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Abstract

     A consistent theory of the interacting spin 3/2

particle is presented. Instead of the Åëonst]eaint

conditions, which are the origion of troubles in a

theory of inteyacting higher spin partieles, we supp]?ess

redundant particles by making their rnasses infinite.

Our theory is general enough to extend to particles
                            '



                                                              z

          g lL . :Ilnt r'odu e. ci-on

     The developments of high energy experiments have revealed

the rnany new parti.eles with spins greater than unity. This

situation enforces us to construct a consistent theory for

highey spin particles as a practical task..

     The relativistie equatlons for higher spin fields were
originated by Diracl) and fonowed up to the quantized forrn

        2)          . Lagrangian, whose Euler equations yield both equationsby Mevz
of motion and eonstraint conditions, was proposed by Fiei?z and
pauli3). It was further developed and simplified by the woyks

                       4)                                           5)of Rarita and Schwi,r}.ger , Mc)ldaur and Case .

     These theories stand on the same footing in the sen$e thati

field variables are the reaUzations oÅí the imoeducible represen--
                                             'tations of the sPatial'rotation group in the ?est system and

express only one spin s'tate. They give a consistent and ,
equivalent description of free particle. However in 'she presseence
                                            eeof interaction all the conventional theories have -failed to

deseribe the system of higher spin partiele in consistent wayS.

X In parallel with the articles mentioned above diffeyent types
of formuiation of higher sPin particie were performed6).

                   'However these formulations also can not introduce an inteyaction

                                                            'in a consistent manner.
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Lagrangaan o.f charged spin 2 payticle, wTith the minÅ}rrtaUy

coupled eleetromagnetic field, loses two of the constraints

and gives the spin 2 particle undesired degrees of freedom,
                                  '                                             '6, insteacl of requiired 5: This is a firstly appeared disea$e

conceur'ned with interaeting hlgher spin particles and still

remains as an open question. In addltion•to this desease theTe
                         'are several inc.onsistencies in the theory of interacting. higher

$ptrt l:aigtilcles. During the la$t decade these ineonsistencies

have been examined extensively.

     Among higher spin partieles spin 3/2 particle is most

irfiportant and the simplest exampZe. The tyoubles occuring in
                   'the system of interacting spin 3/2 particles are as folZows:

A) In the p.resenee of "vhe external elect'romagrtetiic field,

the equal--time anticommutator of spin 3/2 partieZe must be a

function of a coupZed field and can not be positive in the

yegzon

                  '                                           '                (iem-2' )2.,t,..2>i, ' a.v
                             '       '                      '
                      '                                        8)whc-ye H means a magnetic field sti7ength . [Phis disease appea]r)s
     tvv..even in more generai types of interactions9).

                                                             '
B) The wave fronts of the classical solutions in an electrornagnetie

field propagate faster than light in the same eriti'cal value as
(z.l)lo).

                                       'C) The time ordered product iS non-covariant. Because of this
          '
non--covariance there is a difference between vacuum, expectation
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value of the I] product and the eovariant propagator. This
                                'dlfference must be explained by the com-plicated normal

dependent interaction HamUtonian. When we consi•-dey) lnteyaction

Hamiltonian as power sevies of the coupling constant, for tine

particle with s>/3/2, this series may be lnfinite. Therefore,

we do not have .field theoretical basis for Ieynman rules for

the sy st em i.ne] ud ing hi. ghe ]? sp i. ri paif;ticles . Mio r'eove ]; we have no
                                                              '                                       'elear out]"ook -for the Lehmann-Symanzik-Zimmermann reduetion '

formu]a.

     These three difficultjes are very serious. Some people

even suggest that higher spin particle can not be elementary. ,

These eorne fTom the eonstvaint conditions introdueed to supp]7ess

redundant fields.
                                                                '     In this artiele we propose non--constraint theory of higher
                                     '    'spin field and show that our theory is free from the difficulties

A), B), C). We suppress redundant fields not by constraints

but by making the masses of the eorresponding partieles infinite.

This is the extension of the g--Jimiting theory proposed by Lee

           f'o!i the inte]?acting spin one particle. .and Tiang

     In g2 we give Lagrangian in our theory and discuss the

canonieal quantization proeeduye. The equal time eommutators

of the field operators are quite different from those of usual
                                                             '                                                       'theory, so that the difficulty A) disappears. ' ' '
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     :n S3 we study the quantization based on the idea of
peierif3i2)and iiakahashi-umezait,Tai3) This rnethod of quantization

t"•'s useful to develop the theovy maniÅ}"estly eovariant and to

sepax)ate covaniantly the contributions of the redundant fields.

We find that the special suppression procedure is necessary

to get a causa; theopy. This fact seems t6 relate to the

difficulty B) in usuaZ theory. The time ordered produet is

cova.riant. rrÅ}ihen, ouy theory is free from difficulty C). In

g3 we also obtain the various Gyeen funetions of the yespective
            'fields. [Phrough the Green functions we see that the vedundant

o. artieles play a role of regulator. When the masses of Lvhe
                                                 '                                           t-
redundant particles are finite our theory is renorrnalizable.

By taking the limit the divergence appears for sorne Feynman

diagrams. This dti vergenee is nothing but the ultra-violet

divergence in higher spin field.

     In g4 we give explicit forins of the wave functions of the

respective fields, their orthonormality--relations and complete-

ness conditions.

     Jn g5 we give Fou]piGr expansion of field ope]?ato]f' and see

that the redundant spin l/2 particles are both ghosts. The

difficulty A) may be due to the incomplete separation of the

i?edundant fields. We also wvite down the HamiZtonian oPerator
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  '
tfr; Focl/< xnepreesen"uation ,and LSZ reduction :"o-n.Tn.uZas. IkJ•e shuQ.t]

                                              'discu.ss on.i..y spi•n 3/2 fie]d iri det.".a.:L•l. Ittow•evc.Lc• ova,n m.,eH';-hoct• i•s

al.so a-pp]lcab' le `bo thie geneiaal cases wi-.A" ou`u sti tt-n..{.iJ':/cant chLpLing- e.

                          '                              '

                    g2. Canonleal 'i"`ormula"elon.

     We consider the general spino""--veetor ifi-E.eld. Ihe rnost
                                                   '
seneral equation of motion eonsisting of• at most• tirsvt--order

derivative is the foUowing: '
                '

           Av.< e) "v(x)=O, • (2.i)
                                 '
                                              '                                  'v,Theye
                                           '                                                               '
                                                                '                          '                                                        '       Al,v( e) = '""(YxBx "i" M)6yv ' A('Yl.,3v "i" YvDp) '

                                   '                          '                                           '                                                       '          -" BYvYx3xYv-CynyyYv• . (2.2)
                                                            '               '
Eo..(2.2) can 'rLfte rewx'itL'en as

                         '                            '
           '         '          A-,:v( 3) " '"(rx) p.DA'Mp. (2•3)
                                    '
Wi t]

       (rA)uv " \x6vv + A(yv6vx + yv6ux) + By.gypt'yv , (2.gJ)

                                                     '         '
and

                          '          Muv=M6uv+CMYuYv' (2•5')
In (2.2) we pure the coefficients oz" yu3v and yv3p equa] so as to
                                                           '                       'make Lagrangian, ' '
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 ' klre,ri vn

] ;:-L' g') ,A     itiy
   iFl V      v p
         '
"-

 ' Vi' ll {( rx) vvbx + Mvv}Qv

          - '>'t          /f          Uj lil, = IY vYl; ,

               '
veai. ]n Eq.(2.].) if,

               A pt --1/2,

               B = (3/2)A2 + A -}- 1/2,

               c = -(3A2 + 3A + i),

w e Lmme di a t. e ly ge t-.

          (Yv Sv + m)vi ,p --- o,

          Y}all"lul = O,

          B i;IJ = O.
           Y la

                             '
riihÅ}s is iohe Ra]?:j.ta-Schwi.nge]? equa"oion des-cx'ibi•"ng

slzn 3/2 fi•eld. "lhe paioaime'cer A comes dzno-m.`Jne

wave function in the point transformaLvion,

           i          V'v = (6uv + aYvYv)Qv'

                '                                      '
     Now T"re discuss, `v'he general case where 'ghe

not satisfy (2.8). We tLpeat alZ Pp as dynamtca]

The canoniea'l,ly .conjugate morrienta Tp of -Qy a]?e

                                            '                                           '                             '         Tp :- 3I,/a( bip v/axo ) = i IJ v( r4)vv•

(2.6)

(2.7)

(2.

(2.

(2.

8

8

8

a

b

c

>

)

)

         (2.]C a)

         (2.9b)

            '         (2.9c)

 - : -"" ]l?]?eaueLoÅ}e

amb :' g• u1ty of th e-

         (2

DarameteTs
L

 va-e 'i ab les .

.IO)

do

(2. ll)
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T,'rom t'ht.s. st,n.•ndard eo]rnmu"bd"tiorii velations

     {"7.•(X)' iTv(X')}x o=x5 = i63(.X.. - Xi.1)6vv, (2')2)

we y--'•et
   o

     {'vr u(x), '{l'].(x')}.o..6 = (r4)VZ. 63(a!L--isLl)• (?•i3)

Plei?e rEX rfleans the inverse of r4: ,
  '                   '     (r2PIZ. = {(l+2A+3A2-2B)Y46v. '" (A2-A-2B)(Yig64vt' Yv64p)

                                                             '                                            '
       -' 2(2A+A2'-2B)y2;64v64. + (A2-B)ypy4y.}/(1ÅÄ2AnL3A2--2B) (2.]

AL"vhough r4 is singular in the ease of (2.8), as wi]l b' e seen

laieia in,L our t] eory, r4 is regular. "tiol)owing the standard rp.et"./•.o'd

                                                              'we obtaim the Hamlltonian '
       H = rru(avi ,pl/bxo) •- L

          '                                                          '         = Vi ,pt{(ri)u.Di + lvlv.}e., (2.ILs)

and the energy momentuim tensor, where .T.atin in-dieles denote

spatial components.The symmetricaZ energy momenturp. tensor :•n oui

theovy satisfi'es Schwinger's gornmu'ta'uoy eondition in its simplgst
                            ll4 );
x"orm cont,'ma-ry 'bo usuai theory -

g/

,

)

         g3. ik7xtended Method of Peierls' Quantiz,ation.

                          '                                          '
     VJe discuss ?eierls' quantization fo-e `u'he f'oc"'e r•edueib"n..e

spinor-vec`uor field vT u. We start 2"yorn t`ne investz'gaiJion ot'  A

                                      '                                       '

-]
pv
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                                                     .t
                                                           '                  '                                         '     A,vv(-`""P)A-.-'2L,(ilP) = AT,.,]vH' (1'iD)AvA.(iP) = 5ttx' ' (3" ]i")

                                                  '  :ATj-vT"(-S"p) shou]d have the f• ollowing zaorrn.

     A-pL/'/(-"p) = xi(p2)6vv ÅÄ i2(e. 2)yu"rv + i3(p2)(i"r,ptp- v-i-iyvpy)'

     ' -- iLL(p2)pvpv + xs(p. 2)iyxpx6.plv -:- Xs(p2)y,k,iyx'io >yv

            '- I7(P2)( yyy Ap xp ."p vy xp xy.) -' Zs(p2)p up vi y xp x• • (3•2)

                                                        '                           '
Substitu`v-ing (3.2) into' (3.l), we get '

    ii= •-m/(p2+m2) (3.3a)
    x2 = iin[m4ca+4c)+m2p2(6cA+4B2+A2ÅÄ7cA2+2BA-2B) ,
                                   .
         + p 4 `[ ( A 2 + A ) ( i + 2 A + 3 A 2 - 2 nb ) - ( ] + A ) 2 ( A + 2 B -:- c ) } ] / D ( p 2 ) '( 3 . 3b )

                                                '                                                          '    .:' 3 = [2m2rJ2(A+2B+c)(A2-2B-2c)--{(2c-A)m2ÅÄ(.ti2-..A.-,2B)p2} •

                                            '         Å~{ Q+4c)m2+a+2A+ 3A2-2B )p2 }] /D (p2) (3. 3c)
                                              '
                                '    'X4 = -ltnir, (A2+A-c)(iÅÄ4c)m2+{(i+2A+3,".2-•2B)(A2+f-c)--(A+2B+c)

        Å~ (A2+2A+2B)}p2]/D(p2) (3•3d)
                          '    zs=i/(i 2+m2) '(3.3e)
        '    I6 = [(1+2A+3A2--2B)(A2--B)p2;+m2p. 2(-2A3"rA2ÅÄ6t--tv""+8A2c-BA2"r6iz,B

                                                             '         +2c+6B2+2c2)+(m4/2) {( Af,+2BÅÄc)+ a+l c)(3c-A) }]/D (p2) (3. 3tt)

                                                  t t.                               '    I7 " rn[irL2{2(A+2B+C)(2c--A)+(l+4c)(A2--2]b'--2c)} .

                '
         + v. 2 {2 ( A + 2 B + c ) ( A 2 - A - 2 B ) + ( A 2 - 2 B - 2 d ) ( l -} 2 as- :• .c. 2 - 2 p. ) } ]/ / D ( p 2 ) '.

                                                          (3•3s•)
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     Is : 2[{(].-yL;c)(A2+A---c)+(A+2B+c)(1.+2A)2}i,n,2

                                                    '          -lr(l+2A-v3A2--2B)(A.2+2A+2B)p2]/D(p2), , (B.3h)

                                                         '                                                      '                                          '                                                  'where '
                            '                              '                                                             '                '
     D(p2') = [{(l+qc)m2+(1+2A+3A2--2B)p2}2+4m2p2(AÅÄ2B+c)21(p2ÅÄ,m2),.

                                                              (3.3a)

                       L          -1[ifhat is, A             have three poXes at

           p2=.m2 (3.4a)
and
               '
  '' p2 . .-M(Å})2

   r- --m2[ {,ij a' B' rt-c,: [ (A+2B+c) 2+( t+2A+3A2 --2B) ( x+4c) }i/2 }/(iÅÄ2A-t- 3A2 --2B) ]2

                                                              (3.4b)

                                             '
      'Our spinor--vectov field V,v describes three kinds of partieles
wThose masses are m, M("), IY[('). [rhe pa]?ticXe with mass m is the

sptn 3/2 paricicZe which we want to have, whereas the pa'intic]es
wi'vh mas$es M(t') a]?e tlae r'edundant spin 1/2 pe'LrticZes whicla'we

must.suppress. For simplieity we impose the foUowing condition
                    'among the parame"uers:

                                              '                                                   '
          A+ 2B +C= O. (3.5)
                                    '                                                           '     ,M(Tt>2.Ni("')2L i+4C2, m2 :- )qi2 . (3.6)
                  . 1+3A+3A, .C

and



                                                          ]e

     A;-,/---ex,vik'2i--ELI`ISI$-livlX2),--?g5kiiilillg.'kÅ}V,), ,(3.7)

             '
 '

 '

     d;,v(iP) =M6vv-(M/3)Yy'Yv+(1/3)(iYuPv+iYvPv)+(4/3M)Pyl%

        "iyxP ), 6pvin- ( i/3) YviY xP xYv-( X/3rn ) (YvY xP xP v+P pY xP xYv>

                                 '                                                            '        "- (2/3m2 >p vp .iyxp x, (3• 8a)
     dgi)(iP) = 12(l+3ii+3A2+c) {2(l+c)Å}(z+3iliiil2+c)1/2(2+3A-c)}yuy.

                                                      '                                                   '       "- 6(i+3iA+3A2+c) {(i+3A'-2C) 'Å}("l+3k++43fi2+c)l/2}(iyyp"+iy.pp)

                            '
                                                               '        + :gitlt{-2Å}(iÅ}3Xi' h3' fi2+c)i/2}p up v+i2(it3A.] 3A2.c) {(2' +3A-'C)

                                                                 '        Å} 2<1.3:43AC?+c)1/2(l+3A+3A2+C) }iypyxPxYv"p' 6iff<miri}"ircrs-{'ny(1+4c)

        Å} ( i", 3/'"'"'..tiiltllliCA 2..c) 1/2 ( 2C-" 3A-1 ) ']' ( Yk'Y Ap xp v'p U'y xl r xy. )

                                               '                                                                 '                                                           '        -" 3.2(l+4c>{"(:+4c)Å}2(ir:tSlilill'[llirrsA++43CA2+c)'i/2(Z"3A'+"3A2"c)}pv{;:gbxn;x•

                                                            '
                                                       '
In Eq•(3•7) the separation to d(+)(ip) and d(-)(ip) in the ,' ,.'

mumerato? of y(p2ÅÄm2) is made before putting (3"6)•

'"  Using the new pararneter, '  ''
          g= -(i+3A+ 3A2+c). (3.g)
insiceact of C, <3,5) is rewvitten a$
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                          '          r•c2 :- r,i2{L';-i-3,(i-t•2A)2/g/} '
                                                          (3.IC)

'll"hen•, to rnake Lv]ne m,ass M of redundant part'ier•/es lnii•n."-•t-L-", i•ve

.Tr, ust :`v a] `e '
  '        '
                                                      • (3.lla)          2A +i F' O
                 '                     '
and

                                                         (3.Ilb)          (; -)- +Oi
                                                     '                            '
Stinee ;iv'e ali"eady have (3.5), (3.ZZa) and (3.IZb) mac-J,an that• thva

irrea"ucÅ}ble conda,tion (2.8) j-s sa"uisx'-=.ca;d in iche :timj-t. I'iowevezn

as is sr,)ec:' tt5,Fid in (3.I lb),we must "vake a limi/t frnoril a posi' 'cive

va]ue of g. ii" we take a iimit f]oom a neg-LeLLuive v•al.ue,euv
    '        'eguattiLon of/ in•otio,n becornes aceausalL. [r/ilv)u"n, it is nott surv" i2/r-.,t-;•t•

whc-2v-he.7n "uhe equation of motion (2.)) wlth (2.8) is cau•sa]. ]-n

orU.er that (2.1) ls obviously causal we m,,usVg assurpe 'uh.a. ]i•mi/ 'u-/

(3.l]b,)• Mih'is faet• may be the reason al" tine di'.fri/-cult•y B) in

usua] :heory. "the same situation exists in the• sLoin one
pa'rticleli).. rrti'ne dil"ficulty B) for `vhe b-D. in' one part' ti eke 'nas

                                    l2 5) '
been repo]?v' ed by iMin"icowski. and Seilek'r''.
                                                    '                              '     A c c o r d i n g t o Pe i e r ls T q u an t i z a tj o n p :n o ee d u -r .e , w e a s s n.'. me'

                                          '
       { vi y(x> , '"';.( >: ' )1 za: i.d1,.< S> tts ( x. --xY ; )rii L)

                                                    '            Åí'' Ldii//)(b)A(x-x's M) + id//'-v-)(b)A(x-x''s M), (3.I2>

                                                              '                                       't"df:Lexfie A(>:k:<f; rn> ztg"- tlk& i.nveips,2nLalf:Lts etiv"st'"i.tca"t afgLr;Lg'ut-."L,.Qzr,) "}t,T,",,2gl'i. ra•,..,.pfi ln,A.,

•]n (3.]2) ii7 we oL ut xo = x6 we be"et exa,ctly Juhc- evmarne- vee.uaioion

as (2.].2). '

     Tt,Te also get



l2

     <o i/ 7i {vy ., ,( ix), "(J, v( xr)}le > =• -i tt yv( 3) Ac(x• -- xTs m>

     '
       + ti-dll,'.'-' )(D)A.(x--xi; rv:i + fi.dSi.,;).(3)ts,(x-xr;. J,vr.].

   + L/2[ S( Xo -' X6 ))d i, .( D) ]A(x -"x'3 m) + 1/2[ E( ).<o "' x6 ), d- IS -v-'` )( "o)] .A.( x' - >1• ' ;• IO

       '                                                           '                                               '       "'- il / 2 [ E( X o "- )( 6 ) , d ii, 'v- ) ( a) ] A ( X - X i ; INI ) , ( 3 • ]- 3' )

                                             '                                                      'where Ac= --(i/2)Ar, is the causa]. delta funetion. InserLvi'ng. the

expx.iession given by (3.8) .into (3.13) we easily see ".• hatt "Jlae

last `vi."iree norinal depenctent te."4ms cancel out. Vher;

     fO Pi { 'ti u( x) i- ll].(x' ) } IO> " i-dv.( a) A. (x-'x' ; rn)

                     '
       + ld$.')<a)A,(x--x'; M) + idS-.)(a)A.(x-xs; )O. (3.14)

                                          . - . -.1".NShe T-p..oottucLu is covariant in spite of the fac".• that eaeia a<d?

inclua7es third--ox•der derivatives. Thus the coyrespondence of'

the canonll'.cal formulation and the covam'ant formulation is

               sestab -i.ished.
                         '
     .So far we have diseussed only free :•"-iLeld equations.,

Florvttever lt is obvious kvhat our theory does not give ]?ise `vo any

diftrticul"c.y j.n the presence of' the interaetfion. IE,?or' exarriplc-,

noxta'raZ depenU.ein"c Hcamillonian s"Jated in C) iocr not :pequi?ed to ge`u-
                  l6)
a cove?iant t[ eory . [rhere ex:Ls"us `viAe u"nltaLry tTansfoxxrnaa"u-ion

which conneets oper'ators, of the Heisenberg yepresetr "U'at:-on wieh

t'nose ol' the interactio'n representa`bion in one•-to-one coi4respondene
                                                [                                                17 )'
rr.enne)2. ttihat is, in Takahashi--Umezawa's notation , we have
                                                     '
                                    '                                                            '                        -1                          [cf] vr(x)S[cfI• (3.]5)       vi(x) =- yij(x/cr) = S
       ..lte.A

Furtherrnove we see from (3.8) L'hat p2 arid p3 'oern,:.s (xeading `u-errns



                                                             l3

at p`rOO) oin" the pi.?opcetg.[zt;or .are suD. ressed b' y -,fr•}.c-ans Qrn 2olne :ci?cc;)z-ence

of 'l l7.e red'u',nQ'.ant spll..',n 1/2 fjelds. ffi:ihe ]?edundcfiLn"u qupi•:•"i l/2 f''i.e]'"ds

play trL,role of -regulator. ri"he]?efore, when g is x"iniL'e, our
                                          'theory is .rJeAc,vrnaZi,zable. "T-n a crtn-.•]eulation oi? eertain oT"eynm•ain

                                                         '--"2 •                                                     ... 1diLa"grarns, we happen to have t,erms sucla as logg , eg -S g ete.,
                                                      '                                   'wlxs`i• ch eannot be removed by the ?enor,malizatlon procedui?e. T`hen.

our tiinteoyy is unÅéenormalizable in the lim•nit•. Iu:owever 'ohls doÅër"s

not nree'aln that we never be able to ealculate higher-o:odeLn

covrcctions. I?inite Tesults may be obtained by !)ear]eangtng v' he
perturbation expansion as was done by Leei8);

 g4. Wave Funetions, Their Ovthonormalities and Coino. leleness.

       '
     rn t] is section, we give exD. licit fo?ms of the lnespeei i•ve-

wa ',r c] . f' un c, tj ons. We denote spin 3/ 2'  wave funct ion tand two kin as

of spin, l/2 wave functions with helicity ? by Ur,y(J.g.. ,rri) and
ur(' ;"l(j.2.,iM-) respective]y. we construct then, from tleie helicity

dia.n'onalized wave funct'ions oi' spin 1/2 and spin 1 partieles,

using the usual composltion law:

       U3/2, ,v (,]P9., rn) = u" (2e., m)e-p-i (E.)., m) (4.] a)

                                                              '       ul/2,y = (1/3)l/2(21/2u+eOp,+ u-eX) (4.]b)

                     .       U-l/2,,,, " (113)1/2(u-'e-y- + 21/2u-eOp) (4.l,)

                                                             '           '       U-.3/2,v "u-"eU , , ,(4/ ad)
                                              '       U//Vll2,.g(l.g.),M) " (-1/3)l/2[--u"<',".vM..) TVI)e. Ctt, (,R.t) -M•)"2l/2U-' (.D.•..,) "'T):eX(IOSx) )i'ri). ]

                            '                                                           (4i.2a)



                                                           l4

                                                              '                                    '       U.SII,)2,u= (i/3)]/2[-2i/2u"eJ + u-e9,] . (4•2b)
                         '
       UÅí/-i v<.]9? M) = U+(.p.?M) ep(wp.?M) . (4.3a)

       USi)2,v" u"ep (ij•3b)
Using. the angular variabies defined as

       o. = p(cosÅësinej sinÅësine, cose), (4.4)
       Nt.M

uÅ} , e:O and ep we have used are given in the forms:

                                                               'M
       u+(e,,m)-[:,snygtky4-ti:3{Iigei+g}.)I/2+mji/2(1e,ig?gi,'Q,eg';)/[(,,..,)i/,..] /ji

                   `"" GY .i9sin(G/2)p);[ (sl.2+m2)Z/2+M]/

                                 ' ' (4.5a>                                                             FP                                                          t-                                                                 '                                   '                                                F           '       , /..e-'iÅësin(e/2) ' ' 'X
, 'u-(g•m) fi?ee]fi$m)i/2 ' ,iOg!'keÅëls31nse,s,2i%,[si2+,s;:s"mlllii'

                                                 YVA

                                                         '
     e:(Eg,m) = (eiÅë/2i/2)<eosecosÅë--isinÅë,cosesinÅë+i.eosÅë,--sine,o)

     ev(sik,m> = (e"'iÅë/2X/2)(-cosecosÅë--isinÅë,-cosesinÅë+iCOSÅëpSl:, ?gbOi

                              '                                   '     eOp(2,m) = --[(g2+m2)i/2/m]csinecosÅë,sinesinÅë,cos6,ip/(..t..2+rn2>Z/2]

              '                                    • .(4 .'6c)     gv(asrn)•= [.p.M, (3it.2+m2)i/2] (4.6d).
                                     Satisfies the equation of     Now we immediately see that Urfioei• cn (2.o but vSÅ},l not, we musE'IAodify uS2 $o as to gaei$thtoy

                                  .                                     '



                                                          ].5

 (2.l) usiÅ}ng the ambiguity of wave Åíunc"vions Ux,,v unde]? the poin'L'

transformation (2.10). "lhat is, the eorrect wave functions for ,

spin 1/2 parts should have the form '
          T , u5fl(.p...? iyTi) = N(')(6p. + ct(')yvy.)(JS3• '(ag•7)

                                        r
Using the adentities
                                       '
       3i/2ysUS"z/)2,v("p..,M) + US.I)2,u(g,,M) = iyyu'(g,M), (4•8a)

                              '                                     '       iypu gl>2 , u( e:, M) = -uÅ}( R., rvI) ,                                                       (4,8b)

       iyuU ::)2 , v(.p.., M) = 3i/2 ys u' (M, iyi) ,                                                       (4.8c)

frOM th fi, ..,.e, ?.:, ?, l.lfi.,:,[i,:ZI,Iil, , [.j.., i.i ,a:d,ihe normaizzatLon eo?:t;z, ..

                                                 '                                                   '                       'ct(si) and N(Å}) are determined. The results are

         .(+).mrm'(1+3A)M, (4.lo.a)
            '

         ct( "-)= l?iii( ii {i 2AKM 2 (4.iob)
            ..
               '                                                           '         N(+) . (l (:i 2m) )Zf2 (-J .n a)

         N( --) . (M( y;;:;m> )i/,2 (4. nb)
             '                          '                                                   '                            '    Xnstead of Ur,p and U"S:) , we define u(ct)(g) by

                       '                                    '          a)         "y (jiL) =U3/2,v(!lk,M), (4.12a)



           (2)          Uv (tl,.), =Uy2,-v(R.,M),

 '
           (3)     , 9v ((SL) " U--i/2,p(l2,.,m))

                 '           (4) ' U•v (.P....) = U..3/2,v(IIi)?M),

                       '   ' ut5)(a,) " u5;3,',(g•M)•

                       '     ' u(,6)(E2.) " uSl>2,v(g,M),

                       T         uS7) (p) "' u573 , v(ER,'M) '

              VNM

and

         ut,8)(.p..) " uSi>i,v(g)M)•

Tne wave fuLlctions for antlpartxcles are

         v rn> = vu rn>          'r, vNS .' i5 Vr) uN."..'

              '         vS,'),.,(wp.,) = ysUS,Å}),(jEl.)

    '      ' "(p"--)(l!)K) -- Ys"(or)(E)a)

Thesefuncl}to.?7S?t,i?:Y..`./h3e)(llit2Og.O."6a.iBZ,`Y

    ' V(vct)(-jEftk)(r">vvuSS)(R,) ra O, -

         if(vct)(epex)(r4)y.vSB)(rJiii) = o

         V(vor)(-gL)(r4)u.v$B)(--jE2K) = e.6.B)

wi Juh

          e.-e f,zi ".1]Iil;Ig.

written as

 relat:ons,

 l6

(4.12"o )

(4.] 2e)

(4.12d)

(4.12e)

(4.I2S)

(4.Z2g)

(4 12h)

(4"1RA>
s ''v"s

(4.13b)

(4.•X3c)

<4.14a)

<4,k4'p)

(4.I4c)

(4.I4d)

(4.Z5)
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and the completeness relations,

          iUr , p(IR.) (Tr , v(I).l> " idpv ( iP > A+ (p ,m) dp o )                                                           (4.I6a)

          3Vr,p("SI)K7r,v('-i!2k) = Idvv(ip)A-(p,m)dpo) - (4•Z6b)

                                                     '          SuS";&IJg,)irSR'•(jiL)--JdSS)(ip)A+(p,M)dp,, .
                                                           (4.z6c)

                1t          SvS"l (-•L21)K7S;l (--jEL) " - fdÅí;)(ip)A-(p,M)dp,, (4.i6d)

where duv and dSi) are those given by (3.8) and A+(p,m) and .

A"' (p,m) are positive and negative frequeney parts oÅí A(b. ,m).
                                      ( Å})                                                        -- 1F-eom (4.16) we can say that d                                                          (ip)                                         derived from A                                and d                                      vv                                                        yv                             vv
are projection operatprs of the spin 3/2 field and t.he tredundan`u-

sptn Z/2 fields. Summing the four relations of (4.16), we have

     • llle,,[uE,C`)(.IiL)IrgOe)(.a) + vli,or)(LÅí.)Vr$ct)(--a)] : jC[d,,.(iD. )A(p,nii)

          + {d 5,'.) (ip ) + d k-.) (ip ) } A(p , M) ] dp o = ( r4 ) i i.• ( 4 . i 7)

Mnaily, it should be ."emarked 'that, because of the identities

(4.8), we have the identity, ' ,
       (6uv + oryuyv)US:l " • -(1/3)1/21[6uv-(l+3ct)yuyv]ysUS;l'

                            , ' (4.Z8)
                                               '
Then, we cannot say that which is which, even if we consider
that the states described by uS;l'are the ones composed of the

spin l/2 state of the spinor and the spin l, O states of the ,

vector., We can say only that there are two kinds of spin l/2

states.



                        '

          g5. Fourier E'xpansion and LSZ Formulas

     Using the orthonormality relations (4.IJ4) and the cornpleteness

relation (4.17), we can expand ipp(x) in terms of the annihilation
operat ors a( ct) (.a) b(") (g) and the cre at ion op er at oT$ a( ct >+ ("t.v.)

b(pt)"(,9s): ' ''
  ' ipv(x) = v-i/2Bei;.RSi;g[a(or)(22.)U(or)(.wt..> ' b(ct)'(kp)v(ct)(-..p..,)3 (5•i>

             ' "Vv
From (2.13), (4.l4) and (5.0, we obtai'n

                                          '                                     '
    ' {a( ct )' ()g) ,a( B) (at )}s{b( or )"( rR) ,b(g)(-Lg,' )}=e.6 .B 6..t.. ,sL p . (5•2a)

     {a(ct )" (..p-' ),b(3) ('--;lil' )}={b( "w)"( r.-Ap),a( B•) (;g.' )}=o. (s•2b)

           '

                            t ttZn (5.2) ect=--l for ct=5,..,,8, aceordingly we should interpret

th+ not as a He]fmitian conjugate but as an adjoint conjugate. Here

we dQn't give an explicit relation between the adjoint conjugate

and the Hemitian conjugatet contrary to the ear]ier work gn the
theory with the negative metn'ci9), since, if•we give the

explicit relation, there anises a question on the manifest
eovariance of the theory20).•

     We deMne the vaeuum state by

              ' act (p) lo>=o, (5•3a)
                   "vv

                bct (..t.) I O ' = O ( 5 ' 3 b )



l9

and one particie state by

                a( ct )'(p) IO>, (5.4 el)
                     tvv

                b(")+(p)Io> (s.4b)
                     AtV

                                                   '                                                               '                                                 '                                                                  /t'and sd on. The bra vector, <, e, is an adjoint congugate toithe ket'

vector. ff'he noym of physical state, fe'r instanee one particle

state, is calculated by using (5.2) and (5.'3) as
        '                 '                                         '                                       '
     `Olafor)(..t.)a(B)+(.,P.. '.)iO' = Eor6ctB6ppt' '' (5'5)

                                   -.-- •                         '
                             'Thus we see that bpth of lower spin particles are quantized with

negative metrie. Substituting (5.l) into (2.15) and integrating

                  ttwith respeet to x, we get total Hamiltonian in Fock repyesentation
                                                            '                                               '                                        '                                                               '                                                        tt                          'SH d5x,i=$g(,g2+mQ)i/2e.[a(9)'(Mt.)a(or)(.,p.) - b(or)(:p; )b(ct)'(-..p")], (5•6)

                       '       IV.                                     '                                                         '

                       rn li'or ct m i,2,3,U,
               riict '= .M for or = s,6,7,s. ' (5'7)'

     By virtue of the covarianee of the [V product and the

orthonormaiities of wave functions discussed in the previous seetion,
'"we have LSZ formuZas:

                               .t     a8gZ(,e.)Tco(x,),,,.] d•(-)"Tto(x,),..Ia5X)(Rk)

                                                              '                                                     '         = -ie.v""i/2Sd4xe-iPX{iÅí")(Aa)Au.(6)[v["v(x)sO(xi),•••], (5•8a)
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    '(-)nT[o(x,)...]aS;i)+(,El) - a83e+(je,)[V [O(xi)•••l• ' <s.sb)

                                '                                                '                                          '                '     .= "fi. Fv .,v-' i/2:j'd4xii [ IFv (x) , o ( xi ) , " •] Ai-,. ( -IS )uC fX ) S,Lt ) eiPX

                                '                                                        '                            'b8ge"(-..p.)T[o(xi)," ] -- (--e)"[il[o(xz)...]b5. .ct)"(:kpL)

                   '
         '
     . .ie.v-i/2Jrd4xeiPXvfict)(p)Avv(3)[r[ ip.(x),O(xi)••• ]
                                                          (5.8 c)

                           tw •                        '                     '                                         '
                        '(-)nli]{o(xi),•••]b5•.ct)('.'...p) - b8uctt)( ::pt )T[O(xi)''']'

                          ' '      '                                                         '                          '     " -iE.v'i/2Jd4x[v[i)u(x),o(xl)...]Av.(-Ei)v5ct)(..t.)e-iPX (5'89)

                                  '                       '                         '                                     '
where n is the nptfuber of thu and thp in O(xl).•. and pv. is the
energy momentum vector with po= (,e.2+m2)i/2, o(xi)... are iocai

operators and cl4x'= dxldx2dx3dxo. Of course, we are interested

only for (5.8) with or = IN4. We have sirriilar Åíormulas for

Retarded products.
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Note added in px'oof

         '
     After corrip]-eting this work Px'ofes$oi? Y. Takahashi kindly

pointed out us the existenee of a elosely related work by

H. Munczel<, ehys. Rev. 164 (1967) 1794.

     Ours is different from his work about the treatments of'

two spin X/2 particies whose masses are denoted by Ml and M2•

rn his work one of the spin l/2 particles is quantized with

positive metrie and the other with negative metric, whereas,

in ours both are quantized with negative metric. His propagator
                                                         'has double pole in the case of MfM2. This is not the case

iri ours .

     Let us discuss the 3reason why these differences occur.

Xntroduedng a and b by

   a = (A+2B+c>/(i+2A+3A2--2B),

   b e [(A+2B+c)2+a+4c)(y2A+3A2--2B)]i/2/a+2A+3A2-2B),-

          '                    '                                     '                                                 'Eq, (3.4b) becomes M2=( aÅ}b)2, Then we have fon'owing four

                          'possibilities of defining Ml and M2:

                   '
     Case A               MI'=-'a+b, M2 =-•a-b,

     Case B MI m--a+b, M2 = atb}
              '     Case C               MI su a-b, M2 m q+b,
               Mi = a--b'i; M2 =-a-6,     Case.D

                                                                '    '7ihe spin i/2 part of AgC, that is,• A;: + dvv/(p2+m2) is obtained

by Vhe uses oL" (3,3a)N(3.3h).•When A = -i, it has the form:



   Case A
                                                    '     61Iilliliil;xi[(-M2+2m)ipYiP.M-\l + (Ml-21n)ipYiP.I'y-Ill,2](my.+2ipy) ,

   Case B

     gT?TiYliliil:tllX2 [(M?."2m)1:pY>P.-M\-t-2 " (Mi"'2rn)ipYiP.il22](my.+2ip.)

                                   '                                                '
The expsessions for the eases C and D are given by replacing

IYIi with --Mi in those of the cases A and B respectively.                                                          Thus
                                                 '                                                           '                                                          'we find that there are two different cgse's. 'The ease A is

                                    '                   'corresponding to Munczek's one and the case B is to ours. Xf

Ml=M2 in our ease, the propagator becomes

     (mYv+2ipv)(iy'p-2m)(myv+2ipv)/[6m2(p2+M12)].

                                             'i!il appears only in the denominator P2+M12. ,This is exactzy

the sarne as what happens for vector mesonii?il+ The diffe'rence

                                                    'between two cases appears when we consider the diagram incZuding

closed loops. '' , -. ,


