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Abstract

This paper discusses the relationships between the “measured” cognitive ability of partici-
pants and their behavior as observed during laboratory experiments. Based on such relation-
ships, macroeconomic implications of micro-level “boundedly rational” individual behavior will
be discussed. The paper also addresses potential problems that arise when insufficient attention
is paid to large differences in the measured cognitive ability of participants across several exper-
imental laboratories, influencing the replicability of existing experimental results but also the
interpretation of results from cross-country experimental analyses, and proposes to complement
participants’ database with individual characteristics.
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1 Introduction

We have ample evidence showing that people differ in their intelligence (see, for example, Brouwers

et al., 2009). Yet, many theoretical analyses in economics have assumed that decision makers are

equally rational or that a representative rational decision maker. It is true that there have been many

attempts in the past to introduce (heterogeneous) boundedly rational decision makers into analyses

(see, Conlisk, 1996, for a review). However, it is only recently, thanks to developments in behavioral

and experimental economics,1 that “behavioral” models, which include boundedly rational decision

makers, have been proposed and investigated extensively in such fields as game theory (Camerer,

2003), industrial organization (Spiegler, 2011), and finance (Shleifer, 2000).

As noted by Thaler (2015), however, macroeconomics has been the field least impacted by the

recent behavioral and experimental revolution. Perhaps the main reason for this is a belief held by

many economists that can be summarized by an old statement from Gary Becker: “households may

be irrational and yet markets quite rational” (Becker, 1962, p.8). According to this view, because

deviations from rational behavior by many boundedly rational individuals cancel out in aggregate,

bounded rationality at the individual or household level does not matter at the macro level. Indeed,

the famous zero-intelligence agents model studied by Gode and Sunder (1993, 1997) shows that even

the markets consisting of zero-intelligence computer traders can exhibit high allocative efficiency

when these traders respect their budget constraints.

There are, however, theoretical studies that show the existence of a few boundedly rational

decision makers in a large population can have a larger-than-proportional impact on aggregate out-

comes. In particular, Haltiwanger and Waldman (1985, 1989, 1991) demonstrate that the behavior

of boundedly rational decision makers can have a large influence at the macro-level when the envi-

ronment is characterized by strategic complementarity rather than strategic substitutability. This

is what Hanaki et al. (2019) call the strategic environment effect (SEE). The SEE has been shown

experimentally in price setting games (Fehr and Tyran, 2008), forecasting-games (Heemeijer et al.,

2009; Bao et al., 2012), duopoly games (Potters and Suetens, 2009), and the beauty contest games

(Sutan and Willinger, 2009; Cooper et al., 2017).

In this article, we first show the relationship between participants’ measured cognitive ability

and their observed behavior in laboratory experiments including a coordination game (Hanaki et al.,

1There are now many references, including popular books such as Ariely (2008) and Kahneman (2011).
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2016) and an asset trading game (Akiyama et al., 2017). These results demonstrate that the main

reasons why participants’ behavior deviate from the Nash equilibrium or the rational expectations

equilibrium differ depending on their cognitive ability. Such results are consistent with the view be-

hind the level-K (Nagel, 1995) or the cognitive hierarchy model (Camerer et al., 2004) that explicitly

assume heterogeneity in the depth of strategic thinking among decision makers.

We then discuss the strategic environment effect by referring to Hanaki et al. (2019), which

shows both theoretically and experimentally that the SEE exists when group size is not too small

(and is thus relevant at the macro-level) in beauty contest games. The main theoretical insight

of Hanaki et al. (2019) is that the SEE is driven by the existence of heterogeneity in terms of

the depth of strategic thinking among decision makers, and therefore, in the presence of strategic

complementarity, one must investigate seriously the macroeconomic implications of the interactions

among heterogeneous boundedly rational decision makers.

We complement the main discussion with some methodological considerations. Cognitive ability

of participants varies not only within the pool of participants in each experimental laboratory, but

more importantly, across these pools. Paying insufficient attention to such differences across pools

of participants can not only impact the replicability of experimental results but also lead to mis-

interpreting the differences in the experimental results obtained in different countries. We conclude

this paper by proposing to complement the database of participants used in each experimental

laboratory with information on individual characteristics such as cognitive ability.

2 Cognitive ability and coordination failure

Let us first consider the following experiment of a very simple 2×2 coordination game. Participants

are divided into two groups: A and B. We call those participants who belong to group A, A, and

those who belong to group B, B. One A and one B will form a pair, and play a simultaneous move

game. In this game, A can choose either L or R, and B can choose either U or D. The payoffs for A

and B are as follow:

• If A chooses L, regardless of B’s choice, A obtains ¥850 and B obtains ¥300.

• If A chooses R and B chooses U then A obtains ¥650 and B obtains ¥475.

• If A chooses R and B chooses D then A obtains ¥1000 and B obtains ¥500.
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Figure 1: Fraction of As choosing R

Figure 2: Share of the decisions R (r) for Player As (Bs) in the Human treatments, across rounds
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3.1 Results from the Human treatment

As summarized in Hypothesis 1, the variations in payoffs between games should induce variations

in the decisions of both players, hence resulting in a variation in the actual strategic uncertainty

faced by Player As. Figure 2 provides an overview of individual behavior in the Human treatment.

Aggregate results suggest that both players react to the variations in their own payoff scheme.

Holding Player Bs’ payoffs constant, Player As are more likely to seek efficiency as their monetary

incentives to do so become more salient: the frequency of R increases from 49% in BG1 to 73% in

BG2 (p = .001), and from 45% in EG1 to 74% in EG2 (p = .005).16 Analogously, Player Bs become
15BG1: p = .402; BG2: p = .385; EG1: p = .557; EG2: p = .002.
16We test the difference in proportion of a given outcome between two experimental conditions by carrying out

a two-sided bootstrap proportion test that accounts for within-subject correlation – i.e. the fact that the same
individual takes 10 decisions. The procedure consists of bootstrapping subjects and their corresponding decisions
over all ten rounds instead of bootstrapping decisions as independent observations (see, e.g., ?, for a detailed
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3.1 Results from the Human treatment

As summarized in Hypothesis 1, the variations in payoffs between games should induce variations
in the decisions of both players, hence resulting in a variation in the actual strategic uncertainty
faced by Player As. Figure 2 provides an overview of individual behavior in the Human treatment.
Aggregate results suggest that both players react to the variations in their own payoff scheme.
Holding Player Bs’ payoffs constant, Player As are more likely to seek efficiency as their monetary
incentives to do so become more salient: the frequency of R increases from 49% in BG1 to 73% in
BG2 (p = .001), and from 45% in EG1 to 74% in EG2 (p = .005).9 Analogously, Player Bs become

9We test the difference in proportion of a given outcome between two experimental conditions by carrying out
a two-sided bootstrap proportion test that accounts for within-subject correlation – i.e. the fact that the same
individual takes 10 decisions. The procedure consists of bootstrapping subjects and their corresponding decisions
over all ten rounds instead of bootstrapping decisions as independent observations (see, e.g., Jacquemet, Joule,
Luchini, and Shogren, 2013, for a detailed description of the procedure). In Round 1, data are independent and
thus allow us to analyze behavior with a standard bootstrap proportion test. Frequencies in Round 1 are 23.3% in
BG1 and 50.0% in BG2 (p = .027), and 30.0% in EG1 and 50.0% in EG2 (p = .091).
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Source: Hanaki et al. (2016, Fig. 2). The color of the line is modified from the original figure to
make it consistent with Figure 2 below.

Imagine you are A. Which option do you choose, L or R?

In Hanaki et al. (2016), we report the results of an experiment with this game. In the experiment,

each participant repeated the same game 10 times with different opponents. Let’s call one play of

the game a round. This perfect stranger matching was made possible by recruiting 20 participants,

thus 10 As and 10 Bs, in each experimental session. After each play of a game, each participant was

informed of the payoff s/he had obtained, but not the choice made by the opponent. Of course, in

the above example, if A has chosen R, one could have guessed what the other has chosen based on

the payoff, but this is not the case in case A has chosen L. At the end of the experiment, one of the

10 rounds was selected randomly and participants were paid according to the payoff they obtained

in the selected round. Because the experiments were conducted in Paris, all the payoffs were shown

in Euros with ¥100 = €1 conversion rate. Thus, ¥850 was converted into €8.50, for example.

We focus on As’ choices. The paper reports the behavior of Bs as well, so interested readers can

refer to the paper. Figure 1 shows the dynamics of the fraction of 30 As who had chosen R over

10 rounds. As you can see, half of 30 participants who acted as As in our experiment chose R in

the first round, and then about 75% of them did so in the remaining rounds. The first question we

asked was why some As did not choose R.

If we look at the game, we notice that B has a dominant strategy, which is to choose D. If A

believes that B will choose D, then it is better for A to choose R as well. Thus, the reason for

A not choosing R is the uncertainty A faces about B’s behavior. In particular, if A believes that
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Figure 2: Fraction of As choosing R
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Figure 2: Share of the decisions R (r) for Player As (B) in the Human treatments, across rounds
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3.1 Results from the Human treatment

As summarized in Hypothesis 1, the variations in payoffs between games should induce variations
in the decisions of both players, hence resulting in a variation in the actual strategic uncertainty
faced by Player As. Figure 2 provides an overview of individual behavior in the Human treatment.
Aggregate results suggest that both players react to the variations in their own payoff scheme.
Holding Player Bs’ payoffs constant, Player As are more likely to seek efficiency as their monetary
incentives to do so become more salient: the frequency of R increases from 49% in BG1 to 73% in
BG2 (p = .001), and from 45% in EG1 to 74% in EG2 (p = .005).9 Analogously, Player Bs become

9We test the difference in proportion of a given outcome between two experimental conditions by carrying out
a two-sided bootstrap proportion test that accounts for within-subject correlation – i.e. the fact that the same
individual takes 10 decisions. The procedure consists of bootstrapping subjects and their corresponding decisions
over all ten rounds instead of bootstrapping decisions as independent observations (see, e.g., Jacquemet, Joule,
Luchini, and Shogren, 2013, for a detailed description of the procedure). In Round 1, data are independent and
thus allow us to analyze behavior with a standard bootstrap proportion test. Frequencies in Round 1 are 23.3% in
BG1 and 50.0% in BG2 (p = .027), and 30.0% in EG1 and 50.0% in EG2 (p = .091).
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an average payoff of roughly 12.50 euros in Human treatments and 15 euros in Robot treatments
(including a 5 euros show-up fee, but not the post-experiment task fee). No subject participated
in more than one experimental session.

3 Results

Figure 1 provides descriptive statistics regarding the behavior of Player As in all our experimental
treatments. The share of Player As who chose R in each round is displayed separately for each
payoff matrix, and the two curves provide a comparison between the Human treatment and the
Robot treatment. Before moving to a detailed analysis of the treatment effects, three main ob-
servations can be made. First, our Human treatment replicates the results seen in the existing
literature: a high proportion of Player As decide to play L, even after several rounds of the game.
Second, between game comparisons of behavior in the Human treatments show this pattern is
barely influenced by the strategic context: while Player As react to changes in incentives they face
(BG2 vs BG1, and EG2 vs EG1), they appear rather insensitive to changes in incentives faced by
Player Bs (EG1 vs BG1, and EG2 vs BG2). Finally, while the share of decisions R in the Robot
treatment always weakly dominates the one in the Human treatment, the absence of strategic
uncertainty in this context does not remove all decisions L.

In the remainder of this section, the main question we seek to answer is whether and to what
extent strategic uncertainty drives the observed decisions to play L. In the Human treatment,
two factors explain the decisions of Player As: the behavior of Player Bs in the experiment and
how Player As adjust to this behavior. The variations in payoffs between games allows these two
factors to be measured separately. We then move to an analysis of the Robot treatments, in which
strategic uncertainty is removed by design.
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3.1 Results from the Human treatment

As summarized in Hypothesis 1, the variations in payoffs between games should induce variations
in the decisions of both players, hence resulting in a variation in the actual strategic uncertainty
faced by Player As. Figure 2 provides an overview of individual behavior in the Human treatment.
Aggregate results suggest that both players react to the variations in their own payoff scheme.
Holding Player Bs’ payoffs constant, Player As are more likely to seek efficiency as their monetary
incentives to do so become more salient: the frequency of R increases from 49% in BG1 to 73% in
BG2 (p = .001), and from 45% in EG1 to 74% in EG2 (p = .005).9 Analogously, Player Bs become

9We test the difference in proportion of a given outcome between two experimental conditions by carrying out
a two-sided bootstrap proportion test that accounts for within-subject correlation – i.e. the fact that the same
individual takes 10 decisions. The procedure consists of bootstrapping subjects and their corresponding decisions
over all ten rounds instead of bootstrapping decisions as independent observations (see, e.g., Jacquemet, Joule,
Luchini, and Shogren, 2013, for a detailed description of the procedure). In Round 1, data are independent and
thus allow us to analyze behavior with a standard bootstrap proportion test. Frequencies in Round 1 are 23.3% in
BG1 and 50.0% in BG2 (p = .027), and 30.0% in EG1 and 50.0% in EG2 (p = .091).
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an average payoff of roughly 12.50 euros in Human treatments and 15 euros in Robot treatments
(including a 5 euros show-up fee, but not the post-experiment task fee). No subject participated
in more than one experimental session.

3 Results

Figure 1 provides descriptive statistics regarding the behavior of Player As in all our experimental
treatments. The share of Player As who chose R in each round is displayed separately for each
payoff matrix, and the two curves provide a comparison between the Human treatment and the
Robot treatment. Before moving to a detailed analysis of the treatment effects, three main ob-
servations can be made. First, our Human treatment replicates the results seen in the existing
literature: a high proportion of Player As decide to play L, even after several rounds of the game.
Second, between game comparisons of behavior in the Human treatments show this pattern is
barely influenced by the strategic context: while Player As react to changes in incentives they face
(BG2 vs BG1, and EG2 vs EG1), they appear rather insensitive to changes in incentives faced by
Player Bs (EG1 vs BG1, and EG2 vs BG2). Finally, while the share of decisions R in the Robot
treatment always weakly dominates the one in the Human treatment, the absence of strategic
uncertainty in this context does not remove all decisions L.

In the remainder of this section, the main question we seek to answer is whether and to what
extent strategic uncertainty drives the observed decisions to play L. In the Human treatment,
two factors explain the decisions of Player As: the behavior of Player Bs in the experiment and
how Player As adjust to this behavior. The variations in payoffs between games allows these two
factors to be measured separately. We then move to an analysis of the Robot treatments, in which
strategic uncertainty is removed by design.
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Source: Hanaki et al. (2016, Fig. 1)

the likelihood of B choosing U is high enough (in this particular case, higher than 3/7, for a risk

neutral A), it is better for him/her to choose L. If this is the main reason, then, if A knows that B

will choose D for sure, s/he will choose R. To test this, we have conducted another experiment in

which As face a computer program that is acting as B for 10 rounds. Participants were informed,

in addition to the rules of the game, that “the computer chooses D at each round, without

exception.”

The left panel of Figure 2 shows the result. It shows, in red, the dynamics of the fraction of As

(N=40) who have chosen R against the computer program known to choose D (robot B), as well

as the fraction of As (N=30) who have chosen R against human Bs. The surprising result is that,

not all the As have chosen R in any of the 10 rounds even when they play against robot B, and

furthermore, except for round 1, there is no difference between the results from two settings.

This absence of difference between the fraction of As choosing R against the robot Bs and against

human Bs is specific to this particular payoff setting as one can see from the result of another payoff

matrix shown in the right panel of Figure 2. In this setting, the payoffs were such that

• If A chooses L, regardless of B’s choice, A obtains €9.75 and B obtains €8.50.

• If A chooses R and B chooses U then A obtains €3.00 and B obtains ¥8.50.

• If A chooses R and B chooses D then A obtains €10.00 and B obtains ¥10.00.
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Figure 3: An example of matrix reasoning quiz

Source: The International Cognitive Ability Resource Team (2014; https://icar-project.com/)

so that the payoff for A from choosing L is higher, while it is lower when A chooses R and B chooses

U, than the previous one. As a result, against human Bs, the fraction of As (N=30) choosing R

is lower compared to the case shown in the left panel. This results in the fraction of As (N=40)

choosing R against the robot B being higher than the case against human B, although the former is

similar to the level shown in the left panel, .

What this result suggests is that not all As choose L instead of R in response to the uncertainty

of the behavior of Bs. Facing such a result, we wondered whether participants’ cognitive ability had

something to do with their decision to not choose R against the robot B.

We have used the advanced version of Raven’s progressive matrix (RPM) test (Raven, 1998) to

measure participants’ cognitive ability. This test consists of series of tasks, with increasing difficulty,

similar to the one shown in Figure 3. In each task, a participant is asked to pick one item from

those shown in the bottom that best fits the space marked with “?” (just a blank space in the

original test) in the 3×3 pictures above. This test is a non-verbal measure of fluid intelligence, that

is “the capacity to think logically, analyze and solve novel problems, independent of background

knowledge” (Mullainathan and Shafir, 2013, p.48), and is widely used by psychologists, educators
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and the military (Raven, 2008).2 The full test consists of 48 tasks to be solved in 30 minutes or so,

but we have chosen 1 out of every 3 questions, and asked our participants to solve them within 10

minutes. The test was conducted after participants had completed playing the game for 10 rounds.

In total, 140 participants who acted as A took the test. We have divided the participants, based

on their score of RPM test, into three groups: Low, Medium, and High. Low group consists of those

participants whose score of RPM test was less than 7. Those in High group scored 10 or above in

RPM test. The remaining participants are in the Medium group.3

Figure 4 shows the dynamics of the fraction of As in three cognitive ability groups choosing R

when playing against human Bs (in blue) and against the robot B (in red). Here the data from the

experiments with two payoff matrices shown above are pooled.4 What one can immediately notice

is the absence of differences between the two conditions for Low group (shown in the left panel).

For the other two groups, the fraction of As choosing R is higher when playing against the robot B

compared to the case against human Bs.

Figure 5 shows the same information from a different perspective. It shows the empirical cu-

mulative distributions (ECDs) of the frequencies (out of 10 rounds) of R choices in three groups

under two conditions. Three observations can be made. (1) Against human Bs, the ECDs of the

frequency of R choices are not significantly different across three cognitive groups.5 (2) Against

robot B, however, the ECD of the frequency of R choices for Low group is first order stochastically

dominated by those of Medium and High groups, while there is no significant difference between

the latter two groups.6 The reason for these observations is that (3) subjects in Low group do not

2Carpenter et al. (2013) report a positive correlation between RPM score and the degree of strategic sophistication
measured in terms of the number of wins in Race to 5, 10, and 15 games (also called Hit-5, -10, and -15 games). Gill
and Prowse (2016) shows a positive relationship between the speed of learning (to choose a number of closer to Nash
equilibrium) in a three-player p-beauty contest game and RPM score. Proto et al. (2019), as discussed in Section 5.1
below, show that those participants with high RPM scores tend to be better at resisting short-term temptation and
better at best-responding to the other’s strategy in an indefinitely repeated game than low RPM score counter parts.

3This grouping corresponds to the top 1/3, middle 1/3, and bottom 1/3 of all the participants, including Bs, who
took the RPM.

4The reason for pooling the data from two payoff matrices is to secure large enough sample size for three cognitive
groups in both robot and human treatments. If we have separated the two, then there would have been only around 10
subjects in each condition in each cognitive group, which have not been enough for conducting meaningful statistical
analyses. However, even if we analyze the two games separately, we obtain the same result regarding the difference
between Robot and Human conditions for Low (p= 0.255 and 0.304, respectively, for the first (shown on the left panel
of Figure 2) and the second (shown on the right panel of Figure 2) payoff matrices) and High groups (p=0.041 and
0.053 for the first and the second payoff matrices, respectively.) For the Medium group, the difference between Robot
and Human conditions is statistically significant for the first payoff matrix (p=0.003) but not so for the second payoff
matrix (p=0.173).

5Low vs Medium (p=0.288), Low vs High (p=0.599), and Medium vs High (p=0.695) all based on two-sided
bootstrap Kolmogorov-Smirnov test.

6Low vs Medium (p=0.003), Low vs High (p=0.001), and Medium vs High (p=0.318) all based on two-sided
bootstrap Kolmogorov-Smirnov test.
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Figure 4: Fraction of As in three cognitive ability groups choosing RFigure 5: Proportion of decisions R across rounds and treatments by ability group
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Kruskal-Wallis test with Bonferroni correction does not reject the null hypothesis that Raven’s
test scores in the four experimental conditions come from the same population (with p = .275).13

This result confirms that subjects are properly randomized regarding their cognitive abilities.
Table 3 reports the individual correlations between the score in Raven’s test and decisions in

the game, measured by the number of choices R (between 0 and 10) made throughout the 10
rounds of the game. We find a positive and significant correlation between these two variables in
the Robot treatments which suggests that subjects with a higher cognitive ability are more likely
to play R. However, this correlation disappears in Human treatments. To gain further insights
on the transition between the Robot and Human treatments, we categorize individuals in our
experimental sample according to their score on the Raven’s test. Player As are divided into three
groups, which correspond to the three tertiles of the overall score distribution, (i.e. considering all
Player As from all four experimental conditions, hence 140 subjects.) Subjects in the low ability
group have a Raven’s test score below 7, those with a Raven’s test score of 7 to 10 are in the
medium ability group and those with a score above 10 are in the high ability group.

Figure 5 presents the proportion of decisions R across rounds by cognitive ability group.14

The aggregate dynamics are very similar across cognitive ability groups, with an increase in the
frequency of decisions R in the first rounds and a stabilization afterwards. This result holds
regardless of whether decisions are taken with computers or humans acting as Player Bs. However,
interacting with computers instead of humans induces an initial upward shift in the ratio of R

that persists over time in the medium and the high ability groups, whereas no such shift occurs
in the low ability group. The mean increase in proportion of decisions R in Round 1 induced by

13The same test applied at the session-level (10 sessions) instead of the experimental-condition-level yields a
p-value of .694.

14The data from BG2 and EG1 are pooled to focus on the overall effect of removing strategic uncertainty and
guarantee sufficient sample sizes in each category.

14

Source: Hanaki et al. (2016, Fig. 5)

respond to the absence of behavioral uncertainty in Robot condition, compared to Human condition,

by increasing frequency of R choices (p=0.415), while those in remaining two groups do so (p=0.001

for both groups).

Thus, for those in the Low group, the choice of L against human Bs is not at all caused by the

uncertainty related to the behavior of human Bs (behavioral uncertainty). Instead, it is mainly due

to their own bounded rationality, regardless of its cause. For those in Medium and High group, the

main cause of the choice of L against human Bs is the behavioral uncertainty, although there are

other contributing factors.

These observations suggest that without taking an additional step, as we have done in this set

of experiments, in order to better understand the reasons behind the choice of L, we would not have

discovered the differences across the cognitive ability groups.

In the next section, we discuss a similar finding related to the cognitive ability in an experimental

asset market based on Akiyama et al. (2017).

3 Cognitive ability and mis-pricing in experimental asset

markets

Akiyama et al. (2017) investigated “irrational” bubbles observed in experimental asset markets pio-

neered by Smith et al. (1988).7 In the experimental paradigm of Smith et al. (1988), N participants

7The literature is extensive. See Palan (2013) for a review.
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Figure 5: Distribution of the frequencies of R choices in three cognitive ability groups.Figure 6: EDF of the total number of decisions R by treatment and cognitive ability group
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and significant in the two remaining models). Second, we report that the dynamics of behavior

do not differ between Human and Robot treatments across different cognitive ability groups. In

particular, a Wald test does not reject the joint insignificance of Robot dummy ⇥ round effects

dummies for low (p = .316), medium (p = .906) and high (p = .589) ability groups.

Figure 6 provides the EDFs of the number of decisions R made by each subject across ten rounds

for each cognitive ability group in Human and Robot treatments. Three results emerge. First,

the EDFs in the Humans treatment are not statistically different across cognitive ability groups.22

Second, this is not the case in the Robot treatment: the EDF for the low cognitive ability group is

first order stochastically dominated by the EDF for the medium and high cognitive ability groups

(p = .003 and p = .001, respectively). Finally, we observe no such relationship for the medium

and high ability groups: the EDFs are not significantly different (p = .318). The main reason for

these results is that the subjects in the low ability group do not respond to the absence of strategic

uncertainty in Robot treatments by increasing the frequency of decisions R (p = .415), whereas

subjects in the medium and high ability groups do so (the tests are based on comparisons between

treatments for each cognitive ability group, the p-values for both are p = .001.)
22To ensure a sufficient sample size in each ability group, we pooled the outcomes from both games in each treat-

ment. The tests are performed using two-sided bootstrap K-S tests. The p-values of the two-by-two comparisons
are: p = .288 for the low ability group vs. the medium ability group, p = .599 for the low vs. the high and p = .695
for the medium vs. the high.

18

Source: Hanaki et al. (2016, Fig. 6). The color of lines are modified from the original figure to make
them consistent with Figure 2 and 4 above.

trade a hypothetical asset over T periods. Before the first period, each participant, say i, receives

some units of the hypothetical asset (Ai units of asset) as well as some amount of hypothetical cash

(M i ECUs of cash) that can be used to trade. At the end of each trading period (t), a unit of asset

pays a dividend, dt, and the cash held (before receiving the dividend payment) generates rt % of

interest revenue. The asset and cash held are carried over to the next trading periods. At the end of

period T , after the dividend and interest payment, each unit of the asset held will be converted to B

ECUs of cash. Participants receive the monetary reward according to the final amount of cash they

hold according to the pre-specified rule. In the simplest possible case where rt = 0 and dt = d > 0

for all t and B = 0, the fundamental value (FV) of a unit of asset at the beginning of period t, FVt,

is simply a sum of remaining dividend payment, FVt = (T − t + 1)d. Given that the experiment

normally lasts no more than a couple of hours, we are ignoring the discounting factor. Under this

setting, the common knowledge of rationality implies no trading and the price in each period, if any,

should follow the FV. The common experimental finding, however, is that transactions occur at the

prices different from FV.

Figure 6 shows the result of the experiment reported in Akiyama et al. (2014). In this experiment,

the parameters were set so that N = 6, T = 10, dt = 12 and rt = 0 for all t, B = 0. Each participant

received 4 units of asset and 520 ECUs of cash as their initial endowment. Participants repeated

the same experiment, with the same group of 6 participants under the same parameter values three

times (each repetition is called a round below). Each connected dot represents the outcome of one

9



Figure 6: Dynamics of realized price in the asset market experiment of Akiyama et al. (2014)
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æ æ æ

æ

æ æ
æ

æ

æ

æ

à
à à

à

à

à

à

à
à

à

ì

ì
ì

ì
ì ì

ì

ì

ì
ì

ò
ò ò

ò
ò

ò
ò

ò

ò

ò

ô
ô

ô
ô

ô

ô

ô

ô
ô

ô

ç

ç ç
ç ç

ç
ç

ç
ç ç

á

á á
á á

á

á

á

á

á

×
×

×
× ×

×
×

×
×

×

ó
ó

ó
ó

ó
ó

ó
ó

ó
ó

õ õ
õ

õ õ
õ

õ

õ
õ

õ

æ
æ

æ æ æ
æ

æ æ
æ

æ

à
à

à à à
à

à
à à à

ì
ì

ì

ì
ì

ì
ì

ì
ì

ì

ò
ò

ò
ò

ò

ò
ò

ò
ò

ò

ô
ô

ô ô

ô

ô
ô

ô
ô

ô

ç

ç

ç ç
ç

ç

ç
ç

ç

ç

á

á á
á

á

á á

á á

á

×

×

×

×
×

×

×

×

×

×

ó

ó
ó

ó
ó ó ó

ó

ó
ó

õ
õ õ õ

õ
õ

õ
õ

õ õ

1 2 3 4 5 6 7 8 9 10
Period

50

100

150

200

250
Price

æ
æ

æ
æ

æ

æ

æ

æ

æ æ

à

à

à

à

à

à

à

à

à

à

ì
ì

ì
ì

ì
ì

ì

ì
ì

ì

ò

ò ò ò
ò

ò

ò
ò

ò
ò

ô
ô

ô
ô

ô

ô
ô

ô
ô

ô

ç ç
ç

ç
ç

ç

ç

ç
ç

ç

á

á

á

á

á

á
á

á
á

á

×

×
×

×
×

×
×

×
×

×

ó
ó

ó
ó

ó
ó

ó
ó

ó
ó

õ õ
õ

õ
õ

õ
õ

õ
õ

õ

æ

æ
æ

æ

æ
æ

æ

æ
æ

æ

à
à

à

à

à

à

à à à

à

ì
ì

ì
ì

ì
ì

ì
ì

ì
ì

ò ò

ò

ò

ò
ò

ò
ò

ò

ò

ô ô
ô

ô

ô
ô

ô
ô

ô
ô

ç
ç

ç

ç

ç

ç ç ç

ç

ç

á
á

á
á

á

á

á

á

á
á

× ×
×

×
×

×

×

× ×
×

ó ó ó
ó

ó

ó
ó

ó
ó

ó

õ õ õ õ õ
õ

õ

õ
õ õ

1 2 3 4 5 6 7 8 9 10
Period

50

100

150

200

250
Price

æ
æ

æ

æ

æ
æ

æ
æ

æ
æ

à

à

à

à

à

à

à

à

à

à

ì
ì

ì
ì ì

ì

ì

ì
ì

ì

ò
ò

ò
ò

ò
ò

ò
ò

ò
ò

ô
ô

ô
ô

ô

ô
ô

ô
ô

ô

ç
ç

ç
ç

ç
ç

ç

ç

ç
ç

á

á
á

á
á

á
á

á
á

á

×
×

×
×

×
×

×
×

×
×

ó
ó

ó

ó
ó

ó
ó

ó
ó

ó

õ
õ

õ
õ

õ
õ

õ
õ

õ
õ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à
à

à

à
à

à

à

à
à

à

ì
ì

ì
ì

ì
ì

ì
ì

ì
ì

ò
ò

ò

ò
ò

ò
ò

ò
ò

ò

ô
ô

ô

ô
ô

ô
ô

ô
ô

ô

ç

ç ç
ç

ç
ç

ç

ç
ç

ç

á
á

á á
á

á

á
á

á
á

×

×
× ×

×

×

×
×

×

×

ó
ó

ó
ó

ó
ó

ó

ó ó
ó

õ õ
õ

õ
õ

õ

õ

õ
õ

õ

1 2 3 4 5 6 7 8 9 10
Period

50

100

150

200

250
Price

Source: Akiyama et al. (2014, Fig. 1)

group, and there are 20 groups. As one can observe in the figure, there are many groups that trade

at prices different from (in many case, higher than) the FV in the first round (Round 1). We call this

price deviation from the FV “mis-pricing.”8 Another common finding is that mis-pricing becomes

smaller if the same group of participants repeat the experiment under the same conditions, and the

mis-pricing disappears by the third round.9

Previous studies suggest two main reasons for this mis-pricing. One was individual confusion or

bounded rationality (Lei et al., 2001; Kirchler et al., 2012), and the other was uncertainty regarding

others’ behavior or understanding of the experimental set-up that we call “behavioral uncertainty”

(Smith et al., 1988; Cheung et al., 2014). We believed, however, it was not just one or the other,

but both individual bounded rationality and behavioral uncertainty that played a role, and their

importance depended on participants’ cognitive ability.

To investigate this, we conducted the following experiment. Just as in Akiyama et al. (2014), the

parameters were set so that N = 6, T = 10, dt = 12 and rt = 0 for all t, B = 0. Each participant

received 4 units of asset and 520 ECUs of cash as their initial endowment. There were two conditions:

one in which a market consisted of six human participants (6H), and another in which a market

consisted of one human participant and five computer traders (1H5C). Participants were informed

of the condition in which they participated (i.e., 6H or 1H5C), and those who participated to 1H5C

were also informed about the behavioral rule of the five computer traders. As discussed in detail

below, we were interested in comparing participants’ initial price forecasts in these two conditions.

8Because prices often deviate upward from FV in the middle and drop back to FV toward the end, this pattern is
often called a “bubble.”

9It is important to note that this convergence of prices to FV after a couple of repetitions happens only when the
same group of subjects repeat the experiment under the same conditions. Prices deviate from FV even among the
same group of experienced subjects if market conditions are altered (see, Hussam et al., 2008).
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Table 1: Table regarding the dividend and FV given to participants

Remaining Periods Dividend Next Value (in ECUs)
At the end of 1st period 9 12 108
At the end of 2nd period 8 12 96
At the end of 3rd period 7 12 84
At the end of 4th period 6 12 72
At the end of 5th period 5 12 60
At the end of 6th period 4 12 48
At the end of 7th period 3 12 36
At the end of 8th period 2 12 24
At the end of 9th period 1 12 12
At the end of 10th period 0 12 0

* The next value at the beginning of Period 1 is remaining periods (10) × 12 ECUs = 120 ECUs.
* After the dividend payment after the end of Period 10, the value of the asset will be 0.

To explain how participants were informed about the behavioral rule of the computer traders,

we need to describe a few other aspects of the experiment first. All the participants received an

explanation about the dividend payment process, and the also received the table regarding the FV

shown in Table 1. Note that we called FV “Next Value” in the instructions for the experiment.

Participants could refer to the table anytime during the experiment.

Participants also received a detailed explanation about the market mechanism employed in each

period. We employed a call market setup. In each period, each trader can submit a buy and a

sell order by specifying a price-quantity pair. To submit a buy order, a trader has to specify the

maximum price at which they are willing to buy (bid) and the quantity demanded. To submit

a sell order, a trader needs to set the minimum sell price at which they are willing to sell (ask)

and the quantity supplied. The orders need to respect the budget constraint so that the trader

must hold enough cash to fully execute the buy order at their bid, as well as enough asset to fully

execute the sell order. Once all the traders submit their orders, market clearing price is computed

and transactions take place among those traders whose bid were no less than the market clearing

price and those traders whose ask was no greater than the market clearing price. Ties were broken

randomly.

After receiving these explanations regarding the dividend, FV, and the market mechanism em-

ployed, those participants in 1H5C condition were told the exact behavioral rule of computer traders

as follows: “In each period, each computer trader places buy and sell orders by setting both the

maximum price it is willing to pay and the minimum price it is willing to accept to the next value

11



at the beginning of the period.”

As noted above, we were interested in comparing the price forecasts submitted by participants

under two conditions to quantify the effect of individual bounded rationality and behavioral un-

certainty behind the mis-pricing observed in experimental asset market. How does the current

experiment allow us to do so? Imagine a participant in 1H5C condition who perfectly understands

the experimental setting. Such a participant should forecast the prices to follow FV in each period.

Thus, any deviation of price forecasts from FV observed in 1H5C should be due to some kind of indi-

vidual bounded rationality. Now, imagine a participant in 6H condition who perfectly understands

the experimental setting. Such a participant may not forecast the prices to follow FV in each period

because of the uncertainty regarding the behavior of other participants in the market. Of course,

the real participants in 6H may suffer from some kind of bounded rationality just as those in 1H5C

do. Thus, deviation of price forecasts from FV observed in 6H should be due to both behavioral

uncertainty and individual bounded rationality. Taking the difference between the two conditions,

therefore, we can quantity the effect of each.

The forecasts were elicited as per Haruvy et al. (2007) as follows: At the beginning of each

period, before submitting their orders, participants were asked to submit their price forecasts for

all the remaining periods. Thus, at the beginning of period 1, each participant submitted his/her

forecasts for prices in period 1, 2, .., 10. At the beginning of period 2, they submitted forecasts for

prices in period 2, 3, .., 10. If a forecast was within plus-minus 10% of the realized price, it generated

a bonus payment equal to the 0.5% of their final cash holding at the end of Period 10. Thus, the

total bonus payment was equal to 0.5% × Number of forecasts that fell within the 10% range of the

realized price × the final cash holding at the end of Period 10.10

Finally, we employed the Cognitive Reflection Test (CRT, Frederick, 2005) to measure partici-

pants’ cognitive ability. CRT consists of a few questions such that the first “intuitive” answer that

comes to our mind is wrong. To arrive at the right answer, one has to reflect upon the intuitive

answer. And thus, CRT is often discussed in relationships with System-1 and System-2 thinking

(Kahneman, 2011). CRT is short and easy to implement and its score, the number of questions

correctly answered, is positively correlated with the score of RPM test (Corgnet et al., 2018).11 We

10In Hanaki et al. (2018), we report the result of comparing different ways of incentivizing forecasting performance
in asset market experiments. We found that the bonus scheme employed in Akiyama et al. (2017) resulted in a
significantly larger mis-pricing compared to the experiment without forecast elicitation. However, since the same
incentive scheme is used in both 6H and 1H5C conditions, it does not influence the conclusion of Akiyama et al.
(2017).

11Oechssler et al. (2009) report the negative correlation between CRT score and the incidences of the conjunction
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Table 2: Distribution of CRT scores

CRT score ≤ 1 CRT score = 2 CRT score = 3
1H5C (N=101) 27 26 48

6H (N=72) 25 26 21

have conducted CRT after the asset market experiment.

Experiments were conducted at the University of Tsukuba between May and July, 2013. A total

of 173 students, both undergraduate and graduate, recruited from all over the campus participated

to the experiment. Table 2 shows the distribution of CRT scores.12

We focus on the initial forecasts submitted by participants, and measure the deviation, from

FV, of initial 10 forecasts submitted by participant i with the relative absolute forecast deviations,

RAFDi
1,

RAFDi
1 =

1

10

|f i1,p − FVp|
FV

(1)

where f i1,p is the forecast for period p price submitted by participant i at the beginning of period 1,

FVp is the FV of the asset in period p, and FV = 1
10

∑
t FVt.

Figure 7 shows the distribution of RAFDi
1 observed in 6H (red) and 1H5C (blue) depending on

CRT score. For those subjects whose CRT scores are 0 or 1 (low CRT score), the two distributions

are on top of each other. This means that their forecast deviations are a result of their individual

bounded rationality. For those with a higher CRT score, the distribution from 1H5C lies to the left

of 6H, although for those with CRT score = 2 (medium CRT score) the two distributions cross and,

thus, are not statistically significantly different (p=0.733, Kolmogorov-Smirnov, KS, test, two-sided).

For those with a perfect CRT score (high CRT score), the two distributions are significantly different

(p=0.001, KS test). For these participants, the forecast deviations are results of both individual

bounded rationality and behavioral uncertainty. This matches what we have observed for the very

simple 2×2 coordination game in the previous section.

Furthermore, Figure 8, which compares the distribution of RAFDi
1 in 6H (left) and 1H5C (right)

fallacy and conservatism in updating probabilities. Brañas-Garza et al. (2012) show the negative correlation between
the CRT score and the deviation of chosen number from the Nash equilibrium in beauty contest games. In the context
of the asset market experiment similar to the one studied here, Corgnet et al. (2015) report that subjects with low
CRT scores tend to buy (sell) an asset at prices above (below) FV while the opposite is true for those with high CRT
scores.

12The average CRT score of these 173 participants is 2.1. This is very high, close to that of MIT, in light of the
average scores from 8 universities reported in Frederick (2005). Thoma et al. (2015) report the average CRT score
of traders, bankers, and non-financial professionals. The average score of traders are the highest among them and
around 2.4.
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Figure 7: Distribution of RAFDi
1 in 6H (red) and 1H5C (blue)
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Source: Akiyama et al. (2017, Fig. 2)

between low CRT (dashed gray) and high CRT (solid black) participants, reveals another finding

that is similar to that observed in the previous section. In 6H, the two distributions are on top of each

other. This means that, when facing other human participants, forecasts of both low and high CRT

participants deviate from FV at a similar magnitude. That is, the total effect of individual bounded

rationality and behavioral uncertainty in causing the forecast deviations are the same between low

and high CRT participants. If we had restricted our analyses to human only experiments, we

would not have observed the differences in the outcome depending on the participants’ cognitive

ability. But for 1H5C, the distribution for low CRT participants lies to the right of the high CRT

participants, although the two distributions are not statistically significantly different at the 5%

significance level. This shows that high CRT participants, while they are less boundedly rational

than low CRT participants, are impacted by the behavioral uncertainty to such a large extent that

their forecast deviations become as large as those of low CRT participants in 6H.

4 Cognitive ability, cognitive hierarchy model, and the strate-

gic environment effect

In the two experimental results presented above that address cognitive ability, individual bounded ra-

tionality, and behavioral uncertainty can be interpreted in terms of the cognitive hierarchy (Camerer

et al., 2004) or the level-K (Nagel, 1995) model. These models assume that decision makers (agents)

can be categorized into several levels. It is typically assumed that Level-0 agents either make a

random choice or pick an intuitive choice following their impulsive drive. Level-1 agents, assuming
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Figure 8: Distribution of RAFDi
1 for low and high CRT participants
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Source: Akiyama et al. (2017, Fig. 3)

that others are Level-0, best (or, at least, better)13 respond to the expected behavior of Level-0.

Level-2 agents, in turn, assume that others are at lower levels (i.e., Level-0 or 1) and best (or better)

respond to their expected behavior, etc.. In terms of the results presented above, we can say that

those with low cognitive ability can be considered to be Level-0, and those with high cognitive ability

to be Level-1 and above.14

This section presents a recently published study (Hanaki et al., 2019) that employs the framework

of the cognitive hierarchy model to investigate macroeconomic implications of micro-level “boundedly

rational” individual behavior. In particular, it shows a strategic environment in which micro-level

individuals’ boundedly rational behavior are not cancelled out through interactions among them

and thus can have an important macro-level effect in the beauty contest games first experimentally

studied by Sutan and Willinger (2009).

Let us first define the strategic environment effect (SEE). We say that “the strategic environment

effect arises if the expected absolute deviation of choices from the Nash equilibrium is larger when

players’ actions are strategic complements than when they are strategic substitutes.”(Hanaki et al.,

2019, Definition 1). The paper shows, both theoretically and experimentally, that the SEE arises

in beauty contest games as long as the number of players, n, involved is not too small. While the

theoretical analyses suggest that the SEE arises for n > 2, the SEE was observed experimentally for

13Here “better reply” means that an agent makes noisy choices in such a way that choice probabilities are positively
correlated with the expected payoffs from each option. See, among others, Rogers et al. (2009) and Goeree and Holt
(2004) for better-reply models.

14Whether these levels should be interpreted as types of decision makers so that the estimated level of a participant
is consistent across various setting, or not is debated. For example, Heap et al. (2014) claim the estimated level should
not be considered as a type because the estimates depend crucially on the assumption about Level-0 behavior. Here,
we are not trying to estimate the levels from observed behavior.
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n > 4.

Let us describe the beauty contest games (BCGs): n players simultaneously choose a number

between 0 and 100. The player who has chosen the number closest to the target number (to be

defined below) is the winner and obtain a prize. In case of a tie, one of them will be chosen

randomly to receive the prize. We consider two BCGs, BCG+ and BCG−, that differ in the way the

target number is defined. Let T i
+ and T i

− be the target number for player i in BCG+ and BCG−,

respectively, and let xj be the number chosen by player j.

T i
+ =20 +

2

3

∑
j 6=i xj

n− 1
(2)

T i
− =100− 2

3

∑
j 6=i xj

n− 1
(3)

As one can observe, BCG+ is a game of strategic complementarity, and BCG− is a game of strategic

substitutability. Note that if i believes others are going to choose higher numbers, then in BCG+,

i also tries to choose a higher number to win, while in BCG−, i will try to choose a lower number.

Both BCG+ and BCG− have the same Nash equilibrium (i.e., to choose 60), and the slope of the

best reply functions are the same in absolute value between the two games.

Because theoretical analyses show that the SEE arises for n > 2, Hanaki et al. (2019) experi-

mentally test n ∈ {2, 3, 4, 5, 6, 8, 16,uncertain} to identify the minimum n above which the SEE is

consistently observed.

Figure 9 shows part of the experimental results reported in Hanaki et al. (2019). The four panels

of Figure 9 show the distributions of the absolute deviation of the numbers chosen by participants

from the Nash Equilibrium, |xi − 60|, for four values of n ∈ {2, 5, 8, 16}. The distributions observed

in BCG− are shown in red (solid) and those from BCG+ are shown in blue (dashed). For n = 2 (top

left), the two distributions are on top of each other. Thus, the SEE is not observed as predicted by

the theory. For the other three values of n, however, the distribution from BCG− lies significantly

to the left of the distribution from BCG+, thus demonstrating SEE.

An intuition behind the theorem proved in Hanaki et al. (2019) is as follows. Let’s assume the

following version of the cognitive hierarchy model: Level-0s all choose 100.15 Level-1s, assuming

that all the others are Level-0s, best reply to the choice of Level-0s (i.e., 100). Level-Ks (K >1)

15As long the the absolute deviation of the number chosen by Level-0 from the Nash equilibrium is the same between
BCG+ and BCG−, it does not matter for the theorem whether Level-0 tend to choose a number above, below or on
the opposite side of the Nash equilibrium in the two BCGs.
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Figure 9: The empirical cumulative distribution |x− 60| for BCGn+ (dashed) and BCGn− (solid).
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Source: Hanaki et al. (2019, Fig. 3).

and above assume that others are between Level-0 and Level-(K-1), with equal probability, and best

reply to their expected choices.16 The choices, as well as their absolute deviation from the Nash

equilibrium for Level-1, 2, and 3 in two BCGs under this model, are summarized in Table 3.

Level-1s’ average choice is above the Nash equilibrium (NE) in BCG+, while it is below the NE

in BCG−. The absolute deviation of Level-1’s choice from the NE, however, is the same between the

two games. The difference between the absolute differences of choices and the NE appears between

two BCGs for Level-2 and above. In particular, the absolute difference between the choices of Level-2

and above and the NE is much smaller under BCG− than under BCG+, which results in SEE.

The reason for this difference is simple. In BCG+, the choices made by Level-0 and 1 are both

on the same side of the NE (in this particular case, above) due to the strategic complementarity. On

the other hand, their choices are on the opposite sides of the NE in BCG− because of the strategic

16The assumption about the distribution among agents of lower levels are not very important here as long as it is
not degenerate.
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Table 3: Choices and their absolute deviation from the Nash equilibrium for Level-1, 2, and 3

Level-1 Level-2 Level-3
BCG+ xi 86.666 82.222 79.753

|xi − 60| 26.666 22.222 19.753
BCG- xi 33.333 55.555 58.025

|xi − 60| 26.666 4.445 3.025

Note: We assume that (a) Level-0s choose 100 in both games, (b) Level-K (K > 0) assumes that
others are between Level-0 and Level-(K-1), with each level having the equal likelihood.

substistutability. Thus, the average number chosen by Level-0 and -1 is necessarily closer to the NE

under BCG− than under BCG+. And since Level-2s best respond to the average number chosen

by Level-0 and 1, their choices will also be closer to the NE under BCG− than BCG+. The same

reasoning applies to all the higher levels.

What are the environments characterized by the strategic complementarity? One can easily think

of such examples as asset markets, various coordination problems, and maybe the economy as a whole

as it is driven by expectations of various decision makers. Because people are heterogeneous in terms

of their cognitive ability, and thus, their reasoning processes, we believe we should start seriously

investigating the various macro-implications of interactions among heterogeneous boundedly rational

decision makers, especially, for those environments characterized by strategic complementary.

5 Differences in cognitive ability measured across several lab-

oratories.

Let me now turn to a discussion regarding large differences in the measured cognitive ability of

participants across several experimental laboratories, and the potential problems associated with not

paying sufficient attention to such differences for conducting and interpreting results of experimental

analyses.

Figure 10 shows the cumulative distributions of RPM scores from seven laboratories where I

have gathered data so far. These laboratories are all located at a university or an institution of

the equivalent level. In all the laboratories, participants were asked to answer the same set of 16

questions within 10 minutes. The timings in which the RPM test were conducted differ across

locations, however. In some cases, it was at the end of the experiment, while in other cases, it was
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Figure 10: Distributions of RPM scores from seven experimental laboratories
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The number of observations for each distribution: 280 (black solid), 235 (gray solid), 115 (black
dashed), 192 (blue solid), 100 (light blue dashed), 140 (green solid), and 244 (green dashed).

at the beginning of the experiment. Because it is possible that participants who took the RPM test

at the end of the experiment did worse than those who did it at the beginning, please interpret

the score with a grain of salt. However, even considering such a possibility, the differences in the

distributions of RPM scores across these seven locations are striking. On one hand, in the laboratory

with the left-most distribution of RPM score, less than 30% of participants scored more than 11

in the RPM test. In the laboratory with the right-most distribution of RPM score, on the other

hand, less than 30% of participants scored less than 11. Furthermore, as previously noted, the CRT

scores are correlated with RPM score. Let’s take the two extreme distributions of RPM score. The

average CRT score of the participants in the laboratory with the left-most RPM score distribution

is less than 1, while it is more than 2 in the laboratory with the right-most RPM score distribution.

Such a large difference in the cognitive ability of participants across laboratories raises two major

concerns: one is the replicability of experimental findings, and another is the interpretation of cross

country differences in the experimental findings. Let us first discuss the initial concern by taking

the recent experimental findings regarding the cooperation in an indefinite repeated game and mis-

pricing in the asset market experiment of Smith et al. (1988).
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Table 4: PD game considered by Proto et al. (2019)

C D
C 48,48 12,50
D 50,12 25, 25

5.1 Replicability of experimental findings

Proto et al. (2019) investigate the relationships between the cognitive ability of pairs of participants

and their behavior in indefinitely repeated games. They do so by first measuring participants’

cognitive ability using an RPM test,17 and split them in half based on participants’ relative RPM

scores within their group: High (top half) and Low (bottom half).18 Then, three types of pairs

are created: High-High, Low-Low, and random. Once a play of the repeated game ends, pairs are

randomly re-created, respecting their types, and a new play of the same repeated game starts. This

process is repeated until the 45-minute time limit is reached.

They consider several payoff matrices and two continuation probabilities, but here we focus on the

Prisoners’ dilemma game with the payoff matrix shown in Table 4 with the continuation probability

δ = 0.75 that was shown to result in high cooperation by Dal Bó and Fréchette (2011).

Figure 11 shows the average frequency of cooperation in a block of 5 plays of the game, averaged

across super-games and groups, for High-High and Low-Low pairs (left panel) and High, Low, and

average in random pairs (right). The left panel clearly shows that those in High-High pairs managed

to achieve and sustain high cooperation, while those in Low-Low pairs fail to do so, although the

fractions of cooperative play are initially the same between the two types of pairs because participants

do not know the way they are paired. The right panel shows also that if matched with a High type,

Low type participants can also learn to cooperate more, although Low types cooperate less than

High types.

The difference in the rate of cooperation between High-High and Low-Low pairs suggest that the

results of experiment of the same repeated game will be quite different depending on the laboratory.

Namely, cooperation will be much less likely to be observed in those laboratories where most of

participants have low RPM scores.

Another example where experimental results differ drastically depending on the participants’

1730 questions, with a strict time limit of 30 seconds per question.
18Note that such within-session grouping is not perfect in that participants with the same score can be categorized

as High or Low depending on the session.
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Figure 11: Result of repeated PD games depending on cognitive ability of pairs by Proto et al.
(2019)

High-High and Low-Low pairs Random pairs

Figure 1: PD with High Continuation Probability: cooperation and payo↵s per period in the
low and high IQ sessions The top panels report the averages computed over observations in successive
blocks of five supergames of all high and all low IQ sessions, aggregated separately. The black and grey lines
report the average cooperation for high and low IQ subjects in each block. The bottom panels reports the
average of cooperation and payo↵s in the first round (of a repeated game) that occurs in the two IQ sessions
separately. Bands represent 95% confidence intervals.
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Source: Proto et al. (2019, Fig.2) Source: Proto et al. (2019, Fig.3)

cognitive ability is the asset market experiment we have seen above. Bosch-Rosa et al. (2018)

measured the cognitive ability of participants by CRT, the beauty contest game, and hit-60 games.

According to the composite score computed based on these measures, they divided the participants

into three groups, Low (bottom 1/3), High (top 1/3), and Medium (remaining), and conducted the

asset market experiment of Smith et al. (1988) by recruiting participants either only from the Low

group (All Low) or the High group (All High). Figure 12 shows the price dynamics observed in

All Low markets (left) and All High markets (right). It is clear that a large mis-pricing is observed

only in All Low markets. In All High markets, prices follow the FV of the asset very closely. This

again clearly suggests the dependence of experimental results and its replicability on the pool of

participants.

5.2 Cross-cultural differences in experimental findings

Now, let’s turn to the interpretation of the results of cross cultural experimental comparisons. One

of the most famous cross-cultural experimental works is that of Herrmann et al. (2008) and Gächter

et al. (2010), which considers public good games (PGGs) with and without costly punishment. These

authors have conducted the same experiment in 16 cities from 15 countries around the world cov-

ering 6 cultural areas (English speaking, Protestant Europe, Orthodox/ex-Communist, Confucian,

Southern Europe, and Arabic speaking).19 In order to minimize the differences in the participants

19Please refer to Herrmann et al. (2008) and Gächter et al. (2010) and citations therein for this grouping of locations
into different cultural areas.
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Figure 12: Results of asset market experiment based on cognitive ability groups by Bosch-Rosa et al.
(2018)
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striking by how markedly they differ from the standard results of bubbles and
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sooner and hover close to it for the remaining periods. Because we were in doubt
whether the disappearance of the bubbles was due to the high cognitive scores of the
experimental subjects or to their shared knowledge of it, we ran three additional
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16 These results are in contrast with Hanaki et al. (2015) and may be, among other reasons, due to their
announcement to subjects that the market was populated only by low cognitive ability subjects, or to their
separation of subjects into high and low ability within the session and not previously.
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across these locations, the authors have recruited university students in these cities. But as we have

already demonstrated, large differences in participants’ cognitive ability exist across universities,

and it is not clear if the participants from universities in these 16 locations had a similar cognitive

ability.

The PGG without costly punishment is as follows: a group of 4 players play the same game for

10 times. In each play of the game, each participant receives 20 points which they can keep or invest

to a public project. Let’s call xit the amount participant i invests in the public project in t-th play

of the game (period t). The payoff for i in period t is πi
t = 20 − xit + 0.5

∑
j x

j
t . After each play of

the game, participants are informed of the payoff they have obtained in that period.

The PGG with costly punishment adds a punishment stage to the PGG without costly pun-

ishment (described above). Namely, after participants make their investment decisions, they are

informed of the amount invested by each member of their group. After observing this information,

each participant can decide to reduce the payoff obtained by other members of the group by pay-

ing a price. Namely, by paying 1 point, a participant can reduce the payoff of another member

of the group by 3 points, and the maximum number of points that one can reduce from another

is 30. Let pij,t be the points i pays to reduce j’s payoff in period t. This “punishment” decision

is done simultaneously without knowing others’ decisions. The final payoff for subject i will be

max[0, πi
t − 3

∑
j p

j
i,t]−

∑
k p

i
k,t. Note that, the minimum point subject i can obtain after the pun-

ishment, if any, is zero minus the total cost of the punishment i has decided to pay to “punish”
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Figure 13: Average amount of contribution to public goods in 16 locations reported by Gächter et al.
(2010).

cultural categorization summarized in table 1 and
according to treatment condition.

We start with figure 1 and the N-condition. The
left part of each panel shows the results for the
N-condition; ‘c’ indicates the average contribution
over the 10 periods. Within all cultures contributions
are remarkably similar. According to Kruskal–Wallis
tests based on group average contributions across all
periods, contributions within a culture are at most
weakly significant (in two cultures) and insignificant
in four cultures (see p-values indicated in the panels
of figure 1). Between cultures, however, contributions
are highly significantly different (Kruskal–Wallis test
with group averages as independent observations
and culture as the grouping variable; x2(5) ¼ 30.9,
p ¼ 0.0001). We interpret this as unambiguous
evidence for cultural influences on cooperation in the
absence of punishment.

This difference concerns the average level of
cooperation. However, all subject pools experience a
decline of contributions in the N-condition over time
(except subjects in Athens and the two Arabic subject
pools, where contributions appear more stable). The
explanation of the decline of cooperation is beyond
the scope of this paper. We refer the reader to
Neugebauer et al. (2009) and Fischbacher & Gächter
(2010) for analyses of the almost ubiquitous decline
of cooperation in finitely repeated public good
games. To test whether there are also cultural

differences with regard to the extent of the decline of
cooperation, we calculated for each independent
group a Spearman rank order correlation of
group average contribution and period. We use this
correlation coefficient as a test statistic in a Kruskal–
Wallis test with the cultural regions as the test
groups. We find highly significant differences
(x2(5) ¼ 42.1, p ¼ 0.0001).

We now turn to the analysis of the P-condition (illus-
trated in the right part of each panel). Within a culture
the temporal patterns are surprisingly similar. In some
of the cultures there is also an indication of significant
within-culture variation: cooperation levels are signifi-
cantly different in two and weakly significantly
different in one culture. Across cultures contribution
levels are highly significantly different (Kruskal–
Wallis test with group averages as independent
observations and culture as the grouping variable;
x2(5) ¼ 96.5, p ¼ 0.0001).

Figure 1 (and figures 3 and 4 below) also suggest
that there are cultural differences with regard to the
change of contributions between the N-condition and
the P-condition: in four cultures contributions are
significantly higher in the P-condition than in the
N-condition (with p, 0.002) whereas in two cultures
this change is not significant (with p . 0.459, Wil-
coxon signed-ranks tests with group averages as
independent observations (see the p-values for
‘change’ indicated in figure 1).
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Figure 1. Average contributions in the 16 subject pools during the 10 periods of the N-condition and the P-condition; ‘c’
denotes the average contribution across all periods and subject pools of a given treatment and culture; ‘p’ denotes the
p-value of a Kruskal–Wallis test for the equality of contributions of subject pools in a given treatment and culture.
‘Change’ denotes the p-value of a Wilcoxon signed-rank test for the change of contribution between the N-condition and
the P-condition. All tests are based on group average contributions over all periods of a respective treatment.
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others.

The experiments were conducted so that the same group of 4 participants experienced 10 periods

of PGG without punishment first, and then 10 period of PGG with punishment. Figure 13 shows

the average amount invested in public projects in 16 locations. The results are shown separately for

each cultural area. In four out of six cultural areas, (a) English speaking, (b) Protestant Europe,

(c) Orthodox/ex-Communist, and (d) Confucian, the possibility of punishing others by paying a

cost does help to increase the amount contributed to the public project. While the contributions

to the public project tend to decline as participants repeatedly play the PGG without punishment,

the possibility of punishment prevents it from declining. There are three locations, Athens (in (e)

Southern Europe), Muscat and Riyadh (in (f) Arabic speaking), that demonstrate different outcomes.

In these three locations, the average contributions do not decline with repetition in PGG without

punishment, and the possibility of punishment does not change the average amount of contribution

at all. Herrmann et al. (2008) shows that, in these three locations, participants have punished those

who have contributed more than themselves, and considers that such “anti-social punishments”

prevented the punishment possibility from increasing the amount of contribution compared to the

case without such a possibility. As the title of Gächter et al. (2010) “Cultural and Cooperation”
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suggests, the authors seem to interpret this difference as a result of cultural difference, but there

are other potential differences across subjects pools. Thus, without conducting the experiment with

participants of different cognitive ability (to see the effect of cognitive ability in these games) as well

as cross culturally while controlling for participants cognitive ability (to see the effect of cultural

differences), we should be cautious in making such inferences about the effect of cultural differences

on observed behavior.20

6 Summary and conclusion

Participants in laboratory experiments differ in terms of their cognitive ability and other charac-

teristics. This is also the case for the wider population. In this paper, we have demonstrated

how a similar behavior can emerge for different reasons depending on the decision makers’ cogni-

tive ability. We have also shown how explicitly considering such differences in our model would be

important in understanding macroeconomic phenomena in environments characterized by strategic

complementarity.

We have also argued for the importance of understanding the characteristics of the participant

pool in various experimental laboratories both for replicating experimental results and for better

interpretations of the differences in observed behavior across countries and cultural zones. For this

purpose, databases of participants should be complemented with information about participants’

characteristics including cognitive ability. As a first step, we, together with Keigo Inukai and Take-

hito Masuda, have started to complement a participant database at ISER, Osaka University, with

various individual characteristics, such as cognitive ability, personality traits, risk preference, and

theory of mind. The effort is not yet complete, but once it is done, we will be able to recruit

participants based on their characteristics and conduct experiments to better understand the be-

havior among groups of participants with various characteristics. We very much hope that other

experimental groups around the world will start doing the same.

20Another approach to investigate the cultural differences is to conduct a larger scale “on-line” experiment with a
representative sample of population as participants. See, for example, OECD trust-lab project https://www.oecd.

org/sdd/trustlab.htm. I thank Masao Ogaki for pointing me out about this OECD initiative.
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