

Title	A few remarks on class numbers of imaginary quadratic number fields
Author(s)	Honda, Taira
Citation	Osaka Journal of Mathematics. 1975, 12(1), p. 19–21
Version Type	VoR
URL	https://doi.org/10.18910/8971
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Honda, T.
Osaka J. Math.
12 (1975), 19-21

A FEW REMARKS ON CLASS NUMBERS OF IMAGINARY QUADRATIC NUMBER FIELDS

TAIRA HONDA

(Received February 28, 1974)

1. Let K be an imaginary quadratic number field with discriminant $-d$. As is well known, the class number $h(d)$ of K is given by the formula

$$(1) \quad h(d) = -\frac{1}{d} \sum_{n=1}^d \chi(n)n,$$

where χ is the Jacobi symbol modulo d .

Let us consider the case where d is a prime number such that $p \equiv 3 \pmod{4}$. Then

$$(2) \quad h(p) = -\frac{1}{p} \sum_{n=1}^{p-1} \chi(n)n,$$

where χ is the Legendre symbol. From (2) we get

$$\begin{aligned} h(p) &= -\frac{1}{p} \sum_{n=1}^{(p-1)/2} \{\chi(n)n + \chi(p-n)(p-n)\} \\ &= -\frac{1}{p} \sum_{n=1}^{(p-1)/2} \{2\chi(n)n - \chi(n)p\} \\ &= -\frac{2}{p} \sum_{n=1}^{(p-1)/2} \chi(n)n + \sum_{n=1}^{(p-1)/2} \chi(n) \end{aligned}$$

Here it is well-known that

$$\sum_{n=1}^{(p-1)/2} \chi(n) = \{1 - \chi(2)\}h(p).$$

Summing up, we get

$$\{1 - \chi(2)\}h(p) = \frac{2}{p} \sum_{n=1}^{(p-1)/2} \chi(n)n.$$

So, if $p \equiv -1 \pmod{7}$, it holds that

$$(3) \quad h(p) = \frac{1}{p} \sum_{n=1}^{(p-1)/2} \chi(n) n.$$

Now denote by $\left\{ \frac{n}{p} \right\}$ the fractional part of n/p , i.e. $\left\{ \frac{n}{p} \right\} = \frac{n}{p} - \left[\frac{n}{p} \right]$.

Then we get

$$p \sum_{k=1}^{p-1} \left\{ \frac{k^2}{p} \right\} = 2 \sum_{\substack{n=1 \\ \chi(n)=1}}^{(p-1)/2} n,$$

which implies

$$\begin{aligned} h(p) &= -\frac{1}{p} \sum_{n=1}^{(p-1)/2} \chi(n) n \\ &= -\frac{1}{p} \left\{ \sum_{\substack{n=1 \\ \chi(n)=1}}^{(p-1)/2} n - \sum_{\substack{n=1 \\ \chi(n)=-1}}^{(p-1)/2} n \right\} \\ &= -\frac{1}{p} \left\{ \sum_{\substack{n=1 \\ \chi(n)=1}}^{(p-1)/2} n - \sum_{\substack{n=1 \\ \chi(n)=-1}}^{(p-1)/2} n \right\} \\ &= -\sum_{k=1}^{p-1} \left\{ \frac{k^2}{p} \right\} + \frac{p-1}{2}. \end{aligned}$$

Thus we have

$$(4) \quad h(p) = \frac{p-1}{2} - \sum_{k=1}^{p-1} \left\{ \frac{k^2}{p} \right\}.$$

Consider the area S ; $0 < x < p$, $0 \leq y < x^2/p$. Then (4) implies that $h(p)$ is the error term in estimating the lattice points in S . Since the hyperbola $y^2 = x^2/p$ has no center, this implies the difficulty of estimation of $h(p)$ comparative with the circle problem and the divisor problem.

2. Let p be the prime such that $p \equiv 3 \pmod{4}$ as before. Then we see easily $(p-1)/2! \equiv \pm 1 \pmod{p}$. Put $(p-1)/2! \equiv \varepsilon_p \pmod{p}$ with $\varepsilon_p = \pm 1$. Then $\varepsilon_p = +1$ iff the number of the set $\left\{ 1 \leq n \leq (p-1)/2; \left(\frac{n}{p} \right) = 1 \right\}$ is even.

From

$$h(p) = -\frac{1}{p} \sum_{n=1}^{(p-1)/2} \left(\frac{n}{p} \right) n$$

we have

$$h(p) = \frac{1}{2 - \chi(2)} \sum_{n=1}^{(p-1)/2} \chi(n),$$

as is well known. Therefore if $\varepsilon_p = +1$,

$$h(p) = \frac{1}{2-\chi(2)} \left(\frac{p-1}{2} - 2s \right),$$

where s is the number of quadratic non-residue in $[1, (p-1)/2]$. Now

$$\frac{1}{2-\chi(2)} \cdot \frac{p-1}{2} \equiv 3 \pmod{4}$$

as is easily verified. Therefore we have

$$h(p) \equiv -1 \pmod{4}$$

regarding s is odd.

If $\varepsilon_p = -1$, we get

$$h(p) \equiv +1 \pmod{4}$$

in the same way.

Summing up, we have

$$h(p) \equiv -\varepsilon_p \pmod{4}.$$

It seems that the number of p with $\varepsilon_p = +1$ is asymptotically the same as that of p with $\varepsilon_p = -1$.

OSAKA CITY UNIVERSITY

Added in proof; The congruence

$$h(p) = -\varepsilon_p \pmod{4}$$

is already known as the Jacobi-Mordell formula.

