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Abstract 

Immediate verification of whether a patient being examined is correct is desirable, even if the scan 

ranges change during different examinations for the same patient. This study proposes an advanced 

biological fingerprint technique for the rapid and reliable verification of various scan ranges in 

computed tomography (CT) scans of the torso of the same patient. The method comprises the 

following steps: geometric correction of different scans, local feature extraction, mismatch 

elimination, and similarity evaluation. The geometric magnification correction was aligned at the 

scanner table height in the first two steps, and the local maxima were calculated as the local 

features. In the third step, local features from the follow-up scout image are matched to those in 

the corresponding baseline scout image via template matching and outlier elimination via a robust 

estimator. We evaluated the correspondence rate based on the inlier ratio between corresponding 

scout images. The ratio of inliers between the baseline and follow-up scout images was assessed 

as the similarity score. The clinical dataset, including chest, abdomen–pelvis, and chest–abdomen–

pelvis scans, included 600 patients (372 men, 68 ± 12 years) who underwent two routine torso CT 

examinations. The highest area under the receiver operating characteristic curve (AUC) was 0.996, 

which was sufficient for patient verification. Moreover, the verification results were comparable 

to the conventional method, which uses scout images in the same scan range. Patient identity 

verification was achieved before the main scan, even in follow-up torso CT, under different scan 

ranges.  
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Introduction 

Wrong-patient errors can occur during multiple procedures and processes in all health care 

settings. No individual in the patient’s healthcare team is immune to patient misidentification [1-

7]. Therefore, positive patient identification is crucial for ensuring patient safety. Notably, in 2020, 

the “National Patient Safety Goals Effective July 2020 for the Hospital Program” included the 

following patient identification method: “To improve the accuracy of patient identification, use at 

least two patient identifiers when providing care, treatment, and services [8].” Although the 

standard two-patient identifier process can prevent most wrong-patient errors, a new strategy for 

patient identification should be incorporated to minimize the risk of human error and improve 

healthcare workflows and utility [9, 10]. The “Healthcare Financial Management Association 

Educational Report: The value of precise patient identification” also describes “leveraging 

software tools and biometric solutions for positive patient identification” in addition to 

“standardizing processes, such as combining the scheduling, registration, and patient identification 

processes” [11]. Since the late 2010s, biometrics for healthcare applications has been reported [12]. 

However, performing conventional patient confirmation and biometric identity verification can 

increase the workloads of healthcare providers. Therefore, biometrics for healthcare, a simple task 

for various patients, is preferred [4-7]. Several studies have reported biometric applications in 

radiologic technology [1-3, 13-27] and forensic pathology [28-35]. 

  Although few reports exist on patient identification errors in imaging studies [36], a study 

based on the findings of a computed tomography (CT) department in a hospital noted six 

identification errors during a period of 12 months [37]. In routine clinical CT or magnetic 

resonance (MR) imaging, scout images are first acquired to determine the scan range of the main 

scan. A scout scan usually depends on the body part being examined; however, in cases where the 

same body part is scanned, each scout image often has approximately the same scan range. Scout 

CT/MR images have great potential as biological fingerprints for positive patient identification, 

and the use of scout image-based biometrics ensures convenience for health care providers and 

patients [13,14]. However, biological fingerprint techniques using scout torso CT images have 

certain limitations in clinical applications that require high versatility [14]. For example, the scan 

range for routine torso scout CT imaging at every instance is not necessarily the chest–abdomen–

pelvis; a patient who underwent chest CT might also undergo a scan of other ranges, such as the 

abdomen–pelvis, at the next follow-up torso CT examination. 



This study aimed to (a) develop trunk scout views of different scan ranges, including the 

chest, abdomen–pelvis, and chest–abdomen–pelvis, to verify that the patients currently being 

examined are the correct patients before the main scan of the CT examination, and (b) present 

outcomes after comparing the proposed method to the conventional method [14], which used scout 

images in the same scan range. 

Materials and methods 

Subjects 

Our institutional review board approved this retrospective observational study. Written 

informed consent was not required because of the retrospective design of this study. All procedures 

conducted in this study conformed to the Declaration of Helsinki. 

The dataset used in this study was acquired between May 2015 and May 2016. Two scout 

CT images were randomly obtained from 600 patients who underwent two routine CT scans of the 

trunk. Patients aged < 20 years, those who had already received intravenous iodinated contrast, 

those who did not undergo examination in the supine position, and those who did not have both 

arms raised, were excluded from this study. All scout views in the dataset were acquired using a 

CT device (SOMATOM Sensation 64, Siemens Medical Solutions, Forchheim, Germany). In 

addition, to evaluate the effectiveness of the proposed method using different CT devices, scout 

views of one case each for the same patient examined using a different CT device (SOMATOM 

Sensation and Definition, Siemens Medical Solutions, Forchheim, Germany) were compared. 

Tables 1 and 2 present the patient characteristics and scan parameters, respectively. The 

trunk scout images of the image dataset evaluated in this study were cropped to the chest, 

abdomen–pelvis, and chest–abdomen–pelvis for every 100 baselines or follow-up CT 

examinations of the 600 patient pairs (Table 3). Figure 1 shows the scan ranges of the chest, 

abdomen–pelvis, and chest–abdomen–pelvis displayed on a scout CT image of the torso. 

  



Methodology 

Outline 

The proposed method verifies patient identity between scout images with different scan 

ranges.  However, applying the conventional method [14] to these different scan ranges is 

challenging. Our evaluation model assumed that the baseline scout image was stored on the image-

archiving server and that the patient identity was verified to be correct when the scout image was 

acquired in the follow-up CT scan. Figure 2 presents a flowchart to verify the identity framework 

of the proposed method. This procedure comprises four major steps: (a) geometric correction of 

different scans, (b) local feature extraction, (c) mismatch elimination, and (d) similarity evaluation. 

The proposed method not only utilizes a template-based matching approach but also uses a point 

set registration to suppress similar changes between different scan ranges. All processing was 

performed using MATLAB version R2020a (Math Works Inc., 2020) and Python version 3.8.8 

(Scotts Valley, CA, USA) with NumPy version 1.19.2 and Scikit-image version 0.18.2. on a 

Windows 10 computer with a Ryzen 5950X 3.40 - 4.90 GHz (Advanced Micro Devices, Inc., 

Santa Clara, Calif) central processing unit and 128 GB of random-access memory. 

Geometric correction 

The proposed method uses the following geometric correction and a previously reported 

method [14]. Positioning the height of the scanner table higher or lower in the CT gantry would 

increase or decrease the transverse width of the patient on the scout image owing to magnification 

effects. Patient magnification was corrected to the height equivalent to the rotational center by 

linear interpolation of the height of the scanner table. The magnification factor in the transverse 

direction on the couch at the rotation center was calculated as follows: 

α =
𝐷𝐷𝑠𝑠𝑠𝑠

𝐷𝐷𝑠𝑠𝑠𝑠 + 𝑇𝑇𝑇𝑇, 

where α denotes the magnification factor, Dso denotes the distance from the focal spot in the X-ray 

tube to the rotation center, and TH is the distance from the couch to the rotation center. All scout 

CT images were processed based on geometric corrections. 

  



Local feature extraction 

The detection algorithm [38-40] for N local feature points in the follow-up scout image 

performs the following two steps: First, the coordinates of the local maxima in the 3 × 3 region 

were computed within the couch area of the follow-up scout image. The local maxima were 

subsequently arranged in descending order of amplitude. The first N local maxima coordinates 

were obtained as the local feature points in the follow-up scout image.  

 Mismatch elimination 

  In the proposed method, each feature point correspondence by template matching is further 

utilized to evaluate the point set similarity using a robust estimator. The template-matching method 

via normalized cross-correlation [41] was used to calculate the XY coordinates of the baseline 

scout image corresponding to each template image. The template images were square areas 

centered on each local feature point in the follow-up scout image. The XY coordinates were used 

as the local feature points in the baseline scout image. A transformation was implemented to reduce 

misregistration due to repetition to account for the changes in patient position between the baseline 

and follow-up CT examinations. In the previously described method [14], the correspondences 

between the local feature points were determined by considering the round-trip application of 

template matching between the respective points. However, this method requires all local feature 

points to be included in the scan range of both baseline and follow-up CT examinations. Hence, 

detecting different patient pairs with a high number of accidental inliers is concerning, as verified 

using a large-scale database containing several scan ranges. 

We classified all local feature points as inliers or outliers in the proposed method using the 

random sample consensus (RANSAC) model [42, 43]. All point samples with residuals smaller 

than the residual threshold, D, were considered inliers. The number of inliers was calculated 

randomly for each subsample, and the maximum number of inliers K times was used as the number 

of inliers. D and K indicate the distance threshold between pairs of corresponding feature points 

on two scout images and the number of random subsamples, respectively. This study applied the 

affine transformation M-estimator sample consensus (MSAC) algorithm [43], which is a variant 

of the RANSAC algorithm. The two main parameters that can be tuned by users and significantly 

affect the performance of the affine transformation MSAC estimator are the distance threshold (D) 

and the number of random subsamples (K). We determined that K used for MSAC varied from 



500 to 3000, and D varied from 1.0 to 3.0. Furthermore, we set various local feature point numbers, 

N (50–750), for the five template matrix sizes and evaluated the effectiveness of the proposed 

method compared with that of the previously described method [14]. 

Similarity evaluation 

To measure image similarity, we determined the correspondence rate C using the following 

equation: 

C =
𝑀𝑀
𝑁𝑁 , 

where M is the number of inliers, and N is the total number of local feature points. The 

correspondence rate is a characteristic factor that distinguishes whether a matched patient pair is 

the same or different. The C values ranged from 0 to 1, with higher rates accepted for the same 

patient pair. 

Performance evaluation 

We evaluated the area under the receiver operating characteristic (ROC) curve (AUC) as a 

performance measure for the proposed method [44]. The ROC curves calculated using the previous 

[14] and proposed methods were compared using the paired DeLong’s test [45, 46]. Statistical 

significance was set at P <0.05. Statistical analysis was performed using the computing 

environment R version 4.1.0 (R Development Core Team, 2021) on Windows 10. 

  



Results 

The most successful performance of the proposed method achieved an AUC of 0.996 under 

a distance threshold of 2.0 pixels (Fig. 3a), 2000 random subsamples (Fig. 3b), 12 × 12 template 

matrix size (Fig. 4a), and 350 local feature points (Fig. 4b). Moreover, the average processing time 

with these parameter settings was only 400 s in a 1:1 verification of one patient in a dataset 

comprising 600 patients. Therefore, the processing time required to verify whether a patient is 

under examination is less than 1 s. 

Figure 3 shows the results of the AUC performance for varying distance thresholds (Fig. 

3a) and the number of random subsamples (Fig. 3b) between the corresponding pair of feature 

points on the two scout images. Figure 4 shows the results of the AUC performance using the 

proposed method (blue line) and the method reported previously [14] (red line) for varying 

template matrix sizes (Fig. 4a) and numbers of local feature points (Fig. 4b) between the two scout 

images. The most successful AUC performance using the previously described method was 0.985, 

with a local feature point of 300 and a template matrix size of 16 × 16, which was consistent with 

the optimal parameter values reported previously [14]. Figure 5 shows the ROC curves for the 

most successful performances, with an AUC of 0.996 under the proposed method compared to 

0.985 under the previous method [14]. A significant difference was observed between the proposed 

and previous methods [14] (P < 0.05). 

Figures 6 and 7 show example images of biological fingerprint analysis using the proposed 

method (Fig. 6) and the previously described method [14] (Fig. 7). The scan condition of each 

scout image in both Figures 6 and 7 is as follows: the center (c) is of the baseline examination 

acquired using a SOMATOM Sensation64, the top-left (a) is of a follow-up examination of the 

same patient (c) acquired using the same device, the bottom-left (b) is a follow-up examination of 

the same patient; (c) acquired using a different device (SOMATOM Definition); the top-right (d) 

is a follow-up examination of a different patient (c) acquired using the same device, and the 

bottom-right (e) is a follow-up examination of a different patient, and (c) acquired using a different 

device (SOMATOM Definition). The results of the comparisons shown in Figures 6 and 7 are as 

follows: the same patient using the same CT device (a–c), the same patient using different CT 

devices (b to c), different patients using the same CT device (d–c), and different patients using 

different CT devices (e–c). In Figure 6, which shows representative results of the proposed method, 

the corresponding rates were 0.266 (93/350) for the a-to-c comparison, 0.200 (70/350) for the b-



to-c comparison, 0.020 (7/350) for the d-to-c comparison, and 0.029 (10/350) for the e-to-c 

comparison. In Figure 7, which shows the results of the previously described method [14], the 

corresponding rates were 0.343 (103/300) for the a-to-c comparison, 0.307 (92/300) for the b-to-c 

comparison, 0.117 (35/300) for the d-to-c comparison, and 0.087 (26/300) for the e-to-c 

comparison. A comparison of the different CT devices showed a decreased correspondence rate 

for the previous method [14]; however, the correspondence rate did not change significantly in the 

proposed method. As shown in Figure 7 (d–c and e–c), the previous method [14] did not 

sufficiently eliminate the mismatch correspondence, such as mapping between the lungs and 

pelvis; however, the proposed method did (Fig. 6). 

  



Discussion 

This study proposes an advanced biological fingerprint technique using scout CT images 

of the trunk in a clinical setting. In a previously described method [14], the patient’s identity was 

verified if a scout CT image was obtained in the same range as the previous image during the 

examination or even in the absence of the patient after the examination. The proposed method 

makes it possible to verify a patient’s identity, even in a frequently occurring clinical situation 

where the scan range differs from previous examinations. This is beneficial for use in an actual 

clinical image dataset that contains the stored time-series of scout CT images in a picture archiving 

and communication system (PACS). In previous studies by Morishita et al. [15], Shimizu et al. 

[16], and Kao et al. [18], the highest AUCs for patient identity verification using chest X-ray 

images were 0.993, 0.994, and 0.963 ± 0.002, respectively. Furthermore, Ueda et al. [13] achieved 

the highest AUC of 0.998 for biometrics based on scout MR brain images. The proposed method 

yielded the highest verification performance of 0.996 for a template matrix size of 12 × 12, 350 

local feature points, a distance threshold of 2.0 pixels, and 2000 random subsamples. The 

effectiveness of the proposed method was adequate for verifying patient identity in clinical settings 

and showed a successful performance equivalent to that of the abovementioned methods. 

A template matrix size of 4 × 4 (8.0 × 8.0 mm2 of spatial size) was too small to distinguish 

each image similarity as a local feature. In addition, if the size of the template matrix exceeds 12 

× 12 (24.0 × 24.0 mm2 of spatial size), positioning reproducibility due to changes in patient posture 

will affect verification. With the proposed method, the performance improved with increasing 

numbers of local feature points up to 350 but decreased above that number. Local maxima with 

peak sizes smaller than the top 350 were considered inappropriate as local features in the proposed 

method. Usually, a smaller number of random subsamples, K, is preferred because the 

computational cost of MSAC is approximately linear with respect to K. In this study, the 

verification performance improved as the number of subsamples increased, reaching a plateau with 

2000 subsamples. In addition, in terms of the distance threshold D, decreasing this distance 

improves the fit by placing a tighter tolerance on the inlier points; however, it does not necessarily 

improve performance. In this study, the verification performance was slightly altered by varying 

the distance threshold, reaching a maximum of 2.0 pixels. Hence, the proposed parameters 

considered that at least 2000 subsampling numbers and a distance threshold of 2.0 are required to 

calculate an accurate putative solution using MSAC. 



The correspondence rate is a characteristic factor for distinguishing between patient pairs 

that are the same or different. When each correspondence point was correct, all the lines connecting 

each inlier point were considered parallel. Therefore, a non-parallel line connecting each inlier 

point represents an incorrect correspondence point. The higher the number of parallel lines 

connecting each inlier point, the better are the correct acceptance and rejection rates. A comparison 

of the proposed method (Fig. 6) to the previously described method [14] (Fig. 7) showed more 

non-parallel lines in the previous method [14]. The results of the comparisons of the scout image 

(c) to the follow-up scout image (e) using the proposed method (Fig. 6) did not completely allow 

the elimination of mismatched mapping from the chest to the pelvis. Nevertheless, the number of 

connecting lines, that is, the correspondence rate, was smaller in the other patients (d, e) than in 

the same patient (a, b), and each patient verification was accurate. In contrast, the results of the 

scout image (c) compared to the four follow-up scout images (a, b, d, e) using the previously 

reported method [14] (Fig. 7) also mapped a part of the chest to the pelvis. Therefore, accurate 

verification of the correspondence rate of patients (a, b), which is the same as the correspondence 

rate for another patient (d, e), may be challenging. This indicates that the proposed method is 

superior to previous methods [14]. This tendency is reflected in the verification performance. The 

proposed method is a useful approach that can minimize the risk of the wrong patient being 

scanned during the CT examination as an added value of the scout views of the trunk, which consist 

of several scan ranges, such as the chest, abdomen–pelvis, and chest–abdomen–pelvis, which are 

performed during the actual clinical examination. Thus, individual patients can collate medical 

records while supporting the primary tasks of healthcare providers and patient convenience. 

This study has certain limitations. First, the findings cannot be generalized to other 

populations because this was a single-center study. The dataset for this study was a retrospective 

analysis, excluding patients < 20 years of age who were still growing and had a short-term follow-

up period of 13 months. For example, patients with cancer are likely to lose weight between two 

scout views performed with longer periods of separation. Consequently, it was impossible to 

evaluate the effects of long-term changes in physique with growth and age on verification 

performance in this study. However, as described previously [14], age-related changes in human 

skeletal structure have negligible effects on scout CT images for patient verification. In most cases, 

the interval between follow-up CT examinations is much shorter than age-related changes in the 

human body. In addition, the dataset in this study was evaluated on a single CT device with the 



same acquisition parameters. However, the scan range was chest, abdomen–pelvis, or chest–

abdomen–pelvis. Different CT devices have different geometric settings, digital values, and image 

contrasts in the scout CT images. However, we did not evaluate the overall verification 

performance of the CT devices used in this study.  

Second, we consider the single-center retrospective study design as a major limitation. 

However, as shown in Figure 6, a preliminary study using different CT devices (SOMATOM 

Sensation and Definition; Siemens Medical Solutions, Forchheim, Germany) showed a 

correspondence rate of 0.200 for the same patient pair (b–c) and 0.029 for a different patient pair 

(e–c). Therefore, we believe that the proposed method can be applied to different CT devices from 

the same manufacturer. However, further research is required to evaluate CT devices manufactured 

by different manufacturers. Third, selection bias was possible owing to the retrospective design of 

this study. The method we propose, as well as the previously reported method [14], has the 

possibility of performance deterioration in patient situations, such as physical abnormalities (such 

as trauma), attachment of clinical metal devices, and inclusion of a contrasting medium. Future 

studies are required, including multiple centers and the implementation of prospective designs. 

 

Conclusions 

The proposed method, based on the advanced biological fingerprint technique for routine clinical 

CT imaging of the trunk, provides a valuable solution for preventing patient misidentification, 

even if the scan range changes in subsequent examinations, thereby reducing the possibility of 

medical malpractice due to human error.   
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Figures 

  



 
Fig. 1 Example of a trunk scout computed tomography image demonstrating the scan ranges of 

the chest, abdomen–pelvis, and chest–abdomen–pelvis. The red, blue, and green rectangles 

indicate the scan ranges of the chest, abdomen–pelvis, and chest–abdomen–pelvis, respectively. 

The range between the lower chest and upper abdomen, indicated in transparent yellow, was 

scanned, which is common to all scan ranges.  

  



Fig. 2 A flowchart of the proposed biological fingerprint technique framework. The biological 

fingerprint verification process is performed in four major steps: (a) geometric correction, (b) local 

feature extraction, (c) mismatch elimination, and (d) similarity evaluation. F: Local feature points 

in the follow-up computed tomography (CT) image. N: number of local feature points; O: template 

images. B: local feature points in the baseline scout image. M: number of inlier points. The 

corresponding rate, C, is a similarity index.  

 

  



Fig. 3 Quantitative verification performance obtained by two varying parameters using the 

proposed method in the mixed dataset of the chest, abdomen–pelvis, and chest–abdomen–pelvis 

scan ranges. (a) Relationships between the distance threshold for the pairs of corresponding feature 

points on the two scout images and the AUC and (b) the relationships between the number of 

random subsamples and the AUC. AUC, area under the ROC curve; ROC, receiver operating 

characteristic. 

  



Fig. 4 Quantitative verification performance value obtained by two varying parameters using the 

proposed method (blue line) and the method by Ueda et al. (14)  (red line) in the mixed dataset of 

the chest, abdomen–pelvis, and chest–abdomen–pelvis scan ranges. The proposed method uses the 

following parameter settings: D, 2.0 pixels and K, 2000. (a) Relationships between the five 

template matrix sizes and the AUC. (b) Relationships between the number of local feature points 

and the AUC. The number of local feature points was 350 for the proposed method and 300 for 

the previous method. The template matrix sizes were 12 × 12 for the proposed method and 16 × 

16 for the method proposed by Ueda et al. (14). D, distance threshold; K, random subsample 

numbers; AUC, area under the ROC curve; ROC, receiver operating characteristic.  

 

  



Fig. 5 Comparison of the ROC curves between the proposed method and the method described by 

Ueda et al. (14) for the parameters that show the maximum AUC. The proposed method (blue line) 

uses the parameter settings N = 350, X = Y = 12, D = 2.0, and K = 2000, with an AUC of 0.996. 

The method described by Ueda et al. (15) (red line) used the parameter settings N = 300 and X = 

Y = 16 and had an AUC of 0.985. The ROC curves differ significantly (P < 0.05). N number of 

local feature points; X and Y rows, and columns of the template matrix size; D distance threshold; 

K random subsample numbers; AUC area under the ROC curve; ROC receiver operating 

characteristic.   



 
Fig. 6 Example images of the same and different patient-pair analyses with two computed 

tomography (CT) devices using the proposed method (D = 2.0, K = 2000, X = Y = 12, N = 350). 

The scan condition of each scout image is as follows: the center (c) is of the baseline examination 

acquired using a SOMATOM Sensation64 device, the top-left (a) is of a follow-up examination of 

the same patient (c) acquired using the same device, the bottom-left (b) is of a follow-up 

examination of the same patient (c) acquired using a different device (SOMATOM Definition), 

the top-right (d) is a follow-up examination of a different patient (C) acquired using the same 

device, and the bottom-right (e) is a follow-up examination of a different patient (c) acquired using 



a different device (SOMATOM Definition). The yellow circles indicate local feature points. The 

lines connecting the pairs of yellow circles to the pairs of images are inlier points as follows: the 

same patient pair acquired using the same CT device (a–c, cyan lines), the same patient pair 

acquired using a different CT device (b–c, green lines), a different patient pair acquired using the 

same CT device (d–c, magenta lines), and a different patient pair acquired using a different CT 

device (e–c, orange lines). The corresponding rates, C, are 0.266 (93/350) for the a-to-c 

comparison, 0.200 (70/350) for the b-to-c comparison, 0.020 (7/350) for the d-to-c comparison, 

and 0.029 (10/350) for the e-to-c comparison. D distance threshold; K number of random 

subsamples; X and Y rows and columns of the template matrix size; N number of local feature 

points; C correspondence rate.  

 

  



Fig. 7 Example images of the same and different patient-pair analyses with two computed 

tomography (CT) devices using the method by Ueda et al. (14) (N = 300, X = Y = 16). The scan 

condition of each scout image is as follows: the center (c) is of the baseline examination acquired 

using a SOMATOM Sensation64 device, the top-left (a) is of a follow-up examination of the same 

patient (c) acquired using the same device, the bottom-left (b) is of a follow-up examination of the 

same patient; (c) is acquired using a different device (SOMATOM Definition); the top-right (d) is 

a follow-up examination of a different patient (c) acquired using the same device, and the bottom-

right (e) is a follow-up examination of a different patient (c) acquired using a different device 



(SOMATOM Definition). The yellow circles indicate local feature points. The lines connecting 

the pairs of yellow circles to the pairs of images are valid corresponding feature points as follows: 

the same patient pair acquired the same CT device (a–c, cyan lines), the same patient pair acquired 

using a different CT device (b–c, green lines), a different patient pair acquired using the same CT 

device (d–c, magenta lines), and a different patient pair acquired using a different CT device (e–c, 

orange lines).The correspondence rates are 0.343 (103/300) for the a-to-c comparison, 0.307 

(92/300) for the b-to-c comparison, 0.117 (35/300) for the d-to-c comparison, and 0.087 (26/300) 

for the e-to-c comparison. N number of local feature points; X and Y rows, and columns of the 

template matrix size; C correspondence rate.  
  



Tables  



Table 1. Patient characteristics 

Number of patients 600  

Age 

 Mean ± SD (years) 68 ± 12  

 Range (years) 21–92  

Sex 

 Male 372  

 Female 228  

Scan intervals 

 Mean ± SD (days) 125 ± 75  

 Range (days) 0-354  

Table height 

 Mean ± SD (mm) 147 ± 13  

 Range (mm) 111–209  

SD, standard deviation 

 
  



Table 2. Scan parameters 

Tube voltage (kV) 120 

Tube current (mA) 35 

Physical width of the image measured at the rotation center 

 Detector size (mm) 0.6 

 Field of view (mm) 560 

  



Table 3. Details of the mixed dataset of chest, abdomen–pelvis, and chest–abdomen–pelvis scan 

ranges 

Patient number 
Scan ranges 

Baseline Follow-up 

#1–#100 Chest Abdomen–pelvis 

#101–#200 Chest Chest–abdomen–pelvis 

#201–#300 Abdomen–pelvis Chest 

#301–#400 Abdomen–pelvis Chest–abdomen–pelvis 

#401–#500 Chest–abdomen–pelvis Chest 

#501–#600 Chest–abdomen–pelvis Abdomen–pelvis 
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