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Abstract

This paper deals with left invariant complex structures omp$y connected Lie
groups, the Lie algebra of which is of the typghl= hx, V, wherern is either the
adjoint or the coadjoint representation. The main topichis éxistence question of
complex structures on b for h a three dimensional real Lie algebra. First it was
proposed the study of complex structurgsatisfying the constrainih = V. When-
ever xr is the adjoint representation this kind of complex struesuare associated to
non-singular derivations dj. This fact allows different kinds of applications.

1. Introduction

It is well known that due to their particular properties affedential manifolds,
the study of invariant complex structures and induced géd@seon Lie groups can be
realized at the Lie algebra level. While the existence of glem structures on reduc-
tive Lie algebras of even dimension has been solved in diffesteps (starting with
[27] and [34]), the solvable case still remains an open @moblFor dimensions up to
four, complex structures were studied in [25, 29, 22], wliiile nilpotent case has been
considered up to dimension six [1, 9, 10, 11, 14, 17, 21, 3], &nce those works
are mainly done on the basis of a case by case study, one ofrith@ppl obstruc-
tions in classifying complex (and more general) structusassolvable Lie groups of
dimensions equal or greater than six relies in the high numbéomorphism classes.
This implies that different criteria have to be developedider to describe any kind
of geometry on the corresponding Lie groups. An alternaéime powerful tool that
provides a new insight to the problem is provided by the motié generalized com-
plex structure, first introduced by Hitchin in [18], and te by several authors (see
for instance [2, 12, 16] and references therein). On therdtlaad, in order to study
the complex geometry, special types of complex structureseveonsidered, as the so
called abelian [1, 5] and nilpotent [9, 10], specific for wilpnt Lie algebras, and which
have been shown to be of considerable interest, in particmlaombination with other
compatible geometric structures.

The aim of this work is the study of complex structures on &igand cotangent
Lie algebras, that is Lie algebras which are semidirect pctsd T, h = § x, V, where
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dimV = andz denotes either the adjoint or coadjoint representation.spésifically
focus on the following questions:

1) Complex structures satisfying the conditidihy = V.

2) Complex structures onhTand T*h wherep is a three dimensional real Lie algebra.
3) Symplectic structures which are compatible for a comglexcture in 2), therefore
inducing pseudo-Kéhler geometries.

Complex structures appearing in 1) are caltethlly real. They have become ob-
jects of importance in the construction of weak mirror pdsee for instance [7] and
references therein).

Complex and symplectic geometry constitute extreme speeses of generalized
complex geometry. Once a Lie algebfahas been fixed, the corresponding underly-
ing geometric structure arises either as a complex streicburh or as a totally real
complex structure on ", which is Hermitian for the canonical metric orfil.

For the adjoint representation we prove that a totally remhglex structure cor-
responds to a non-singular derivation pf Therefore the existence of such totally
real complex structures onhTimposes onh the nilpotency constraint (Theorem 3.5).
Hence, in dimension three one get§;Twhereh, denotes the Heisenberg Lie algebra
of dimension three. As application, we prove the existenica generalized complex
structure of symplectic type on some types of nilpotent Lgehrash and the existence
of Lagrangian symplectic structures orifT

For the coadjoint representation, we give the general fofrtotally real complex
structuresJ on T*h, proving the existence whenevéris one of the following three
dimensional Lie algebras: the Heisenberg Lie algebra, tieealgebra of the group of
rigid motions of the Minkowski 2-space;_;, the Lie algebra of the group of rigid
motions of the Euclidean 2-spacg, and the one dimensional trivial central extension
of the Lie algebra of the group of affine motions, usually deddby aff(R).

In addition to the Lie algebras obtained in 1), the six din@mal tangent Lie alge-
bras admitting complex structures correspond to a Lie a&gghwhich is either simple
5l(2), s0(3) or solvable and isomorphic tB x aff(R). In the cotangent case we add
sl(2), 50(3), v3,1 and vy, for > 0.

Concerning 3), the only Lie algebras carrying a pseudo-&&htructure are: the
tangent and the cotangent of the Heisenberg Lie algebrahenthhgent ofR x aff(R),

a case investigated in more detail. In the nilpotent case aare see that there are
flat and non-flat pseudo-K&hler metrics [11, 14]. I'RTX aff(R)) the resulting metric
is non-flat. However one gets flat distributions. Again instlsituation, totally real
complex structures provide examples for pseudo-Kéhletspai

2. Generalities on complex structures

An almost complexstructure on a Lie algebrg is an endomorphisnd: g — g
satisfying J? = —I, where | is the identity map.
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Let g° = g ® C denote the complexification af whose elements have the form
v®c, with v e g, c e C. An almost complex structurd on g can be extended to a
complex linear endomorphism @f° that we also denote by, by settingJ(v ® ¢) =
Jv®c.

As usual, we identifyv € g, with v ® 1 € g€, and hence any element §¥ can be
written asx +iy wherex, y € g. With this identification, the eigenspace corresponding
to the imaginary eigenvalue of J is the subspacen of g€ given by

m={X—iJX: X € g}.

If we denote bys the conjugation map ogC, that is,o(x +iy) = x —iy, the eigen-
space corresponding tei is om, and we obtain the direct sum of vector spaces

(1) c“=mdom.

Conversely any decomposition of type (1) induces an almosiplex structure ory.
In fact let J: g€ — g€ be the linear map given by(x + oy) = ix —ioy for all
X,y € m. Clearly J> = —1 and sincel oo = o o J the mapJ gives rise to an almost
complex structure org.

Notice that anyJ-invariant subspace must be even dimensional.

The integrability condition of an almost complex structukés expressed in terms
of the Nijenhuis tensoilN;

2) Ny(X, y) = [IX Iyl —[X, y] = I[Ix, y] — J[x, Jy], forall x,yeg.

It is straightforward to verify thatN; is bilinear, skew-symmetric and it satisfies
Nj(JIx, Jy) = —=Nj(x, y) and N;(JIx, y) = —=IN;(x, y) for any X, y € g. Hence, if
g =ud Ju is a direct sum as vector subspaces, thign= 0 if and only if Nj(u,v) =0
for all u, v € u.

An almost complex structurd on g is calledintegrableif Nj = 0. In this casel
is called acomplex structureon g. Equivalently, J is integrable if and only ifm (and
henceom) satisfying (1) is a complex subalgebra gf.

Special types of almost complex structures are determigatidse endomorphisms
J: g — g satisfyingJ? = —I and one of the following conditions for any, y € g:

cl) J[x, yl =[x,3dyl, ¢c2) [Ix Iyl =[xVl

In any case they are integrable. Complex structures of tyjedetermine a structure
of complex Lie algebra omy, they are sometimes callda-invariant The subalgebra
corresponding to the eigenvalugei is actually an ideal of. Structures of type c2)
are calledabelian [5], and the corresponding eigenspaces for the eigenvatieare
complex abelian subalgebras gf.

Note that if g carries an abelian complex structure, then the centgr wiust be
J-invariant and therefore even dimensional. Another nergssondition to have abelian
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complex structures is that is 2-step solvable, which means that the commutator sub-
algebraC(g) is abelian (see [24] for instance).

Let g be a Lie algebra and lel be a fixed almost complex structure gn For
any| > 0 we define the sef (J) inductively as:

ao(J) = {0}, aJ)={Xeg: [X, gl Ca1(J)and JX g] Ca1(J)}, | =1

It is easy to verify that
ag(J) C a1(J) S ax(J) S -+~

For a fixed X € aj+1(J) we have that X, Y] € a;(J) € a;j+1(J) for all Y € g, and
clearly [J[X,Y], Z] € ai(J) C ai+1(J) for all Y, Z € g. Thereforeq;(J) is a J-invariant
ideal of g for anyi > 0.

The almost complex structurd is called nilpotent if there exists at such that
at(J) = g. This implies thatg must be nilpotent. For a nilpotent almost complex struc-
ture J on ans-step nilpotent Lie algebra of dimensiom 2ve shall say that it is-step
nilpotent if r is the first nonnegative integer such thafJ) = g; this satisfies the in-
equalitys <r < n and these bounds are actually reached ([10]). Notice thatig a
nilpotent almost complex structure on a nilpotent Lie algefp then any term of the
ascending series af admits a two dimensional-invariant subspace. Clearly, i is
integrable, the condition of being nilpotent is strongeaartlasking the corresponding
for J to be nilpotent.

ExAMPLE 2.1. The canonical complex structure of a nilpotent complex al-
gebra is nilpotent (see Example 4.1).

An equivalence relation is defined among Lie algebras witmlex structures.
Lie algebras with complex structureg,( J;) and @,, J,) are calledholomorphically
equivalentif there exists an isomorphism of Lie algebrasg, — g, such thatd,ow =
« o J;. In particular wheng, = g, we simply say that); and J, are equivalentand a
classification of complex structures can be done.

Lemma 2.2. Let g be an even dimensional real Lie algebra.

i) The class of an abelian complex structuienon-empty consists only of abelian
complex structures.

i) Let J J be complex structures o such that J = aJa~! for o € Aut(g). Then
aq(J) = q(J’) for any 1 > 0.

In particular the class of a nilpotent complex structure orgi@en nilpotent Lie
algebra consists only of nilpotent complex structuias of them being nilpotent of the
same type.

iii) The class of a bi-invariant complex structure has only baiant complex structures.
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REMARK. From the definitions above it is not immediately clear whishthe
relationship between nilpotent complex structures and ptexnstructures whose cor-
respondingi-eigenspacen is nilpotent. In Proposition 4.6 we see that the tangent Lie
algebra of the Heisenberg Lie algebya carries only 2-step nilpotent complex struc-
tures, some of them being abelian, and others hadtihgigenspaces which are 2-step
nilpotent subalgebras.

3. Totally real complex structures on tangent and cotangentie algebras

The aim of this section is the study of totally real complesustures on tangent
and cotangent Lie algebras, that is complex structdrem T,h such thatdh = V.

We briefly recall the construction. L&tdenote a real Lie algebra and let,{/) be
a finite dimensional representation pf By endowingV with the trivial Lie bracket,
consider the semidirect product 6fand V relative tonr, T,bh := § x, V, where the
Lie bracket is:

[(x, v), (X, V)] = (X, X7, 7(X)v" — (X)), X,X €h, v,v" €V.

We mainly concentrate on the adjoint and coadjoint repitesens. In both cases,
V is a real vector space with the same dimension as th@t dfhe adjoint represen-
tation ad b — gl(h) is given by adk)y = [X, y], and it defines thé¢angentLie alge-
bra that we denote with BT For the coadjoint representation*ady — gl(h*), that is
V = §*, take

®) ad) ¢(y) = —pcadk)y, x,yebh, g €b™

we call the resulting Lie algebreotangent Lie algebrand we denote it as*B.

A question concerning complex structures when we look atalbebraic structure
of the Lie algebra Th = hx, V is whether there exists an almost complex structiire
such thatJh = V. Such aJ induces a linear isomorphisi: h — V, and conversely
any suchj: h — V determines an almost complex structure grf Buch thatJh =V,
by means of

4) J(x,v) = (—j M, jx), xeh veV, j:h—V.

It follows that bothh and V are totally real with respect td. We further adopt
the following terminology [7]:

DEfFINITION 3.1. Let T;h:=hx, V be the semidirect product of a Lie algebra
b with the real vector spac¥ such that dinV = dimp and letJ denote an (almost)
complex structure on Jh. If Jh =V we say that] is atotally real (almost) complex
structure on Th.
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Suppose thata(, V) denotes a finite dimensional representatiorhaind letJ be
a totally real almost complex structure op = hx,, V (like in (4)). In this case, the
integrability condition forJ reduces to

(5) 0=1[x,y]—j w(X)jy + j tn(y)jx forall x,yeh.

For a fixed Lie algebrd, recall that the representation¥,(r) and (', 7’) are
called equivalentif there is a linear isomorphisrit : V — V' such thatT ~*z/(x)T =
w(x) for all x € b.

Actually, for any v € Aut(h), the mapy: T,h — T, h given byp =y + T is
a Lie algebra isomorphism. In fact, for arbitrary elemerts/ € b, u, v € V we get
the condition

px+u,y +v] = o(x, y] + 7(x)v — 7 (y)u)
= y[X, ¥+ Tr(X)v = Tr(y)u
=[Yx ¥yl +7'()Tv —7'(y)Tu
= [p(x +u), p(y + v)].

Thus, if J denotes a complex structure o B then J’' := ¢ o J o ¢ constitutes a
complex structure on b making of (T.h,J) and (T,-h, J’) a pair of holomorphically
equivalent Lie algebras.

In particular, if J is a totally real complex structure on,H, then (T.h, J) is holo-
morphically equivalent to (Th, J), where J, : h — V' is J =T o J, and extended
as in (4). The proof of the following result follows by usingese relations and the
integrability condition (5).

Proposition 3.2. Let (V, ) and (V’, n’) be equivalent representations of a Lie
algebrah such thatdimV = dimV’ = dimf. Complex structures oit,h are in one
to one correspondence with complex structuresTory. In particular, totally real com-
plex structures o, h are holomorphically equivalent to totally real complexusttures
on T,b.

A first consequence of (5) concerns abelian complex strestur

Corollary 3.3. Leth be a Lie algebra and let V denote the underlying vector
space offy. LetT.h:=hx, V denote the semidirect product and let J be an abelian
totally real complex structure ofi,h. Thenh is abelian andzr and J are related by
the conditiont(x)Jy = w(y)JX, where x y € b.

REMARK. The converse of the previous corollary is also true. bedenote an
abelian Lie algebra and let be a representation df into h. If j: h — h is a non
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singular map such that(x)jy = n(y)jx for all x,y € b, then the almost complex
structure onh x, h given as in (4) is integrable and totally real with respectto

EXAMPLE 3.4. ConsideR" with the canonical basige;, e, ..., €,} and let A
be a non-singulan x n real matrix. LetC, denote the centralizer oA in gl(n,R) that
is, the set ofn x n matricesB such thatBA = AB. Let By, B, ..., B, be n matrices
in Ca such that they are pairwise in involutio®; B = B;B; for all i, j. Takex
the representation dR" which extends linearly the mappirg — B; (notice that this
could be trivial depending o\). The map|j represented byA amounts to a totally
real abelian complex structure on,R".

Recall that aderivation of a Lie algebrah is a linear mapd: h — b such that
d[x, y] = [dx, y] + [x,dy], forall x,yebh.

Jacobson proved that if a Lie algebfaadmits a non-singular derivation then it must
be nilpotent [19].

Theorem 3.5. Let Th denote the tangent Lie algebra ¢f The set of totally
real complex structures ofif is in one to one correspondence with the set of non-
singular derivations ofy. If one (and therefore bothof these sets is non-empthen
b is nilpotent.

Proof. Let ad denote the adjoint representatiorhadnd taker = ad in (5), so
one becomes

0= j[x,y] —adx)jy + ad(y)jx, for all x,yeh.

By identifying j with a linear map orh the previous equality shows thatcorresponds
to a derivation off). Sincej is non-singular, the proof is completed applying the result
of Jacobson. O

ExAmMPLE 3.6. Leth, denote the Heisenberg Lie algebra of dimensiomn21,
that is h,, = spar{X, Y1, . .., Xn, ¥n, Z} With the Lie bracket ¥i, y;] = &jz. Any non-
singular derivationd has a matrix representation given by:

A 0 )
(* tr(A))’ with A< GL(2n,R) and tr(A) #0

wheretr denotes the trace of the matrix. HenceTh, has several totally real com-
plex structures.
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Let s denote a semisimple Lie algebra. Since the Killing form isHdegenerate
this induces an ad-invariant metric ahand therefore the adjoint and coadjoint rep-
resentation are equivalent. A consequence of PropositidraBd Theorem 3.5 is the
next corollary.

Corollary 3.7. There is no totally real complex structure dri's for any semi-
simple Lie algebras.

We now proceed to analyze the existence of totally real cerptructures on six
dimensional cotangent Lie algebrashTfor i (for the list of Lie algebrag) of dimen-
sion three see Theorem 4.2).

Proposition 3.8. Let T*h = h x h* be a cotangent Lie algebra of a three dimen-
sional Lie algebrah. Then totally real complex structures oFih exist whenevei
is either unimodular or isomorphic t® x aff(R). In those cases the map: ) — bh*
admits a matrix representation as follows

a1 2 3 a1 2 a3
TH1 | as1 a2 a3 | T'wsoa | —a2 0 as3 |

—a43 —as3 O —a43 —as3 O

(= VEC VR VE] au1 42 a3
Tvwol|l —a2 0 0 | T | w2 0 ass |

a1 0 a3 —ay3 —as3 0

where the matrix should be non-singular.

Proof. The proof follows by direct computation of (5) takimgas the coadjoint
representation. In the cases not listed above, the magmving (5) are singular, hence
they cannot induce a complex structure ofh.T ]

4. Complex structures on tangent and cotangent Lie algebrasf dimension six

Examples of six dimensional real Lie algebras with complenctures arise from
three dimensional complex Lie algebras. In factgedenote a three dimensional com-
plex Lie algebra, then the underlying real Lie algelgra= gg, is naturally equipped
with a bi-invariant complex structure induced by the muitigtion by i on g. In this
way this complex structure og is bi-invariant.

ExamMPLE 4.1. Letg denote a six dimensional two-step nilpotent Lie algebra
equipped with bi-invariant complex structute Then g is isomorphic to the real Lie
algebra underlyingh; ® C, the complexification of the Heisenberg Lie algebra of
dimension three.
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Now we shall study the existence problem of complex strestusn any tangent
or cotangent Lie algebra corresponding to a three dimeaki@al Lie algebra.

Recall the classification of three dimensional Lie algebmasgiven e.g. in [15]
or [20].

Theorem 4.2. Leth be a real Lie algebra of dimension three spanned phgge;.
Then it is isomorphic to one in the following tist

b1 [e1, &] = &3,

t3 [en ] =&, [e, 6] =+ &

w3 [e, &) =6, [e, &] =265, [A] =1,

v, [ene]l=ne;—es [, &] =e+ne, =0,
sl(2) [en, &] =&, [63, &1] = 28y, [63, &] = 28,
50(3) [en, &] = &, [63, €1] = &, [63, €] = —e1.

(6)

A Lie algebrag which satisfiestr(ad()) = O for all x € g is called unimodular.
Among the Lie algebras above, the unimodular solvable onesha, t3 -1 and ;.

The simple case. Among the Lie algebras listed in Theorem 4.2 the simple ones
are sl(2) andso(3). Since the adjoint and the coadjoint representatiorseguivalent,
after Proposition 3.2 for a semisimple Lie algebrathe existence of a complex struc-
ture on T determines it on Ts and vice versa. Recall that complex structures on com-
pact semisimple and more generally on reductive Lie algelrere extensively studied
(see for instance [25, 26, 28, 27, 34]).

Let J be the almost complex structure ow[{R) and Ts0(3) defined by

Jeg=6, Je=6, Jg==.

By calculating N; one verifies that] is integrable (see the Lie brackets in Propos-
ition 4.3). Hencethe tangent Lie algebra3so(3) and Tsl(2) (and thereforeT*so(3)
and T*sl(2)) carry complex structures

The solvable case. Suppose thag is a six dimensional tangenthTor cotangent
Lie algebra Th being h a solvable real Lie algebra of dimension three. It admits a
complex structure if and only i decomposes as a direct sum of vector subspaces
g€ = m@om, wherem (resp.om) is a complex subalgebra. Without loss of generality
assume thatn is spanned by vectord, V, W as follows:

U = e + ae + ages + €, + ases + as6s,
(7) V= byey + bses + bsey + bses + bees,
W = C€ + C3€3 + Cs€1 + Cs65 + Ce85, &, bj, cceC, Vi, j,k=2,...6.

Let a := span{V, W}. We claim thata is an ideal inm. In fact, according to the Lie
brackets ing (see Proposition 4.3 and Proposition 4.8 below), one verifietU ¢
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C(g®), hence forx,y € m, one has X, y] € C(m) € a. Thusm = CU x a, wherea an
ideal of m of dimension two and therefore isomorphic either taC§ or to ii) aff(R),
the two dimensional complex Lie algebra spanned by vextof with [X,Y] =Y. We
may assume in the last situation thatW satisfy the Lie bracket relatiorV W] = W.

In casem = CU x C?, the action ofU on a admits a basis whose matrix is one
of the following ones

® ) (; 2),MMEC;(D (; i),veC

In casem = CU x aff(R) the action ofU on a is a derivation ofaff(R) thus over
the basis{V, W} we have a matrix

(9) (Z 8) abec.

By making use of this we shall deduce the existence or nostenge of complex
structures on any tangent or cotangent Lie algebra comelépg to a three dimensional
solvable real Lie algebra.

4.1. Complex structures on six dimensional tangent Lie aldgas. If H de-
notes a Lie group, its tangent bundleH is identified with H x b, which inherits a
natural Lie group structure as the semidirect product unkeradjoint representation.
Its Lie algebra, the tangent Lie algebrd,Tis the semidirect product via the adjoint
representatiorty x4V, whereV is the underlying vector space tpequipped with the
trivial Lie bracket.

Proposition 4.3. Let b be a real Lie algebra of dimension three and Tgf de-
note the tangent Lie algebra spanned by @, €3, €4, €5, &. Then the non-zero Lie
brackets are presented in the following list

Thy:  [en, &] = €3, [e1, &] =65, [€, €4] = —6,
Tes:  [er, &) =&, [e1, &3] = & + 63,

[e1, &] = &5, [€1, €] = €5 + €5, [, €] = —65, [€3, &4] = —65 — 65,
Trs, . [e1, €] = e, [e1, 3] = A6,
Al =1 [en, &] =65, [e1, &] = A6s, [€2, €4] = —65, [€3, €4] = —A6s,
Ty, 0 [en &] =ne —es, [, &3] = & + nes, [ey, 5] = nes — e,
n=0 [e &] =6 +nes, [€, 4] = —nes + 6, [, €] = —6 — nes,
Tsl(2) [en, &] = e3fes, e1] = 2ei[e3, &] = —2ey,

[e1, &5] = eg[ey, €] = —2e4[ey, &4] = —6,

[€2, 5] = 26s5[€s, €4] = 2e4[e3, &5] = —265,
Ts0(3) [er, &2] = e3[e3, €1] = ey[es, €] = —ey,

[e1, &5] = —es[ey, &) = &5, &4] = —6,

(&2, €] = e[es, €4] = —65[63, &5] = €.
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Theorem 4.4, Let ) denote a three dimensional Lie algebraen Th admits a
complex structure if and only i is either isomorphic tdj; or R x aff(R).

The proof can be derived from the next paragraphs.

Lemma 4.5. If m is a complex subalgebra ofh being h a three dimensional
solvable real Lie algebra such thath® = m @ om thenm ~ C x C2.

Proof. According to the previous paragraphs it should held: C x C2 or m ~
C x aff(R). We shall prove that the last situation is not possible.dct,ffrom the Lie
brackets in Proposition 4.3 we see th#t YV] € spar{es, €5} so thatc, = 0 = c3 = c3.
But by computing one hasV] W] = 0 implying W = 0 and therefore no complex
structure can be derived from this situation. L]

With the previous Lemma it follows to analyze next the existe of complex struc-
tures attached to complex Lie subalgebrasuch thatm ~ C x C2.

Recall that any totally real complex structure ol Tcorresponds to a non-singular
derivation ofh; (Example 3.6). No one of these complex structures is ahelow-
ever Ty; can be equipped with abelian complex structures as we shéwbe

Let m be a complex subalgebra ofyT spanned by vectord, V, W as in (7). The
subspacer = spar{V, W} is an ideal ofm andm = CU x a. Since T is nilpotent,a
is abelian and the action & on a is of type (8) and moreover case 1) holds foe=
v = 0 while case 2) holds for = 0. Case 1) gives rise to abelian complex structures,
while case 2) corresponds to non abelian ones.

Computing the Lie brackets/[ W], [U,V] and U, W], and imposing these brack-
ets to be zero, we get

U = e + a& + ages + au€s + ases + ass,
V = bges + baes — ahaes + bses, W = Cz€3 + Ca€4 — @Cs€5 + Cg6s.

If the set{U,V,W,oU,oV,ocW} spans a basis of §F)¢, the tangent algebrahT car-
ries an abelian complex structude For instance the linear homomorphisingiven by

(10) Jea=&, Je=6 Je=¢;,

and such that)? = —I defines an abelian complex structure oh, T Following [21],
there is only one class among abelian complex structures[({ge

Any abelian complex structure is 2-step nilpotent. In fagtceJ is abeliana;(J) =
3(Thy) and clearly the conditiol©(Th,) = 3(Th;) shows thain,(J) = Th,. On the other
hand, the following set of vectors omh¥ is a basis of the complex subalgebnacor-
responding to a totally real complex structure dmn, T

e —i(aes+bes+eg), e—i(cey+de+ feg), es—i(a+d)es
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with a, b, c,d, e, f e R, a+ d # 0 andad — bc # 0. They induce non abelian com-
plex structures, and furthermore there are more non-abebanplex structures than the
totally real ones. Lein be a complex subalgebra of {J)° spanned byJ, V, W as
in (7). Requiring that P, V] = 0 = [V, W] and U, W] = V we deduce that any
complex subalgebraw of (Th;)¢ spanned by

U = e + axe + azes + ases + ases + agss,
V = €3 + (C5s — apCs + auCr)es, W = Cp€) + C363 + C4€4 + C565 + Ces,

and such that,V,W,oU,oV,cW is a basis of (§,)C, induces a non-abelian complex
structure on B;.

The class of non-abelian complex structurgsis 2-step nilpotent. Actually the
vector X := W + oW belongs to the center ofjf and alsoJX € 3(Th;). Since
a1(J) = span( X, I X} = 3(Th,) and C(Thy) = 3(Th,), we conclude thati(J) = Th;.

After [21] in the set of non-abelian complex structures, tas the following non
equivalent complex structures (the extension is such Rat —I):

(11) Jer=e, Jke=-se+e, Jez=26, s=0,1,

which are totally real, and next

1—v
12) Jue1=e2+(1—v)e4+Tes, Je =-ve; +(1-v)es, Je3 =6,

v eR—{0}

which are neither abelian nor totally real.

By following a similar approach as that already done, thdiyisscanning the equa-
tions that make of the sdf, V, W a subalgebran such thatm @ ocm = g€, one can
verify the following result.

Proposition 4.6. Leth denote a Lie algebra of dimension thré2).
i) The tangent Lie algebrdh,; admits abelian and non-abelian complex structures
which are in every caseé-step nilpotent.
i) Trz and Teg, (n = 0) do not admit complex structures.

REMARK. The Lie algebra W, is isomorphic toGg 1 in [21] and tobh, in [11].

Proposition 4.7. The following statements are equivalent
i) Trz, can be endowed with a complex structure
i) Trg, carries an abelian complex structure
i) A=0.
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Proof. We proceed proving the implications= iii) = ii) = i). It is easy to
see ii) = iii).

Let m denote a complex subalgebra al‘gI spanned by vectord, V,W as in (7),
with [V, W] = 0. Evaluating the Lie brackets we obtain the expressions

[V, W] = (b4C2 — b2C4)95 + )\.(b4C3 — b3C4)65,
[U, V] = byey + Abses + bses + Abses + (aubz — azba)es + A(asbs — agba)es
[U, W] = C2€; + AC3€3 + Cs85 + ACeEs + (84C2 — @2C4)€5 + A(ayC — 3 — a — 3¢4)6s.

If the action ofU on spar{V, W} is of type (1) in (8), by solving the corresponding
system, one gets a basis oft¢T)C only if 1 = 0, with the additional constraints =
0 = u. Explicitly, the vectors adopt the form

3 U = e + ax& + ages + a4€s + ases + a6,
V = bses + sy — apbses + bees, W = C3€s + C4€4 — 2C465 + Coés,

wheneverU, V, W, cU, oV, oW is a basis of (¥30)C. It follows at once that the
induced complex structure onedp is abelian.

If the action ofU on spar{V, W} ~ C? is of type (2) in (8), then we cannot find
a complex structure, regardless of the valuerofThis argument shows i iii).

For ii) = iii) one works out the equations deriving fronv [W] = 0= [U, V] =
[U,W] to obtain that a solution exists only far= 0. In this case, one gets the vectors
U, V, W above (13). For instance, the following gives rise to an abelian complex
structure on ¥3 ¢

(14) =6, Jag=-6 Jo==6

To prove iii) = ii), we have to solve the equatio’/[W] = 0, [U, V] = vV and
[U, W] = uW for A = 0. It is possible to see that the only way to get solutions is
imposing thatv = u = 0, finishing the proof. []

REMARK. Notice that any complex structure onh is abelian. See [1] for a
classification of abelian complex structures in dimension s

4.2. Complex structures on cotangent Lie algebras of dimermn six. Recall
the Lie group counterpart of the cotangent Lie algebra. Téw® zection in the co-
tangent bundleT*H of a Lie groupH can be identified withH, as well as the fiber
over @, 0) with h*. As a Lie group, the cotangent bundle if is the semidirect prod-
uct of H with h* via the coadjoint representation. The tangent spac@& *dfl at the
identity is naturally identified with theotangentLie algebra Th := b x¢oaq b*, the
semidirect product ofy and its dualh™ via the coadjoint action.



502 R. GAMPOAMOR-STURSBERG AND G.P. Q/ANDO

Proposition 4.8. Let h be a solvable real Lie algebra of dimension three and let
T*h denote the cotangent Lie algebra spanned byeg es, €4, €5, 6. The non-zero Lie
brackets are listed below

T*hy:  [en&] =es, [e1, 6] =—65, [€,65] =64,
Tves:  [ene] =&, [e,&]=e+6s,
[e1,65] = —€5—65, [€1, 6] = —6€5, [€,65] =€, [€3,65] =64, [€3,65] =€y,
T3, e e] =€, [e1, 6] =163
A|=1 [er,65]=—6s5, [€1,6]=—A6, [€,65] =6y, [€3,65] =Ar&y,
Try,: [e, &) =ne—es, [er, 6] =& +nes, [e1,65] = —nes—es,
n=0  [e, €] =€—nes, [, 6] =n€4, [€, 6] =—€4, [€3,65] =6y, [€3,65] =ney.

Theorem 4.9. Leth denote a three dimensional solvable real Lie algebraT1§
admits a complex structuréhen by is isomorphic to one of the following Lie algebras
b1, R x aff(R), v3,1, t3-1, v, for anyn > 0.

The proof of this theorem is a straightforward consequetidbeofollowing results.

Suppose thain is a complex subalgebra offy with V,W € m satisfying V,W] =
W. The Lie bracket relations in Proposition 4.8 immediatehply thatW = c4e4 and
thusW = 0.

Corollary 4.10. Let h denote a solvable real Lie algebra of dimension three. If
(T*H)C splits as a direct sum as vector spad@sh)® = m®om, wherem is a complex
subalgebra and> is the conjugation map with respect ©'h, thenm ~ C x C2.

Proposition 4.11. Let h denote a Lie algebra of dimension three. Then
i) Every complex structure on the Lie algebfabh, is 3-step nilpotent.
ii) The Lie algebraT*t3 cannot be endowed with a complex structure.
iii) If the Lie algebraT*t3; admits a complex structure then= 0, 1,—1.
iv) The Lie algebraT*v;  carries a complex structure for any > 0.

Proof. i) Since the center of “; is odd-dimensional, Th; cannot admit an
abelian complex structure. As proved in [9, 31] this Lie aélgehas a complex struc-
ture, such thaitm = spafU, V, W} with [V, W] =0, and

U =€ + ae + a3 + 4€ + ases + as6s,
V = Cz€3 + (a2Cs — 86C2)€s — Co85, W = C2€; + C3€3 + C4€4 + C5€5 + Cos
induce complex structures if and only if the vectéfsV,W,oU,oV,ocW span a basis

of (T*h,)C. Following [21], there is only one class of complex struetyrthus they are
equivalent to the complex structutk given by

(15) Ja =&, Jo=¢6 Jg=¢;
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For this complex structure, note thap(J) = {0}, ai(J) = spares, e}, ax(J) =
spaney, €3, €4, 65}, az(J) = g. Hence from Lemma 2.2 we conclude that any complex
structure on Th, is nilpotent.

Observe however that there are complex structures whichaetreotally real, as
for example the following

(16) Jee=e—-¢, Je=¢6 Jg=e-+e.

For the rest of the proof we shall sketch the basic ideas aadltse(for more
details see [13]).

if) This follows from the following steps: first find conditis for m = span{U,V,
W]} to build a subalgebra of (F3)C; second impose the condition @ om = (T*t3)¢
to see that this is not possible.

iii) Write out the corresponding equations fdJ V], [V,W] and [U,W]. Assume
the action ofU on a = spar{V, W} is of type (1) in (8). The conditiondJ, V] = vV
and U, W] = uW show that a subalgebna exists if » € {0, 1,—1}. Moreover, such
anm is spanned byJ, V, W as given in the following table:

U = e + axe + a363 + ay€4 + as€s + asts,

A=0 | V = hses+ byes + bges, W = —ayCse4 + Cs65 Or

U, V as above andV = c,e, — asCey

U = e + ax& + aze3 + au€y + as65 + a6y,

V = bpe; + bz — (ashz + ashs)ey,

W = —(cs/bs)(azbz — asby) + cses — (b2Cs/ba)es with bz # 0
or U as above and

V = —(azbs + asbs)es + bses + bees,

W = 26, — (bsC2/bs)es — (C2/bs)(ashe — aghbs) with bg # 0
U = e + ax€ + ages + a4es + ases + ages,

V = —(c3be/Cs)€2 — (bs/Cs)(@sCs — @6Cs)€s + bees,

A=—-1| W = cze3 — (a2C5 + agC3) with cs5 # 0 or

U as above and/ = bze; — (axbs + aghs)es + bses,

W = ¢ — (C2/bs)(asbs — ashs)es — (bsc/bs)es with bs # 0

In all casesU, V, W, oU, oV, oW turn out to be a basis of (F3,)¢. We also
observe that none of these complex structures is abelianintance, the linear map
on Ttz given by

17) Jeo=6, Jeo=-6, Jag==¢

and such that)?> = —| defines a totally real complex structure on the cotangest Li
algebra Tt3 o, while the J taken as

(18) Ja=eg, Jag=6 Ja=¢
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gives rise to a complex structure which is not totally real.
For » = —1 the linear homomorphism such that = —I given by

(19) Jeo=¢€, Jo=6 Jag=-6&

gives a totally real complex structure orit§_;. On the other hand, thé satisfying
J? = —| and given by

(20) Ja=—(e1+6&), Jas=a—-6a, Jes=—(2+&)

induces a non totally real complex structure ofrgl_;. Finally, for A = 1 no complex
structure on Tz, is totally real. Actually

(21) Jeo=e&, Je=6, Jes==¢

give rise to a complex structure orn‘eg 1.

By proceeding in a similar way whenever the actionfon a = spanV, W}
is of type (2) in (8) one obtains that there is no Lie subalgebr= spar(U, V, W}
satisfying the requirements to induce a complex structure.

iv) The linear isomorphismsg such thatJ? = —I given by

(22) Jao =16, Je=6, Jg=¢

define complex structures or't; , for any n > 0. Note that on Tr; , one has totally
real complex structures Proposition 3.8, for instance

(23) Ja==xe, Je=6 J&=-6. [
REMARK. The Lie algebra Th, is isomorphic toGs 3 in [21] and tobh; in [11].

5. Complex structures and related geometric structures

In this section we relate complex structures to some gedenstiructures. In this
analysis, we are mainly interested on Hermitian, sympieatid pseudo-Kahler struc-
tures.

5.1. On Hermitian complex structures. A metricon a Lie algebrgy is a non-
degenerate symmetric bilinear map, ): g x g — R. It is called ad-invariant if the
constraints

(X, ¥l 2) +{y, [x,2]) =0, Vx,yeg

holds.
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ExampPLE 5.1. Thecanonical metricon a cotangent Lie algebra § is defined by
(X, 0), (X, ) = @' (X) + o(X), VX, X' €b, ¢,¢" €™
It is neutral and ad-invariant.

A subspacev C (g, { , )) is calledisotropicif (x,y) =0 for all X,y € to, that is,
if w C t, where

! = {y € g such that(x, y) = 0 for all x € w}.

Further, is calledtotally isotropic wheneverw = .

ExamMPLE 5.2. On T'h equipped with its canonical metric, both subspagesd
h* are totally isotropic.

Let (g, ( , )) denote a real Lie algebra equipped with a metric. An (aljnosm-
plex structureJ on g is called Hermitian if

(24) (Ix, Jy) = (X, y), VX, yeg.

If the metric is positive definite the Hermitian complex sture J is also called
orthogonal.

Observe that ifJ is Hermitian, then(x, Jx) = 0 for all x € g. The non-degeneracy
property of (, ) says that there iy € g such that(x, y) # 0. Therefore the subspace
w = spar(x, Jx, y, Jy} € g is non-degenerate andtinvariant. Furthermore

g=r @

is a orthogonal direct sum of-invariant non degenerate subspacesgofA similar
argument can be done in the proof of the following lemma.

Lemma 5.3. Let g denote a real Lie algebra endowed with a metfic ) and let
J be an almost complex structure gn Assume is a totally real and totally isotropic
subspace ory, then
i) g admits a decomposition into a direct sum of totally real aotalty isotropic
vector subspaces

g=06 Jv;
i) g splits into an orthogonal direct sum
g=mw; DD Dy

of J-invariant non-degenerate subspages, . .., tv,, wheredimw; = 0 (mod 4)
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DEFINITION 5.4. A generalized complex structure on a Lie algepia a Hermit-
ian complex structure on (H, (, )) where(, ) denotes the canonical metric orffT

A Hermitian complex structurd on T*h which leavesh invariant is called a gen-
eralized complex structure afomplex typeand it corresponds to a complex structure
on fj. A Hermitian complex structurd on T which is totally real, that islh = b*, is
said a generalized complex structuresyimplectic typelt corresponds to a symplectic
structure onbh.

Proposition 3.2 and Theorem 3.5 of Section 3 imply that allfot@al complex
structureJ on T*h, with Jh = b*, corresponds to a non-singular derivatidrof b. If
h is equipped with an ad-invariant metric (, ) and one agk® be Hermitian, then
d must be skew-symmetric with respect to (, ). Explicitly, anrgingular derivatiord
on § induces the mapod: h — §* giving rise to a complex structure or*f, where
l:x — (X, ).

Corollary 5.5. Let h denote an even dimensional Lie algebra endowed with an
ad-invariant metric(, ). The following statements are equivalent
i) b admits a generalized complex structure of symplectic;type
i) b admits a symplectic structure
iii) b admits a non-singular derivation which is skew symmetric(fo ).
In addition, if any of these structures existhen b is nilpotent.

5.2. Complex structures and symplectic structures. A symplectic structuren
an even dimensional Lie algebgais a closed 2-formw € A?(g*) of maximal rank, i.e.,

it satisfies the conditiong\ /2 4™¢ ¢, £ 0 and
(25) o([X, ¥], 2 + o(y, 2], X) + o(z, [, y]) =0, forall Xx,y,zeg.

Let (T,h = hxV,w) denote a semidirect product equipped with a symplecticcstr
ture. Following [7], we say that /Iy is Lagrangianif both h and V are Lagrangian
subspaces relative t©. We also say that is Lagrangian symplectic

Let T,h denote a generalized tangent Lie algebra, then its dual Igiebea is the
semidirect product J-h := b x,- V*, wherex* is the dual representation

(T (X)P)(U) ;= —p(E(X)(U)), x€b, g eV ueV.

Note that the cotangent Lie algebrdfTis the dual of the tangent Lie algebrd.T
Suppose Th =hx,V is a Lie algebra equipped with a totally real complex struc-

ture J (that is, Jh = V). This enables us to define on,-h := h x,- V* a two-form

[OF] by

w3(X +u,y+v):=v(Ix)—udy),
wherex, y are infh andu, v are in Jh = V)*.
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Thenw; is non-degenerate and symplectic sintés integrable (see [4] or [7] for in-
stance). We remark that the converse is also true, that grahgian symplectic struc-
tures on T.h give rise to totally real complex structures on-H. Thus totally real
complex structures on,h = h x, V are in correspondence to Lagrangian symplectic
structures on J.h.

Corollary 5.6. i) LetT*h denote a cotangent Lie algebra. If it admits a Lagrang-
ian symplectic structurghenp is nilpotent.
ii) The tangent Lie algebrdh admits a Lagrangian symplectic structure for ahy
isomorphic tohy, t3 -1, v, OF R x aff(R).

We denote byl the wedge product Ael A---, el,..., €% being the dual basis
of e,...,6s.

To determine the existence of symplectic structures onepraneed as follows.
Let oj; € R be arbitrary constants and define the generic 2-form tin T

(26) 0=y oel, i=1,...,5

i<j

If one requiresy to be closed, the conditiod® = 0 generates a system depending
on the parameters;;.
We exemplify here one case. The Maurer—Cartan equations‘ey), Bre given by

de' =0, d&f=¢€"?, de’=re®d
def = e® +21e®*, de = - deé® = -re'l

By the expansion of this expression making usedef = deé A el — €& A del, we
subsequently obtain conditions on the parametgrsin the case of Trs;, one obtains
thatey; =0 for all j = 1,..., 6, therefore a closed 2-form belongs toA2v* being
v = sparey, ..., &}, which implies thatd cannot be symplectic.

A similar reasoning applies on*}gy,7 and so one proves the next result.

Lemma 5.7. The following Lie algebras do not carry a symplectic struetu
i) T, for any A.
i) T*v, for anyn = 0.

The next natural step to be analyzed in Lie algelyasarrying both a symplectic
structurew and a complex structurd, is the compatibility of these structure. A pair
(w, J) is called a pseudo-Kahler structure whenever the follgnéondition

(27) w(IX, Jy) = w(X,y), VX, y€Eg

is satisfied.
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Let ¥ € Aut(g) denote a automorphism gf SinceA"*w = ¥* A"w andy*dw =
d(y¥*w), one has that the existence of a compatible symplectic forma fixed complex
structureJ is equivalent to the existence of a compatible symplectiectire for every
complex structure in the orbit af under the action of the group Agl( In fact, if J is
compatible withw and J’ = ¥ 1Jy, theno’ = ¥*w is compatible withJ’:

@' (%, J'y) = ' (HIYX, yHIVY) = 0(IYX, IVY) = o(¥X, YY) = (X, Y).

Lemma 5.8. Letw denote a two form o which is compatible with the complex
structure J. Lety € Aut(g) be an automorphism such that & ¢1Jy. Theny*w
is compatible with

A pseudo-Kahler Lie algebris a triple (g, J,w) consisting of a Lie algebra equipped
with a pseudo-Kahler structure. The pseudo-Kéhler pdiw{ originates an Hermitian
structure ong by means of defining a metrig as

(28) ag(x, y) = w(JIx y), forall x,yeg.

This kind of Hermitian structures satisfies the parallel ditian

whereV denotes the Levi-Civita connection for The pair (, g) is called apseudo-
Ké&hler metricon g.

REMARK. A Lie algebrah equipped with an ad-invariant metric (, ) cannot carry
a complex structurel which is Hermitian and parallel with respect to the Levii@Giv
connection of (, ) (see [3]).

It is our aim to investigate the existence of pseudo-Kahletrits on the Lie al-
gebras h and Th treated previously.
For the complex structure onhT given by

(29) Ja =28, Je=-6 Jg=¢.
one can find several compatible closed two forms:

6 = a(e"® — 2e'?) + be!* + c(e?* — 2e'%) + de?® + e(e®® + €%°) + el
For instance, the following two forms give rise to pseuddi€é pairs

(30) w=¢e®—-2e? 4 ue®*® u#0,
(31) w=e"+vEe*-e®), v#£0.
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On T*h, consider the complex structure given by (15):
Jeo =&, Je=6, Jag=—6s

It follows by canonical computations that any two form gmwhich is compatible with
J has the form

w = a(e'? + e*) + b(2e!* — €®° + €*) + c(e!® + %) + d(e® + €°%) + ee?® + fes.
On Tr3 let J denote the complex structure given by (14):

Canonical computations show that this complex structureoimpatible with the sym-
plectic forms

(32) Wy py = a€? + B(e° - ) +ye*, By #£0,
thus the pairs {, wq,p,,) amount to pseudo-Kahler pairs onsh.

Lemma 5.9. The Lie algebrasth,, T*h; and T(R x aff(R)) carry several pseudo-
Kahler structures.

However no pseudo-Kahler pa{iJ, ) on Th; corresponds to an abelian Lie al-
gebra ([11]).

In view of explanations before, the proof of the theorem Wels straightforward.

Theorem 5.10. Leth denote a real Lie algebra of dimension three.
i) If pis solvable andl'h admits a complex structure then it carries a pseudo-Kahler
structure.
i) If T*h carries a pseudo-Kahler structure thénis nilpotent.

5.3. On the geometry of some pseudo-Kéhler homogeneous miahils. The
goal of this paragraph is to point out some geometric featune the homogeneous
manifolds arising in the previous paragraphs in Lemma 5.9.

In the nilpotent case, the corresponding computations ersimply connected Lie
groups give rise to the results we summarize below.

Proposition 5.11. The Lie algebraTh, carries flat and non-flat pseudo-Kéhler
metrics.
The Lie algebraT*h,; admits non-flat but Ricci flat pseudo-Kahler metrics.

1The Lie algebra Th, is the free 2-step nilpotent Lie algebra in three generators
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The first statement was proved in [14] and the second one ih [11

Now we proceed to the study in the solvable case. The simphnected Lie
group G with Lie algebra T3 is, as a manifold, diffeomorphic tR®. Let (r1,r2,...,ls)
denote an arbitrary element RS, then the rule multiplication is given by

(r1,72,13,74,15,16) - (S1, S2, S8, S S5, S6)

era
= (rl +5, 12+ €8s, 13+ €5 + E(rlsz—rzsi), Fa+S4,fs+ S5, g+ 56)-

The left invariant vector fields atf = (s1, 2, S, 4, S5, ) € G are

9 0 9
a(Y) =~ —e¥s -, eY)=e%— +s— |,
1 3 arp ors

0 0 0 d
Y)=¢e%—, Y)=—, Y)=—, Y)=—,
) =" eV =g e = eV)= ;-
and leté denote the dual 1-forms far= 1, 2, 3, 4, 5, 6.

Consider the metri¢ , ) on G for which the vector fields above satisfy the non-
zero relations

g=oa(et-et+ e )+ -e*+e-e)+y@Ed-e+6e°-€5, By #£0.

This metric is clearly indefinite.

The complex structure o is defined as the linear map: TyG — TyG such
that J2 = —1 and

Jaa =&, Jg==6 Jeg=¢6s.

This gives a complex structure dR® which is invariant under the action of the
Lie group G, the action is induced from the multiplication @. Moreover, the com-
plex structure is Hermitian for the metric above and it isgllat for the corresponding
Levi-Civita connectionV, which on the basis of left invariant vector fields is given by

0 % 0 0 0 0
X, 00 0 0 0 ]
0O 00 0O 0O
X 0 x 0 0 x of ;X'a
—-x 0 0 —x 0 O
0O 00 0O 0O

If b denotes the involutive distribution spanned &y es, €5, then it admits a comple-
mentary orthogonal distributiodb, thereforeTyG = h & Jh is an orthogonal direct
sum. At the Lie algebra level, one has the following shortcéxsequence

O—>bh—>g—Jh—0.
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Notice thath is an abelian ideal, whilelh is an abelian subalgebra. Moreovéne
complex structure J is totally realith respect to this decomposition and the repre-
sentationz : Jh — b is given in the basi®, es, e by

100 0 00
ne)=|0 1 0], n(e)=0, n(s)=|1 0 O
0 00 0 00

Taking the Lie subgrougH corresponding to the distributioh and JH the Lie
subgroup corresponding tdh, the latter is totally geodesic. In fact, making use of the
formula for V, one verifies that

VxY € Jh, VoxJYCSJh, X, Yebh

and since {,9) is pseudo-KéahleryxJY =JVxY and V;xY =—JV;xJY for X,Y €b.
The curvature tensoR is given by

R(X, ¥) = =Vixy

which implies thatJ H is flat. The Ricci tensor follows r(X,Y) = 2(X1y1 + X2Y») for
X =Y xe, Y=Y vye, thereforeG is neither flat nor Ricci flat.

Notice that since 130 = h @ Jh, whereh is an ideal andJh a Lie subalgebra,
then J is totally real.

The pseudo-Kéahler metric far is non-flat, however the Lie subgroup fdf which
is abelian, is totally geodesic and flat.

REMARK. The results above and those in [8] suggest that totally ceatplex
structures are interesting objects to be consider in poeseh compatible structures.
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