

Title	On harmonic functions representable by Poisson's integral				
Author(s)	Kuramochi, Zenjiro				
Citation	Osaka Mathematical Journal. 1958, 10(1), p. 103- 117				
Version Type	VoR				
URL	https://doi.org/10.18910/8990				
rights					
Note					

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

On Harmonic Functions Representable by Poisson's Integral

By Zenjiro KURAMOCHI

Let R be a Riemann surface with positive boundary and let $\{R_n\}$ $(n=0,1,2,\cdots)$ be its exhaustion with compact relative boundaries ∂R_n . If an open set G has relative boundary consisting of at most enumerably infinite number of analytic curves which cluster nowhere in R, we call G a domain. Let $w_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-(G\cap(R_{n+i}-R_n))$ such that $w_{n,n+i}(z)=0$ on $\partial R_{n+i}-G$ and $w_{n,n+i}(z)=1$ on $\partial (G\cap(R_{n+i}-R_n))$ and let $\omega_{n,n+i}(z)$ be a harmonic function in $R-R_0-(G\cap(R_{n+i}-R_n))$ such that $\omega_{n,n+i}(z)=0$ on ∂R_0 , $\omega_{n,n+i}(z)=1$ on $\partial (G\cap(R_{n+i}-R_n))$ and $\partial \omega_{n,n+i}(z)=0$ on $\partial R_{n+i}-G$. We call $\lim_n w_{n,n+i}(z)$ and $\lim_n w_{n,n+i}(z)$ the harmonic measure and the capacitary potential of the ideal boundary $(G\cap B)$ determined by G respectively. We call a function G(z) a generalized Green's function, if G(z) is non negatively harmonic in R, the harmonic measure of $(B\cap E[z\in R:G(z)>\delta])$ is zero for $\delta>0$ and the Dirichlet integral $D(\min(M,G(z))\leq kM$ for $M<\infty$.

We map the universal covering surface R^{∞} of R onto $|\xi| < 1$. Then

Theorem 1. Let W(z) be a positive harmonic in R and superharmonic in \overline{R}^{2} . Then W(z) = U(z) + V(z), where U(z) is a harmonic function in R representable by Poisson's integral in $|\xi| < 1$ and V(z) is a generalized Green's function. If furthermore R has no irregular point of the Green's function, then V(z) = 0, therefore W(z) is representable by Poisson's integral.

Let W(z) be a function in Theorem 1. Then W(z)-S(z) is also positively harmonic in $R-R_0$ and superharmonic in $\overline{R-R_0}$ and W(z)-S(z)=W'(z)=0 on ∂R_0 , where S(z) is harmonic in $R-R_0$ such that S(z)=W(z) on ∂R_0 and S(z) has M. D. I. (minimal Dirichlet integral).

¹⁾ Z. Kuramochi: Harmonic measure and capacity of subsets of the ideal boundary, Proc. Japan Acad. 31, 1955.

²⁾ Let U(z) be a positively harmonic function which satisfies $D(\min(M, U(z)) < \infty$. If $U(z) > U_G(z)$ for every compact or noncompact domain G, we say U(z) is superharmonic in \overline{R} , where $U_G(z) = \lim_{M \to \infty} U_G^M(z)$, $U_G^M(z) = \min(M, U(z))$ on ∂G and $U_G^M(z)$ has minimal Dirichlet integral over G.

Then W'(z) is representable by a positive mass distribution as follows: 3)

$$W'(z) = \int_{B_1} N(z, p) d\mu(p),$$

where $B_1^{(4)}$ is the set of minimal points and the total mass μ_0 is given by $ds\int\limits_{\partial B_1}\frac{\partial}{\partial n}W'(z)$ and $D(\min(M,\,W(z))\leq 2\pi M\mu_0$.

First we shall prove for N(z, p). Then

Theorem 2. Let N(z, p) be a minimal function⁵⁾. Then N(z, p) = U(z, p) + V(z, p), where U(z, p) is a positive harmonic function representable by Poisson's integral and V(z, p) is a generalized Green's function. U(z, p) and V(z, p) are functions of at most second class of Baire's function of p for fixed $p \in R - R_0$ with respect to Martin's topology.⁴⁾

If sup $N(z, p) < \infty$, our assertion is trivial and in this case by the boundedness of V(z, p), V(z, p) reduces to constant zero. We shall suppose sup $N(z, p) = \infty$. Put $G_M = E[z \in R: N(z, p) > M]$. Then G_M is a non compact domain. Consider a harmonic function $w_n(z)$ in $R_n - G_M - R_0$ such that $w_n(z) = 0$ on $\partial R_0 + \partial R_n - G_M$ and $w_n(z) = 1$ on ∂G_M . Let $w_M(z) = 0$ $\lim w_n(z)$. Since N(z, p) has M. I. D. over $R-R_0-G_M$ among all functions with values 0 on ∂R_0 and M on ∂G_M respectively, $N(z, p) = \lim_{n \to \infty} N_n(z, p)$, where $N_n(z, p)$ is harmonic in $R_n - R_0 - G_M$ such that $N_n(z, p) = M$ on ∂G_M , $N_n(z, p) = 0$ on ∂R_0 and $\frac{\partial}{\partial n} N_n(z, p) = 0$ on $\partial R_n - G_M$. Hence by the maximum principle $N(z, p) \ge M w_M(z)$, whence $\lim_{M \to \infty} w_M(z) = 0$. Map the universal covering surface $(R-R_0)^{\infty}$ onto $|\zeta| < 1$ and consider $w_M(z)$ in $|\zeta| < 1$. Then $w_M(z)$ has angular limits = 0 a.e. (almost everywhere) on a set E_M on $|\zeta|=1$ where N(z, p) has angular limits $\langle M \rangle$. To the contrary, suppose that there exists a set E of positive measure such that $w_M(z)$ has angular limits > 0 on E and N(z, p) has angular limits < M. Then there exists a closed set $E' \in E$ such that mes $(E-E') < \varepsilon$, $N(z, p) < M-\varepsilon$ in angular domain $D_{\varepsilon} = [\arg|\zeta - \zeta_0| < \frac{\pi}{2} - \varepsilon, \zeta_0 \in E', |\zeta| > 1 - \varepsilon]$ for any given positive number ε . Let D' be one of components of D_{ε} . Then the image of

³⁾ Z. Kuramochi: Mass distributions on the ideal boundaries, II. Osaka Math. Jour., 8, 1956.

⁴⁾ See 3).

⁵⁾ If U(z) has no functions V(z) such that both V(z)>0 and U(z)-V(z)>0 are harmonic and superharmonic in $\overline{R-R_0}$ except its own multiples, we say that U(z) is a minimal function.

 G_M does not intersect the above D'. Let H(z) be a harmonic function in D' with values 1 on $\partial D' - E[|\zeta| = 1]$ and 0 on $\partial D' \cap E[|\zeta| = 1]$. Since $\partial D'$ is rectifiable, H(z) = 0 on a. e. $\partial D' \cap E[|\zeta| = 1]$. But $w_M(z) \leq H(z)$, whence $w_M(z) = 0$ a. e. on E_M .

Let $N_n'(z, p)$ be a harmonic function in $R_n - R_0 - G_L (=E[z \in R: N(z, p) > L])$ such that $N_n'(z, p) = 0$ on ∂R_0 , $N_n'(z, p) = L$ on $\partial G_L \cap R_n$, $N_n'(z, p) = N(z, p)$ on $\partial R_n - G_M(M < L)$ and $\frac{\partial}{\partial n} N_n'(z, p) = 0$ on $\partial R_n \cap (G_M - G_L)$. Then

$$D_{R_n-G_L}(N_n'(z, p)) < D_{R_n-G_L}(N(z, p))$$
.

Since N(z, p) has M. D. I. over $R-G_L$, $N_n'(z, p) \to N(z, p)$ in mean. Let $U_{M.n}(z, p)$ be a harmonic function in R_n-R_0 such that $U_{M.n}(z, p)=0$ on ∂R_0 , $U_{M.n}(z, p)=N_n'(z, p)$ on ∂R_n-G_M and $U_{M.n}(z, p)=M$ on $\partial R_n\cap G_M$. In $R_n-R_0-G_M$, $0< N_n'(z, p)-U_{M.n}(z, p)\leq Lw_n(z)$. Hence by letting $n\to\infty$, $0< N(z, p)-U_M(z, p)< Lw_M(z)$, where $U_M(z, p)$ is a limit function from a subsequence (n_1, n_2, \cdots) . Thus $U_M(z, p)$ has the same angular limits as N(z, p) a.e. on a set E_M on $|\zeta|=1$ on which N(z, p) has angular limits < M. Next let $U_{M.n}'(z, p)$ be a harmonic function in R_n-R_0 such that $U_{M.n}'(z, p)=0$ on ∂R_0 and $U_{M.n}'(z, p)=\min(M, N(z, p))$ on ∂R_n . Then we have clearly $\lim_n U_{M.n}(z, p)=\lim_n U_{M.n}'(z, p)$ and $U_{M.n}(z, p)>U_{M_1.n}(z, p)$ for $M_2>M_1$.

Choose a subsequence (n_1', n_2', \cdots) from (n_1, n_2, \cdots) such that $U_{M_2,n'}(z, p)$ converges to $U_{M_2}(z, p)$. Then $U_{M_2}(z, p) \geq U_{M_1}(z, p)$. Let $U(z, p) = \lim_{M \to \infty} U_{M}(z, p)$. Then U(z, p) is a function representable by Poisson's integral and U(z, p) has the same angular limits as N(z, p) a.e. on $|\zeta| = 1$, because $\lim_{M \to \infty} w_M(z) = 0$. Hence such U(z, p) does not depend on the subsequences. This U(z, p) is the function stated in the theorem.

Next we shall show that N(z,p)-U(z,p) is a generalized Green's function. We proved that $\int\limits_{\partial G_L} N(z,p)ds = \lim\limits_{n \to \infty} \int\limits_{\partial G_L} N_n(z,p)ds^{\circ}$ for almost all L (i. e. the set of L whose ∂G_L does not satisfy the above condition is of measure zero), where $N_n(z,p)$ is a harmonic function in $R_n-R_0-G_L$ such that $N_n(z,p)=0$ on ∂R_0 , $N_n(z,p)=L$ on $\partial G_L \cap R_n$ and $\frac{\partial}{\partial n}N_n(z,p)=0$ on ∂R_n-G_L .

We call such G_L a regular domain. Hence we can suppose without loss of generality that G_L is regular. We see the following assertion from $\frac{\partial}{\partial n}N_n(z,p)>0$ on ∂G_L , it is necessary and sufficient condition for

⁶⁾ sec 3). p. 151.

the regularity of G_L that there exist n_0 and m_0 such that $\int_{-\partial n}^{\partial} N_n(z, p) ds$

 $<\varepsilon$ for $n>n_0$ and $m>m_0$ for any given positive number $\varepsilon>0$. Let $J_n(z)$ be a harmonic function in $R_n-R_0-(R_n\cap(G_M-G_L))$ such that $J_n(z)=0$ on ∂G_M , $J_n(z)=1$ on ∂G_L and $\frac{\partial}{\partial n}J_n(z)=0$ on $\partial R_n\cap(G_M-G_L)$. Then $(M+(L-M)J_n(z))\to N(z, p)$ in mean, because N(z, p) has M. D. I. over G_M-G_L . Hence $\lim_n\int\limits_{\partial G_L}\frac{\partial}{\partial n}J_n(z)ds=\int\limits_{\partial G_L}\lim\limits_n\frac{\partial}{\partial n}J_n(z)ds$ and there exist m_0 and n_0 such that $\int\limits_{(R-R_m)\cap\partial\partial G_L}\frac{\partial}{\partial n}J_n(z)ds<\varepsilon$ for $n>n_0$ and $m>m_0$ for any

given positive number $\varepsilon > 0$. But $N_n'(z, p) > (L-M)J_n(z)$ in $G_M - G_L$ and $N_n'(z, p) = (M + (L-M)J_n(z))$ on ∂G_L implies

$$(L-M)\frac{\partial}{\partial n}J_n(z) > \frac{\partial}{\partial n}N_n'(z,p) > 0 \text{ on } \partial G_L.$$

Hence $\int\limits_{\partial G_L}\lim_{n}\ \frac{\partial}{\partial n}N_{n}'(z,\,p)ds=\lim_{n}\int\limits_{\partial G_L}\frac{\partial}{\partial n}N_{n}'(z,\,p)ds.$

Thus ∂G_L is also regular for $N_n'(z, p)$.

Let $V_{M.n}(z, p)$ be a harmonic function $= N_n'(z, p) - U_{M.n}(z, p)$. Then $V_{M.n}(z, p)$ is harmonic in $R_n - R_0$, $V_{M.n}(z, p) = 0$ on $\partial R_0 + (\partial R_n - G_M)$ and $V_{M.n}(z, p) > L - M$ in G_L . By the regularity of ∂G_L , $\int_{\partial G_L \cap R_n} \frac{\partial}{\partial n} N_n'(z, p) ds$ $\rightarrow 2\pi$, as $n \to \infty$. Hence there exists a number n_0 for any given ε such that $\int_{\partial R_1} \frac{\partial}{\partial n} N_n'(z, p) ds \le 2\pi + \varepsilon$ for $n > n_0$.

Put $D=E[z\in R\colon \delta < V_{M.n}(z,p) < M' < M]$. $\Gamma_{M'}=E[z\in R\colon V_{M.n}(z,p)=\delta]$, $\Gamma_{\delta}=E[z\in R\colon V_{M.n}(z,p)=\delta]$, $\Gamma=\partial R_m \cap D$ and $\Gamma'=\partial R_n \cap E[z\in R\colon V_{M.n}(z,p)\geq M']$. Then D intersects only $\partial R_n \cap (G_M-G_L)$, because $N_n'(z,p)-U_{M.n}(z,p)=0$ on ∂R_n-G_M and $N_n'(z,p)-U_{M.n}(z,p)>M'$ on ∂G_L for L>2M'. Hence $\Gamma \subset \partial R_n \cap (G_M-G_L)$. Now $\frac{\partial}{\partial n}N_n'(z,p)=0$ on ∂R_n-D_L . Since $U_{M.n}(z,p)=\max U_{M.n}(z,p)=M$ on Γ , $\frac{\partial}{\partial n}U_{M.n}(z,p)>0$ on Γ and

$$\begin{split} \int_{\Gamma} \frac{\partial}{\partial n} U_{M.n}(z, p) ds & < \int_{\partial R_n \cap (G_N - G_L)} \frac{\partial}{\partial n} U_{M.n}(z, p) ds \leq \int_{\partial G_L \cap R_n} \frac{\partial}{\partial n} N_n'(z, p) ds \leq 2\pi + \varepsilon \,. \\ \int_{\Gamma_{M'}} \frac{\partial}{\partial n} N_n'(z, p) ds & = \int_{\partial G_L \cap R_n} \frac{\partial}{\partial n} N_n'(z, p) ds < 2\pi + \varepsilon \,. \\ 0 & < \int_{\Gamma_{M'}} \frac{\partial}{\partial n} U_{M.n}(z, p) ds = \int_{\Gamma'} \frac{\partial}{\partial n} U_{M.n}(z, p) ds \leq \int_{\partial R_n \cap G_M} \frac{\partial}{\partial n} U_{M.n}(z, p) ds < 2\pi + \varepsilon \,. \\ \int_{\Gamma_{\delta}} \frac{\partial}{\partial n} N_n'(z, p) ds & = -\int_{\partial G_L \cap R_n} \frac{\partial}{\partial n} N_n'(z, p) ds \geq -2\pi - \varepsilon \,. \\ \int_{\Gamma_{\delta}} \frac{\partial}{\partial n} U_{M.n}(z, p) ds & = \int_{\Gamma + \Gamma'} \frac{\partial}{\partial n} U_{M.n}(z, p) ds \\ & \geq -\int_{\partial R_n \cap G_M} \frac{\partial}{\partial n} U_{M.n}(z, p) ds > -2\pi - \varepsilon \,. \end{split}$$

Hence $D(\min V_{M.n}(z, p), M') = D_D(V_{M.n}(z, p)) = \int_{\Gamma_\delta + \Gamma + \Gamma_{M'}} (N_n'(z, p) - U_{M.n}(z, p)) \frac{\partial}{\partial n} (N_n'(z, p) - U_{M.n}(z, p)) ds \leq M' (4\pi + 2\varepsilon) + \delta(2\pi + \varepsilon)$ and $D_{R_{m-R_0}}(\min (V_{M.n}(z, p), M') \leq M' (4\pi + 2\varepsilon) + \delta(2\pi + \varepsilon)$, for every m > 1).

Let $n\to\infty$, then $N_n'(z,p)\to N(z,p)$ in $R-R_0-G_L$, $U_{M,n}(z,p)\to U_M(z,p)$, $V_{M,n}(z,p)\to V(z,p)$ and derivatives of $V_{M,n}(z,p)\to {\rm derivatives}$ of $V_M(z,p)$. By letting $n\to\infty$ and then $\delta\to 0$ and $\varepsilon\to 0$, $D_{R-R_m}(\min{(V_M(z,p),M')}\le 4\pi M'$.

Let $L \to \infty$ and then $M \to \infty$. Then $U_M(z, p) \uparrow U(z, p)$ and $V_M(z, p) \downarrow V(z, p)$ and then by letting $m \to \infty$, we have

$$D_{R-R_0}(V(z, p), M')) \leq 4\pi M'$$
.

On the other hand, clearly V(z, p) = N(z, p) - U(z, p) has angular limits = 0 a.e. on $|\zeta| = 1$. Hence V(z, p) is a generalized Green's function.

Since $U_M(z, p) = \lim_n U_{M,n}(z, p) = \lim_n U_{M,n}(z, p)$, where $U_{M,n}(z, p)$ is a harmonic function in $R_n - R_0$ such that $U_{M,n}(z, p) = \min(M, N(z, p))$ on $\partial R_0 + \partial R_n$. Hence $U_{M,n+i}(z, p) \leq U_{M,n}(z, p)$ on ∂R_n , whence $U_{M,n}(z, p) \downarrow U_M(z, p)$. Therefore there exists a number n_0 such that $U_M(z, p) \leq U_{M,n}(z, p) - \varepsilon$ for $n > n_0$ for any given positive number ε . Next since N(z, p) is a continuous function of p for any point $z \in R - R_0$, there exists a number δ_0 such that

$$|N(z, p) - N(z, p_j)| < \varepsilon \text{ on } \partial R_n \text{ for } \delta(p, p_j) < \delta_0.$$

Hence $U_M(z, p) \geq U'_{M,n}(z, p) - \varepsilon \geq U'_{M,n}(z, p_j) - 2\varepsilon \geq U_M(z, p_j) - 2\varepsilon$. Thus $U_M(z, p)$ is an upper semicontinuous function of p, whence $V_M(z, p)$ is a lower semicontinuous function of p by the continuity of N(z, p). $U_M(z, p) \uparrow U(z, p)$ and $V_M(z, p) \downarrow V(z, p)$ imply that U(z, p) and V(z, p) are at most second class of Baire's functions.

Properties of generalized Green's functions.

Theorem 3. Let V(z) be a generalized Green's function such that $D(\min(V(z), M)) \leq \pi M$. Let V'(z) be a non negative harmonic function such that $V'(z) \leq V(z)$. Then V'(z) is also a generalized Green's function such that $D(\min(V(z), M)) \leq \pi M$.

Put $D=E[z \in R: V'(z) < M \text{ and } V(z) > M]$. Let $V'_{n,n+i}(z)$ be a harmonic

function in $R_{n+i}-R_0-E[z\in R:\ V'(z)>M]$ $-(D\cap(R_{n+i}-R_n))$ such that $V'_{n,n+i}(z)=V'(z)$ on $\partial R_0+(E[z\in R:\ V'(z)\leq M]\cap R_n)$, $\frac{\partial}{\partial n}\ V'_{n,n+i}(z)=0$ on $\partial R_n\cap D$ and $V'_{n,n+i}(z)=V(z)$ on $\partial R_{n+i}-E[z\in R:\ V(z)>M]$. Then by the Dirichlet principle

 $D(\min M, V'_{n,n+i}(z)) \leq D(\min (M, V(z))$

for every i and n.

Next clearly $\lim_{n} \lim_{i} V'_{n,n+i}(z) = \tilde{V}(z)$ exists and $\tilde{V}(z)$ has angular limits $\leq V(z)$ a. e. where V(z) has angular limits $\leq M$. But

V(z) has angular limits =0 a.e. on $|\zeta|=1$, whence $\tilde{V}(z)=V'(z)$ and $D(\min{(M,\ V'(z))} \leq D(\min{(M,\ V(z))}\ .$

Hence V'(z) is a generalized Green's function.

Theorem 4. Let V(z) be a generalized Green's function and put $R_{\delta} = E[z \in R: V(z) > \delta]$ and $D_M = E[z \in R: V(z) > M]$. Then D_M determines a set of the ideal boundary of capacity zero.

Let $V_{n,n+i}(z)$ be a harmonic function in $(R_{\delta} \cap R_{n+i}) - ((R_{n+i} - R_n) \cap D_M)$ such that $V_{n,n+i}(z) = 0$ on $\partial R_{\delta} \cap R_{n+i}$, $V_{n,n+i}(z) = 1$ on $\partial (D_M \cap (R_{n+i} - R_n))$ and $\frac{\partial}{\partial n} V_{n,n+i}(z) = 0$ and $\partial R_{n+i} \cap (R_{\delta} - D_M)$. Then by the Dirichlet principle

$$\int\limits_{\partial(D_M\cap(R_{n+i}-R_n))}\frac{\partial}{\partial n}\,V_{n,n+i}(z)ds=D(V_{n,n+i}(z))\leq\frac{1}{(M-\delta)^2}D(V(z))\leq\frac{2\pi M}{(M-\delta)^2}$$
 for every i and n ,

and clearly $V_{n,n+i}(z)$ converges to $V_n(z)$ in mean as $i \to \infty$.

$$\begin{split} \int_{\overline{\partial n}}^{\partial} \left(V_{n,n+i}(z) - V_{m,n+i}(z) \right) V_{n,n+i}(z) &= \int\limits_{\partial (D_M \cap (R_{n+i} - R_n))} \frac{\partial}{\partial n} V_{n,n+i}(z) ds \\ &- \frac{\partial}{\partial n} V_{m,n+i}(z) ds = D(V_{n,n+i}(z)) - D(V_{m,n+i}(z)), \quad \text{for } n < m < n+i. \end{split}$$

Since $V_{m,n+i}(z) \rightarrow V_n(z)$ in mean, we have

$$D(V_n(z) - V_m(z), V_n(z)) = D(V_n(z)) - D(V_m(z))$$
 and $D(V_n(z) - V_m(z)) = D(V_n(z)) - D(V_m(z))$.

Hence $V_n(z)$ converges to a function $V^*(z)$ in mean as $n \to \infty$.

Map the universal couvring surface R_{δ}^{∞} of R_{δ} onto $|\xi| < 1$. Then $V^*(z)$ has angular limits = 0 a. e. on $|\xi| = 1$ by that V(z) has angular limits $= \delta$ a. e. on $|\xi| = 1$. Hence $V^*(z) = 0$. Let F be a closed arc on ∂R_{δ} . Let $\omega_{n,n+i}(z)$ be a harmonic function in $R_{\delta} \cap R_{n+i} - ((R_{n+i} - R_n) \cap D_M)$ such that $\omega_{n,n+i}(z) = 0$ on F, $\omega_{n,n+i}(z) = 1$ on $\partial (D_M \cap (R_{n+i} - R_n))$ and $\frac{\partial \omega_{n,n+i}}{\partial n}(z) = 0$ on $\partial R_{n+i} - D_M$. Then by the Dirichlet principle

$$D(\omega_{n,n+i}(z)) \leq D(V_{n,n+i}(z))$$
.

We see as above that $\omega_{n,n+i}(z) \to \omega_n(z)$ in mean and $\omega_n(z) \to \omega(z)$ in mean and by $V_n(z) \to V^*(z)$ in mean. We have $D(\omega(z)) \leq D(V^*(z)) \leq 0$. Thus D_M determines a set of the boundary of capacity zero.

Theorem 5. Let V(z) be a generalized Green's function. Then $\int_{\partial n}^{\partial} V(z)ds = k \text{ on every niveau curve, where } k \text{ is a constant such that } D(\min(M, V(z)) = Mk.$

Let $\omega_n(z)$ and D_M be in Theorem 4. Let $\omega_n{}'(z)$ be a harmonic function in $D_M \cap (R_n - R_{n_0}) + (R_\delta \cap R_{n_0})$ such that $\omega_n{}'(z) = 0$ on $F \cap R_{n_0}$, $\omega_n{}'(z) = 1$ on $D_M \cap \partial R_n$ and $\frac{\partial \omega_n{}'}{\partial n}(z) = 0$ on $(\partial R_\delta \cap R_{n_0}) + (\partial R_{n_0} - D_M) + (\partial D_M \cap (R_n - R_{n_0})) - F$. Then clearly

$$D(\omega_n'(z)) \leq D(\omega_n(z))$$
,

whence by Theorem $4 \ \omega_n(z) \to 0$ as $n \to \infty$. Hence there exists for any given large number T, a number n and a harmonic function $\omega_n^*(z)$ in $(R_\delta \cap R_{n_0}) + (\partial R_{n_0} - D_M) + (\partial D_M \cap (R_n - R_{n_0}))$ such that $\omega_n^*(z) = 0$ on F, $\frac{\partial \omega_n^*}{\partial n}(z) = 0$ on $(\partial R_\delta \cap R_{n_0}) - F + (\partial D_M \cap (R_n - R_{n_0})) + (\partial R_{n_0} - D_M)$, $\omega_n^*(z) = T$ on $\partial R_n \cap D_M$ and $\int_{F \cap R_{n_0}} \frac{\partial \omega_n^*}{\partial n}(z) = 2\pi$.

Put $re^{i\theta} = \exp(\omega_n^*(z) + i\tilde{\omega}_n^*(z))$, where $\tilde{\omega}_n^*(z)$ is the conjugate function of $\omega_n^*(z)$. Put $L(r) = \int \left| \frac{\partial}{\partial n} V(z) \right| rd\theta$, where the integration is taken over $((R_\delta \cap R_{n_0}) + (D_M - D_{M_2})) \cap (E[z \in R; \omega_n^*(z) = \log r]) (M < M_2)$.

Suppose $L(r) > \varepsilon_0$ for every r. Then

$$\begin{split} \mathcal{E}_{0}^{2} \int_{1}^{T} \frac{1}{r} dr & \leq \int_{1}^{T} \frac{L^{2}(r)}{r} dr \\ & \leq \iint_{D_{M} - D_{M_{2}}} \left\{ \left(\frac{\partial V(z)}{\partial r} \right)^{2} + r^{2} \left(\frac{\partial V(z)}{\partial \theta} \right)^{2} r dr d\theta \right. \\ & \leq D R_{\delta} - D_{M_{2}}(V(z)) < \infty. \end{split}$$

Let $T \to \infty$. Then $D(V(z)) \to \infty$. This is a contradiction. Hence there exists a sequence $\{r_i\}$ such that $L(r_i) \to 0$. Since $\frac{\partial V}{\partial n}(z) < 0$ on ∂D_M and $\frac{\partial}{\partial n}V(z) > 0$

on ∂D_{M_2} . Hence $k = \int\limits_{\partial D_M} \frac{\partial}{\partial n} V(z) ds = \int\limits_{\partial D_{M_2}} \frac{\partial}{\partial n} V(z) ds$ and $D_{D_M - D_{M_2}}(V(z)) = k(M_2 - M)$. Hence we have the theorem.

Lemma 3. Let V(z) be a positive harmonic function (not necessarily a generalized Green's function) in $R-R_0$. Let G and G' be non compact domains such that $R-R_0=\bar{G}+G'$. Let ${}_nV_G^\alpha(z)({}_nV_G^\beta(z))$ be the lower (upper) envelope of super (sub) harmonic functions larger (smaller) than V(z) in $G\cap (R-R_n)$. Put $V_G^\alpha(z)=\lim_n V_G^\alpha(z)$ and $V_G^\beta(z)=\lim_n V_G^\beta(z)$. Then

$$_G^{\alpha}(V_G^{\alpha}(z)) = V_G^{\alpha}(z)$$
 and $_G^{\alpha}(V_{G'}^{\beta}(z)) = 0$.

Let $V_{n.n+i}(z)$ be a harmonic function in $R_n+((R_{n+i}-R_n)\cap G)-R_0$ such that $V_{n.n+i}(z)=0$ on $\partial R_0+(\partial R_{n+i}-G)$ and $V_{n.n+i}(z)=V(z)$ on $\partial G\cap (R_{n+i}-R_n)+G\cap (R-R_n)$. Then for every $G\cap (R-R_n)$ by $V_{n.n+i}(z)\uparrow V_n(z)$ and by $G_i(\zeta,z)\uparrow G(\zeta,z)$

$$\lim_{i} V_{n,n+i}(z) = V_{n}(z) = \int_{\partial(G \cap (R-R_{n})) + (G \cap \partial R_{n})} V_{n}(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds,$$

where $G_i(\zeta, z)$ and $G(\zeta, z)$ are the Green's function of $R_{n+i} - R_0 - (G \cap (R_{n+i} - R_n))$ and $R - R_0 - (G \cap (R - R_n))$ respectively.

⁷⁾ \overline{G} means the closure of G.

Since
$$V_n(z) \downarrow V_G^{\alpha}(z)$$
, $V_G^{\alpha}(z) = \int\limits_{0 \leq G \cap (R-R_n) + (G \cap \partial R^n)} V_G^{\alpha}(\zeta) \frac{\partial}{\partial \eta} G(\zeta, z) ds$.

Next let $V'_{n\cdot n+i}(z)$ be a harmonic function in $R_n+((R_{n+i}-R_n)\cap G)-R_0$ such that $V'_{n\cdot n+i}(z)=0$ on $\partial R_0+(\partial R_{n+i}-G)$ and $V'_{n\cdot n+i}(z)=V^\alpha_G(z)$ on $(\partial G\cap (R_{n+i}-R_n))+(G\cap \partial R_n)$. Then

$$\lim_{i} V'_{nn+i}(z) = \int V^{\alpha}_{G}(\zeta) \frac{\partial}{\partial_{n}} G(\zeta, z) ds$$
 ,

i. e. $\lim_{i} V'_{n,n+i}(z) = V^{\alpha}_{G}(z)$ for every n, hence

$$_{G}^{\alpha}(V_{G}^{\alpha}(z)) = V_{G}^{\alpha}(z). \tag{1}$$

Let $\tilde{V}_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-((R_{n+i}-R_n)\cap G)-R_0$ such that $\tilde{V}_{n,n+i}(z)=0$ on $\partial R_0+(\partial R_n\cap G)+(\partial G\cap (R_{n+i}-R_n))$ and $\tilde{V}_{n,n+i}(z)=V(z)$ on $\partial R_{n+i}\subset G'$. Then

$$V(z) = V_{n,n+i}(z) + \tilde{V}_{n,n+i}(z), \text{ which implies}$$

$$V(z) = V_G^{\alpha}(z) + V_{G'}^{\beta}(z). \tag{2}$$

From (1) we have

$$\begin{split} V(z) &= {}_G^\alpha(V_G^\alpha(z) + V_{G'}^\beta(z)) + V_{G'}^\beta(z) \\ &= {}_G^\alpha(V_G^\alpha(z)) + {}_G^\alpha(V_{G'}^\beta(z)) + V_{G'}^\beta(z) \,, \end{split}$$

whence by (1) and (2) we have

$${}_{G}^{\alpha}(V_{G'}^{\beta}(z)) = 0. \tag{3}$$

Let V(z) be a generalized Green's function. Let G(z,q) be the Green's function of $R-R_0$ with pole at q. Put $G=E[z\in R:G(z,q)>k]$ and $G'=E[z\ni R:G(z,q)< k]$. Then $V(z)=V_G^\alpha(z)+V_{G'}^\beta(z)$. We shall study the properties of $V_G^\beta(z)$.

Lemma 4. Let V(z) be a generalized Green's function and put $G = E[z \in R : G(z, q) > k]$ and $G' = E[z \in R : G(z, q) < k]$ and $D_M = E[z \in R : V_{G'}^{\beta}(z) > M]$. Let $H_{G'}^{M}(z)$ be the lower envelope of superharmonic function larger than $\min (M, V_{G'}^{\beta}(z))$ on $G' \cap D_M$. Then

$$\lim_{M\to\infty}H_{G'}^M(z)=V_{G'}^a(z).$$

For simplicity denote $V_{G'}^{\beta}(z)$ by H(z). Let ${}_{n}H_{G'}^{M}(z)$ be a harmonic function in $R_{n}-R_{0}-(D_{M}\cap G')$ such that ${}_{n}H_{G'}^{M}(z)=0$ on

Fig. 4

 $\partial R_0 + \partial R_n - (D_M \cap G')$ and ${}_nH_{G'}^M(z) = M$ on $\partial (D_M \cap G')$. Let ${}_n\check{H}_G^M(z)$ be a harmonic function in $R_n - R_0 - (D \cap G)$ such that ${}_n\check{H}_G^M(z) = 0$ on $\partial R_0 + (\partial R_n - (D_M \cap G))$, ${}_n\check{H}_G^M(z) = M$ on $\partial D_M \cap G$ and ${}_n\check{H}_G^M(z) = H(z) - M$ on $\partial G \cap D_M$. Then cleary

$$\lim_{n} {}_{n}H_{G}^{M}(z) \leq H(z) \leq \lim_{n} {}_{n}H_{G'}^{M}(z) + \lim_{n} {}_{n}\overset{\vee}{H}_{G}^{M}(z)$$

and

$$\lim_{M\to\infty} (\lim_n H_G^{M}(z)) \leq G(H(z)) = G(V_{G'}^{\beta}(z)) = 0.$$

Hence

$$V_{G'}^{\beta}(z) = H(z) = \lim_{M \to \infty} \lim_{n} H_{G'}^{M}(z) = \lim_{M \to \infty} H_{G'}^{M}(z)$$
.

Theorem 6. Let V(z) be a generalized Green's function such that $D(\min M, V(z)) \leq M\pi$. Then by Lemma 3, $V(z) = V_G^{\alpha}(z) + V_{G'}^{\beta}(z)$, where $G' = E[z \in R: G(z, q) < k]$.

Then
$$V_{G'}^{\beta}(q) \leq \frac{k}{2}$$
.

Clearly $V(z) \geq V_G^{\alpha}(z)$ and $V(z) \geq V_{G'}^{\beta}(z) \geq 0$. If $V_{G'}^{\beta}(z) = 0$, our assertion is trivial. Suppose $V_{G'}^{\beta}(z) > 0$. Then by Theorem 3, $V_{G'}^{\beta}(z)$ is also a generalized Green's function such that $D(\min((M, V_{G'}^{\beta}(z)) \leq M\pi)$. Next by Lemma 3

$$V_{G'}^{eta}(z)=H(z)=\lim_{M=\infty}\lim_{n} \lim_{n} H_{G'}^{M}(z) \ \ ext{and} \ \ H(z)\geq H_{G'}^{M}(z)=\lim_{n} \lim_{n} H_{G'}^{M}(z) \ .$$

Hence by Theorem 5

$$\int_{\partial(D_{M}\cap G')} \frac{\partial}{\partial n} H_{G'}^{M}(z) ds \leq \int_{\partial D_{M}} \frac{\partial}{\partial n} H(z) ds \leq \pi$$
 (4)

where $D_M = E[z \in R: H(z) > M]$.

Since $g_{\delta} = E[z \in R: H_{G'}^{M}(z) > \delta] \subset E[z \in R: H(z) > \delta]$, $(E[z \in R: H_{G'}^{M}(z) > L] =) D_{L} \cap G'$ determines a set of the boundary of capacity zero for $L > \delta$ by Theorem 4. Hence by $D(_{G'}^{M}H(z)) < \infty$ over $R - R_{0} - (D_{M} \cap G')$, we can prove as in Theorem 5

$$\int_{\Gamma_{\delta}} \frac{\partial}{\partial n} H_{G'}^{M}(z) ds = -\int_{\vartheta(D_{M} \cap G')} \frac{\partial}{\partial n} H_{G'}^{M}(z) ds,$$

where $\Gamma_{\delta} = E[z \in R : H_{G'}^{M}(z) = \delta].$

Let $G_{\delta}(z, q)$ be the Green's function of $g_{\delta} \cap (R - R_0)$. Then $D(G_{\delta}(z, q))$ $< \infty$ over a neighbourhood of the ideal boundary. Hence there exists

a sequence of curves $\{\Gamma_i\}$ such that $\int_{\Gamma_i \cap D_M} \left| \frac{\partial}{\partial \eta} G_{\delta}(z, q) \right| ds \to 0$ as $i \to \infty$ and

 $\{\Gamma_i\}$ clusters at the ideal boundary as $i \to \infty$ and every Γ_i separates the boundary determined by D_M from q. Let $C = \partial(D_M \cap G')$ and C_i be the part of C_i contained in the domain $\exists q$ separated by Γ_i and $C_i' = C - C_i$. Then

$$\int\limits_{C_i+C_{i'}+q+\Gamma_{\delta}} H^{M}_{G'}(z) rac{\partial}{\partial_{m{\eta}}} G_{\delta}(z, q) ds = \ \int\limits_{C+q+\Gamma_{\delta}} G_{\delta}(z, q) rac{\partial}{\partial_{m{\eta}}} H^{M}_{G'}(z) ds,$$

Fig. 5

$$M\int_{C_{i}+C_{i'}}\frac{\partial}{\partial n}G_{\delta}(z, q)ds+2\pi H_{G'}^{M}(q)+\delta\int_{\Gamma_{\delta}}\frac{\partial}{\partial n}G_{\delta}(z, q)ds=\int_{C}G_{\delta}(z, q)\frac{\partial}{\partial n}H_{G'}^{M}(z)ds.$$

But the first term of the left hand side $\to 0$ as $i \to \infty$ and the remaining terms don't depend on i. Hence by letting $\delta \to 0$ and by $G_{\delta}(z, q) \uparrow G(z, q)$, we have

$$2\pi H_{G'}^{M}(q) = \int_{C} G(z, q) \frac{\partial}{\partial_{n}} H_{G'}^{M}(z) ds \leq k\pi,$$

because $G(z, q) \leq k$ in G'. Then by letting $M \rightarrow \infty$

$$H(q) = V_{G'}^{\beta}(q) \leq \frac{k}{2}$$
.

Put $V_G^{\alpha}(z) = V^{*k}(z)$ and $V_{G'}^{\beta}(z) = V'^{k}(z)$. Then by Theorem 6, $V'^{k}(z) \to 0$ as $k \to 0$. Then we have

Theorem 7. Every generalized Green's function V(z) is divided into two parts such that

$$V(z) = V^{*k}(z) + V'^{k}(z)$$
 and $V(z) = \lim_{k \to 0} V^{*k}(z)$.

Remark. $K(z, p_i) = \frac{G(z, p_i)}{G(p_0, p_i)}$ (p_0 is a flexed point) is a positive harmonic function. Martin⁸⁾ defined *ideal boundary points* by using above functions and prove that every positive harmonic function is representable

⁸⁾ R. S. Martin: Minimal positive harmonic functions. Trans. Amer. Math. Soc. 39, 1941.

by a unique mass distribution ν as follows: $\int_{B_1} K(z, p) d\nu(p)$, where B_1 is the set of minimal points. If $\lim_{i\to\infty} G(p_i, q) > 0$ as p_i tends to a boundary point p and $K(z, p_i) \to K(z, p)$, we call p an irregular boundary point. In this case, K(z, p) is a constant multiple of $G(z, p) = \lim_{i \to \infty} G(z, p_i)$. We denote by I_k the set of Martin's boundary point p such that $\lim_{z\to p} G(z, q) \ge k$. Then $V^{*k}(z)$ is represented by a mass distribution ν on I_k . Hence by Theorem 8 a generalized Green's function is represented by a mass distribution ν on $I = \bigcup_{k>0} I_k$.

Theorem 8. Let W(z) be a positive harmonic in $R-R_0$ and super-harmonic function in $\overline{R-R_0}$ vanishing on ∂R_0 . Then

$$W(z) = \int N(z, p) d\mu(p) = \int U(z, p) d\mu(p) + \int V(z, p) d\mu(p) = U(z) + V(z)$$
,

where $U(z) = \int U(z, p) d\mu(p)$ is a harmonic function representable by Poisson's integral and $V(z) = \int V(z, p) d\mu(p)$ is a generalized Green's function.

Since $0 < U(z, p) \le N(z, p)$, family $\{U(z, p)\}$ is uniformly bounded in every compact domain in $R-R_0$ and the partial derivatives of them are equicontinuous and $\Delta U(z, p) = 0$, hence U(z) and V(z) are harmonic in $R-R_0$.

For a harmonic function H(z) define $H^M(z) = \lim_n H_n^M(z)$, where $H_n^M(z)$ is a harmonic function in $R_n - R_0$ such that $H_n^M(z) = \min(M, H(z))$ on $\partial R_0 + \partial R_n$. Then clealry $M(H^M(z)) = H^M(z)$. Since $0 < U(z, p) \le N(z, p)$ and $U^M(z) \uparrow U(z, p)$ as $M \uparrow \infty$, whe have

$$U(z) = \int U(z, p) d\mu(p) = \lim_{M \to \infty} \int U^M(z, p) d\mu(p) \le \lim_{M \to \infty} \int \int N(z, p) d\mu(p)$$

$$= \lim_{M \to \infty} \lim_{n} W_n^M(z),$$

where $W_n^M(z)$ is a harmonic function in $R-R_0$ such that $W_n^M(z) = \min(M, W(z))$ on $\partial R_0 + \partial R_n$. Now $\lim_{M \to \infty} \lim_n W_n^M(z) = W^p(z)$ is representable by Poisson's integral. $0 < U(z) \le W^p(z)$ implies the Poisson's integrability of U(z).

By the Remark $V(z, p) = \int_I K(z, q) d\nu(q)$, whence $V(z) = \int_I V(z, p) d\mu(p)$ = $\int_I K(z, q) d\lambda(q)$. Hence there exist n_0 and k_0 such that

$$\int V(z,p)d\mu(p) < \int_{I_{b}} K(z,q)d\lambda(q) + \varepsilon$$
 (5)

for $z \in R_n - R_0$, $n < n_0$ and $k < k_0$ for any given positive number ε , where λ' is the restriction of λ on I_k .

Denote by $(\int_{I_k} K(z,q)d\lambda'(q))_{I_k}^n$ the lower envelope of superharmonic functions larger than $\int_{I_k} K(z,q)d\lambda'(q)$ in $G \cap (R-R_0)$. Put $(\int_{I_k} K(z,q)d\lambda'(q))_{I_k}$ = $\lim_n (\int_{I_k} K(z,q)d\lambda'(q))_{I_k}^n$. Then as in Lemma 3 and Theorem 2 it is proved that $(\int_{I_k} K(z,q)d\lambda'(q)) = (\int_{I_k} K(z,q)d\lambda'(q))_{I_k}$ and $(\int_{I_k} K(z,q)d\lambda'(q))$ has angular limits =0 a.e. on the ideal boundary. In (5) let $\varepsilon \to 0$. Then $\int_{I_k} K(z,q)d\lambda(q) = \int_{I_k} V(z,p)d\mu(p)$ has angular limits =0 a.e. on the ideal boundary. Hence $U(z) = \int_{I_k} U(z,p)d\mu(p)$ has the same angular limits as $\int_{I_k} N(z,p)d\mu(p)$ a.e. on the ideal bounary. Thus by Poisson's integrability of U(z) and $W^p(z)$, we have $U(z) \equiv W^p(z)$ and $W(z) - W^p(z) \equiv \int_{I_k} V(z,p)d\mu(p)$. Now $W(z) - W^p(z) = \lim_{M' \to \infty} \lim_n W_n^{M'}(z)$, where $W_n^{M'}(z)$ is a harmonic function in $R_n - R_0$ such that $W_n^{M'}(z) = 0$ on ∂R_0 and $W_n^{M'}(z) = W(z) - W_n^{M'}(z)$ on ∂R_n . Since N(z,p) is a continuous function of p for $z \in R$, there exists a sequence $\{W_m(z)\}$ ($m=1,2,\cdots$) of the form $W_m(z) = \sum_n c_i N(z,p_i)(c_i > 0,\sum_n c_i = \mu_0 = \int_{I_k} d\mu(p)$) such that $W_m(z) \to W(z)$ in $R - R_0$. On the other hand, let $V_{n,m}^{M'}(z)$ be a harmonic function in $R_n - R_0$ such that $V_{n,m}^{M'}(z) = 0$ on ∂R_0 and $V_{n,m}^{M'}(z) = \min_n (W^m(z) - M',0)$ on ∂R_n . Then there exists a sequence $\{V_{n,m}^{M'}(z)\}$ which converges to $\lim_n W_n^{M'}(z)$ as $n \to \infty$ and $m \to \infty$.

Since $V_{n,m}^{M'}(z)$ is constructed from $W_m(z) = \sum_{i=1}^m c_i N(z, p)$, we can prove by the method used for V(z, p) and N(z, p) that $D(\min(M, V_{n,m}^{M'}(z)) \leq 4\pi(\sum c_i)M'$ for M' < M. Hence by letting $n \to \infty$, $m \to \infty$ and $M \to \infty$ we have

$$D(\min(M', V(z)) = D(\min(M', \lim_{n} \lim_{m} V_{n,m}^{M'}(z))$$

$$\leq \lim_{M=\infty} \lim_{m,n} D(\min(M', V_{n,m}^{M}(z)) \leq 4\pi \left(\sum c_{i}\right) M'.$$

Hence $\int V(z, p) d\mu(p)$ is a generalized Green's function. We have Theorem 8.

Lemma 5. Let V(z) be a generalized Green's function in $R-R_0$ such

⁹⁾ We map the universal covering surface of $(R-R_0)$ onto $|\zeta| < 1$. If the function U(z) has angular limits=0 a.e. on the image of the ideal boundary on $|\zeta|=1$. We say simply U(z) has angular limits=0 a.e. on the ideal boundary.

that $D(\min(M, V(z)) \leq M\pi$. Then there exists a uniquely determined generalized Green's function $V^*(z)$ in R such that $D(\min(M, V^*(z)) \leq M\pi$ and $\sup(V^*(z)) - V(z)) < \infty$.

Since ∂R_0 is compact, there exists a contant L such that $0 < \frac{\partial}{\partial n} V(z) \le L$ on ∂R_0 . Let $\omega(z)$ be a positive bounded harmonic function in $R - R_0$ such that $\omega(z) = 1$ on ∂R_0 and $\omega(z)$ has angular limits = 0. a. e. on the ideal boundary of $R - R_0$. Put $\widetilde{\omega}(z) \equiv 1$ in R_0 and $\widetilde{\omega}(z) \equiv \omega(z)$ in $R - R_0$. Then $V(z) + K\widetilde{\omega}(z)(K > L)$ is a superharmonic function in R. Let $V_n^*(z)$ be a harmonic function in R_n such that $V_n^*(z) = V(z)$ on ∂R_n . Then $V(z) < V_n^*(z) \le V(z) + K\omega(z)$. Choose a subsequence (n_1, n_2, \dots) so as $V_n^*(z)$ converges to $V^*(z)$. Then

$$V(z) \leq V^*(z) \leq V(z) + K\tilde{\omega}(z)$$
.

Hence $V^*(z)$ has angular limits =0 a.e. on the boundary of R and by $\sup (V^*(z) - V(z)) < \infty$, we see that such $V^*(z)$ does not depend on the above subsequence and $V^*(z)$ is uniquely determined.

Clearly $D(\min(M, V(z)) \le D(\min(M+K, V(z)+K\omega(z)))$, hence $D(\min(M, V(z)) \le 2D(\min(2M, V(z)) + 2D(\omega(z))) \le 10\pi M$, for large M.

But both $E[z \in R - R_0, V^*(z) > \delta]$ and $E[z \ni R - R_0, \omega(z) > \delta]$ determine sets of the boundary of capacity zero, whence as in Theorem, we have

$$\int_{C} \frac{\partial}{\partial n} V^*(z) ds = k \le 10\pi,$$

for every niveau curve C of V(z) and $D(\min(M, V^*(z)) \leq 10\pi M$ for every M. Thus $V^*(z)$ is a generalized Green's function.

Proof of Theorem 1. Let $W^*(z)$ be a harmonic and superharmonic function in \overline{R} . Let S(z) be a harmonic function in $R-R_0$ such that $S(z)=W^*(z)$ on ∂R_0 and S(z) has M.D.I. over $R-R_0$. Then S(z) is bounded and $W^*(z)-S(z)=W(z)=U(z)+V(z)$ in $R-R_0$ in Theorem 9. Let $U_n^*(z)$ be a harmonic function in R_n such that $U_n^*(z)=U(z)+S(z)$ on ∂R_n . Let $V_n^*(z)$ be a harmonic function in Lemma 5. Then $W^*(z)=U_n^*(z)+V_n^*(z)$. Choose a subsequence (n_1,n_2,\cdots) such that both $U_n^*(z)$ and $V_n^*(z)$ converge to $U^*(z)$ and $V^*(z)$ respectively. Then $U^*(z)$ is representable by Poisson's integral and $U^*(z)$ has angular limits as U(z)+S(z) a.e. on the boundary of $R-R_0$, whence $U^*(z)$ does not depend on the above subsequence. Thus $W^*(z)=U^*(z)+V^*(z)$.

¹⁰⁾ See 3) or Mass distributions. III (in this volume) (Properties of functiontheoretic equilibrium potential).

Apply our result to a unit-circle |z| < 1. Then we have the following

Proposition. Let U(z) be a logarithmic potential such that the total mass is bounded and whose mass does not exist in |z| < 1. Then the potential U(z) is representable by Poisson's integral in |z| < 1, because in this case |z| = 1 consists of only regular points of the Green's function and V(z) = 0.

(Received March 20, 1958)