<table>
<thead>
<tr>
<th>Title</th>
<th>Investigation on Welding Arc Sound (Report III): Effects of Current Waveforms on TIG Welding Arc Sound (Welding Physics, Processes & Instruments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Arata, Yoshiaki; Inoue, Katsunori; Futamata, Masami; Toh, Tetsuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Transactions of JWRI. 9(2) P.167-P.172</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1980-12</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/8984</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td>本文データはCiNiiから複製したものである</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
Investigation on Welding Arc Sound (Report III)†
—Effects of Current Waveforms on TIG Welding Arc Sound —

Yoshiaki ARATA *, Katsunori INOUE *, Masami FUTAMATA ** and Tetsuo TOH ***

Abstract

Investigation has been made on the effects of the rectangular, sawtooth, triangular and sine current waveforms on the welding arc sound of TIG arc, that is a stationary arc on the water cooled copper plate, by means of a transistor control type power source.

The experimental results have indicated that the welding arc sound depends on the current waveform, pulse frequency f_p and pulse amplitude τ_p. The welding arc sound is composed of a fundamental tone which has a frequency spectrum of f_p and its harmonics. An excellent frequency spectrum f_{EX} agrees with f_p in the triangular and sine wave current, but f_{EX} changes to higher harmonic in the rectangular and sawtooth wave current.

The effective sound pressure P_{E} is shown as a function of f_p and τ_p ($P_{E} \propto f_p^m \cdot \tau_p^n$), and the useful equations which are possible to estimate the noise level have been obtained.

KEY WORDS: (Acoustics) (Arc Welding) (Process Parameter) (Environment)

1. Introduction

Investigations on improvement of solidification structure, grain size and mechanical properties of the weld joints have been carried out by pulsing the welding current in plasma welding 1, MIG welding 2-5, TIG welding 6-12 and covered arc welding process 3. These methods, which are often called the pulse arc welding, have such advantages as unnecessary of installing a special apparatus to the base metal or the torch side, differing from the magnetic controlling procedure, and admitting the welding of thin plates and different metals of controlling the electric power supply in a wide range. Conversely, it is unavoidable for this method to accompany the occurrence of large noise due to use of the current waveform with short times of rising and falling. (In general, rectangular current waveform is used. The use of the other waveforms will be investigated in the future.)

The authors started the study on the assumption that the so-called arc sound generated during the welding will offer new available information on the welding phenomena, and therefore, have investigated several characteristics of arc sound and the relation between the arc sound and the welding situation 14-15. In this paper, the influence of pulsation of the welding current on the arc sound was investigated, and moreover, the influences of pulse frequency and pulses amplitude were compared for four types of current waveforms.

2. Experimental Apparatus and Method

The welding electric power source employed in this experiment was a DC transistor control type. In this power source, as the controls of the current and the voltage is made to detect the difference of values between the standard and the output with feedback system, a perfect DC output is, of course, obtained and if the standard value is set by using of a function generator, arbitrary waveforms of the current and the voltage can be obtained. The power source has the response frequency of about 10 KHz, and its responsibility and stability are far better than the conventional type. The subject of this experiment was focussed on a TIG arc occured on the water cooled copper plate. This method rarely involves the consumption of an electrode and the formation of a molten pool, and therefore, it is possible to think that all the arc sound characteristics will be based on the output waveform only. In the experiment, four current waveforms were employed; rectangular ($d=\Delta/T=0.5$) and sawtooth ($d=0$) which were of short rising and the falling time, while triangular ($d=0.25$) and sinnsoidal were of relatively long time. The main conditions of generation of the arc are shown in Table 1. The measure and analysis

† Received on September 24, 1980
* Professor
** Co-operative Researcher (Assistant, Kitami Institute of Technology)
*** Professor, Kitami Institute of Technology

Transactions of JWRI is published by Welding Research Institute of Osaka University, Suita, Osaka, Japan

25
of the arc sound were conducted in the same way as the previous reports14–15).

Table 1 Arcing conditions.

<table>
<thead>
<tr>
<th>Current Waveform</th>
<th>Rectangular</th>
<th>Sawtooth</th>
<th>Triangular</th>
<th>Sine</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d = \Delta T)</td>
<td>(I_p \times 10^2)</td>
</tr>
<tr>
<td>(I_p = 100) (V)</td>
<td>(I_p = 150) (V)</td>
<td>(I_p = 200) (V)</td>
<td>(I_p = 300) (V)</td>
<td>(I_p = 350) (V)</td>
</tr>
<tr>
<td>(I_p = 50) (V)</td>
<td>(I_p = 100) (V)</td>
<td>(I_p = 200) (V)</td>
<td>(I_p = 300) (V)</td>
<td>(I_p = 350) (V)</td>
</tr>
<tr>
<td>(I_p = 10) (V)</td>
<td>(I_p = 20) (V)</td>
<td>(I_p = 30) (V)</td>
<td>(I_p = 40) (V)</td>
<td>(I_p = 45) (V)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pulse Frequency (Hz)</th>
<th>10, 30, 50, 100, 200, 360, 500, 1000, 2000, 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc Length (mm)</td>
<td>15 (Ar gas)</td>
</tr>
<tr>
<td>Gas Flow Rate (l/min)</td>
<td>5</td>
</tr>
<tr>
<td>Electrode Dist. (mm)</td>
<td>4</td>
</tr>
</tbody>
</table>

3. Experimental Results and Discussions
3.1 Effects of pulse frequency

Figure 1 describes the relation between the sound pressure level of arc sound, SPL, and the pulse frequency, \(f_p \), for each current waveforms. It was shown from this figure that SPL increased in nearly proportional to logarithm \(f_p \) with increase of \(f_p \). This tendency of the increase varied with each current wave; the waveform indicating a maximal value of SPL was the rectangular, decreasing sawtooth, triangular, and sine in order. Of these waveforms, the former two indicated a smooth increase of SPL, while the latter two had a tendency of a sharp increase of SPL, i.e., SPL increased by about 4 dB for the former, where as by about 7 dB for the latter when the \(f_p \) duplicated. Comparing the rectangular waveform, its value of \(f_p \) is usually used in the range of several hertz to several hundreds hertz, with the sine in Fig. 1, it was found that SPL for the former was higher by ca. 25 dB at \(f_p = 50 \) Hz and by ca. 20 dB at \(f_p = 200 \) Hz than that for latter.

Now, if the effective sound pressure of the arc sound is represented by \(P_e \), and the standard value of sound pressure by \(p_{00} \) (\(p_{00} = 2 \times 10^{-4} \) ubar = \(2 \times 10^{-5} \) Pa), as SPL = 20 \(\log_{10} \) \(P_e / p_{00} \), then the relation between \(P_e \) and \(f_p \) is obtained by the method of least square as follows;

- in the cases of rectangular and sawtooth waveforms
 \[P_e \propto f_p^{-0.7} \quad \text{(1)} \]
- in the cases of triangular and sine waveforms
 \[P_e \propto f_p^{-1.2} \quad \text{(2)} \]

3.2 Effects of pulse amplitude

The effects of pulse amplitude, \(\tau_p \), for each current waveforms on SPL was shown in Fig. 2. The value of SPL increased almost proportionally to logarithm \(\tau_p \) with increase of \(\tau_p \). Like this, SPL was affected by the difference of the current waveform in same manner as in the section of 3.1. In addition, SPL did not change at constant \(\tau_p \) value even if the average current, \(I_{av} \), changed, even in the case of \(I_{av} = 150 \) A or 200 A. The relation between SPL and \(\tau_p \) was almost the same as the results given in Fig. 2. (Omitted the figure representing the state). These facts will be of interest in connection with the result that there was little occurrence of arc sound when the perfect DC was employed. The relation between SPL and \(\tau_p \) was obtained from Fig. 2 as described below;

- for rectangular and sawtooth current waveforms
 \[P_e \propto \tau_p^{-0.7} \quad \text{(3)} \]
- for triangular and sine current waveforms
 \[P_e \propto \tau_p^{-1.2} \quad \text{(4)} \]

![Fig. 1. Effects of pulse frequency \(f_p \) on sound pressure level SPL.](image1)

![Fig. 2. Effects of pulse amplitude \(\tau_p \) on sound pressure level SPL.](image2)
3.3 Arc sound pressure waveform

Figure 3 indicates typical sound waveforms obtained at the conditions of \(f_p = 500\text{Hz} \) and \(I_p = 100\text{A} \) (\(I_w = 100\text{A} \)), including the current waveform as a model (dotted line). The sound pressure waveform had a characteristic shape depending on the current wave and changed periodically corresponding to \(f_p \).

In both the rectangular (a) and sawtooth wave current (b), there could be observed the occurrence of the sound wave with large amplitude where the current changed from the base current, \(I_b \), to peak current, \(I_p \), or from \(I_p \) to \(I_b \). These sound pressure waveforms are similar to that observed at the conditions of short circuiting transfer in CO\(_2\) arc welding, and both waveforms contained of strong components of higher harmonics. On the other hand, the components of sound pressure waveform in triangular(c) or sine(d) wave current were weaker than in (a) as well as (b). Particularly in (d), the sound pressure waveform could be considered to be almost wave. What is more, the time lag between the sound pressure waveform and the current waveform would be caused by the observation point of the sound being 12cm away from the point of arc occurrence.

In general, the sound pressure, \(p \), is approximately expressed as the following equation in the low frequency range of \(k > 1 \) (\(k \) : wave length constant, \(a \) : radius of sound source), where \(A \) is the amplitude of sound pressure, and \(\omega \) is the angular frequency. For this, the difference of SPL come out as differences among current waveforms in Fig. 1 and Fig. 2 was thought to be influenced by the strength of the higher harmonics components.

As shown in Fig. 3, the sound pressure waveform exhibited the characteristics shape corresponding to the waveform of the current. However, the sound pressure waveform is warped by the change of electrode shape during the occurrence of arc. Figure 4 (a) and (b) showed the examples of normal waveforms and deformed waveforms respectively. SPL increases slightly when the deformed waveform appears, and the change can be easily discerned even by the hearing.

3.4 Frequency characteristics of arc sound

Examples of the frequency spectrum of the arc sound analysed by using a constant ratio band width analyser (Type 3301, Denshi-Sokuki) are shown in Fig. 5(a) to (d). The main spectrum of the arc sound is the fundamental spectrum of \(f_p \) and its higher harmonics such as 2 \(f_p \), 3 \(f_p \),...
... n f_p in every case of the current waveforms, and contains the components of higher harmonic over 10 f_p except the sine wave current. Thus, in case of the current wave with the pulse frequency of f_p, the arc sound will be composed of the fundamental tone which has the frequency spectrum of f_p and its harmonics.

Figure 6 shows the analytical examples of the signal waveform from the function generator, while are obtained in like manner. These results could be regarded as being about equal to the result of the current or the voltage waveform. It is found from the figure that the rectangular and triangular waves contains the spectrum components of f_p and its odd harmonic, while the sawtooth wave has the components of f_p, 2 f_p, 3 f_p and so on. It should be clear that the sine wave comprises from only spectrum of f_p, although the figure is omitted. Moreover, the results that the frequency analysis are represented as a continuous spectrum shown in Fig. 5 and Fig. 6 is because of the effects of the filter-type analyser. It is obvious from the Fourier expansion that the case of Fig. 6, the results should be shown as the line spectrum theoretically.

Here, the spectrum which has a maximal value of peak among the frequency spectrum was defined as the excellent frequency spectrum, f_{EX} and the relation was investigated between f_{EX} and f_p. As shown in **Fig. 6**, f_{EX} is consistent with f_p for the signal waveforms from the function generator, where the line connecting the each peaks become a simple declining curve. On the contrary, it was found in case of the arc sound that f_{EX} did not necessarily agree with f_p as shown in **Fig. 7**, and the connecting line is a complicated curve with maximum or minimum.

![Fig. 6 Frequency spectrum of output signal from function generator (f_p = 500Hz).](image)

![Fig. 7 Relation between pulse frequency f_p and excellent frequency spectrum f_{EX} (f_p = 100A).](image)

The total level of the sound pressure, L_T, is related to the band level, L_1, L

The total level of the sound pressure, L_T, is related to the band level, L_1, L_2, ..., L_n, as follows;

\[
L_T = 10 \log_{10} \left(\log_{10}^{-1} L_1/10 + \log_{10}^{-1} L_2/10 + \ldots + \log_{10}^{-1} L_n/10 \right)
\]
Therefore, in the triangular and sine wave currents in which the value of \(f_{EX} \) and \(f_p \) agree well, SPL is greatly affected by \(f_p \) itself, while in the rectangular and sawtooth wave currents, SPL is preferably dependent upon the harmonics.

3.5 Noisiness of the arc sound

In regard to the noisiness of the arc sound, a partial investigation was carried out in the previous paper\(^{15}\). There are many regulations on the noise established from the standpoint of conservation of the hearing. The permissible limit of value of American Conference of Governmental Industrial Hygienists (ACGIH) is 85 dB(A) on the noise level for continuous noise exposure of 8 hours per day, 90dB(A) for 4 hours per day and 100 dB(A) for 1 hour per day respectively, and the noise exposure over 115 dB(A) is prohibited. Although the noise level and the sound pressure level are different substantially, the both are almost equal in the value as for the sound having the higher harmonics component like the arc sound\(^{15}\).

Now, taking the case of \(\tau_p = 100A \) given in Fig. 1 when \(f_p \approx 30Hz \) in rectangular and sawtooth wave current, and \(f_p \approx 300Hz \) in triangular and sine wave current, the permissible limit of value of 85 dB(A) is attained respectively, and the value of 115 dB(A) is reached at about 2000Hz in the case of former. In some cases, the arc sound should be examined from standpoint of the conservation of the hearing as above and particular attention should be paid to high pulse frequency and large pulse amplitude conditions.

Based on the experimental results showed in section of 3.1 and 3.2 the following relation is obtained between \(P_e \), \(f_p \) and \(\tau_p \).

\[
P_e \propto f_p^m \cdot \tau_p^n
\]

where \(m \) and \(n \) are constants settled by the waveform of the current.

If the equation (5) is written in terms of the sound pressure level by using the data given in Fig. 1 and Fig. 2, SPL is expressed by the following equations (6), (7).

For the rectangular and sawtooth wave current:

\[
SPL = 14 \log_{10} (f_p \cdot \tau_p) + 40 \pm 2 \text{ dB} \quad (6)
\]

For the triangular and sine wave current:

\[
SPL = 24 \log_{10} (f_p \cdot \tau_p) - 20 \pm 3 \text{ dB} \quad (7)
\]

These experimental equations are available practically in estimating the noisiness of the arc sound.

4. Conclusions

The influence of pulsation of the welding current on the arc sound was investigated on four types of the current waveforms. The results are summarized as follows;

1) The main factors determining the sound pressure, \(P_e \), are the current waveform, pulse frequency, \(f_p \), and pulse amplitude, \(\tau_p \). There exists a quantitative relation between these factors; \(P_e \propto f_p^m \cdot \tau_p^n \), i.e., and therefore at the constant \(f_p \) and \(\tau_p \), SPL becomes the largest for the rectangular wave current, decreasing sawtooth, triangular and sine wave current in order.

2) The sound pressure waveform depends on the current waveform, but it is warped by the change of electrode shape during the occurrence of arc.

3) The arc sound is composed of a fundamental tone which has a frequency spectrum of \(f_p \) and its harmonics, the excellent frequency spectrum, \(f_{EX} \), is consistent with \(f_p \) for the triangular and sine wave current, but \(f_{EX} \) changes to higher harmonic for the rectangular and sawtooth wave current.

4) The available experimental equations which are possible to estimate the noise level are obtained.

References

