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The effect of interfacial properties on the reflection and transmission characteristics of ultrasonic

waves at adhesively bonded joints is theoretically investigated. An adhesive joint is modeled as a

double-interface model, namely, a homogeneous layer coupled to adherends by two spring-type

interfaces with different interfacial stiffnesses. For the normal incidence of a one-dimensional lon-

gitudinal wave, theoretical results are obtained and validated by finite element simulation. When

the thickness of the adhesive layer is sufficiently small compared to the wavelength, the amplitude

reflection and transmission coefficients show monotonic dependence on frequency, which can be

explained by the theoretical relation of the double-interface model to a single spring-type interface

model. The reflection and transmission behavior is invariant if the values of the two interfacial stiff-

nesses are interchanged. For a relatively thick adhesive layer, on the other hand, the reflection coef-

ficient shows local minima at multiple frequencies. As one interfacial stiffness decreases, the local

minimum frequencies decrease and the local minima increase. If the values of the two interfacial

stiffnesses are interchanged, the reflection coefficient remains invariant but the reflection waveform

shows different features. The obtained reflection and transmission characteristics are discussed in

light of the characterization of the interfacial adhesion. VC 2019 Acoustical Society of America.

https://doi.org/10.1121/1.5111856

[KML] Pages: 3541–3550

I. INTRODUCTION

Adhesive joining technology has been developing in

terms of material and mechanical sciences in recent years.

As the adhesive joining gains popularity in various indus-

tries, such as aircraft and automobiles, the nondestructive

evaluation (NDE) for adhesively bonded joints becomes

more indispensable. Among various NDE methods for adhe-

sive joints, ultrasonic waves play an important role not only

in the detection of defects including voids and cracks but

also in the characterization of the bond thickness, the cohe-

sive properties such as elastic or viscoelastic moduli, and the

adhesive properties (the properties of adherend�adhesive

interfaces).1–4

In the characterization of adhesive joints by ultrasonic

waves, the modeling of the joint is essential to interpret the

measured data precisely. Various models were proposed in

previous studies, and the model parameters were identified

from the measured results of reflected or transmitted waves

from adhesive joints. In most cases, an adhesive joint is

modeled as a tri-layer structure, which has an adhesive layer

sandwiched between two adherends,4–15 and the continuity

condition is imposed on the displacement and stress compo-

nents at the adherend–adhesive interfaces. The effect of

cohesive properties on the ultrasonic behavior can be exam-

ined in this model, which is referred to as the interlayer

model in the present study. When modeling adhesive joints

for the numerical simulation by finite element method

(FEM) or finite-difference method (FDM), however, the dis-

cretization of adhesive layers sometimes leads to high com-

putational cost because fine meshes are required to

accurately express the wave propagation in thin layers. Thus

a single-interface model is used as a convenient model for

adhesive joints, in which an adhesive layer is replaced by

equivalent distributed springs.8,9,16–22 When the thickness of

the adhesive layer is sufficiently thin compared to the wave-

length, the interlayer model can be reproduced by the single-

interface model with the interfacial stiffnesses expressed by

the cohesive properties. In general, the interfacial stiffnesses

in the single-interface model depend on both cohesive and

adhesive properties of bonded joints.

In order to consider cohesive and adhesive properties

separately, a double-interface model is often used in previ-

ous studies.23–34 An adhesive joint is modeled as a tri-layer

structure analogously to the interlayer model, but two adher-

end–adhesive interfaces are modeled by spring-type interfa-

ces. Each spring-type interface reflects a thin interphase

region between an adherend and an adhesive layer. The

double-interface model is also used for the modeling of a

plate compressed by two blocks because the spring-type

interface model can be applied to contacting surfaces

between solids.19,21,35–38 For a thin aluminum plate com-

pressed by two aluminum blocks, Lavrentyev and Rokhlin35

derived the reflection coefficient in the double-interfacea)Electronic mail: nmori@fc.ritsumei.ac.jp
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model, which was used to discuss the measured reflection

spectra at the contacting surfaces. Their concept was

extended by Baltazar et al.28 for the estimation of the cohe-

sive and adhesive properties of environmentally degraded

adhesive joints using reflection spectra. In these studies,

however, the interfacial stiffnesses of the two interfaces

were assumed to be identical. For adhesively bonded joints,

one of the adherend�adhesive interfaces could be degraded

with the other maintaining integrity due to improper adher-

end surface treatment before bonding, such as adherend con-

tamination by chemicals. It is therefore of importance to

investigate the effect of the two different interfaces on the

reflection and transmission behavior. However, to the

authors’ knowledge, this topic has not sufficiently been

explored.26,27

The aim of the present study is to reveal the effect of

the interfacial adhesion on the reflection and transmission

characteristics of ultrasonic waves at an adhesive joint. In par-

ticular, the reflection and transmission behavior in the double-

interface model with different interfacial properties is theoret-

ically examined. A one-dimensional theoretical analysis is

performed to derive the reflection and transmission coeffi-

cients, which are shown for two cases: (I) when the adhesive

layer is sufficiently thin compared to the wavelength and (II)

when the adhesive layer thickness is comparable to the wave-

length. Some previous papers considered three-dimensional

problems regarding an interface between two dissimilar

materials,39,40 but the present study deals with one-

dimensional wave propagation for simplicity. The obtained

reflection and transmission characteristics are discussed by

comparing to the results of the single-interface model.

This paper is structured as follows. In Sec. II, three dif-

ferent models for adhesive joints, namely, the interlayer

model, the single-interface model, and the double-interface

model are briefly described. In Sec. III, the reflection and

transmission characteristics for the normal incidence of the

one-dimensional wave are theoretically obtained for the

double-interface model. To validate the theoretical results, a

finite element simulation is performed in Sec. IV. In Sec. V,

the reflection and transmission characteristics in the double-

interface model are further explored using the theoretical

results and the transient responses obtained by FEM.

II. THEORETICAL MODELS FOR ADHESIVE JOINTS

In this study, an adhesive joint subjected to the normal

wave incidence shown in Fig. 1(a) is modeled in three differ-

ent manners, as shown in Figs. 1(b)–1(d). For simplicity, the

normal incidence of a one-dimensional longitudinal wave to

the adhesive joint is considered in all models. The adherends

are semi-infinite, homogeneous, and linear elastic bodies.

The propagation direction of the incident wave is set as x
axis. The wave propagation in the adherends obeys the wave

equation

@2u

@t2
¼ 1

q
@r
@x
¼ 1

q
@

@x
qc2 @u

@x

� �
¼ c2 @

2u

@x2
; (1)

where t is time, q and c are the mass density and the wave

velocity of the adherends, u ¼ u(x, t) is the displacement

component, and r¼ r(x, t) is the stress component. In Eq.

(1), Hooke’s law is applied in order to relate the displace-

ment and stress components.

Figure 1(b) corresponds to the interlayer model, which

is widely used for the modeling of adhesive joints in the

ultrasonic reflection and transmission analysis.4–15 The adhe-

sive layer is replaced by a homogeneous layer of thickness h
in 0< x< h, which is modeled as elastic or viscoelastic

material. The continuity condition of the displacement and

stress components is applied at two adherend�adhesive

interfaces x¼ 0 and x¼ h, namely,

FIG. 1. (Color online) Schematics of (a) an adhesive joint subjected to the normal wave incidence, and three different models for the ultrasonic reflection and

transmission analysis: (b) the interlayer model, (c) the single-interface model, and (d) the double-interface model.
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uð0þ; tÞ ¼ uð0�; tÞ; rð0þ; tÞ ¼ rð0�; tÞ;
uðhþ; tÞ ¼ uðh�; tÞ; rðhþ; tÞ ¼ rðh�; tÞ; (2)

where the superscript þ (�) represents the right (left) side of

the interface, i.e., uð06; tÞ ¼ limx!60 uðx; tÞ, for instance. In

this study, the adhesive layer is modeled by linear elastic

material of the wave velocity cA and the mass density qA,

and its viscosity is not considered for simplicity.

Figure 1(c) shows the single-interface model, which can

be used for a thin adhesive layer.16–22 The adhesive layer is

replaced by equivalent springs distributed along the joint

surfaces. When the interface is located at x¼ 0, the boundary

condition is expressed as

rð0þ; tÞ ¼ rð0�; tÞ ¼ KS uð0þ; tÞ � uð0�; tÞ
� �

; (3)

where KS is the interfacial stiffness. The stress component is

continuous at the joint, while the displacement component

can be discontinuous. This spring-type interface model is

also used for the modeling of contacting surfaces between

solids35–38 and damaged interfaces.41

Figure 1(d) corresponds to the double-interface model,23–34

which is analogous to the interlayer model shown in Fig. 1(b).

The adhesive layer is similarly modeled as a homogeneous

layer of thickness h in 0< x< h, but the boundary condition of

spring-type interfaces is applied to the adherend–adhesive inter-

faces at x¼ 0 and x¼ h instead of Eq. (2), i.e.,

rð0þ; tÞ ¼ rð0�; tÞ ¼ K1 uð0þ; tÞ � uð0�; tÞ
� �

;

rðhþ; tÞ ¼ rðh�; tÞ ¼ K2 uðhþ; tÞ � uðh�; tÞ
� �

; (4)

where K1 and K2 represent the interfacial stiffnesses of the

interfaces at x¼ 0 and x¼ h, respectively. When K1 and K2

approach infinity, the double-interface model is reduced to

the interlayer model.

III. THEORETICAL REFLECTION AND TRANSMISSION
CHARACTERISTICS

For the single-interface model and the double-interface

model in Sec. II, the normal incidence of a harmonic

longitudinal wave is considered. For the single-interface

model in Fig. 1(c), the displacement field in the adherends is

written as

u ¼ expðixx=cÞ þ R expð�ixx=cÞ; x < 0;

u ¼ T expðixx=cÞ; x > 0; (5)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, x¼ 2pf is angular frequency, and R and T
are reflection and transmission coefficients. The time-

dependent term exp(�ixt) is omitted from all terms in Eq.

(5). Substitution of Eq. (5) into Eq. (3) leads to

R ¼ iXS

iXS � 2
; T ¼ � 2

iXS � 2
; (6)

which are determined only by the non-dimensional quan-

tity XS¼qcx/KS, as obtained in previous papers.17–22 In

particular, the amplitude reflection coefficient jRj
increases monotonically with increasing XS. As reported

in previous studies, the interfacial stiffness KS can be

estimated by

KS ¼
qcx
2jRj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jRj2

q
; (7)

from the measured value of the amplitude reflection coeffi-

cient jRj at angular frequency x.

Likewise, for the double-interface model in Fig. 1(d),

the displacement field in the tri-layer structure is written as

u ¼ exp ðixx=cÞ þ R exp ð�ixx=cÞ; x < 0;

u ¼ A exp ðixx=cAÞ þ B exp ð�ixx=cAÞ; 0 < x < h;

u ¼ T exp ðixx=cÞ; x > h; (8)

where R and T are reflection and transmission coefficients,

and A and B are wave amplitudes in the adhesive layer. By

substituting Eq. (8) into Eq. (4), a system of linear equations

in the coefficients R, T, A, and B is obtained. The reflection

coefficient R is derived as

R ¼
�i

X1 þ X2

2
cos kAhð Þ � ir

2
1þ i

X2 � X1

r2
� X1X2

r2
� 1

r2

� �
sin kAhð Þ

1� i
X1 þ X2

2

� �
cos kAhð Þ � ir

2
1� i

X1 þ X2

r2
� X1X2

r2
þ 1

r2

� �
sin kAhð Þ

; (9)

where kA¼x/cA is the wavenumber in the adhesive, r¼qc/

(qAcA) is the acoustic impedance ratio, X1¼ qcx/K1, and

X2¼qcx/K2. The reflection coefficient in the case of

K1¼K2 was implicitly given by Lavrentyev and Rokhlin,35

but to the authors’ knowledge the general case of K1 6¼ K2 is

shown here for the first time.

When the adhesive layer is sufficiently thin, i.e.,

kAh¼xh/cA�min(1, K1/KAL, K2/KAL), where KAL

¼ qAcA
2/h, and the acoustic impedance of the adhesive is

sufficiently lower than the adherends, i.e., 1/r¼qAcA/(qc)

� 1, the reflection coefficient of Eq. (9) can be simplified

as
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R ffi
�i

X1 þ X2

2
� ir

2
kAh

1� i
X1 þ X2

2
� ir

2
kAh

¼ i X1 þ X2 þ rkAhð Þ
i X1 þ X2 þ rkAhð Þ � 2

;

(10)

which corresponds to the formula for the single-interface

model given in Eq. (6) with XS¼X1 þ X2 þ rkAh, namely,

1

KS

¼ 1

K1

þ 1

K2

þ 1

KAL

; (11)

which is an analogous form of the equivalent spring constant

for springs in series. This result indicates that if the adhesive

layer is sufficiently thin and has relatively low acoustic

impedance, the double-interface model can be approximated

by the single-interface model using Eq. (11). In the asymp-

totic case of K1 ! 1 and K2 ! 1, which corresponds to

the interlayer model in Fig. 1(b), the interfacial stiffness KS

can be related to the cohesive properties by a well-known

equation

KS ¼ KAL ¼
qAc2

A

h
: (12)

The relation of Eq. (11) shows that the interfacial compli-

ance in the single-interface model 1/KS can be expressed as

the sum of the cohesive property 1/KAL and the adhesive

property 1/K1 þ 1/K2 in the double-interface model.

In this study, two cases are considered to examine the

effect of the interfacial stiffnesses on the reflection and trans-

mission behavior. In case I, the adhesive thickness is set to

be sufficiently small compared to the wavelength, while a

relatively thick adhesive layer is considered in case II.

IV. FINITE ELEMENT SIMULATION

A. Numerical model

To validate the theoretical results in Sec. III, two-

dimensional numerical simulation by time-domain FEM

is carried out for the double-interface model. As shown in

Fig. 2, two homogeneous and linear elastic solids of thick-

ness L¼ 50 mm and width W are bonded by an adhesive

layer of thickness h under the plane-strain condition. The

spring-type boundary condition given in Eq. (4) is applied

for the displacement and stress components at two adher-

end�adhesive interfaces. The periodic boundary condition

is imposed on the upper and lower edges, and the normal

traction is applied uniformly on the left edge to excite a

longitudinal plane wave. Namely, the numerical model is

two-dimensional but the wave propagation behavior is sub-

stantially one-dimensional. The displacement component in

the horizontal direction is calculated at two points A and B,

which are located L/2 away from the left and right adhesive

interfaces, respectively. The waveforms of the incident and

reflected waves are calculated at the point A, and the trans-

mission waveform is obtained at the point B. The mass den-

sities and the wave velocities are set as q¼ 2.7� 103 kg/m3

and c¼ 6.4 km/s for the adherends, and qA¼ 1.2� 103 kg/m3

and cA¼ 2.0 km/s for the adhesive, respectively. These

parameters are based on the material properties of aluminum

alloy and polymer-based adhesive. The acoustic impedance

ratio is r¼ qc/(qAcA)¼ 7.2.

In accordance with cases I and II in the theoretical anal-

ysis, two different cases are considered in the finite element

simulation. In case I, the adhesive thickness is set as

h¼ 0.02 [mm]. A Gaussian-modulated tone-burst

g tð Þ ¼ exp � t� t0
r0

� �2
" #

sin 2pf0 t� t0ð Þ½ �; (13)

is prescribed as the normal traction at the left edge, where

t0¼ 10 ls, r0¼ 1.5 ls, and f0¼x0/(2p)¼ 0.5 MHz is the

center frequency. On this condition the non-dimensional

quantity x0 h/cA becomes x0 h/cA¼ 0.03, which indicates

that the adhesive layer is sufficiently small compared to the

wavelength at the center frequency. In case II, on the other

hand, the adhesive thickness is h¼ 0.2 mm, and the center

frequency of the input waveform is set as f0¼x0/

(2p)¼ 4 MHz with t0¼ 10 ls and r0¼ 0.2 ls. In this situa-

tion the non-dimensional quantity x0h/cA is larger than

unity, i.e., x0h/cA¼ 2.5, which corresponds to a relatively

thick adhesive layer compared to the wavelength.

The numerical models described above were discretized

by four-node square-shaped isoparametric elements. Since

the frequency ranges were different in cases I and II, ele-

ments with different sizes were used. For the modeling of

the adhesive layers, the side lengths of the elements were 10

and 5 lm in cases I and II, which correspond to approxi-

mately 0.1% and 2% of the wavelength, respectively. Time

integration was performed in an explicit scheme using the

fourth-order Runge-Kutta method under the lumped mass

matrix approximation. Time steps were set as 10 and 5 ls in

cases I and II, respectively, to satisfy the stability condition.

B. Verification of the theoretical results

The waveforms at the two points A and B are obtained

by FEM for K1¼K2¼ 1 MPa/nm, and the calculated results

for cases I and II are shown in Figs. 3(a) and 3(b), respec-

tively. In each figure, the waveform obtained at the point A

represents the incident wave and the reflected wave, and the

waveform at the point B corresponds to the transmitted

wave. The incident waveform is located at around 14 ls, and

the waveforms of the reflected and transmitted waves from

the adhesive joint are at around 22 ls. It is noted that the

scales of the horizontal axes in Figs. 3(a) and 3(b) are set to

be different to show the waveforms clearly. In Fig. 3(a), the
FIG. 2. (Color online) Numerical model of an adhesive joint for the finite

element simulation.
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reflected waves from the left and right edges of the adher-

ends appear at around 30 ls, but hereafter these waves are

not considered.

The amplitude spectra of the incident, reflected, and

transmitted waves, denoted as I(f), P(f), and Q(f), respec-

tively, are obtained by spectral analysis using fast Fourier

transform (FFT). The incident waveform is extracted by a

rectangular window function of time range 10–18 ls, while

the reflection and transmission waveforms are by a rectangu-

lar window of time range 18–25 ls. The amplitude reflection

and transmission coefficients are calculated as functions of

frequency

jR fð Þj ¼ P fð Þ
I fð Þ ; jT fð Þj ¼ Q fð Þ

I fð Þ ; (14)

respectively. The reflection and transmission coefficients

obtained from the waveforms in Figs. 3(a) and 3(b) are

shown in Figs. 4(a) and 4(b), respectively, together with the

theoretical results obtained by Eq. (9) and jTj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jRj2

q
.

As a result, the theoretical and numerical results are found to

be in good agreement for both cases I and II, and the validity

of the theoretical results is confirmed. The amplitude reflec-

tion and transmission coefficients vary monotonically with

frequency in case I, while they show extremal behavior in

case II. In Fig. 4(b), the reflection coefficient shows slight

deviation above 5.5 MHz due to insufficient mesh sizes in

the finite element simulation, but the local minimum (maxi-

mum) behavior of the reflection (transmission) coefficient is

well reproduced by FEM. The dependence of the reflection

and transmission coefficients on the frequency and the inter-

facial stiffnesses is further investigated in Sec. V.

V. RESULTS AND DISCUSSIONS

A. Case of a thin adhesive layer (case I)

The amplitude reflection and transmission coefficients are

calculated from the theoretical relation of Eq. (9) for different

interfacial stiffnesses K1 and K2 in case I. The obtained reflec-

tion and transmission coefficients at K2/K1¼ 1 are shown for

two different interfacial stiffnesses in Figs. 5(a) and 5(b), and

the results for K2/K1< 1 at a fixed interfacial stiffness

K1¼ 1 MPa/nm are shown in Figs. 5(c) and 5(d), respectively.

In all conditions, the reflection coefficient increases and the

transmission coefficient decreases monotonically with increas-

ing frequency. Furthermore, the interfacial stiffness KS in the

single-interface model is determined for each pair of K1 and

K2 in Figs. 5(a)–5(d) from Eq. (11), and the reflection and

FIG. 3. Time histories of the incident and reflected waves at the point A and

the transmitted wave at the point B in (a) case I and (b) case II at

K1¼K2¼ 1 MPa/nm, calculated by FEM.

FIG. 4. (Color online) Comparison of the amplitude reflection and transmis-

sion coefficients obtained by FEM to the theoretical results: (a) case I and

(b) case II at K1¼K2¼ 1 MPa/nm.

J. Acoust. Soc. Am. 145 (6), June 2019 Mori et al. 3545



transmission coefficients in the single-interface model are cal-

culated by Eq. (6). The obtained results are shown together in

Figs. 5(a)–5(d). As a result, the reflection and transmission

coefficients for the double-interface model are shown to be

well reproduced by the single-interface model, whether the

two interfacial stiffnesses K1 and K2 in the double-interface

model are equal or not. This result indicates that the single-

interface model can be applied to the adhesive joint in case I.

In the actual measurement, if the interfacial stiffness in the

single-interface model KS is estimated from the measured

reflection coefficient by Eq. (7) and the cohesive property

KAL¼ qAcA
2/h is known a priori, the sum of the two interfa-

cial compliances 1/K1þ1/K2 can be obtained from Eq. (11)

without the direct use of the double-interface model.

When the sum of the two interfacial compliances is

fixed at 1/K1 þ 1/K2¼ 2 nm/MPa, the amplitude reflection

and transmission coefficients for the double-interface model

are calculated from Eq. (9) for different stiffness ratios K2/

K1. The obtained results are shown in Fig. 6. In this figure,

the cases of K2/K1¼ 0.05 and K1/K2¼ 0.05 represent the

results for the interchange of the interfacial stiffnesses,

which corresponds to the change of the incident surface in

the adhesive joint. In other words, if the former case corre-

sponds to the wave incidence from one adherend, the latter

represents the incidence from the other adherend. In Fig. 6,

the reflection and transmission coefficients for three different

stiffness ratios K2/K1 show the same frequency dependences,

respectively, even if the values of K1 and K2 are inter-

changed. Namely, the difference between the two interfacial

stiffnesses K1 and K2 cannot be clarified from only the

amplitude reflection and transmission coefficients in the fre-

quency domain.

To seek difference among the three different interfacial

conditions in Fig. 6, the transient behavior of the reflection

and transmission at the adhesive joints is investigated by

FEM. The reflection and transmission waveforms calculated

at the two points A and B are shown in Fig. 7. In this figure,

clear difference cannot be found among the waveforms for

the three interfacial ratios if the sum of the interfacial com-

pliances is fixed. Namely, when the adhesive thickness h is

sufficiently small compared to the wavelength, not only the

reflection and transmission coefficients in the frequency

domain but also the temporal waveforms depend simply on

FIG. 5. (Color online) Comparison of the amplitude reflection and transmission coefficients in case I obtained from the double-interface model at (a)

K1¼ 1 MPa/nm, K2/K1¼ 1, (b) K1¼ 0.1 MPa/nm, K2/K1¼ 1, (c) K1¼ 1 MPa/nm, K2/K1¼ 0.1, and (d) K1¼ 1 MPa/nm, K2/K1¼ 0.05, to the results for the

single-interface model.

FIG. 6. (Color online) Variation of the amplitude reflection and transmission

coefficients calculated for different stiffness ratios K2/K1 at 1/K1þ1/K2

¼ 2 nm/MPa with frequency, for the double-interface model in case I.
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the sum of the interfacial compliances 1/K1 þ 1/K2. Each

interfacial compliance in the double-interface model cannot

uniquely be determined from the reflection and transmission

waveforms.

B. Case of a relatively thick adhesive layer (case II)

When the thickness of an adhesive layer is sufficiently

thin compared to wavelength, the amplitude reflection coeffi-

cient increases monotonically with frequency as shown in

Fig. 5. For a relatively thick adhesive layer, on the other

hand, the reflection coefficient shows local minima due to

the interference of waves multiply reflected in the inter-

layer.3,35 In case II, the amplitude reflection coefficient at

K1¼K2¼ 1 MPa/nm is calculated from Eq. (9) and is shown

in Fig. 8. Furthermore, the interfacial stiffness in the single-

interface model KS is calculated from Eq. (11), and the

amplitude reflection coefficient obtained by Eq. (6) is shown

together in Fig. 8. As a result, it is shown that the single-

interface model cannot reproduce the local minimum behav-

ior of the reflection coefficient in the double-interface model.

The adhesive thickness h is not sufficiently small compared

to the wavelength above around 1 MHz that the single-

interface model cannot be related to the double-interface

model by Eq. (6).

The amplitude reflection coefficient in the double-

interface model at K2/K1¼ 1 is calculated for different inter-

facial stiffnesses K1 from Eq. (9). The obtained results

are shown in Fig. 9(a). The reflection coefficient for each

interfacial stiffness becomes zero at three frequencies below

15 MHz, and the local minimum frequencies decrease as the

interfacial stiffness decreases. This feature was reported in

Ref. 35. For different stiffness ratios K2/K1, the amplitude

reflection coefficient is calculated at a fixed interfacial stiff-

ness K1¼ 1 MPa/nm, as shown in Fig. 9(b). As the stiffness

ratio K2/K1 decreases, the local minimum frequencies are

found to become low. This trend is analogous to the case of

K2/K1¼ 1 in Fig. 9(a) that the local minimum frequencies

decrease with decreasing interfacial stiffness. On the other

hand, the local minima seen in Fig. 9(b) increase with

decreasing stiffness ratio K2/K1, which is not seen in the case

of K2/K1¼ 1. When the two interfacial stiffnesses K1 and K2

are identical, multiply reflected waves from the two interfa-

ces are exactly canceled at certain frequencies due to the

symmetry of the joint, so that the reflected wave amplitude

becomes zero.35 If the two interfacial stiffnesses are not

equal, however, the symmetry breaks and the reflected

wave cannot totally be canceled by the superposition of the

FIG. 7. (Color online) Time histories of the incident and reflected waves at

the point A, and the transmitted wave at the point B, obtained by FEM for

different stiffness ratios K2/K1 at 1/K1 þ 1/K2¼ 2 nm/MPa.

FIG. 8. (Color online) Comparison of the amplitude reflection coefficient

calculated from the double-interface model at K1¼ 1 MPa/nm and K2/K1¼ 1

to the results of the corresponding single-interface model.

FIG. 9. (Color online) Effects of (a) the interfacial stiffness K1 at a fixed

stiffness ratio K2/K1¼ 1 and (b) the stiffness ratio K2/K1 at a fixed interfacial

stiffness K1¼ 1 MPa/nm on the frequency dependence of the amplitude

reflection coefficient in the double-interface model.
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multiply reflected waves from the interfaces. This non-zero

local minimum behavior is characteristic of adhesive joints

with one interfacial stiffness degraded compared to the

other.

It is noted that if the values of K1 and K2 are inter-

changed, the frequency dependence of the amplitude reflec-

tion coefficient jRj remains invariant as shown in Fig. 10.

This feature appears because jRj calculated from Eq. (9) has

a symmetric form with respect to K1 and K2. Namely, it has

no effect on the amplitude reflection coefficient in the fre-

quency domain which of the two interfaces shows lower

interfacial stiffness, similarly to the result of case I shown in

Fig. 6.

To clarify the difference between the cases of K1/

K2< 1 and K1/K2> 1, the reflection waveforms calculated

by the time-domain FEM are further examined. Two condi-

tions are considered here: (1) K1/K2¼ 0.05, K2¼ 1 MPa/nm

and (2) K2/K1¼ 0.05, K1¼ 1 MPa/nm. These two situations

correspond to the interchange of the interfacial stiffnesses,

which represents the change of the incident surface in the

adhesive joint. The obtained reflection waveforms are

shown in Fig. 11. As a result, the reflection waveforms are

found to show different features in the two conditions. The

maximum displacement of the reflection waveform at K1/

K2¼ 0.05 is larger than that for K2/K1¼ 0.05, and the latter

shows a large-oscillation tail after 22 ls compared to the

former. These features can also be illustrated in the time-

frequency relations obtained by short-time Fourier trans-

form (STFT), as shown in Figs. 12(a) and 12(b). At K1/

K2¼ 0.05, most of the reflected energy consists of the

reflected wave at the left interface of interfacial stiffness K1,

which corresponds to relatively high wave amplitude at

around 22 ls. In this case, the amplitude of the transmitted

wave across the left interface becomes low compared to the

result for K2/K1¼ 0.05. Since the long-oscillation tails

result from the multiple reflection in the adhesive layer, the

temporal length of the reflection waveform for K1/K2¼ 0.05

becomes relatively short. On the other hand, at K2/K1¼ 0.05

the amplitude of the transmitted wave across the interface

of interfacial stiffness K1 is relatively high, so that the long

oscillation appears more clearly in the reflection waveform

due to the multiple reflection. Namely, from the amplitude

reflection coefficient it cannot be predicted which of the two

interfaces shows lower interfacial stiffness, but that seems

to be qualitatively distinguishable by comparing the two

reflection waveforms acquired for the wave incidence from

one adherend and the other. These results could be used for

the detection of weak interfacial adhesion in adhesive joints

by the reflection characteristics for the normal wave inci-

dence, which remains as future work.

FIG. 10. (Color online) Effect of the interchange of the interfacial stiff-

nesses K1 and K2 on the frequency dependence of the amplitude reflection

coefficient when K2/K1¼ 0.1 and K2/K1¼ 0.05 at K1¼ 1 MPa/nm, and when

K1/K2¼ 0.1 and K1/K2¼ 0.05 at K2¼ 1 MPa/nm.

FIG. 11. (Color online) Reflection waveforms calculated at the point A for

the double-interface model in case II at two different pairs of the interfacial

stiffnesses, obtained by FEM.

FIG. 12. (Color online) Time-frequency relations of the reflection wave-

forms for the double-interface model in case II at (a) K1/K2¼ 0.05,

K2¼ 1 MPa/nm and (b) K2/K1¼ 0.05, K1¼ 1 MPa/nm.
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VI. CONCLUSIONS

In this study, the effect of the interfacial stiffnesses on

the reflection and transmission characteristics of normally

incident ultrasonic waves at adhesively bonded joints has

been investigated by one-dimensional wave propagation

analysis. An adhesive joint has been modeled as a double-

interface model, namely, a homogeneous layer coupled to

adherends by two spring-type interfaces with different inter-

facial stiffnesses. When the thickness of the adhesive layer is

sufficiently smaller than the wavelength, the double-

interface model has been shown to correspond to a single

spring-type interface model, whose interfacial stiffness is

expressed by the cohesive and adhesive properties of the

bonded joint. Even if the values of the two interfacial stiff-

nesses in the double-interface model have been replaced

each other, the reflection and transmission behavior has been

invariant in the time domain as well as in the frequency

domain. On the other hand, when the adhesive thickness is

comparable to the wavelength, the reflection coefficient has

shown the local minima at certain frequencies, which are not

reproduced by the single-interface model. As one interfacial

stiffness decreases, the local minimum frequencies have

become low and the local minima have increased. The fre-

quency dependence of the reflection coefficient has remained

invariant if the values of the two interfacial stiffnesses are

interchanged. However, the reflection waveform has shown

different features including the waveform amplitude and the

oscillation tail due to the contrast between the two interfacial

stiffnesses.
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