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Efficient Multi-Party Contact Tracing

Mathieu de Goyon2,a) AtsukoMiyaji1,2,b) Yangguang Tian3,c)

,

Abstract: Since the beginning of the Covid-19 Pandemic, Contact Tracing Apps have been implemented in many
countries as a way to detect if someone has been in contact with a patient within a minimum amount of time. However,
most existing solutions only consider users in pairs. Since many people meet at the same time in real-life scenarios,
those applications aren’t able to accurately reflect the situation. Moreover, extending current schemes to a multi-party
setting could cause scaling problems and place a heavier load on the device. In this paper, we propose a new Contact
Tracing protocol that works in a multi-party setting. We evaluate our scheme to show its efficiency.

Keywords: Contact Tracing, System Security, Multi-signature, Ring Signature

1. Introduction
During the Covid-19 Pandemic, monitoring the spread of the

virus quickly became an efficient tool for reducing the number of
contaminations. By detecting if someone has been in contact with
a Covid-19 patient, that person could be warned in advance and
self-isolate before contaminating other people. However, doing
so manually is very difficult. Contact Tracing apps were intro-
duced by researchers as a tool to perform this task automatically
and were adopted by many countries. Contact Tracing apps are
able to communicate with other users and store who has been in
contact. Once someone is tested positive for the Covid-19, the
app will be able to use the information stored to send an alert
to contacts of the patient before they have the time to contami-
nate other people. Contact Tracing apps become more efficient
as more people use them. However, many people are hesitant to
use them because they are worried for their privacy[1]. Indeed,
many people are reluctant to use Contact Tracing apps because
they are afraid a malicious user or even governments[2] would
be able to track their movements and learn with whom they have
been in contact. Contact Tracing apps must guarantee their users’
privacy so that many users will make use of them and generate a
favorable impact. Another issue is that those apps must be used
continuously to be accurate while the user is outside of his home.
As a result, users must carry their smartphones constantly with
them the whole time which can also be a load on the device. The
app needs to be efficient and limit the number of computations
and required communications[3].

Close contact is the name given to someone who has been near
a positive patient for a long enough time for there to be a risk
of infection. When three or more people are close contacts, ev-
ery Contact Tracing app currently used by countries will consider
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them in pairs. Let Alice, Bob, and Charlie be three users of a
Contact Tracing app, staying close to each other for long enough
for the app to recognize them as close contacts. From the view-
point of Alice’s app, the app will save Bob’s and Charlie’s identi-
fiers separately in the smartphone instead of together: Alice with
Bob, Alice with Charlie[4][5]. As a result, the app will consider
a meeting between several people as a repetition of meetings be-
tween 2 people, which does not represent the actual situation.
Moreover, if the Contact Tracing app needs to verify the identity
of other users, considering each user separately will significantly
increase the load on the phone and make it use up its battery more
quickly.

Contact Tracing apps can generally be divided into two types:
decentralized contact tracing apps which use information related
to the patient to send alerts to the close contacts and centralized
contact tracing apps which use information about the close con-
tacts. In 2020, Vaudenay[6] released a paper discussing the bene-
fits and demerits of the two types while proposing possible future
directions. The first centralized Bluetooth-based Contact Tracing
App, TraceTogether, was released in Singapore while DP3T (De-
centralized Privacy Preserving Proximity Tracing)[7] and PACT
(Private Automated Contact Tracing) (East and West) which are
decentralized Contact Tracing Apps were released shortly after-
wards. Vaudenay[8] later improved the DP3T protocol to work
against replay/relay attacks, and Pietrzak[9] proposed a non-
interactive protocol version that works better with Bluetooth Low
Energy. In 2020, researchers discovered that using Bluetooth as
an accurate way to measure a distance could prove problematic
in environments such as trains. A first paper was released by Luo
et al.[10] and a second one by Meklenburg et al.[11], both using
ultrasonic signals instead of Bluetooth.

Following the continuous spread of the pandemic, Apple and
Google, the two leading providers of smartphone operating sys-
tems, decided to work together to release GAEN (Google and
Apple Exposure Notification), a framework and protocol to fa-
cilitate digital Contact Tracing. Many countries’ Contact Tracing
apps are based on this protocol, such as Japan, New Zealand, Ger-
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many, and the US. In the same year, Liu et al.[12] proposed of a
centralized Privacy Preserving Protocol using a Zero-Knowledge
Proof. This app allows the identity patient’s close contacts to be
hidden from everyone, including the government, despite using a
centralized approach. In October 2020, the French Government
released a new version of their Contact Tracing app, TousAnti-
Covid, using a centralized system. In June 2021, Peng et al.[13]
developed a decentralized Contact Tracing app using Blockchain
to prevent the user from modifying the data afterwards, as well as
a zero-knowledge verification scheme that ensures user privacy.

Our Contribution– We develop a new Contact Tracing that is
not limited to meetings between two users but considers meeting
of an entire group. Moreover, we use multi-signature schemes
introduced by Drijvers et al.[14] and by Mitomi and Miyaji[15]
to generate proof of the meeting which all participants will store
on their phone. Finally, we use a ring signature scheme by Chow
et al.[16] to send alerts to all of the close contacts of the patient
while preserving the patient privacy. We will also compare the
number of computations and communications with an existing
scheme[12].

This paper is the full version of the paper presented at CAN-
DAR2021[17]. In our preliminary work[17], we have constructed
an efficient multi-party contact tracing protocol using a multi-
signature in the Meeting Phase to generate proof of a meeting
and a ring signature to alert the close contacts of a patient. In this
journal, the following parts were added to the CANDAR2021 pa-
per.
• Improved and redefined the threat model, by adding a Trace-

ability Completeness property and removing the Close Con-
tact Privacy property.

• Redefined Theorem 2 in detail to fit for the redefined Threat
Model.

• Provided the precise proof of Theorems 1 and 2.
• Newly provided theorem and proof of Traceability Com-

pleteness in Theorem 3.
Our paper is organized as follows. We introduce important

building blocks used for our protocol in Section 2. Then we de-
fine the system model in Section 3. We propose our multi-party
setting protocol in Section 4 and present a security analysis in
Section 5. We compare our protocol to several existing schemes
in Section 6. Finally, we conclude our work in Section 7.

2. Building Blocks
In this section, we present the underlying building blocks,

which will be used in constructing our multi-party Contact Trac-
ing protocol. We rely on two multi-signature schemes [14], [15]
to generate proof of the meeting, which will be stored in each
participant’s smartphone. We call the underlying multi-signature
schemes DGNW-multi-signature and MM-multi-signature, re-
spectively. The DGNW-multi-signature is based on asymmetric
bilinear pairings while MM-multi-signature introduces the con-
cepts of message flexibility and order flexibility. We note that
the MM-multi-signature scheme is based on DLP, and is eas-
ily changed to ECDLP. Thus, we apply their scheme based on
ECDLP.

2.1 Mathematical Notations
Here we describe the notation, which is used for the rest of our

paper.
• λ: a security parameter
• i, j: users
• G1, G2, GT , cyclic groups of prime order q
• g1, g2, generators of G1, G2 respectively
• e : G1 × G2 −→ GT : bilinear pairing
• H: {0, 1}∗ → Zq, H1 : {0, 1}∗ −→ G2 hash functions
• xG ∈ Z

∗
q the master secret key, yG = g

xG
1 the corresponding

public key
• h ∈ G1

• p a large prime number
• n the number of participants in a meeting
We also use the following definitions[16] in the ring signature

scheme.
Definition 1 Given a generator g of a group G and a 3-tuple

(ga, gb, gc), the Decisional Diffie-Hellman problem (DDHP) is to
decide if c = ab.

Definition 2 Given a generator g of a group G and a 2-tuple
(ga, gb), the Computational Diffie-Hellman problem (CDHP) is to
compute gab.

Definition 3 We define G as a Gap Diffie-Hellman (GDH)
group if no algorithm can solve CDHP with non-neglibible ad-
vantage within polynomial time even when the DDH oracle is
accessible by the algorithm.

2.2 Multi-Signature
First we review DGNW-multi-signature[14]. DGNW-multi-

signature is a pairing-based, forward-secure multi-signature op-
timized for use in blockchains. It has relatively low band-
width, storage, and verification requirements. Verification can
be achieved with three pairings, one exponentiation and (n − 1)
multiplications. In our scheme, we use those low requirements
to reduce the number of computations in the Meeting Phase and
make it as efficient as possible. We also use the necessary com-
putations as part of the verification process. Note that the forward
security described in [14] is beyond the scope of this work.

Before explaining the multi-signature, we start with the signa-
ture scheme on which it is based on. Let x be a user secret key,
y be the user’s public key such that y = gx

2 and, r fresh random-
ness used for signing. The signature σ on a message M ∈ Zq is
as follows: σ = (σ

′

, σ
′′

) = (hx · H(M)r, gr
2). On the other hand,

Verification is done as follows: e(σ
′

, g2) = e(h, y) · e(H(M), σ
′′

).
Now we consider n different users of public keys yi, secret

keys xi and fresh randomness ri, ∀i ≤ n. All of these will
compute the signature σi = (hxi · H(M)ri , gri

2 ) on the same mes-
sage M. The multi-signature Σ can be computed as follows:
Σ = (Σ′,Σ′′) = (hx1+···+xN · H(M)r1+···+rN , gr1+···+rN

2 ).
Verification can be done by computing a compressed version

of all of the n-signer public keys: Y = y1 · · · yN . We then use the
verification equation defined previously on the compressed public
key: e(Σ

′

, g2) = e(h,Y) · e(H(M),Σ
′′

).
Next, we will review MM-multi-signature[15]. MM-multi-

signature stands out compared to other multi-signature schemes
by achieving two useful properties: message flexibility and or-
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der flexibility. In MM-multi-signature, the message on which
the multi-signature is generated is constructed progressively by
each signer so it doesn’t have to be fixed beforehand. Further-
more, each signer will modify the message and update the multi-
signature before sending it to the next signer, but the order it-
self has no impact on the multi-signature. As a result, the order
doesn’t have to be fixed beforehand.

We use the following notations: M1 is a message chosen by
user 1. Each M1,2,··· ,i denotes a message modified by user i. The
difference between M1,2,··· ,i and M1,2,··· ,i−1 which is the modifica-
tion added by user i is written as mi = Diff(M1,2,··· ,i−1,M1,2,··· ,i).

S ign(xi,mi) = sgni and Rec(yi, sgni) = mi are the signature
generation and the recovery function respectively.

Before explaining the multi-signature, we start with the one-
party signature. The user will generate a signature on a message
m by using his secret key x, with y = gx

2 his public key. The
user will first generate a random number k ∈ Zq, then compute:
R = gk

2, r = R + m, and s = (xr + 1)k−1. The signature on m
is (r, s) and m can be recovered by computing R

′

= gs−1

2 y
r.s−1

and
m = r − R

′

.
We now consider n different users. Each user generates a se-

cret key xi and a public key yi with yi = g
xi
2 and publishes yi

with his identity information IDi ∀i ≤ n. The first user gen-
erates the signature on an original message m1. The first user
generates a random number k1 ∈ Zq and computes: R1 = g

k1
2 ,

r1 = R1 + H(m1||ID1), and s1 = (x1r1 + 1)k−1
1 . The user

then sends the message m1 and the multi-signature (r1, s1) to
the following signer. User i will receive M1,2,··· ,i−1 and modify
it to M1,2,··· ,i. The user will then generate a signature on mi =

Di f f (M1,2,··· ,i−1,M1,2,··· ,i). To do so, the user generates a random
number ki ∈ Zq and computes: Ri = g

ki
2 , ri = Ri + H(mi||IDi)ri−1,

and si = (xiri + 1)k−1
i , where user i signature on mi is (ri, si). The

multi-signature on the message M1,2,··· ,n by the n users is given by
(ID1, s1,m1), · · · , (IDn−1, sn−1,mn−1), (IDn, sn, rn,mn).

Verification is done as follows: For j = n, n − 1, · · · , 2;

the verifier will compute: R′j = g
s−1

j

2 y
r j s−1

j

j , T j = r j − R′j, and
r j−1 = T j(H(m j||ID j))−1, by using the signer I j public key y j.

Finally, the user will compute R′1 = g
s−1

1
2 y

r1 s−1
1

1 , T1 = r1 − R′1,
and verify that T1 = H(m1||ID1).

We note that in both DGNW-multi-signature and MM-multi-
signature, we can apply batch verification technique[18] during
the verification subphase to reduce the number of computations.

2.3 Ring Signature
We describe the ring signature scheme [16] which we use in

our protocol for its ability to keep the identity of the signer anony-
mous.

We assume that G1,G2 are GDH groups. This signature
scheme is an ID-based signature scheme which removes the need
to check the validity of certificates and allows a spontaneous user
to generate the ring signature. It is appealing because it is very
efficient, only needing two pairings regardless of the group size.

Setup: The Government GV randomly chooses xG ∈ Z
∗
q as

the master secret key and computes the corresponding public key
yG = g

xG
1 . Public parameters are (G1,G2, e, q, g1, yG,H,H1) as

defined in Section 2.1.
KeyGen: A signer with identity IDi ∈ {0, 1}∗ submits IDi to

GV. GV sets the signer’s public key Qi to be H1(IDi) ∈ G2, com-
putes the signer’s private signing key S i by S i = QxG

i . Then GV
sends the private signing key to the signer via a secure channel.

Sign: Let L = {ID1, ID2, · · · , IDn} be the set of all identities of
n users. The actual signer, with index s, will follow the following
protocol to give the ID-based ring signature on a message M:
• ∀i{1, 2, · · · , n} \ s Choose Ui ∈ G2, compute hi =

H(M||L||Ui).
• Choose r

′

s ∈ Z
∗
q, compute Us = Qr

′

s
s /
∏n

i,s Ui · Q
hi
i

• Compute hs = H(M||L||Us) and V = S hs+r
′

s
s .

• Output the signature on M as σ = {∪n
i=1Ui,V}

Verify: A verifier can check the validity of a signature σ =
{∪n

i=1Ui,V} for the message M and a set of identities L as follows.
• Compute hi = H(M||L||Ui)∀i ∈ {1, 2, · · · , n}.
• Check whether e(yG,

∏n
i=1 Ui · Q

hi
i ) = e(g1,V).

• Accept the signature if it is true, reject otherwise.
Correctness:

e(g1,V) = e(g1, S
hs+r

′

s
s )

= e(g1,Q
(hs+r

′

s )·xG
s )

= e(yG,Qhs
s · Q

rs
s )

= e(yG,Qhs
s · Us ·

n∏
i,s

(Ui · Q
hi
i ))

= e(yG,
n∏

i=1

(Ui · Q
hi
i ))

3. Multi-party Tracing
This section describes a 2-party Contact Tracing Protocol

which we will compare to our protocols in Section 6 as well as
the system model used by our Contact Tracing app. As stated be-
fore, we refer to two users who have been close for a long enough
time to risk infection as close contacts. The most common values
taken are within 2 meters and for longer than 15 minutes which
we will also be using[12].

3.1 Primitive Multi-Party Tracing
A Zero-knowledge proof protocol between 2 users is proposed

by Liu et al. [12] which we will refer to as Primitive Multi-Party
Tracing.

Primitive Multi-Party Tracing is a centralized Contact Tracing
app, which means that when a patient is tested positive for the
Covid-19, information related to his close contacts will be acces-
sible to everyone. This protocol is interesting because it manages
to achieve close contact privacy despite being centralized using a
zero-knowledge proof between the doctor and the patient, which
hides the identity of close contacts. We describe their scheme in
detail first. Then, we apply their scheme to a multi-party setting,
and compare it to our protocol in Section 6.

Their protocol is divided into four different Phases: Registra-
tion Phase, Meeting Phase, Medical Treatment Phase and Tracing
Phase.

In the Registration Phase, a trusted entity, the Govern-
ment GV will select generators u, u1, u2 ∈ G1 and g, g1, g2 ∈
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G2. GV will select his secret and public key (xG, yG) =
KeyGen(λ). GV will then publish the public parameters
{λ,H, yG, u, u1, u2, g, g1, g2}.

Each day, a negative user, Alice, will choose a secret
key xA and compute the associated public key yA = gxA .
She will then register on the government website by upload-
ing her personal information and yA. GV will randomly
generate an identifier IDA ∈ Zq and a signature σA =

S ign(xG, {
′′−VE′′, yA, IDA,DAT E}), for the user and send both

σA and IDA to the user. Alice will verify this signature by run-
ning Veri f y(yG, σA, {

′′−VE′′, yA, IDA,DAT E}), and accept it if it
is valid.

In the Meeting Phase, Alice will use Bluetooth to broadcast
the hash hA = H(′′−VE′′, IDA, yA, σA) to the surrounding peri-
odically. For a positive user, it would be ′′ + VE′′ and without
hashing instead. Once a user has received enough hash within a
certain time (15 minutes) Alice and the other user Bob will be
considered as close contacts. Alice and Bob will go through the
following protocol so that they record the information of the other
party on their smartphones.

Bob will ask Alice to send him (IDA, yA, σA), and will compute
h
′

A = H(′′−VE′′, IDA, yA, σA), to verify if hA = h
′

A. He will abort
if it is not equal. Alice will do the same. Bob will then randomly
compute a challenge number rB ∈ Z and send it to Alice. Alice
will generate a Schnorr signature on this challenge number rB as
follows:
• Randomly choose k ∈ Zq

• Compute t = H(gk, rB)
• Compute s = k − xA · t (mod q)
• Output the signature σ

′

= (s, t) for the challenge number rB

Alice will send σ
′

to Bob for verification. Bob will check that
Veri f y(yG, σA, yA, IDA,DAT E). If it is valid, he will verify that
t = H(gsyt

A, rB). If it is equal, he will store Alice’s package
{IDA, yA, σA} in his app. At the same time, Alice will go through
the same protocol and accept {IDB, yB, σB} in her app.

Alice and Bob will then go through a mutual commitment
subphase so that they can generate a zero-knowledge proof dur-
ing the medical treatment Phase. In order to do so, they will use
the following protocol: Bob uses his secret key xB and Alice iden-
tifier IDA to generate σ

′′

B = u1/(H(IDA)+xB), and sends σ
′′

B to Alice.
Alice will check if e(σ

′′

B, g
H(IDA)yB) = e(u, g). If it is equal,

Alice will store {yB, IDB, σ
′′

B,DAT E} in her app.
The opposite with Alice generating σ

′′

A and Bob verifying it
will happen at the same time. Since this protocol isn’t adapted to
a multi-party setting, this process would be repeated (n−1) times
with each close contact in a n-party setting.

In the medical treatment Phase, Alice has been confirmed as
a positive patient. Alice has to tell the medical doctor D about
her close contacts without disclosing their identities. In order to
do so, she will generate a pseudo public key of each of her close
contacts (e.g Bob) together with a zero-knowledge proof from
their mutual commitment to prove that they are indeed her close
contacts.

Alice and D will go through the following protocol:
• D authenticates Alice by executing the verification of the

Meeting Phase with Alice and obtain IDA

• For each possible spreading day (last 14 days), Alice re-
trieves her close contacts.

• Alice generates the pseudo public key for Bob by randomly
choosing k ∈ Zq and computes: h = e(u, g)k, B̂ = e(u, yB)k =

e(u, gxB )k = hxB .
• Alice needs to prove to D that (h, B̂) is correct. Conceptu-

ally, Alice needs to prove that: h = e(u, g)k, B̂ = e(u, yB)k,
and e(σ

′′

B, g
H(IDA)yB) = e(u, g).

In order to instantiate this proof, Alice will generate randomly
s1, s2, t ∈ Zq and computes: A1 = g

s1
1 g

s2
2 , A2 = yB · g

s1
1 , and

C = σ
′′

But
1.

Alice sends A1, A2 and C to D and proves the following sys-
tem of equations PK{(s1, s2, t, α1, α2, β1, β2, x)}: A1 = g

s1
1 · g

s2
2 ,

Ak
1 = g

α1
1 · g

α2
2 , At

1 = g
β1
1 · g

β2
2 , h = e(u, g)k, B̂ = e(u, Ak

2 · g
−α2
1 ), and

e(Cu−t
1 , g

H(IDA)A2g
−s2
1 ) = e(u, g).

If the proof is correct, D generates a group signature σD =

GS ign(US K,GPK,MD) on the message MD = (h, B̂,DAT E) and
publishes {σD, h, B̂,DAT E} into the bulletin board BB. The doc-
tor will also inform the government that Alice has been confirmed
as positive and update the entry {′′+VE′′, yA, IDA,DAT E} and the
date every day until Alice is recovered.

In the Tracing Phase, Bob will scan all new entries and
for each entry retrieve his secret key for that day S KB. He
will then check if B̂ = hxB . If yes, he will then run
GVeri f y(σD,GPK, {h, B̂,DAT E}). If it is valid, he has in fact
been in contact with a positive patient.

3.2 System Assumptions
We explain entities used in this paper as follows:
• User: A user of the Contact Tracing app on his smartphone.
• Government: It is the trusted entity responsible for the users

registrations with their app, referred as GV.
• Database: Used to publish public information. Can be ac-

cessed by anyone.
We consider the following reasonable assumptions, to guaran-

tee the functioning of the system:
• Every user has Bluetooth connectivity on his smartphone and

the app is able to use it.
• Every user has Internet connectivity on his smartphone, and

the app also has access to it.
• After first downloading the app, the user accepts that the app

will upload his information on the database if he is tested as
Covid-19 positive.

• The user has access to all information stored and communi-
cated through the app, but he will not modify it.

• The user is unable to add incomplete information to the app
(namely a list of identifiers without the corresponding multi-
signature).

• A user tested positive for the Covid-19, referred as ”patient”
will use all information on the app while alerting his close
contact with only the information on the app (i.e. all lists of
identifiers will be used to compute ring signatures, and only
those lists).

3.3 Threat Model
We limit ourselves to cryptographic attacks in our threat model,
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which means other attacks such as networking attacks are not in-
cluded. We do not make any assumptions about the users in this
paper. Under those assumptions, we define the following threat
model, which we will later justify in Section 5.1. We will then
provide a security proof based on that threat model in Section 5.2.

Tracebility Completeness We define the concept of Traceabil-
ity Completeness. Let there be a Covid-19 patient. We consider
our protocol has traceability completeness if, after a correct ex-
ecution of the protocol, all users considered as close contacts by
the patient after the Meeting Phase are able to receive an alert
during the Tracing Phase.

False Positive Case 1 We define the first case of False Positive-
ness. Let there be a Covid-19 patient. We consider there is False
Positive Case 1 if a malicious user is able to pretend to be a close
contact of that Covid-19 patient. The malicious user would then
receive the alert sent to all of the close contacts without being one
of them.

False Positive Case 2 Similarly, we define False Positive Case
two. Let there be a negative malicious user. There is False Posi-
tive Case 2 if that malicious user is able to pretend to be a Covid-
19 patient. The malicious user would then be able to trigger false
alerts to all of his close contacts.

Patient Privacy We define the concept of Patient Privacy. Let
there be a Covid-19 patient. The Contact Tracing app will upload
information on the database related to that patient if the app is
decentralized or related to his close contacts if it is centralized.
We consider that there is patient privacy if no one (except the
government) can know the identity of the patient based on this
information (in the sense not better than guessing).

This threat model uses concepts defined in [12], but we rede-
fine the concepts. The difference between the two Threat Models
are explained in Section 5.1.

4. The Proposed Protocols
This section describes our two protocols based on DGNW-

multi-signature[14] and MM-multi-signature[15]. The first pro-
posal realizes order-flexible Multi-Party Tracing, called OF-MP
Tracing. The second proposal realizes perfect-flexibility of order-
and user-flexible Multi-Party Tracing, called PF-MP Tracing.

4.1 Design of Our Multi-party Tracing
We design the multi-party tracing in the following policies.

Order Flexibility (OF) We consider that the protocol has Or-
der Flexibility if the order in which the users go through
the Meeting Phase has no impact on the protocol. In other
words, the order does not have to be fixed for the protocol to
work.

User Flexibility (UF) We consider that the protocol has User
flexibility if close contacts do not have to be fixed for the
protocol to work, which corresponds to the concept of mes-
sage flexibility defined in [15]. Since the message used in
our protocol is a list of identifiers of close contacts, a multi-
signature with message flexibility allows close contacts to be
added flexibly during the protocol.

Multi-party proof (MP) We consider that the protocol has
Multi-party Proof if at the end of the Meeting Phase, all par-

ticipants of the meeting will store an identical proof in their
smartphones that all of them were present. This proof will
differentiate a meeting between n-participants and a repeti-
tion of smaller meetings.

Our Protocols are composed of 4 different phases:
• Registration Phase: The users will receive the public pa-

rameters and their identifiers from the government website.
The users will then generate their public and secret key pair
at the beginning of each day.

• Meeting Phase: We assume a meeting between n different
users staying close enough for the app to consider them as
close contacts, n > 1 integer. The Meeting Phase itself will
be divided into 2 subphases : a verification phase and a proof
generation phase.

• Alerting Phase: We assume that one of the n users of the
meeting has been tested positive for the Covid-19. The in-
formation of the patient will be uploaded to the database.

• Tracing Phase: The close contacts of the patient will be
alerted that they have been in contact with a Covid-19 pa-
tient.

OF-MP Tracing and PF-MP Tracing use the same Registra-
tion, Alerting, and Tracing Phases, but some differences exist in
the Meeting Phase during the proof generation subphase. We will
compare the two of them in Section 6.

4.2 Registration Phase
Each user will download the app on their smartphones and reg-

ister on the government website. They will receive an identifier
generated by the government ID as well as the public parameters
described in 2.1. At the start of each day, the users will gen-
erate their public and secret key pair y and x respectively, with
y = gx

1 and publish their public key on the government website.
This pair will be kept in the user’s smartphone for 14 days which
corresponds to the period of transmission.

4.3 Meeting Phase
We assume a meeting between n users with n ≥ 2, instead of

the regular meeting between 2 users assumed in other protocols.
We assume that every user is close enough to exchange informa-
tion using Bluetooth. Every app is broadcasting a package to the
surroundings indicating their identifier ID and their public key y,
of the form H(y, ID). A package will be accepted if the other
smartphone is within 2 meters of the user. The app uses the RSSI
(Received Signal Strength Indicator) to calculate the distance be-
tween 2 smartphones. Once a user has received enough packages
(for more than 15 minutes), the user will recognize the sender as
a close contact. We assume that all n users have been together for
long enough to recognize the other (n−1) users as close contacts.

In the rest of this phase, we will refer to the users by their num-
bers i, j with i, j ≤ n. Here, yi and xi are user i’s public and secret
key respectively, yi = g

xi
2 .

This Meeting Phase is composed of 2 subphases: a verifica-
tion phase where each user will verify the identity of all of the
other users and a proof generation phase where the participants
will generate a multi-signature as proof that they were all close
contacts.
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Fig. 1 Representation of the Verification Phase in case n=3

Verification - We will describe the protocol from the view-
point of user i. Every other user will go through the exact same
protocol simultaneously. We consider the message as the list of
all participants IDs M = {ID1, · · · , IDn}. All participants will also
compute H(M) and store it to reduce the computation load.

User i will generate a random number ri, and compute the
signature σi of the following form: σi = (σ′i , σ

′′
i ) = (hxi ·

H(M)ri , gri
2 ).

User i will then broadcast (yi, σi) to the other partici-
pants. Every other participant will verify the following equation:
e(σ′i , g2) = e(h, yi) · e(H(M), σ′′i ).

Correctness:

e(σ
′

i , g2) = e(hxi · H(M)ri , g2)

= e(hxi , g2) · e(H(M)ri , g2)

= e(h, gxi
2 ) · e(H(M), gri

2 )

= e(h, y) · e(H(M), σ′′i )

If the verification holds, the other users will accept user i as a
close contact.

In order to speed up the process, we use a batch veri-
fication scheme [18]: Let (δ1, · · · , δn−1) be a random vec-
tor of lb bit elements from Zq representing all of the other
participants of the meeting. Accept if e(

∏n−1
j=1 σ

′δ j

j , g2) =∏n−1
j=1 e(h, y j)δ j · e(H(M), σ′′j )δ j . User i will then store the sig-

natures {σ1, · · · , σn−1} into the smartphone.
Proof Generation - After verifying the identity of all partici-

pants, the users need to generate proof that they participated in the
meeting together, so that it can be stored into each smartphone. In
order to do so, we propose two alternatives with DGNW-multi-
signature[14] and MM-multi-signature[15] as described in Sec-
tion 2. We will compare both in Section 6.

OF-MP Tracing - To ensure that OF-MP Tracing functions
correctly, the message M = {ID1, · · · , IDn} has to be fixed be-
forehand. One of the users, user i, can easily compute the
multi-signature Σ as the product of the signatures σ generated
in the verification step: Σ = (σ

′

1 · · ·σ
′

n, σ
′′

1 · · ·σ
′′

n ) = (hx1+···+xn ·

H(M)r1+···+rn , gr1+···+rn
2 ). He will then send the multi-signature Σ to

the other (n − 1) users.
To verify the multi-signature, the users must compute the com-

pressed public key of each close contact public key Y = y1 · · · yn.

We then have e(Σ
′

, g2) = e(h,Y) · e(H(M),Σ
′′

).
Correctness:

e(Σ
′

, g2) = e(hx1+···+xn · H(M)r1+···+rn , g2)

= e(hx1+···+xn , g2) · e(H(M)r1+···+rn , g2)

= e(h, gx1+···+xn
2 ) · e(H(M), gr1+···+rn

2 )

= e(h, y1 · · · yn) · e(H(M),Σ′′)

= e(h,Y) · e(H(M),Σ
′′

)

PF-MP Tracing - PF-MP Tracing satisfies the feature of user
flexibility, that is, close contact users do not have to be decided
beforehand in the protocol. The 1st user generates a signature
on his ID ID1, as follows: R1 = g

k1
2 , r1 = R1 + H(ID1), and

s1 = (x1 · r1 + 1) · k−1
1 , for a randomly chosen k1 ∈ Zq. User

1 will then send (ID1, r1, s1) to one of his close contacts which
will then go through the same process. For j ≥ 2, we then have
M1,2,··· , j = {ID1, ID2, · · · , ID j} and R j = g

k j

2 , r j = R j+H(ID j) ·r j−1,
and s j = (x j · r j + 1) · k−1

j , with k j a random number generated by
user j.

Finally, the multi-signature on M1,2,··· ,n is given by
(ID1, s1), (ID2, s2), · · · , (IDn, sn, rn). The final user, user n
will send the complete multi-signature to the other users.

This multi-signature can be verified as follows: R′n = g
s−1

n
2 ·

y
rn ·s−1

n
n , Tn = rn − R′n, and rn−1 = Tn(H(IDn))−1, repeating the pro-

cess for n = n − 1 until n = 2 and checking if T1 = H(ID1).

4.4 Alerting Phase
In the Alerting Phase, we assume that user s is a Covid-19 pa-

tient. User s needs to upload information on the database so that
close contacts of the patient can be alerted while ensuring the
patient’s privacy. In order to do so, the patient will use a ring sig-
nature which guarantees the patient anonymity. As in Section 2.3,
we assume G1 and G2 are GDH Group.

For each meeting during the last 14 days, the patient will
retrieve the list of identifiers of his close contacts L =

{ID1, ID2, · · · , IDn}. The patient will compute his ring public key
Qs as H1(IDs) and will receive his private ring key S s = QxG

s via
a secure channel from GV.

The patient will then carry out the following steps to compute
the ring signature on the message M which is equal to the set of
identifiers, M{ID1, · · · , IDn}:
• ∀ j{1, 2, · · · , n}\ s, choose U j ∈ G1, compute h j = H(M||U j).

• Choose r
′

s ∈ Z
∗
q, compute Us = Qr

′

s
s /
∏n

j,s U j · Q
h j

j .

• Compute hs = H1(M||Us) and V = S (hs+r
′

s )
s .

• Output the signature on M as σr = {∪
n
j=1U j,V}.

The patient will then upload the ring signature on the database.

4.5 Tracing Phase
In the Tracing Phase, the users will access the database and

check every new entry σr = {∪
n
i=1Ui,V}. They will retrieve the

list of all IDs of the meetings they participated in, which corre-
sponds to the messages on which the ring signatures were gener-
ated M = {ID1, · · · , IDn}. They will then verify each ring signa-
ture in the following way:
• Compute hi = H1(M||Ui)∀i ∈ {1, 2, · · · , n}.

6
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Fig. 2 Representation of the Meeting Phase for OF-MP Tracing and PF-MP Tracing

• Check whether e(yG,
∏n

i=1 Ui · Q
hi
i ) = e(g1,V).

• Accept the signature if it is true, reject otherwise.
If one of the signatures is accepted, it means that that user has

been in contact with a positive patient. The user will be able to
know in which meeting the user was in contact with the patient,
but not the identity of the patient among the participants.

5. Security
In this section, we first justify the threat model defined in Sec-

tion 3.3. Then, we present the security analysis of the proposed
protocols.

5.1 Threat Model Justification
As explained in Section 3, we consider that a user is unable to

modify information or add incomplete information on the user’s
app, such as adding a list of identifiers without the corresponding
multi-signature or modifying a list of identifiers. Moreover, a user
must use all information on the user’s app while sending alerts,
i.e. use all lists of identifiers stored on the user’s app while com-
puting ring signatures. Those assumptions are reasonable as a pa-
tient would be able to ignore information stored on the patient’s
app otherwise, preventing close contacts from being alerted.

As stated previously, our Threat Model uses concepts that
were previously introduced in [12] but we redefine those con-
cepts. More precisely we do not consider the users as honest-
but-curious. However, our concept of Patient Privacy is weaker
in the sense that it does not restrict the government from know-
ing the identity of the patient. Moreover, anyone can find out the
identities of participants at a meeting with a patient but no one
can to single out the identity of the patient. The concept of Con-
tact Privacy defined is achievable by introducing a trusted entity
(referred as doctor) to oversee the Tracing Phase (referred as the
Medical Treatment Phase) while using a zero-knowledge proof to
guarantee the privacy of the close contacts but that is beyond the
current scope of this paper.

We will now justify our Threat Model. A threat model aims
to identify threats and security requirements for a protocol. One
of the first security requirements of a Contact Tracing app is to
guarantee the privacy of its users, which is represented by Patient

Privacy. We assume that our protocol achieves Patient Privacy in
the sense that nobody (except the government), including his own
close contacts can single out his identity. The second security re-
quirement is that all users that have been in a Meeting Phase with
a patient (i.e. close contacts) are able to receive an alert during
the Tracing Phase, which corresponds to Traceability Complete-
ness. At the same time, it is important to prevent people from
mistakenly receiving an alert, since it could cause them to need-
lessly self-isolate and get tested. This can happen either because
they have received an alert from a patient that is not one of their
close contacts, or because they have received an alert from one
of their close contacts who is not a patient. Both of those cases
would cause someone to be falsely considered as close contacts,
and are referred in the threat model as False Positive Case 1 and
False Positive Case 2 respectively.

5.2 Security Analysis
Specifically, the security of both false positives can be reduced

to the unforgeability of the underlying ring and multi-signature
schemes, respectively. The privacy of the patient and close con-
tact can be reduced to the anonymity of the underlying ring sig-
nature schemes.

Theorem 1 False Positive Cases are negligible if the under-
lying multi-signature and ring signature schemes are unforgeable.

Proof The security of False Positive Case 1 and 2 is defined
by a sequence of games. Game 0 is the original security game,
where a simulator S simulates all system user’s behaviours for a
polynomial-time adversaryA in the Meeting Phase. In Game 1, if
A can pretend to be a positive patient/close-contact by generating
a valid proof (i.e. a multi-signature) in the Meeting Phase while
the patient/close-contact is honest, then S can use the gener-
ated multi-signature to break the existential unforgeability under
chosen-message attacks (EUF-CMA) security of multi-signature
scheme. Note that the generated multi-signature was not previ-
ously simulated by S. Similarly, Game 2 is the original security
game, where a simulator S simulates all system user’s behaviours
for a polynomial-time adversary A in the Alerting Phase. In
Game 3, if A can pretend to be a positive patient/close-contact
by generating a valid ring signature in the Alerting Phase, then S

7
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will break the EUF-CMA security of the ring signature.
We will first prove the security of False Positive Case 1. In

order to pretend to be a close contact, a user needs to generate a
multi-party proof in the Meeting Phase. We prove the security of
OF-MP Tracing. The user has access to following algorithms:
• Multi which takes a message M, a list of public keys
{y1, · · · , yn}, a list of signatures {σ1, · · · , σn} and outputs a
multi-signature Σ.

• MultiVeri f which takes a multi-signature Σ, a message M,
an aggregated public key agg and outputs 1 if the signature
is valid, or 0 if it is not valid.

Moreover, the adversary is able to make a signing query S ign
which takes as a parameter a message M, uses the current secret
key x and outputs a signature σ, and a KeyU pdate query which
updates the current secret key.

In Game 0, S simulates all system user’s behaviours for a
polynomial-time adversaryA.

initialization:
( 1 ) (x1, y1)← KeyGen(λ)
( 2 ) For 2 ≤ i ≤ n, (xi, yi)← KeyGen(λ)
( 3 ) j = 1

Send (y1) toA
Upon receiving a key update query, with x j the current secret
key,

( 4 ) if j < n, updates secret key to x j+1

Upon receiving signing query on M, with current secret key
x j

( 5 ) σ∗j ← S ign(M, x j) send σ∗j toA;
at the end,A outputs
Σ∗ = Multi(M∗, y∗1, · · · , y

∗
n, σ

∗
1, · · · , σ

∗
n)

( 6 ) if MultiVeri f (agg,Σ∗,M∗) = 1 for agg aggregate public key
of (y∗1, · · · , y

∗
n), y1 ∈ {y

∗
1, · · · , y

∗
n} andA never made a signing

query on M∗:
Output 1

( 7 ) else, output 0
We define Game 1 in a similar way but we add a necessary

winning condition, which corresponds to the condition necessary
to compute a valid multi-party proof in the Meeting Phase:

(6) if MultiVeri f (agg,Σ∗,M∗) = 1 for agg aggregate public
key of (y∗1, · · · , y

∗
n), y1 ∈ {y

∗
1, · · · , y

∗
n}, A never made a signing

query on M∗ and M∗ is of the form {ID1, · · · , IDn}:
Output 1
Let W0 and W1 be the event that A outputs 1 in Game 0 and

Game 1 respectively. Pr[W0] and Pr[W1] are the corresponding
probabilities. If W1 occurs, A can output the generated multi-
signature on the same message to win Game 0, so W0 occurs. We
then have Pr[W1] ≤ Pr[W0]. Game 0 corresponds to the secu-
rity game defined in DGNW-multi-signature scheme. So if W1

occurs, W0 occurs and S can use the generated multi-signature to
break the existential unforgeability under chosen-message attacks
(EUF-CMA) security of the DGNW-multi-signature scheme. Se-
curity of PF-MP Tracing follows in the same way.

We then have that False Positive Case 1 is negligible if the un-
derlying multi-signature scheme is unforgeable.

We will now prove that False Positive Case 2 is negligible. In
order to pretend to be a positive patient, a user has to generate a

valid ring signature on a list of IDs previously stored in the user’s
app which the user will then upload on the server in the Alerting
Phase. The user can make the following queries:
• H, H1 which takes an input as parameter and returns the

value of the corresponding hash.
• KeyGen which takes as input an ID and returns the corre-

sponding secret key KeyGen(ID) = S ID.
• S ign which takes as input a message M, a list of identifiers
{ID1, · · · , IDn} and returns a ring signature.

We define Game 2 in the following way:
initialization

( 1 ) n ≤ N For 1 ≤ i ≤ n, IDi ← {0, 1}∗

( 2 ) xG master secret key
Upon receiving a KeyGen query on an ID

( 3 ) S = KeyGen(ID) send S toA;
Upon receiving a signing query on {ID1, · · · , IDn} and the
message M

( 4 ) σr = S ign({ID1, · · · , IDn},M) send σr toA;
At the endA outputs σr on the message M∗

( 5 ) if Veri f y(σr,M∗) = 1, and A never made a KeyGen query
on a identifier in {ID1, · · · , IDn}

Output 1
( 6 ) else, output 0

We define Game 3 in the same way but we add a winning con-
dition which corresponds to a valid ring signature in the Alerting
Phase:

(5) if Veri f y(σr,M∗) = 1, andA never made a KeyGen query
on a identifier in {ID1, · · · , IDn} and M∗ is equal to the list of
identifiers {ID1, · · · , IDn}

Let W2 and W3 be the event that A outputs 1 in Game 2 and
Game 3 respectively. Pr[W2] and Pr[W3] are the corresponding
probabilities. If W3 occurs, A can output the generated ring sig-
nature on the same message to win Game 2, so W2 occurs. We
then have Pr[W3] ≤ Pr[W2]. Game 2 corresponds to the security
game defined in the ring signature scheme. So if W3 occurs, W2

occurs and S can use the generated ring signature to break the
existential unforgeability under chosen-message attacks (EUF-
CMA) security of the underlying ring signature scheme.

Since we assumed G1 and G2 are GDH Groups, the advantage
ofA, which corresponds to Pr[W2] is negligible.

We then have that False Positive Case 2 is negligible if the un-
derlying ring signature scheme is unforgeable which concludes
the proof of Theorem 1.

Theorem 2 The patient privacy is maintained if the underly-
ing ring scheme has the unconditional signer ambiguity property.

Proof The adversary can either be a close contact of the patient,
i.e. part of the group represented by the signer, or an outsider.
We will start with the adversary being a close contact. Let A
be a polynomial-time adversary and let σr be a given ring sig-
nature uploaded on the database representing a meeting between
n participants. We define AdvA as the probability of finding the
identity of the patient. IfA is able to break the patient privacy, we
have AdvA > 1/n which would correspond to a wild guess. How-
ever, it would mean that an adversary A is able to find the iden-
tity of the signer with probability better than 1/n which would
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Table 1 Comparison between the number of computations, communica-
tions and the characteristics of 3 protocols

Communications Computations Characteristics
OF-MP
Tracing

2 2(n−1)E+(2n+
1)P

OF, MP

PF-MP
Tracing

4 (4n−1)E+2(n−
1)P

UF, OF, MP

Primitive 4(n − 1) 5(n−1)E+2(n−
1)P

OF, UF

E : Exponentiations P : Pairings
n : number of Participants OF : Order Flexibility
MP : Multi-party Proof UF : User Flexibility

break the unconditional signer ambiguity property of the under-
lying ring signature. The reasoning holds ifA is an outsider. We
then have that the protocol has Patient Privacy if the underlying
ring scheme has the unconditional signer ambiguity property.

Theorem 3 The protocol has Traceability completeness if it
is correctly executed.

Proof As stated in Section 3, we consider that a patient will use all
information stored in his app in order to send an alert. Moreover,
a user is unable to modify the information after it has been stored
in his app. For 1 ≤ i ≤ n, let User i with identifier IDi be a par-
ticipant in a meeting. During the Meeting Phase, each user will
verify the identity of the (n − 1) other users. They will then gen-
erate a multi-signature. As the protocol was correctly executed,
the multi-signature will be valid and each user will store it, with
the list of identifiers present in the meeting {ID1, · · · , IDn}. Let
User s be the patient during the Alerting Phase, 1 ≤ s ≤ n. User
s will retrieve the list of identifier {ID1, · · · , IDn} to generate the
ring signature and upload it on the database. During the Tracing
Phase, for 1 ≤ i ≤ n, i , s, User i will verify the ring signa-
ture. As the protocol was correctly executed, {ID1, · · · , IDn} will
have been stored in user i app and the verification will accept the
ring signature. User i has been alerted that he has been in contact
with a patient. We then know that the protocol has Traceability
Completeness if it is correctly executed.

6. Efficiency and Characteristics
In this section, we compare the characteristics, computations,

and communications of PF-MP Tracing, OF-MP Tracing and
Primitive Multi-Party Tracing Protocol introduced in Section 3.1.
As in the rest of the protocol, we consider a meeting between n
participants, n ≥ 2. We have shown in Section 5 that all three pro-
tocols achieve Patient Privacy and False Positive Case 1 and 2.
Moreover, Primitive Multi-Party protocol achieves Contact Pri-
vacy by using a zero-knowledge proof.

In OF-MP Tracing, all participants of a meeting will generate
a multi-party proof, identical for every participant, and store it in
their smartphone as proof of the meeting. Moreover, the order of
the users has no impact on the protocol since users will go through
the verification with all other users simultaneously. As a result,
OF-MP Tracing achieves Order Flexibility and Multi-Party proof.

PF-MP Tracing achieves the same properties as OF-MP Trac-
ing but also achieves User Flexibility. PF-MP Tracing has the
message flexibility property, since the message on which the
multi-signature is generated is updated by each signer. In our
protocol, the message corresponds to the list of participants so it

doesn’t have to be fixed beforehand.
In Primitive Multi-Party Tracing Protocol, the user will verify

the identity of each user separately and generate a mutual com-
mitment for all of them. Furthermore, each verification and mu-
tual commitment are completely independent so the order itself
does not have an impact on the protocol. Moreover, since the
protocol is a 2-party protocol, the user will add all other users as
close contacts one after the other so the list of users does not have
to be fixed beforehand. However, the user will not store a multi-
party proof, so the result is the same as if the user met the (n − 1)
other users separately.

We can see that in PF-MP Tracing and OF-MP Tracing, the
number of communications is fixed and does not depend on the
number of participants in a meeting. In Primitive Multi-Party
Tracing Protocol, the number of communications is linear. The
number of computations required in PF-MP Tracing and OF-MP
Tracing is also less than in Primitive Multi-Party Tracing Proto-
col while generating proof that all participants were present. PF-
MP Tracing requires slightly more exponentiations, but allows
the message to be generated during the protocol instead of being
fixed.

7. Conclusion
We propose two Contact Tracing protocols in a multi-party set-

ting. These protocols are divided into four phases and guarantee
that a close contact of a Covid-19 patient will receive an alert. In
both protocols, proof will be generated at the end of the Meeting
Phase and stored on every participants’ smartphones. This proof
will differentiate a meeting between several participants and a
repetition of smaller meetings. Moreover, the Patient Privacy is
maintained by using a ring signature.
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