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Let S be a denumerable (possibly finite) state space and (P,),», a recurrent
semi-group of Markov kernels on S with an invariant measure x. We shall
say that a real valued function f defined on S is a null charge for (P,),s, if it
has finite support and >),csp(x)f(x¥)=0. Throughout this work we shall
denote by B the space of all real valued and bounded functions on S and by ¥
the space of all null charges for (P,),»,. A linear operator R from N to B
will be called a weak potential operator for (P,),, if it satisfies the following
condition:

(W.P) (I—P)Rf(x) = S: P.f(x)ds for any fE N, =0 and xS,

where I denotes the identity operator. Our definition of the weak potential
operator is a version for continuous parameter of the weak inverse which was
introduced by Orey [18] for discrete parameter Markov chains. Orey has
shown that, for any recurrent Markov chain, there is always a weak inverse
unique up to a linear functional on the space of null charges.

In the present paper we shall prove that any recurrent Markov chain with
continuous parameter has a weak potential operator by systematically studying
those Markov chains admitting instantaneous states. Moreover we shall show
that a recurrent semi-group is determined uniquely from the pair of its own
invariant measure and weak potential operator.

The author is grateful to H. Tanaka, H. Watanabe and T. Watanabe for
their kind advices.

1. Preliminaries on Markov chains

Throughout this work matrix notation is adopted. A kernel on S is a
matrix, that is, a real valued function defined on S S and a function (measure)
is a column (row) vector. Let us denote the functions on S, by f, g, the
measures on S by u, v, -+ and the kernels on S respectively by K, H, ---.
Then the function Kf, measure pK and kernel KH are, respectively, defined by
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Kf(x) = 2yes K%, 2)f(9) (*€59),
pK(y) = 2lses m(x)K(x, y) (yeSs),
KH(x, y) = 2.es K(x, 2)H(z, y) (% )ESXS).

To avoid confusion, however, we shall denote {u, f> and f@u instead of uf
and fp respectively, that is,

Ly [ = Dpes (%) f(x),
FQu(x, y) = f®u(y) (% y)ESXS).

We shall also list some trivial convention for clarity. A function or a
measure on S is non-negative (strictly positive) if it is non-negative (positive) for
every state in S. That a kernel on S is non-negative is understood in the same
way. Convergence is always pointwise convergence. The indicator function
of a set I" is denoted by Xr. Xg is written by 1. A kernel K is said to be a
Markov kernel if K =0 and K1=1.

A family of Markov kernels (P,),>, on S will be called a standard semi-
group of Markov kernels or simply the semi-group if it satisfies the following
conditions:

(P. 1) P,,,= PP, foralls, t=0,
(P.2) imP, =1.

>0

From these properties it follows that, for any (x, y)€SX.S, the mapping
t— P,(x, y) is uniformly continuous on [0, o) ([2, p. 124]). If we introduce the
family of kernels (R,)y>, by

R (x,y) = S: e " P,(x, y)dt for (x, y)€SxSand >0,

it satisfies the following conditions:

(R. 1) R,=0 and aR,1 =1 foralla >0,
(R. 2) Ry,—Rg+(at—B)RyRs = 0 forall ¢, >0,
(R. 3) lim aR, = 1.

We shall call (R,),>, the resolvent of the semi-group (P,),z,. The equation
(R. 2) is called the resolvent equation. Using the uniqueness of the inverse
Laplace transform and continuity of the semi-group we can see that the semi-
group is uniquely determined from its resolvent.

In the rest of this section we will give a definition of Markov process which
may have branching points and introduce a natural Markov process associated
with a semi-group (P,),, given on S, which will be called a Ray process.
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The definition and terminology of Markov process are taken from Dynkin
[5] with a slight change. Let (E, B) be a measurable space for which each
one-point set is measurable and A a point adjoined to E as the extra point.
We write E,=E U {A}, and let B, is the o-field of subsets of E, generated by
the sets in B and {A}. We consider the collection X=(Q, M, (X,);20, (01)sz0»
(P,)zer,), where Q) the sample space is a set with a distinguished element w,,
M is a o-field of subsets of Q, (X,),z, is a family of mappings from Q to E,,
(64)¢z, is a family of mappings (shift operators) from Q to Q and finally, (P,),eg,
is a family of probability measures on (Q, ). We shall say that X is a Markov
process with state space E if the following conditions are satisfied:
(M. 1) For each 0€Q, if X (w)=A for some ¢=0, then X (w)=A for all s=¢
and X (w,)=A for all s=0.
(M. 2) For each =0, the mapping X,: Q—E, is M-B, measurable, that is,
X7(B,)SM. We shall denote by B, the o-field of subsets of Q generated by
X 7YT), where s<t and T €®B,, and by B., the o-field generated by U ,>,/B,.
(M.3) For each A%, the mapping x— P, (A) is B, measurable and
P,(X,=A)=1.
(M. 4) X, {0)=X(0,0) for all 0EQ, 5, t=0. From this it follows 6;*(B..)
=B, for all t=0.
(M. 5) For each bounded, B.. measurable function F, =0, A€, and x€E,,

E,(Fo0,: A) = E,(Ex,(F): A),

where E (F: A) denotes the integral S F(0)P(dw).
A

We now extend the definitions by:

X(0o)=A and 0.(0)= w, for each w=Q
and if 7 is a function defined on Q with values in [0, co], then
X(w) = Xew(w) rand 6(0) = O.)(o) .

The function §(w)=inf {#: X,(0)=A} is called the life time of X. The func-
tions #—>X,(w) are called the sample functions of X.
For each bounded measure g on (E,, B,) we may define a measure P, on

Q, B.) by P,L(A)zs w(dx)P,(A). We use E, to denote integrals with respect
to P.. We now define §., to be the intersection over all p of the P.-com-
pletions of B,.. Each of the measure P. extends unipuely to §... We define
the o-field F, as follows: AE, if for each u there exists A,EDB, such that
A\A, and A, \A are in §.. and Pu(A\Ap)=Pu(Ax\A)=0. A mapping 7: Q—
[0, co] is called a Markov time provided that {r <t} €, for all £>>0. The
o-field §,, of Markov time 7 consists of all AE .. such that AN {r<#} €, for
all £>0.
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Let E be a locally compact, separable Hausdorff space and B the o-field
of Borel subsets of E. In this case we adjoin A to E as an isolated point. We
shall say that a Markov process with state space E is right-continuous if all sample
functions are right-continuous on [0, o). If X is right-continuous and 7 is a
Markov time, then XY(T")E%.. for all universally measurable subsets T' of E,
and 0;'(A)ER.. for all AeF... We shall say that a right-continuous Markov
process X has the strong Markov property if it satisfies:

(M. 6) For each bounded, §., measurable function F and Markov time = one has

EJ(Fo6,: A) = EJ(Ex (F): A)

for all A€%,, and p.

Let us now return to the case of denumerable state space. As before let .S
be a denumerable state space and (P,),z, a semi-group on S with resolvent
(Rs)a>o- If we consider S as a topological space with discrete topology, it is a
locally compact, separable Hausdorff space and B coincides with the space of
bounded and continuous functions defined on S. Now let f be a function in
B with 0<f=<1. Since, for each x in S, the functions ¢— P,f(x) and
t— P,(1—f)(x) are lower semi-continuous on [0, o), then, noting the relation
P,1=1 for all =0, we see that the function ¢ —P,f(x) is continuous on [0, o).
Thus, for each fin B and for each x in S, the function —P,f(x) is continuous
on [0, o). Further if we denote by B, the set of the functions of the form:
R( , ), yES, then B, is a countable subset of B*, the cone of non-negative
functions in B, separating two points in S and satisfying the following condition:

oR, . f<f forall fEB,,a>0.

Therefore, according to Kunita-Watanabe [14, Theorem 1] and Ray [19], if we
take an appropriate, compact metric space S containing S as a dense subset, we
can find a right-continuous, strong Markov process X with state space S which
has the following properties:

(i) For each xS, with P,-measure one, Lebesgue measure of the set
{t: X,&5\S} is equal to zero.

(ii) For each bounded, continuous function f on S, >0, the function I?wf
defined by

R.f(x)= Ex<Sje""’ff(X,)dt> for x€§

is continuous on S.

(i) For any (x, y)€SXS, t=0, P(X,=y)=P,(x, y). We shall call such a
Markov process a Ray process associated with the semi-group (P,),z,. In the
following, when we consider a Ray process, we always extend the function
defined on S to the function on S by putting the values on S\S equal to zero.
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Let X be a Ray process associated with the semi-group (P);z, and V a
subset of S,. We shall denote by oV the first hitting time of V, that is,

v { inf {t=0: X,eV}
7 71 oo if the set in braces is empty.

If V is a Borel subset of S, oV is a Markov time. If V is a subset of S, then
V=05 is called the first exist time from V. Further we introduce
ol by: o=7Y40c"ol,y, which shows the first hitting time of the set V after
the first exist from the set U. If both U and V are Borel subsets of S, then 7V
and o} are Markov times. When V has a form {a} with a single element « in
S, we shall use ¢ 7° and o to denote o!@, 74 and o} respectively. Note
that {=o* and therefore { is a Markov time. For each x in S, since P,({>1)
=P, (X, 8)=1 for all =0, we have P ({=o0)=1.

For later use we prove here the next property of Ray process.
(iv) If astatea in S is not a trap (a is a trap if P,(a, a)=1 for all t=0), then
we can find a neighborhood U (in S) of a such as E,(+Y) < oo, which will be
called an exit neighborhood of a.

Let C be the space of continuous functions on S and (R,),>, the resolvent of
Ray process X. R,f=0 implies Rzf=0 for all 3>0. Since lim BR:f(a)=f(a)

for any state a of S by (iii) and (P. 2), /=0 on S. However, since f is uniformly
continuous on S and S is a dense subset of S, we have f=0 on S. Therefore
R, is invertible. It is easily verified that R,(C) is independent of & and that
G=a—R;': R,(C)—C is independent of a. If acS and Gf(a)=0 for all
FER,(C), so we have aR,g(a)=g(a) for all g=C. Consequently aR,(a, a)=1
for all >0, which implies P,(a, a)=1 for all £=0. 'Therefore if a is not a trap,
there is a function f in R,(C) with Gf(a)>1. In the sameway as in [11; p. 99],
we can prove E,(1Y)<2sup|f| < oo for a small neighborhood U of a.

2. Recurrent semi-groups

A semi-group (P,),z, is said to be irreducible recurrent or simply recurrent if
the following condition is satisfied:

(P. 3) S:P,(x, y)dt = o forall (x, y)ESXS .

In this section we shall study some prorerties of recurrent semi-groups and give
a formula of the invariant measure.

Let X be a Ray process associated with a recurrent semi-group (P,);>,.
Using the assumption (P. 3), we can easily verify that any state in S is not a trap
and therefore has an exit neighborhood.

Lemma 1. Let abe astatein S and U an exit neighborhood of a, then
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P(0<of<co)=1.
Furthermore, if we introduce a sequence of Markov times (o ,),, by

(2. 1) o,=0 and o,= o, ,+apol for n=1,

on—1

then with P,-measure one, we have

0=0,<0,<0,*<<oo and limeg, =00,

nyco

Proof. 'The right-continuity of sample functions implies P,(c7,> 0)=1,
so we have only to prove P, (cf;<<co)=1. Let (R,)s>, be the resolvent of
(P:)sz0, then, using the strong Markov property, we have

Ru(a, a) = E,,(Sg”e“”‘x(a}(X,) dt>+ E (e %% o8 < «0)Ry(a, a)
0
for all >0. Consequently

(=B op<oo) SB[ %Xt [Rula, 0
<E(r")/Ry(a, ).

However, since lim E (e~ %’
@0

7: g4 < 00) =P, (0% < o), lim R,(a, @)= oo and
@0

E, (tV)<<co, we have P,(c7;<<oo)=1. Thus the first assertion of the lemma was

proved. Next let (o,),z, be the sequence defined by (2.1). Using the strong

Markov property, we can easily verify that, for any n=1 and «,, «,, -+, @,>0,
E [exp (—§ Qo 5005,)] =kI;I0 E, [exp (—aw?)],

which implies, as random variables on probability space (Q, IR, P,), the
sequence (a7°0,,),z, is independent and that each o0,, has the same distri-
bution with that of ¢§,. Since

o, = :Eila‘{,o&ak foralln=1,
the second assertion of the lemma is followed from Levy’s theorem.
Lemma 2. Let a be a state in S and U an exit neighborhood of a, then
(2.2) P(cp>a®)>0  forall bES.

Proof. If there were some b S with P,(cy;>0%)=0, then we should
have P, (o7 <a®)=1 since a%b. Let (o,).2 be the sequence introduced in
Lemma 1, then, using the strong Markov properties, we should have P (c*>0,,)
=(P,(c*>0cy))"=1 for all n=1. Therefore P, (6®=o0)=1 by Lemma 1.
Hence we should have Py(a, b)=0 for all =0, which contradicts the assumption
(P.3).
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Lemma 3. For any a, b€ S, P (c?<<o0)=1.

Proof. We may assume a=b since the other case is trivial. Let U be an
exit neighborhood of a and (o ,),2, the sequence defined by (2. 1). Then, using
Lemma 1 and (2. 2), we have

P,(ob <o) = 2 Po,<o® <o)
= P,(s* <o) X} (Pletr <o)’
(0 <oD)/(1—P,(ci<c?)=1.
Lemma 4. Let a be a state in S, then
E(S” X (X,)dt) <o forall (x, y)ESXS.

Proof. For any (x, y)€ S X S, since we have

E<S xm(X,)dt> — E<S Xin(X)dt: o <a“>
0 o

= P <o) E,( | % (X)at)
0
= EJ’(SO X(y)(Xt)dt) ’
we have only to prove
Ey(gtr XU](X,)dt><<>o for any ye S.
[

We may assume y==a since the other case is trivial. Let I an exit neighborhood
of y not containing a and (7,),2, the sequence of Markov times defined by

7,=0 and T,=r7, +o%00,, forn=1.

Then, from the preceeding lemmas it follows that

Ey<S:aX{y)(X,)dt> (S X 1)(X,)dt: T,,<a“<7,,+l)

2213(3”“% (X,)dt: 7, <" <7,
S, S”‘“ (X)) dt: Tk<a)
.%',

= E,([F X0 (X0dt) 5 (P <o)y

= y(TV)/Py(O' <°-V)<0° .



334 R. KoNDO

Thus the Lemma was proved.

From now on we use “R to denote the kernel defined by

(2.3) “R(x, y) = E"(So X(y}(X,)dt) ((x, y)ESXS).
As we have seen in the proof of Lemma 4, it satisfies:
(2.4) “R(x, )<°R(y, y) for all (x, y)€Sx S.

A non-negative function f defined on S is said to be excessive if P,f< f
for all £=0. Although the next lemma is an easy consequence of the general
theory of excessive functions, we will give here a simple direct proof.

Lemma 5. Any excessive function is constant.

Proof. Let f be an excessive function and (R,)s>, the resolvent of (P,);x,.
From the definition of excessive function it follows that aR,f < f for all > 0.
However we may assume aR,f=f for all «>0. For, if the contrary were true,
there would be some B3>0 and some a& S with BRgf(a)<<f(a). Put
g=f—BRef, then, using the resolvent equations, we should have

Ry(a, a)g(a) =< Rag(a)
= [BRsf(a)—aR,f(a)]/(a—RB)
= f(@)/(B—a)

for all @ smaller than 8. Thus, letting a— 0, we should have f(a)=co, which
contradicts the finiteness of the values of f. Now let a and b be any two states
in S, then, using the strong Markov property, we have

f(a) = aR,fla) = E,(e=*")aR,f(b) = E (e *")f(8) .

Then, letting @ — 0, we have f(a)= f(b). By the exactly same reason we have
f(®)=f(a). Thus f must be constant.

A strictly positive measure p on S is called an invariant measure of the
semi-group (P,);z, if pP;=p for all t=0. For discussions on invariant measure
of Markov process, see, for example, [4], [7] and [12] in the time discrete case,
[1], [8], [15] and [20] in the time continuous case. We give here a formula of
invariant measure which is used in the next section.

Theorem 1. For any recurrent semi-group (P,).»,, there is an invariant
measure, unique except for a constant multiplier, and this is the only invariant
measure.

Proof. First we show the uniqueness of the invariant measure by using the
same idea as Kemeny-Snell [12]. Let x and » be any two invariant measures of
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recurrent semi-group (P,),z,. If we introduce the family of kernels (lﬁ’,),g0 by

By, y) = u(y)Py, x)lu(x)  for (x, )ESxS,

then it is easily verified that (If‘,),;0 is a recurrent semi-group on S and that the
function f defined by f (x)=v(x)/u(x), xE S, is an excessive function for (P,)z,.
Thus, f, that is, v/p is constant by Lemma 5.

We now show the existence of an invariant measure. Let X be a Ray

process associated with (P,);», and let T' be any Markov time such that
P,(T>0)=1 and E,(T)<<co. We shall prove that the measure p defined by

w0 = B[ X))

is an invariant measure of (P,),>,.” pu(y) is finite, for
W) = ELT)+R(y, y) <.

Next we prove that yu is invariant under P,. For short, set T*=T+4 0.
Noting that P, (X7s=a)=1, we have

T8 t+T4
wP(3) = B[ BrtonX)ds) = B[ xon(X)as)
= B[ xas)+ B[ xin(Xds) - B | X))

= B xn(X)ds) = ().
It remains to prove u(y)>0 for any yS. Since
S 2 ELT)>0,
there exists some #, such that p(x,) >0. But we have for any y

w(y) = uPy(y)
= p(%)Py(x,, ¥) >0,

for P,(x,, y) >0 for some ¢ >0 by (P. 3). Thus Theorem 1 was proved.
Let T be a Markov time which is independent of (X}),», under P, and has
exponential distribution with expectation 1/a. In this case, we have

w9 = E [ %005 )+ B By ([ x1n(X005)|

- E[S: "X ) (X.) ds] +aE, [ f e Exs(g:axm (X.) du) ds]
= Ry(a, y)+aR,"R(a, y) .

1) The following proof is indepted to H. Tanaka and T, Watanabe,
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Corollary. The measure p defined by
(2.5) w(») = Ro(a, y)+aR,"R(a, )

15 an invariant measure for (P,);z,.

3. Weak potential operators

Let (P,);z, be a recurrent semi-group on S with an invariant measure u.
Further let N be the space of null charges for (P,),>, and (R;),>, the resolvent
of (P,);z,. We can easily show that the condition (W.P) of weak potential
operator is equivalent to the condition:

(W.P’) (I—aR,)Rf = R,f forall fEN and a>0.

In the first place we will prove the Dynkin formula for weak potential operator
provided that it exists.

Lemma 6. Let R be a weak potential operator for (P,);s, and X a Ray
process associated with (P,),,. If T is a Markov time such that P (t<co)=1

and Ex<STX(y)(X,)dt><oo for any x, yES, then, for each fEN and for each
x<E S, we have

(3.1) Rfw)—BL(RF(X) = B,( | (/X))

Proof. Let f€N and g=Rf, then gEB and g=R,f+aR,g. Using this
and the strong Markov property, we have

g@) = E.([ e X dt) + E(eg(X.)

+ E(S e~ g(X,)dt)

for x in S. Since f has finite support, we have

lim E, SO o f(X,)dt) - E(So f(X,)dt) '

@50

Further we obtain easily
| (e g(X)—Eg(X))| =lgll1—E(e™™) ,
Ex(S: Ole““tg(Xt)dt>‘ < Hg”(]_Ex(e-w-r)) ,

where ||g|]|=sup,cs | g(x)|. Therefore, letting a—0, we have

T
0

¢ = B, (| fx)ar)+ (X)),
which implies (3.1).
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Giving a few particular Markov times as 7 in (3.1), we have some infor-
mation about the weak potential operator.

ExampLE 1. Assume that all states in S are stable and conservative in the
sense: P, (0<7"<oo)=1 and P,(X,.=S)=1 for all x&S. Let us introduce
the function ¢ and the kernel IT on S by

q(x) = (E,(7")" and II(x,y) = Py(X.x =)

respectively, then g is strictly positive and II is a Markov kernel. It is familiar
to us that the kernel D defined by

D(x, y) = q(x)(I1 (x, y)—1(x, ¥)) for (x, P)ESX S

plays the same role as Laplacian does in the classicial potential theorey. In this
case if we set 7=7" in (3.1), we have DRf=—f, which implies that for each
fEN the function g=Rf is a bounded solution of the ‘“Poisson equation”

Dg=—f.

ExampLE 2. For some a€ S, if we set 7= in (3.1), then

Rfx) = B, (|7 fX)at)+Rrta)
which implies that a weak potential operator R, if it exists, should have the form:

Rf =“RF+1(f),
where “R is a kernel on S defined by (2.3) and [/ is a linear functional (in the
algebraic sense) on N.

ExampLE 3. Let E be the set {f> 0} and set 7=cF in (3.1), then

Rfw) = BRAX, o)+ B | X))
= E(Rf(X.z)

Consequently the weak potential operator statisfies a sort of maximum principle
as follows: For any function f in N and any real number m, if Rf <m on the
set {f >0}, then Rf <m on S.

We now prove a time continuous version of Orey’s result.

Theorem 2. Let (P,),», be a recurrent semi-group with the space N of null
charges and R a linear operator from N to B, then R is a weak potential operator for
(P,)s=o tf and only if it has the form:

(3.2) Rf = “Rf+I(f)

with some linear functional | on N.
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Proof. We have already seen in EXaAMPLE 2 that a weak potential operator
has the form (3.2), so we have only to prove that a linear operator defined
by (3.2) is a weak potential operator for (P,);»,- Let u be an invariant measure
of (P;);zo and X a Ray process associated with (P,),z,. Let us introduce
a family of kernels (“R,)s>, by

“Ro(x, y) = E,(S e“’"X(y}(X,)a’t) forall (% y)ESXS.
]
Since {t<c®}S{o"=t+0%00,} for all £=0, (*R,)s>, satisfies the resolvent equa-
tions and
(3.3) a’R,’R=°"R—"R,  forall a>0.
We obtain easily

Ro(%, y) = “Ru(x, )+ E(e*")Ru(a, y)
and in particular
Ry(%, @) = E,(e*“)R4(a, a),

therefore we have

3.4 R,(%, y) = ®Ry(x, ¥)+ Ru(x, a)Ry(a, ¥)|Ru(a, a) .
Combining (3.3) with (3.4), we obtain
(3.5) (I—aR,)*R(x, y)

= Ra(% y)—Ra(*, a)[Ra(a, y)+aRs"R(a, y)]/Ra(a, 4) ,

However, as we have seen in Theorem 1, R,(a, )+aR,“R(a, ) is an invariant
measure of (P,),,, then, from the uniqueness of invariant measure we have

(3.6) (I—aR,)*R(%, y) = Ra(%, y)—Ra(x, a)u(y)/1(a) -
Thus, if f is a null charge for (P,),,, we have
(I—aR,)’Rf =R.f,

which implies “R is a weak potential operator. Since (/I—aR,){(f)=0, we have
proved the theorem.

The next theorem shows that a recurrent semi-group is uniquely determined
from the pair of its own invariant measure and weak potential operator, or,
roughly speaking, that a weak potential operator contains a complete information
for its recurrent semi-group.

Theorem 3. Let (P,);z,, (P))szo be recurrent semi-groups on S with the in-
variant measures ., [, the space of the null charges N, N and the weak potential
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operators R, R respectively. If f=cp with some positive constant ¢ (then N=N)
and if, for all f €N, Rf=Rf-If) with some linear functional I on N, then we
have P,=P, for all t=0.

Proof. Let X and X be Ray processes associated with (P,),», and (P;),zo
respectively. In the course of this proof, we shall denote the quantities related
with X by putting the sign “~” over the corresponding quantities related with
X, for example

R ) = B[ e xin(R)at)

where F, denotes the expectation with respect to X and &° is the first hitting
time of {a} with respect to X. Let us now introduce the function f, for each

YES, y=*a, by

1 (x =)
[(#) = q —n®)/) (x = a)
0 (otherwise),

then f,EN. Therefore, using (3.2) and the assumption of the theorem, we ob-
tain easily

“R(x, y) = Rf (x)—Rf,(a) = Rf,(x)—Rfy(a) = “R(x, y)

for all x&.S. Evidently “R(x, a)="R(x, a)=0 for all x= S, then we have “R="R.
We remark here that the operator “R satirfies the complete maximam principle
on “S=S\{a}, that is, if, for any function f with finite support in “S, we have
“Rf <m on the set {f>0} with some m=0, then we have “Rf <m on “S. 'Then,
according to Deny [3] or Meyer [16, p. 205], the sub-Markov resolvent” (“Ry)qs,
satisfying the relation (3.3) is unique. Consequently we have “R,=“R, for all
a>0.
Let us now introduce the quantities e,, A4 by

ea(x) = 1—a’R,1(x) (x€S),
Na(y) = u(y)—ap’Ry(y) (yes).

Since w is an invariant measure of (P,);», we have auR,=pu for all a>0.
Then, multiplying au(x) to the both side of (3.4) and summing up with respect
to x over S, we have

(3.7) w(y) = au"Ra(y)+n(@)Ra(a, y)/Ra(a, a)

for all y&S. Therefore A, is a non-negative measure:

2) A family of kernels (Rz)a>o on S is called a sub-Markov resolvent if it satisfies:
(R. 1) Rz=0 and aRz1<1 for all >0, and (R. 2).
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(3-8) Ao(y) = w(@)Ra(a, y)/Ra(a, a) (yES)
with the total mass:
(3.9) ey 1D = p(a)]aRa(a, a) .

On the other hand, summing up the both side of (3.3) with respect to y over S,
we have

1 = a’R,1(x)+ Ry(x, a)[Ru(a, a) (x€S),
consequently
(3. 10) eq(x) = Ry(x, a)[R,(a, a) (x€S).
Combining (3.8), (3.9) and (3.10) with (3.3), we have
(. 11) R, = “Ratea@NalalNa, 1)

for all @>0. Tt is easily verified that Ay=c\4, s=e,, then we have for all a>0

Rm = aRm+ém®Xm/a<i‘m 1> = aRm+em®7\'d/a<7\'m 1> = Ro) ’

which implies P,=P, for all £=0. Thus the theorem was proved.

4. Additional remarks

In the rest of this work we shall study some properties of the weak potential
and apply them to the operator of the form:

4.1) R.f(x) = lim S: P.f(x)ds (fEN, x€S8),

which is defined for some recurrent semi-group. The results in this section are
counterparts in the continuous parameter case of Orey’s results in [18, Section
L].

Let (P,);z, be a recurrent semi-group with an invariant measure u, the
space of null charges NV and a weak potential operator R.

Lemma 7. R is non-singular in the sense as follows: For each null charge
S, if Rf is equal to a constant on the support of f, then f is equal to zero on S.

Proof. If fEN and Rf=c on the support of f, then, according to the
maximum principle on R (see EXAMPLE 3 in the section 3), we have Rf=c on S.
Therefore from (W.P’) we have R,f=0 for all «>0. Since lim aR,f=f, we

have f=0.

In the following we shall denote by & the set of all non-empty, finite subsets
of S. For each E €&, we shall use the following notations;
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fe  The function restricted to E.

vy The measure restricted to E.

Kz The kernel restricted to EXE.

B~ The space of functions with supports in E.
By The space of functions fg.

NE The space NN BE.

Lemma 8. For each weak potential operator R, we can find a family of
(signed) measures (\F)gcq with the following properties: (\.1) Each measure
AE has the support in E. (N.2) ONE, 1>=1. (N\.3) \E, Rf>=0 for all
fENE. And such a family is uniquely determined from R.

Proof. If E& and E contains exactly n elements, then the linear dimen-
sions of Bz and N are n and n—1 respectively. Let us introduce a linear
operator Rg from N¥ to Bg by

(4.2) Ref = (Rf)s  for fENE.

If f € NE and Rgf=0, then, according to Lemma 7, we have f=0, which implies
the linear dimension of Rg(IN¥) is equal to N%, that is, the linear dimension of
the factor space Bg/Rg(NF) is equal to one. On the other hand, using again
Lemma 7, we can easily show that 1z does not belong to Rz(N¥). Therefore
we can find exactly one linear functional Iz on Bg such that <{lz, gz>=0 for all
g€ Re(NF) and g, 1z>=1. If we define the measure A% by: AE(y)=
g, (X(»)g> for ye E and AZ(y)=0 for y& S\E, then the family (AF)gcgq is the
desired one.

The family (AE)gcg was first introduced by Kemeny-Snell [12] to investi-
gate normal chains and studied by Orey [18] in a more abstract way in the time
discrete case.

Let X be a Ray process associated with (P,),»,. For each E€®&, let us
define the kernel H% on S by

HE(x, y) = P Xox = y) ((x, »)ES85%S),

then H#>0 and HFl=1, each measure HE(x, ) has support in E and
HEHE=HE. Using (AF)geq and (HE)gcg, we can characterize a weak poten-
tial in the next form:

Lemma 9. A function g of B is a weak potential of null charge of NF if
and only if O\, g>=0 and HEg=g.

Proof. Let g=Rf with some f&N®. Then from the definition of AF we
have {AE, g>={A\E, Rzf>=0 and, from Dynkin formula (3.1) for weak potential
operator, we have easily HZg=g. Conversely if (A%, g>=0 and H Fg=g, we can
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find exactly one f € N¥ such that gz=R.f, since dim (Bg/Rg(NE))=1. There-
fore

g=HFg= HER,f= HERf= Rf.

REMARK. If (P,),z, is conservative, stable (see ExaMPLE 1 in the section 3)
and minimal in the sense of Feller [6], then g is a weak potential of null charge
of NZ if and only if (\E, g>=0 and Dg=0 in S\E.

The next theorem corresponds to Theorem 1.2.5 of Orey[18].

Theorem 4. Let (P,);», be a recurrent semi-group with a weak potential
operator R. Then P,Rf converges as t— oo for every f € N if and only if P,H®g
converges as t—co for every EE® and g B. P,Rf will converges to 0 for all
fEN if and only if O\E, g>=Ilim,,.. P,HEg for all EE® and g= B, where
(AE)ecg s the family of measures introduced in Lemma 8.

Proof. LetgeB and E€f. If we put hi=HEg—(\E, g>, then (\F,h>=0
and HEh=h, then, according to Lemma 9, we can find exactly one f& N such
that

(4.3) HFg—(\*, g> = Rf.

Conversely, for aech f € NE, if we put g=RY, then g& B and satisfies the relation
(4.3). Since

P,H®g—\?, g> = P,Rf  forall t=0,
the proof of the theorem is easily obtained.

The next theorem gives some information about the operator R, defined by
4.1).

Theorem 5. For any recurrent semi-group (P,),=,, the following two
conditions are equivalent:
(a) St P, f(x) ds converges as t— oo for every fE N and x= S.
0
() P,HEg converges as t— oo for every EER and g=B.

If (P,),z, satisfies one of these conditions, then the operator R, defined by (4.1) is a
weak potential operator for (P,),z, and the family (\F)gc g associated with R, is given
by

(4.4) \F, g = lim P,H%g
for all EER and g B.

Proof. We have seen in Theorem 2 that “R is a weak potential operator
for (P,),z,, then
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(4.5) (UI—P)Rf) = [ P.f(w)ds

for every fE N, x=S and t=0. Therefore StPs (x)ds converges as t—oo for
0

every f €N and x€ S if and only if P,“Rf converges as t—co for every fE N,
which is equivalent to that P,H g converges as t— oo for every E€® and g=B
by Theorem 4. Consequently (a) and (b) are equivalent. Next let (P,),», be a
recurrent semi-group satisfying (a) or (b). Then, according to (4.5), the limit
“e=Ilim,,.. P,”Rf exists for each f € N and the function “g is bounded. However,
since P,g="“ for all #=0, it must be constant on S by Lemma 5, that is, the
limit of P,”Rf defines a linear functional / on N. Therefore we have

R.f = “Rf+1(f)

for all fEN, which shows that R, is a weak potential operator for (P,);s,.
Finally, using the relation:

(I—Pt)Rof(x)zgtPsf(x)ds for fEN, xS,

we have lim,,., P,R,f=0 for all f€ N, which implies (A%, g>=lim,,.. P,HEg
for all EER and g B. Thus the theorem was proved.

An irreducible recurrent semi-group (P,),s, is said to be positive or ergodic
if it has a bounded invariant measure. We know that, for any ergodic semi-
group (P,);=,, the measure v defined by:

v(y) = lim P,(x, y) for x, yES,

is an invariant probability measure (see [2, p. 178]). In this case we can easily
prove that, for each E€® and g B, P,HZg converges to <vHZ, g> as t—>oo,
so we can define a weak potential operator R, by (4.1) and the family (A\F)gcgq
associated with R, is given by Af=vH?~.
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