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Abnormal Sound Detection in Pipes Using a Wireless Microphone and Machine
Learning

Kota Notani, Takahiro Hayashi+ and Naoki Mori

Graduate School of Engineering, Osaka University, Suita 565-0871, Japan

Abnormal sound detection using a one-class support vector machine (OCSVM) and a principal component analysis (PCA) is proposed
aiming to stable and objective inspection without skilled plant inspectors. For measurement of acoustic signals, we developed a compact
microphone unit that can work in sound detection, signal transmission, and power supply, wirelessly. Six signal parameters were extracted as
features from filtered and segmented acoustic signals. Using the features standardized and reduced in dimensionality by PCA, an anomaly
detection model using OCSVM is built to detect abnormal sounds. The proposed method is verified by acoustic diagnosis of sound waves
leaking from pipeworks with running water. Diagnostic accuracies were evaluated for artificial abnormal sounds with different types of burst
waves output from a piezoelectric element attached to the pipe and Pencil Lead Break sound in water flowing background noise. Burst wave
changes could be detected in almost all patterns, and the diagnostic accuracy was 100% for the Pencil Lead Break sound.
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1. Introduction

The maintenance of the countless pipes in a plant is an
extremely heavy burden for plant users. In particular, pipe
inspection at high altitudes, high temperatures, and high
radiation levels, which seems to be unproductive work,
requires a great deal of work, such as shutting down plant
operations, setting up scaffolding, and careful inspection.

One of the authors has been studying a remote inspection
technique for piping in plants to obtain defect images inside
metal pipes by measuring elastic waves that propagate
through the pipes and leak into the air when they are
irradiated by a laser.1­5) By using a laser Doppler vibrometer
to receive the elastic waves, it is possible to make
measurements remotely, which is expected to make
inspection work very efficient. Furthermore, it has been
shown that a MEMS microphone used in smartphones can
be used as a device to detect elastic waves leaking from
the pipe surface.6) This enables stable detection of elastic
waves even when there is oscillation, such as in outdoor
pipes. Because this MEMS microphone unit is small,
inexpensive, and can be used wirelessly by transmitting
acoustic signals via Bluetooth, it is expected to have a wide
range of applications in addition to the defect imaging
described above. The purpose of this study is to improve this
microphone device to enable wireless power supply and data
transmission, and to investigate the possibility of detecting
abnormal sounds appearing in pipes, with a view to
expanding plant maintenance technology using the MEMS
microphone unit.

In factories and plants, workers unconsciously sense their
surroundings from the vision, sound, heat, and smell to
determine if there are any abnormalities in their daily work.
Among them, auditory information is as easy for humans to
perceive as visual information, and we often detect abnormal
sounds based on our experience in the workplace. In recent
years, because the performance of audio microphones has

been dramatically improved by MEMS technology, sound as
well as visual information has become reasonable means for
diagnosis of factories and plants. However, even if sound
can be detected with high sensitivity, it is difficult to
distinguish small abnormal sound emitted by particular
equipment and machines from various noise and useful
sounds in the surrounding environment, and thus inspectors
who are familiar with the site is needed to diagnose the
presence of abnormalities. On the other hand, the number of
skilled inspectors is limited and they cannot judge all sounds
recorded from a wide range of factories. Furthermore, the
inspection results are also affected by variations of inspectors,
physical condition, and the work environment due to the
subjective human sense, making it difficult to obtain stable
and objective results. In addition, transferring the skill of
distinguishing abnormal sounds is not easy because of
individual differences of sound detection.

Therefore, machine learning for abnormal sound detection
is expected to be an alternative way of the skilled personnel.
Machine learning is an algorithm that analyzes and learns
patterns in training data to classify and predict unknown test
data. Recent advances in computers have made it possible
to collect and process large amounts of data, and machine
learning is used not only in academia but also in a wide range
of practical fields such as medical, finance, marketing, and
engineering. The problem of detecting anomalies in data,
such as detecting abnormal sounds among many acoustic
signals, is called anomaly detection, which includes two
types of techniques in machine learning: supervised learning
and unsupervised learning.7) Supervised learning builds an
anomaly detection model based on known normal and
abnormal data, which leads highly accurate classification
and prediction. Typical algorithms include support vector
machine (SVM), k-nearest neighbor (kNN), logistic regres-
sion (LR), etc. Pipeline leak detection, bearing failure
diagnosis, and wind turbine blade damage detection have
been proposed using these algorithms.8­14) However,
supervised learning is difficult to detect unexpected abnormal
sounds that cannot be prepared in advance. In contrast,+Corresponding author, E-mail: hayashi@mech.eng.osaka-u.ac.jp
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unsupervised learning does not require preparing anomaly
data and builds an anomaly detection model from data
measured in appropriate operations. Typical algorithms
include the Gaussian mixture model (GMM), self-organizing
map (SOM), one-class support vector machine (OCSVM),
etc. As with supervised learning, many studies on anomaly
detection using unsupervised learning have been pub-
lished.15­19) In addition, both supervised and unsupervised
algorithms exist for a machine learning called neural network
(NN). In recent years, anomaly detection using advanced
forms of NN such as autoencoder (AE), recurrent neural
network (RNN), and convolutional neural network (CNN)
has been actively studied.20­22)

In this study, we develop an abnormal sound detection
using OCSVM,23) an unsupervised learning non-hierarchical
clustering method, intending to detect unexpected abnormal
sounds. OCSVM requires less processing power than NN
and can be used to detect abnormal sounds. Before building
the model, principal component analysis (PCA)24) is used to
reduce the dimensions of the data based on the cumulative
contribution ratio. To verify the effectiveness of abnormal
sound detection by machine learning with the wireless
microphones and OCSVM, acoustic diagnosis of sound
waves leaking from pipeworks with running water is
performed. In addition to the sound of water flowing through
pipeworks, burst waves are incident from a piezoelectric
element attached to the pipe, and by changing the parameters
of the burst waves, various types of acoustic data are
prepared and used for acoustic diagnosis. Furthermore,
abnormal sound detection is also performed for the sound
of a mechanical pencil lead pressed and broken on the pipe
surface (Pencil Lead Break).

2. Development of a Wireless Microphone Unit

In the previous study by one of the authors about defect
imaging in plate-like structures using a scanning laser source
technique, the acoustic waves leaking from the flat plate were
measured by a small microphone unit.6) The microphone unit
is a palm-sized prototype that consists of two MEMS
microphones, amplifiers, and a battery. By connecting a
commercially available Bluetooth transmitter for audio to the
acoustic signal output terminal, the measured waveforms can
be transmitted wirelessly. However, the battery needed to be
recharged for each test, which implies we cannot avoid
laborious work of collecting the unit periodically.

In this study, a new microphone unit that can be remotely
powered by a solar cell is used (Fig. 1). This microphone unit
measures approximately 45 © 45 © 20mm3 and is equipped

with two MEMS microphones (Knowles, SPU0410LR5H)
as acoustic sensors. External monocrystalline solar cells
(Anysolar Ltd., SM101K12L) can be used to remotely
supply power and charge the built-in battery (Data Power
Technology, DPT502535). In addition, a Bluetooth 3.0
module (Silicon Labs, WT32I-E) is built in to transmit the
measured acoustic signals, allowing the device to be placed
anywhere without the hassle of wiring, within the range of
irradiation to the solar cells and Bluetooth communication.
This microphone unit requires 150mW during measure-
ments. On the other hand, two solar cells shown above were
used in this study, and they output totally about 500mW
under the Sun. In the laboratory tests, two blue semi-
conductor lasers with a measured output power of about
4.4W was used as the light source to confirm device
activation and acoustic signal measurement from a distance
more than 10m. The internal battery required to realize
stable power supply and stable signal measurements. The
communication profile is the Advanced Audio Distribution
Profile (A2DP), which is mainly used for audio playback
with wireless earphones or headphones. The MEMS micro-
phones can measure up to about 100 kHz, but because data is
transmitted using the Sub Band Codec (SBC) compression
method, the sample rate of the acoustic signal is limited to
44.1 kHz.

3. Acoustic Diagnosis Procedure

In this study, an anomaly detection model is constructed by
OCSVM with training data of acoustic signals, and test sound
data is classified into normal or abnormal data using the
model. The acoustic signals used for the training and test data
are measured by microphones. The acoustic diagnosis
procedure is summarized in Fig. 2.

As a preprocessing of the acoustic signals, band-pass
filtering with different cutoff frequencies is performed first to
eliminate noise and to ensure diversity in the features to be
extracted later. Hereafter, letting the number of band-pass
filters and the Nyquist frequency of the acoustic signal be
nf and fnyq, respectively, two band-pass filtering techniques
with different methods of cutoff frequency determination
are considered; one is uniform bandwidth of the pass band,
and the other is non-uniform bandwidth with the cutoff
frequencies of Mel filter bank. Since Mel filter bank refers to
the human auditory perception and widely used in speech
recognition and other applications, anomaly detection using
the filter is also investigated in this study.

In the uniform bandwidth, band-pass filters with a constant
pass band width fbw are equally spaced from DC to fnyq. The
filter spacing ¦ f is expressed as

�f ¼ fnyq � fbw

nf � 1
: ð1Þ

In the non-uniform bandwidth, the cutoff frequency of the
band-pass filter is determined with reference to a Mel filter
bank. A Mel filter bank is a set of triangular windows in the
frequency domain, in which the edges of triangular windows
are located at the constant interval ¦m on the Mel scale.
In this study, these window-edges are set to the cutoff
frequencies. The conversion between the frequency fHz andFig. 1 Microphone unit.
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the Mel scale m mel is expressed by the following eqs. (2)
and (3),25) and ¦m can be calculated by eq. (4).

m ½mel� ¼ MðfÞ ¼ 2595 log10 1þ f ½Hz�
700

� �
; ð2Þ

f ½Hz� ¼ M�1ðmÞ ¼ 700 10
m ½mel�
2595 � 1

� �
; ð3Þ

�m ½mel� ¼ MðfnyqÞ
nf þ 1

; ð4Þ

where M denotes a conversion function from f Hz to m mel.
Table 1 shows the cutoff frequencies of nf Butterworth band-
pass filters determined in the uniform and non-uniform
bandwidth.

The filtered acoustic signal of time length tL is segmented
by cutting out with rectangular windows that have a time
width of tw and slide by tw/3, as in Fig. 3, in which typical
signals detected with the microphone unit for water flow
and burst waves were shown. The number of divisions nd
(integer) of the acoustic signal is expressed as

nd ¼
3tL
tw

� 2: ð5Þ

Then, the number of samples increases nd times.
Six signal parameters shown in Table 2 are extracted as

features from each segmented time-domain waveform and its
frequency-domain spectrum obtained by Fast Fourier Trans-
form (FFT). To remove discontinuities at the edges of the
segmented waveforms, a Hanning window is applied before
FFT. Table 2 shows the features to be extracted, where xi,

Table 1 Passbands of filters /Hz.

Fig. 2 Flow of acoustic diagnosis.

Fig. 3 Division into nd waveforms with the sliding window at time duration of tw from an acoustic signal.
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Xi and �Xi are the values at the i-th sample point of the
waveform, frequency spectrum of the acoustic signal, and
average frequency spectrum of training data. m and M are the
numbers of sample points of the waveform and spectrum, and

and M denote the set of natural numbers from 1 to m and
M, respectively. M0 is the set of indexes of the sample points
of the spectrum within the passband of the filter. Although it
is not clear whether the six features in Table 2 are sufficient,
since the time position of the signal is separated by the cutout
of waveforms and the frequency is separated by the filter,
features related to signal intensity and shape of wave were
employed.

Because six signal parameters are extracted as features for
each segmented and filtered data, the number of components
in a feature vector for one segmented sample waveform is
6nf. The numbers of segmented waveforms and measured
waveforms for training are nd and N, respectively, then the
number of samples becomes Nnd. Therefore, the feature data
is expressed by a 6nf © Nnd matrix. Since each of the 6nf
features has a different mean and variance, each row of the
feature data is standardized to have mean 0 and variance 1.
After standardization, dimension is reduced by PCA so that
a cumulative contribution ratio becomes 90%. This greatly
reduces the computational load and allows a small computer
to determine even large amounts of acoustic data in the
inspection site.

Based on the training data obtained in the above
procedure, an anomaly detection model using OCSVM with
a Gaussian kernel is built. The built model is then used to
diagnose the acoustic signals in the test data. Since nd
segmented waveforms are obtained per an acoustic signal,
the number of calculated abnormality degrees ¡ is also nd.
The average of these values is considered as the abnormality
degree of the acoustic signal, and if the value is negative, the
acoustic signal is judged to be an anomaly.

Detection rate and recall are used to calculate diagnostic
accuracy. Detection rate is the probability that the test data

measured under the same conditions as the training data was
correctly judged to be normal. Recall is the probability that
the test data having abnormal sounds was correctly judged to
be anomaly. In this study, the product of detection rate and
recall is defined as the diagnostic accuracy.

4. Acoustic Diagnosis Experiment of Pipeworks

The acoustic diagnosis was performed according to the
procedure stated previously, and the accuracy was examined.
Assuming that abnormal sound is detected in the pipeworks
during operation of the facility, a microphone unit described
below was used for detecting abnormal sound in leakage
sound from pipeworks that are located away from the
inspectors in wireless measurement. A wide variety of
abnormal sounds are considered in inspection site, such as
gas leakage, mechanical failure, sudden pressure drop in
pressure vessel and pipes, and other unexpected noise. In
these laboratory tests, various burst waves from a piezo-
electric element attached to the pipe were generated as
abnormal and normal sounds because they are precisely
changeable, and Pencil Lead Break sounds were also used as
pseudo abnormal sounds to confirm whether they could be
detected as abnormal sounds.

4.1 Experimental method
Figure 4 shows the mock-up pipework in the laboratory

with an aluminum alloy straight pipe one meter long
connecting to water supply. The aforementioned microphone
unit was placed on an aluminum straight pipe with the outer
diameter of 114.3mm and thickness of 6.0mm to measure
acoustic signals, where microphone holes were facing to the
pipe surface, and therefore most of detected sounds were
leaking sounds from the small area of pipe surface under
the microphone holes after propagation through the pipe. As
shown in Fig. 4, the microphone unit can be remotely
powered by solar cells, but a 5V DC power supply was
connected in these laboratory tests. The acoustic signals are
measured in 10 s with 44.1 kHz sample rate and 16 bits.
During the measurement, burst waves generated by a
function generator (NF Corporation, WF1944) were output

Table 2 Equation of features in time domain and frequency domain.

Fig. 4 Mock-up pipework and experimental equipment.
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from a piezoelectric element attached to the aluminum alloy
part, with 8 different burst wave parameters. The burst wave
parameters include frequency, amplitude, interval, and
number of cycles, as summarized in Table 3. Among the
measured data, only BURST NONE is the acoustic data of
water flow in the pipework measured without burst wave
output from the piezoelectric element. BURST 1­7 contain
the burst signals from the piezoelectric element with slightly
different parameters as written in Table 3.

The acoustic diagnosis was performed as follows,
considering the water flow sound as background noise and
the change of burst wave emitted from the piezoelectric
element as normal and abnormal sound. First, 80% of each
measured data (120 acoustic signals) was used as training
data, and an anomaly detection model using OCSVM was
built from features extracted from the training data. Then, the
remaining 20% of the data (30 acoustic signals) and different
types of measurement data were used as test data, whose
abnormality was determined from the model built from the
training data. In addition, we investigated the effect on the
diagnostic results when changing the parameters such as the
number of band-pass filters nf , the division time width tw, and
the determination methodologies of the cutoff frequency in

the feature extraction process. LabVIEW (National Instru-
ments) was used to process the acoustic diagnosis. The
settings of OCSVM were manually adjusted by observing the
results for two parameters, ¯ and ·, which determine the
percentage of outliers in the training data and the constant of
the Gaussian kernel, respectively.

In order to investigate more practical abnormal sound
detection, sound of Pencil Lead Break, which is a standard
technique to produce an artificial acoustic emission source,
was measured. As an acoustic signal with an abnormal sound,
50 measurements were made with the Pencil Lead Break as
well as the background noise of water. To confirm whether
the Pencil Lead Break sound can be judged as an abnormal
sound, an acoustic diagnosis was performed using an
anomaly detection model built with BURST NONE as
training data, with the remaining acoustic signal of BURST
NONE and Pencil Lead Break sound as test data.

4.2 Experimental results and discussions
4.2.1 Uniform bandwidth with nf = 20, fbw = 10 kHz,

and tw = 1 s
For the uniform bandwidth with the number of band-pass

filters nf = 20, the passband width fbw = 10 kHz, and the
division time width tw = 1 s, Table 4 shows the results of
acoustic diagnosis for all patterns when 8 types of
measurement data were used as both training data and test
data, respectively. The numbers in Table 4 represent the
diagnostics accuracy, which is the product of detection rate
and recall. For example, when BURST 1 is used as training
data and BURST 2 is test data, the diagnostic accuracy was
100%. This means that the model built with the training data
of 120 acoustic signals measured when the burst wave with
the parameters of BURST 1 is output, as shown in Table 3,
can judge all 30 acoustic signals of remaining BURST 1 as
normal data, and all 150 acoustic signals of the burst wave
with the parameter of BURST 2 as an anomaly. The
diagnostic accuracy was 100% for almost all patterns in
Table 4, indicating that acoustic signals of the same type
as the training data were normal and acoustic signals with
different burst wave parameters from the training data were

Table 3 Parameters of burst waves and the number of measurements.

Table 4 Diagnostic accuracy of section 4.2.1 (nf = 20, fbw = 10 kHz, tw = 1 s, ¯ = 0.085, · = 0.0302).
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detected as abnormal sounds. However, the accuracy of test
data of BURST NONE and BURST 6 were 1% and 33%,
respectively, for the training data of BURST 5.

Now, we consider the reasons why the acoustic signals of
BURST NONE and BURST 6 could not be detected as
abnormal sounds for the training data of BURST 5. The
reason why the model built using BURST 5 as training data
did not detect BURST NONE as an abnormal noise is evident
from the relationship between the time width of the
segmented waveform and the interval of the burst wave.
The interval of BURST 5 shown in Table 4 is 2000ms
(= 2 s), whereas the division time width is tw = 1 s.
Therefore, the segmented waveforms in the acoustic signals
of BURST 5 sometimes contain a burst wave and sometimes
not. The segmented waveforms without a burst wave can be
regarded as the same as the segmented waveform of BURST
NONE. Consequently, the BURST NONE in test data is
sometimes misjudged with the BURST 5. It is also obvious
that the model built with BURST 5 as the training data seems
to diagnose normal for the acoustic signal of BURST NONE,
and the accuracy of 1% is a reasonable result. In this pattern,
the accuracy can be improved by setting a larger value for
the division time width tw so that all segmented waveforms
contain burst waves.

The low accuracy for BURST 5 of training data and
BURST 6 of test data is considered from the viewpoint of
principal components. As a result of the PCA, 21 principal
components were selected based on the cumulative
contribution ratio. The distributions of 21 principal
components were extracted from the training and test data
as shown in Fig. 5(a). For comparison, Fig. 5(b) shows the
distributions of the principal components when BURST 6 is
used as training data and BURST 5 as test data. The colors

in Fig. 5 represent the density of the distribution, with red
representing high density and blue low density. The left
distributions in Figs. 5(a) and (b) for training data show the
characteristic of PCA that the variation of the principal
components decreases as their number increases. Because
the first few principal components of the test data have wide
distributions, only the first and second principal components
with large variations were extracted to visualize the
distribution of their features as shown in Fig. 6. The blue
circle in the left figures and red crosses in the right figures
show training data and test data, respectively. In Fig. 6(a),
most of the blue circles are enclosed by the black dotted line
representing the dominant area of the training data, and the
enclosed area also includes the red crosses. Because OCSVM
establishes class boundaries so that most of the training data
is normal, it could not judge the test data of BURST 6 in the
enclosed area as an anomaly. This is because segmented
waveforms in BURST 5 include the data both with and
without the burst wave, resulting in a wider distribution of
features. In contrast, Fig. 6(b) shows that training data shown
in blue circles with an enclosed line and test data in red
crosses are not in the same region, although some area is
overlapped. In this case, the test data was successfully judged
to be anomaly because the abnormality degree of the data out
of the enclosed area greatly affect the abnormality degree of
the entire acoustic signal.
4.2.2 Uniform bandwidth with nf = 20, fbw = 10 kHz,

and tw = 2 s
Table 5 is the diagnostic accuracy when the number of

band-pass filters nf and passband width fbw are the same as
in section 4.2.1 and the division time width tw is 2 s. Table 5
shows that the accuracy improved significantly to 100%
when the training data was BURST 5, and the test data was

Fig. 5 Distributions of the principal components of BURST 5 and BURST 6: (a) training data is BURST 5 and (b) training data is
BURST 6.
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BURST NONE. The time width of the segmented waveform
has become sufficiently long compared to the interval of
the burst wave so that burst waves are now present in all
segmented waveforms, which brought this improvement.
However, the accuracy did not improve much in BURST 5 as
training data and BURST 6 as test data. The accuracy in
BURST 1 as training data and BURST 7 in test data was also
very poor at 7%, but the accuracy in BURST 7 as training
data and BURST 1 as test data was 100%, which is because
the distribution of BURST 1 included the smaller distribution
of BURST 7.

Thus, even if the diagnostic accuracy can be improved for
a particular pattern by adjusting the parameters of model
building, it may affect the other patterns. The OCSVM used
in this study is an unsupervised learning algorithm that does

not include class labels in the training data, and since the
algorithm detects outliers in the data, it often fails to detect
anomalies close to the distribution of the training data. If
the characteristics of the data can be quantified in a higher
dimension and a more comprehensive manner through more
creative preprocessing of acoustic signals and extracted
features, the accuracy of certain patterns may be improved
with keeping high accuracy for almost all patterns.
4.2.3 Uniform bandwidth with nf = 50, fbw = 10 kHz,

and tw = 1 s
Table 6 is the diagnostic accuracy when the number of

band-pass filters is set to 50, while the passband width and
division time width are the same as in section 4.2.1. Table 6
shows that the model using BURST 5 as training data is
inaccurate in diagnosing BURST NONE and BURST 6,

Table 5 Diagnostic accuracy of section 4.2.2 (nf = 20, fbw = 10 kHz, tw = 2 s, ¯ = 0.02, · = 0.013).

Fig. 6 Distributions of the first and second principal components of BURST 5 and BURST 6: (a) training data is BURST 5 and
(b) training data is BURST 6.
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which is like in section 4.2.1 shown in Table 4. In the
training data of BURST 1 or BURST 2, although the
diagnostic accuracy was 97% or 94% for all test data, the
slightly lower detection rate is not a big issue considering
the failsafe concept.
4.2.4 Non-uniform bandwidth with nf = 20 and tw = 1 s

Table 7 is the diagnostic accuracy when the number of
band-pass filters and the division time width is the same as
in section 4.2.1 and non-uniform bandwidth with the cutoff
frequencies in reference to Mel filter bank as shown in
Table 1 is used. Compared to the results in uniform
bandwidth of fbw = 10 kHz shown in Table 4, the accuracy
deteriorated when BURST 1 was used as training data.
Considering the frequency range used in the burst waves as
shown in Table 3, it can be predicted that the frequency range
between 7 and 9 kHz affect the results in diagnosis. However,
the number of band-pass filters that include the range
between 7 and 9 kHz in the passband among the 20 filters
is 15 for the uniform bandwidth, but only 3 for the non-

uniform bandwidth. In other words, the number of features
considered effective for detecting abnormal sound is expected
to differ 5 times even before PCA is performed and this is the
reason why the accuracy deteriorated when the non-uniform
bandwidth was used.
4.2.5 Diagnosis of Pencil Lead Break sound

Using the model built by BURST NONE, the diagnosis
was performed by the test data of Pencil Lead Break sound
with the prospect of more practical cases. The diagnostic
accuracy was 100% using the BURST NONE model with all
four parameters written in sections 4.2.1­4.2.4.

In this chapter, the effectiveness of the OCSVM and the
MEMS microphone unit developed in this study was verified
by anomaly detection in a pipe with water flow noise and
various burst waves from the piezoelectric elements and
Pencil Lead Break sound. The training model obtained in this
study cannot be used as it is for various noises in a factory.
However, the process presented here is effective in
determining a noise diagnosis model.

Table 6 Diagnostic accuracy of section 4.2.3 (nf = 50, fbw = 10 kHz, tw = 1 s, ¯ = 0.094, · = 0.0137).

Table 7 Diagnostic accuracy of section 4.2.4 (nf = 20, tw = 1 s, ¯ = 0.08, · = 0.0228).
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5. Conclusions

This study discussed acoustic diagnosis of sounds leaking
from pipeworks with water flow, as an example of abnormal
sound detection. For remote measurement of acoustic signals,
a palm-sized microphone unit with two MEMS microphones,
a battery, and a Bluetooth transmitter was fabricated. It can be
remotely powered by external solar cells and can be placed
anywhere within range of the irradiation to the solar cells and
Bluetooth communication. Abnormal sound is detected using
machine learning in which an anomaly detection model is
built from the signals recorded by the microphone unit. The
pseudo abnormal sounds to be detected were different types
of burst waves output from a piezoelectric element attached
to the pipe, and Pencil Lead Break sound. PCA and OCSVM
were used for data dimensionality reduction and anomaly
detection model building.

Nine types of acoustic data were measured, including
seven types of burst waves with different parameters output
from the piezoelectric element and a Pencil Lead Break
sound. Four different model building parameters were used
to demonstrate diagnostic accuracy, with the best accuracy
being achieved when the number of band-pass filters was 20,
the passband width was 10 kHz, and the division time width
was 1 s. Burst wave changes could be detected in almost all
patterns, giving a diagnostic accuracy of 100% for the Pencil
Lead Break sound, which leads the conclusion that the
acoustic diagnosis procedure used in this study can detect
abnormal sound in pipeworks, and is expected to detect a
wide variety of abnormal sounds that occur in actual
workplaces. In that sense, this study will become important
as a bridge between academia and plant maintenance
personnel.
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