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Abstract 

Controlling sound fields is a key technology for noise removal, acoustic lenses, energy 

harvesting, etc. This study investigated the control of sound field by a periodic layered 

structure. At first, we formulated the wave propagation in a periodic layered structure and 

proved that the wave fields constructed by the periodic boundary conditions are limited 

to plane wave modes with discretely different propagation directions. Numerical 

calculations clarified that the desired plane wave mode can be obtained in the transmitted 

wave through an intermediate thin-plate stacked region in a periodic layered structure, in 

which Lamb waves travel in each plate at different phase velocities and create phase 

difference at the exit of the intermediate thin-plate region. Further numerical 

investigations revealed that tuning frequency and length of the thin-plate region provides 

wave field more dominantly with a single wanted plane wave mode. 

 

  



1. Introduction 

Controlling wave propagation is widely studied in the field of light and electromagnetic 

waves as a part of intensive researches on photonic crystals and metamaterials. A photonic 

crystal is a structure whose refractive index changes periodically in the propagation 

direction and enables the design of a structure that intentionally controls the propagation 

of light and electromagnetic waves. 1-8) For example, it is possible to control the color 

scattered from a substance by calculating the passband and the band gap in which 

electromagnetic waves can propagate and cannot propagate in the structure, respectively. 

Optical waveguides can be designed by combining these photonic crystals, and light can 

also be intentionally confined by means of structural defects, which realizes an ultra-

compact high-power laser. 3-5) In the studies of metamaterials, moreover, Pendry et al.9) 

and Shelby et al.10) experimentally confirmed the existence of substances with a negative 

refraction angle in the 2000s, which proved that ultra-high resolution microscopes that 

exceeded the diffraction limit and optical camouflage materials, called transparent cloak, 

have become feasible. 

 Following the studies on photonic crystals and metamaterials for 

electromagnetic waves, sound wave control has also been studied. For example, a periodic 

structure scattering sound wave called a phononic crystal also has a characteristic with 

passbands and band gaps that can be designed like a photonic crystal of electromagnetic 

waves. 11-16) In addition, unprecedented characteristics of ultrasonic wave and their 

applications are studied such as acoustic diodes that transmit sound waves in one direction, 

17-20) acoustic cloaking devices that allow sound waves to bypass without being reflected, 

21-24) and efficient sound wave absorbers. 25-28) 

These studies analyze wave propagation based on Bloch's theorem, which can 

be used for structures whose physical properties change periodically in the propagation 

direction. Their theoretical systems have been established in the fields of electromagnetic 

waves and sound waves, which has already been applied to various devices as written 

above. On the other hand, we considered a periodic layered structure that does not change 

in geometries and properties in the propagation direction. 29) This study analyzes wave 

propagation in such a periodic layered structure by means of wave theory and numerical 

experiments using the finite element method. In the next section, the theory of the wave 

field transmitting through a periodically repeating layered structure is developed. 

Furthermore, assuming a structure having a plate stacked intermediate region between 

homogeneous isotropic elastic media, Sect. 3 describes the analysis of transmitted 

acoustic field using numerical calculations, and examine the design of a stacked plate 

region that can transmit a plane wave propagating in the specific direction. 



2. Formulation of wave propagation in a periodic layered structure 

2.1 Wave propagation under periodic boundary condition 

  

When a periodic external vibration load is applied to a periodic structure in which 

the same layered structures are stacked as shown in Fig. 1, the wave field in the structure 

must become a periodic motion due to the periodic boundary condition. This section 

describes formulation of the wave propagation governed by the periodic boundary 

condition and wave equation for isotropic media.  

Consider periodic external forces and a periodic layered structure with 

fundamental layers of thickness l that consist of isotropic homogeneous regions and 

intermediate scatterer as shown in Fig. 1. It is assumed that the cross-sectional structure 

in the x-y plane is periodic at the distance of l in the y direction, and the external vibration 

distribution also maintains the periodicity of the distance l. Now, the external force and 

the structure are uniform in the z direction, which is perpendicular to the x-y plane, and 

plane strain is assumed. Then vibration on the x-y plane is considered. At this time, using 

the scalar potential 𝜙 and the z component of the vector potential 𝜓, the wave equations 

for longitudinal and transverse waves in the isotropic homogeneous regions can be written 

as 30) 

 𝜕ଶ𝜙
𝜕𝑡ଶ

ൌ 𝑐௅
ଶ ቆ
𝜕ଶ𝜙
𝜕𝑥ଶ

൅
𝜕ଶ𝜙
𝜕𝑦ଶ

ቇ ,
𝜕ଶ𝜓
𝜕𝑡ଶ

ൌ 𝑐்
ଶ ቆ
𝜕ଶ𝜓
𝜕𝑥ଶ

൅
𝜕ଶ𝜓
𝜕𝑦ଶ

ቇ,   

where t is time, and 𝑐௅ and 𝑐் are the longitudinal wave velocity and transverse wave 

velocity in the isotropic homogeneous regions, respectively. Assuming a harmonic 

vibration field with an angular velocity ω propagating with the wave number 𝑘ఈ of the 

longitudinal wave component and the wave number 𝑘ఉ  of the transverse wave 

component in the x direction, the solution of Eq. (1) can be written as 

 𝜙 ൌ 𝐶ଵ𝑒ି௜ఈ௬𝑒௜௞ഀ௫𝑒ି௜ఠ௧ ൅ 𝐶ଶ𝑒௜ఈ௬𝑒௜௞ഀ௫𝑒ି௜ఠ௧ , 

𝜓 ൌ 𝐷ଵ𝑒ି௜ఉ௬𝑒
௜௞ഁ௫𝑒ି௜ఠ௧ ൅ 𝐷ଶ𝑒௜ఉ௬𝑒

௜௞ഁ௫𝑒ି௜ఠ௧, 
  

where 𝐶ଵ,𝐶ଶ,𝐷ଵ, and 𝐷ଶ are arbitrary constants, and i is an imaginary unit. The first 

term of the first equation in Eq. (2) represents a plane wave having a wavenumber 

component 𝑘ఈ  and െ𝛼  in the x and y directions, respectively, and the second term 

represents a plane wave having a wavenumber component 𝑘ఈ and ൅𝛼 in the x and y 

directions. Because the phases must match at every y position in a distance of l in the 

periodic structure as shown in Fig. 1 even in the intermediate scatterer region, the 

following equations hold, 



 𝛼௡𝑙 ൌ 2𝜋𝜋,   𝛽௡𝑙 ൌ 2𝑛𝜋,   

where 𝑛 is an arbitrary integer, 𝛼௡ and 𝛽௡ are the y component of wave number for 

the order of n. The wavenumber component in the x-direction with respect to the order n 

is also written as, 

 
𝑘ఈ೙ ൌ േට𝜔ଶ/𝑐௅

ଶ െ 𝛼௡ଶ ൌ േට𝜔ଶ/𝑐௅
ଶ െ ሺ2𝑛𝜋/𝑙ሻଶ,  

𝑘ఉ೙ ൌ േට𝜔ଶ/𝑐்
ଶ െ 𝛽௡ଶ ൌ േට𝜔ଶ/𝑐்

ଶ െ ሺ2𝑛𝜋/𝑙ሻଶ.  

  

That is, due to the above constraints under the periodic boundary condition as shown in 

Fig. 1, the general solution of Eq. (1) can be expressed by the sum with respect to n as 

follows,  

 

𝜙 ൌ ෍ 𝐴௡𝑒௜ఈ೙௬𝑒
௜௞ഀ೙௫𝑒ି௜ఠ௧

ାஶ

௡ୀିஶ

൅ ෍ 𝐴′௡𝑒௜ఈ೙௬𝑒
ି௜௞ഀ೙௫𝑒ି௜ఠ௧

ାஶ

௡ୀିஶ

, 

𝜓 ൌ ෍ 𝐵௡𝑒௜ఉ೙௬𝑒
௜௞ഁ೙௫𝑒ି௜ఠ௧

ାஶ

௡ୀିஶ

൅ ෍ 𝐵ᇱ௡𝑒௜ఉ೙௬𝑒
ି௜௞ഁ೙௫𝑒ି௜ఠ௧ ,

ାஶ

௡ୀିஶ

 

  

where 𝐴௡, 𝐴′௡, 𝐵௡ , and 𝐵ᇱ௡ are arbitrary constants. 

 

  

Fig. 1 Periodic layered structure and periodic external loading considered in this 

study. A region between dashed lines denotes a fundamental layer. 
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2.2 Characteristics of plane wave modes in an isotropic periodic structure 

 For an isotropic periodic layered structure, the scalar potential 𝜙  and vector 

potential 𝜓  can be expressed as the summation of plane wave modes with different 

propagation directions. Because the expressions of 𝜙 and 𝜓 are only different in the 

velocities 𝑐௅  and 𝑐் , now we consider only the transverse wave-derived 𝜓  that is 

mainly discussed in the later numerical analyses. When considering only the wave in the 

+x direction, the first term remains in Eq. (5) as follows, 

 

𝜓 ൌ ෍ 𝜓௡

ାஶ

௡ୀିஶ

, 𝜓௡ ൌ 𝐵௡𝑒௜ఉ೙௬𝑒
௜௞ഁ೙௫𝑒ି௜ఠ௧,   

where the wave number 𝑘ఉ೙ in the x direction takes a real number or a pure imaginary 

number depending on the sign of radicand of Eq. (4). Figure 2 is a dispersion relation of 

the second equation in Eq. (4) showing with the vertical axis representing the normalized 

frequency 𝑓𝑙/𝑐் and the horizontal axis representing the real and imaginary parts of the 

normalized wavenumber 𝑘ఉ೙𝑙/2𝜋 , where 𝑓  is the frequency and 𝑓 ൌ 𝜔/2𝜋 . If the 

frequency satisfies 𝑓𝑙/𝑐் ൐ 𝑛, the wave number in the x direction 𝑘ఉ೙ becomes a real 

number, forming a wave front towards the x direction. Then the angle of wave direction 

with respect to the x axis is expressed as, 

 
𝜃௡ ൌ tanିଵ ቆ

𝛽௡
𝑘ఉ೙

ቇ.   

The right sketches of Fig. 2 show the wave front for 𝑛 ൌ 0,൅1,൅2. All of these plane 

wave modes propagate at the transverse wave speed of 𝑐் (wavelength 𝜆 ൌ 𝑐்/𝑓). On 

the other hand, when 𝑓𝑙/𝑐୘ ൏ 𝑛, 𝑘ఉ೙ is a pure imaginary number and the wave field 

becomes attenuated as x increases. For example, if square or elliptical periodic obstacles 

are located as shown in Fig. 1, such non-propagation modes are indispensable for 

representing the wave field scattered from the obstacles. Strictly speaking, a large number 

of modes of the longitudinal wave component 𝜙 are also superposed in the scattering 

wave field as well as the propagating and non-propagating modes of transverse waves. 

 



 
Fig. 2 Dispersion curves for the periodical structure. The solid and dashed lines denote 

real part and imaginary part of the normalized wavenumbers. n indicates the periodic 

index shown in Eq. (3). 

 

2.3 Energy flux of plane wave modes in a periodic structure 

 Considering the wave field propagating the periodic structure as a superposition 

of modes propagating (or attenuating) in the x direction as represented by Eq. (5), all 

modes are orthogonal. Therefore, the mode conversion characteristics of the waves 

transmitted through the scattering region can be evaluated by using the energy flux of 

each mode propagating through the cross section in the y direction. 

 The energy flux that passes through one layer of the periodic structure in the +x 

direction can be expressed as 

 
𝐸 ൌ െ

1
2
ቈන 𝝈ሺ𝒖ሶ ሻ∗ ∙ 𝒏

௟

଴
𝑑𝑦቉ ൌ െ

1
2
ቈන ൛𝜎௫ሺ𝑢௫ሶ ሻ∗ ൅ 𝜏௫௬൫𝑢௬ሶ ൯

∗
ൟ

௟

଴
𝑑𝑦቉.   

where 𝝈 is the stress tensor, 𝒖ሶ  is the first derivative of the displacement vector 𝒖 with 

respect to time, 𝒏 is the unit vector in the +x direction, and * is the complex conjugate. 

𝜎௫ and 𝜏௫௬ are normal stress and shear stress in the x direction, and 𝑢௫ and 𝑢௬ are 

displacements in the x and y directions. Using the first term in the +x direction of Eq. (5), 

each of these components required for the calculation of the energy flux can be written 

as,  

 

𝑢௫ ൌ
𝜕𝜙
𝜕𝑥

൅
𝜕𝜓
𝜕𝑦

ൌ 𝑖 ෍ 𝑘ఈ೙𝜙௡

ାஶ

௡ୀିஶ

൅ 𝑖 ෍ 𝛽௡𝜓𝑛

ାஶ

௡ୀିஶ

,  

0 1 2 3 41234
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𝜙௡ ൌ 𝐴௡𝑒௜ఈ೙௬𝑒
௜௞ഀ೙௫𝑒ି௜ఠ௧ , 𝜓௡ ൌ 𝐵௡𝑒௜ఉ೙௬𝑒

௜௞ഁ೙௫𝑒ି௜ఠ௧ , 

𝑢௬ ൌ
𝜕𝜙
𝜕𝑦

െ
𝜕𝜓
𝜕𝑥

ൌ 𝑖 ෍ 𝛼௡𝜙௡

ାஶ

௡ୀିஶ

െ 𝑖 ෍ 𝑘ఉ೙𝜓𝑛

ାஶ

௡ୀିஶ

 , 

𝜎௫ ൌ 𝜌𝑐௅
ଶ ቆ
𝜕ଶ𝜙
𝜕𝑥ଶ

൅
𝜕ଶ𝜙
𝜕𝑦ଶ

ቇ െ 2𝜌𝑐்
ଶ ቆ
𝜕ଶ𝜙
𝜕𝑦ଶ

െ
𝜕ଶ𝜓௭
𝜕𝑥𝜕𝑦

ቇ 

ൌ ෍ ൛െ𝜌𝑐௅
ଶ൫𝑘ఈ೙

ଶ ൅ 𝛼௡ଶ൯ ൅ 2𝜌𝑐்
ଶ𝛼௡ଶൟ𝜙௡

ାஶ

௡ୀିஶ

െ 2𝜌𝑐்
ଶ ෍ 𝑘ఉ೙𝛽௡𝜓௡ 

ାஶ

௡ୀିஶ

,  

𝜏௫௬ ൌ 𝜌𝑐்
ଶ ቆ2

𝜕ଶ𝜙
𝜕𝑥𝜕𝑦

൅
𝜕ଶ𝜓௭
𝜕𝑦ଶ

െ
𝜕ଶ𝜓௭
𝜕𝑥ଶ

ቇ 

ൌ െ2𝜌𝑐்
ଶ ෍ 𝑘ఈ೙𝛼௡𝜙௡

ାஶ

௡ୀିஶ

൅ 𝜌𝑐்
ଶ ෍ ൫𝑘ఉ೙

ଶ െ 𝛽௡ଶ൯

ାஶ

௡ୀିஶ

𝜓௡ , 

Substituting Eq. (9) into Eq. (8), it can be written as  

 
𝐸 ൌ

𝜌𝜔𝑙
2

෍ ൛𝑐௅
ଶ൫𝑘ఈ೙

ଶ ൅ 𝛼௡ଶ൯ െ 4𝑐்
ଶ𝛼௡ଶൟ𝑘ఈ೙𝐴௡𝐴௡

∗

ାஶ

௡ୀିஶ
௞ഀ೙ :௥௘௔௟

 

൅𝑖
𝜌𝜔𝑙

2
෍ 𝑐௅

ଶ൫𝑘ఈ೙
ᇱଶ െ 𝛼௡ଶ൯𝑘ఈ೙

ᇱ 𝐴௡𝐴௡∗
ାஶ

௡ୀିஶ
௞ഀ೙ :௜௠௔௚௜௡௔௥௬

 

൅
𝜌𝜔𝑙

2
෍ 𝑐்

ଶ൫𝑘ఉ೙
ଶ ൅ 𝛽௡ଶ൯𝑘ఉ೙𝐵௡

ାஶ

௡ୀିஶ
௞ഁ೙ :௥௘௔௟

𝐵௡∗ 

൅𝑖
𝜌𝜔𝑙

2
෍ 𝑐்

ଶ൫𝑘ఉ೙
ᇱଶ ൅ 3𝛽௡ଶ൯𝑘ఉ೙

ᇱ 𝐵௡𝐵௡∗
ାஶ

௡ୀିஶ
௞ഁ೙ :௜௠௔௚௜௡௔௥௬

 

  

The energy flux can be written separately as the sum of the modes with real wave numbers 

𝑘ఈ೙ and 𝑘ఉ೙ (propagating mode) and the sum of the modes with pure imaginary wave 

numbers 𝑘ఈ೙  and 𝑘ఉ೙   (evanescent mode). Now, because 𝑘ఈ೙
ᇱ   and 𝑘ఉ೙

ᇱ   are real 

numbers represented by 𝑘ఈ೙ ൌ 𝑖𝑘ఈ೙
ᇱ  and 𝑘ఉ೙ ൌ 𝑖𝑘ఉ೙

ᇱ , the four summation terms are real, 



respectively. Since the time average of the energy flux passing through the cross section 

𝐸஺௏ா is the real part of Eq. (10), it is represented by the sum of only the propagation 

modes as, 

 
𝐸஺௏ா ൌ Reሺ𝐸ሻ ൌ ෍ 𝐸௡௅

ାஶ

௡ୀିஶ
௞ഀ೙ :௥௘௔௟

൅ ෍ 𝐸௡்
ାஶ

௡ୀିஶ
௞ഁ೙ :௥௘௔௟

 , 

𝐸௡௅ ൌ
𝜌𝜔𝑙

2
൛𝑐௅

ଶ൫𝑘ఈ೙
ଶ ൅ 𝛼௡ଶ൯ െ 4𝑐்

ଶ𝛼௡ଶൟ𝑘ఈ೙𝐴௡𝐴௡
∗ , 

𝐸௡் ൌ
𝜌𝜔𝑙

2
𝑐்
ଶ൫𝑘ఉ೙

ଶ ൅ 𝛽௡ଶ൯𝑘ఉ೙𝐵௡𝐵௡
∗. 

  

Here, since 𝐸௡୐ and 𝐸௡୘ depend only on the amplitudes 𝐴௡ and 𝐵௡ of the nth mode, 

respectively, and are not affected by the other modes, they represent the time average of 

the energy flux of the nth mode derived from longitudinal and transverse waves, 

respectively. 

 The squares of the amplitudes of each mode, 𝐴௡𝐴௡∗  and 𝐵௡𝐵௡∗, can be extracted 

from the displacement distribution in the y direction as follows by using the orthogonality 

of the modes. Let the integral of the product of the displacement 𝑢௫,𝑢௬ and 𝑒ି௜ఈ೙௬ be 

𝑢௫ఈ௡,𝑢௬ఈ௡, respectively, as 

 𝑢௫ఈ௡ ≡ න 𝑒ି௜ఈ೙௬𝑢௫𝑑𝑦
௟

଴
ൌ  𝑖𝑘ఈ೙𝑑𝐴௡𝑒

௜௞೙௫𝑒ି௜ఠ௧ , 

𝑢௬ఈ௡ ≡ න 𝑒ି௜ఈ೙௬𝑢௬𝑑𝑦
௟

଴
ൌ  𝑖𝛼௡𝑑𝐴௡𝑒

௜௞ഁ೙௫𝑒ି௜ఠ௧ . 

 

The squares of the complex values are 

 𝑢௫ఈ௡𝑢௫ఈ௡∗ ൌ 𝑘ఈ௡ଶ 𝑙ଶ𝐴௡𝐴௡∗  , 𝑢௬ఈ௡𝑢௬ఈ௡∗ ൌ 𝛼௡ଶ𝑙ଶ𝐴௡𝐴௡∗  ,   

then, the squares of the amplitudes can be obtained as, 

 𝐴௡𝐴௡∗ ൌ 𝑢௫ఈ௡𝑢௫ఈ௡∗ /𝑘ఈ௡ଶ 𝑙ଶ or  𝐴௡𝐴௡∗ ൌ 𝑢௬ఈ௡𝑢௬ఈ௡∗ /𝛼௡ଶ𝑙ଶ,    

Similarly, 𝐵௡𝐵௡∗ can be obtained as, 

 𝐵௡𝐵௡∗ ൌ 𝑢௫ఉ௡𝑢௫ఉ௡
∗ /𝛽௡ଶ𝑙ଶ  or  𝐵௡𝐵௡∗ ൌ 𝑢௬ఉ௡𝑢௬ఉ௡

∗ /𝑘ఉ௡
ଶ 𝑙ଶ .    

Inserting these values into the second and third equations of Eq. (11), the time average of 

the energy flux of the nth mode can be calculated.  

 



3. Numerical experiment of waveform control by a periodic plate structure 

3.1. Delay control using velocity dispersion of Lamb wave. 

As described above, all modes propagating in the േ𝑥 directions in a periodic layered 

structure satisfy the condition of Eq. (4). In the vicinity of the scattering obstacles, the 

wave field is expressed as a superposition of propagation modes and an infinite number 

of evanescent modes as shown in Eq. (5). On the other hand, in the regions apart from the 

scattering obstacles, the wave field can be expressed as the sum of a finite number of 

propagating modes. Therefore, if the scattering region is designed so that a certain 

propagation mode becomes dominant, direction-controlled transmitted waves and 

reflected waves can be obtained. This section describes the direction control of ultrasonic 

wave in a periodic structure that consists of homogeneous elastic regions and an 

intermediate plate stacked region. 

 Lamb waves propagating in the longitudinal direction in a thin plate have 

dispersion characteristics in which the phase velocity and group velocity differ depending 

on the thickness and frequency. Figure 3 (a) is the phase velocity dispersion curve of A0 

mode for an aluminum alloy plate with longitudinal and transverse wave velocities of 

6400 m/s and 3170m/s, respectively. The lower horizontal axis is the product of frequency 

𝑓 and plate thickness 𝑑 divided by the transverse wave velocity 𝑐், and the left vertical 

axis is the normalized phase velocity 𝑐/𝑐், where the phase velocity of A0 mode of Lamb 

wave 𝑐 is divided by the transverse wave velocity 𝑐். As seen in the figure, in the low 

𝑓𝑑  region 𝑓𝑑/𝑐் ൏ 1 , the phase velocity changes significantly with respect to the 

frequency and plate thickness.Considering this property and setting the structure in which 

flat plates with different thicknesses are stacked as shown in Fig. 3 in the middle, this 

section discusses control of the direction of transmitted waves by adjusting the thickness. 

 Intensive analyses of Lamb waves in Ref. 31) showed that reflection and 

scattering are relatively small at the entrance of a plate stacked region when a transverse 

plane wave is incident from the left region. Therefore, each plate vibrates in the vertical 

direction as an A0 mode of Lamb wave. Because the A0 modes have different phase 

velocities in the plates with different thickness, the phase shifts at the exit, the right edge 

of the thin plate stacked region as shown in Fig. 3 (b). Since this phase shift can be 

predicted from the dispersion curve, the phase shift at the exit can be controlled by 

adjusting the plate thickness 𝑑௜ and the length of stacked plate region L for the frequency 

𝑓଴ (or angular frequency 𝜔଴) used. For example, by adjusting the phase at the exit to be 

𝜙ሺ𝑦ሻ ൌ 2𝑛𝜋𝑦/𝑙 ൅ 𝜙଴ (𝜙଴ is an arbitrary constant), the vibration distribution in the y 

direction becomes 𝑒௜థ ൌ 𝑒௜థబ𝑒ଶ௜௡గ௬/௟ ൌ 𝑒௜థబ𝑒௜ఉ೙௬, and then the n-th-order plane wave 

mode can dominantly form in the right transmission region. 



 Table I shows the combination of plates in which the thickness and length of 

each stacked plate are set, considering that the transverse wave mode with 𝑛 ൌ ൅1 

dominantly forms in the transmitted region at the frequency of 4.5MHz. It was assumed 

that there are four plates per periodic layer. Figure 3 (c) shows the phase difference 

between the entrance and exit of the stacked plate region represented by the following 

equation. 

 𝜙௜ ൌ 2𝜋𝑓𝐿/𝑐௜    

where 𝑐௜ (𝑖 ൌ 1,2,3,4) is the phase velocity of the Lamb wave A0 mode propagating in 

the i-th plate as shown in Figs. 3(a) and (b) that depends on the plate thickness 𝑑௜. 𝐿 is 

the length of the stacked plate region, 3.5 mm, and f is the frequency of 4.5MHz. 

 

 

(a) Dispersion curve of A0 mode     (b) Schematic figure of mode controlled 

transmitted wave using flat plates 

 with different thickness 

 

(c) Phase at the exit of the stacked plate structure 

Fig. 3 Phase control using a stacked plate structure 
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Table I Parameters for the thin plate stacked structure 

𝑑ଵ ሺmmሻ 𝑑ଶ ሺmmሻ 𝑑ଷ ሺmmሻ 𝑑ସ ሺmmሻ 𝐿 ሺmmሻ 𝑓 ሺMHzሻ 

0.32 0.28 0.22 0.18 3.5 4.5 

 

 The circles in Fig. 3 (c) plots the phase 𝜙௜ against the center positions of the 

four plates. As shown in Fig. 3 (b), 𝑦 ൌ 0  and 𝑦 ൌ 𝑙 ሺൌ 1.0 mmሻ  are set on the 

periodic boundary, and flat plates with thicknesses 𝑑ଵ,𝑑ଶ,𝑑ଷ  and 𝑑ସ  are stacked in 

ascending order of y position. Since the Lamb wave of A0 mode vibrates in approximately 

uniform distribution in the plate thickness direction, it can be considered that the A0 mode 

has the phase shown in the bar graph in Fig. 3 (c) at the exit of the stacked region. In Fig. 

3 (c), a straight line with a slope of 2𝑛𝜋/𝑙 (l=1mm, n=+1) is added. This line means the 

ideal distribution for the formation of the transverse wave mode with 𝑛 ൌ ൅1. Therefore, 

the single plane wave mode is expected to appear largely when the bar chart becomes 

closer to the line. 

 

3.2 Numerical experiments using finite element analysis 

In order to verify the above-mentioned transverse wave propagation control, we 

calculated the wave propagation for such a periodic structure using the finite element 

software COMSOL Multiphysics. Figure 4 is a schematic figure of the calculation region. 

The upper and lower boundaries are periodic boundaries, and the left and right ends are 

absorbing regions so that reflected waves from the both ends can be sufficiently 

suppressed. The upper and lower boundaries of each plate in the intermediate scattering 

region where four plates are stacked are set as traction free boundaries force. The 

displacement vibrates in the cross section, and a plane strain state is assumed, which is 

the same assumptions as in Sect. 2. In addition, the calculation was performed in the 

frequency domain, and a steady-state solution for a certain frequency f was obtained. The 

calculation area is one cycle of the periodic structure (length l=1.0 mm in the y direction) 

whose dimensions are as shown in Fig. 4. The absorbing region is divided into 148912 

on each side by a triangular element with a maximum side length of 0.01 mm, and the 

remaining area is divided into 1050 in the x direction and 100 in the y direction by a 

square element with a side length of 0.01 mm. The incident wave was a transverse plane 

wave towards the stacked plate region from the left by applying a body force in the y 

direction to an element located 1.0 mm away from the left end, “entrance” of the 

intermediate stacked region. Assuming that the material is an aluminum alloy, the 

longitudinal sound velocity and transverse wave sound velocity are the same as above, 



6400m/s and 3170m/s, and the density is 2700kg/m3. The generated transverse wave 

passes through the entrance of the stacked region, propagates in the four plates as A0 

mode of Lamb wave, and arrives at the exit (right end of the intermediate stacked region). 

These Lamb waves have different phases at the exit as described above. 

 

 

Fig. 4 Calculation geometry in this study. 

A fundamental layer of a periodic structure. 

 

3.3 Calculation results and energy analysis of transmission modes  

Figure 5 shows the wave propagation at 4.5MHz under the above calculation conditions. 

The color is the vertical component of the rotation of the displacement vector ሾrot 𝒖ሿ௭, 

which represents the transverse wave component in the wave field. In addition, four 

periodic calculation regions are displayed, stacking vertically in the y direction so that the 

wave propagation can be clearly seen. The vibration was attenuated in the absorbing 

regions at the left and right ends, and the reflected waves from the both ends was 

sufficiently suppressed. In addition, the wave propagation seems to be continuous at the 

periodical boundaries, showing the calculation with the periodical boundary conditions 

was correctly executed. 

 

 
Fig. 5 Wave motion through the stacked plate region as shown in Table I. 
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 In the right region where transmitted wave is shown, the plane wave seems to 

propagate in the upper right direction. However, because modes other than 𝑛 ൌ ൅1 are 

also included, the broken striped pattern appeared in whole area. To analyze the 

transmitted waves quantitatively, the energy ratio of each mode in the transmitted wave 

to the total energy of the transmitted wave was calculated. 

 The energy of the transmitted wave 𝐸்௥௔௡௦  can be calculated as the time 

average of the vibrating energy flux transmitted through the cross section by taking the 

real part of Eq. (8) in the transmission region. The time average of the energy flux in each 

mode can also be calculated according to the second and third equations of Eq. (11). In 

the frequencies and materials used in this calculation, four propagation modes exist in the 

periodic structure: longitudinal wave with 𝑛 ൌ 0 and transverse wave with 𝑛 ൌ 0,േ1. 

The time averaged energy fluxes 𝐸଴
௅ ,𝐸଴

்  and 𝐸േଵ
்   were calculated using the 

displacement and stress in the transmission region. 

 Table II shows the energy of each mode as a ratio to the energy of the entire 

transmitted wave.  𝐸்௥௔௡௦  and 𝐸଴
௅ ൅ 𝐸଴

் ൅ 𝐸ାଵ
் ൅ 𝐸ିଵ

்   match with an error of 1% or 

less, showing that the energy calculation method for each mode in the previous section is 

correct. In addition, 𝐸଴
௅/𝐸்௥௔௡௦ is very small, which means that the longitudinal wave 

component hardly appears due to the mode conversion when a transverse plane wave is 

incident. The transverse wave with 𝑛 ൌ 0 appears largely in the transmission region, and 

𝐸଴
்/𝐸்௥௔௡௦ exceeds 70%. On the other hand, since the energy ratio 𝐸ାଵ

் /𝐸்௥௔௡௦ of the 

desired transverse wave with 𝑛 ൌ ൅1 is about 30%, the conversion to the mode with 

𝑛 ൌ ൅1 was not well performed in this stacked region. In the transmission region of Fig. 

5, the transmitted wave appears to propagate diagonally upward (large arrow in the Fig. 

5). However, the white lines connecting the same phase points differ from the wave front 

of the large arrow. In other words, as a result of the mixture of the mode with 𝑛 ൌ 0 that 

propagates in the horizontal direction of the solid arrow and the mode with 𝑛 ൌ ൅1 that 

propagates in the diagonal direction, it propagates in the direction of the thick arrow. This 

is supported by the fact, shown in Table II, that the mode with 𝑛 ൌ 0 and the mode with 

𝑛 ൌ ൅1  are relatively large in the energy, and the mode with 𝑛 ൌ െ1  is almost 

nonexistent. 

 

Table II. Transmission energy rate for all propagating modes (%) 

𝐸଴
௅/𝐸்௥௔௡௦  𝐸଴

்/𝐸்௥௔௡௦ 𝐸ାଵ
் /𝐸்௥௔௡௦ 𝐸ିଵ

் /𝐸்௥௔௡௦ 

0.08 71.22 28.59 0.11 

 

 



3.4 Redesign the stacked region with frequency and length  

Although the thickness and length of each plate were determined so as to match the 

transverse wave mode with 𝑛 ൌ ൅1 by calculating the phase shift from the dispersion 

curve, the transmitted wave could not be made into a wave field dominated by the mode 

with 𝑛 ൌ ൅1 as described above. Therefore, in this section, the energy of each mode in 

the transmitted wave is calculated for the stacked plate region determined in the previous 

section when the frequency and a stacked plate length are changed. 

Figure 6 shows the energy flux rate of each mode propagating in the transmission 

region when the frequency is changed in 0.01 MHz increments from 4 to 5 MHz. 4.50 

MHz is the frequency used in the previous section. The ratio of each mode in the 

transmission region changes significantly due to subtle changes in frequency. At all 

frequencies, the longitudinal wave mode is close to 0, which indicates that the ratio of 

mode conversion to longitudinal waves by the stacked plate region is very small when a 

transverse plane wave is incident. Moreover, although the mode with 𝑛 ൌ ൅1 is larger 

than the 𝑛 ൌ െ1 mode over the frequency range, the mode with 𝑛 ൌ 0 is the largest in 

some frequency ranges, which denotes that frequency tuning is necessary for forming the 

transmitted wave of a single 𝑛 ൌ ൅1 mode. For example, the wave motion shown in 

Table II and Fig. 5 is given at the frequency where the transverse wave mode with 𝑛 ൌ 0 

is dominant. 

Figures 7 (a) and (b) show the wave propagation at 4.20 MHz and 4.63 MHz, 

respectively, where the energy rate of the transverse wave mode with 𝑛 ൌ ൅1  is the 

largest and the second largest. As Fig. 5, the vertical component of the rotation of the 

displacement vector ሾrot 𝒖ሿ௭ is shown in color. Unlike in Fig. 5, the transverse wave 

mode with 𝑛 ൌ 0 becomes smaller, and the mode with 𝑛 ൌ ൅1 exceeds 70%, then the 

transmitted wave with the dominant mode of 𝑛 ൌ ൅1  can be observed. However, 

because small amount of the 𝑛 ൌ െ1 mode is superposed, the plane wave propagation 

towards the right lower direction can also be seen.  



 
Fig. 6 Energy flux rate in a transmission region 

 

 
(a) 4.20 MHz 

 

(b) 4.63 MHz 

Fig. 7 Wave motion in the periodic layered structure at the frequencies where the 

transverse plane wave of the order of 𝑛 ൌ ൅1 is dominant. 

 

Next, the energy of the transmitted mode was calculated for different lengths of 

the intermediate plate region. Figure 8 shows the energy flux rate of all propagating 

modes in the transmitted wave at the frequency of 4.5 MHz for different lengths of the 

stacked plate region in 0.1 mm increments from L = 3.0mm to 4.0mm. Since the mode 

with 𝑛 ൌ ൅1 is generally larger than the 𝑛 ൌ െ1 mode in this length range, the wave 

propagating to the lower right is small. 

Figures 9 (a) and (b) show the wave motion for L=3.8 mm and 3.4 mm, where 

4 4.2 4.4 4.6 4.8 5
0

20

40

60

80

100

E
ne

rg
y 

fl
ux

 r
at

e 
(%

)

Frequency (MHz)

Fig. 7 (a) Table II, Fig. 5 Fig. 7 (b)



the ratio of the mode with 𝑛 ൌ ൅1 is the largest and the second largest in the length 

range of Fig. 8. The color represents ሾrot 𝒖ሿ௭ as in Fig. 5 and Fig. 7. Since both the 

𝑛 ൌ 0 mode and the 𝑛 ൌ െ1 mode are small, a clear plane wave front propagating to 

the upper right is formed as a result of the fact that the 𝑛 ൌ ൅1 mode is dominant. 

 

 
Fig. 8 Energy flux rate for different lengths of the stacked plate region 

 

 

(a) L = 3.8 mm 

 
 (b) L = 3.4 mm 

Fig. 9 Wave motion in the periodical stacked region with the length where the 

transverse plane wave of the order of 𝑛 ൌ ൅1 is dominant. 

 

 The results shown above indicates that it is possible to realize a transmitted wave 

with the dominant mode of 𝑛 ൌ ൅1 by adjusting frequency and length of a stacked plate 

region from the stacked plate intermediate region originally designed with dispersion 
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curves.  

In this way, when a periodic external load is applied to a periodic layered 

structure, the transmitted wave field is limited to the propagation modes in which the 

wave number in the propagation direction expressed by Eq. (4) is a real value, and each 

mode propagates in its own angular direction. Therefore, each single mode can be 

measured by installing a receiving transducer that matches the unique direction. 

 

4. Conclusions 

This study examined the possibility of controlling the direction of wave propagation for 

a periodic layered structure. First, we formulated the wave propagation in the periodic 

structure, showing that only plane waves with discrete propagation angles can exist 

because they must satisfy the phase matching condition at the periodic boundaries, and 

that the plane wave modes can be evaluated by the time averaged energy flux. 

Furthermore, using the numerical calculation of wave propagation in the frequency 

domain, we tried to control the phase at the exit of an intermediate region where plates 

with different thickness are stacked. The results showed that the transverse wave mode 

with 𝑛 ൌ ൅1  propagating in the diagonal direction can be predominantly transmitted 

when a transverse wave is incident on the intermediate stacked thin plate structure. 

 Since the formulation shown in Sect. 2 can be applied in any structures with 

periodicity even if the intermediate region is not a stacked plate, we will try to control the 

direction of wave propagation in various intermediate regions in the next step. 
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