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Abstract

Given a fibered link, consider the characteristic polyndnoifathe monodromy
restricted to first homology. This generalizes the notiorthef Alexander polynomial
of a knot. We define a construction, called iterated plumptogcreate a sequence of
fibered links from a given one. The resulting sequence ofadtaristic polynomials
for these links has the same form as those arising in work ¢én$and Boyd
in their study of distributions of Salem and P-V numbers. ikrthis we deduce
information about the asymptotic behavior of the large soof the generalized
Alexander polynomials, and define a new poset structure &ers fibered links.

1. Introduction

Let (K, ) denote a fibered linkk c S* with fibering surfacex. Hopf plumbing
defines a natural operation on fibered links that allows oneowstruct new fibered
links from a given one while keeping track of useful inforioat [15] [5]. Further-
more, a theorem of Giroux [6] shows that any fibered link canob&ined from the
unknot by a sequence of Hopf plumbings and de-plumbings &tsee[7]).

A fibered link (K, £) has an associated homeomorphiem — X, called the
monodromyof (K, X), such that the complement i® of a regular neighborhood of
K is homeomorphic to a mapping torus for Let h, be the restriction oh to first
homology H(XZ,R), and let A x)(t) be the characteristic polynomial of the mono-
dromy h,. If K is connected, that is, &ibered knat then A »(t) is the usual
Alexander polynomial ofK and the mapping torus structure is unique. We extend this
terminology and callAk 5)(t) the Alexander polynomiabf the fibered link K, X).

A polynomial f of degreed is reciprocal if f = f,, where f.(t) = t9f(1/t).
The Alexander polynomialg\k_ x)(t) are monic integer polynomials and reciprocal up
to multiples of ¢ — 1). Burde [4] shows that there exists a fibered knigt £) with
A, xy = f, if and only if
(i) f is a reciprocal monic integer polynomial; and
@iy f(1)=+1,

Kanenobu [8] shows that (i) is true if and only &k sy = f up to multiples of (—1),
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498 E. HIRONAKA

where K, X) is a fibered link. Our goal in this paper is to study how thetsoof
A, x)(t) are affected by Hopf plumbing.

In Section 2, we define a construction called iterated (ijefdlumbing, which
produces a sequence of fibered links,(%,) from a given fibered link K, X) and
a choice of pathr properly embedded o, called theplumbing locus

Our main result is the following.

Theorem 1. If (K,, Z,) is obtained from(K, X) by = iterated trefoil plumbing
then there is a polynomial B Ps . depending only on the location and orientation
of the plumbingsuch thatA, = Ak, s, IS given by

t2"P(t) & (—1) P,(t)

® Anl) = — 7

’

where r is the number of components of K

We call sequences of polynomials of the form given in Equmaiib) Salem-Boyd
sequencesafter work of Salem [12] and Boyd [1] [2].

For a monic integer polynomiaf (t), let (f) be the maximum absolute value
among all roots off (t); N(f), the number of roots with absolute value greater than
one; andM(f), the product of absolute values of roots &f whose absolute value
is greater than one. The latter invariavt( f) is known as theMahler measure of f
Clearly N(f) is discrete, whilex(f) can be made arbitrarily close to but greater than
one, for example, by takind (t) =t" —2. Whether or not the values &fi(f) can also
be brought arbitrarily close to one from above is an open Iprabposed by Lehmer
in 1933 [9]. Lehmer originally formulated his question adidas:

QUESTION 2 (Lehmer). For eacld > 0 does there exist a monic integer poly-
nomial f such that 1< M(f) < 1+6?

We are still far from answering Lehmer's question, but shawSiection 3 how
to apply Salem and Boyd’'s work and Theorem 1 to obtain infdtimnaabout the as-
ymptotic behavior ofN(Ay), A(A), and M(AR) from properties of the original fibered
link and location of plumbing.

Theorem 3. The sequences (4,), A(An) and M(A,) converge to NP), A(P),
and M(P), respectivelywhere P= Ps ..

Theorem 3 is useful for finding minimal Mahler measures agpgan particular
families of fibered links, since the polynomial®; ; are easy to compute for explicit
examples. We give an illustration in Section 5.

Iterated plumbing may be seen as the result of iterating tiuists on a pair of
strands ofK, with some extra conditions on the pair of strands. For thee oahere
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K has one component, the convergence of Mahler measure in &the®ragrees with
a result of Silver and Williams, which in general form may batsd as follows. Let
L be a link andk an unknot disjoint fromL such thatL and k have non-zero linking
number. LetL, be obtained fromL by doing I/n surgery alongk. This amounts to
taking the strands of encircled byk and doingn full-twists to obtainL,. Silver and
Williams show that the multi-variable Mahler measures of lihks L, converge to the
multi-variable Mahler measure df Uk [14]. Combining our results with that of Silver
and Williams, and using the formulas &y , given in Section 2 (Equations 2 and 3)
gives a new effective way to calculate the multi-variable Mameasure ol Uk.

It is not hard to see that if one fixes the degreefofthen the answer to Lehmer’s
guestion is negative. Theorem 3 makes it possible to studyleviaheasures for se-
guences of fibered links whose fibers have increasing geaedahence for polynomials
of increasing degree. Although, in generalA,) and M(A,) are not monotone se-
guences (see Theorem 13), monotonicity can be shown (dt fieasarge enoughn)
when Ps ; has special properties.

In Section 3, we review properties of Salem-Boyd sequenimd®wing work of
Salem [12] and Boyd [1], and consider the question of moriotiyn A Perron poly-
nomial is a monic integer polynomialf with a real rootA = A(f) > 1 satisfying
la| < A for all rootsa of f not equal toa.

Theorem 4. Suppose P, is a Perron polynomial Then A(Ap) is an eventually
monotone(increasing or decreasifgsequence converging to(Ps ;).

In the special case wheN(Ps.) = 1, more can be shown by applying results of
Salem [12] and Boyd [1].

Theorem 5. Suppose NPs ) = 1. Then MA,) = A(Ap) is @ monotondincreas-
ing or decreasiny sequence converging to(Ps ;).

Section 4 studies the poset structure on fibered links defiiyetiopf plumbing,
and the corresponding poset structure on homologicaladitets. We also give an ex-
ample in Section 4 that shows how Theorem 5 can be used to gpleie solutions
to Lehmer’s problem for restricted families.

2. lterations of Hopf plumbings

We recall some basic definitions surrounding the Alexanddyrmial of an ori-
ented link. A Seifert surfacefor an oriented linkK is an oriented surfac& whose
boundary isK For any collection of free loopss,...,04 on X forming a basis for
H1(Z;R), the associate®@eifert matrix Sis given by

S=[Ik(oi", 0j)].
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Fig. 1. Positive Hopf plumbing

\

where o;* is the push-off ofs; off = into S*\ X in the positive direction with re-
spect to the orientation of, andlk( , ) is the linking form onS®. Let S denote
the transpose of. The polynomial

Ak(t) = [tS— 5"

is uniquely defined up to units in the Laurent polynomial ringt) = Z[t,t~%], and

is reciprocal (it is the same if is replaced byS"). For the purposes of this paper,
we will always normalizeAk so thatAg(0) # 0, and the highest degree coefficient
of Ak (t) is positive. Then for any nonsingular Seifert matrix figr,

Ak (t) =s(9)[ts— 57|,

where s@) is the sign of the coefficient oft S— S| of highest degree.

If K is fibered, andx is the fibering surface, then the Seifert matBxs invert-
ible over the integers, and the monodromy restricted 13+R) satisfiesh, = S"S™2.
In this case s%) = |S|, and Ak (t) is characteristic polynomial dfi,. Since|S| is in-
variant under change of basis, and the fiber surface is fixedwil write s(K) = s(S)
if K is fibered. IfK is a fibered knot, then K() = Ax(1).

A properly embedded patbn ¥ is a smooth embedding

7:[0,1] - =

such thatz(0), 7(1) € 9X. The surfacex;(z) (resp.,X; is obtained fromX by pos-
itive (resp., negative) Hopf plumbing if it is obtained from by gluing on a positive
(resp., negative) Hopf band as in Fig. 1. The definition isespghdent of the orienta-
tion of t.

SetT; = X. Forn > 1, let X3, be the positive or negativeHopf n-plumbing
of ¥ along r, which is obtained by Hopf plumbing along paths as shown in Fig. 2,
starting with the vertical path.

The positive (resp., negative) Hopfplumbings can also be considered as a Mura-
sugi sum ofx with the fiber surface of the torus link(2, n) (resp.,T(2, —n)). Let

KE(Z, t) be the boundary of the surfacg®. Forn =1, we haveK;" = K. The local
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Fig. 2. Base paths for iterated Hopf plumbings
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Fig. 3. Result of iterated Hopf 4-plumbing

oriented link diagram folK ¥ is shown in Fig. 3, and is the corresponding Seifert
surface.

Denote by( , ) the intersection pairing
H]_(E,Z) X Hl(E, BE,Z) —> Z,

and let v € Hy(Z;Z) be the vector such that" represents the vectorz] in

Hi(Z;9%;B) ~ Hy(Z; B)A. Then, in terms of the basis,, ..., o4, v is given by

v = [(o1, T), ..., (0g, T)].

Set

() Py (1) =[tl —(S"Fw")s?

where | is the identity matrix.
Before proving the Theorem 1, we pmgb_r in an alternate form. LeN(z) be a
regular neighborhood of on X, and letXy = X\ N(7). Let Ko = Ko(X, 7) = dX0. Let

o1, .-.,04-1 be a collection of free loops oRy forming a basis for b{(3o; Z). Let oy
be a free loop o so thatoy, ..., 04 is a basis for H(X; Z), and such thatoy, 7) =
1. Let § and § be the corresponding Seifert matrices #rand Kg, respectively.

Lemma 6. The Seifert matrix §is non-singular
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Proof. By our definitions, the transpose of the Seifert matgfines a linear trans-
formation from the first homology of the Seifert surface te dual. We thus have a
commutative diagram

H1(Zo; Z) 8 H1(Zo; Z)dua

|

H(S12) — o Hy(3y; 7)),

where vertical arrows are the inclusions determined by th@ice of bases. Sinc&
is non-singular, it follows tha must also be non-singular. U

Lemma 7. The polynomial inEquation (2)can be rewritten as
®) Py () = Ak (t) £ s(K)S(S) Ak, (t)-

Proof. The choice of basis, ..., oq above yields the Seifert matrix

[ 9x
Sl_[y” S}

for K, wherex,y € Z%1, ands € Z. The vectorv written with respect to the dual
elements ofoy, ..., 04 is given byv =10, ..., 0, 1]". We thus have

_ r try| — tS)_S)r‘ tx—y
‘tsl (QZFUU )|_‘ty"—x”s(t—1):|:1 .

Therefore
P, () =sK)(ts— S| £ [t — )
and the claim follows. O

For a polynomialg, define

g(t) =t "g(t),
wherem is the largest power of dividing g. Then it is easy to check tha,.(t) =
g.(t). Also, if g and f are polynomials of degreed’ and d, respectively, then for
h(t) = g(t) £ f(t), we have

ha(t) = g.(t) £t4 4 £,(1).
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Lemma 8. Letr be the number of components of, &hd P(t) = Pgﬁr(t). Then

P.(t) = (1) (Ak (1) F s(K)s(S)t Ak, (1)) -

).

The Alexander polynomial of a link is reciprocal (anti-n@@cal) if the number of
components is odd (even). Thus, the first summand equaly *tAk (t). Since, by
Lemma 6, is a non-singular matrixt does not divide|tS) - S{| It is also not
difficult to check that the number of components K§ and K, have opposite parity,
and the degree ohts, — %’| is one less than the degree Ak (t). We thus have

Proof. If d is the rank of H(Z;RR), we have

P.(t) =t?Ak (%) + s(K)t (‘t}s) -

td %so ~ | = (-1)t|tSH - | = (1) s(S)t Ak, (t). O

Theorem 1 is implied by the following stronger version.

Theorem 9. Let (K., X,) be obtained byt iterated Hopf plumbing on a fibered
link (K, X) with r-componentsLet A, = A,.x,), and let P= P;L_r. Then

t"P(t) £ (1Y " P,(t)

Bn(t) = e

Proof. By Lemma 8, we have

tP(t) + (—1) " P,(t) = tAk (t) £ S(K)S(S)t Ak, (t)
+(Ak (1) F s(K)s(S)t Ak, (1))
=(t+1)Ak(1).

For m > 1, the Seifert matrix forSt is given by

Sﬁ:[ Si_l fl}’

wherew = [0, ceey 0, —l]. |hLIS, the Alexander polynomial fd(% is given by
tsi_ (S;t_ )tr ’ tr
Ag=(t) = 5| K* 1 1 .
Km( ) m) t | (t 1)

It follows that forn > 2, Ay=(t) satisfies

(t+ DAk (0 = S(K) () [ £t - DJes, - (S2)"| + s, - (S2)"

|
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and sKZ) = £s(K; ;). Forn=2, using sK) = s(K1) = £s(K;"), we have

(t+ DA (t) = s(K3) [£(P = [ts — S| + (1 +1) |t — ]
=4s(K3) (P - D|ts - 5[] = (P +1)[tS - )
=sK)*(ts - 5| £ [t - )

—sK) (jts - Sf| F [t~ )
= t?P(t) + (—1) P.(t)
= t2P(t) + (= 1) 2P, (t).

If n> 2, we use induction, to obtain

(4 DA (0 = 5(K3) [ (2 - D[eSE, - (S72)"] £+ DS, - (552)"]
= (K ) [S(KE )+ 1) — DAgs O
4+ s(KE )Mt + 1)AKH{Z(t)]
= (t— 1+ DAk (1) +t(t+ DAg= (1)
= (t — D("IP) + (—1)"THTRL(L) +t(t"P() + (—1)" T PL(D))
=tP() —t"P(t) + (—1)™T U R(t) + (= 1) Pu(t)
+"TIP (L) + (— 1) 2 PL(t)
=t" P(t) + (—l)”J'r P.(t) O

3. Properties of Salem-Boyd sequences

In this section we review some general properties of rootspafnomials in
Salem-Boyd sequences (see also, [12], [1]), and apply thenhe Alexander poly-
nomials of iterated plumbings.

3.1. Asymptotic behavior of roots of Salem-Boyd sequencesGiven a monic
integer polynomialP(t) define

4 QE(t) =t"P(t) £ P.(t).

We will call the sequence of polynomials given in Equatiorhd $alem-Boyd sequence
associated tdP. For all positive integers, Q(t) is equal to a reciprocal polynomial
up to a multiple oft — 1. We are interested in the asymptotic behavior of roots
of Qx(t).

S. Williams suggested the use of Roaththeorem to prove the following.
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Lemma 10. Let P be a monic integer polynomjaand let Rt) be any integer
polynomial and

Qn(t) = t"P(t) £ R().

Then the roots of Qt) outside C converge to those of(tl counting multiplicity as
n increases

Proof. Consider the rational function

Qt”rft) = P(t) + F:(nt).

S(t) =

Let « be a root of P(t) (counted with multiplicity), and letD, be any small disk
arounda that is also strictly outsid€ and that contains no roots d#(t) other than
«. Then P(t) has a lower bound on the bounda®p,, and thus there exists am,
depending orwx and D, such that

‘ RO| < 1Py

tn

on oD, for all n > n,. By Rouclé’s theorem, it follows that fon > n,, P(t) and
Si(t) (and hence als®n(t)) have m roots in D, counted with multiplicity. Since the
disks could be made arbitrarily small, and there are only igefinumber of roots, the
claim follows. ]

Lemma 11. Let P be a monic integer polynomial and let,® be the associ-
ated Salem-Boyd sequendeéhen NQn) < N(P) for all n.

A proof of this Lemma is contained in [1] (p.317), but we imbtuit here for the
convenience of the reader.

Proof. We first assume th&(t) has no roots on the unit circle. This does not
change the statement’s generality. To study the rootQgt) it suffices to consider
the case wherP(t) has no reciprocal or anti-reciprocal factors, since swaitors will
be factors ofQ, for all n. If P(t) has a root on the unit circle, then the minimal
polynomial of that root would be necessarily reciprocal oti-seciprocal, and we can
factor the minimal polynomial out oP and theQ,.

Consider the two variable polynomial

®) Qn(z.u)=Z"P(2) £ uPR.(9)

where z is any complex number and € [0, 1].
SupposeP(t) has roots,, ..., 6s outside the unit circleC counted with multiplic-
ity. Then Qi (z, u) defines an algebraic cune= Z(u) with branchesz;(u), ..., zs(u)
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satisfyingz (0) =6;. For z € C we have|P(2)| = |P.(2)|. Now suppose that & u < 1
and 1 =|z(u)|. Then
ulP.(z (W) _

|P(z (u))l

yielding a contradiction. Thus, by continuity

1=1z)|"=

lzi(u)l > 1,
for u € [0, 1). It follows that QX (t) has at moss roots outsideC. O
Summarizing the contents of Lemma 10 and Lemma 11 we haveottoving.

Theorem 12. Let P be a monic integer polynomjand let
Qn(t) =t"P(t) £ P.(t).
Then
N(Qn) = N(P);

lim A(Qn) = A(P); and

n—o00

lim M(Qn) = M(P).

n—oo

Theorem 1 and Theorem 12 imply Theorem 3.

A natural question is whethe¥(Q;) is a monotone sequence, perhaps on arith-
metic progressions, whelR has more than one root outsi@e The proof of Lemma 10,
does not restrict the directions by which the roots @f outside C approach those
of P. If a root® of P is not real, then the root(s) d@, approaching typically ro-

tate around as they converge. More precisely, we have the following. ar com-
plex number, letA = Arg(z) be such that = |z|e?"'A.

Theorem 13. Letas,...,as be the roots of P outside .CTake N, so that Q
has s roots outside C for r Np. Label these rootsvi(”), fori=1,...,s, so that

lim oti(n) =q.
n—o00
Then there is a constant ¢ such that for ady> 0, and n> Ns > N,

Arg(al(n) - ai) =Cc+ nArg(al) + 8“7

where the error tern®, satisfies|s,| < 8.
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Proof. LetPy(x) be the largest degree monic integer factorRgk) with no roots
outsideC. Fori =1,...,s, we have

n
1
“i(n) - = (W) Rn,
;

_ P (")
P(of”) (e —tn) - (" — )] -+ (e —ts)”
with the entry in brackets.[..] excluded.

By assumptionozi(”) converges tay;, and hence alsdR, converges to some non-
zero constanR. Given$ > 0, let N; > Ng be such that

where

Ry

®) ATG(R) — Arg(R)l < 5
and

. 5
™ |Arg(en) - Arg o) | < .

for all n > N;. Then, we have

Arg(a™ — &) = Arg(Ry) — nArg (")
= Arg(R) — nArg(e;) + 8y

where 8, is the sum of the left sides of (6) and (7). This proves thentlawith
c = Arg(R). [l

EXAMPLE. Let
P(x)=x3+x%— 1.

Then P(x) is irreducible and has exactly two roatsand« outsideC. We claim that
Arg(w) is irrational. Consider the ratio

e
]
Qll R

Then, since the Galois group ¢f(x) over the rationals isS;, @ must have an alge-
braic conjugate not on the unit circle, for example,

B

u—)
o



508 E. HIRONAKA

where g is the real root of P(x). Thus, w is not a root of unity. Since Argf) =
2 Arg(e), it follows that Argg) is irrational. Thus, by Theorem 13, the relative angle
of ai(”) to «; is uniformly distributed as a sequencenn

Let Ref) denote the real part af. The dot product between two vectobz and
(YZ is Re@w). It follows from the above that there is no arithmetic preggionkn+I,
so that the sign of

Re[(ai(k”+') . )Ol—i]

is constant as a sequence nin Therefore,M(Q,) = A(Q,)? cannot be monotone for
any arithmetic progression in.

3.2. Perron polynomials. We will show that for the Salem-Boyd sequen@g(t)
associated to a Perron polynomial(Qn) is eventually monotone, and prove Theo-
rem 4.

Proof of Theorem 4. LetP be a Perron polynomial, and l€),(t) be an asso-
ciated Salem-Boyd sequence. Let, ..., us be the roots (counted with multiplicity)
of P outsideC, with |ui] > || for alli = 2,...,s. By multiplying P by a large
enough power oft (this doesn’t changeP,), we can assume tha®, has roots
A A0 outsideC, and |Ai(”) — il < |Ai(”) — pj| for wi # pj, and thatQ, is
Perron for alln > 1. Let A(ln) be the largest root 0Q,. Then for alln, the root of P
closest tok(ln) is w1, and the root ofQ, closest tou; is /\(1”). This also implies that
A(ln) is a simple root ofQ,. Fixing n, we will show thatx(l”+1) lies strictly between
AV and uy.

Consider the equations

® 0= () = ()" P(LY) £ P.GLY).
and

Qn+1(p1) = £Px(p1) = Qnl(pea).

Since each of th&Q, are increasing fot > A(ln), and Q,, does not have any roots
strictly betweenu; and A(ln), it follows that the sign ofu; — A(ln) equals the sign of
+P,(u1) and does not depend an

Supposa(l”) < u1. Then, using (8) in the second line below, we have

Qua (1) = ()P () = P

=2 (FP(0)) £ ()
=P, (1) (1 - 2D).
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By assumptiom.{"™ > 1. Also, P(A{"”) < 0, since otherwise® would have a real
root betweem(ln) and u4, contradicting the assumption thaf]) is closer tou, than
any other root ofP. This implies that:I:P*(A(ln)) > 0, and henceQnﬂ(A(l”)) <0, and
A(n) (n+1)
1<Ap
If 2" > uy, then P(1{") > 0, and hencetP,(A{") < 0. We thus have

1
Q™) = £P. () (1 - —) -
1

and A" > ™Y, O

The monotonicity property of Salem-Boyd sequenegs associated to a Perron
polynomial P allows us to give a lower bound greater than one for the semsen

A(Qn).
Proposition 14. If Qn(t) is defined by
Qn(t) =t"P(t) £ P.(t),

where P is a Perron polynomialand rny is such thati(Q,) is monotone for n>
ng, then

A(Qn) = min{x(Qpz), A(P)}

for all n > ng.

3.3. P-V and Salem polynomials. We now consider the case whéh= P;
belongs to a special class of Perron polynomials, namelgetisatisfyingN (P;; . ) = 1.

A P-V numberis a real algebraic integer > 1 such that all other algebraic con-
jugates lie strictly withinC. A Salem numbeis a real algebraic integer > 1 such
that all other algebraic conjugates lie on or witfihwith at least one orC. If f is
an irreducible monic integer polynomial with(f) = 1, then the root off outsideC
has absolute value equal to either a Salem numbef, lias degree greater than 2 and
is reciprocal, or a P-V number otherwise. 1f is reciprocal andN(f) = 1, theni(f)
is either a Salem number or a quadratic P-V number.

The polynomialsQZ(t) were originally studied by Salem [12] in the case when
P(t) is a P-V polynomial to show that every P-V number is the upgad lower limit
of Salem numbers. Boyd [1] showed that any Salem number scasiM(Qz) for
some P-V polynomialP(t).

Assume thatP(t) has no reciprocal factors arfd(1) # 0. Let

P,

o (P)=d — 25

1
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whered is the degree of, and let
no(P) =1

for all P. For any polynomial (or Laurent polynomiaR, let [(P) be the sign of the
lowest degree coefficient dP. The following Proposition is proved in Boyd's discus-
sion in ([1] p.320-321), and implies Theorem 5.

Proposition 15. If P is a P-V polynomial for the P-V numbe, then the poly-
nomial Qf(t) has a real root greater than one if and only ifzmg(P). Furthermore
the sequences of resulting Salem numhefsis monotone increasingdecreasiny if
and only if +I(P) > 0 (< 0).

Proof. The proof follows from looking at the real graphs @f(t) and of P.
Since P(1) = P,(1) < 0, Q}(1) must be strictly negative. Thu&); must have a root
larger than 1 for allh, and we can set{ = 1. The graph ofy = Q, (t) passes through
the real axis at = 1. Thus, Qj (t) has a positive real root if and only if the derivative
of Q, is negative. Note thaQ, (t) cannot have a negative real root by the argument
in the proof of Lemma 11. This proves the first part of the Psifjmmn.

For the second part, note that sinBehas only one roo® outsideC, P.(f) and
+I(P) must have the same sign. Suppose, for example, téP) > 0. Puta® =
M(QE). Then Q(0) > 0, and hence > « for all n. This implies thatP(«,,) < O.

Now consider the equations:

Qni (aril) = Qﬁ (aril) - Qril(aril)
= ()" — (@0)"™) P(e).

The bottom formula is a product of negative numbers. He@ig(eE) > 0, ando:f+l >
aE. The casetl(P) < 0 is proved in an analogous way. ]

4. Poset structure on fibered links

We now apply results of the previous sections to sequencdiberfed links ob-
tained by iterated trefoil plumbings. LeK(X) be a fibered link, and leP be the
polynomial produced by a given locus of plumbing Let A, = Ak, s, be the
Alexander polynomials of the iterated trefoil plumbing6.R is a Perron polynomial,
then Proposition 14 implies that one can find lower boundsi{ax,), and hence for
M(Ap) at least for largen. The situation is even better whe is a P-V polynomial.
In this case, we can explicitly find the minimalA,) and henceM(A;) in the se-
quence by comparing(Ay,) and A(P), whereng is as in Proposition 15. Furthermore,
any P-V polynomial satisfies the inequality (see [13])

A(P) > A3 —x — 1) ~ 1.32472
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It is not known in general if there is a lower bound greaternttene for Salem
numbers.

A fibered link (K, X) will be called aSalem fibered linkif the following equiva-
lent statements hold:
(1) N(Ak.z)=1;
(2) MAk.x) =M(Ak,x)); and
(3) M(Ak x)) is a Salem number or a quadratic P-V number.

Let S be the set of Salem fibered links, and write

(K1, 1) <s (Kz, )

if (Ko, £2) can be obtained fromK(;, ;) be a sequence of trefoil plumbings, where
the polynomial Pgr corresponding to the plumbing locus at each stage is a P-y¥- pol
nomial. If (Kq, £1) <s (Kg, X5), then the topological Euler characteristic &f; is
strictly less than that of£,. Thus, <s defines an (anti-symmetric) partial order on
Salem fibered links. Proposition 14 implies the following.

Proposition 16. If (K, 1) <s (K2, o), then
M(A(KZEZ)) Z min{M(A(Kl.El))’ 00}

wherefp ~ 1.32472is the smallest P-V number

Consider the graph structure & with respect<s. By Proposition 16, for any
connected subgraph df, the minimal Salem number can be determined by comparing
the minimal elements with respect tos.

QUESTION 17. IsS N K connected with respect tas?

It is not difficult to produce examples of Salem fibered links, £) and a locus
for plumbing t such thatPs . is not a P-V polynomial (see Section 5). We will say a
Salem fibered link K, ) € SN K is isolatedif for all loci of plumbing r on X, the
corresponding polynomiaP is not a P-V polynomial.

QUESTION 18. Are there isolated Salem links?

Although we do not know of any isolated Salem links, Salemré&ldinks do ap-
pear sporadically in Salem-Boyd sequences not associated\t polynomials as seen
in the table at the end of Section 5.
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JIEj =
U unlr

Fig. 4. Construction of fibering surface for arborescenk lin

m n

O O O *—o 0o 0o

Fig. 5. Plumbing graph with positive (negative) verticededll
black (white)

5. A family of fibered two bridge links

The simplest examples to consider are those coming fronresbent links. Lel”
be a tree, with vertices with labelsm(v) = £1. Let £ be a union of line segments
in the plane, intersecting transversally, whose dual griaph, and letU (L) be the
surface obtained by thickening. This is illustrated in Fig. 4.

Consider the surface in Fig. 4 as a subspaceSbfand glue together opposite
sides in the diagram that are connected by a vertical or twtd path with a posi-
tive or negative full-twist according to the labeling on theph. The resulting surface
¥ is a fibering surface foK = 9% by [15], since it can be obtained by a sequence of
Hopf plumbings on the unknot. The line segmentsf{otlose up to form a free basis
for H1(Z;R). Thus, the vertices of can be thought of as basis elements g{ ¥t R).
Let S be the matrix where the rows and columns correspond to eenit . .., vk of
', and the entries; j are given by

-1 if i<j, and vy and v; are connected by an edge
aj=i1m(y) if i=j, and
0 otherwise.

Then S is a Seifert matrix for K, X). It follows that although there may be several
fibered links K, X) associated to a given labeled graph the Seifert matrix, and
hence the Alexander polynomial, is determined Iby
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N | =

xoooe

(N half positive twists)

N |=

oS

(N negative half twists)
Fig. 6. Two bridge link associated

Consider the family of example§,,, in Fig. 5. The associated fibered links
(Km.ns Zm.n) (determined uniquely by ) are the two-bridge link drawn in Fig. 6.

Fixing m, and lettingn vary gives a sequence of fibered link&q(,, Xm.n) that
are obtained by iterated plumbing oK1, ¥m1). Thus, the Alexander polynomials
Amn = Ak, 5., are Salem-Boyd sequences associated to some polynoRyalsve
will compute the Py, and their numerical invariants.

Considering the vertices df,; as basis elements ini&n, 1, R), the pathz is
dual to the right-most vertex. We start with ;. The link Ky 1 is the figure-eight knot,
or 4, in Rolfsen’s table [11]. We will use Equation (2) to firel. Thus, P; is given by

_ -1 0 -1 -1
ro=so( 3 1)-(% o))
=t(t —2)
Since P; has only one root outsid€, we have the following Proposition.
Proposition 19. The links(Kyn, £15) are Salem fibered links

The Salem number&(A;,) converge toA(P) = 2, from above forn odd, and
from below for n even. The smallest Salem number in this sequence occurs for
(K14, X1.4), and is approximately .8832.

From Py it is possible to compute all thE,, using Equation 3. We first recall that
(Km,0, Zm,0) is the (2 m+1) torus link, Tom+1). The Alexander polynomial is given by

tn+1 + (_ 1)n

Am.O(t) = t+1

Since Py(t) =t(t — 2), andKy; has one component, we also have

tPy(t) + (=) (Py).(1)
t+1

Al,n(t) =
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N —2) + ()M (-2t + 1)
- t+1
vt — 2) + (—1)"2t + (- )™
B t+1

Furthermore I'm o can be thought of as a subgraph Idf 1, and if Sp0 and Sn1
are their associated Seifert surfaces, we have

S(Sn.0) = s(Sn.1)-

By Equation 3, we have

Pm(t) = Ama(t) + Amo(t)
_ tm+l(t _ 2) + (_1)m2t + (_l)m+l + tm+l + (_1)m

t+1
tm+2 _ tm+1 + (_1)m2t
- t+1
_ "t -1)+ (=1)72)
t+1

Since we are only concerned with,, and henceP, up to products of cyclotomic
polynomials, it is convenient to rewrite, as

Pm(t) = t(t™(t — 1) + (=1)"2).
Proposition 20. All roots of R,(t) other than0 and —1 lie outside C hence
M(Py) =2 and N(Py)=m.

Proof. Suppose|t| < 1, then [t™(t — 1)] < 2 with equality if and only if
t=-1. O

Proposition 21.
lim A(Py) =1
m—00
Proof. Take any > 0. Let D, = {z € C: |z| > 1 +¢}. Let D, be the closure of

C in the Riemann sphere. Then for large

2 Jt—1

m <
It It

for all t on the boundary ofD. and both sides are analytic oB.. Therefore, by
Roucle’s theoremP,, has no roots orD, for large m. O
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Corollary 22. The homological dilatations K n, £m,n) can be made arbitrar-
ily small by taking m and n large enough

Salem fibered links appear sporadically as homologicatatitns of Kmn, Xm.n)
for m,n > 1. A list for 1 < m,n < 60 found by computer search is given in the
table below. The minimal polynomials, which are reciproae denoted by a list of
the first half of the coefficients.

(m, n) | Salem number Minimal polynomial
(3,5) | 1.63557 1-22-3

(3,8) | 1.50614 1-10-1

(5,9) | 1.42501 1-10-11

QUESTION 23. Are the Salem fibered links in the table above isolatedhim t
sense of Section 4?

Salem numbers also appear as roots of irreducible factotheoflexander poly-
nomial. For example, the Alexander polynomial €5, 2; has largest root equal to the
7th smallest known Salem number [10]. Its minimal polyndnisagiven by

Akpn(¥) =x0—x" — x> —x3+1

The monodromyhy,, , of the fibered links Kin.n, Xm.n) were also studied by Brinkmann
[3], who showed thahp, , is pseudo-Anosov for alin, n, and that the dilatations con-
verge to 1 asm, n approach infinity.
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