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Abstract

Purpose: Management of patient identification is an important issue that should be 

addressed to ensure patient safety while using modern healthcare systems. Patient 

identification errors can be mainly attributed to human errors or system problems. An 

error-tolerant system, such as a biometric system, should be able to prevent or 5

mitigate potential misidentification occurrences. Herein, we propose the use of scout 

computed tomography (CT) images for biometric patient identity verification and 

present the quantitative accuracy outcomes of using this technique in a clinical 

setting.

Methods: Scout CT images acquired from routine examinations of the chest, 10

abdomen, and pelvis were used as biological fingerprints. We evaluated the 

resemblance of the follow-up with the baseline image by comparing the estimates 

of the image characteristics using local feature extraction and matching algorithms. 

The verification performance was evaluated according to the receiver operating 

characteristic (ROC) curves, area under the ROC curves (AUC), and equal error rates 15

(EER). The closed-set identification performance was evaluated according to the 

cumulative match characteristic curves and rank-one identification rates (R1).

Results: A total of 619 (383 males, 236 females, age range 21–92 years) patients who 
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underwent baseline and follow-up chest-abdomen-pelvis CT scans on the same CT 

system were analyzed for verification and closed-set identification. The highest 20

performances of AUC, EER, and R1 were 0.998, 1.22%, and 99.7%, respectively, in the 

considered evaluation range. Furthermore, to determine whether the performance 

decreased in the presence of metal artifacts, the patients were classified into two 

groups, namely scout images with (255 patients) and without (364 patients) metal 

artifacts, and the significance test was performed for two ROC curves using the 25

unpaired Delong's test. No significant differences were found between the ROC 

performances in the presence and absence of metal artifacts when using a sufficient 

number of local features. Our proposed technique demonstrated that the 

performance was comparable to that of conventional biometrics methods when 

using chest, abdomen, and pelvis scout CT images. Thus, this method has the 30

potential to discover inadequate patient information using the available chest, 

abdomen, and pelvis scout CT image; moreover, it can be applied widely to routine 

adult CT scans where no significant body structure effects due to illness or aging are 

present.

Conclusions: Our proposed method can obtain accurate patient information 35

available at the point-of-care and help healthcare providers verify whether a 
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patient’s identity is matched accurately. We believe the method to be a key solution 

for patient misidentification problems.
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1. Introduction

A patient’s identity should be verified prior to clinical examinations or treatments

to ensure that the correct patient undergoes all the relevant medical practices [1-

5]. Many hospitals rely on manual processes and name tags, such as a wristband 45

with a barcode, to identify patients during registration [2-5]. Identification

procedures, such as the use of at least two patient identifiers are often adopted (e.g., 

name and date of birth); however, these confirmations are not always foolproof [1-

5]. Healthcare providers may struggle to collect precise patient information and 

match individuals to their medical records. There are several human factors that can 50

cause patient misidentification, including communication or human errors in 

healthcare work [6]. While human error is innate in our nature, some human errors

can be avoided [6]. Healthcare providers can practice patient confirmation 

processes to ensure that they are examining the correct patient. However, this may 

increase their workloads. In addition to conventional patient confirmation, to use of 55

biometrics for automated patient identity verification can be expected to reduce 

patient misidentification problems [7].

The term biometrics refers to the use of behavioral and biological characteristics 

to identify an individual [8-27]. Biometrics are utilized as a part of either a verification 
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or an identification system [11-27]. Biometric verification refers to the authentication 60

of a patient’s identity by comparing a biological fingerprint with one pre-stored in a 

database [8-10]. Patient verification is a crucial means to ascertain the correctness 

of a patient’s identity. Biometric verification process for healthcare authenticates a 

patient’s identity in addition to the manual checking conducted by healthcare 

providers [11-15]. Biometric identification usually refers to the closed-set identification 65

of someone whose biological fingerprint is stored in a database [8-10]. Patient 

identification is a crucial means to identify unconscious or unknown patients [25-27].

We have previously reported on the usefulness of biological fingerprints using scout 

magnetic resonance (MR) images of the brain [11]. In other previous studies, medical 

image biometrics were reported using chest [19-22, 25-27] and knee [23] X-ray 70

images, optical surface images [13], and patient X-ray images [24] acquired during

a radiotherapy set-up process, facial images[15] extracted from computed 

tomography (CT), and facial images[12, 14] acquired with mobile camera.

Biometrics for healthcare preferred to be a simple process to enable identity

verification under various patient conditions [1-5]. Furthermore, although additional 75

biometric input devices were used to acquire and process patient characteristics in 

some studies [12-14], it is desirable to avoid such additional devices for appropriate 
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handling of private information.

Biological fingerprint techniques using scout images have high versatility for 

verifying a patient’s identity [11]. Scout images are preliminary image sets that are 80

routinely obtained for localization to determine ranges in CT or MR imaging 

examinations. Consequently, it is possible to verify the identity of a patient using only 

some existing scout images. Therefore, there is no need to separately scan a patient 

to obtain characteristic data for biometrics. Additionally, if we can set all the 

parameters required for biometrics in advance, the verification process can be 85

executed automatically during a clinical imaging. Thus, use of scout image based 

biometrics makes the process convenient at both the healthcare provider side and 

patient side. However, this technique is not applicable to other imaging methods. 

Nevertheless, verification of the patient identity during CT examination as well as 

chest X-ray and head MR imaging examinations is important. We believe that a 90

biological fingerprint technique can be used as a patient confirmation tool during

frequently performed CT examinations. The purpose of our study is to a) use scout CT 

images from the chest, abdomen, and pelvis for patient identity verification during 

CT examinations to avoid performing a CT scan on the wrong patient, and b) present

quantitatively accurate outcomes using this technique in a clinical setting.95
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2. Materials and Methods

2.1. Subjects:

This study was conducted as a retrospective, observational study and was 

approved by the Institutional Review Boards at Osaka University and Yamaguchi 

University Hospital. Written informed consent was not required owing to the 100

retrospective design of this study. All procedures conducted herein were in 

conformance with the Declaration of Helsinki.

This study used the scan information from 619 patients who underwent two chest-

abdomen-pelvis CT scans between May 2015 and May 2016 at the Yamaguchi 

University Hospital in Japan. Patients under the age of 20 years, those who have 105

intravenous iodined contrast administration, and those who did not undergo the 

exams in the required supine position with their arms raised were excluded. All scout 

scans were performed using a CT system (SOMATOM Sensation 64, Siemens Medical 

Solutions, Forchheim, Germany). Furthermore, a preliminary study of different CT 

system models was performed for a patient who underwent three chest-abdomen-110

pelvis CT examinations, i.e., two baseline scans acquired using SOMATOM Sensation 

and Definition (both Siemens Medical Solutions, Forchheim, Germany) and a follow-

up scan acquired using SOMATOM Sensation. Error! Reference source not found.
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shows the patient characteristics of this study. Error! Reference source not found.

shows the scan parameters of the scout CT. 115

Figure 1 shows the scanning geometry of the chest-abdomen-pelvis scout CT scan.
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2.2. Methodology:

2.2.1. Outline:

Figure 2 shows the flowchart for the biological fingerprint verification framework of 

our method. The procedure comprises four major steps, namely a) geometric 120

correction, b) local feature extraction, c) valid correspondence evaluation, and d) 

similarity evaluation. Biological fingerprint processing was performed using MATLAB 

version R2018a (MathWorks Inc., 2018) on Windows 10. 
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2.2.2. Geometric correction

The projected patient transverse size of the scout CT image varies with the scanner 125

table height owing to geometric effects. The geometric effects of changing the 

table height can be calculated using the method of similar triangles. The geometric

correction factor at the height of the rotation center can be parameterized as 

follows:

α =
���

��� + ��
	,130

where α denotes the magnification factor in the transverse direction, Dso denotes 

the distance from the focal spot in the X-ray tube to the rotation center, and the 

table height, TH, denotes the distance from the couch to the rotation center.

Accordingly, all scout CT images are processed for correction to cancel this 

geometric error. Figure 3a shows the original follow-up scout CT image, and Fig. 3(b-135

d) shows the cropped processing area of the images after geometric correction. 

2.2.3. Local feature extraction:

Each initial local feature point is used as the center for defining the 

corresponding square regions of interest (ROI) based on which the template 

images of the follow-up scout CT images are obtained. An initial local feature point 140

algorithm [28] uses the following two steps. First, local maxima are computed using 
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the data in the follow-up scout image recorded only within the couch area.

Specifically, the local maxima are the points that are strictly larger in value than all 

other pixels in a 3 × 3 neighborhood. The local maxima are then sorted in a 

descending order according to the peak value, and the coordinates of the first N 145

local maxima are obtained as the initial local feature points.

We consider that validating the computational cost and performance 

depending on the number of the initial local feature points and template matrix 

sizes is necessary. Figures 3b, 3c, and 3d, show examples corresponding to N=100, 

200, and 300, respectively, of the initial local feature point set. In addition, Figs 3f, 150

3g, and 3h, show examples of including metal artifact corresponding to N=100, 200, 

and 300, respectively, of the initial local feature point set.
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2.2.4. Valid correspondence evaluation

Local corresponding points were computed using the template matching 

technique via normalized cross-correlation [30] between the follow-up and the155

baseline scout CT images. The template matching technique, which is a feature 

point tracking method, is used to identify the corresponding pairs linked to the initial 

local feature point set O in the follow-up scout CT image. A local corresponding point

set P is thus obtained in the baseline scout CT image. Each local corresponding point

set P is used as the center for a square ROI according to which the template images 160

of the baseline scout CT image are obtained. The template matching technique is 

executed again to find the corresponding pairs linked to the local corresponding 

point set P in the baseline scout CT image. Accordingly, the final local feature point 

of the follow-up scout CT image O’ is obtained. 

2.2.5. Similarity evaluation165

To examine the resemblance, we determined the correspondence rate, C, using

the following equations:

C =
�

�
,

� = |�|,

� = (� ∩ �′),		170
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� = |�|.

Let M and N be the numbers of respective feature points Q and O. Additionally, let 

Q be the valid corresponding feature point that consists of all the elements in which 

the distance between O and O' is within two pixels. If the correspondence rate is less 

than the threshold value, the estimation of the follow-up and baseline scout CT 175

images is identified as an impostor (different patient) pair. Otherwise, the estimations

of the follow-up and baseline scout CT images are accepted as a genuine (same 

patient) pair.

2.3. Performance evaluation

The verification performance of our method was evaluated in terms of the receiver 180

operating characteristic (ROC) curve and its corresponding equal error rates (EERs)

and area under the ROC curves (AUCs). The EER on the ROC curve indicates the 

point that has an equal probability for the misclassification of the genuine- or 

impostor pairs. In a good biometric system, the EER should be as low as possible [28].

The unpaired DeLong’s test [31, 32] was used to evaluate the AUCs between two 185

groups classified as including (255 patients) or not including (364 patients) metal 

artifacts. In the ROC analysis, the number of impostor pairs was reduced by using 

random sampling to make the numbers of genuine and impostor pairs the same. P 
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values of < 0.05 were considered statistically significant. Statistical analysis was 

performed using the computing environment R version 3.6.0 (R Development Core 190

Team, 2019) on Windows 10.

The closed-set identification performance of our method was evaluated in terms 

of the cumulative match characteristic (CMC) curve and its rank-one identification 

rate (R1). The true-positive identification rate is the proportion of correctly matched

identifications contained within the top R matches, where R is the rank. [28] The CMC 195

curve is used to evaluate the true-positive identification rate within the top R matches

[28]. Thus, R1 indicates that the rank of the genuine patient pair is higher than that of 

all impostor patient pairs. The higher the value of R1 is, the better the biometric system 

is for closed-set identifications.
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3. Results200

Figure 4 shows scout CT image examples of genuine and impostor pair analyses. 

The correspondence rates achieved are 80.6% for the genuine pair and 18.0% for the 

impostor pair. The correspondence rate is a characteristic factor for distinguishing 

genuine matches from impostor matches. If each point correspondence is correct, 

all lines connecting each valid corresponding feature point should be parallel. 205

Therefore, a non-parallel line connecting each valid corresponding feature point 

represents incorrect point correspondence. Thus, the correspondence rate is higher 

for genuine matches than it is for impostor matches. In addition, 

Figure 5 shows an example of a scout CT image of an impostor pair comparison 

with a correspondence rate of 44.3%. The obtained result demonstrates the potential 210

risk for misclassification of this dataset as a genuine pair (i.e., as a false acceptance 

case). Furthermore, Figure 6 shows low correspondence rate examples for a genuine 

pair evaluation due to a) patient's body posture translocations and b) a residual 

contrast medium in the gastrointestinal tract at a follow-up scan, where the 

correspondence rates were determined to be 15.0 and 33.3%, respectively. We 215

believe that several intra-patient temporal changes such as physical abnormalities, 

body posture translocations, and metal artifacts may affect the performance of our 
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method. Figure 7 shows examples of scout CT images for analyses of same and 

different CT systems. The correspondence rates achieved are 58.7% for the same CT 

system and 61.0% for a different CT system. The correspondence rate for the same 220

CT system had an average value of 65.4 ± 16.3% for 619 patients. 

Figure 8 shows the ROC curves for an initial local feature point set size of 300; the 

template matrix size of 16 × 16 showed the most successful performance with an AUC 

of 0.998, and an EER of 1.22%. This was followed by the template matrix sizes of 32 × 225

32 (AUC of 0.997 and EER of 1.68%), and of 8 × 8 (AUC of 0.996 and EER of 1.62%). The 

template matrix size of 64 × 64 exhibited the poorest performance in the ROC 

analyses; nevertheless, our method achieved AUC and EER values of 0.989 and 3.77%, 

respectively. Figure 9 shows the CMC curves for an initial local feature point set size 

of 300; the template matrix size of 16 × 16 produced the most successful performance, 230

in which R1 was 99.7%. This was followed by the template matrix sizes of 8 × 8 and 32 

× 32, for which R1 was 99.0 %. The template matrix size of 64 × 64 gave the poorest

performance in the CMC analyses; nevertheless, our method achieved R1 values of 

95.6%.

Figure 10 shows a comparison of the performance values, where a) is the EER on 235
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the verification performance and b) is the R1 on the closed-set identification 

performance at various numbers of initial local feature points (50 - 300) for the four 

template matrix sizes. For all template matrix sizes, as the number of initial local 

feature points increased, the EER decreased gradually, while the R1 increased

gradually. The template matrix size of 16 × 16 yielded the best verification and closed-240

set identification performances among the four different template matrix sizes 

studied herein for different numbers of initial local feature points.

As shown in Figure 3a-3d, the unique image features used for the identification of 

individual patients in our method were mainly detected in the thoracic-lumbar spine, 

mediastinum, lung boundary, and pelvic brim regions. However, the local maxima 245

employed as the initial local feature point may be concentrated on a high contrast 

part under a patient's scout CT image, and a metal artifact example is shown in 

Figure 3e-3h. The actual local feature extraction processes using the top-100, top-

200, and top-300 peaks of the local maxima is shown in Figure 3f, 3g, and 3h, 

respectively. More specifically, in Figure 3f, the majority of the 100 initial local feature 250

points appear to be concentrated on a specific gastrointestinal tract with residual 

contrast medium, in which it could be difficult to identify the individual patients. Error! 

Reference source not found. shows the AUCs and p values classified by whether the 
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scout CT image includes a metal artifact or not at the follow-up CT scan. Significant 

differences were observed between the ROC performances at 100 and 200 initial 255

local feature points of the scout CT images with and without metal artifacts for the 

unpaired Delong's test (p < 0.05). However, there were no significant differences 

between the ROC performances at 300 initial local feature points of the scout CT 

images with and without metal artifacts for the unpaired Delong's test. We, therefore,

believe that it is necessary to increase the number of initial local feature points in 260

regard to a patient where metal artifacts are observed in the follow-up scout CT 

image as shown in Figure 6b. We note that our method of using 300 initial local 

feature points exhibits high performance levels both in the presence and absence 

of a metal artifact in the scout CT image.
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4. Discussion265

In this study, we have proposed a novel biological fingerprint technique using 

scout CT images from the chest, abdomen, and pelvis under a clinical setting. Our 

method is innovative because verification of the patient’s identity is possible without 

using other biometric input devices if scout CT scan is acquired, and subjecting a 

wrong patient to CT scan can be avoided during CT examination.270

The evaluations demonstrated the effectiveness of the proposed technique for the 

identification and verification of patients using scout CT images as the biological 

fingerprint. Our method achieved AUC, EER, and R1 values of 0.998, 1.22%, and 99.7%, 

respectively, for a template matrix size of 16 × 16 and 300 initial local feature points. 

In previous research by Shimizu et al. [20] and KAO et al. [22], the highest AUC values 275

for biometric verifications from chest X-ray images were 0.994 and 0.963 ± 0.002, 

respectively. Furthermore, for biometrics based on scout MR images, Ueda et al. [11] 

achieved the highest AUC of 0.998, EER of 1.37%, and R1 of 98.6%. Thus, our method

yielded identification and verification performances equivalent to the conventional 

methods.280

Our result indicated that optimal parameter settings for the template matrix size 

and the number of initial local feature points are 16 × 16 and 300, respectively. We 
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considered that the optimal matrix size should be 16 × 16 because the patient's body 

posture on the couch changes slightly at each scan in a routine CT examination. As 

the cause of the performance degradation with template matrix sizes greater than 285

or equal to 32 × 32, it is conceivable that a wider range of corresponding points was 

searched when the template matrix size was increased. Furthermore, a template 

matrix size of 8 × 8 is too small to be able to distinguish each patient's characteristics.

The performance of our method improved monotonically with increase in the 

number of initial local feature points. Furthermore, for the number of initial local 290

feature points of 300 and template matrix size of 16 × 16, the AUC values with and 

without metal artifacts were 0.998 and 0.999, respectively, and hence there was no 

significant difference. However, on changing the number of initial local feature 

points to 200 or less, there were significant differences between the groups with and 

without metal artifacts (P < 0.05). The overall performance of our method may 295

change when used for a database that contains data of patients from follow-up 

scan with various physical abnormalities, i.e., trauma, installed clinical metallic 

devices, and a contrasting medium included in the body. However, we considered 

that the results obtained with the optimal template matrix size (16 × 16) and sufficient 

number (300 or more) of initial local feature points would not be affected 300
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substantially, except for cases where systemic changes have occurred, such as 

trauma in Figure 6a.

There are limitations associated with our study. Our method requires the following 

between prior and current scans: existing and parseable scout images, use of the 

same equipment, same image quality, and a time period that does not significantly 305

affect the whole structure of the patient due to aging.

This study is a retrospective analysis performed on a single CT system with the same 

acquisition parameters. Another limitation is that our database has a short-term 

follow-up period of thirteen months. This is because 619 patients were scanned in the 

period of May 2015 to May 2016, and the effect of change in aging could not be 310

evaluated in our study. Consequently, we have not evaluated long-term changes 

and the effect of using different CT systems. These limitations hindered the 

confirmation of our method’s applicability in a wide range of sites. 

If the CT system is different, several geometrical settings and digital values of the 

scout CT image also differ. Furthermore, with age, loss of calcium occurs in bones;315

thus, the digital value of the scout CT image is expected to decrease. In addition, 

the effect of changes in body habitus are also related to age (secular trend). 

However, as shown in Figure 7, our preliminary study using different CT systems 
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achieved a correspondence rate of 61.0%. We believe that this result was equivalent 

level to 58.7% for the same CT system, and also within the equivalent range of 65.4 ± 320

16.3% for an average correspondence rate for the same CT system. Hence, we 

believe that the geometrical correction of our methodology is applicable even if a 

patient is scanned with different CT systems. Moreover, it is assumed that age-related 

changes in the human skeletal structure have a negligible contribution to scout CT 

images. We believe that the local feature extraction, which mainly extracts the 325

human skeletal structure, and the valid correspondence evaluation of our 

methodology are also minimally affected by the performance of our method, even 

with variations in acquisition parameters, body habitus, and aging.

Although repeated follow-up research is needed over longer time periods and with 

the use of a variety of scan conditions, we think that both age-related changes and 330

acquiring a different CT system do not affect the performance of our method. Thus,

we believe that our proposed method is a novel approach that can be applied in 

biological fingerprint analysis based on the use of scout CT patient images from the 

chest, abdomen, and pelvis.
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5. Conclusions335

In this study, we have proposed an innovative biological fingerprint technique 

using scout CT images that are easily available from routine chest, abdomen, and

pelvis CT scans. Furthermore, it is possible to collect precise patient information and 

match individuals to their medical records without disrupting both patient 

convenience and the primary tasks of healthcare provider. We consider that our 340

method for chest abdomen, and pelvis CT examinations will provide a key solution 

to prevent patient misidentification attributed to human errors.
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Figure Legends450

Figure 1 Scan geometry of the chest-abdomen-pelvis scout CT scan. Scout CT 

images are acquired with the patient in the supine position with his/her arms raised 

above his/her head. The couch is translated at constant speed through the gantry 

opening during X-ray acquisition. The X-ray tube and detector array do not rotate 455

around the patient during scout image acquisition. Dso: distance from the focal spot 

in the X-ray tube to the rotation center, table height (TH): distance from couch to the 

rotation center.

Figure 2 Flowchart of our biological fingerprint verification framework. The biological 460

fingerprint verification process is executed using four major steps: a) geometric 

correction, b) local feature extraction, c) valid correspondence evaluation, and d) 

similarity evaluation. The correspondence rate, C, is the similarity index.

Figure 3 Image examples of geometric correction and local feature extraction 465

based on the variation of the top N peaks of local maxima. (a-d) A patient’s scout 

image without any metal artifacts: (a) Original image and (b-d) cropped processing 

areas of the geometrically corrected images. Yellow circles represent the initial local 

feature points in the processing area by varying the (b) top-100 peaks, (c) top-200 

peaks, and (d) top-300 peaks of the local maxima. (e-h) A patient’s scout image with 470

metal artifacts (residual contrast medium in the gastrointestinal tract): (e) Original 

image and (f-h) cropped processing areas of the geometrically corrected images. 

Yellow circles represent the initial local feature points in the processing area by 

varying the (f) top-100 peaks, (g) top-200 peaks, and (h) top-300 peaks of the local 

maxima.475

Figure 4 Example images of genuine and impostor pair analyses at N = 300, X = Y = 

16. A follow-up scan (center) and a baseline scan (right) correspond to the same 

patient pair. All images are cropped to select the processing area and are 

geometrically corrected. A follow-up (center) and baseline (left) scans correspond 480

to a different patient pair. Yellow circles indicate the initial local feature points in the 

follow-up scan and the local corresponding points in the baseline scan. Lines 

connecting pairs of yellow circles in pairs of images are valid corresponding feature 

points on the genuine pair (cyan lines) and impostor pair (magenta lines). The 

correspondence rates achieved are 80.6% for the genuine pair and 18.0% for the 485
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impostor pair. (N denotes the number of the initial local feature points, and X and Y 

denote the rows and columns of the template matrix size, respectively).

Figure 5 Example demonstrating an increased correspondence rate in an impostor 

pair evaluation at N = 300, X = Y = 16. Follow-up (right) and baseline scans (left) from 490

different patients. Both images have been geometrically corrected. Yellow circles 

denote the sets of the initial local feature points in the follow-up scan and the local 

corresponding points in the baseline scan. Magenta lines connecting pairs of yellow 

circles in the two scans denote valid corresponding feature points. The 

correspondence rate achieved is 44.3%. (N denotes the number of initial local 495

feature points, and X and Y denote the rows and columns of the template matrix size, 

respectively).

Figure 6 Example demonstrating low correspondence rate examples for a genuine 

pair evaluation at N = 300, X = Y = 16. Example demonstrating low correspondence 500

rate examples due to a) translocations in the patient's body posture and b) a patient 

with metal artifacts (residual contrast medium in the gastrointestinal tract). Follow-up 

(right) and baseline (left) scans of single patients. Both images have been 

geometrically corrected. Yellow circles denote the initial local feature points in the 

follow-up scan and the local corresponding points in the baseline scan. Cyan lines 505

connecting pairs of yellow circles in the two scans denote valid corresponding 

feature points. The correspondence rates we achieved are a) 15.0% and b) 33.3%, 

respectively. (N denotes the number of initial local feature points, and X and Y 

denote the rows and columns of the template matrix size, respectively).

510

Figure 7 Example images for analyses of same and different CT systems at N = 300, X 

= Y = 16. All three scout CT images are for the same patient and cropped to select 

the processing area and have been geometrically corrected. A follow-up (center) 

and a baseline (right) scan are acquired from the single CT system (SOMATOM 

Sensation 64, Siemens Medical Solutions, Forchheim, Germany). However, only a 515

baseline (left) scan is acquired from different CT system (SOMATOM Definition, 

Siemens Medical Solutions, Forchheim, Germany). Yellow circles indicate the initial 

local feature points in the follow-up scan and the local corresponding points in the 

baseline scan. Lines connecting pairs of yellow circles in pairs of images denote valid 

corresponding feature points on the same CT system (cyan lines) and a different CT 520

system (green lines). The correspondence rates achieved are 58.7% for the same CT 
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system and 61.0% for a different CT system. (N denotes the number of the initial local 

feature points, and X and Y denote the rows and columns of the template matrix size, 

respectively).

525

Figure 8 Comparison of ROC curve performances for four template matrix sizes at N 

= 300. The plotted ROC curves correspond to template matrix sizes of 8 × 8 (green 

line), 16 × 16 (red line), 32 × 32 (blue line), and 64 × 64 (black line). N indicates the 

number of initial local feature points.

530

Figure 9 Comparison of CMC curve performances for four template matrix sizes at N 

= 300. The plotted CMC curves correspond to template matrix sizes of 8 × 8 (green 

line), 16 × 16 (red line), 32 × 32 (blue line), and 64 × 64 (black line). N indicates the 

number of initial local feature points.

535

Figure 10 Comparison of performance values by varying the number of initial local 

feature points for four template matrix sizes. (a) Variations of EER for the template 

matrix sizes of 8 × 8 (green line), 16 × 16 (red line), 32 × 32 (blue line), and 64 × 64 

(black line) as a function of the number of initial local feature points. (b) Variations 

of R1 for the template matrix sizes of 8 × 8 (green line), 16 × 16 (red line), 32 × 32 (blue 540

line), and 64 × 64 (black line) as a function of the number of initial local feature points.























Table I Patient characteristics 

Number of patients 619

Age

mean ± standard deviation 67 ± 12 years

Range 21 – 92 years

Sex

Male 383

Female 286

scan intervals between the baseline and follow-up examinations

within 1 week 28

from 1 week to 1 month 65

from 1 to 3 months 143

from 3 to 6 months 236

from 6 months to 1 year 147

Table height of scout CT image

mean ± standard deviation 147 ± 13 mm

Range 111 - 209 mm

Type of artifact including follow-up scout 

image

None 364 (299)

Include metal artifact 255 (117)

inside their body 210 (109)

outside their body 30 (7)

Both inside and outside their body 15 (1)

Numbers in parentheses indicate the numbers of artifacts in both the baseline and 

follow-up scout images.



Table I Scan parameters

Tube voltage 120 kV

Tube current 35 mA

Physical width of the image measured at the rotation center

Detector size 0.6 mm

Field of view 560 mm



Table I Evaluation of the ROC performance classified by whether the scout CT image 

includes metal artifacts or not in the follow-up CT scan by varying the number of initial 

local feature points and template matrix sizes 

template matrix size 8 × 8 16 × 16 32 × 32 64 × 64

number of initial 

local feature points
300 100 200 300 300 300

AUC

with

metal artifacts

(255)

0.996 0.981 0.980 0.998 0.998 0.986

without

metal artifacts

(364)

0.993 0.996 0.996 0.999 0.999 0.993

p-value 0.393 0.0206* 0.0199* 0.488 0.612 0.209

Numbers in parentheses indicate the numbers of patients in each group. Asterisks (*) 

indicate a statistically significant (p < 0.05) difference in unpaired Delong's test 

depending on whether a metal artifact was present.
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