

Title	Characteristics and outcomes of severe sports-related injury in children and adults: a nationwide cohort study in Japan
Author(s)	Nakao, Shunichiro; Katayama, Yusuke; Kitamura, Tetsuhisa et al.
Citation	European Journal of Trauma and Emergency Surgery. 2022, 49, p. 893-901
Version Type	AM
URL	https://hdl.handle.net/11094/89742
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

1 **Title:**

2 **Characteristics and outcomes of severe sports-related injury in children and adults: a**
3 **nationwide cohort study in Japan**

4

5 **Author information:**

6 Shunichiro Nakao, MD, MSc, PhD¹, Yusuke Katayama, MD, PhD¹, Tetsuhisa Kitamura,
7 MD, MSc, DrPH², Kenta Tanaka, MD², Tomoya Hirose, MD, PhD¹, Jotaro Tachino, MD,
8 PhD¹, Kenichiro Ishida, MD³, Masahiro Ojima, MD³, Takeyuki Kiguchi, MD, PhD⁴, Yutaka
9 Umemura, MD, PhD⁴, Kosuke Kiyohara, DrPH⁵, Jun Oda, MD, PhD¹

10

11

12 ¹ Department of Traumatology and Acute Critical Medicine, Osaka University Graduate
13 School of Medicine, Suita, Japan

14 ² Department of Social and Environmental Medicine, Division of Environmental Medicine
15 and Population Sciences, Osaka University Graduate School of Medicine, Suita, Japan

16 ³ Traumatology and Critical Care Medical Center, National Hospital Organization Osaka
17 National Hospital, Osaka, Japan

18 ⁴ Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka,
19 Japan

20 ⁵ Department of Food Science, Faculty of Home Economics, Otsuma Women's University,
21 Tokyo, Japan

22

23 **E-mail addresses and ORCID**

24 SN: shunichironakao@hp-emerg.med.osaka-u.ac.jp, 0000-0001-5530-806X
25 YK: orion13@hp-emerg.med.osaka-u.ac.jp, 0000-0003-2585-4259

26 TKitamura: lucky_unatan@yahoo.co.jp, 0000-0003-0107-0580
27 KT: tanaken.0414@gmail.com
28 TH: htomoya1979@hp-emerg.med.osaka-u.ac.jp, 0000-0001-5959-4569
29 JT: jotarotachino@hp-emerg.med.osaka-u.ac.jp, 0000-0002-0423-7713
30 KI: kenichiro1224@gmail.com, 0000-0002-1585-6069
31 MO: ojimarionet999@yahoo.co.jp
32 TKiguchi: take_yuki888@yahoo.co.jp, 0000-0003-0259-9531
33 YU: plum0022@yahoo.co.jp, 0000-0001-8357-0313
34 KK: kiyohara@otsuma.ac.jp, 0000-0003-0644-6129
35 JO: oda@hp-emerg.med.osaka-u.ac.jp
36
37 **Corresponding Author:** Shunichiro Nakao, MD, MSc, PhD
38 Department of Traumatology and Acute Critical Medicine, Osaka University Graduate
39 School of Medicine, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
40 Fax number: +81-6-6879-5720
41 Telephone number: +81-6-6879-5111
42 E-mail: shunichironakao@hp-emerg.med.osaka-u.ac.jp

43 **Abstract**

44 **Purpose:** Understanding epidemiological patterns in patients with severe sports-related
45 injuries between children and adults is important for injury prevention. We ought to describe
46 the characteristics and outcomes of patients with severe sports-related injuries and compare
47 the characteristics between children and adults.

48 **Methods:** We conducted a retrospective analysis of the Japan Trauma Data Bank (JTDB).
49 We included patients with sports-related injury and an ISS of at least 16, who were admitted
50 between 2004 and 2018. We compared characteristics between children (<18 years) and
51 adults (≥ 18 years). We performed a multivariable logistic regression analysis to compare in-
52 hospital mortality.

53 **Results:** We identified 1,369 eligible patients (children, n=326; adults, n=1,043). The most
54 common season was April–June and July–September in children (28.5% and 27.9%) and
55 January–March in adults (42.1%). Injuries to the head/neck (58.9% vs. 40.8%, $p<0.001$) and
56 abdomen (16.0% vs. 8.3%, $p<0.001$) were significantly more frequent in children than adults,
57 while injuries to the thorax (8.0% vs. 27.2%, $p<0.001$), pelvis/lower-extremity (0.6% vs.
58 6.0%, $p<0.001$), and spine (23.9% vs. 35.3%, $p<0.001$) were less frequent in children. We did
59 not observe a statistically significant difference in in-hospital mortality between children and
60 adults.

61 **Conclusions:** We conducted a comprehensive analysis of severe sports-related injuries using
62 a nationwide trauma database and demonstrated different patterns of severe sports-related
63 injuries in children and adults.

64

65 **Key Words:** Sports-related injury; severe trauma; mortality; Japan Trauma Data Bank
66

67 **Declarations:**

68 **Funding:** This research was funded by a grant from The Descente And Ishimoto Memorial
69 Foundation For The Promotion Of Sports Science, Osaka, Japan (no grant number applies).

70 **Conflicts of interest/Competing interests:** All the authors have no conflict of interest to
71 declare.

72 **Availability of data and material:** The data that support the findings of this study are
73 available from the JTDB, but the availability of these data is restricted.

74 **Consent for publication:** Patient consent was waived due to the anonymous nature of the
75 data.

76 **Authors' contributions:** S.N. conceived the study. S.N., Y.K. and K.T. participated in the
77 data curation. S.N., Y.K., and T.Kitamura structured the methods and the statistical analysis.
78 S.N. prepared the manuscript. S.N., Y.K., T.Kitamura, K.T., T.H., J.T., K.I., M.O.,
79 T.Kiguchi, Y.U., K.K., and J.O. performed the data interpretation. All authors critically
80 reviewed and approved the final version of the manuscript.

81 **Ethics approval:** The protocol was approved by the Ethics Committee of Osaka University
82 as the corresponding institution. The requirement for informed consent of patients was
83 waived.

84 **Consent to participate:** Since it is an analysis of anonymous data, according to the ethics
85 committee dispositions, no informed consent was needed.

86 **Consent for publication:** Since it is an analysis of anonymous data, according to the ethics
87 committee dispositions, no informed consent was needed.

88 **Acknowledgements**

89 The authors gratefully acknowledge the emergency medical service personnel, nurses,
90 emergency physicians, and healthcare workers who participated in the JTDB. This study was

91 funded by The General Insurance Association of Japan. This article was supported by the
92 Clinical Investigator's Research Project at Osaka University Graduate School of Medicine.
93

94 **Introduction**

95 Worldwide, trauma is the leading cause of death of individuals under 45 years of age
96 [1]. Although the severity of most sports-related injuries is minor to moderate, severe trauma
97 can occur and cause significant morbidity and mortality [2]. Pediatric major trauma related to
98 sports is reported to be relatively infrequent but increasing as participation in sports for
99 children and youths becomes popular [3–5]. A report from eastern Canada showed that
100 severe traumatic brain injury occurred 52 % of major trauma related to sports and
101 recreational activities in children [3]. A report of pediatric sports-related major trauma from
102 southern Australia showed the most commonly injured body region was the thorax, followed
103 by the head and spine [6]. A recent single-center study of severe pediatric trauma from
104 France reported that the average injury severity score (ISS) was 16 and the major lesions
105 were head (51%) and intraabdominal (30%) injuries in severe injuries following winter
106 sporting accidents [7].

107 Features of sports-related injury in children may differ from those in adults due to
108 differences in physical activity, muscular development, school environment, and so forth [8–
109 10]. Understanding different patterns in characteristics and outcomes of patients with severe
110 sports-related injuries between children and adults is important for injury prevention.

111 However, there is still a paucity of information on the characteristics of severe sports-related
112 injury and its difference between children and adults. The aim of this study was to describe
113 the characteristics and outcomes of patients with severe sports-related injuries and compare
114 the patterns in the characteristics between children and adults using a Japanese nationwide
115 database.

116

117 **Methods**

118 **Study design and setting**

119 We conducted a retrospective analysis of a nationwide voluntary hospital-based
120 trauma registry, the Japan Trauma Data Bank (JTDB). The institutional ethics committee of
121 Osaka University Graduate School of Medicine approved this study. The requirement for
122 informed consent was waived because of the use of anonymous data (approval no. 16260-3).

123 The emergency medical system personnel at the scene select hospitals for patient
124 transport including tertiary-care centers according to life-threatening conditions and
125 mechanisms of injury. As there are limited children's hospitals with pediatric trauma
126 specialists in Japan, severe pediatric trauma patients are often brought to tertiary-care centers
127 for adults [11].

128

129 **Japan Trauma Data Bank**

130 The JTDB was established in 2003 by the Japanese Association for the Surgery and
131 Trauma (Trauma Surgery Committee) and the Japanese Association for Acute Medicine
132 (Committee for Clinical Care Evaluation) [12]. As of 2018, 280 major trauma care facilities
133 throughout Japan had participated in this registry [13]. Data were collected and submitted
134 using a web-based system by medical staff in participating institutions, who completed a
135 training course in Abbreviated Injury Scale (AIS) coding. The JTDB includes the following
136 information about trauma patients: age, sex, mechanism of injury, AIS codes (version 1998),
137 Injury Severity Score (ISS), type of hospital (e.g. tertiary-care center or not), vital signs on
138 hospital arrival, date and time of hospital arrival, procedures (e.g., interventional radiology),
139 surgical operations and computed tomography scans, complications, and mortality at
140 discharge. The ISS is calculated as the sum of the squares of the highest AIS scores in the
141 three most severely injured body regions [14]. Sports-related injury was one of the unique
142 codes for mechanism of injury in the JTDB and was defined as any injury during sporting
143 activity.

144

145 **Participants**

146 Patients with sports-related injuries who were registered in the JTDB with an ISS of
147 at least 16 and who were admitted between 2004 and 2018 were included in this study.
148 Patients whose records were missing information on age, sex or in-hospital mortality, and
149 data that were double-counted due to inter-hospital transport were excluded from the
150 analysis. We divided eligible patients into two groups: children (<18 years) and adults (≥ 18
151 years).

152

153 **Variables**

154 We extracted the following patient characteristics from the JTDB database: age, sex,
155 blunt or penetrating injury, date and time series from the Emergency Medical System call to
156 admission, AIS codes, ISS, vital signs on hospital arrival, and mortality at discharge. We also
157 extracted whether the patient was managed in a tertiary-care center or not. To evaluate
158 seasonal trends, we divided 12 months into four seasons of three months: January–March,
159 April–June, July–September, and October–December as previously described in previous
160 studies in sports and physical activities [15,16]. We divided the time of day of the Emergency
161 Medical System call into 8-hour time periods (i.e., 00:00–07:59, 08:00–15:59, and 16:00–
162 23:59). To assess the injury sites, we categorized AIS-coded injuries into the following body
163 regions: head/neck, thorax, abdomen, pelvis/lower-extremity, and spine. We also evaluated
164 the maximum AIS severity in these body regions. We defined shock as a systolic blood
165 pressure of <80 mmHg on hospital arrival [17]. We defined shock in children as a systolic
166 blood pressure of <80 mmHg on hospital arrival as previously described in a previous study
167 of trauma in children [18]. We defined out-of-hospital cardiac arrest as a systolic blood
168 pressure of 0 mmHg or a heart rate of 0 bpm on hospital arrival.

169 To describe the distribution across the stages of age, we categorized age into three
170 groups for children and two groups for adults: childhood (≤ 11 years), young teens (12–14
171 years), and teenagers (15–17 years); young adults (18–64 years), and elderly (≥ 65 years) [19].
172

173 **Statistical analyses**

174 Continuous variables are presented as the median and interquartile range (IQR) and
175 categorical variables as the number and percentage. Patient characteristics of the two groups
176 were compared using the Mann-Whitney U test for continuous variables and the chi-squared
177 test or Fisher's exact test for categorical variables. To compare in-hospital mortality, we
178 categorized age into three groups, children (≤ 18 years), young adults (18–64 years), and
179 elderly (≥ 65 years) and used a multivariate logistic regression analysis and calculated odds
180 ratios (ORs) and 95% confidence intervals (CIs).

181 Two-tailed P values of <0.05 were considered to indicate statistical significance. All
182 statistical analyses were conducted using the R software program (version 3.6.2; R
183 Foundation for Statistical Computing, Vienna, Austria).

184

185 **Results**

186 Among 356,535 trauma patients recorded in the JTDB during the study period, 6,669
187 were categorized as sports-related injury cases and 139,307 were severe injury cases. In total,
188 1,369 patients with severe sports-related trauma were eligible for inclusion in the analysis
189 (Figure 1). The patient characteristics are summarized in Table 1. The median age of the
190 overall patient population was 30 years and 87.6% of the patients were male. The youngest
191 age in our cohort was 4 years of age, and the oldest was 92 years of age. Most injury was
192 blunt trauma. The most common season of injury was the period of January–March in the
193 total cohort. The most common season in children was April–June closely followed by July–

194 September, while the most common season in adults was January–March; the difference in
195 the distribution of seasons between children and adults was statistically significant. The most
196 common time of day was 08:00–15:59 in children and adults, and difference in the
197 distribution of time of day between children and adults was statistically significant. Sports-
198 related injury in children most frequently occurred at 16:00–23:59. The most common injury
199 site was head/neck in the total cohort. The most common injury site in both children and
200 adults was the head/neck, followed by the spine. Injuries to the head/neck and abdomen
201 occurred significantly more frequently in children than in adults, while injuries to the
202 thorax, pelvis/lower-extremity, and spine occurred significantly less frequently in children
203 than in adults. Most patients were admitted to the tertiary-care centers in both groups. The
204 median maximum AIS severity was four in the total cohort, and there was no statistical
205 difference between the groups. The median ISS was 17, while the median ISS in children and
206 adults was 16 and 17, respectively. Shock on arrival at the hospital was present in 3.2% of the
207 total cohort and out-of-hospital cardiac arrest occurred in 1.2% of the total cohort. There was
208 no significant difference in shock on arrival or out-of-hospital cardiac arrest between the
209 groups. The overall in-hospital mortality rate was 4.5% and the rates in children and adults
210 did not differ to a statistically significant extent.

211 The associations between patient characteristics and in-hospital mortality are
212 summarized in Table 2. The in-hospital mortality rates of children and adults did not differ to
213 a statistically significant extent. Injury to the head/neck and thorax was associated with
214 significantly worse in-hospital mortality and injury to the spine was associated with
215 significantly better in-hospital mortality.

216 The patient characteristics by age group in both children and adults are described in
217 Table 3 and Figure 2. The most common season in all age groups of adults was January–
218 March. The most common injury through all age groups of children was injury to the

219 head/neck and the second most common injury was injury to the abdomen in childhood (≤ 11
220 years), injuries to the abdomen and spine in young teens (12-14 years), and injury to the spine
221 in teenagers (15-17 years). The most common injury in young adults (18-64 years) was injury
222 to the head/neck, followed by injury to the spine, and that in elderly (65-74 years) was injury
223 to the spine, followed by injury to the head/neck.

224

225 **Discussion**

226 We reported the characteristics and outcomes of severe sports-related trauma and
227 factors associated with patient outcomes using a Japanese nationwide database. The common
228 seasons for severe sports-related trauma in children was April–June and July–September,
229 while the common season in adults was January–March. We did not observe a statistically
230 significant difference in in-hospital mortality between children and adults. We also described
231 the age-stratified evaluation in severe sports-related injury among children and adults. Our
232 findings should facilitate further investigations to identify the associated factors with
233 morbidity and mortality.

234 Injury to the head/neck and thorax was significantly associated with worse in-hospital
235 mortality, which is consistent with previous studies [20–22]. We observed a paradoxical
236 finding in the association between spinal injury and in-hospital mortality as patients with
237 spinal injury were significantly more likely to survive than those without spinal injury. This
238 may be explained by the under-diagnosis of spinal injury in patients with altered mental state.
239 A previous study reported that the diagnosis of spinal injury was often missed due to
240 concomitant severe head trauma and the low sensitivity of X-ray and CT [23].

241 Previous studies reported that severe trauma is relatively common in winter sports,
242 including skiing and snowboarding [24–26]. As winter sports are popular in Japan, it is
243 reasonable that severe sports-related trauma in adults mostly occurred in January–March.

244 Sports-related injury in children commonly occurred in April–June and July–September,
245 which can be attributed to the Japanese school system. In addition to regular physical
246 education, which is provided during elementary, junior high school, and high school, junior
247 high school and high school students can also participate in voluntary and extracurricular
248 sports clubs. Inter-school sports activities are popular in Japan, especially the baseball
249 tournaments in spring and summer [27]. Contact sports such as gymnastics, soccer,
250 basketball, and rugby are also popular in junior high and high school in Japan and have
251 higher risk of injury than noncontact sports [28]. These may affect the distribution in season
252 and time of day for severe sports-related trauma in children.

253 In children, injuries to the head/neck and abdomen were significantly more frequent
254 in comparison to adults, which is consistent with a previous report on injury patterns [29].
255 Severe head injuries are more common in children due to the greater head-body ratio and
256 thinner cranial bones. Abdominal injuries are more common in children due to their flexible
257 rib cage and less developed abdominal muscles [30]. Previous studies demonstrated that
258 severe sports-related abdominal injuries, such as renal injury, are more likely to occur as in
259 isolated injury in children [31,32]. A previous study that analyzed an international trauma
260 database reported that head, chest, spinal and pelvic injuries were common in major trauma
261 in winter sports [24]. This might be the reason for the larger proportions of chest, abdominal,
262 and spinal injuries in adults in comparison to children, as severe sports-related trauma in
263 adults were occurred in winter in our study. We did not observe a statistically significant
264 difference in in-hospital mortality between children and adults.

265 We compared the patient characteristics and outcomes in severe sports-related in-jury
266 between children and adults. Although further investigations are needed, our findings suggest
267 injury prevention and safety promotion in sports should be provided with different
268 approaches in children and adults. Our results may help improve trauma prevention and care

269 in sports. As injuries to the head/neck and spine were common in severe sports-related injury,
270 it may be useful to place greater emphasis on the use of head protective equipment and spine
271 protection devices for sports [33,34]. Our results may suggest that head protective equipment
272 and spine protection devices should be more promoted in both curricular and extracurricular
273 sports including contact sports during spring and summer for children and in winter sports
274 such as skiing and snowboarding for adults.

275

276 **Limitations**

277 The present study was associated with several limitations. First, although this study
278 was based on a nationwide trauma database in which major critical care centers in Japan
279 participated, the JTDB is not population-based database and the data registration is
280 voluntarily, which may limit the generalization of the results. Our results may not be
281 applicable to areas that have differences in popularity of sports, population age distribution,
282 school education system, or healthcare systems. Second, since JTDB does not include data on
283 the type of sports, we could not analyze details in mechanism of injury. However, we believe
284 that this study is still important to reveal the situation in sports-related injury from a
285 nationwide database in Japan. Further study is needed to address this issue. Third, our study
286 did not include unreported sports-related injury, nor did it capture injuries that occurred
287 through mechanisms outside the coding parameters, as with other trauma database studies
288 [20,21]. We therefore expect that our findings with regard to severe sports-related injury do
289 not estimate its true prevalence. In addition, as we found “paradoxical” protective effect of
290 spine injury to mortality, there may be other factors that skew the results. It is also important
291 to understand that our analysis of mortality was not adjusted for potential confounders such
292 as age groups, injury site, and severity of injury, that may skew the results. Further study is
293 needed to confirm the associated factors with mortality among severe sports-related injury.

294

295 **Conclusions**

296 We conducted a comprehensive analysis of severe sports-related trauma using a
297 nationwide trauma database. The most common season for severe sports-related trauma was
298 April–June and July–September in children and January–March in adults. In-hospital
299 mortality in children and adults did not differ to a statistically significant extent. Injuries to
300 the head/neck and abdomen occurred more frequently in children than in adults, while
301 injuries to the thorax, pelvis/lower-extremity, and spine occurred less frequently in children
302 than in adults. By elucidating the epidemiology, our study can help improve prevention and
303 care for severe sports-related trauma.

304

305 **References**

- 306 1. Mock C, Joshipura M, Arreola-Risa C, Quansah R. An estimate of the Number of Lives
307 that Could be Saved through Improvements in Trauma Care Globally. *World J Surg.*
308 2012;36:959–63.
- 309 2. Petridou E, Kedikoglou S, Belechri M, Papadopoulos F, Alexe DM, Trichopoulos D, et al.
310 Sports Injuries among Adults in Six European Union Countries. *European Journal of Trauma.*
311 2003;29:278–83.
- 312 3. Green RS, Butler MB, Kureshi N, Erdogan M. A retrospective evaluation of pediatric
313 major trauma related to sport and recreational activities in Nova Scotia. *Canadian Journal of*
314 *Emergency Medicine.* 2016;18:106–11.
- 315 4. Caine D, Caine C, Maffulli N. Incidence and distribution of pediatric sport-related injuries.
316 *Clinical Journal of Sport Medicine.* 2006;16:500–13.
- 317 5. Caine D, Maffulli N, Caine C. Epidemiology of Injury in Child and Adolescent Sports:
318 Injury Rates, Risk Factors, and Prevention. *Clin Sports Med.* 2008;27:19–50.

319 6. Ekegren CL, Beck B, Simpson PM, Gabbe BJ. Ten-Year Incidence of Sport and
320 Recreation Injuries Resulting in Major Trauma or Death in Victoria, Australia, 2005-2015.
321 Orthop J Sports Med. 2018;6:1-8.

322 7. Maisonneuve E, Roumeliotis N, Basso A, Venchiarutti D, Vallot C, Ricard C, et al.
323 Epidemiology of severe paediatric trauma following winter sport accidents. Acta Paediatrica,
324 International Journal of Paediatrics. 2020;109:2125-30.

325 8. McGuine T. Sports Injuries in High School Athletes : A Review of Injury-Risk and Injury-
326 Prevention Research. Clin J Sport Med. 2006;16:488-99.

327 9. Dwek JR. A structural and mechanism-based perspective toward understanding pediatric
328 and adult sports injuries. American Journal of Roentgenology. 2016;206:980-6.

329 10. Scarneo SE, Kerr ZY, Kroshus E, Register-Mihalik JK, Hosokawa Y, Stearns RL, et al.
330 The socioecological framework: A multifaceted approach to preventing sport-related deaths
331 in high school sports. J Athl Train. 2019;54:356-60.

332 11. Miyata S, Cho J, Park H, Matsushima K, Bliss DW. Comparison of outcomes in severe
333 pediatric trauma at adult trauma centers with different trauma case volumes. J Pediatr Surg
334 [Internet]. Elsevier Inc.; 2017;52:1831-5. Available from:
335 <https://doi.org/10.1016/j.jpedsurg.2017.01.066>

336 12. Kobayashi K. Challenges for improving trauma care in Japan. Journal of Trauma - Injury,
337 Infection and Critical Care. 2005;58:1134-9.

338 13. Japan Trauma Care and Research. Japan Trauma Data Bank Report 2019 [Internet]. 2019
339 [cited 2021 Apr 30]. Available from: <https://www.jtcr-jatec.org/traumabank/dataroom/data/JTDB2019e.pdf>

341 14. Baker SP, O'Neill B, Haddon WJR, Long WB. The injury severity score: a method for
342 describing patients with multiple injuries and evaluating emergency care. The Journal of
343 Trauma: Injury, Infection, and Critical Care. 1974;14:187-96.

344 15. Pivarnik JM, Reeves MJ, Rafferty AP. Seasonal variation in adult leisure-time physical
345 activity. *Med Sci Sports Exerc.* 2003;35:1004–8.

346 16. Costa IT da, Garganta J, Greco PJ, Mesquita I, Seabra A. Influence of Relative Age
347 Effects and Quality of Tactical Behaviour in the Performance of Youth Soccer Players. *Int J
348 Perform Anal Sport.* 2010;10:82–97.

349 17. Neidel T, Salvador N, Heller R. Impact of systolic blood pressure limits on the diagnostic
350 value of triage algorithms. *Scand J Trauma Resusc Emerg Med.* 2017;25.

351 18. Kumar R, Holland AJA, Shi E, Cass DT. Isolated and multisystem hepatic trauma in
352 children: The true role of non-operative management. *Pediatr Surg Int.* 2002;18:98–103.

353 19. Centers for Disease Control and Prevention. Child Development [Internet]. [cited 2022
354 May 30]. Available from:
355 <https://www.cdc.gov/ncbddd/childdevelopment/positiveparenting/index.html>

356 20. Yue JK, Winkler EA, Burke JF, Chan AK, Dhall SS, Berger MS, et al. Pediatric sports-
357 related traumatic brain injury in United States trauma centers. *Neurosurg Focus.* 2016;40:1–
358 12.

359 21. Winkler EA, Yue JK, Burke JF, Chan AK, Dhall SS, Berger MS, et al. Adult sports-
360 related traumatic brain injury in United States trauma centers. *Neurosurg Focus.* 2016;40:1–
361 12.

362 22. Tachino J, Katayama Y, Kitamura T, Kiyohara K, Nakao S, Umemura Y, et al.
363 Assessment of the interaction effect between injury regions in multiple injuries: A nationwide
364 cohort study in Japan. *J Trauma Acute Care Surg.* 2021;90:185–90.

365 23. Demetriades D, Charalambides K, Chahwan S, Hanpeter D, Alo K, Velmahos G, et al.
366 Nonskeletal cervical spine injuries: Epidemiology and diagnostic pitfalls. *Journal of Trauma -
367 Injury, Infection and Critical Care.* 2000;48:724–7.

368 24. Weber CD, Horst K, Lefering R, Hofman M, Dienstknecht T, Pape HC. Major trauma in
369 winter sports: an international trauma database analysis. European Journal of Trauma and
370 Emergency Surgery. 2016;42:741–7.

371 25. Eun JC, Bronsert M, Hansen K, Moulton SL, Jazaeri O, Nehler MR, et al. Vascular injury
372 is associated with increased mortality in winter sports trauma. Ann Vasc Surg. 2015;29:109–
373 13.

374 26. de Roulet A, Inaba K, Strumwasser A, Chouliaras K, Lam L, Benjamin E, et al. Severe
375 injuries associated with skiing and snowboarding: A national trauma data bank study. Journal
376 of Trauma and Acute Care Surgery. 2017;82:781–6.

377 27. Kelly WW. Kōshien Stadium: Performing national virtues and regional rivalries in a
378 “theatre of sport.” Sport Soc. 2011;14:482–94.

379 28. Nonoyama T, Shimazaki Y, Nakagaki H, Tsuge S. Descriptive study of dental injury
380 incurred by junior high school and high school students during participation in school sports
381 clubs. Int Dent J [Internet]. FDI World Dental Federation; 2016;66:356–65. Available from:
382 <https://doi.org/10.1111/idj.12250>

383 29. Kissoon N, Dreyer J, Walia M. Pediatric trauma: differences in pathophysiology, injury
384 patterns and treatment compared with adult trauma. Cmaj. 1990;142:27–34.

385 30. LEVY JL, LINDER LH. Major abdominal trauma in children. Am J Surgery.
386 1970;120:55–8.

387 31. Patel DP, Redshaw JD, Breyer BN, Smith TG, Erickson A, Majercik SD, et al. High-
388 grade renal injuries are often isolated in sports-related trauma Darshan. Injury.
389 2016;46:1245–9.

390 32. Nakao S, Katayama Y, Hirayama A, Hirose T, Ishida K, Umemura Y, et al.
391 Characteristics and outcomes of pediatric blunt renal trauma: a nationwide cohort study in
392 Japan. European Journal of Trauma and Emergency Surgery. 2021;

393 33. Cross KM, Serenelli C. Training and equipment to prevent athletic head and neck
394 injuries. *Clin Sports Med.* 2003;22:639–67.

395 34. Cantu RC, Mueller FO. The prevention of catastrophic head and spine injuries in high
396 school and college sports. *Br J Sports Med.* 2009;43:981–6.

397

398

399 **Figures and Tables legends:**

400 Fig. 1. Patient flow

401 Fig. 2. Injury sites (AIS 3+) of severe sports-related injury by age group

402

403 Table 1. Patient characteristics of severe sports-related injury from 2004 to 2018.

404 Table 2. Odds ratios of each variable for mortality among patients with severe sports-related

405 injury

406 Table 3. Patient characteristics of severe sports-related injury by age group in children

407 Table 4. Patient characteristics of severe sports-related injury by age group in adults

408

Table 1. Patient characteristics of severe sports-related injury from 2004 to 2018.

Characteristics	Total		Children		Adults		P value
	n=1,369		n=326		n=1,043		
Age, median, Q1-Q3	30	18-46	15	13-16	39	26-50	
Male sex, n (%)	1,199	(87.6)	281	(86.2)	918	(88.0)	0.387
Type of injury, n (%)							0.346
Blunt	1,350	(98.6)	324	(96.3)	1026	(98.4)	
Penetrating	6	(0.4)	0	(0.0)	6	(0.6)	
Missing	13	(0.9)	2	(0.6)	11	(1.1)	
Season, n (%)							<0.001
January-March	517	(37.8)	78	(23.9)	439	(42.1)	
April-June	297	(21.7)	93	(28.5)	204	(19.6)	
July-September	314	(22.9)	91	(27.9)	223	(21.4)	
October-December	241	(17.6)	64	(19.6)	177	(17.0)	
Time of day, n (%)							<0.001
00:00-07:59	31	(2.3)	7	(2.1)	24	(2.3)	
08:00-15:59	950	(69.4)	199	(61.0)	751	(72.0)	
16:00-23:59	346	(25.3)	110	(33.7)	236	(22.6)	
Missing	42	(3.1)	10	(3.1)	32	(3.1)	
Tertiary-care center, n (%)	929	(67.9)	218	(66.9)	711	(68.2)	0.711
Injury site (AIS 3+), n (%)							
Head/neck	618	(45.1)	192	(58.9)	426	(40.8)	<0.001
Thorax	310	(22.6)	26	(8.0)	284	(27.2)	<0.001
Abdomen	139	(10.2)	52	(16.0)	87	(8.3)	<0.001
Pelvis/lower-extremity	65	(4.7)	2	(0.6)	63	(6.0)	<0.001
Spine	446	(32.6)	78	(23.9)	368	(35.3)	<0.001
Maximum AIS severity, median, Q1-Q3	4	4-4	4	4-4	4	4-4	0.620
ISS, median, Q1-Q3	17	16-25	16	16-20	17	16-25	<0.001
Shock on arrival, n (%)	44	(3.2)	9	(2.8)	35	(3.4)	0.714
Out-of-hospital cardiac arrest, n (%)	16	(1.2)	2	(0.6)	14	(1.3)	0.385
In-hospital mortality, n (%)	62	(4.5)	11	(3.4)	51	(4.9)	0.319

P values were calculated using Mann-Whitney U test, chi-squared test, or Fisher's exact test as appropriate.

AIS, Abbreviated Injury Scale; ISS, Injury Severity Score.

Table 2. Adjusted odds ratios of each variable for mortality among patients with severe sports-related injury

Characteristics	Mortality		Odds Ratio (95% CI)	P value
	%	(n/N)		
Age group				
Children	3.4	(11/326)	0.64 (0.29–1.29)	0.231
Young adults	4.9	(46/930)	Reference	NA
Elderly	4.4	(5/113)	0.87 (0.27–2.30)	0.795
Sex				
Male	4.8	(58/1,199)	3.02 (1.02–12.98)	0.078
Female	2.4	(4/170)	Reference	NA
Season				
January–March	5.6	(29/517)	1.33 (0.58–3.38)	0.521
April–June	3.7	(11/297)	1.03 (0.38–2.91)	0.953
July–September	4.5	(14/314)	1.26 (0.49–3.46)	0.642
October–December	3.3	(8/241)	Reference	NA
Time of day				
00:00–07:59	0.0	(0/31)	NA	NA
08:00–15:59	4.6	(44/950)	0.86 (0.45–1.70)	0.650
16:00–23:59	4.6	(16/346)	Reference	NA
Injury site (AIS 3+)				
Head/neck (+)	8.3	(51/618)	6.14 (2.61–15.52)	<0.001
(-)	1.5	(11/751)	Reference	NA
Thorax (+)	6.1	(19/310)	2.80 (1.37–5.61)	0.004
(-)	4.1	(43/1,059)	Reference	NA
Abdomen (+)	1.4	(2/139)	1.38 (0.20–6.02)	0.700
(-)	4.9	(60/1,230)	Reference	NA
Pelvis/lower-extremity (+)	1.5	(1/65)	0.51 (0.02–3.28)	0.559
(-)	4.7	(61/1,304)	Reference	NA
Spine (+)	1.8	(8/446)	0.40 (0.15–1.01)	0.061
(-)	5.9	(54/923)	Reference	NA
Maximum AIS severity	-	-	6.84 (4.11–11.72)	<0.001

OR, odds ratio; CI, confidence interval; ISS, Injury Severity Score; AIS, Abbreviated Injury Scale.

Table 3. Patient characteristics of severe sports-related injury by age group

Characteristics	≤11 years		12–14 years		15–17 years		18–64 years		≥65 years	
	Childhood		Young teens		Teenagers		Young adults		Elderly	
	n=63		n=82		n=181		n=930		n=113	
Age, median, Q1–Q3	9	7–10	13	13–14	16	15–17	35	24–46	69	67–73
Male sex, n (%)	43	(68.3)	68	(82.9)	170	(93.9)	818	(88.0)	100	(88.5)
Season, n (%)										
January–March	19	(30.2)	25	(30.5)	34	(18.8)	387	(41.6)	52	(46.0)
April–June	19	(30.2)	17	(20.7)	57	(31.5)	182	(19.6)	22	(19.5)
July–September	11	(17.5)	23	(28.0)	57	(31.5)	205	(22.0)	18	(15.9)
October–December	14	(22.2)	17	(20.7)	33	(18.2)	156	(16.8)	21	(18.6)
Time of day										
00:00–07:59	0	(0.0)	0	(0.0)	7	(3.9)	20	(2.2)	4	(3.5)
08:00–15:59	40	(63.5)	48	(58.5)	111	(61.3)	658	(70.8)	93	(82.3)
16:00–23:59	20	(31.7)	34	(41.5)	56	(30.9)	226	(24.3)	10	(8.8)
Missing	3	(4.8)	0	(0.0)	7	(3.9)	26	(2.8)	6	(5.3)
Tertiary-care center	43	(68.3)	55	(67.1)	120	(66.3)	646	(69.5)	65	(57.5)
Injury site (AIS 3+), n (%)										
Head/neck	52	(82.5)	50	(61.0)	90	(49.7)	379	(40.8)	47	(41.6)
Thorax	5	(7.9)	7	(8.5)	14	(7.7)	252	(27.1)	32	(28.3)
Abdomen	7	(11.1)	15	(18.3)	30	(16.6)	85	(9.1)	2	(1.8)
Pelvis/lower-extremity	0	(0.0)	1	(1.2)	1	(0.6)	54	(5.8)	9	(8.0)
Spine	3	(4.8)	15	(18.3)	60	(33.1)	319	(34.3)	49	(43.4)
Maximum AIS severity, median, Q1–Q3	4	4–4	4	4–4	4	4–4	4	4–4	4	4–4
ISS, median, Q1–Q3	16	16–23	16	16–25	16	16–18	17	16–25	17	16–25
Shock on arrival, n (%)	3	(4.8)	3	(3.7)	3	(1.7)	30	(3.2)	5	(4.4)
Out-of-hospital cardiac arrest, n (%)	1	(1.6)	1	(1.2)	0	(0.0)	11	(1.2)	3	(2.7)
In-hospital mortality, n (%)	5	(7.9)	0	(0.0)	6	(3.3)	46	(4.9)	5	(4.4)

AIS, Abbreviated Injury Scale; ISS, Injury Severity Score.

421

422 Fig. 1. Patient flow

423

424

425 Fig. 2. Injury sites (AIS 3+) of severe sports-related injury by age group

426