<table>
<thead>
<tr>
<th>Title</th>
<th>Elastic investigation for the existence of B33 phase in TiNi shape memory alloys using atomistically informed Eshelby’s ellipsoidal inclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ishii, Akio</td>
</tr>
<tr>
<td>Citation</td>
<td>Computational Materials Science. 218 p.111954</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2023-02-05</td>
</tr>
<tr>
<td>oaire:version</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://hdl.handle.net/11094/89718</td>
</tr>
<tr>
<td>rights</td>
<td>This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Letter

Elastic investigation for the existence of B33 phase in TiNi shape memory alloys using atomistically informed Eshelby’s ellipsoidal inclusion

Akio Ishii
Department of Mechanical Science and Bioengineering, Osaka University, Osaka 560-8531, Japan

A R T I C L E I N F O

Keywords:
Shape memory alloy
Density functional theory
Eshelby’s ellipsoidal inclusion

A B S T R A C T

The existence of the B33 phase in TiNi alloys, which was reported to be a stable phase using density functional theory calculations but not confirmed experimentally, is controversial. Using Eshelby’s ellipsoidal inclusion, which was atomistically informed by density functional theory calculations, we investigated the existence of the B33 phase in the TiNi shape memory alloy. The calculated total strains of the heterogeneously nucleated B33 phase were similar to the eigenstrains of the B19’ phase, which were also calculated using density functional theory calculations. Considering the similarity of the atomic structures of B33 and B19’, this indicates that the B33 phase was elastically suppressed and changed to the B19’ phase by the original B2 matrix. We confirmed that the elastic inhomogeneity between the B2 matrix and B33 phase plays a role in this change.

Shape memory alloys (SMAs) are alloys with a (1) shape memory effect; plastically deformed SMAs recover their original shape and size when heated above a certain characteristic temperature, (2) superelasticity; plastically deformed SMAs recover once the external load is removed. Because of these properties, SMAs have considerable potential for a wide scope of industrial applications, including in the field of structural materials, actuators, transducers, and sensors [1]. Studies have found that the shape memory effect (superelasticity) is due to the SMA’s high phase transformability with respect to heat (external load), from the matrix (parent) phase to the secondary (twin) phase, and vice versa [1]. Nevertheless, the detailed mechanism of plastic deformation remains under investigation.

The near-equal atomic TiNi alloy is the most distinguished SMA [2], for which the observed phase transformation was from cubic B2 matrix to monoclinic B19’ secondary phase; one of the edge vectors of the unit cell of the B19’ structure has a monoclinic angle larger than 90°. The B19’ phase is considered as the most stable secondary phase at, or below, room temperature [3,4]. Meanwhile, the atomistic simulation using the electronic structure calculation of density functional theory (DFT) found a more stable B33 phase (B19’ is a metastable structure), which has a larger monoclinic angle than that of B19’. However, this has not been observed in experiments [5–10]. The reason for this discrepancy between the experimental and simulation results remains controversial. Several previous studies have suggested that the reason for this is that the observed B19’ phase is stabilized through internal stresses; however, a detailed analysis of the internal stresses is lacking [5,11]. Recently, Haskins et al. [10] discussed the reason for the thermal stability of B19’ and B33 using DFT-calculated free energy, which includes vibration entropy. Lv et al. [12] asserted that the reason is due to the effect of the (001) twin interface of the B19’ structure using DFT calculations.

In this study, we consider this discrepancy from a micromechanical perspective [13]. In micromechanics, once a secondary phase with eigenstrains (change in shape or size), also called as an inclusion in micromechanics, nucleates heterogeneously in the matrix, internal stress inside the inclusion is generated to push it back to the matrix’s original shape (or size). Due to this internal back stress, the observed strains of the inclusion, called as the total strains in micromechanics, is usually lower than the eigenstrains, which can be considered as strains of perfectly homogeneous phase transformation. In other words, the inclusion is elastically deformed back to the shape of the matrix from its original shape by the surrounding matrix. Therefore, DFT-calculated shape changes from the matrix to secondary phase using the homogeneous atomic supercell are eigenstrains, and experimentally observed shape changes are the total strains due to heterogeneity. In this sense, even if the B33 phase nucleates heterogeneously in the B2 matrix, its monoclinic angle will be lower than that of DFT-calculated one. Because the atomic structure of the B19’ phase can be considered as an affinely deformed structure of the B33 phase with small shuffling components of internal coordinates [8–10], from a micromechanical perspective, it can be explained as follows. The experimentally observed B19’ structure is an elastically deformed B33 structure by the internal back stress by the B2 matrix, or the internal back stress by the B2 matrix totally changes it to the B19’ phase. Although we cannot distinguish the above two situations through real

E-mail address: ishii@me.es.osaka-u.ac.jp

https://doi.org/10.1016/j.commatsci.2022.111954

Received 5 October 2022; Received in revised form 22 November 2022; Accepted 27 November 2022
Available online 7 December 2022
0927-0256/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
the projector-augmented wave method [19] and the exchange correlation [18]. The electron–ion interaction in the DFT was described using DFT calculations, we used the Vienna Ab initio Simulation Package POSCAR format. The units of the supercells included two Ti and two Ni atoms. The supercells used for DFT calculation are shown by black lines and the edge vectors (h_1, h_2 and h_3) of the supercells are shown as red, green, and blue arrows, respectively. The monoclinic angles of the optimized supercells are shown here.

In the following section, we investigated the validity of the aforementioned explanation using atomistic simulations and micromechanics. We calculated the eigenstrains of B19’ and B33 phases, and the elastic constants of B2 and B33 phases using atomistic simulations with DFT calculations. We then predicted the total strains of the B33 phase in the B2 matrix using Eshelby’s ellipsoidal inclusion with DFT-calculated eigenstrains and elastic constants. Considering the elastic anisotropy and inhomogeneity of the elastic constants between the B2 matrix and B33 inclusion, an atomistically informed parameter-free analysis was conducted [13–17]. Finally, we compared the predicted total strains of the B33 structure and the eigenstrains of B19’ structure.

First, we introduce our atomistic simulation and micromechanical approach. Fig. 1 shows the atomic structures of the B2, B19’, and B33 phases, which were used in the DFT calculation. The raw data of these atomic structures is available as supplemental material (Vienna Ab initio Simulation Package POSCAR format). The units of the supercells included two Ti and two Ni atoms. The coordinate system was set as [110]$_{B2}$–[110]$_{B3}$–[001]$_{B2}$. After the structural optimization of the DFT calculation, the edge vectors of the supercells h_1, h_2 and h_3, which included the information of lattice constants and monoclinic angle, were calculated for each structure. Subsequently, the cell matrix H was defined as $H \equiv [h_1 \ h_2 \ h_3]$ for each structure. From Fig. 1, the monoclinic angle of B19’ phase (102.1°) is smaller than that of B33 phase (107.6°). As we mentioned above, the heterogeneously nucleated B33 phase will be elastically deformed back to the shape of the B2 matrix from its original shape by the surrounding B2 matrix. The purpose of this study is to confirm that the monoclinic angle of elastically deformed B33 is similar to (or smaller than) that of B19’ or not. Using the optimized supercell matrices of the B2 matrix structure, H_{B2}, and the secondary phase, H_X (the subscript X denotes B19’ or B33), the eigenstrain of the secondary phases, ϵ_{ij} was computed in the form of Green strain as

$$\epsilon_{ij} = \frac{1}{2} (F_X J_X - I),$$

where $F_X = H_X (H_{B2})^{-1}$ denotes the deformation tensor [17]. For DFT calculations, we used the Vienna Ab initio Simulation Package [18]. The electron–ion interaction in the DFT was described using the projector-augmented wave method [19] and the exchange correlation between electrons was treated using the Perdew–Burke–Ernzerhof generalized gradient approximation [20].

An energy cutoff of 350 eV was used for the plane-wave expansion. A $7 \times 7 \times 15$ k-point mesh was used for all structures. The energy convergence criteria for the electronic and ionic structure relaxations were set to 10^{-8} and 10^{-10} eV, respectively.

Considering the B33 phase in the B2 matrix as an Eshelby ellipsoidal inclusion [14,15], we predicted the total strains of the B33 phase. Specifically, we defined the ellipsoid as

$$\frac{x^2}{a_1^2} + \frac{y^2}{a_2^2} + \frac{z^2}{a_3^2} = 1,$$

where a_i was the half axis of the ellipsoid in each direction. We used $(a_1; a_2; a_3) = (10/\sqrt{2}; 10/\sqrt{2}; 1)$ and $(a_1; a_2; a_3) = (1; 1; 10)$ ellipsoids for the disk and needle-shaped B33 phase, respectively, based on previous experimental and computational observations of the secondary phase in TiNi alloys [21–23]. We then detected the stable morphology, shape and orientation, of the B33 phase with the minimum of elastic energy increment ΔE due to the existence of the B33 phase, and calculated the total strains of the morphology. Although the V-shaped B19’ phase was also experimentally observed [4], we did not employ such a shape because of the limitation of Eshelby’s ellipsoidal inclusion; ellipsoids cannot mimic such complicated shapes. However, we think that the observed V-shape can be considered as a cluster of simple disks or needles. Note we did not investigate B33 phase in B19’ matrix because the nucleation of B33 in B19’ phase, intermediate phase transformation, may also occur, but this is out of the scope of this study; we focus on final nucleated structure and it will be B19’ or B33 phase in B2 matrix.

For Eshelby’s ellipsoidal inclusion, the total strain ϵ_{ij} is described using the Einstein summation convention [13] as follows:

$$\epsilon_{ij} = S_{klmn} \epsilon_{mn},$$

where S_{klmn} denotes Eshelby’s tensor [14] and ϵ_{ij} denotes the eigenstrain. Considering the elastic anisotropy of the B2 structure [13,16], S_{klmn} is described as follows:

$$S_{klmn} = \frac{1}{8\pi} C^{B2}_{klmn} \int_0^1 \frac{d\xi_3}{\xi_3^4} \times \int_0^{2\pi} \left(\frac{\xi_1 \xi_2 N_{kij}(\xi_1, \xi_2, \xi_3) + \xi_1 \xi_3 N_{kij}(\xi_1, \xi_2, \xi_3) + \xi_2 \xi_3 N_{kij}(\xi_1, \xi_2, \xi_3)}{D(\xi_1, \xi_2, \xi_3)} \right) d\theta,$$

where

$$D(\xi_1, \xi_2, \xi_3) = P_{ppij} (C^{B2}_{ijkl} \xi_1 \xi_2 \xi_3) (C^{B2}_{ijkl} \xi_1 \xi_2 \xi_3) (C^{B2}_{ijkl} \xi_1 \xi_2 \xi_3),$$

$$N_{kij}(\xi_1, \xi_2, \xi_3) = \frac{1}{2} P_{ijkl} S_{mnij} (C^{B2}_{ijkl} \xi_1 \xi_2 \xi_3) (C^{B2}_{ijkl} \xi_1 \xi_2 \xi_3),$$

corresponding to the determinant and cofactor of $K_{klmn} = C^{B2}_{klmn} \xi_1 \xi_2 \xi_3$, respectively. C^{B2}_{ijkl} is the elastic constant of the B2 matrix and P_{ppij}
The inhomogeneity of the elastic constant between the B2 matrix and B33 phase can be considered using Eshelby’s equivalent inclusion theory [13,15]. The fictitious strain $\hat{\varepsilon}_{ij}$ was calculated using the following equation:

$$C^{B3}_{ijkl}(S_{klmn}\hat{\varepsilon}_{mn} - \varepsilon^{B3}_{kl}) = C^{B2}_{ijkl}(S_{klmn}\hat{\varepsilon}_{mn} - \hat{\varepsilon}_{kl}).$$ \hfill (4)

where C^{B3}_{ijkl} is the elastic constant of the B33 phase. Next, the total strains of the B33 phase were calculated as $\varepsilon^{B3}_{ijkl} = S_{klmn}\hat{\varepsilon}_{mn}$ using Eq. (2). Using the total strains and eigenstrains of the B33 phase, the internal stress of the B33 phase σ_{ij} was calculated as

$$\sigma_{ij} = C^{B3}_{ijkl}(\varepsilon^{B3}_{kl} - \hat{\varepsilon}_{ij}).$$ \hfill (5)

Finally, the elastic energy increment ΔE due to the existence of the B33 phase in the B2 matrix was described as

$$\Delta E = -\frac{1}{2}\varepsilon_{ij}\sigma_{ij}.$$ \hfill (6)

The change of the orientation of the B33 phase was considered by changing the coordinate system of the eigenstrains and elastic constants from the original $x_1-x_2-x_3$ to $x'_1-x'_2-x'_3$ using the following rotation matrix [17,24]:

$$R_{ij} = \begin{bmatrix} \cos \psi \cos \phi & \cos \psi \sin \phi & -\sin \psi \\ -\sin \phi & \cos \phi & 0 \\ \sin \psi \cos \phi & \sin \psi \sin \phi & \cos \psi \end{bmatrix}.$$ \hfill (7)

The x'_3 axis was perpendicular to the disk and parallel to the longitude of the needle in our setting. By changing the angles of $\phi (0^\circ < \phi < 180^\circ)$ and $\psi (0^\circ < \psi < 180^\circ)$ for the disk and needle, respectively, we detected the shape and orientation with the minimum of ΔE as the stable morphology of the B33 phase, and calculated its total strains ε_{ij}. The details of our method and its fundamental physics were covered by previous studies [13,17]. Further, the elastic constants of the B2 matrix, and B19' and B33 phases were calculated by computing the Hessian matrix using their supercells with DFT calculations [25,26].

The relaxation of internal coordinates is not considered for the calculation of elastic constants. The elastic constants of the B19' phase were calculated to provide the data for the subsequent mesoscale analysis, such as the phase-field method.

The calculated eigenstrains for each structure together with those calculated using previously reported lattice parameters and the monoclinic angle are shown in Table 2. The elastic constants for each structure are shown in Fig. 2. The calculated eigenstrains were generally consistent with those calculated in previous studies, and the calculated elastic constants of the B2 matrix were also consistent with the previous DFT results, i.e., $C_{2222} = C_{3333} = 46$ GPa and $C_{1112} = C_{1211} = 19$ GPa [11]. The corresponding values of C_{1111}, C_{1212} and C_{2323} triplet on conventional [100]$_{B2}$, [010]$_{B2}$, and [001]$_{B2}$ coordinate system for B2 case are 179, 152 and 52 GPa, respectively, which are consistent with those of material project [27] and similar to previous experimental results: approximately 175, 150 and 32 GPa at 300 K [28]. Notably, the shear components of the elastic constants, C_{2323}, C_{3131}, and C_{1212} of the B2 matrix, and those of the B33 or B19' phases are significantly different; the elastic inhomogeneity between the B2 matrix and the B33 or B19' phase exists, which needs to be considered. We confirmed the temperature effect for the elastic constants is small and it does not change the conclusion of this research using phonon analysis under quasi harmonic approximation [29]. In Fig. 2, the ΔE maps with respect to ϕ and ψ for (a) disk and (b) needle shapes are shown. Generally, the disk shape is more stable than the needle shape; in particular, ΔE is low for the disk in the region ($60^\circ < \phi < 120^\circ$, $140^\circ < \psi < 160^\circ$). If we consider the experimental habit plane as the disk plane in this study, this is consistent with previous experimental observations. The habit plane of the B19' phase, (249)$_{B2}$ [4,23], approximately corresponded to the disk with an angle (ϕ, ψ) = (80°, 150°).

The minimum of ΔE was at (90°, 150°) for the disk shape, i.e., $\Delta E = 0.74$ GJ/m3. The total strains of the disk, $\varepsilon_{ij} = (90^\circ, 150^\circ)$, were calculated as $\varepsilon^{B3}_{ij} = -0.014$, $\varepsilon^{B3}_{33} = 0.126$, $\varepsilon^{B3}_{11} = -0.013$, and $\varepsilon^{B3}_{13} = 0.114$, which are similar to the eigenstrains of the B19' phase in Table 1. Using ε^{B3}_{ij}, the monoclinic angle of the elastically deformed B33 phase was approximately calculated as $90^\circ + \arctan(2\varepsilon^{B3}_{13}) = 102.8^\circ$, which is similar to that of B19', i.e., 102.1° (see Fig. 1). Thus, although we did not consider the elastic instability of the B33 phase in our micromechanics analysis, we believe that the B33 structure reaches instability.
4

and changes to the B19' phase, releasing the internal stresses. In real experiments, this is a reasonable scenario for heterogeneous secondary phases because the main difference between the atomic structures of the B33 and B19' phases is the shape of the supercell as we mentioned previously. Only small internal atomic shuffling (the change in internal coordinates) are necessary for this phase transformation. For the B33 and B19' phases because the main difference between the atomic structures of both matrix and twin region will be constrained elastically due to the twinned structure. If we consider the B19' phase's heterogeneity, setting the morphologies of B19' and B33 phases were similar to the eigenstrains of the B19' phase by the original B2 matrix. The inhomogeneity of the elastic constants between the B2 matrix and B33 phase plays a role in this phase change. Finally, the discrepancy in the experiment and DFT calculations of the B19' phase's monoclinic angle was due to the B19' phase's heterogeneity.

CRediT authorship contribution statement

Akio Ishii: Conceptualization, Methodology, Validation, Investigation, Writing – original draft, Writing – review & editing, Visualization, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was partially supported by the Japan Society for the Promotion of Science (JSPS) [grant number 21K03771]. DFT simulations were partly performed using OCTOPUS large-scale computer systems at the Cybermedia Center, Osaka University.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.commatsci.2022.111954.

References

Table 1

<table>
<thead>
<tr>
<th>Phase</th>
<th>ε_{ij} (in GPa^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>B19'</td>
<td>$\varepsilon_{11} = -0.011, \varepsilon_{22} = 0.093, \varepsilon_{33} = -0.025, \varepsilon_{ij} = 0.134$</td>
</tr>
<tr>
<td>B23</td>
<td>$\varepsilon_{11} = -0.011, \varepsilon_{22} = 0.093, \varepsilon_{33} = -0.025, \varepsilon_{ij} = 0.134$</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Elastic constant</th>
<th>B2</th>
<th>B19'</th>
<th>B33</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{111}</td>
<td>215</td>
<td>237</td>
<td>235</td>
</tr>
<tr>
<td>C_{122}</td>
<td>215</td>
<td>231</td>
<td>234</td>
</tr>
<tr>
<td>C_{133}</td>
<td>179</td>
<td>182</td>
<td>178</td>
</tr>
<tr>
<td>C_{112}</td>
<td>116</td>
<td>129</td>
<td>130</td>
</tr>
<tr>
<td>C_{113}</td>
<td>143</td>
<td>132</td>
<td>135</td>
</tr>
<tr>
<td>C_{123}</td>
<td>143</td>
<td>118</td>
<td>113</td>
</tr>
<tr>
<td>C_{132}</td>
<td>52</td>
<td>44</td>
<td>36</td>
</tr>
<tr>
<td>C_{131}</td>
<td>52</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>C_{122}</td>
<td>13</td>
<td>91</td>
<td>93</td>
</tr>
<tr>
<td>C_{112}</td>
<td>0</td>
<td>-3</td>
<td>-1</td>
</tr>
<tr>
<td>C_{123}</td>
<td>0</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>C_{132}</td>
<td>0</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>C_{131}</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

