-ou-mandel effect are equivalent. Phys. Rev. A, 87:052330,
May 2013.

[110] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes 3rd Edition: The Art of Scien-
tific Computing. Cambridge University Press, USA, 3 edition, 2007.

[111] Naoto Kunitomo and Masayuki Ikeda. Pricing options with curved
boundaries1. Mathematical Finance, 2(4):275–298, 1992.

[112] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan
Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R.
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,

BIBLIOGRAPHY 135

Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020.

[113] Gustaf Söderlind. The logarithmic norm. history and modern theory.
BIT Numerical Mathematics, 46(3):631–652, Sep 2006.

[114] L. Beghin and E. Orsingher. On the maximum of the generalized
brownian bridge. Lithuanian Mathematical Journal, 39(2):157–167,
Apr 1999.

[115] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University
Press, 1990.

[116] Vlatko Vedral, Adriano Barenco, and Artur Ekert. Quantum networks
for elementary arithmetic operations. Phys. Rev. A, 54:147–153, Jul
1996.

[117] Thomas G. Draper. Addition on a quantum computer, 2000.

[118] Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, and David
Petrie Moulton. A new quantum ripple-carry addition circuit. arXiv
e-prints, pages quant–ph/0410184, October 2004.

[119] Yasuhiro Takahashi and Noboru Kunihiro. A linear-size quantum cir-
cuit for addition with no ancillary qubits. Quantum Info. Comput.,
5(6):440–448, sep 2005.

[120] Thomas G. Draper, Samuel A. Kutin, Eric M. Rains, and Krysta M.
Svore. A logarithmic-depth quantum carry-lookahead adder. Quantum
Info. Comput., 6(4):351–369, jul 2006.

[121] Yasuhiro Takahashi, Seiichiro Tani, and Noboru Kunihiro. Quantum
addition circuits and unbounded fan-out. Quantum Info. Comput.,
10(9):872–890, sep 2010.

[122] J J Álvarez-Sánchez, J V Álvarez-Bravo, and L M Nieto. A quan-
tum architecture for multiplying signed integers. Journal of Physics:
Conference Series, 128:012013, aug 2008.

[123] Yasuhiro Takahashi and Noboru Kunihiro. A fast quantum circuit for
addition with few qubits. Quantum Info. Comput., 8(6):636–649, jul
2008.

[124] Himanshu Thapliyal. Mapping of Subtractor and Adder-Subtractor
Circuits on Reversible Quantum Gates, pages 10–34. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2016.

136 BIBLIOGRAPHY

[125] Himanshu Thapliyal and Nagarajan Ranganathan. Design of efficient
reversible logic-based binary and bcd adder circuits. J. Emerg. Tech-
nol. Comput. Syst., 9(3), oct 2013.

[126] H. V. Jayashree, Himanshu Thapliyal, Hamid R. Arabnia, and V. K.
Agrawal. Ancilla-input and garbage-output optimized design of a re-
versible quantum integer multiplier. The Journal of Supercomputing,
72(4):1477–1493, 2016.

[127] Edgard Muñoz-Coreas and Himanshu Thapliyal. Quantum circuit de-
sign of a t-count optimized integer multiplier. IEEE Transactions on
Computers, 68(5):729–739, 2019.

[128] Alireza Khosropour, Hossein Aghababa, and Behjat Forouzandeh.
Quantum division circuit based on restoring division algorithm. In
2011 Eighth International Conference on Information Technology:
New Generations, pages 1037–1040, 2011.

[129] Sayanton Vhaduri Dibbo, Hafiz Md. Hasan Babu, and Lafifa Jamal.
An efficient design technique of a quantum divider circuit. In 2016
IEEE International Symposium on Circuits and Systems (ISCAS),
pages 2102–2105, 2016.

[130] Himanshu Thapliyal, T. S. S. Varun, Edgard Munoz-Coreas, Keith A.
Britt, and Travis S. Humble. Quantum circuit designs of integer di-
vision optimizing t-count and t-depth. In 2017 IEEE International
Symposium on Nanoelectronic and Information Systems (iNIS), pages
123–128, 2017.

[131] Edgard Muñoz Coreas and Himanshu Thapliyal. T-count and qubit
optimized quantum circuit design of the non-restoring square root al-
gorithm. J. Emerg. Technol. Comput. Syst., 14(3), oct 2018.

[132] XIAOYU LI, GUOWU YANG, CARLOS MANUEL TORRES,
DESHENG ZHENG, and KANG L. WANG. A class of efficient quan-
tum incrementer gates for quantum circuit synthesis. International
Journal of Modern Physics B, 28(01):1350191, 2014.

Acknowledgements

First, I would like to thank Prof. Fujii for supporting my doctoral program
in spite of his busy schedule. Through our discussions, I found insights and
ideas in quantum algorithms. I believe this will be valuable in the future.

Second, I would also like to thank Prof. Miyamoto for co-authoring two
papers. Without his collaboration, I would not be able to obtain a deep
understanding of quantum algorithms for financial engineering.

The discussions with Prof. Mitarai have deepened my understanding
of the quantum machine learning. He also commented on our paper many
times, and thanks to them, our paper was brushed up.

I would also like to thank the members of Mercari, Inc. In particular,
Dr. Nagayama gave me useful advice on my research and how to progress in
my doctoral program. I also benefited from discussions with Mr. Teramoto
in the daily research work.

I appreciate Dr. Nakagawa of QunaSys, Inc. and Dr. Endo of NTT
Laboratories, Inc. Their support helped me obtain a deep understanding of
variational quantum computation and allowed us to write the paper.

I would also like to thank Prof. Kitagawa and Prof. Yamamoto for
reviewing my dissertation.

I appreciate all the members of Fujii Lab. Especially with Mr. Shirai and
Mr. Kawase, I was able to conduct interesting research through discussions.

Finally, I thank my dear family for their support.

137

