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Abstract

Bone material quality is important for evaluating the mechanical integrity of diseased and/or medically treated bones. How-
ever, compared to the knowledge accumulated regarding changes in bone mass, our understanding of the quality of bone
material is lacking. In this study, we clarified the changes in bone material quality mainly characterized by the preferential
orientation of the apatite c-axis associated with estrogen deficiency-induced osteoporosis, and their prevention using iban-
dronate (IBN), a nitrogen-containing bisphosphonate. IBN effectively prevented bone loss and degradation of whole bone
strength in a dose-dependent manner. The estrogen-deficient condition abnormally increased the degree of apatite orientation
along the craniocaudal axis in which principal stress is applied; IBN at higher doses played a role in maintaining the normal
orientation of apatite but not at lower doses. The bone size-independent Young's modulus along the craniocaudal axis of
the anterior cortical shell of the vertebra showed a significant and positive correlation with apatite orientation; therefore,
the craniocaudal Young’s modulus abnormally increased under estrogen-deficient conditions, despite a significant decrease
in volumetric bone mineral density. However, the abnormal increase in craniocaudal Young's modulus did not compensate
for the degradation of whole bone mechanical properties due to the bone loss. In conclusion, it was clarified that changes
in the material quality, which are hidden in bone mass evaluation, occur with estrogen deficiency-induced osteoporosis and
IBN treatment. Here, IBN was shown to be a beneficial drug that suppresses abnormal changes in bone mechanical integrity
caused by estrogen deficiency at both the whole bone and material levels.
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Introduction
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Osteoporosis is associated with increased fracture risk
owing to changes in bone quality and quantity. Bone qual-
ity is defined as the material, architectural, and mechani-
cal characteristics, other than quantity, which contribute to
bone strength. Despite extensive research on bone quantity,
there is limited literature regarding bone quality in osteopo-
rosis. Therefore, there is a need to investigate bone quality
in osteoporosis and its treatments.

To prevent and treat osteoporotic disorders, various
agents, such as bisphosphonates, parathyroid hormone,
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selective estrogen receptor modulators, receptor activa-
tor of NF-kB ligand inhibitor, and calcitonin, have been
developed. Anti-osteoporotic agents have unique functions
in controlling bone metabolism depending on their action
mechanisms; therefore, there may be bone changes that
cannot be detected from changes in bone mineral density
(BMD), which is used as a gold standard in the diagnosis of
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osteoporosis. Given that combined administration of anti-
osteoporotic agents has also become a promising option [1],
it is important to understand the effects of each drug on bone
characteristics other than BMD.

In the recently growing market for anti-osteoporotic
agents, bisphosphonates have continuously held the largest
share [2], and are used worldwide as effective therapeutic
agents [3]. As the number of patients receiving bisphospho-
nate treatments continues to grow [4], it is essential to deter-
mine their impact on bone quality. Ibandronate (IBN) is a
nitrogen-containing bisphosphonate that is beneficial for the
treatment of postmenopausal osteoporosis, glucocorticoid-
induced osteoporosis, Paget’s disease of bone, hypercalce-
mia of malignancy, and metastatic bone disease [5]. IBN is
a highly potent inhibitor of bone resorption and is widely
used clinically because it can be administered either orally
or intravenously at extended between-dose intervals [6].

The main purpose of osteoporosis treatment is to main-
tain or increase bone strength, and thus reduce fracture risk.
Bone strength is determined by a combination of bone mass,
geometry, and material (tissue) properties [7], the latter two
of which closely involve components of bone quality indices.
The areal BMD measured by dual-energy X-ray absorpti-
ometry (DXA) is influenced by bone mass, geometry, and
volumetric BMD (vBMD); hence, DXA-BMD might con-
ceal the changes in bone quality. In this study, we focused
on bone material properties as indices of bone quality. Many
bone quality indicators at the tissue level, such as micro-
damage accumulation [8—10], the degree of mineralization
[8, 11], mineral crystallinity [12], and advanced glycation
end-product cross-links [9, 13], have been proposed so far.
As a promising bone material quality parameter, we propose
and prove the importance of the crystallographic orientation
of apatite crystallites and collagen molecular fibers in bone
pathology [14, 15]. Unlike the other indices, the collagen/
apatite orientation is unique owing to the fact that it is a
kind of vector quantity and can describe the “anisotropic”
features of bone material [16]. In intact bones, the crystal-
lographic c-axis of apatite is aligned almost parallel to the
direction of collagen fiber because of the epitaxial crystal-
lization of apatite on the collagen template [17], resulting
in the formation of an oriented nanocomposite. As a result,
the stronger direction of apatite [18] corresponds to that of
collagen [19], which makes the bone material property ani-
sotropic along with a preferentially oriented direction. This
is very important for bones that work in anisotropic stress
fields. In particular, vertebral bodies are principally loaded
parallel to the craniocaudal axis [20]. By using collagen/
apatite orientation as an index, bone characterization along a
specific direction (principal stress direction) is possible, and
bone features that cannot be estimated from BMD, which
is a scalar quantity, are expected to be clarified. Using the
apatite orientation would be beneficial for the evaluation of

osteoporosis pathology and medicinal effects of therapeutic
agents for osteoporosis.

In the present study, we investigated the effects of IBN
administration and its dose-dependence on the apatite c-axis
orientation as bone material quality. Since the c-axis of apa-
tite lies parallel to the collagen fiber direction as mentioned
above, the degree of apatite c-axis orientation mirrors that
of collagen fiber orientation [21, 22]; in other words, the
apatite c-axis orientation indirectly—but essentially—
indicates collagen orientation. The apatite crystalline size,
which is included in the mineral crystallinity parameters
[12], vBMD, and Young’s modulus were also analyzed. In
addition, the mechanical properties at the whole bone level
were measured.

Materials and Methods
Animal Experiments

Forty-two female Wistar—Imamichi rats were purchased
from the Institute for Animal Reproduction (Ibaraki, Japan).
Seven animals were sham-operated and the other thirty-five
animals were ovariectomized (OVX) at eight months of age
to develop a model for the study of estrogen deficiency. The
experimental protocol was approved by the Institutional
Animal Care and Use Committees of Ina Research Inc. and
Chugai Pharmaceutical Co., Ltd. The animals were allowed
free access to feed (CE-2; CLEA Japan, Tokyo, Japan) in
stainless steel feeders, and drinking water was provided to
the animals ad libitum via an automatic watering system.
From the day after surgery, twenty-eight OVX rats were
treated with IBN (subcutaneously, once every four weeks,
three times in total; 1, 3, 10, and 30 pg/kg (n="7 in each dose
group)) for 12 weeks (Fig. 1). Isotonic sodium chloride solu-
tion (Otsuka Pharmaceutical Factory, Tokushima, Japan)
was administered to the other seven OVX rats to prepare
the vehicle group. Body weights were measured on days —4,
1,29, 57, and 85. At 12 weeks after treatment (day 85), the
lumbar vertebrae were collected and stored in 70% ethanol.

Experimental
days

1
H

Animal grouping ——
Sham or OVX ope. | o
IBN administration+—*+
IBN administration {—
IBN administration|{—

Sacrifice and
bone harvest

Fig.1 Protocol of animal experiment
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Measurement of Trabecular Bone Structural
Properties

Micro-computed tomography (pCT) (SMX-100CT; Shi-
madzu, Kyoto, Japan) was performed at 47 kV and 95 pA
to produce bone images with a spatial resolution of 15 pm
on each side to analyze the trabecular bone structure. The
threshold for bone extraction was defined as a pCT gray
value at which the gray value histogram showed a local
minimum between the peaks representing bone tissue and
soft tissues, including air. Trabecular bone from the central
region of the fourth lumbar (L4) vertebra (1/4 of the total L4
height) was extracted, and the bone volume fraction (defined
as bone volume/total volume (BV/TV)), trabecular thick-
ness (Tb.Th), trabecular number (Tb.N), trabecular separa-
tion (Tb.Sp), the degree of anisotropy of trabecular bone
architecture (DA), and structure model index (SMI) were
analyzed [23] using TRI/3D-BON software (Ratoc System
Engineering, Tokyo, Japan).

Analyses of Apatite c-Axis Orientation and Apatite
Crystallinity in Cortex

The degree of the apatite c-axis orientation in the L4 lum-
bar vertebral cortex was analyzed using a microbeam X-ray
diffractometer (LXRD) system (R-Axis BQ; Rigaku, Tokyo,
Japan) equipped with a transmission-type optical system
and an imaging plate (storage phosphors) (Fuji Film, Tokyo,
Japan) placed behind the specimen. Mo-Ka radiation with a
wavelength of 0.07107 nm was generated at a tube voltage of
50 kV and tube current of 90 mA. The incident beam, colli-
mated to a diameter of 200 pm, was radiated onto the middle
anterior cortex vertically to the craniocaudal axis of the verte-
bra (Fig. 2a) to detect diffraction information along that axis.

The beam diameter was determined to be sufficiently smaller
than the anterior cortical thickness for all specimens assessed
in the pCT image. The diffraction data were collected for 600 s
to obtain adequate diffraction intensity.

From the obtained diffraction intensity pattern (Debye
ring) (Fig. 2b), the two representative diffraction peaks for
apatite, (002) and (310), were used for apatite c-axis orien-
tation analysis, as previously described [21]. In the lumbar
vertebral cortex, the apatite c-axis preferentially orients along
the craniocaudal axis [21]. Therefore, in this study, diffracted
information along the craniocaudal axis was analyzed. The
upper and lower parts of the Debye ring correspond to the
craniocaudal axis. The diffraction intensities were azimuth-
ally integrated in the range of 100 pixels to obtain an X-ray
diffraction profile. The degree of preferential orientation of
the c-axis in the apatite crystals was determined as the relative
intensity ratio of the (002) diffraction peak to the (310) peak
in the X-ray profile. This was previously reported as a suitable
index for evaluating the degree of apatite orientation [16, 24,
25]. The intensity ratios calculated from the upper and lower
parts of the Debye ring were averaged. Randomly oriented
hydroxyapatite (NIST #2910: calcium hydroxyapatite) powder
had an intensity ratio of 0.8; therefore, detected values > 0.8
indicated the presence of anisotropic apatite c-axis orientation
in the analyzed direction.

The apatite crystalline size along its c-axis was estimated
from the full width at half maximum (FWHM) of the (002)
diffraction peak using Scherrer’s equation:

KA

D=
Bcosf M

where A is the wavelength, K is a constant equal to 0.9 [26],
B is the FWHM in radians, and 6 is the diffraction angle.
Parameter B was corrected by:

Fig.2 Microbeam X-ray dif- (a)
fractometer (pXRD) analysis
of the degree of apatite c-axis
orientation. a Schematic draw-
ing of optical system with
bone specimen and b a typical
obtained pXRD pattern (Debye
rings)

X-ray detector (IP) (b)

Debye ring

- CCaxis

AP: anteroposterior
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where By, is the diffraction line width and Bg is the default
width of the instrument.

Measurement of Volumetric Bone Mineral Density
(vBMD) in the Cortex

The volumetric BMD (vBMD) of the L4 vertebral cor-
tex was measured using peripheral quantitative computed
tomography (pQCT) (XCT Research SA +; Stratec Mediz-
intechnik GmbH, Birkenfeld, Germany). The central cross
section of the L4 vertebra along the craniocaudal axis was
scanned at a resolution of 70X 70 X 260 pm. The data for
each voxel were exported in ASCII format, and the average
vBMD was calculated using Microsoft Excel software based
on the vBMD values for the individual voxels. The vBMD
was calculated within the area approximately 200 pm from
the tip of the anterior cortex. Because the spatial resolu-
tion of pQCT is not always adequate for examining small
bone specimens, such as those from mice, the partial vol-
ume effect, which can lead to an underestimation of vBMD
[27], needs to be carefully taken into consideration. In this
case, to minimize the partial volume effect, only interior
voxels were selected and averaged. The cortical bone was
judged to be above a threshold value of 690 mg/cm?. The
bone area was determined by counting the voxels with a
vBMD of > 690 mg/cm?.

Analysis of Young's Modulus as a Tissue Level
Mechanical Property in the Cortex

The L4 vertebrae were carefully cut perpendicular to the
craniocaudal axis to expose the middle cross section using
a circular saw (Model 660; South Bay Technology Inc., San
Clemente, CA, USA) with a diamond wheel (0.30 mm thick
and 100 pm diameter). The specimen cross-sections were
polished to obtain a mirror surface for the nanoindentation
measurements. After grinding with silicon carbide paper of
progressively finer grit up to #2000 under deionized water,
the specimen surfaces were then polished with a microcloth
(Buehler Ltd., Lake Bluff, IL, USA) with a 0.05-pm alu-
mina suspension. After specimen drying, Young's modulus
was measured along the craniocaudal direction in the L4
anterior cortex using a nanoindentation system (ENT-1100a;
Elionix, Tokyo, Japan) with a Berkovich diamond indenter.
The Young’s modulus of bone has been reported to increase
because of drying. However, the relationship between the
relative magnitudes was confirmed to be consistent [28].
Five indentations were created, and the results were aver-
aged. Load-depth measurements were performed on the
specimen surface in accordance with the established condi-
tions [29]. Briefly, the loading/unloading rate and maximum

load were 400 uN/s and 6000 pN, respectively. To mini-
mize the effects of the viscoelastic deformation behavior
of the bone, which could help to prevent overestimation of
the mechanical properties, a constant maximum load was
held for 180 s before unloading [29]. All measurements also
included a second constant load held for 30 s at 600 puN to
establish the thermal drift rate and correct the data. The
Poisson ratio of bone was assumed to be 0.3, and the region
between 95 and 50% of the maximum load was used to cal-
culate the slope of the unloading curve.

In this study, vBMD, the degree of apatite c-axis orien-
tation, apatite crystalline size, and Young’s modulus were
analyzed within the same region.

Assessment of Whole Bone Mechanical Properties

To assess the mechanical properties of the vertebral bone,
a compression test was conducted on the L5 vertebra. The
vertebral arch and disk were removed from each bone, and
the vertebral bodies were trimmed to a length of 5 mm on
the craniocaudal axis. The trimmed vertebral bodies were
placed in a bone strength tester (TK-252C; Muromachi
Kikai, Tokyo, Japan), and the compressive strength was
measured at a displacement rate of 2.5 mm/min. The cross-
head displacement was recorded. From the load—displace-
ment curve, the ultimate load (N), stiffness (N/mm), and
energy (mJ) were obtained.

Statistical Analyses

Quantitative results are expressed as mean + standard devia-
tion. The statistically significant difference from the sham
or vehicle group was determined using two-tailed unpaired
Student’s ¢ test, followed by an F test for homoscedastic-
ity. The significance of IBN dose-dependent changes was
tested using one-way analysis of variance (ANOVA). Post-
hoc Tukey’s honest significant difference or Games—Howell
comparisons were conducted according to the test for homo-
scedasticity. Single and multiple regression analyses were
performed for contribution analysis. Statistical significance
was set at p <0.05. SPSS version 25.0 J (SPSS Japan Inc.,
Tokyo, Japan) for Microsoft Windows was used for statisti-
cal analyses.

Results

Body Weight, Bone Size, and Trabecular Architecture
Estrogen deficiency significantly increased body weight,

regardless of IBN administration (Fig. 3). This is due to
an increase in adipose tissue [30]. Figure 4a shows the
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Fig.3 Change in body weight throughout experimental period
(n=17). *: p<0.05 vs sham for all of OVX groups

Fig.4 Change in bone mass of
the fourth lumbar (L4) vertebral
body. a Cross-sectional micro-
computed tomography (nCT)
images and b cross-sectional
area of cortex at the center of
the L4 vertebral body (n=7). a
p<0.05 vs sham; b p<0.05 vs
vehicle; *p <0.05

Fig.5 Architectural analysis
of trabecular bone in the fourth
lumbar (L4) vertebral body
(n=7).a p<0.05 vs sham; b
p<0.05 vs vehicle; *p<0.05
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tation

Bone Material Characterization of Cortex

Figure 6 shows the variations in vBMD, apatite crystalline
size along the c-axis, degree of apatite c-axis orientation,
and Young’s modulus. The degree of apatite orientation and
Young’s modulus were measured along the craniocaudal
axis. The vBMD decreased in the vehicle group, whereas
the administration of IBN at 30 pg/kg (IBN_30) prevented
a decrease in vBMD. Estrogen deficiency did not change the
crystalline size; in contrast, the administration of IBN sig-
nificantly increased the crystalline size without dose depend-
ency. The degree of apatite orientation along the craniocau-
dal axis was significantly increased in the vehicle group. The
IBN_10 and IBN_30 groups showed the same degree of apa-
tite orientation as the sham group. Interestingly, the apatite
orientation changed in a manner opposite to that of vBMD.
Young’s modulus, an important mechanical parameter at the
bone material level, showed a similar tendency to the apatite
orientation; the modulus was significantly increased in the

vehicle group, and showed similar values in the IBN_10-
and IBN_30-groups to that in the sham group.

From the single regression analyses, apatite orientation
was significantly and positively correlated with Young’s
modulus (r=0.71, p<0.05) (Fig. 7c), whereas vBMD
and crystalline size were not (Fig. 7a, b). Multiple regres-
sion analysis (Table 1) derived multiple regression coeffi-
cients (f) and p-values of f=0.08 and p=0.50 for vBMD,
p=—0.05 and p=0.66 for apatite crystalline size, and
p=0.74 and p <0.05 for apatite orientation, which further
demonstrated the significant contribution of the apatite
c-axis orientation to the bone material integrity.

Whole Bone Mechanical Properties

The stiffness, ultimate load, and absorption energy analyzed
by the compression test are shown in Fig. 8. The ultimate
load and absorption energy were decreased in the vehicle
group; however, they increased to the same level as or higher
than that in the sham group with the administration of IBN.

@ Springer
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Table 1 Relative contribution of volumetric BMD (vBMD), apatite
crystalline size, and apatite orientation to Young’s modulus deter-
mined by multiple regression analysis

vBMD Apatite crystalline size ~ Apatite orientation
p P p P p P

0.08 0.50 —-0.05 0.66 0.74 <0.001
Discussion

The dose-dependent effects of IBN for the prevention of
estrogen deficiency-induced osteoporosis were examined
in an OVX aged rat model for 12 weeks. Our aim was to
investigate the bone quality and mechanical properties at
the material level, in addition to the macroscopic bone
architecture and whole bone strength. Significant changes
in the preferential apatite orientation along the craniocaudal
axis, which represents the anisotropy of bone material, can
be reported here under estrogen-deficient and IBN-treated
conditions. On the other hand, no significant difference was
observed in the anisotropy of trabecular bone architecture.

IBN prevented a decrease in whole bone mechanical
strength due to estrogen deficiency in a dose-dependent
manner. The administration of 10 pg/kg IBN or more main-
tained a strength comparable to that in the sham group. This
change in whole bone mechanical strength was synchronized
with changes in bone area, BV/TV—which is equivalent to
Tb.N x Tb. Th—and vBMD; therefore, it can be said that the
prevention of bone loss by IBN played a role in maintain-
ing the mechanical strength of the whole bone. These dose-
dependent changes in strength and bone mass were consist-
ent with previous reports [31, 32].

The material properties exhibited characteristic changes.
vBMD showed a similar change with bone mass. However,
the changes in apatite crystalline size and apatite c-axis ori-
entation were completely different from those in bone mass.
No change in apatite crystalline size was observed in the
vehicle group with estrogen deficiency, whereas the admin-
istration of IBN significantly increased the apatite crystal-
line size. IBN binds to calcium ions and suppresses bone
resorption by osteoclasts. The inhibition of bone resorption
increases the maturity of apatite crystals [33]. In this study,
crystal growth was demonstrated by the inhibition of bone
resorption. The reported mineral/matrix ratio and increase
in the degree of mineralization [33] might be partly due to
crystalline growth. The degree of apatite orientation along
the craniocaudal axis, in contrast, significantly increased
under estrogen deficiency and decreased with IBN admin-
istration in a dose-dependent manner. Multiple regression
analysis revealed that apatite orientation was the dominant
factor controlling Young’s modulus. However, the increase
in Young's modulus due to the increase in apatite orientation

@ Springer

was not sufficient to suppress the decrease in whole bone
mechanical strength under estrogen-deficient conditions
because of the remarkable bone loss, resulting in reduced
ultimate load and absorption energy in the vehicle group.
This indicates that the maintenance of whole bone mechani-
cal strength with IBN administration is largely due to the
effective prevention of bone loss based on the suppression
of bone resorption by osteoclasts.

However, discussing the material properties is important
for fracture risk assessment. Abnormalities in the mate-
rial properties reduce mechanical integrity regardless of
bone mass [13]. The degree of apatite orientation shows a
strong positive correlation (Pearson’s correlation coefficient
r=0.98) with that of collagen orientation in osteoporotic
bone [21], and expresses the anisotropy of the bone extra-
cellular matrix. The collagen/apatite orientation not only
determines Young's modulus, as previously mentioned, but
also strongly dominates the crack propagation behavior [34].

In this study, orientation and Young's modulus along the
craniocaudal axis were increased in the absence of estro-
gen (vehicle group). However, it is necessary to discuss the
mechanical properties in the directions other than the cranio-
caudal axis. Under estrogen deficiency-induced osteoporo-
sis, the change in trabecular morphology (from plate to rod)
[35] and the preferential disappearance of horizontal trabec-
ulae [36], markedly reduced the mechanical strength in the
horizontal direction (perpendicular to the craniocaudal axis).
Homminga et al. [36] reported using pCT image-based finite
element analysis that reduced horizontal trabeculae resulted
in less resistance against uncommon loads. Their analysis
did not consider material anisotropy (collagen/apatite ori-
entation and Young’s modulus); therefore, it is conceivable
that the osteoporotic vertebral body is actually less tolerant
to uncommon loads than their calculations suggested. Fur-
thermore, highly oriented collagen fibers effectively resist
the propagation of cracks when they are oriented perpen-
dicular to the crack propagation direction; conversely, when
they are oriented parallel to the propagation, they facilitate it
[34]. Collagen that is abnormally highly oriented in a certain
direction does not have an effective mechanism that hinders
crack propagation; thus, the crack propagates linearly and
quickly. An excess degree of collagen/apatite orientation
may be involved in fractures due to extraordinary and sud-
den loads, such as falls, in patients with osteoporosis.

There are three possible reasons for the increased apatite
orientation in the vehicle group. The first is the direct effect
of estrogen deficiency, the second is the effect of IBN, and
the third is the increase in applied stress due to osteoporotic
bone loss. All OVX-operated rats, including the IBN-treated
rats, were deficient in estrogen, but the apatite orientation
was less or not elevated in the IBN-treated groups, so the
effect of estrogen deficiency was less evident. IBN sup-
presses bone resorption and increases crystallite size, but



Ibandronate Suppresses Changes in Apatite Orientation and Young's Modulus Caused by Estrogen... 743
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the increase in crystallite size does not necessarily affect the
orientation, and the change in crystallite size does not actu-
ally correspond to the change in orientation, as shown in this
study. Therefore, it is considered that the IBN hardly affects
the orientation. However, regarding the applied stress, it is
possible that the apatite orientation along the craniocaudal
axis, which corresponds to the direction of principal stress,
increased in response to the increase in body weight due to
estrogen deficiency. The weight gain induced by estrogen
deficiency was due to increased adipose tissue [30], and
all of the OVX-operated groups gained a similar amount
of weight. The cross-sectional area of the vertebral body
increases depending on the dose of IBN, and the applied
stress is determined by the balance between weight gain and
change in cross-sectional area. To estimate the applied stress
on the vertebra, the body weight/cross-sectional area was
calculated [21], and its correlation with the apatite orien-
tation was analyzed. A positive and moderate correlation
with »=0.55 and p <0.05, was determined, suggesting that
the magnitude of applied stress is one of the factors influ-
encing apatite orientation. Thus, the increase in craniocau-
dal Young’s modulus (increased deformation resistance to
stress) under estrogen deficiency would partly be the result
of an adaptive response through which the bone managed
to maintain strength even when osteoporotic bone loss was
inevitable. Previous studies have shown a significant correla-
tion between applied stress and apatite (collagen) orienta-
tion [21, 24], which is mediated by the mechanosensitivity
of osteocytes [37]. In addition, reduced stress makes bone
material less oriented (less anisotropic) [38, 39]. Taken
together, stress applied to bone stimulates the formation of
apatite orientation; however, further investigation is needed,
using an in vivo quantitative loading model or finite element
analysis, to determine the effect of applied stress on the bone
material orientation under osteoporotic conditions.

To clarify the mechanical integrity of vertebral bone in
estrogen-deficient and IBN-treated conditions, it would be
important to analyze the mechanical properties and micro-
structure not only in the cephalocaudal axis but also in other
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direction than the cephalocaudal axis, because the strength
in off-cephalocaudal axis reflects the resistance to uncom-
mon loads caused by, for example, fall. In addition, since
cortical and trabecular bone show different turnover rates
and will be affected differently by estrogen deficiency and
IBN treatment, it would be necessary to analyze the material
quality, microstructure and mechanical properties of cortical
and trabecular bone separately. These were not performed
here, which is a limitation of this study.

It was shown that the material properties changed com-
pletely differently from the bone mass and whole bone
strength. Our data revealed that IBN effectively suppressed
bone abnormality due to estrogen deficiency in all of the
indices measured, showing the benefit of IBN as an anti-
osteoporosis agent. We believe that it is possible to eluci-
date the pathology of many types of bone disorders other
than estrogen deficiency-induced osteoporosis, as well as
the effects of therapeutic agents from a different perspective,
using the collagen/apatite orientation index, which could
lead to the development of better bone medication.
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Conclusion

In this study, we clarified the changes in bone material qual-
ity mainly characterized by the preferential orientation of the
apatite c-axis associated with estrogen deficiency-induced
osteoporosis and its prevention using IBN. The material
properties changed completely differently from the bone
mass and whole bone strength; however, IBN effectively
prevented not only bone loss and the degradation of whole
bone strength, but also abnormal increases in the degree of
apatite orientation and Young’s modulus along the cranio-
caudal axis. Excess anisotropy in material properties leads
to reduced mechanical integrity; therefore, IBN is beneficial
for preventing the degradation of some material properties
caused by estrogen deficiency-induced osteoporosis.
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