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Abstract: The liquid phase separation (LPS) behavior in Co-Cr-based high-entropy alloys (HEAs)
is an important target for the development of Co-Cr-based HEAs for metallic biomaterials
(BioHEAs). The solidification microstructure in Ag-Co-Cr-Fe-Mn-Ni-Ag, Co-Cr-Cu-Fe-Mn-Ni-Cu, and
Co-Cr-Cu-Fe-Mn-Ni-B HEAs, which were designed as the combination of the equiatomic CoCrFeMnNi
with Ag, Cu, and the interstitial element of B, was investigated as the fundamental research of
LPS in Co-Cr-based HEAs. Ingots of equiatomic AgCoCrFeMnNi, equiatomic CoCrCuFeMnNi,
non-equiatomic CoCrCuxFeMnNi (x = 2, 3), and CoCrCuxFeMnNiB0.2 (x = 1, 2, 3) with a small
amount of B were fabricated using the arc-melting process. A macroscopic phase-separated structure
was observed in the ingots of the equiatomic AgCoCrFeMnNi and CoCrCuxFeMnNiB0.2 (x = 2, 3)
HEAs. The addition of a small amount of B enhanced the LPS tendency in the Co-Cr-Fe-Mn-Ni-Cu
HEAs. The LPS behavior was discussed through the heat of mixing and computer coupling of phase
diagrams and thermochemistry (CALPHAD).

Keywords: high-entropy alloys; metallic biomaterials; BioHEAs; liquid phase separation; solidification;
microstructure; CALPHAD

1. Introduction

Co-Cr-based and Co-Cr-Mo-based alloys are commercially used as engineering materials in
industry for high wear resistance and superior chemical and corrosion performance in hostile
environments. Co-Cr-based and Co-Cr-Mo-based alloys were also recognized as one of the most
important metallic biomaterials together with stainless steel, pure-Ti, and Ti alloys. Co-Cr-based
and Co-Cr-Mo-based alloys have been commercially used as metallic biomaterials [1–7], particularly
for surgical implants. Examples of these are ASTM F753, ASTM F1537, and JIS T 7402 alloys.
High-entropy alloys (HEAs) have evolved as a new category of structural and functional materials [8–22].
Co-Cr-Mo-based HEAs of Ag-Co-Cr-Fe-Mn-Mo-W HEAs [23] were developed from Co-Cr-Mo metallic
biomaterials, and the single solid solution formation for the development of Co-Cr-based HEAs
for metallic biomaterials (BioHEAs) was prevented by the σ phase formation and the occurrence of
LPS. To the best of our knowledge, Co-Cr-based BioHEAs with a single solid solution have not been
developed, although various Ti-based BioHEAs [24–32] have already been reported. The prediction and
the control of the σ phase formation and the LPS were important targets for the further development
of Co-Cr-based BioHEAs [23]. The σ phase formation was clarified to be related to the valence
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electron concentration (VEC) parameters in Co-Cr-based Co-Cr-Mo-Fe-Mn, Co-Cr-Mo-Fe-Mn-W, and
Ag-Co-Cr-Mo-Fe-Mn-W HEAs [23], while the dominant factor for LPS in Co-Cr-based HEAs was not
investigated in detail. The prediction and the control of LPS in HEAs, especially for LPS in Co-Cr-based
alloys, were important targets for the further development of Co-Cr-based BioHEAs, as well as the
fundamental metallurgical research on LPS behavior in HEAs.

LPS has been reported not only in Ag-Co-Cr-Mo-Fe-Mn-W HEAs [23] but also in various HEAs such
as Al-Ag-Co-Cr-Cu-Ni [33], Al-Cr-Cu-Fe-Ni [34,35], Al-Co-Cr-Cu-Ni [36], Co-Cr-Cu-Fe-Mo-Ni [37],
Co-Cr-Cu-Fe-Ni [38–41], Cr-Cu-Fe-Mo-Ni [42], Co-Cu-Fe HEAs with Al, Cr, Mn, Ni, V, or Ti [43],
Co-Cr-Cu-Fe-Ni-Sn [44], Al-Cr-Fe-Ni-Mo [45], and Hf-La-Ti-Y-Zr [46]. The review paper [47], focusing
on LPS in HEAs, concluded that LPS is a general phenomenon in HEAs. The equiatomic CoCrFeMnNi
HEA [8] is a typical HEA with Co and Cr elements and is widely investigated for the strong face-centered
cubic (FCC) formation tendency during solidification and its superior mechanical properties [48,49].
In the present study, the LPS behavior in Co- and Cr-containing Ag-Co-Cr-Fe-Mn-Ni HEAs as the
combination of CoCrFeMnNi and Ag, Co-Cr-Cu-Fe-Mn-Ni HEAs as the combination of CoCrFeMnNi
and Cu, and Co-Cr-Cu-Fe-Mn-Ni-B HEAs as the combination of Co-Cr-Cu-Fe-Mn-Ni HEAs and the
interstitial element of B, was investigated, focusing on the occurrence of LPS and the microstructure
formed via LPS.

2. Materials and Methods

The alloys of equiatomic AgCoCrFeMnNi, the equiatomic CuCoCrFeMnNi, non-equiatomic
CoCrCuxFeMnNi (x = 1, 2, 3), and non-equiatomic CoCrCuxFeMnNiB0.2 (x = 1, 2, 3) were investigated
in the present study. Equiatomic AgCoCrFeMnNi was designed as the combination of CoCrFeMnNi [8]
and Ag because of the liquid state immiscibility in the binary phase diagrams of Ag-Co [50], Ag-Cr [51],
Ag-Fe [52], Ag-Mn [53], and Ag-Ni [54]. Equiatomic CoCrFeMnNiCu was designed as the combination
of CoCrFeMnNi [8] and Cu because of the flat liquidus in the binary phase diagrams of Co-Cu [55],
Cu-Fe [56,57], and Cr-Cu [58], the metastable liquid miscibility gap in binary Co-Cu [59] and Cu-Fe [59],
and the reports of LPS in Cr-Cu alloys [60–63]. Non-equiatomic CoCrCuxFeMnNi (x = 1, 2, 3) was also
designed for investigating the Cu concentration dependence of the LPS behavior in Co-Cr-Cu-Fe-Mn-Ni
HEAs. Furthermore, CoCrCuxFeMnNiB0.2 (x = 1, 2, 3) was designed as the combination of B and
CoCrCuxFeMnNi (x = 1, 2, 3) because of the reports that small amounts of B enhanced the LPS tendency
in Co-Cu [64] and Cu-Fe [65] alloys. Table 1 lists the composition and alloy abbreviation of the HEAs
investigated in the present study. The LPS tendency in the designed alloy system was discussed
based on the heat of mixing (∆Hi-j) of the i-j atomic pair [66], predicted phase diagrams constructed
by the Materials Project [67], and thermodynamic calculation using FactSage (ver 7.3) and SGTE2017.
In SGTE2017, the binary atomic pairs of Ag-Co and Mn-Ni among Ag, Co, Cr, Cu, Fe, Mn, Ni, and B
were not assessed.

In a binary i-j alloy system, the positive value of the mixing enthalpy of the i-j atom pair (∆Hi-j)
is known to be favorable for LPS [68–70]. The values of ∆Hi-j among the constituent elements were
also important for predicting the LPS tendency in multicomponent alloy systems. The combination
of the ∆Hi-j among the constituent elements and the predicted phase diagrams constructed by the
Materials Project without using any experimental data was an efficient approach for predicting
the LPS tendency in multicomponent alloys of Cu-Fe-Nb-B [71], Cu-Fe-Si-B [72], Cu-Fe-Zr-B [72],
Ag-Fe-Si-B [73], Co-Cu-Zr-B [74], Al-Co-La-Pb [75], and Ag-Cu-La-Fe [76] amorphous alloys with
LPS, and Ag-Co-Cr-Fe-Mn-Mo-W [23] and Hf-La-Ti-Y-Zr [46] HEAs with LPS. The LPS tendency in
Ag-Co-Cr-Fe-Mn-Ni and Co-Cr-Cu-Fe-Mn-Ni alloy systems was discussed through the ∆Hi-j among
the constituent elements and predicted phase diagrams in the present study. The results are illustrated
in Figures 1 and 2.
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Table 1. Composition and alloy abbreviation investigated in the present study. (a) Atomic ratio, (b)
atomic percent (at %).

(a) Atomic Ratio

Alloy abbreviation Ag Co Cr Cu Fe Mn Ni B

Ag 1 1 1 1 1 1
Cu1 1 1 1 1 1 1
Cu2 1 1 2 1 1 1
Cu3 1 1 3 1 1 1

Cu1B02 1 1 1 1 1 1 0.2
Cu2B02 1 1 2 1 1 1 0.2
Cu2B02 1 1 3 1 1 1 0.2

(b) Atomic Percent

Alloy abbreviation Ag Co Cr Cu Fe Mn Ni B

Ag 16.67 16.67 16.67 16.67 16.67 16.67
Cu1 16.67 16.67 16.67 16.67 16.67 16.67
Cu2 14.29 14.29 28.57 14.29 14.29 14.29
Cu3 12.50 12.50 37.50 12.50 12.50 12.50

Cu1B02 16.13 16.13 16.13 16.13 16.13 16.13 3.23
Cu2B02 13.89 13.89 27.78 13.89 13.89 13.89 2.78
Cu2B02 12.20 12.20 36.59 12.20 12.20 12.20 2.44
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Figure 1. Mixing enthalpy (∆Hi-j) at binary i-j pairs among Ag, Co, Cr, Cu, Fe, Mn, and Ni.

Figure 1 shows ∆Hi-j at binary i-j pairs among Ag, Co, Cr, Cu, Fe, Mn, and Ni. The ∆Hi-j among
Co, Cr, Fe, Mn, and Ni in Co-Cr-Fe-Mn-Ni consisted of small absolute values corresponding to the high
solid solution formation tendency without LPS. In the Ag-Co-Cr-Fe-Mn-Ni alloy system, all values
of ∆Hi-j (i = Ag) (j = Co, Cr, Fe, Mn, Ni) were large and positive, over +10 kJ/mol. All values
of ∆Hi-j (i = Ag) (j = Co, Cr, Fe, Mn, Ni) are positive, and some of the atomic pairs of Cr-Cu
and Cu-Fe show large positive values over +10 kJ/mol. These indicate the high LPS tendency
in Ag-Co-Cr-Fe-Mn-Ni and Co-Cr-Cu-Fe-Mn-Ni alloy systems, Ag-rich and Ag-poor liquids formation
via LPS in the Ag-Co-Cr-Fe-Mn-Ni alloy system, and Cu-rich and Cu-poor liquids formation via LPS
in the Co-Cr-Cu-Fe-Mn-Ni alloy system.

The possible existence of Ag- and Cu-containing intermetallic compounds with a congruent
melting temperature is harmful for the LPS in Ag-Co-Cr-Fe-Mn-Ni and Co-Cr-Cu-Fe-Mn-Ni alloys.
The predicted phase diagrams were effective in predicting the multicomponent intermetallic compounds
in a multicomponent alloy system. Figure 2 shows the predicted quaternary phase diagrams constructed
by the Materials Project [67]: the binary, ternary, and quaternary intermetallic compounds containing Ag
and Cu. In X1-X2-X3-Ag (X1, X2, X3 = Co, Cr, Fe, Mn, Ni) alloy systems based on the Ag-Co-Cr-Fe-Mn-Ni
alloy system (Figure 2a), Ag-containing binary, ternary, and quaternary intermetallic compounds
were not observed. Cu-containing binary, ternary, and quaternary intermetallic compounds were
also not observed in X1-X2-X3-Cu (X1, X2, X3 = Co, Cr, Fe, Mn, Ni) alloy systems based on the
Co-Cr-Cu-Fe-Mn-Ni alloy system (Figure 2b). These results indicate that the LPS in Ag-Co-Cr-Fe-Mn-Ni
and Co-Cr-Cu-Fe-Mn-Ni alloy systems were barely prevented by the Ag-based and Cu-based
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intermetallic compounds. Based on the abovementioned alloy predictions in Ag-Co-Cr-Fe-Mn-Ni and
Co-Cr-Cu-Fe-Mn-Ni alloy systems focusing on LPS, the alloys listed in Table 1 were investigated.
Crystals 2020, 10, x FOR PEER REVIEW 4 of 20 

 

 

Figure 2. Predicted quaternary phase diagrams constructed by the Materials Project. (a) X1-X2-X3-Ag 
(X1, X2, X3 = Co, Cr, Fe, Mn, Ni) alloy systems based on the Ag-Co-Cr-Fe-Mn-Ni alloy system, (b) X1-
X2-X3-Cu (X1, X2, X3 = Co, Cr, Fe, Mn, Ni) alloy systems based on the Co-Cr-Cu-Fe-Mn-Ni alloy 
system. 

Arc-melted ingots were prepared from the mixture of the pure element lumps whose total 
amount was approximately 20 g. The purity of the pure element resource of the Ag, Cr, Cu, Fe, Mn, 
Ni, and B was above 99.9%, and that of the Co was above 99%. The cooling rate during solidification 
in the arc-melting process was estimated experimentally as approximately 2000 K/s [26,77] by 
evaluating the secondary dendrite arm spacing in the Al-Cu alloys [78,79]. The cooling rate during 
the arc-melting process was an order of magnitude higher than in centrifugal metallic mold casting 
(high-frequency melting in a silica-based crucible and centrifugal metallic mold casting using a Cu-
mold) [80], as the typical example of industrial metallic mold die-casting. The cooling rate during the 
arc-melting process was three orders of magnitude higher than in the silica-based crucible cooling of 
the thermal melt (high-frequency melting in a silica-based crucible and then air-cooling of the thermal 
melt without pouring a casting mold) [81], whose cooling rate was considered to be a similar order 
to industrial sand mold casting. The microstructure and constituent phases of the ingots and annealed 
specimens were investigated using X-ray diffraction (XRD) analysis, scanning electron microscopy 
(SEM), and electron probe microanalysis-wave dispersive spectroscopy (EPMA-WDS). The 
calculated X-ray intensity in the XRD pattern analysis was obtained using VESTA [82]. 
  

Figure 2. Predicted quaternary phase diagrams constructed by the Materials Project. (a) X1-X2-X3-Ag
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X1-X2-X3-Cu (X1, X2, X3 = Co, Cr, Fe, Mn, Ni) alloy systems based on the Co-Cr-Cu-Fe-Mn-Ni
alloy system.

Arc-melted ingots were prepared from the mixture of the pure element lumps whose total amount
was approximately 20 g. The purity of the pure element resource of the Ag, Cr, Cu, Fe, Mn, Ni, and
B was above 99.9%, and that of the Co was above 99%. The cooling rate during solidification in the
arc-melting process was estimated experimentally as approximately 2000 K/s [26,77] by evaluating the
secondary dendrite arm spacing in the Al-Cu alloys [78,79]. The cooling rate during the arc-melting
process was an order of magnitude higher than in centrifugal metallic mold casting (high-frequency
melting in a silica-based crucible and centrifugal metallic mold casting using a Cu-mold) [80], as the
typical example of industrial metallic mold die-casting. The cooling rate during the arc-melting process
was three orders of magnitude higher than in the silica-based crucible cooling of the thermal melt
(high-frequency melting in a silica-based crucible and then air-cooling of the thermal melt without
pouring a casting mold) [81], whose cooling rate was considered to be a similar order to industrial sand
mold casting. The microstructure and constituent phases of the ingots and annealed specimens were
investigated using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and electron
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probe microanalysis-wave dispersive spectroscopy (EPMA-WDS). The calculated X-ray intensity in the
XRD pattern analysis was obtained using VESTA [82].

3. Results

Figure 3 shows the XRD pattern of the arc-melted ingots of the equiatomic AgCoCrFeMnNi
HEA, together with the calculated XRD intensity of FCC-Ag. All sharp peaks were identified as dual
FCC phases with different lattice constants (FCC-1 (index, •) and FCC-2 (index, #)). The formation
of intermetallic compounds and/or an FCC-based ordered structure was not detected by the XRD
pattern analysis.
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Figure 3. XRD pattern of arc-melted ingots in the equiatomic AgCoCrFeMnNi high-entropy alloy
(HEA).

Figure 4 shows the SEM-BSE images of the arc-melted ingots of the equiatomic AgCoCrFeMnNi
HEA with a macroscopic phase-separated structure. Figure 4a shows the macroscopically
phase-separated interface between the gray contrast region (index A) and white contrast region
(index B). The randomly distributed black contrast regions (index C) were observed in both the gray
contrast region (index A) and white contrast region (index B), and these were considered to be polishing
artifacts related to the SiC polishing paper [80]. Figure 4b shows the magnified image of Figure 4a.
Fine white contrast regions (index D) embedded in the gray contrast matrix are observed in Figure 4b.

To investigate the solidification microstructure in more detail, an EPMA-WDS analysis was
performed. The results are shown in Figure 5. Figure 5a shows the low-magnification element
mapping of the arc-melted ingots of the equiatomic AgCoCrFeMnNi HEA focusing on the macroscopic
phase-separated interface. The gray contrast region in the SEM-BSE image (index A in Figure 4)
corresponds to the Co-Cr-Fe-Mn-Ni-rich region (index A in Figure 5a). The white contrast region in
the SEM-BSE image (index B in Figure 4) corresponds to the Ag-rich region (index B in Figure 5a).
The gray contrast region in the SEM-BSE image was clarified to be the Ag-poor region. The solubility
of Ag in the Co-Cr-Fe-Mn-Ni-rich region (index A in Figures 4 and 5a) was significantly small.
The white contrast region in the SEM-BSE image was clarified to be the Ag-rich region, and the
solubility of Co, Cr, Fe, Mn, and Ni in the macroscopically phase-separated Ag-rich region was
significantly small. The macroscopically phase-separated structure in the arc-melted ingots of the
equiatomic AgCoCrFeMnNi HEA was due to the difference in the Ag element distribution. Figure 5b
shows the magnified image of the element mapping of the Co-Cr-Fe-Mn-Ni-rich region (index A
in Figures 4 and 5a). Co-Cr-Fe-rich dendrite and Mn-Ni-rich interdendrite regions were observed.
The dendrite structure formation and the segregation with the enrichment of Mn and Ni elements
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in the interdendrite region was similar to the equiatomic CoCrFeMnNi HEA [83]. The fine white
contrast region in the SEM-BSE image (index D in Figure 4b) corresponds to the fine Ag-rich region
in the EPMA-WDS element mapping in the macroscopically phase-separated Co-Cr-Fe-Mn-Ni-rich
region. The fine Ag-rich region was highlighted by circles in Figure 5b. The fine Ag-rich region
shows the tendency to which it can be embedded in the Mn-Ni-rich interdendrite region rather than
the Co-Cr-Fe-rich dendrite region shown in Figure 5b. The dual FCC phase formation in the XRD
patterns (Figure 3) corresponds to the macroscopically phase separated Co-Cr-Fe-Mn-Ni-rich region
with an FCC structure and Ag-rich region with an FCC structure. The macroscopically phase-separated
structure formation was explained by the formation of Ag-rich and Ag-poor liquids during LPS in the
equiatomic AgCoCrFeMnNi HEA.
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(Cu1, Cu2, Cu3) HEAs and B-added CoCrCuxFeMnNiB0.2 (x = 1, 2, 3) (Cu1B02, Cu2B02 Cu3B02) HEAs,
together with the calculated X-ray diffraction intensity of FCC-Cu. In the non-B CoCrCuxFeMnNi
(x = 1, 2, 3) (Cu1, Cu2 Cu3) HEAs (Figure 6a), all sharp peaks can be identified as dual FCC phases
with different lattice constants (FCC-1 (index, •) and FCC-2 (index, #)). All sharp peaks in the B-added
CoCrCuxFeMnNiB0.2 (x = 1, 2, 3) (Cu1B02, Cu2B02 Cu3B02) HEAs were also identified as dual FCC
phases (Fig. 6b). The FCC formation was not affected by the addition of small amounts of the B element
in the CoCrCuxFeMnNi (x = 1, 2, 3) HEAs.

Figure 7 shows the SEM-BSE images of the arc-melted ingots of the non-B CoCrCuxFeMnNi (x = 1,
2, 3) (Cu1, Cu2, Cu3) HEAs. The randomly distributed fine black contrast region (index C in Figure 7)
was due to the polishing artifacts related to the SiC polishing paper [80]. The equiaxis dendrite structure
composed of a gray contrast matrix (index E in Figure 7) and white contrast interdendrite (index F in
Figure 7) was observed regardless of the Cu concentration. The dendrite structure formation in the
ingots of the Cu-containing 3d-transition metal-type HEAs without the presence of the B element was
investigated in detail in the other literatures [37,84]: the Cu element segregates into the interdendrite
region, resulting in the formation of the Cu-poor dendrite and Cu-rich interdendrite. The solidification
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microstructure in the arc-melted ingots of the CoCrCuxFeMnNi (x = 1, 2, 3) HEAs without the B element
was explained by the Cu-poor dendrite (index E) and Cu-rich interdendrite (index F). The solidification
microstructure typical for LPS was not observed in the CoCrCuxFeMnNi (x = 1, 2, 3) (Cu1, Cu2,
Cu3) HEAs.
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Figure 5. Element mapping of the arc-melted ingots in the equiatomic AgCoCrFeMnNi HEA
with a macroscopic phase-separated structure using electron probe microanalysis-wave dispersive
spectroscopy (EPMA-WDS). (a) Element mapping focusing on the macroscopically phase-separated
interface, (b) element mapping focusing on the Co-Cr-Fe-Mn-Ni-rich region (index A in Figure 5a).

Figure 8 shows the SEM-BSE images of the arc-melted ingots of the B-added CoCrCuFeMnNiB0.2

(Cu1B02) HEAs. Figure 8b, 8c are the magnified images of Figure 8a. In Figure 8a,b the white contrast
region with an entangle-like morphology (index G) was embedded in the gray contrast matrix (index H).
As shown in Figure 8c, the gray contrast matrix (H) was not a single phase but the composite of the
gray contrast matrix and fine plate-like phase (index I).
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Figure 6. XRD pattern of the arc-melted ingots of the non-B CoCrCuxFeMnNi (x = 1, 2, 3) (Cu1, Cu2
Cu3) HEAs and B-added CoCrCuxFeMnNiB0.2 (x = 1, 2, 3) (Cu1B02, Cu2B02 Cu3B02) HEAs. (a) Non-B
CoCrCuxFeMnNi (x = 1, 2, 3) (Cu1, Cu2 Cu3) HEAs, (b) B-added CoCrCuxFeMnNiB0.2 (x = 1, 2, 3)
(Cu1B02, Cu2B02 Cu3B02) HEAs.

The element mapping of the arc-melted ingots of the B-added CoCrCuFeMnNiB0.2 (Cu1B02) using
EPMA-WDS is shown in Figure 9. Figure 9a shows the low-magnification Cu element mapping image
focusing on the white contrast region in the SEM-BSE image (index G in Figure 8). The white contrast
region with an entangle-like morphology in the low-magnification image was identified to be the
Cu-rich region. Figure 9b shows the high-magnification element mapping image. Table 2 shows the
chemical composition analysis results of the ratio of metallic elements without considering B in the
arc-melted ingots of the CoCrCuFeMnNiB0.2 (Cu1B02) HEA evaluated using WDS, focusing on regions
G and H in Figure 9b. The Mn and Cu elements were enriched in the interdendrite region (index
G in Figure 9a,b), which corresponds to the white contrast region in the SEM-BSE image (index G
in Figure 8). In contrast, the Co, Cr, and Fe elements were enriched in the dendrite region (index
H in Figure 9b), which corresponds to the gray contrast region in the SEM-BSE image (index H in
Figure 8). The Cr and B elements were enriched in the fine plate-like phase (index I in Figure 9), which
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corresponds to fine plate-like phase with dark gray contrast in the SEM-BSE image (index I in Figure 8c).
In the XRD patterns (Figure 6b), sharp peaks corresponding to Cr-B-rich intermetallic compounds
including chromium boride were not observed, and this was owing to the low volume fraction of
the Cr-B-rich phases. The distribution of the Cu element was not homogeneous in Figure 9a, and
this was explained by the deviation in the size of the Cu-, Mn-, and Ni-enriched interdendrite region.
The Cu element was enriched in the interdendrite region in the equiatomic CoCrCuFeMnNi (Cu1) and
B-added CoCrCuFeMnNiB0.2 (Cu1B0.2) regardless of the existence of the B element. However, the B
element affects the size of the solidification microstructure composed of the Cu-poor dendrite and
Cu-rich interdendrite regions. The macroscopic phase-separated structure typical for LPS was not
observed in the CoCrCuFeMnNiB0.2 (Cu1B0.2) HEA.
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Figure 7. SEM-BSE images of the arc-melted ingots of the non-B CoCrCuxFeMnNi (x = 1, 2, 3) (Cu1,
Cu2 Cu3) HEAs. (a) Cu1, (b) Cu2, (c) Cu3.

Table 2. Chemical composition analysis results of the ratio of metallic element without considering B
(atomic percent ratio) in the arc-melted ingots of the CoCrCuFeMnNiB0.2 (Cu1B02) HEA evaluated
using WDS.

Position Co Cr Cu Fe Mn Ni

G 2.9 1.8 57.3 2.2 23.2 12.7
H 21.1 20.7 9.1 22.1 10.5 16.4



Crystals 2020, 10, 527 10 of 19

Crystals 2020, 10, x FOR PEER REVIEW 10 of 20 

 

corresponds to fine plate-like phase with dark gray contrast in the SEM-BSE image (index I in Figure 
8c). In the XRD patterns (Figure 6b), sharp peaks corresponding to Cr-B-rich intermetallic compounds 
including chromium boride were not observed, and this was owing to the low volume fraction of the 
Cr-B-rich phases. The distribution of the Cu element was not homogeneous in Figure 9a, and this was 
explained by the deviation in the size of the Cu-, Mn-, and Ni-enriched interdendrite region. The Cu 
element was enriched in the interdendrite region in the equiatomic CoCrCuFeMnNi (Cu1) and B-
added CoCrCuFeMnNiB0.2 (Cu1B0.2) regardless of the existence of the B element. However, the B 
element affects the size of the solidification microstructure composed of the Cu-poor dendrite and 
Cu-rich interdendrite regions. The macroscopic phase-separated structure typical for LPS was not 
observed in the CoCrCuFeMnNiB0.2 (Cu1B0.2) HEA. 

 

Figure 8. SEM-BSE images of the arc-melted ingots of the B-added CoCrCuFeMnNiB0.2 (Cu1B02) 
HEAs. (a) Low-magnification image, (b)(c) magnified image of Figure 8a. 

Figure 8. SEM-BSE images of the arc-melted ingots of the B-added CoCrCuFeMnNiB0.2 (Cu1B02)
HEAs. (a) Low-magnification image, (b,c) magnified image of Figure 8a.

Crystals 2020, 10, x FOR PEER REVIEW 11 of 20 

 

 

Figure 9. Element mapping of the arc-melted ingots of the B-added CoCrCuFeMnNiB0.2 (Cu1B02) 
using EPMA-WDS. (a) Cu element mapping focusing of region G as depicted in Figure 8a, (b) element 
mapping corresponding to Figure 8b. 

Table 2. Chemical composition analysis results of the ratio of metallic element without considering B 
(atomic percent ratio) in the arc-melted ingots of the CoCrCuFeMnNiB0.2 (Cu1B02) HEA evaluated 
using WDS. 

Position Co Cr Cu Fe Mn Ni 
G 2.9 1.8 57.3 2.2 23.2 12.7 
H 21.1 20.7 9.1 22.1 10.5 16.4 

Figure 10 shows the SEM-BSE images of the arc-melted ingots of the B-added 
CoCrCuxFeMnNiB0.2 (x = 2, 3) (Cu2B02, Cu3B02) HEAs with a macroscopic phase-separated structure. 
Figure 10a2, 10a3 are the magnified images of Figure 10a1 with CoCrCu2FeMnNiB0.2 (x = 2) (Cu2B02), 
and Figure 10b2, 10b3 are the magnified images of Figure 10b1 with CoCr Cu3FeMnNiB0.2 (x = 3) 
(Cu3B02). In Figure 10a1, 10a2, the macroscopically phase-separated structure composed of the white 
contrast region (index J) and gray contrast region (index K) was observed in the CoCrCu2FeMnNiB0.2 
(x = 2) (Cu2B02) HEA. A similar macroscopic phase-separated structure was also observed in the 
CoCrCu3FeMnNiB0.2 (x = 3) (Cu3B02) HEA (Figure 10b1, 10b2). The spheroidal phases with gray 
contrast (index L) are embedded in the white contrast matrix (index J) in Figure 10a1, 10a2. The plate-
like phase with dark gray contrast (index M) was observed in the high-magnification images of the 
CoCrCu2FeMnNiB0.2 (Cu2B02) (Figure 10a3) and CoCrCu3FeMnNiB0.2 (Cu3B02) HEAs (Figure 10b3), 
where the amount of the plate-like phase with dark gray contrast (index M) embedded in the gray 
contrast matrix (index K) was much larger than that in the white contrast matrix (index J).  

Figure 11 shows the element mapping of the arc-melted ingots of the B-added 
CoCrCu2FeMnNiB0.2 (Cu2B02) HEA with a macroscopic phase-separated structure using EPMA-
WDS, as the typical specimen of the solidification microstructure of Co-Cr-Cu-Fe-Mn-Ni-B HEAs 
with macroscopically phase-separated interfaces. Figure 11a shows the low-magnification image of 
the element mapping focusing on the macroscopically phase-separated interfaces. Table 3 shows the 
chemical composition analysis results of the ratio of metallic elements without considering B in the 
arc-melted ingots of the CoCrCu2FeMnNiB0.2 (Cu2B02) HEA evaluated using WDS, focusing on 
regions J, K, and L in Figure 11a. The Cu and Mn elements were rich in the white contrast phase in 
the SEM-BSE image. In contrast, the Co, Cr, and Fe elements were rich in the gray contrast phase in 
the SEM-BSE image. The significant differences in the distribution of the Ni element between region 
J and region K were not observed in the element mapping image. Figure 11b shows a high-

Figure 9. Element mapping of the arc-melted ingots of the B-added CoCrCuFeMnNiB0.2 (Cu1B02)
using EPMA-WDS. (a) Cu element mapping focusing of region G as depicted in Figure 8a, (b) element
mapping corresponding to Figure 8b.

Figure 10 shows the SEM-BSE images of the arc-melted ingots of the B-added CoCrCuxFeMnNiB0.2

(x = 2, 3) (Cu2B02, Cu3B02) HEAs with a macroscopic phase-separated structure. Figure 10a2, 10a3 are
the magnified images of Figure 10a1 with CoCrCu2FeMnNiB0.2 (x = 2) (Cu2B02), and Figure 10b2, 10b3
are the magnified images of Figure 10b1 with CoCr Cu3FeMnNiB0.2 (x = 3) (Cu3B02). In Figure 10a1,
10a2, the macroscopically phase-separated structure composed of the white contrast region (index J)
and gray contrast region (index K) was observed in the CoCrCu2FeMnNiB0.2 (x = 2) (Cu2B02) HEA.
A similar macroscopic phase-separated structure was also observed in the CoCrCu3FeMnNiB0.2

(x = 3) (Cu3B02) HEA (Figure 10b1, 10b2). The spheroidal phases with gray contrast (index L) are
embedded in the white contrast matrix (index J) in Figure 10a1, 10a2. The plate-like phase with dark
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gray contrast (index M) was observed in the high-magnification images of the CoCrCu2FeMnNiB0.2

(Cu2B02) (Figure 10a3) and CoCrCu3FeMnNiB0.2 (Cu3B02) HEAs (Figure 10b3), where the amount of
the plate-like phase with dark gray contrast (index M) embedded in the gray contrast matrix (index K)
was much larger than that in the white contrast matrix (index J).
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Figure 10. SEM-BSE images of the arc-melted ingots of the B-added CoCrCuxFeMnNiB0.2 (x = 2, 3)
(Cu2B02, Cu3B02) HEAs with a macroscopic phase-separated structure. (a) Cu2B02, (b) Cu3B02, (a2)
and (a3) are magnified images of (a1,b2,b3) are magnified images of (b1).

Figure 11 shows the element mapping of the arc-melted ingots of the B-added CoCrCu2FeMnNiB0.2

(Cu2B02) HEA with a macroscopic phase-separated structure using EPMA-WDS, as the typical
specimen of the solidification microstructure of Co-Cr-Cu-Fe-Mn-Ni-B HEAs with macroscopically
phase-separated interfaces. Figure 11a shows the low-magnification image of the element mapping
focusing on the macroscopically phase-separated interfaces. Table 3 shows the chemical composition
analysis results of the ratio of metallic elements without considering B in the arc-melted ingots of
the CoCrCu2FeMnNiB0.2 (Cu2B02) HEA evaluated using WDS, focusing on regions J, K, and L in
Figure 11a. The Cu and Mn elements were rich in the white contrast phase in the SEM-BSE image.
In contrast, the Co, Cr, and Fe elements were rich in the gray contrast phase in the SEM-BSE image.
The significant differences in the distribution of the Ni element between region J and region K were not
observed in the element mapping image. Figure 11b shows a high-magnification image focusing on
the Cu-Mn-rich region corresponding to the white contrast phase in the SEM-BSE image including the
spherical gray contrast phase in the SEM-BSE image. The Co, Cr, and Fe elements were rich in the
spherical phase (index L in Figure 11b). Figure 11c shows the high-magnification image focusing on
the Co-Cr-Fe-rich region corresponding to the gray contrast phase in the SEM-BSE image including
the plate-like phase with dark gray contrast in the SEM-BSE image. The Mn and Cu elements have a
tendency to be poor in Co- and Fe-rich regions, as shown in Figure 11c. The elements Cr and B were
enriched in the plate-like phase with dark gray contrast in the SEM-BSE image. Dendrite-like structures
composed of Co-Cr-Fe rich dendrite and Mn-Ni-rich interdendrite with a Cr-B-rich plate-like phase are
observed in Figure 11c. The sharp diffraction peaks indexed as dual FCC phases in the XRD patterns
(Figure 6b) can be explained by the macroscopically phase-separated Co-Cr-Fe-rich region with an
FCC structure (index K in Figure 11a) and Cu-rich phase with an FCC structure (index J in Figure 11a).
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Figure 11. Element mapping of the arc-melted ingots of the B-added CoCrCu2FeMnNiB0.2 (Cu2B02)
HEA with a macroscopic phase-separated structure analyzed using EPMA-WDS, as the typical
example of the solidification microstructure of Co-Cr-Cu-Fe-Mn-Ni-B HEAs with a macroscopically
phase-separated structure. (a) Element mapping focusing on the macroscopically phase-separated
interface, (b) element mapping focusing on the Cu-Mn-rich region (J in Figure 11a), (c) element mapping
focusing on the Co-Cr-Fe-rich region (K in Figure 11a).
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Table 3. Chemical composition analysis results of the ratio of metallic element without considering B
(atomic percent ratio) in the CoCrCu2FeMnNiB0.2 (Cu2B02) HEA evaluated by WDS.

Position Co Cr Cu Fe Mn Ni

K 22.9 21.5 6.6 24.2 9.5 15.2
J 2.1 1.2 64.9 1.6 20.1 10.0
L 21.2 24.3 7.9 21.5 10.7 14.5

Figure 12 summarizes the LPS tendency in the Co-Cr-Cu-Fe-Mn-Ni and Co-Cr-Cu-Fe-Mn-Ni-B
HEAs, focusing on the existence of B and Cu concentrations. The index Y in Figure 12 indicates the
occurrence of LPS, wherein the occurrence of LPS was detected using the solidification microstructure
analysis. Dual FCC phases formation as the main constituent phases was detected from the XRD
patterns of the Co-Cr-Cu-Fe-Mn-Ni and Co-Cr-Cu-Fe-Mn-Ni-B HEAs regardless of the Cu and B
concentration (Figure 6). An equiaxial dendrite structure with a Cu-poor dendrite and Cu-rich
interdendrite was observed in the non-B CoCrCuxFeMnNi (x = 1, 2, 3) HEAs (Figure 7). The B-addition
in the Co-Cr-Cu-Fe-Mn-Ni HEAs led to a change in the solidification microstructure and distribution
of the Cu element in the arc-melted ingots. The segregation of Cu was enhanced by the B addition,
indicating that the size of the Cu-rich region at the interdendrite in CoCrCuFeMnNiB0.2 (Figures 8
and 9, Table 2) was much larger than that in the non-B equiatomic CoCrCuFeMnNi HEAs (Figure 7).
A macroscopically phase-separated structure composed of a Cu-poor region and Cu-rich region was
observed in the arc-melted ingots of the CoCrCuxFeMnNiB0.2 (x = 2, 3) (Cu2B02, Cu3B03) HEAs
(Figures 10 and 11, Table 3), and the particular solidification microstructure formation was explained
using LPS. The increase in Cu and addition of B enhanced the LPS tendency in CoCrCuxFeMnNiBy

(x = 1, 2, 3) (y=0, 0.2) (Cu1, Cu2, Cu3, Cu1B02, Cu2B02, Cu3B03).
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Figure 12. Liquid phase separation (LPS) tendency in the Co-Cr-Cu-Fe-Mn-Ni and Co-Cr-Cu-Fe-Mn-Ni-B
HEAs focusing on the existence of B and Cu concentrations.

4. Discussion

A macroscopically phase-separated structure, which is typical for the solidification microstructure
formed via LPS, was observed in the equiatomic AgCoCrFeMnNi HEA and B-added CoCrCuxFeMnNiB0.2

(x = 2, 3) (Cu2B02, Cu3B02) HEAs. The combination of ∆Hi-j (Figure 1) and the predicted phase
diagrams (Figure 2) was effective in predicting the LPS tendency in the multicomponent alloy systems
very easily, while the composition dependence on the LPS tendency cannot be discussed in detail.
The thermodynamic calculation was clarified to be useful in discussing the LPS tendency in the
Co-Cr-based Ag-Co-Cr-Mo-Fe-Mn-W HEAs [23]. In the following, the occurrence of LPS in the
equiatomic AgCoCrFeMnNi HEA and B-added CoCrCuxFeMnNiB0.2 (x = 2, 3) (Cu2B02, Cu3B02)
HEAs is discussed based on the thermodynamic calculation.

Figure 13 shows the calculated phase diagram of the pseudo-binary CoCrFeMnNi-Ag2CoCrFeMnNi
phase diagram, including the equiatomic AgCoCrFeMnNiAg HEA, focusing on LPS. The liquid
miscibility gap is indicated using the red line. The addition of Ag to the CoCrFeMnNi HEA results in a
decrease in the liquidus line within the significantly small amount of Ag concentration. At approximately
x ≥ 0.15 in AgxCoCrFeMnNi including the equiatomic AgCoCrFeMnNi, the liquid miscibility gap for the
LPS of the Ag-poor and Ag-rich liquids appeared. The LPS in the equiatomic AgCoCrFeMnNi HEA
corresponded to the thermodynamic calculation.
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Figure 14 shows the calculated phase diagrams of the pseudo-binary CoCrFeMnNi–CoCr
Cu5FeMnNi phase diagram, including CoCrCuxFeMnNi (x = 1, 2, 3) (Cu1, Cu2, Cu3), and
CoCrFeMnNiB0.2-CoCrCu5FeMnNiB0.2 phase diagram, including CoCrCuxFeMnNiB0.2 (x = 1, 2, 3)
(Cu1B02, Cu2B02, Cu3B02), focusing on LPS. In the low-Cu concentration regions at approximately
x ≤ 2 in CoCrCuxFeMnNi (Figure 14a) and x ≤ 1 in CoCrCuxFeMnNiB0.2 (Figure 14b), the liquidus
of FCC decreased with the increase in the value of x. The liquid miscibility gap appeared when
the Cu concentration was over the threshold value: approximately x = 2 in CoCrCuxFeMnNi
(Figure 14a) and x = 1 in CoCrCuxFeMnNiB0.2 (Figure 14b), respectively. The liquid miscibility gap
was significantly shifted to the low-Cu concentration side by the addition of B. The thermodynamic
calculation results indicate that the addition of B and the increase in the Cu concentration was
effective in enhancing the LPS tendency in the CoCrCuxFeMnNi and CoCrCuxFeMnNiB0.2 HEAs.
Table 4 lists the thermodynamic calculation results of the composition of the separated liquid in the
CoCrCu2FeMnNiB0.2 (Cu2B02) HEA formed via LPS. The Cu-rich (Table 4a) and Cu-poor liquid
(Table 4b) formation via LPS was predicted by the thermodynamic calculation. The exact prediction
of LPS in the Ag-Co-Cr-Fe-Mn-Ni, Co-Cr-Cu-Fe-Mn-Ni, and Co-Cr-Cu-Fe-Mn-Ni-B HEAs was quite
difficult because of the lack of thermodynamically assessed data in the database, including those
involving binary alloy systems. Moreover, an experimental investigation of LPS was difficult because of
the necessity of the supercooling of the thermal melt for the occurrence of LPS, cooling rate dependence
on the solidification microstructure, and high vapor pressure of the thermal melt due to the large
positive ∆Hi-j.

Table 4. Chemical composition of the separated liquid in CoCrCu2FeMnNiB0.2 (Cu2B02) alloys
estimated by the thermodynamic calculations. (a) Cu-rich liquids, (b) Cu-poor liquids.

(a) Cu2B02, Cu-rich liquid

Temp. [K] Co Cr Cu Fe Mn Ni B

1500 4.5 3.3 67.8 3.6 13.1 7.2 0.4
1400 3.1 2.1 73.8 2.3 12.5 6.0 0.2

(b) Cu2B02, Cu-poor liquid

Temp. [K] Co Cr Cu Fe Mn Ni B

1500 15.3 15.5 21.9 15.4 14.0 14.9 3.1
1400 16.7 16.9 15.9 16.9 14.3 15.9 3.4
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In spite of the strong demand of Co-Cr-based BioHEAs as new metallic biomaterials, only a few
Co-Cr-based BioHEAs have been reported [23] to date. It was clarified that the suppression of LPS in
Co-Cr-based HEAs is an important topic for the development Co-Cr-based BioHEAs. The present
study on the LPS in Ag-Co-Cr-Fe-Mn-Ni, Co-Cr-Cu-Fe-Mn-Ni, and Co-Cr-Fe-Mn-Cu-B HEAs, which
was designed as the combination of the equiatomic CoCrFeMnNi [8] with Ag, Cu, and the interstitial
element of B, demonstrates that the ∆Hi-j, predicted phase diagrams constructed by the Materials
Project, and the thermodynamic calculation can offer useful information on the LPS behavior in
Co-Cr-containing HEAs.

5. Conclusions

Liquid phase separation (LPS) in Ag-Co-Cr-Fe-Mn-Ni, Co-Cr-Cu-Fe-Mn-Ni, and Co-Cr-Cu-Fe-
Mn-Ni-B HEAs was investigated. The obtained results and conclusions are summarized as follows.

(1) LPS was observed in the arc-melted ingots of the equiatomic AgCoCrFeMnNi HEAs;
(2) A macroscopically phase-separated structure formed via LPS was not observed in the arc-melted

ingots of the CoCrCuxFeMnNi (x = 1, 2, 3) HEAs, whereas LPS was observed in the arc-melted
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ingots of the B-added CoCrCuxFeMnNiB0.2 (x = 2, 3) HEAs. The addition of B enhanced the LPS
tendency in the CoCrFeMnNiCux HEAs;

(3) The occurrence of LPS in the arc-melted ingots of the Ag-Co-Cr-Fe-Mn-Ni and Co-Cr-Cu-Fe-Mn-Ni-B
HEAs corresponded to the positive values of Hi-j (i = Ag)(j = Co, Cr, Fe, Mn, Ni) and Hi-j (i = Cu)
(j = Co, Cr, Fe, Mn, Ni), the absence of Ag-containing and Cu-containing intermetallic compounds
in the predicted phase diagrams, and the liquid miscibility gap in the calculated phase diagrams.
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