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On Harmonic Functions Representable by Poisson’s Integral

By Zenjiro KURAMOCHI

Let R be a Riemann surface with positive boundary and let {R,}
(=0, 1, 2, ---) be its exhaustion with compact relative boundaries OR,.
If an open set G has relative boundary consisting of at most enumerably
infinite number of analytic curves which cluster nowhere in R, we call
G a domain. Let w, ,.;(2) be a harmonic function in R,.;,— (GN(R,,;—R,))
such that w, ,.;(2) =0 on °R,.;—G and w,, ,.;(2)=1 on 9(GN(R,.;—R,))
and let o, ,.;(2) be a harmonic function in R—R,—(GN(R,.;—R,)) such

that wn.n+i(z)=0 on aRO) wn-n+i(z):1 on a(Gf\ (Rn—H'_Rn)) and -aiwn.n-H‘(z)
n
=0on 9R,,;—G. We call lim lim w, ,.,(2) and lim lim o, ,,.;(2)" the har-

monic measure and the capacitary potential of the ideal boundary (G B)
determined by G respectively. We call a function G(z) a generalized
Green’s function, if G(2) is non negatively harmonic in R, the harmonic
measure of (BNE[z€R: G(z)>8]) is zero for 6 >0 and the Dirichlet
integral D(min(M, G(z)) <kM for M< .

We map the universal covering surface R~ of R onto |£|< 1. Then

Theorem 1. Let W(z) be a positive harmonic in R and superharmonic
in R». Then W(z)= U(z) + V(z), where U(z) is a harmonic function in R
representable by Poisson’s integral in |E|< 1 and V(2) is a generalized
Green’s function. If furthermore R has no irrvegular point of the Green's
Junction, then V(2) =0, therefore W(z2) is representable by Poisson’s integral.

Let W(z) be a function in Theorem 1. Then W(z)—S(z) is also
positively harmonic in R—R, and superharmonic in R—F, and
W(z)—S(z) =W’(2) =0 on °9R,, where S(z) is harmonic in R—R, such that
S(z) =W (2) on 2R, and S(z) has M. D. I. (minimal Dirichlet integral).

1) Z. Kuramochi: Harmonic measure and capacity of subsets of the ideal boundary, Proc.
Japan Acad. 31, 1955.

2) Let Ulz) be a positively harmonic function which satisfies D(min (M, U(z))<eo. If U(2)
>Ug(2) for every compact or noncompact domain G, we say U(z) is superharmonic in R, where
U(;-(z)=ll{i£r; U%(2), U¥(z2)=min (M, U(z)) on ¢G and UX¥(z) has minimal Dirichlet integral

over G.
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Then W'(z) is representable by a positive mass distribution as
follows : ®

W(a) = NGz, p)dntp),

By
where B, is the set of minimal points and the total mass g, is given
2
by ds S 5, W'(2) and D(min(M, W(2) <27Mpg,.

R,

First we shall prove for N(z, p). Then

Theorem 2. Let N(z, p) be a minimal function®. Then N(z, p)=
Ulz, p)+ V(z, p), where Ulz, p) is a positive harmonic function representable
by Poisson’s integral and V(z, p) is a generalized Green’s function. U(z, p)
and V(z, p) are functions of at most second class of Baire’s function of p
for fixed z € R—R, with respect to Martin’s topology.®

If sup N(z, p)< oo, our assertion is trivial and in this case by the
boundedness of V(z, p), V(z, p) reduces to constant zero. We shall suppose
sup N(z, p)=oco. Put Gy=E[z€R: N(z, p) >M]. Then G, is a non
compact domain. Consider a harmonic function w,(z) in R,—Gy—R,
such that w,(2) =0 on 9R,+9R,—G,, and w,(z) =1 on 9G,,. Let wy(z)=
hﬂm w,(2). Since N(z, p) has M. 1. D. over R— R,—G,,; among all functions

with values 0 on 2R, and M on 9G,, respectively, N(z, p) =1inm N,(z, D),
where N, (z, p) is harmonic in R,—R,— G,, such that N,(z, p) =M on 9G,,
N.(z, ) =0 on @R, and %N,,(z, $)=0 on R,—G,,. Hence by the maxi-
mum principle N(z, p) = Mw,(z), whence },lgi w,,(2) =0. Map the universal

covering surface (R—R,)” onto |¢|< 1 and consider w,(2) in |{|< 1. Then
wy(2) has angular limits =0 a.e. (almost everywhere) on a set E,, on
|&| =1 where N(z, p) has angular limits<_M. To the contrary, suppose
that there exists a set E of positive measure such that w,(z) has angular
limits >0 on E and N(z, p) has angular limits < M. Then there exists a
closed set E’CE such that mes (E—E)< &, N(z, p)<M—¢E in angular

domain Dg=[arg}§‘——§‘0|<%—8, L eE, |£|>1—¢&] for any given posi-

tive number & Let IV be one of components of D,. Then the image of

3) Z. Kuramochi: Mass distributions on the ideal boundaries, II. Osaka Math. Jour., 8,
1956.

4) See 3).

5) If U(z) has no functions V(z) such that both V(2)>0 and U(z)- V(2)>0 are

harmonic and superharmonic in R— R, except its own multiples, we say that U(z) is a minimal
function.
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G,, does not intersect the above D’. Let H{z) be a harmonic function
in D’ with values 1 on 9D'—E[|¢|=1] and 0 on 9D'nE[|{|=1].
Since 9LV is rectifiable, H(z)=0 on a.e. 9D'NE[|{|=1]. But wy(2) <
H(z), whence w,,(z) =0 a.e. on E,,.

Let N,/(z, p) be a harmonic function in R,—R,—G,.(=E[z€ R: N(z, p)
—>L7) such that N,/(z, p)=0 on 9R,, N,/(z, p)=L on 9G,~R,, N,/ (z, p) =

N(z, p) on OR,—Gp(M<_L) and éa;—iN,,’(z, p)=0on 9R,N (Gy—G;). Then

DRn_GL(Nn,(z’ p))<DRn_GL(N(Zy 17)) .

Since N(z, p) has M.D. 1. over R—G,, N,/(z, p)—>N(z, p) in mean.
Let Uy ,(2, p) be a harmonic function in R,—R, such that Uy, (2, p)=0
on 9R,, Uy (2, p)=N,(z, p) on OR,—G,, and Uy (2, p) =M on OR, NG
In R,—R,—G,;, O<N,/ (2, p) — Upr. .2, p) < Lw,(2). Hence by letting # — oo,
0<N(z, p)— Uplz, p)< Lwyp(z), where Uyl(z, p) is a limit function from
a subsequence (n,, n,,--). Thus Uylz, p) has the same angular limits
as N(z, p) a.e. on a set E,; on |[¢|=1 on which N(z, p) has angular
limits <M. Next let Uy (2, p) be a harmonic function in K,—K, such
that Uy, (2, p) =0 on 9R, and U, ,(z,p) = min(M, N(z, p)) on O9R,. Then
we have clearly lim Up (2, D) =1lim Uj,,(z, p) and Unty, (2, D) > Unr, (2, D)

for M,”™>M,.
Choose a subsequence (#/, n,/, --+) from (n,, n,,--+) such that Uy, (2, p)
converges to Uy,(z, p). Then Uy,(z, p) = Uy, (2, p). Let Ulz, p) =}1_i=r3

Uu(z, p). Then Ulz, p) is a function representable by Poisson’s integral

and Ulz, p) has the same angular limits as N(z, p) a.e. on |{|=1,

because lim w,,(2) =0. Hence such U(z, p) does not depend on the
M =00

subsequences. This Ulz, p) is the function stated in the theorem.

Next we shall show that N(z, p)— Ulz, p) is a generalized Green’s
function. We proved that S N(z, p)ds = lim S N, (2, p)ds® for almost all
3Gy s,

L (i.e. the set of L whose 9G, does not satigfy the above condition is
of measure zero), where N,(z, p) is a harmonic function in R,—R,—G,

such that N,(z, p)=0 on 9R,, N,(z, p) =L on 9G.N R, and éahN,,(z, p)=0

on aRn_"GL.
We call such G, a regular domain. Hence we can suppose without
loss of generality that G, is regular. We see the following assertion

o . .
from éﬁNn(z, »)>0 on 9G,, it is necessary and sufficient condition for

6) sec 3). p. 151,
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the regularity of G, that there exist n, and m, such that SE% N, (z, p)ds
(R-Rpp G
< & for n>n, and m>m, for any given positive number &>0.
Let J,(2) be a harmonic function in R,—R,—(R,N(Gy—G.)) such

that J,(2) =0 on 9G,,, J,(2)=1 on 9G, and 9871]"(2) =0 on 9R,N (G, —G,).
Then (M+(L—M)J,(2))—N(z, p) in mean, because N(z, p) has M.D.L
over G,—G.. Hence lim S aah J(2)ds= S lim %]n(z)ds and there exist

9Gr, G,

m, and n, such that S a%],,(z)ds<6 for n >n, and m >m, for any
(R-R,,) MG,

given positive number €2>0. But N,/(z, p) >(L—M)],(z) in Gy,—G, and

N, (z, p) =M+ (L—M)],(2)) on 9G, implies

(L—M)% 1.2 > %Nn’(z, $) >0 on 9G;.

Hence S lim %N,,’(z, p)ds =lim S %N,,’(z, p)ds.
G (lef
Thus 9G; is also regular for N,/ (z, p).
Let Vy..(2, ) be a harmonic function = N,/(z, p) — U (2, p). Then
Va.n(2, p) is harmonic in R,—R,, V,, (2, p) =0 on OR,+ (9R,—G,,) and

. (5]
Vi o2, ) >L—M in G,. By the regularity of oG, S éﬁN,,’(z, pds
3G MR,
—2m, as n— . Hence there exists a number 7, for any given & such

o
that g %Nﬂ’(z, pds <27 +& for n”>n,.

Put D=E[z€R: 8< Vy (2, )<
M<M]. Tw=E[z€R: Vu,z D)
=M1, Iy=E[2€R: Vy,z p)=38],
I'=9R,ND and I"=9R,NE[z€R:
Va2, ) =M7]. Then D intersects
only 9R,N (Gy,—G;), because N,'(z, p)
—Up 2, )=0 on ©°OR,—G, and
Nz, p)— Up..(2, p) >M on OG, for
L>2M'. Hence I'c9R,n (Gy— Gy).
Now %Nn’(z, »=0 on ©OR,—D,.
Since Uy, (2, p) = max Uy (2, p) =M

on I, aEUM,,,(z, >0 on I' and
n

Fig. 1
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2 2
San Up. (2, p)ds<_ S 3n U (2, pds < S gnNn’(z, pds <2m+¢,

3R,‘ﬁ((,N Gpd BGLﬁRn
2 2
S = ’(z pds= s oy Vi (2, p)ds< 27+ €.
Tar 9Gr MRy,
2 2
0 < S é;i UM.n(z7 p)ds = S 87 UM.n(zy P)ds g S a’; UM.n(z) p)ds<27t+8 .
Tar T/ AR, NGpr
2 2
S on N,/ (z, p)ds = — S n N,/ (z, p)ds = —27n—&.
8 BGLﬁR”
2
§ wales s = | 5, Usle, s
Ty r+1/
el
= — S on Unm.n(2, plds > —2w—¢.
R, NGy
Hence D(min Vi, (2 ), M) = Dp(Vualz, p) = | (NG, ) —
Dy+D+Tpy
Uninl2, D)5 (N "2, B) — Upin(2, p))ds < M’ (4= + 2€) + 8(27 + &)  and

Dy, g, (mm (VM,,,(z, D), M) < M 4= +28) + 827+ &), for every m (for every
n_>1).

Let n—oo, then N,/\2, p) > N(z, p) in R—R,— G, Uy (2, p)— Unlz, D),
Va2, ) = Vi{z, p) and derivatives of V,, (2, p) —derivatives of V iz, p).
By letting n—co and then §—0 and é—0, Dy g, (min(Vy(z, p), M)
< 4=M.

Let L—c and then M— . Then Uy(z, p) 1 Uz, p) and V(2 p) |
Viz, p) and then by letting m— oo, we have

DR—RO(V(Z, D), M) <4=M’ .

On the other hand, clearly V(z, p) =Nz, p)— Ulz, p) has angular limits
=0 a.e. on |{|=1. Hence V(z, p) is a generalized Green’s function.
Since Upylz, p) =1lim Uy, (2, p) = lim U, (2, p), where Uj, (2, p) is a

harmonic function in R,—R, such that Uj,,(z, p) = min (M, N(z, p)) on
OR,+9R,. Hence Ul iz, p) < Ui .(2, p) on OR,, whence Uy (2, p) |
Uu(z, p). Therefore there exists a number #, such that Ujylz, p) <

a2, P)—E for m_>mn, for any given positive number & Next since
N(z, p) is a continuous function of p for any point z € R— R,, there exists
a number 9§, such that

IN(Z, P)_‘N(z, p]) |</(S on aRn for 8(p) p])<80
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Hence Up(z, p) = Uy (2, D) —E= Up (2, p;)—28 = Uplz, p;)—26.

Thus Uyz, p) is an upper semicontinuous function of p, whence Vyp(2, p)
is a lower semicontinuous function of p by the continuity of N(z, p).
Uulz, p) t Uz, p) and Vylz, p) | V(z, p) imply that Ulz, p) and Vi(z, p)
are at most second class of Bairve's functions.

Properties of generalized Green’s functions.

Theorem 3. Let V(z) be a generalized Green’s function such that
D(min(V(2), M)) <=M. Let V'(z) be a non negative harmonic function
such that V'(2) <V(z). Then V'(2) is also a generalized Green’s function
such that D(min(V(2), M)) <=M.

Put D=E[z€R: V'()<M and V(z)_>M]. Let V) ,..(2) be a harmonic

function in R,,;,—R,—E[z€R: V'(2) >M]

DRpi —(Dn(R,,;—R,)) such that V, ,.(2) =
V'(z) on OR+(E[z€R: V(z) M]1nR),
(G,

‘ oy Vanii®)=0 on OR,NnD and V,.(2)

=V(z) on 9OR,;,—E[zeR: Vz) >M].
Then by the Dirichlet principle
’ D(minM, V,, ,.:(2)) < D(min (M, V(2))
ORn for every ¢ and n.
Next clearly lim lim V, ,:(2) = V(z) exists
Fig. 2 and V(z) has angular limits < V(2) a.e.
where V(z) has angular limits <M. But
V(2) has angular limits =0 a.e. on |¢|=1, whence V(z)= V’(z) and
D (min (M, V'(z)) < D(min (M, V(z)).
Hence V’(z) is a generalized Green’s function.
Theorem 4. Let V(2) be a generalized Green’s function and put
Ry=E[z€R: V() >8] and D,y;=E[2€ R: V(2)>>M]. Then D,, determi-
nes a set of the ideal boundary of capacity zero.

Let V, ,.:(2) be a harmonic function in (RsNR,.;)— ((R,.;—R,) "\ D,,)
such that V,, ,.;(2)=0on 9R;nR,,;, V, ,.:(2) =1 on 9(Dy,N (R,,;—R,)) and

83 V,..2)=0 and OR,,;~ (Ry—D,). Then by the Dirichlet principle
n

° 1 27M
on Vamil@)ds =DV, ,.:(2) < a7—57D(V(2)) = “(]\Z;fg)z

DA N (Ry+;— Ry
for every ¢ and #,
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and clearly V, ,.:(z) converges to V,(z) in mean as 7— oo.

o) o
S?n (Vn,n+i(z) - Vm,n+z(2)) V n+z(z) S _a—n V,,,,,-;_,‘(Z)ds
DN (Rpyti~ Ry
- % Vo niil2)ds = DV, i) =DV, s(2)), for n<m< ni.

Since V,, ,.:(z) = V,(2) in mean, we have

D(V,(2)—V,(2), V,(2)) = D(V,(2)) —D(V,,(2)) and D(V,(2)—V,(2)) =
D(V,(2))—D(V,,(2)).
Hence V,(z) converges to a function V*(z) in mean as #n—> oo.
Map the universal couvring surface Ry of R; onto [£|< 1. Then V*(z)
has angular limits = 0 a.e. on |§|=1 by that V(z) has angular limits =3§

a.e. on |[¢|=1. Hence V*(z)=0. Let F be a closed arc on 9R;. Let
®, .+i(2) be a harmonic function in Ry;nR,,;—((R,.;,—R,) " D,,) such that

Sw
C’-’nwﬁ—i(z):O on F’ mn.n+i(z):1 on a(DMr\ (Rn—H—Rn)) and —Mﬂ (Z) 0
on 9R, ;—D,,. Then by the Dirichlet principle
D((Dn,n+i(z)) é D(Vn.n%—i(z)) .
We see as above that o, ,. ;(2) >,(2) in mean and ®,(2) - ®(2) in mean

and by V,(2) —V*(2) in mean. We have D(»(2)) < D(V*(2)) <0.
Thus D,, determines a set of the boundary of capacity zero.

Theorem 5. Let V(2) be a generalized Green’s function. Then

S V(z)ds=Fk on every miveau curve, where k is a constant such that

D(min (M, V(z)) =Mk.
Let »,(2) and D,, be in Theorem 4. Let »,’(z) be a harmonic function
in Dyn(R,—R, )+ (R;NR,) such that »,’(2)=0 on FNR,, »,/(2)=1 on

/

5
Dyun®K, and 5, (=0 on (@R,"R, )+ (@R,, —Dy) + @Dy N (R,—R,,))
—F. Then clearly

D(w,'(2)) < D(w,(2)),

whence by Theorem 4 v,(2) >0 as #— co. Hence there exists for any
given large number 7, a number # and a harmonic function }(z) in
(RsN R, )+ (OR, — Dy) + @Dy (R,—R,)) such that o}(z2)=0 on F,

Ow*
%" (2)=0 on (OR;NR,)—F+ @Dy (R,—R,))+ (@R, —Dy), o}(2)=T on

a *
OR,AD,, and S 2 (2) =

FMRy,
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Put re® =exp (on(2) +id;(2)), where &,(z) is the conjugate function

o
of wi(z). Put L(»)= S ]871 V(2) ‘ rd0, where the integration is taken over

((RsNR,)) + (Dy—Dy,)) N (E[2 € R; wn(2) =logr])(M<M,).
Suppose L(r) >¢&, for every r. Then

r
< Sg {(a“a/*:,i)>z+r2<a*‘%>zrdrd0
Dp-Dy,
< Dry-Dpr,(V(2)) < o0

é n
R* Let T—co. Then D(V(z))—cs. This

is a contradiction. Hence there exists
9Rno a sequence {7;} such that L(r,)—0.

Fig. 3 . oV o)
Since o (2)<0on 9Dy, and on V() >0

o 2
on 9D,,. Hence k= S a—nV(z)ds= S on V(z)ds and Doy, (V(2)) =

D s aDMZ

k(M,—M). Hence we have the theorem.

Lemma 3. Let Vi(z) be a positive harmonic function (not necessarily
a generalized Green’s function) in R—R,. Let G and G’ be non compact
domains such that R—R,=G+G'.> Let ,V&(2)(,V&(2)) be the lower (upper)
envelope of super (sub) harmomic functions larger (smaller) than V(z) in
GN(R—R,). Put V?;(z)zlinm JVE(2) and V%(z)=liﬂm VE&2). Then

WVel2) = Ve(z) and ¢(VE(2)) =0.

Let V, ,..:(2) be a harmonic function in R,+ ((R,,;—R,) NG)—R, such
that V,,.:(2)=0 on 9R,+(©R,,;,—G) and V, ,.;(2)=V(2) on 9GN (R, ;—
R,)+GN(R—R,). Then for every GN(R—R,) by V,,.:(2) 1 V.(2) and
by Gi(¢, 2) 1 G(¢, 2)

o
m V,,0i2) = V,(2) = | V,(6)5,G(¢, 2)ds,

AGMN(R-R,+(GMIR,)

where G;(&, 2) and G(¢, z) are the Green’s function of R, ,—R,—(Gn
(R,.;—R,) and R—R,—(GNn (R—R,)) respectively.

7) G means the closure of G.
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(]
Since V,(2) | Vi(z), Vgiz)= S Ve€)5,GE, 2)ds.
W(GN(R=R,)+(¢MIRN)
Next let V. ,,;/2) be a harmonic function in R,+ ((R,,;—R,)"NG)—R,
such that V/ ,..(2)=0 on 9R+(9R,,,—G) and V, ,.(2)=Vs() on
(6GN(R,.;—R,))+(GNOR,). Then

(6]
lim V4,2 = | Va(0) 5,6 2ds,
i.e. lim V;,n+i(z);V3(z) for every #, hence

¢(V&(z)) = Vi(z) . (1)

Let V,,..(2) be a harmonic function in R, ,—((R,.;,—R,)NG)—R,
such that V,,,;(2)=0 on OR,+(@R,NG)+ (OGN (R,,;—R,) and V,,.:(2)
=V(2) on ©R,,;CG’. Then

Vie) =V, .i2)+V,,.:(2), which implies
Viz) = VZ(2)+ VEi(2) . (2)

From (1) we have V(z) = &(VE&(2) + VE&(2)) + VEi(2)
= &(VE(2)) + &(VE () + Ve (2),

whence by (1) and (2) we have
2(Véi(z) =0. (3)

Let V(z) be a generalized Green’s function. Let G(z, q) be the
Green’s function of R—R, with pole at g. Put G=E[z€R: G(z, q) >k]
and G'=E[z3>R: G(z,q)<k]. Then V(2)=V&(2) + V& (). We shall
study the properties of V& (2).

Lemma 4. Let V(z) be a generalized
Green’s function and put G=E[z€ R:G(z, q)
>k] and G =E[z€R: Gz, q< k] and
Dy=E[zeR: VE&(2) >M]. Let HX(z) be
the lower envelope of superharmonic function
larger than min (M, VE&/(2)) on G'"Dy. Then

Br_n HX¥(z) = Vii(2) .

For simplicity denote VE&(z) by H(z).
Let ,HY(z) be a harmonic function in
R,—R,— (Dy,nG’) such that ,HX(z)=0 on Fig. 4




112 Z. KURAMOCHIL

OR,+9R,~ (DynG) and HY@=M on 2DunG). Let JHY(2) be a
harmonic functlon in R,—R,— (DNnG) such that HGM 12) =0 on 9R,+ (PR,

— (D" G)), ,,HM(z) =M on 2D,,nG and HM(z) H(z)—M on 9GnN D,,.
Then cleary

lim HM(2) < H(z) <lim HY(z) +lim ¥ (2)
and
lim (lim JY(2) < 4(H(zZ) = E(VE@) =0.

Hence .
Vé&iz) = H(z) = lifn lim HY(z) = lim H¥%(2) .

Theorem 6. Let V(2) be a generalized Green’s function such that
D(min M, V(2)) <M=. Then by Lemma 3, V(2)=Vi(2)+ VE&I(z), where
G'=E[z€R: G(z q<kE].

o [

Then VE&(q) =

Clearly V(2) = V¢&(2) and V(2) = V&(2) = 0. If VE&(2) =0, our assertion is
trivial. Suppose VE&(2) >>0. Then by Theorem 3, V& /(z) is also a gene-
ralized Green’s function such that D(min (M, VE&(2)) <M.
Next by Lemma 3

V&(2) = H(z) = lim lim ,H¥(z) and H(z) = H¥(z) = lim ,HX(2) .

M=o n

Hence by Theorem 5

2 o

ADpMNGH Dy

where D,=E[z€R: H(z) >M].

Since gs=EFE[z€R: HX(2) >0|CE[z€R: H(z) >8], (E[z€ R: HX(2)
—>L]=)D,NG" determines a set of the boundary of capacity zero for
L>6 by Theorem 4. Hence by DHH(z))< o over R—R,—(DynG),
we can prove as in Theorem 5

2 ()
S a*ﬂHé”,(z)ds = — S a*an{(z)ds,

Ty ADpMNGH

where I's=E[z€ R: H¥(z) =4¢].
Let G;(2, g) be the Green’s function of gsn(R—R,). Then D(G;(z, g))
<o over a neighbourhood of the ideal boundary. Hence there exists
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a sequence of curves {I';} such that S ‘aaﬁ Gs(z, q) ’ds—>0 as i— oo and

T;"\Dpy
{I';}} clusters at the ideal boundary
as i—oco and every I, separates the
boundary determined by D, from gq.
Let C=9(D,nG) and C; be the
part of C; contained in the domain
>¢q separated by I'; and C/=C—C,.
Then

2
HE(2) 5, Gs(z, q)ds =

C,'-I'C,”+7+I‘8

)
Gs(z, q) 5, He!(2)ds,

C+ q+1"5

Fig. 5

2 2 2
M S 5, Cs(2, Q)ds+2mHE () + 6 S 5, Gs(2, @)ds = SGa(z, 9) 5, H\2)ds .

C;+Cy 1‘5 C

But the first term of the left hand side —-0 as i— « and the remaining
terms don’t depend on ¢. Hence by letting 6—0 and by Gs(z, q) 1 G(z, q),
we have

Gl
2mHE(q) = S Gz, 9) 5, Hi(2)ds < k= ,
C

because G(z, ¢) <k in G'. Then by letting M— o

Hi) = Vela) <+ .

Put V&(2) =V*#(z) and V&(2) =V’*(z). Then by Theorem 6, V'*(2)
—0 as £—0. Then we have

Theorem 7. Every generalized Green’s function V(2) is divided into
two parts such that

V(z) = V¥(2) + V'*(2) and V(z) =lim V**(z) .

Remark. Kz, p,) = G((pz 1;‘)

onic function. Martin® defined ideal boundary points by using above
functions and prove that every positive harmonic function is representable

(p, is a fiexed point) is a positive harm-

8) R. S. Martin: Minimal positive harmonic functions. Trans. Amer. Math. Soc. 39, 1941.
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by a unique mass distribution » as follows: SK(z, pdv(p), where B, is

By
the set of minimal points. If lim G(p;, g) >0 as p; tends to a boundary

point p and K(z, p;) — K(z, p), we call p an irregular boundary point. In
this case, K(z, p) is a constant multiple of G(z, p) = limG(z, p;). We

denote by I, the set of Martin’s boundary point p such that lim G(z, ¢q) > k.
Zp

Then V**(z) is represented by a mass distribution » on I,. Hence by
Theorem 8 a generalized Green’s function is represented by a mass distri-

bution » on I=\/I,.
(>0

Theorem 8. Let W(2) be a positive harmonic in R—R, and super-

harmonic function in R— R, vanishing on OR,. Then

W) = | N pdup) = | U, (o) + | Ve, pduis) = U@ + Vi),

where U(2) =S Ulz, p)du(p) is a harmonic function representable by Pois-

son’s integral and V(2) = \ V(z, p)du(p) is a generalized Green's function.

Since 0< Ulz, p) <N(z, p), family {U(z, p)} is uniformly bounded
in every compact domain in R—R, and the partial derivatives of them
are equicontinuous and AU(z, p) =0, hence U(z) and V(z) are harmonic
in R—R,.

For a harmonic function H(z) define HM(2) = lim HM(z), where H(z)
is a harmonic function in R,—R, such that HX(z) = min (M, H(2)) on
JR,+9R,. Then clealry M(HM(z)) =HM(z). Since 0< Uiz, p) <Nz, p)
and UM(z) 1 U(z, p) as M 1 -, whe have

U = | UGz, pldu(p) = lim | U@, pduip) <lim | | Nz, p)dutp) |

= lim lim W (z),

M= n

where WHM(z) is a harmonic function in R—R, such that WM(z) =
min (M, W(z)) on O9R,+92R,. Now lim lim WM(z) = W?(2) is representable

by Poisson’s integral. 0<_U(2) < W*(z) implies the Poisson’s integrability
of Ulz).
By the Remark V(z, p) =S K(z, q)d»(g), whence V(2) =S Viz, p)du(p)
I

=S K(z, g)dr(q). Hence there exist #n, and k, such that

I

[ vie, pann) < | K, ganig) +e (5)

Ig,
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for ze R,—R,, n<n, and k< k, for any given positive number & where
A is the restriction of A on I,.

Denote by (SK(z, g)d\'(g))7, the lower envelope of superharmonic
I
functions larger than S K(z, 9)d\'(q) in GN{R—R,). Put ( g K(z, 9)d\ (q)),
I Ip,
= lim (SK(Z, @d\'(¢))?,. Then as in Lemma 3 and Theorem 2 it is

Ip

proved that ( SK(z, q)d\N (@) = ( g K(z, g)d\ (¢));, and ( SK(Z’ q)d\ (q)) has
Ip Ip Ip,
angular limits =0 a.e. on the ideal boundary®. In (5) let &—0. Then

SK(z, q)d\(g) = S Viz, p)dp(p) has angular limits =0 a.e. on the ideal
bonndary. Hence U(z)=$ U(z, p)di(p) has the same angular limits as
g N(z, p)dp(p) a.e. on the ideal bounary. Thus by Poisson’s integrability
of U(z) and W?*(z), we have U(z)=W?(2) and W(z)— W?(z)= jV(z, pPYdu(p).
Now W (z) — W?(2) =ﬂ}1/£130 li"m WM (z), where W’¥(z) is a harmonic function
in R,—R, such that W'(z) =0 on 2R, and W} (z)=W(z)— W (2) on
OR,. Since N(z, p) is a continuous function of p for z € R, there exists
a sequence {W,(2)} m=1,2,---) of the form W, (2) =i‘,c,-N(z, ) (c; >0,
SV =y = Sd;s(p)) such that W,(z) —W() in R—R,. On the other

hand, let V™, (z) be a harmonic function in R,—R, such that V¥,(2) =0
on OR, and VX, (2) = min(W"(z)—M’, 0) on OR,. Then there exists a
sequence {V (z)} which converges to lim W/ (z) as n— oo and m — oo.

Since VM. .(2) is constructed from W, (2) =:‘—‘_,c,-N(z, p), we can prove
by the method used for V(z, p) and N(z, p) that D(min (M, V}.(2)) <
47 (X c)M for M'< M. Hence by letting #n— 0, m—>oc and M—co
we have

D (min (M, V(2)) = D(min (M, lim limm VM (2))
g;im lim D (min (M, V¥,.(2)) < 4= (X c) M.

=c0 mn

Hence SV(z, p)du(p) is a generalized Green’s function. We have Theorem 8.

Lemma 5. Let V(2) be a generalized Green’s function in R—R, such

9) We map the universal covering surface of (R—Ry) onto |{|<{1l. If the function U(z)
has angular limits=0 a.e. on the image of the ideal boundary on |{|=1. We say simply
U(z) has angular limits=0 a.e. on the ideal boundary.
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that D(min (M, V(2)) <M. Then there exists a uniquely determined gene-
ralized Green's function V*(2) in R such that D(min (M, V*(2)) < M= and
sup (V*¥(2)) —V(2)) < oo.

Since OR, is compact, there exists a contant L such that O<a% V(2)

<L on9R,. Let »(2) be a positive bounded harmonic function in R—R,
such that w(2) =1 on 2R, and w(2) has angular limits =0. a.e. on the
ideal boundary of R—R,. Put &(z)=1 in R, and &(2) =w(2) in R—RK,.
Then V(2)+K&(z)(K>>L) is a superharmonic function in R. Let V;(2)
be a harmonic function in R, such that V3;(z)=7V(z) on 9R,. Then
V() <Vi2) <V(2) + Ko(2). Choose a subsequence (#,,#,,,:::) so as
Vi(2) converges to V*(z). Then

Vi) L V¥(@2) < V(2) +Ka(z) .

Hence V*(z) has angular limits =0 a.e. on the boundary of R and by
sup (V¥(2)— V(2))< o, we see that such V*(z) does not depend on the
above subsequence and V*(z) is uniquely determined.

Clearly D(min (M, V(2)) < D (min (M + K, V(2) + Kwo(2)), hence
D (min (M, V(z)) <2D(min (2M, V(2)) +2D(«(2)) < 107zM, for large M.

But both E[z€ R—R,, V*(z) >6] and E[z23>R—R,, »(z) >9d] determine
sets of the boundary of capacity zero,”” whence as in Theorem, we have

o
S n V*@)ds =k <107,
C
for every niveau curve C of V(z2) and D(min (M, V*(z)) <10xM for every
M. Thus V*(2) is a generalized Green’s function.

Proof of Theorem 1. Let W*(z) be a harmonic and superharmonic
function in R. Let S(z) be a harmonic function in R—R, such that
S(z)=W=*(2) on OR, and S(z) has M.D.1. over R—R,. Then S(z) is
bounded and W*(2)—S(z) =W (2) =U(2) +V(2) in R—R, in Theorem 9.
Let Uf(2) be a harmonic function in R, such that U#¥(z) = U(z) +S(2) on
9R,. Let V}¥(2) be a harmonic function in Lemma 5. Then W*(z) =
U#¥(2) + V¥ (z). Choose a subsequence (n,, #,, ---) such that both U¥(z2) and
V) converge to U*(2) and V*(z) respectively. Then U*(2) is repre-
sentable by Poisson’s integral and U*(2) has angular limits as U(z) +S(2)
a.e. on the boundary of R—KR,, whence U*(z) does not depend on the
above subseqgence. Thus W*(2) = U*(2) + V*(2).

10) See 3) or Mass distributions. III (in this volume) (Properties of functiontheoretic
equilibrium potential).
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Apply our result to a unit-circle |z|< 1. Then we have the following

Proposition. Let U(z) be a logarithmic potential such that the
total mass is bounded and whose mass does not exist in |2|<1. Then
the potential U(z) is representable by Poisson’s integral in |z|<{1,
because in this case |[z|=1 consists of only regular points of the Green’s
function and V(z) =0.

(Received March 20, 1958)








