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The reflection and transmission characteristics of Lamb waves at an adhesive single lap joint of

plates are examined theoretically by the hybrid finite element method. The adhesive joint is mod-

eled by a linear spring-type interface, which is characterized by normal and tangential stiffnesses.

For the incidence of the lowest-order antisymmetric (A0) Lamb mode in a low frequency range, it

is shown that the reflection and transmission coefficients of the A0 mode take local maxima and

minima at multiple frequencies. This behavior results from the interference of waves originating

from the lowest-order antisymmetric guided wave mode in the overlap region. The peak frequen-

cies of the transmission coefficient increase monotonically with increasing tangential stiffness, but

are almost invariant with the normal stiffness of the adhesive joint. Furthermore, time-domain

numerical simulation using the finite element method is carried out to discuss the theoretical results.

As a result, for the A0 mode incidence, the reflection and transmission waveforms of the A0 mode

from the lap joint are found to show long-oscillation tails. The spectral analysis for the obtained

waveforms shows that these tails are necessary to identify the frequencies at which the reflection

and transmission coefficients take local maxima and minima.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5109098

[MCR] Pages: 3075–3085

I. INTRODUCTION

Adhesive bonding gains importance in many industrial

fields, such as aircraft and automobiles, due to its advantage

for lighter structures and multi-material design compared to

other joining techniques. As the adhesive bonding becomes

widespread, the necessity of the nondestructive evaluation

(NDE) grows for adhesive joints of different structures.

Ultrasonic waves play a major role in the NDE of adhesive

joints, enabling not only the detection of gross defects, such

as voids and cracks, but also the quantitative evaluation of

the cohesive properties.1–3 Furthermore, the adhesive prop-

erty, i.e., the property of adhesive interfaces, is also impor-

tant to maintain the integrity of adhesive joints.4–8 The

interfacial adhesion is significantly affected by the surface

treatment of adherends before bonding, which includes abra-

sion to control the surface roughness and alcohol cleaning to

eliminate the surface contamination.

In the ultrasonic NDE of plate-like structures, elastic

guided waves attract great attention due to relatively long

propagation distances compared to bulk waves. In isotropic

plates, two types of guided waves, i.e., shear-horizontal (SH)

guided waves and Lamb waves, can mainly propagate.9 The

deformations of the SH guided waves are parallel to the plate

surfaces and normal to the propagation direction, while the

Lamb waves show deformations normal to those of the SH

guided waves.

Numerous studies were carried out to examine the appli-

cation of the guided waves to the NDE of adhesive

joints.7–23 For a single lap joint of plates, Lowe et al.12

performed a finite element simulation of the Lamb wave

transmission across a lap joint for the incidence of the

lowest-order symmetric (S0) Lamb mode, showing the effect

of the bond length and thickness on the transmission charac-

teristics. Lanza di Scalea et al.14 measured the transmission

characteristics at a lap joint for the incidence of the lowest-

order antisymmetric (A0) Lamb mode, which were shown to

depend on the cohesive properties of the adhesive layer. It

was revealed in previous studies that the length, thickness,

and cohesive properties of the adhesive layer affect the

Lamb wave transmission characteristics across a lap joint,

but the effect of the adhesive interface on the Lamb wave

transmission has not sufficiently been explored.20 On the

other hand, the transmission characteristics of SH guided

waves for different adhesive interfacial conditions were

shown by Castaings,19 who modeled an adhesive joint as a

thin viscoelastic layer with spring-type interfaces and esti-

mated the tangential stiffness of the adherend-adhesive inter-

faces from the transmission waveform.

The aim of the present study is to examine the reflection

and transmission characteristics of Lamb waves at a single

lap joint of plates. In particular, the effect of the adhesive

interface is taken into account in two-dimensional theoretical

analysis using the hybrid finite element method (HFEM).

Among various types of adhesively bonded joints, single lap

joints with relatively thin adhesive layers are considered in

this study.

This paper is structured as follows. In Sec. II, the theo-

retical model of a single lap joint of plates is explained. The

adhesive joint is modeled as a spring-type interface, which isa)Electronic mail: nmori@fc.ritsumei.ac.jp
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characterized by normal and tangential stiffnesses. The for-

mulation of the HFEM in the frequency domain is also

briefly described. In Sec. III, the reflection and transmission

characteristics for the A0 mode incidence are shown and dis-

cussed by comparing to the results in a multi-reflection

model. Furthermore, the peak frequencies of the A0 mode

transmission coefficient are particularly examined. In Sec.

IV, time-domain numerical simulation using the finite

element method (FEM) is carried out. The results by the

time-domain analysis are used to check the validity of the

theoretical results and discuss the interpretation of the tem-

poral waveforms.

II. NUMERICAL MODEL AND METHOD

A. Lap joint model

As shown in Fig. 1, in the x-y-z Cartesian coordinate

system, two semi-infinite isotropic and linear elastic plates

of thickness d overlap each other and are jointed in jxj<L/2,

where L is the overlap length. The two adherends are under

the plane-strain condition in the x-z plane. The wave propa-

gation in the plates obeys the two-dimensional Navier

equation in the frequency domain
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where x is angular frequency, ux¼ ux(x,z,x) and

uz¼ uz(x,z,x) are displacement components, and cL and cT

are the velocities of longitudinal and transverse waves,

respectively. On the plate surfaces, traction-free conditions

are applied to the corresponding stress components. For the

overlap region jxj< L/2, the adhesive joint is modeled as a

linear spring-type interface24–26

rzðx; 0þ;xÞ ¼ rzðx; 0�;xÞ
¼ KN uzðx; 0þ;xÞ � uzðx; 0�;xÞ

� �
;

sxzðx; 0þ;xÞ ¼ sxzðx; 0�;xÞ
¼ KT uxðx; 0þ;xÞ � uxðx; 0�;xÞ

� �
; (2)

where rz¼rz(x,z,x) and sxz¼ sxz(x,z,x) are stress compo-

nents, and z¼ 0þ (z¼ 0�) represents the joint surface of the

upper (lower) adherend. The parameters KN and KT denote

normal and tangential stiffnesses of the adhesive joint,

respectively, which were assumed to be uniform over the

entire joint. The adhesive layer is replaced by equivalent

distributed springs, and the effect of their thicknesses

emerges in the normal and tangential stiffnesses of the

joint.4,25 This modeling is valid if the bond thickness hA is

sufficiently thin, i.e., khA� 1, where k is the wavenumber of

a guided wave mode in the overlap region.25–28 For a thicker

adhesive layer, the overlap region should be modeled as a

triple-layer structure. This topic is left for future studies.

The incident frequency f¼x/(2p) is limited in fd/cT

< 0.25, where only the S0 and A0 Lamb modes can propagate

in the single plate regions. Other Lamb modes are non-

propagating modes or evanescent modes in this frequency

range. The A0 mode propagating in the positive x direction is

incident to the lap joint, and the reflection and transmission

behavior is analyzed by the HFEM. In this study, the material

property of aluminum alloy (cL¼ 6.4 km/s, cT¼ 3.17 km/s,

and mass density q¼ 2.7� 103 kg/m3) was used for the

modeling of the adherends.

B. HFEM

HFEM31–34 was employed to examine the reflection and

transmission characteristics at a lap joint subjected to the A0

mode incidence. As shown in Fig. 1, the bounded region

jxj< L/2þ l, including the lap joint, was discretized by finite

elements, where l denotes the length of single plate regions

in the finite element model. The propagation behavior of the

guided waves in this region was analyzed by frequency-

domain FEM. In the semi-infinite single plate regions

jxj> L/2þ l, the displacement fields u¼ (ux uz)
T were

expressed by the superposition of different Lamb modes in a

single plate as

u ¼ UA
þ0 exp ðikA

þ0xÞ

þ
X1
n¼0

RAnUA
�n expðikA

�nxÞ þ RSnUS
�n expðikS

�nxÞ
� �

;

(3)

in x<�L/2 � l and

u ¼
X1
n¼0

TAnUA
þn expðikA

þnxÞ þ TSnUS
þn expðikS

þnxÞ
h i

;

(4)

in x> L/2þ l, respectively, where i¼
ffiffiffiffiffiffiffi
�1
p

, U
b
þn (Ub

�n) is the

displacement profile vector of the nth-order Lamb mode

propagating or decaying in the positive (negative) x direc-

tion, the superscripts b¼S and b¼A represent the symmet-

ric and antisymmetric modes, respectively, and kb
þn and kb

�n

are the wavenumbers of the corresponding Lamb modes.

The time-dependent term exp(�ixt) is omitted from all

terms in Eqs. (3) and (4), where t denotes time. The coeffi-

cients Rbn and Tbn are the reflection and transmission coeffi-

cients of each Lamb mode, respectively. By applying the

continuity condition of the displacement and stress compo-

nents at nodes along the boundaries jxj ¼L/2þ l, the reflec-

tion and transmission coefficients were obtained.

To confirm the validity of the numerical calculation, the

case of the overlap length L¼ d was first examined
FIG. 1. Schematic of an adhesively bonded single lap joint of plates sub-

jected to the Lamb wave incidence.
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according to Song et al.,35 who imposed the continuity con-

dition on the displacement and stress components at z¼ 0.

Their numerical analysis corresponds to the case of infinite

normal and tangential stiffnesses (KN, KT ! 1) in the pre-

sent study. Accordingly KN and KT were set as sufficiently

high values for comparison, KTd/l¼ 100 and KT/KN¼ 0.4,

where l¼ qcT
2 is the shear modulus of the adherends. In

this study, joint conditions are expressed by the normalized

tangential stiffness KTd/l and the stiffness ratio KT/KN. The

infinite series in Eqs. (3) and (4) were truncated at n¼ 7,

since only the finite number of Lamb modes can be consid-

ered in the numerical calculation. When the bounded area

jxj<L/2þ l was discretized by four-node square-shaped iso-

parametric elements of size length d/10, the length l was

obtained as l¼ 0.5d to keep the quantity based on the energy

conservation34

d ¼
				1� ER þ ET

EI

				; (5)

within 2.5%, where EI, ER, and ET are the energy fluxes of

the incident, reflected, and transmitted waves, respectively.

For the A0 mode incidence, the amplitude reflection and

transmission coefficients of the A0 mode calculated by

HFEM, jRA0j and jTA0j, are shown as functions of the nor-

malized frequency fd/cT in Fig. 2(a). The obtained results are

found to be in good agreement with the reflection and trans-

mission coefficients given in Ref. 35. Furthermore, the S0

mode is generated by mode conversion due to the thickness

variation at the joint edges jxj ¼L/2. The amplitude

reflection and transmission coefficients of the S0 mode are

shown in Fig. 2(b). The mode conversion characteristics

reported in Ref. 35 are also well reproduced by HFEM.

From these results, the validation of the numerical calcula-

tion by HFEM for sufficiently high joint stiffnesses is con-

firmed. In Secs. III and IV, the numerical parameters shown

above are used, and relatively long single lap joints of length

L¼ 15d are considered. The reflection and transmission of

Lamb waves at a lap joint are analyzed for different normal

and tangential stiffnesses.

III. RESULTS AND DISCUSSIONS

A. Reflection and transmission coefficients for the A0
mode incidence

For the A0 mode incidence, the reflection and transmis-

sion characteristics at a lap joint of length L¼ 15d are ana-

lyzed by HFEM. The amplitude reflection and transmission

coefficients of the A0 and S0 modes, jRA0j, jTA0j, jRS0j, and

jTS0j, are shown as functions of the normalized frequency fd/

cT for different tangential stiffnesses KTd/l in Figs. 3(a)–3(d),

respectively, where a stiffness ratio KT/KN is fixed as KT/

KN¼ 0.4. It is reported in previous studies that the stiffness

ratio KT/KN is roughly between 0.2 and 0.6.4,21,25,26 In Figs.

3(a)–3(d), the expression KTd/l¼1 represents the results

for infinite stiffnesses, at which the continuity condition is

applied to both displacement and stress components at z¼ 0

in the overlap region. Each coefficient in Figs. 3(a)–3(d)

varies with frequency in a complicated manner and takes

local maxima and minima at multiple frequencies. These

local maximum and minimum frequencies, i.e., the locations

of the local maxima and minima, respectively, depend on the

tangential stiffness.

The effect of the stiffness ratio KT/KN on the reflection

and transmission coefficients for the A0 mode incidence is

examined. The amplitude reflection and transmission coeffi-

cients of the A0 and S0 modes are shown for different stiff-

ness ratios at a fixed tangential stiffness KTd/l¼ 4 in Figs.

4(a)–4(d). As a result, it is found that the stiffness ratio, i.e.,

the normal stiffness, does not significantly affect the reflec-

tion and transmission coefficients of the A0 and S0 modes

for the A0 mode incidence. In particular, the local maxi-

mum and minimum frequencies of the reflection and trans-

mission coefficients are shown to be almost invariant with

the normal stiffness. This interesting feature is reported for

the first time in the present study and is further investigated

in Sec. III C.

Since some adhesives show non-negligible viscoelastic

properties, the effect of the damping on the reflection and

transmission coefficients is investigated. When the adhesive

has viscoelastic properties, the normal and tangential stiff-

nesses of Eq. (2) are expressed as complex numbers,29 i.e.,

KN¼KN0 � iaN and KT¼KT0 � iaT. Based on the viscoelas-

tic moduli of an adhesive shown in Ref. 30, the imaginary

parts of KN and KT were set as aN¼ 0.1KN0 and aT¼ 0.1KT0

here, respectively. The obtained reflection and transmission

coefficients of the A0 mode for the A0 mode incidence are

shown in Figs. 5(a)–5(d) for two different tangential stiff-

nesses at KT/KN¼ 0.4. These results are compared to the

FIG. 2. (Color online) Comparison of the amplitude reflection and transmis-

sion coefficients of the (a) A0 and (b) S0 modes calculated by HFEM to the

results in Ref. 35 for the A0 mode incidence.
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ones without the attenuation (aN¼ aT¼ 0). When the tan-

gential stiffness is relatively high, i.e., KT0d/l¼ 16, the

effect of the attenuation factors aN and aT on the reflection

and transmission coefficients is insignificant, as shown in

Figs. 5(a) and 5(b). On the other hand, at KT0d/l¼ 1.6, the

peaks and valleys of the reflection and transmission coeffi-

cients in Figs. 5(c) and 5(d) become dull due to the attenua-

tion as the normalized frequency increases. However, as

long as the viscoelastic properties of a common adhesive are

assumed, the local maximum and minimum frequencies of

the reflection and transmission coefficients are almost invari-

ant in this frequency range. In Secs. III B, III C, and IV, the

numerical analysis is further carried out with the attenuation

factors set as aN¼ aT¼ 0.

B. Comparison to the multi-reflection model

To discuss the reflection and transmission characteristics

at a lap joint, particularly the local maxima and minima of

the reflection and transmission coefficients, a multi-

reflection model that combines three configurations is

employed, as schematically shown in Figs. 6(a)–6(c). This

model is used to examine the roles of guided wave modes in

the overlap region for the reflection and transmission

FIG. 3. (Color online) Variation of the

amplitude (a) reflection and (b) trans-

mission coefficients of the A0 mode,

and the amplitude (c) reflection and (d)

transmission coefficients of the S0

mode for the A0 mode incidence with

the normalized incident frequency, for

different tangential stiffnesses KTd/l at

a stiffness ratio KT/KN¼ 0.4. For refer-

ence, a vertical line shows the cutoff

frequency of the DA1 mode at each

tangential stiffness, which is intro-

duced in Sec. III B.

FIG. 4. (Color online) Variation of the

amplitude (a) reflection and (b) trans-

mission coefficients of the A0 mode,

and the amplitude (c) reflection and (d)

transmission coefficients of the S0

mode for the A0 mode incidence with

the normalized incident frequency for

different stiffness ratios KT/KN at a

tangential stiffness KTd/l¼ 4.
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coefficients of the A0 mode across the lap joint. A similar

model was used in the discussion of the guided wave reflec-

tion and transmission behavior at a lap joint.12,35 In Figs.

6(a)–6(c), only the reflection and transmission at a joint edge

are considered. In the overlap region, i.e., a double-layer

plate coupled with a spring-type interface, guided wave

modes that are similar to Lamb waves propagate. When the

thicknesses of the upper and lower adherends are equal, the

guided wave modes in the overlap region can be classified

into symmetric and antisymmetric modes.36 Mezil et al.36

showed that the dispersion relations of the symmetric and

antisymmetric modes depend only on the normal and tangen-

tial stiffnesses, respectively, due to the symmetry of their

deformations. The wavenumber-frequency relations of the

symmetric and antisymmetric modes are shown in Figs. 7(a)

and 7(b) for different normal and tangential stiffnesses,

respectively. The vertical axes in Figs. 7(a) and 7(b) represent

FIG. 5. (Color online) Comparison of

the reflection and transmission coeffi-

cients at aT¼ 0 (without attenuation)

and aT¼ 0.1KT0 (with attenuation) for

the A0 mode incidence at a stiffness

ratio KT/KN¼ 0.4: the amplitude (a)

reflection and (b) transmission coeffi-

cients of the A0 mode at KT0d/l¼ 16,

and the amplitude (c) reflection and (d)

transmission coefficients of the A0

mode at KT0d/l¼ 1.6.

FIG. 6. Multi-reflection model, which combines the following three configu-

rations: (a) the A0 mode incidence to the left edge of the lap joint, (b) the

DA0 mode incidence to the right edge of the lap joint, and (c) the DA0

mode incidence to the left edge of the lap joint.

FIG. 7. (Color online) Wavenumber-frequency relations of the (a) symmet-

ric and (b) antisymmetric guided wave modes in the overlap region of thick-

ness 2d, i.e., a double-layer plate with a spring-type interface, for different

normal and tangential stiffnesses, respectively.
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the products of the wavenumber k and the adherend thick-

ness d. As the normal and tangential stiffnesses become

high, the dispersion relations approach the results for a

single-layer plate with double thickness 2d. In a sufficiently

low frequency range, only the lowest-order symmetric

(DS0) and antisymmetric (DA0) guided wave modes can

propagate in the double-layer plates. The cutoff frequency

of the DA1 mode is located in fd/cT< 0.25 and depends on

the tangential stiffness.

In the numerical model of Fig. 6(a), the A0 mode is inci-

dent from the lower plate to the left edge of the lap joint, and

the reflection and transmission characteristics at the edge are

analyzed by HFEM. Similarly to the formulation of the

HFEM for the lap joint model in Sec. II B, the bounded

region of length 2l, including the joint edge, was discretized

by finite elements, and the wave fields outside the region

were expressed as the superpositions of different modes.

Namely, the displacement fields in the left and right semi-

infinite regions were given by the superpositions of Lamb

wave modes in the single-layer plate and guided wave modes

in the double-layer plate, respectively. The reflection coeffi-

cient of the A0 mode in the single-layer plate and the trans-

mission coefficient of the DA0 mode in the double-layer

plate are denoted as Ra and Ta, respectively. In the numerical

model of Fig. 6(b), the DA0 mode propagating in the posi-

tive x direction is incident to the right edge of the joint, while

the DA0 mode propagating in the negative x direction is

incident to the left edge of the joint in Fig. 6(c). The reflec-

tion coefficient of the DA0 mode and the transmission coef-

ficient of the A0 mode are expressed as Rb and Tb for Fig.

6(b), and Rc and Tc for Fig. 6(c), respectively. From these

three numerical models, the reflected and transmitted A0

modes at a lap joint of finite length L are obtained as the

superpositions of the waves generated by multiple reflection

between the joint edges. When only the DA0 mode is con-

sidered as a propagating mode in the overlap region, the

reflection and transmission coefficients of the A0 mode in

the multi-reflection model, RA0,MR and TA0,MR, are given in

a similar manner to Refs. 37 and 38 by infinite series

RA0;MR ¼ Ra þ TaRb exp 2ikDA
0 L

� �
Tc

�
X1
n¼0

RcRb exp 2ikDA
0 L

� �� �n

¼ Ra þ
TaRbTc exp 2ikDA

0 L
� �

1� RcRb exp 2ikDA
0 L

� � ;
TA0;MR ¼ Ta exp ikDA

0 L
� �

Tb

X1
n¼0

RbRc exp 2ikDA
0 L

� �� �n

¼ Ta exp ikDA
0 L

� �
Tb

1� RbRc exp 2ikDA
0 L

� � ; (6)

respectively, where kDA
0 is the wavenumber of the DA0 mode.

The amplitude reflection and transmission coefficients

of the A0 mode calculated from Eq. (6) are compared to the

results for the lap joint model in Figs. 8(a) and 8(b) for two

tangential stiffnesses. The reflection and transmission coeffi-

cients obtained from the multi-reflection model show local

maxima and minima, which are in good agreement with the

results for the lap joint model in a low frequency range even

if the propagation of the DS0 mode in the overlap region is

neglected. Namely, the local maxima and minima of the A0

mode reflection and transmission coefficients result from the

interferences of the A0 Lamb waves, which originate from

the interaction of the DA0 mode with the joint edges. As the

incident frequency becomes high, however, the A0 mode

reflection and transmission coefficients based on the multi-

reflection model begin to deviate from the results of the lap

joint model. This deviation appears because in the multi-

reflection model only the DA0 mode is considered as the

propagating mode in the overlap region. By incorporating

the propagation of other modes such as the DS0 mode, the

results for the multi-reflection model could agree better with

the lap joint model in a higher frequency range, but further

investigation is not performed in this study.

Likewise, it is shown by the multi-reflection model that

the local maxima and minima of the S0 mode reflection and

transmission coefficients for the A0 mode incidence shown

in Figs. 3(c) and 3(d) can be attributed to the wave interfer-

ence by the DS0 mode as well as the DA0 mode. However,

detailed data are not shown here. The reflection and trans-

mission coefficients of the S0 mode have local maximum

and minimum frequencies depending on the coupling effect

of the DS0 and DA0 modes.

FIG. 8. (Color online) Comparison of the A0 mode reflection and transmission

coefficients for the A0 mode incidence obtained from the multi-reflection

model to the results for the lap joint model. The tangential stiffness is set as (a)

KTd/l¼ 16 and (b) KTd/l¼ 1.6 at a stiffness ratio KT/KN¼ 0.4.

3080 J. Acoust. Soc. Am. 145 (5), May 2019 Naoki Mori and Takayuki Kusaka



To clarify the reason for which the DA0 mode plays an

essential role in the reflection and transmission coefficients

of the A0 mode for the A0 mode incidence, the mode pro-

files of the guided waves are examined. The displacement

distributions of the S0 and A0 modes in the lower adherend,

i.e., a single-layer plate of thickness d, are shown along the

thickness (z) direction in Figs. 9(a) and 9(b), respectively, at

a normalized frequency of fd/cT¼ 0.15. The in-plane dis-

placement ux and the out-of-plane displacement uz are nor-

malized by their maximum value in each figure. At the same

frequency f, the displacement profiles of the DS0 and DA0

modes in the overlap region, i.e., a double-layer plate of

thickness 2d, are shown in Figs. 9(c) and 9(d) for KTd/l¼ 16

and KT/KN¼ 0.4, respectively. The profiles of the DS0 and

DA0 modes at KTd/l¼ 1.6 and KT/KN¼ 0.4 are also shown

in Figs. 9(e) and 9(f), respectively. The displacement compo-

nents are normalized similarly to Figs. 9(a) and 9(b) in Figs.

9(c)–9(f). The out-of-displacement uz of the DA0 mode is

large compared to the in-plane displacement ux, while the in-

plane displacement component is dominant in the profile of

the DS0 mode. Basically, when the A0 mode is incident

from the lower adherend �d< z< 0 to a joint edge, guided

wave modes whose profiles in �d< z< 0 are close to the

incident A0 mode are expected to mainly generate in the

overlap region.12,14,17,18 The region of �d< z< 0 is filled

with gray color in Figs. 9(a)–9(f) for comparison. In Figs.

9(a)–9(f), the DA0 mode shows a closer profile to the A0

mode in �d< z< 0 than the DS0 mode, which indicates that

the DA0 mode is mainly transmitted in the overlap region

for the A0 mode incidence. Likewise, for the DA0 mode

incidence from the overlap region to a joint edge, the A0

mode is mainly transmitted in a single plate region due to

the similarity of the mode profiles.

Since the mode profile of the A0 mode and that of the

DA0 mode in an adherend are not perfectly identical, mode

conversion between antisymmetric and symmetric modes at

a joint edge occurs to some extent. This fact corresponds to

the non-negligible values of the S0 mode reflection and

transmission coefficients in Figs. 3(c) and 3(d). However, as

described above, the effect of the DS0 mode on the A0 mode

reflection and transmission coefficients across the entire joint

is not significant. This feature appears because the reflected

(or transmitted) A0 mode components derived from the DS0

mode have undergone the mode conversion between the

antisymmetric and symmetric modes at the joint edges more

than twice. The wave components that have undergone the

mode conversion multiple times seem to become negligible.

C. Peak frequencies of the A0 mode transmission
coefficient

It has been shown in Secs. III A and III B that the A0

mode reflection and transmission coefficients for the A0

mode incidence exhibit local maxima and minima at multi-

ple frequencies. In this section, the peak frequencies fp at

which the transmission coefficient of the A0 mode shows

local maxima are further investigated. The amplitude trans-

mission coefficients of the A0 mode are calculated for differ-

ent joint conditions, and their normalized peak frequencies

Fp¼ fpd/cT are extracted as functions of the tangential stiff-

ness and the stiffness ratio.

The normalized peak frequencies Fp at a stiffness ratio

KT/KN¼ 0.4 are shown as functions of the normalized tan-

gential stiffness in Fig. 10(a). Dashed lines represent the

peak frequencies for infinite normal and tangential stiff-

nesses, at which the continuity condition is applied to the

displacement and stress components at the joint. Nine peak

frequencies, which are located in fd/cT< 0.3 at infinite stiff-

nesses, are traced with the tangential stiffness decreased in

Fig. 10(a). From Fig. 10(a), the normalized peak frequencies

below 0.05 are shown to be almost invariant in KTd/l> 0.1,

but in a higher frequency range the peak frequencies

decrease with decreasing tangential stiffness. This feature

appears because the dispersion relation of the DA0 mode,

which is closely associated with the local maxima of the A0

mode transmission coefficient, does not greatly depend on

the tangential stiffness in fd/cT< 0.05 as shown in Fig. 7(b).

The peak frequencies located in a sufficiently low frequency

range are determined mainly by the length of the overlap

joint L.

FIG. 9. (Color online) Displacement profiles of the (a) S0 and (b) A0 modes

at a normalized frequency of fd/cT¼ 0.15 in a single-layer plate of thickness

d, the (c) DS0 and (d) DA0 modes at the same frequency f in a double-layer

plate for KTd/l¼ 16, and the (e) DS0 and (f) DA0 modes for KTd/l¼ 1.6 at

a stiffness ratio KT/KN¼ 0.4.
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Furthermore, the effect of the stiffness ratio KT/KN on

the peak frequencies is investigated. The normalized peak

frequencies at two fixed tangential stiffnesses KTd/l¼ 16

and KTd/l¼ 1.6 are shown as functions of KT/KN in Fig.

10(b). The obtained results show that the peak frequencies

depend on the tangential stiffness but not significantly on the

stiffness ratio. In other words, the peak frequencies are found

to be nominally invariant with the normal stiffness of the lap

joint. The results in Figs. 10(a) and 10(b) imply that the esti-

mation of the tangential stiffness could be possible from the

peak frequencies of the A0 mode transmission coefficient for

the A0 mode incidence. The selective dependence of the

peak frequencies on the tangential stiffness can be attributed

to the interference of waves originating from the multiple

reflection of the DA0 mode between the joint edges, which

has been described in Sec. III B. Since the dispersion relation

of the DA0 mode is determined by the tangential stiffness,

the peak frequencies of the A0 mode transmission coefficient

are considered to be insensitive to the normal stiffness. The

procedure to identify the peak frequencies from temporal

waveforms is further examined by time-domain numerical

simulation in Sec. IV.

In Figs. 4(c) and 4(d), the reflection and transmission

coefficients of the S0 mode also show local maximum and

minimum frequencies, which are invariant with the normal

stiffness, analogously to the A0 mode coefficients in Figs.

4(a) and 4(b). As described briefly in Sec. III B, the local

maxima and minima of the S0 mode reflection and transmis-

sion coefficients occur due to the wave interference by not

only the DA0 mode but also the DS0 mode, whose disper-

sion relation basically depends on the normal stiffness.

However, as shown in Fig. 7(a), the dispersion relation of

the DS0 mode is not significantly affected by the normal

stiffness in a low frequency range of fd/cT< 0.25. Thus the

peak frequencies of the S0 mode coefficients are nominally

independent of the normal stiffness in the low frequency

range. These peak frequencies could also be useful for the

estimation of the tangential stiffness, but this topic is not fur-

ther considered in the present paper.

IV. TIME-DOMAIN NUMERICAL SIMULATION

A. Numerical model

In this section, the procedure to identify the local maxi-

mum and minimum frequencies of the reflection and trans-

mission coefficients is investigated by using temporal

waveforms based on the time-domain numerical simulation.

The reflection and transmission measurements for the A0

mode incidence are simulated using the time-domain FEM.

The numerical model for the time-domain analysis is sche-

matically shown in Fig. 11. In the Cartesian x-z coordinate

system, two isotropic elastic plates with the material prop-

erty given in Sec. II A are overlapped in jxj< L/2 under the

plane-strain condition. The thickness of the adherends is

d¼ 2 mm, and the joint length is L¼ 15d¼ 30 mm. The

spring-type interface condition is applied at z¼ 0 in the over-

lap region jxj< L/2. To excite the A0 mode in the lower

adherend, the out-of-plane stress component rz is antisym-

metrically applied on two surface areas P1 and P2,39,40 whose

width is 5 mm. Namely, when an input waveform g(t) is pre-

scribed as the out-of-plane stress component uniformly in

the area P1, the out-of-plane stress in P2 is given as �g(t). In

this study, a Gaussian-modulated tone-burst expressed as

g tð Þ ¼ exp � t� t0
r0

� �2
" #

sin 2pf0 t� t0ð Þ½ � (7)

was used as the input waveform, where f0¼ 0.25 MHz,

t0¼ 20 ls, and r0¼ 2 ls. The center frequency of the input

waveform f0 corresponds to the normalized frequency f0d/cT

¼ 0.16, at which only the S0 and A0 modes can propagate in

the adherends. The horizontal distance between the left joint

FIG. 10. (Color online) Relations of the normalized peak frequencies of the

A0 mode transmission coefficient for the A0 mode incidence to (a) the nor-

malized tangential stiffness KTd/l at a stiffness ratio KT/KN¼ 0.4 and (b)

the stiffness ratio at two fixed tangential stiffnesses. Dashed lines in (a) rep-

resent the peak frequencies at infinite stiffnesses.

FIG. 11. Numerical model of a single lap joint for the time-domain analysis.
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edge and the center location of the areas P1 and P2 is

120 mm.

The waveforms of the excited Lamb waves were calcu-

lated at four points, L1 and L2 on the surfaces of the lower

adherend, and R1 and R2 on the upper adherend. The points

L1 and L2 are symmetrically located at x¼�85 mm with

respect to the middle plane of the lower adherend, and their

horizontal distance to the left edge of the joint is 70 mm. By

adding the out-of-plane displacements calculated at L1 and

L2, the waveform of the S0 mode is canceled and the wave-

forms of the incident and reflected A0 modes are selectively

obtained due to the symmetry of the mode profiles. Similarly,

the points R1 and R2 are symmetrically located on the surfa-

ces of the upper adherend at x¼ 85 mm, and the waveform of

the transmitted A0 mode is selectively obtained from the

waveforms calculated at R1 and R2. Their horizontal distance

to the right joint edge is 70 mm. To eliminate the effect of the

reflection at the free edges of the adherends, the length of the

adherends was set as a sufficiently large value, 400 mm.

The time-domain finite element simulation was carried

out to analyze the Lamb wave interaction with the lap joint.

The numerical model of Fig. 11 was discretized by four-

node square-shaped isoparametric elements, which had the

same dimensions as used in the analysis by HFEM. A

lumped mass matrix approximation was applied, and the

time integration was performed in an explicit scheme using

the fourth-order Runge-Kutta method. The time increment

was set as 0.02 ls to satisfy the stability condition.

B. Numerical simulation results

The numerical simulation was carried out for two differ-

ent tangential stiffnesses KTd/l¼ 16 and KTd/l¼ 1.6, i.e., KT

� 0.2 GPa/lm and KT � 0.02 GPa/lm, at a stiffness ratio KT/

KN¼ 0.4. The waveforms of the A0 mode calculated at

x¼�85 mm and x¼ 85 mm are shown in Figs. 12(a) and

12(b), respectively. In Fig. 12(a), the incident A0 mode is

located at around 38 ls, and then the A0 mode reflected from

the lap joint arrives after 75 ls. The reflected A0 mode has a

few wave packets due to the multiple reflection in the overlap

region. The first reflected wave packet is located at around

85 ls for both KTd/l¼ 16 and KTd/l¼ 1.6, but the second

wave packet for KTd/l¼ 16 arrives at around 104 ls, which is

slightly earlier than the one for KTd/l¼ 1.6 (106 ls). The

waveforms of the transmitted A0 mode are shown in Fig.

12(b) as well. The transmission waveforms show long-

oscillation tails until around 140 ls, whose shapes are different

for KTd/l¼ 16 and KTd/l¼ 1.6. The time length of the trans-

mission waveforms is approximately 55 ls, which is longer

than the length of the incident waveform in Fig. 12(a), 20 ls.

The incident A0 mode is extracted from the waveforms

in Fig. 12(a) by a smooth rectangular gate function in

10 ls< t< 50 ls, and its amplitude spectrum is calculated

by spectral analysis using fast Fourier transform (FFT).

Analogously, the amplitude spectra of the reflected and

transmitted A0 modes are calculated using a smooth rectan-

gular gate of 60 ls< t< 170 ls, which is called gate 1 in this

section. The ratio of the reflected wave amplitude spectrum

to the incident wave spectrum is obtained as the reflection

coefficient, and likewise the transmission coefficient is cal-

culated from the amplitude spectra. The obtained reflection

and transmission coefficients are shown in Figs. 13(a) and 13(b)

as functions of frequency f, and are compared to the results by

the frequency-domain analysis using the HFEM. The incidence

of the A0 mode at a single frequency has been considered in the

frequency-domain analysis by the HFEM, while the transient

behavior for the pulse wave incidence is examined here by time-

domain FEM. The results by time-domain FEM show slight

deviation in a relatively high frequency range, but both results

are in good agreement in the vicinity of the center frequency of

the input waveform (0.25 MHz). In particular, the local maxima

and minima of the A0 mode reflection and transmission coeffi-

cients are well reproduced by the time-domain numerical simu-

lation. This agreement results from the sufficiently long gate

function for the spectral analysis of the reflection and transmis-

sion waveforms.

The reflection and transmission coefficients calculated

from the temporal waveforms depend on the time range of the

gate functions in the spectral analysis. The effect of the gate

range on the reflection coefficient at KTd/l¼ 16 and KT/KN

¼ 0.4 is shown in Fig. 14(a) for three different gates, gates

1–3, which are indicated in Fig. 12(a). In Fig. 12(a), gate 1

includes the entire waveform of the reflected A0 mode and

corresponds to the reflection coefficient shown in Fig. 13(a),

while gates 2 (60 ls< t< 113 ls) and 3 (60 ls< t< 96 ls)

extract parts of the reflection waveform. Since two wave

packets are located in the time range of gate 2, the reflection

coefficient calculated by gate 2 shows local maxima and min-

ima in Fig. 14(a). However, in the case of gate 3, which

includes only the first wave packet of the reflected wave, the

reflection coefficient varies almost monotonically below

0.3 MHz, and its peak behavior is not observed in the low

FIG. 12. (Color online) Time histories of (a) the incident and reflected A0

modes calculated from the waveforms at L1 and L2, and (b) the transmitted

A0 mode calculated from the waveforms at R1 and R2. Time gates for the

spectral analysis are shown together.
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frequency range. This result indicates that the tail part of the

reflection waveform is necessary to identify the local maxima

and minima of the reflection coefficient.

A similar investigation is performed for the transmission

coefficient of the A0 mode. The effect of the gate range on

the transmission coefficient is shown in Fig. 14(b) for three

different gates, gates 1–3, which are indicated in Fig. 12(b).

Gate 1 (60 ls< t< 170 ls) includes the entire waveform of

the transmitted A0 mode and corresponds to the transmission

coefficient in Fig. 13(a), while gates 2 (60 ls< t< 120 ls)

and 3 (60 ls< t< 109 ls) extract parts of the transmission

waveform. In Fig. 14(b), the result for gate 2 fairly reprodu-

ces the local maxima and minima of the transmission coeffi-

cient calculated by gate 1 above 0.18 MHz. However, the

result for gate 3, which has a relatively short time range

compared to gate 2, deviates from the results by gates 1 and

2 in the entire frequency range. In particular, the peak fre-

quencies are not precisely identified if gate 3 is used in the

spectral analysis. Analogously to the reflection coefficient,

the tail part of the transmission waveform is necessary to

precisely obtain the local maximum and minimum frequen-

cies of the A0 mode transmission coefficient.

V. CONCLUSIONS

In this study, the reflection and transmission characteris-

tics of Lamb waves at an adhesively bonded single lap joint

have been theoretically investigated. The adhesive joint has

been modeled as a linear spring-type interface, which is char-

acterized by normal and tangential stiffnesses, and the HFEM

has been employed for the theoretical analysis. For the inci-

dence of the lowest-order antisymmetric (A0) mode, it has

been shown that the reflection and transmission coefficients

of the A0 mode vary with frequency and tangential stiffness

in complicated manners. In particular, the reflection and trans-

mission coefficients of the A0 mode have shown local max-

ima and minima at multiple frequencies due to the wave

interference originating from the antisymmetric guided wave

mode in the overlap region. Furthermore, the peak frequen-

cies of the A0 mode transmission coefficient have been

shown to depend on the tangential stiffness, not significantly

on the normal stiffness. This feature indicates that the tangen-

tial stiffness could be estimated from the peak frequencies of

the A0 mode transmission coefficient. To discuss the proce-

dure to identify the local maximum and minimum frequencies

of the reflection and transmission coefficients, a time-domain

numerical simulation has been carried out by FEM. As a

result, it has been found that the local maximum and mini-

mum frequencies of the A0 mode reflection and transmission

coefficients can be obtained from the temporal waveforms if

time gates for the spectral analysis are sufficiently wide to

include the tails of the reflection and transmission waveforms.
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FIG. 13. (Color online) Comparison of the A0 mode reflection and transmis-

sion coefficients for the A0 mode incidence calculated by FEM to the results

by HFEM, for (a) KTd/l¼ 16 and (b) KTd/l¼ 1.6 at a stiffness ratio KT/

KN¼ 0.4. Gate 1 was used in the spectral analysis for the results by FEM.

FIG. 14. (Color online) Effect of the time gate range on the (a) reflection

and (b) transmission coefficients of the A0 mode for the A0 mode incidence.

The tangential stiffness and the stiffness ratio are set as KTd/l¼ 16 and KT/

KN¼ 0.4, respectively.
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