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A B S T R A C T

The existence of the B33 phase in TiNi alloys, which was reported to be a stable phase using density functional
theory calculations but not confirmed experimentally, is controversial. Using Eshelby’s ellipsoidal inclusion,
which was atomistically informed by density functional theory calculations, we investigated the existence of the
B33 phase in the TiNi shape memory alloy. The calculated total strains of the heterogeneously nucleated B33
phase were similar to the eigenstrains of the B19’ phase, which were also calculated using density functional
theory calculations. Considering the similarity of the atomic structures of B33 and B19’, this indicates that the
B33 phase was elastically suppressed and changed to the B19’ phase by the original B2 matrix. We confirmed
that the elastic inhomogeneity between the B2 matrix and B33 phase plays a role in this change.
Shape memory alloys (SMAs) are alloys with a (1) shape memory
effect; plastically deformed SMAs recover their original shape and size
when heated above a certain characteristic temperature, (2) supere-
lasticity; plastically deformed SMAs recover once the external load is
removed. Because of these properties, SMAs have considerable poten-
tial for a wide scope of industrial applications, including in the field
of structural materials, actuators, transducers, and sensors [1]. Studies
have found that the shape memory effect (superelasticity) is due to the
SMA’s high phase transformability with respect to heat (external load),
from the matrix (parent) phase to the secondary (twin) phase, and vice
versa [1]. Nevertheless, the detailed mechanism of plastic deformation
remains under investigation.

The near-equal atomic TiNi alloy is the most distinguished SMA [2],
for which the observed phase transformation was from cubic B2 matrix
to monoclinic B19’ secondary phase; one of the edge vectors of the
unit cell of the B19’ structure has a monoclinic angle larger than 90◦.
The B19’ phase is considered as the most stable secondary phase at, or
below, room temperature [3,4]. Meanwhile, the atomistic simulation
using the electronic structure calculation of density functional theory
(DFT) found a more stable B33 phase (B19’ is a metastable structure),
which has a larger monoclinic angle than that of B19’. However, this
has not been observed in experiments [5–10]. The reason for this
discrepancy between the experimental and simulation results remains
controversial. Several previous studies have suggested that the reason
for this is that the observed B19’ phase is stabilized through internal
stresses; however, a detailed analysis of the internal stresses is lack-
ing [5,11]. Recently, Haskins et al. [10] discussed the reason for the
thermal stability of B19’ and B33 using DFT-calculated free energy,
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which includes vibration entropy. Lv et al. [12] asserted that the reason
is due to the effect of the (001) twin interface of the B19’ structure using
DFT calculations.

In this study, we consider this discrepancy from a micromechanical
perspective [13]. In micromechanics, once a secondary phase with
eigenstrains (change in shape or size), also called as an inclusion
in micromechanics, nucleates heterogeneously in the matrix, internal
stress inside the inclusion is generated to push it back to the matrix’s
original shape (or size). Due to this internal back stress, the observed
strains of the inclusion, called as the total strains in micromechanics,
is usually lower than the eigenstrains, which can be considered as
strains of perfectly homogeneous phase transformation. In other words,
the inclusion is elastically deformed back to the shape of the matrix
from its original shape by the surrounding matrix. Therefore, DFT-
calculated shape changes from the matrix to secondary phase using
the homogeneous atomic supercell are eigenstrains, and experimentally
observed shape changes are the total strains due to heterogeneity.
In this sense, even if the B33 phase nucleates heterogeneously in
the B2 matrix, its monoclinic angle will be lower than that of DFT-
calculated one. Because the atomic structure of the B19’ phase can
be considered as an affinely deformed structure of the B33 phase
with small shuffling components of internal coordinates [8–10], from
a micromechanical perspective, it can be explained as follows. The
experimentally observed B19’ structure is an elastically deformed B33
structure by the internal back stress by the B2 matrix, or the internal
back stress by the B2 matrix totally changes it to the B19’ phase.
Although we cannot distinguish the above two situations through real
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Fig. 1. Atomic structures of the B2 matrix, and the B19’ and B33 secondary phases. The units of the supercells include two Ti and two Ni atoms. The supercells used for DFT
calculation are shown by black lines and the edge vectors (𝒉𝟏, 𝒉𝟐 and 𝒉𝟑) of the supercells are shown as red, green, and blue arrows, respectively. The monoclinic angles of the
optimized supercells are shown here.
experiments, considering that the B19’ phase was also revealed as a
metastable structure using atomistic simulation, the latter explanation
is more probable.

In the following section, we investigated the validity of the afore-
mentioned explanation using atomistic simulations and micromechan-
ics. We calculated the eigenstrains of B19’ and B33 phases, and the
elastic constants of B2 and B33 phases using atomistic simulations with
DFT calculations. We then predicted the total strains of the B33 phase in
the B2 matrix using Eshelby’s ellipsoidal inclusion with DFT-calculated
eigenstrains and elastic constants. Considering the elastic anisotropy
and inhomogeneity of the elastic constants between the B2 matrix and
B33 inclusion, an atomistically informed parameter-free analysis was
conducted [13–17]. Finally, we compared the predicted total strains of
B33 structure and the eigenstrains of B19’ structure.

First, we introduce our atomistic simulation and micromechanical
approach. Fig. 1 shows the atomic structures of the B2, B19’, and B33
phases, which were used in the DFT calculation. The raw data of these
atomic structures is available as supplemental material (Vienna Ab
initio Simulation Package POSCAR format). The units of the supercells
included two Ti and two Ni atoms. The coordinate system was set as
[110]B2 − [11̄0]B2 − [001]B2. After the structural optimization of the DFT
calculation, the edge vectors of the supercells 𝒉𝟏, 𝒉𝟐 and 𝒉𝟑, which
included the information of lattice constants and monoclinic angle,
were calculated for each structure. Subsequently, the cell matrix 𝑯
was defined as 𝑯 ≡ [𝒉𝟏 𝒉𝟐 𝒉𝟑] for each structure. From Fig. 1, the
monoclinic angle of B19’ phase (102.1◦) is smaller than that of B33
phase (107.6◦). As we mentioned above, the heterogeneously nucleated
B33 phase will be elastically deformed back to the shape of the B2
matrix from its original shape by the surrounding B2 matrix. The pur-
pose of this study is to confirm that the monoclinic angle of elastically
deformed B33 is similar to (or smaller than) that of B19’ or not. Using
the optimized supercell matrices of the matrix B2 structure, 𝑯𝐁𝟐, and
the secondary phase, 𝑯𝑿 (the subscript X denotes B19’ or B33), the
eigenstrain of the secondary phases, 𝜖X𝑖𝑗 was computed in the form of
Green strain as

𝜖𝑋𝑖𝑗 = 1
2
(

𝑱𝐓
𝑿𝑱𝑿 − 𝑰

)

, (1)

where 𝑱𝐓
𝑿 = 𝑯𝑿

(

𝑯𝐁𝟐
)−1 denotes the deformation tensor [17]. For

DFT calculations, we used the Vienna Ab initio Simulation Pack-
age [18]. The electron–ion interaction in the DFT was described using
the projector-augmented wave method [19] and the exchange correla-
tion between electrons was treated using the Perdew–Burke–Ernzerhof
generalized gradient approximation [20].
2

An energy cutoff of 350 eV was used for the plane-wave expansion.
A 7 × 7 × 15 k-point mesh was used for all structures. The energy
convergence criteria for the electronic and ionic structure relaxations
were set to 10−8 and 10−4 eV, respectively.

Considering the B33 phase in the B2 matrix as an Eshelby ellip-
soidal inclusion [14,15], we predicted the total strains of the B33
phase. Specifically, we defined the ellipsoid as

𝑥21
𝑎21

+
𝑥22
𝑎22

+
𝑥23
𝑎23

= 1,

where 𝑎𝑖 was the half axis of the ellipsoid in each direction. We used
(𝑎1; 𝑎2; 𝑎3) = (10∕

√

2; 10∕
√

2; 1) and (𝑎1; 𝑎2; 𝑎3) = (1; 1; 10) ellipsoids for
the disk- and needle-shaped B33 phase, respectively, based on previous
experimental and computational observations of the secondary phase
in TiNi alloys [21–23]. We then detected the stable morphology, shape
and orientation, of the B33 phase with the minimum of elastic energy
increment 𝛥𝐸 due to the existence of the B33 phase, and calculated
the total strains of the morphology. Although the V-shaped B19’ phase
was also experimentally observed [4], we did not employ such a shape
because of the limitation of Eshelby’s ellipsoidal inclusion; ellipsoids
cannot mimic such complicated shapes. However, we think that the
observed V-shape can be considered as a cluster of simple disks or
needles. Note we did not investigate B33 phase in B19’ matrix because
the matrix phase is always B2 in experiment (not B19’). The nucleation
of B33 in B19’ phase, intermediate phase transformation, may also
occur, but this is out of the scope of this study; we focus on final
nucleated structure and it will be B19’ or B33 phase in B2 matrix.

For Eshelby’s ellipsoidal inclusion, the total strain 𝜀𝑖𝑗 is described
using the Einstein summation convention [13] as follows:

𝜀𝑘𝑙 = 𝑆𝑘𝑙𝑚𝑛𝜖𝑚𝑛, (2)

where 𝑆𝑘𝑙𝑚𝑛 denotes Eshelby’s tensor [14] and 𝜖𝑖𝑗 denotes the eigen-
strain. Considering the elastic anisotropy of the B2 structure [13,16],
𝑆𝑘𝑙𝑚𝑛 is described as follows:

𝑆𝑘𝑙𝑚𝑛 =
1
8𝜋
𝐶B2
𝑝𝑞𝑚𝑛 ∫

1

−1
𝑑𝜁3

× ∫

2𝜋

0

( 𝜉𝑙𝜉𝑞𝑁𝑘𝑝(𝜉1, 𝜉2, 𝜉3) + 𝜉𝑘𝜉𝑞𝑁𝑙𝑝(𝜉1, 𝜉2, 𝜉3)
𝐷(𝜉1, 𝜉2, 𝜉3)

)

𝑑𝜃, (3)

where

𝐷(𝜉1, 𝜉2, 𝜉3) = 𝑃𝑝𝑞𝑟(𝐶B2
𝑝𝑗1𝑙𝜉𝑗𝜉𝑙)(𝐶

B2
𝑞𝑚2𝑛𝜉𝑚𝜉𝑛)(𝐶

B2
𝑟𝑠3𝑡𝜉𝑠𝜉𝑡),

𝑁𝑘𝑚(𝜉1, 𝜉2, 𝜉3) = 1
2
𝑃𝑘𝑠𝑡𝑃𝑚𝑛𝑟(𝐶B2

𝑠𝑗𝑛𝑙𝜉𝑙𝜉𝑗 )(𝐶
B2
𝑡𝑢𝑟𝑣𝜉𝑢𝜉𝑣),

corresponding to the determinant and cofactor of 𝐾𝑘𝑚 = 𝐶B2
𝑘𝑙𝑚𝑛𝜉𝑙𝜉𝑛,

respectively. 𝐶B2 is the elastic constant of the B2 matrix and 𝑃
𝑖𝑗𝑘𝑙 𝑝𝑞𝑟
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Fig. 2. Elastic energy increment 𝛥𝐸 changes with respect to 𝜙 and 𝜓 for (a) disk and
(b) needle ellipsoidal inclusions. Broken circles indicate the area with the minimum
𝛥𝐸 for each case.

denotes the permutation tensor. Using 𝜁3 and 𝜃, [𝜉1; 𝜉2; 𝜉3] can be
described as

⎡

⎢

⎢

⎢

⎣

𝜉1
𝜉2
𝜉3

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

1−𝜁23 cos 𝜃
𝑎1

√

1−𝜁23 sin 𝜃
𝑎2
𝜁3
𝑎3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The inhomogeneity of the elastic constant between the B2 matrix and
B33 phase can be considered using Eshelby’s equivalent inclusion the-
ory [13,15]. The fictitious strain 𝜖𝑖𝑗 was calculated using the following
equation:

𝐶B33(𝑆 𝜖 − 𝜖B33) = 𝐶B2 (𝑆 𝜖 − 𝜖 ), (4)
3

𝑖𝑗𝑘𝑙 𝑘𝑙𝑚𝑛 𝑚𝑛 𝑘𝑙 𝑖𝑗𝑘𝑙 𝑘𝑙𝑚𝑛 𝑚𝑛 𝑘𝑙
where 𝐶B33
𝑖𝑗𝑘𝑙 is the elastic constant of the B33 phase. Next, the total

strains of the B33 phase were calculated as 𝜀B33𝑘𝑙 = 𝑆𝑘𝑙𝑚𝑛𝜖𝑚𝑛 using
Eq. (2). Using the total strains and eigenstrains of the B33 phase, the
internal stress of the B33 phase 𝜎𝑖𝑗 was calculated as

𝜎𝑖𝑗 = 𝐶B2
𝑖𝑗𝑘𝑙(𝜀

B33
𝑘𝑙 − 𝜖𝑘𝑙). (5)

Finally, the elastic energy increment 𝛥𝐸 due to the existence of the B33
phase in the B2 matrix was described as

𝛥𝐸 = −1
2
𝜎𝑖𝑗𝜖

B33
𝑖𝑗 . (6)

The change of the orientation of the B33 phase was considered by
changing the coordinate system of the eigenstrains and elastic constants
from the original 𝒙𝟏−𝒙𝟐−𝒙𝟑 to 𝒙′𝟏−𝒙′𝟐−𝒙′𝟑 using the following rotation
matrix [17,24]:

𝑅𝑖𝑗 =
⎡

⎢

⎢

⎣

cos𝜓 cos𝜙 cos𝜓 sin𝜙 − sin𝜓
− sin𝜙 cos𝜙 0

sin𝜓 cos𝜙 sin𝜓 sin𝜙 cos𝜓

⎤

⎥

⎥

⎦

. (7)

The 𝒙′𝟑 axis was perpendicular to the disk and parallel to the longitude
of the needle in our setting. By changing the angles of 𝜙 (0◦ < 𝜙 < 180◦)
and 𝜓 (0◦ < 𝜓 < 180◦) for the disk and needle, respectively, we
detected the shape and orientation with the minimum of 𝛥𝐸 as the
stable morphology of the B33 phase, and calculated its total strains
𝜀B33𝑖𝑗 . The details of our method and its fundamental physics were
covered by previous studies [13,17]. Further, the elastic constants of
the B2 matrix, and B19’ and B33 phases were calculated by computing
the Hessian matrix using their supercells with DFT calculations [25,26].
The relaxation of internal coordinates is not considered for the calcula-
tion of elastic constants. The elastic constants of the B19’ phase were
calculated to provide the data for the subsequent mesoscale analysis,
such as the phase-field method.

The calculated eigenstrains for each structure together with those
calculated using previously reported lattice parameters and the mon-
oclinic angle are shown in Table 1. The elastic constants for each
structure are shown in Table 2. The calculated eigenstrains were gen-
erally consistent with those calculated in previous studies, and the
calculated elastic constants of the B2 matrix were also consistent with
the previous DFT results, i.e., 𝐶2323 = 𝐶3131 = 46 GPa and 𝐶1212 =
19 GPa [11]. The corresponding values of 𝐶1111, 𝐶1122 and 𝐶2323 triplet
on conventional [100]B2−[010]B2−[001]B2 coordinate system for B2 case
are 179, 152 and 52 GPa, respectively, which are consistent with those
of material project [27] and similar to previous experimental results:
approximately 175, 150 and 32 GPa at 300 K [28]. Notably, the shear
components of the elastic constants, 𝐶2323, 𝐶3131, and 𝐶1212 of the B2
matrix, and those of the B33 or B19’ phases are significantly different;
the elastic inhomogeneity between the B2 matrix and the B33 or B19’
phase exists, which needs to be considered. We confirmed the temper-
ature effect for the elastic constants is small and it does not change the
conclusion of this research using phonon analysis under quasi harmonic
approximation [29]. In Fig. 2, the 𝛥𝐸 maps with respect to 𝜙 and 𝜓
for (a) disk and (b) needle shapes are shown. Generally, the disk shape
is more stable than the needle shape; in particular, 𝛥𝐸 is low for the
disk in the region (60◦ < 𝜙 < 120◦, 140◦ < 𝜓 < 160◦). If we consider
the experimental habit plane as the disk plane in this study, this is
consistent with previous experimental observations. The habit plane of
the B19’ phase, (249)B2 [4,23], approximately corresponded to the disk
with an angle (𝜙, 𝜓) = (80◦, 150◦).

The minimum of 𝛥𝐸 was at (90◦, 150◦) for the disk shape, i.e., 𝛥𝐸 =
0.74 GJ∕m3. The total strains of the disk, (𝜙, 𝜓) = (90◦, 150◦), were
calculated as 𝜀B3311 = −0.014, 𝜀B3322 = 0.126, 𝜀B3333 = −0.013, and 𝜀B3323 =
0.114, which are similar to the eigenstrains of the B19’ phase in Table 1.
Using 𝜀B3323 , the monoclinic angle of the elastically deformed B33 phase
was approximately calculated as 90◦ + arctan(2𝜀B3323 ) = 102.8◦, which is
similar to that of B19’, i.e., 102.1◦ (see Fig. 1). Thus, although we did
not consider the elastic instability of the B33 phase in our microme-

chanics analysis, we believe that the B33 structure reaches instability
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Table 1
Eigenstrains of B19’ and B33 phases calculated using atomistic simulation with DFT
calculation. Note that 𝜖𝑖𝑗 = 𝜖𝑗𝑖 and the values of the other 𝜖𝑖𝑗 not listed are zeros. For
the comparison, the eigenstrain calculated using previous reported lattice constants and
monoclinical angles are also included.

𝜖11 𝜖22 𝜖33 𝜖23
B19′

This work −0.059 0.121 −0.009 0.116
Expt [3] −0.035 0.096 −0.035 0.072
DFT [6] −0.050 0.135 −0.030 0.117
DFT [7] −0.047 0.132 −0.030 0.095
DFT [9] −0.052 0.127 −0.022 0.112

B33
This work −0.061 0.163 −0.013 0.172
DFT [5] −0.059 0.173 −0.023 0.166
DFT [6] −0.056 0.161 −0.028 0.160
DFT [7] −0.053 0.171 −0.030 0.167
DFT [9] −0.057 0.169 −0.026 0.167

Table 2
Elastic constants of B2, B19’, and B33 phases calculated using atomistic simulation
with DFT calculation. Note that 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 = 𝐶𝑘𝑙𝑖𝑗 and the values of other 𝐶𝑖𝑗𝑘𝑙
not listed are zeros. The unit of the elastic constants is GPa. The elastic constants are
defined in [110]B2 − [11̄0]B2 − [001]B2 coordinate system.

Elastic constant B2 B19′ B33

𝐶1111 215 237 235
𝐶2222 215 231 234
𝐶3333 179 182 178
𝐶1122 116 129 130
𝐶1133 143 132 135
𝐶2233 143 118 113
𝐶2323 52 44 36
𝐶3131 52 87 87
𝐶1212 13 91 93
𝐶1123 0 −3 −1
𝐶2223 0 21 23
𝐶3323 0 −2 −3
𝐶3112 0 3 3

and changes to the B19’ phase, releasing the internal stresses. In real
experiments, this is a reasonable scenario for heterogeneous secondary
phases because the main difference between the atomic structures of
the B33 and B19’ phases is the shape of the supercell as we mentioned
previously. Only small internal atomic shuffling (the change in internal
coordinates) [30] are necessary for this phase transformation. For the
detail, the reader can refer our supplemental data of B33 and B19’
atomic structure. As further investigation, we recalculated the 𝛥𝐸

ap 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 elastic inhomogeneity, setting 𝐶B33
𝑖𝑗𝑘𝑙 = 𝐶B2

𝑖𝑗𝑘𝑙. In this case,
we found that the morphology did not change, and the calculated
total strains were 𝜀B3311 = −0.015, 𝜀B3322 = 0.148, 𝜀B3333 = −0.025, and
𝜀B3323 = 0.134, which were larger than the eigenstrains of B19’; the
monoclinic angle was approximately calculated as 105.0◦, indicating
that the elastic deformation is relatively suppressed compared with the
above case. Thus, the elastic inhomogeneity between the B2 matrix
and B33 phase is important to suppress the B33 phase. Note we think
our suggestion does not conflict Lv et al.’s assertion; twinned structure
stabilizes the B19’ phase [12]. If the twin region exists heterogeneously,
both matrix and twin region will be constrained elastically due to
the twin’s eigenstrains because the twinning deformation is also one
of phase transformations with eigenstrains. Although it is difficult to
distinguish the elastic and chemical effect from DFT result, even layered
model like Lv et al.’s twinned supercell also includes this kind of elastic
constraint.

Additionally, we also calculated the 𝛥𝐸 map with a heterogeneous
B19’ phase using the eigenstrains and elastic constants of the B19’ phase
in Tables 1 and 2, and assumed that the B19’ phases nucleate hetero-
geneously in the B2 matrix, which would be the actual situation of the
experiment from the above discussion. We found that the morphology
did not change for the B33 cases and calculated the total strains as
4

𝜀B19
′

11 = −0.013, 𝜀B19′22 = 0.093, 𝜀B19′33 = −0.016, and 𝜀B19
′

23 = 0.082, which
were similar to the B19’ eigenstrains, calculated using the experimental
value (see Table 1). The monoclinic angle was approximately calcu-
lated as 90◦ + arctan(2𝜀B19′23 ) = 99.3◦, and the experimental value was
97.9◦ [3]. Considering the effect of the heterogeneity of the B19’ phase
in the experiment, the discrepancy in the experimental results and DFT
calculations of the B19’ phase’s monoclinic angle could be explained.

In summary, we investigated the existence of the B33 phase in TiNi
SMAs using Eshelby’s ellipsoidal inclusion, which were atomistically
informed by DFT calculations. The calculated total strains of the hetero-
geneously nucleated B33 phase were similar to the eigenstrains of the
B19’ phase, which were calculated using DFT calculations. Considering
that the B19’ phase is an affinely deformed B33 phase, we concluded
that the B33 phase was elastically suppressed and changed to the B19’
phase by the original B2 matrix. The inhomogeneity of the elastic
constants between the B2 matrix and B33 phase plays a role in this
phase change. Finally, the discrepancy in the experiment and DFT
calculations of the B19’ phase’s monoclinic angle was due to the B19’
phase’s heterogeneity.
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