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Sur une Totalisation dans les Espaces de
Plusieurs Dimensions. 1

By Shizu Enomoto

Le but principal de ce mémoire est l’extension de l'intégrale au
sens de Denjoy (Denjoy-Perron) dans I’espace (euclidien) d’une dimension
3 lespace de plusieurs dimensions. Les études dans cette direction ont
été déja données par MM. M. Krzyanski”, J. Ridder®, S. Kempisty® et
M. Romanowski®. Comme totalisation d’'une fonction de point définie
sur un intervalle de I’espace euclidien de » dimensions, ces auteurs ont
fait appel a la notion d’une fonction d’intervalle. Nous allons aussi
employer cette notion.

Comme on verra dans §2, il y a, pour une fonction f(x) intégrable
au sens de Denjoy sur un intervalle I, une suite F,(z=1, 2, )
d’ensembles fermés telle que les intégrales de f(x) au sens de Lebesgue
sur F,(n=1, 2, ---) convergent avec n — oo vers l'intégrale au sens de
Denjoy de f(x) sur I. Conséquemment, si I'on prend l'intégrale au sens
de Lebesgue comme la base de totalisation d’une fonction, cette suite
peut étre considérée comme une suite fondamentale, qui donne une
maniére d’approximation par des intégrales au sens de Lebesgue pour
la totalisation au sens de Denjoy.

Dans § 3, nous donnerons une totalisation telle que les valeurs des
fonctions d’intervalles, qui sont données comme l'intégrale (D), peuvent
étre approchées aussi bien qu’on veut par celles des intégrales au sens
de Lebesgue. Notre totalisation sera ’extension de l'intégration au sens
de Denjoy de l'espace d’une dimension et jouira de toutes les pro-
priétés principales qu’on attribue aux intégrales.

D’abord, dans §1, nous étudierons une propriété d’une suite des
ensembles fermés dont la somme couvre un intervalle d’un espace

1) Krzyanski: Sur les fonctions absolument continues généralisées de deux variables, C. R.
de Paris, 198 (1934).

2) J.Ridder: Uber Denjoy-Perron Integration von Funktionen zweier Variablen, C.R. de

Varsovie 28 (1935).

3) S. Kempisty: [1] Sur les fonctions absolument continues d’intervalle, Fund. Math. 27
(1936) : [2] Fonctions d’intervalle non additives, Actuarités Scientifiques et Industrielles (1939).

4) M. Romanowski: [1] Intégrale de Denjoy dans l’espace abstrait, Recueil Math.
Moscou, 8 (1941); [2] Intégrale de Denjoy dans I’espace a n dimensions, ibid. 9 (1941).
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euclidien d’une ou plusieurs dimensions. Cette propriété jouera un role
capital dans la théorie de l'integrale (®D)—surtout de l'intégrale ()
multiple—qui sera définie dans §3. Dans § 2, nous étudierons les pro-
priétés de lintégrale au sens de Denjoy pour l’espace d’une dimension,
en examinant les relations avec l'intégrale au sens de Lebesgue. Ces
propriétés elles-mémes caractérisent I'intégrale au sens de Denjoy. Dans
§ 3, nous donnerons la définition de l'intégrale (D), qui sera une totali-
sation d'une fonction f(p) définie sur un intervalle de l'espace de
plusieurs dimensions. Dans §4 nous montrerons que lintégrale (D)
peut étre regardée comme l’intégrale multiple des intégrales au sens de
Denjoy d’une dimension.

L’esquisse de cette étude pour le cas de 2 dimension a été déja
publiée sans démonstration®.

NoTATIONS et TERMINOLOGIES.

On entend par E, un espace euclidien 4 » dimensions composé des
points x = («,, x,, --- , x,,) dont les coordonnées sont x,, %,, -, %,,.

Etant donné un systéme a,, b,;a,, b,; - ;a,, b, de 2n nombres réels
tels que @;<b; pour i=1,2 ... n, on appelle intervalle I =7[a,,b,;
a,,b,;;a, b,] de lespace E, lensemble de tous les points
(%, %,, -, x,), ol a,< x,< b, pour tout 1=1,2,-.-,n. On appelle le
plus grand des nombres b,—a,, b,—a,, ---,b,—a, la norm de lintervalle
I, et la désigne par norm (I).

Etant donné un systéme a,, b,;a,, b,;---;a,, b, de 2n nombres réels
tels que a,<b; pour tout i =1,2,---,n et qu’il y a m indices tels que
a; = b,, on appelle notamment intervalle de n—m dimensions dans E,
ou simplement celui de #—m dimensions 1’ensemble de tous les points
(x,, %, -+, %,) ou a,< x,<b, pour tout i =1,2 .- n et le désigne
brievement [ai,, bi,; ai,, biy; - ; @ip_yy, biy_,, ] OU  @i,==bi, pour tout
k=12 .- ,n—m.

Pour un ensemble quelconque de points A, désignons par A son
adhérence et par A° son intérieur. Désignons par A—B la différence
de deux ensembles A et B, par A\ /B ou A+ B leur réunion et par
ANB leur intersection. De méme, \Aij désigne la réunion des A, et

N\ A, leur intersection. Désignons par {p} l'ensemble réduit au seul
A

point p.

5) Shizu Enomoto: Notes sur l'intégration. I-Quelques Propriétés des Fonctions d’Inter-
valle, Proc. Japan Acad. 30, 176 (1954) ; II-Une Propriéte du Recouvrement Fermé de I'Intervalle,
Proc. Japan Acad., 30, 289 (1954); III-Théoréme de Fubini, Proc. Japan Acad. 30, 437 (1954).
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Nous dirons que les intervalles I; (1 =1, 2, --- , ¢,) tels que (I;)° N\(1;)°
=0 pour 747 n’empiétent pas les uns sur les autres. Pour un inter-

valle [a, b, ;a,,b,;--;a,, b,] de E, on appelle notamment m‘-réseau

dans I la famille d’intervalles [a +k (b 1) al+(—kl+—lln(b—‘:@;

k (b Cl) 2+(k2+12/f1b2—a2) i a, + n(b )’ an+(kn+1)’§16n_an):| R
ou k est le nombre naturel tel que 0_<_k,-§m 1@=1,2--,n), les
intervalles étant dits les mailles du m°-réseau. On le désigne par R,,(I)
pour tout m=1, 2, -.-

Nous pouvons considérer, comme on sait bien, 'espace E, comme
I'espace produit En x E», de E», par E», pour n,,n, tels que n,+n, =mn,
c.—a-d. l’espace composé¢ des couples (p, q) dont le premier p est un
point quelconque de E» et le sécond ¢ un point quelconque de En,.

Pour un ensemble A quelconque de E,, on entend par proj. . (A) la
En,
premiere projection de A sur E. et par proj. (A) la seconde projection
n2

de A sur E». Pour un point p de E., on écrit par A? l'ensemble des
points (p, ¢’) tels que (p, ¢)€ A. Pour un point ¢ de Ex,, on écrit de
méme par A’ 'ensemble des points (p’ ¢) tels que (p’, g)€¢ A. En par-
ticulier, si #, =1, resp. n, = 1, on écrit simplement par A* et proj. (A),
resp. A’ et proj. (A), aux lieux des A? et prOJ {A), resp. A” et proy JA).

a,+ —=——

Pour des ensembles A et B tels que A<En1 et BZ Ex, de31gnons par
A x B l'ensemble produit de A par B.

On entend par p,(A) la mesure d’ensemble A de 'espace E, mesur-
able au sens de Lebesgue. En particulier, on désigne par |I| la mesure
p(I) pour un intervalle I. On écrit lintégrale d’une fonction f(p)
sommable (au sens de Lebesgue) par la notation (L) SA f(p)dp ou
(L) SS SAf(x,, e, x,)d(x,,--,x,). Dans le cas ou une fonction f(x)

de E, est intégrable au sens de Denjoy (Denjoy-Perron), on écrit I'inté-
grale de f(x) par (D) SAf(x)dx.

Q désigne le premier des nombres ordinaux de la troisiéme classe.

§ 1. Une propriété du recouvrement fermé de I'intervalle.

D’abord, nous allons étudier une propriété d’'une suite des ensembles
fermés, - ot la somme couvre un intervalle contenu dans un espace
euclidien d'une ou plusieurs dimensions. Elle jouira un réle capital
dans la théorie, particuliérement pour l'intégrale multiple, de I'intégrale
(D), qui sera donné dans §suivant de ce mémoire comme une extension
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de lintégrale au sens Denjoy (Denjoy-Perron) d’'une dimension aux
espaces de plusieurs dimensions.

Lemme 1. Soit J, un intervalle de lespace E,. Soit M, (n =1, 2, -..)
une suite quelconque non-décvoissante des ensembles fermés de total J,.
Alors, tout sous-intervalle J de ], posséde la propriété (A,) pour la suite
M,(n=1,2,.-) et une suite quelconque &, (n=1, 2, ---) telle que &, 0,
c—a—d. '

il y a une suite non-décroissante des ensembles fermés Fnm;(J) (1=1, 2, --)
de total J, ot Fnm; (J) T Mm; ¢ =1, 2,---) et n;< _m;<_n;., pour tout i,
et qui posséde la propriété suivante:

St Fumm; (J) w'est pas identique a [, il posséde la propriété (B,) pour
M,(n=1,2--)et & (n=1,2,---)—on entend par la que la suite {Fnm;}
satisfait a la proposition suivante:
la suite des intervalles J; (j =1, 2,--+) contigus a Pensemble formé des
points de Fupm;(J) et d’extrémités de J se peut classifier en un nombre
m;—n;+1 des suites des intervalles J,; (j =1, 2, ), ou n; < k<m,; et
Jej» pouvant étre vide, satisfont aux conditions suivantes pour tout indice k;

1) 33 sl <&
2°) (]kj)O[\Mk =0 pour tout j =1,2, ..

3°) L’un au moins des extrémités d’intervalle J,;, qui seva dit le point
caractéristique de J,;, appartient a M, pour tout j =1, 2, ---.

Dans le cas de plusieurs dimensions on y peut donner la forme
suivante:

‘Lemme 2. Soit R, un intervalle de Uespace Ern, (n,>2). Soit M, une
suite quelconque non-décroissante des ensembles fermés de total R,. Alors,
tout sous-intervalle R de R, possede la propriété (Aw,) pour la suite M,
(n=1, 2,-.-) et une suite quelconque &, (n=1, 2,---) telle que &, 0, c.—a-d.
il v a une suite Fnom;(R) non-décroissante des ensemble fermés, ou
Fomi T Mm; 0 =1,2,--+) et n;,<m;< mn,,, pour tout i, possédant les pro-
priétés suivantes: .

Posons Y:Oproj. AFnmi(R)) et Z = proj. (R)—Y, on a alors

=1 En0—1 E,
1°) pn-1(Z) = 0.
2°) pour tout point q de Y, (FumR))? n'étant pas identique a RY,
Pensemble fermé (FnmR))? posséde la proprété (B,) pour (M,)* (n =1, 2, --)
et &, (n=1,2,-...).

3°) \oj/(Fn,-m,-(R))" = R pour tout point q de Y.
i=1

01
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Nous allons donner la démonstration de Lemme 2 seulement pour

le cas ou #n, = 2, parce qu’on peut faire de la méme maniére pour l'autre
cas de Lemme 2 ou pour Lemme 1.

Démonstration. i) Si R posséde la propriété (A4,), il en est de méme

d’'un sous-intervalle R’ de R: Car, soient B, et B, deux cotés de R’
paralléles a l'axe y. Posons Y, = proj. (B,\M,)\ proj. (B,\M,) et
Y ¥ = proj. (R')xY,. Alors, il en résulte évidemment que la suite des
ensembles Fum(R’') = Fami{R) N\ Y:X jouit de toutes les propriétés voulues.
ii) Soit R un intervalle tel que son in-
térieur soit contenu dans la somme d’un  Rj
ensemble fermé F et une suite de l'inter- ist
valles R; (j =1, 2,--+), n’empiétant pas Rj.
les uns sur les autres et n’apparten-
ant aucun point commun a F. Si, de |
plus, R; posséde la propriété (4,) pour ‘
tout j et si F est contenu dans certain |
M, alors R jouit de la propriété (4,): Fig. 1
Il suffit évidemment de montrer le cas
ou FT R et R° < R° pour tout j. Divisons R; en la suite d’intervalles
R;, (k=1,2,---) comme fig. 1.
Pour R;, soit Fu;m;(R;) (¢ =1, 2, ..) une suite d’ensembles fermés pos-
sédant la propriété (4,) pour la suite &,| 0 donnée d’avance. Pour la
briéveté de la démonstration, soient (Fa;m;(R;)) \B; =0 et (Fu;m;(R;))’
\B;;==0 pour tout point y de proj. (Fx;m;(K;)), ou Bj, et Bj, sont les
deux cotés de R; paralleles a l'axe y, puisque cela se peut bien. Dans
la suite, désignons simplement R;, (j=1,2,--;k=1,2,--) par @;
(j=1,2,--+). Posons Fnjm;(Q;) = Fnjpm; (R;)\Q; (t=1,2,--), ou R
est lintervalle contenant @;. La suite Fajm;(Q,) (t =1, 2,---) posséde
évidemment la propriété (4,) pour &, | 0.

Nous allons maintenant montrer l'existence d'une suite Fum;(R)
(t=1, 2, ..) possédant les propriétés voulues pour R. Définissons des
indices #n;,m; ({ =1, 2,---) et une suite des nombres naturels k()
(=1, 2, ---) en utilisant la méthode d’induction.

1) Soient #, =0, m, le nombre déterminé d’avance comme Mm, > F
et k£(0) =0.

2") Supposé que #;_,,m;_, et k(i—1) soient définis, nous allons
définir les nombres #, m et k(¢): Soit k() un nombre naturel tel que

k() >k(—1) et #2<R—<';\ZQ,~\/F>)< (Emg_y /211,

Considérons une suite des indices

le 1
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My A 1<, 1, <,y 1, < Mgy 1y < Mgy 15 < ooe < Mkids i i < MkCids tri i

tels que

w(Dr0j. J(R)—proj. (Fnj, ¢;m;, :,,(Q))<N—W1 pour tout j=
1,2, k), ot N;= 31 31(,C,).

n=1 r=1

Posons n;, =m;_+1 et m; = Mrci>, tpeiri-

Soient y un point quelconque de proj. ,(R) et g(y) la ligne droite
parallele 4 l'axe x et qui passe par le point (0, y). Considérons, pour
tout 7, le systéme composé des intervalles @; tels que @;/\g(v)==0 et
Qe {Q; (j=1,2,--,k()}. Désignons, pour tout 7, par ¥, I'ensemble
de tous les systémes. On écrit un élément de PB;, par P;: (Qi(P),
Qi (P)), -+, Qinpp(P;)). Le nombre de §B; set < N;.

Posons maintenant:

E,-:: {y;yélﬂ’OJ (R ) /"z((R)y_(UQ \,/F)y)-—<— o 1+1}

S, soit un sous-ensemble fermé de E; tel que u,(E;—S;) <

que S,/ = Si—(\/pm]. ,(Q))) est fermé.

D)
T.= \J ( O proj., tom; 1 (@ (F))
P;e %l h=1 h h h

U =S N\S/N\JT)

Vi=Y,(\([\U)) o Y, = proj. ,(BN\M)\proj. (B,N\M),
B,, B, désignant les deux cotés de R paralléles a l'axe y.

V¥ = proj. (R)x V.

. K(8)

Alors, on peut voir que Fum(R)=V5E [\(j\=j1Fn]., 1M, ,ji(Qj)\/Mni)
=1, 2, --) est une suite des ensembles fermés voulues.

On peut facilement tirer de la construction que Faum,(R) est fermé.
On a V"Y[\([\V)< +1[\([\ U)="V,,, puisque Y, Y,
On a donc Vi gVn,“ par n; <n,+1 En notant que k()< k(@E+1) et
t;;<tj, pour tout j =1, .-+, k({), on peut voir Fumi(R) < Fn; ,m; (R). 11
résulte Fum(R) < Mm;, puisque Fnj, o m;, 0. (Q) < Mmj, o, < My,
= Mmn; pour tout j =1, .- k(@) et m;, >n,.

On a immédiatement »n;<_m;< mn,,, pour tout 7.

Montrons maintenant 11m s (Enmi(R)) = m,(R). Pour cela, nous
k(i)
posons M*—\anJ 1M, ,ﬂ(Q) pour tout i{. En vertu de linclusion

tji theidi
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My—M* D F, on a d’abord Lm u,(Fnm(R)) = lim s,( Vi N\ (M*\J M)
= lim gz, V&N (Mn;— M*)) + lim (V&N M*) > lim i V,?*-[\F)+1im (Vi

PMA).  u(proj. (R) = E)x izt < (R—({J Q,\/F>><(2,,, ) en
vertu de la définition de E on a donc s, (proj. (R)—E;) <_ 2m 1‘1 . De
plus on a wu(E;—S;)<C o ‘111 . Drailleurs on a /wl(S-—U) = 1, (S;—(S/

h(Py)
\JT))=m(S;—S/\J \J ( f\ Droj. \Fnjp,op imy, 15 (Qin)) < 1y(pr0f. (R)
h(P;) P;ePp =t h(Py)
- \] ( [\ 1)70] (Fnjh f] Mips t ]ht(QJh))) - /‘1’1( [\ ( [\ p?’O] (R)
Pcs h=1 Pie h=1
—p?’Oj. (F”J'h‘ i Miys fjh,-(th))) < 2 Z Iu’l(proj ( )——1”’0].. y(FnJ'h: ijhimjh: i

Qi) < FZ'”_XNi: 2i’:jli1 . En effet on a wu(proj. (R)—U)

m; Sm'
< m,(proj. y(R)_Ei) + m(E;—S;) + 1, (S;— U;) < zii:ir X3 = —2#% x% .

D’ott on peut tirer lim u,(V;) = p,(proj. ,(R)). Car, on a u(proj. (R)— V)
= m(proj. R = (Y (\([\ UD) < mlpr0j. (R)= Vi) + 33 m(p70j. ,(R)=U))

o 1
< proj. [R)= Y)+ 3 (Emy /277 X 5) = mu(p70j. (R)— Y))+6,/2. On
j=i
a donc lim p(V*) = u,(R). En effect, on a 11m o VENF) = w(F).
i>oco
D’autre part, on a, pour tout j,, hm 5, V,?f [\ M*) = hm w(Vii N\

k(i)

\anJ tiis m],t],(Q ) = lim 2 s V*[\Fny tis Mj, t_”(Q ))—lemﬂz(V" N

i>oo J=1

0o i?fo Z)Jo
Fnj, tii Mj, tji(Qj)) = 12=1”’2(Qj)'
On a donc lim g, (Fuim(R)) = p,(F) -+ f} 1(Q;) = m,(R). Conséquemment,
[dd j=1

il en résulte lim 1o (Fnimi(R)) = p,(R).

Montrons mamtenant qu'on a R’ = \j (Fnm;(R))” pour tout y de Y,
ou Y:\/pm].y(Fn,-m,-(R)). Il y a pour tout ye€ Y un i, =1,y tel

i=1

que proj. (Fami(R)) >y pour tout  >1,. On a généralement R’ = \j (Q;
+F’+{p(y), a(»)} pour tout yeY, ou p(y)=B/\g) et a(y)
= B,N\g(»), g(y) désignant la ligne droite paralléle & I'axe x contenant
le point (0, y). Il en suffit de prouver de y€ Y tel qu’il y a un j =j(y)
tel que (Q;)”-1=0. Posons ' = max (ni, j), alors k(') =>j" et k(') >n, .
Il en résulte ye proj. y(Fn]‘tjkm,-,tjk(Q,-)) pour tout 2>#. On a donc
(RYy :tg(F"imi(R))y'
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Or, puisqu’on a Hm p,(Fam(R)) = m,(R) et (R’ =\ /(Fam(R))’ pour
i>o0 i=1

tout y€ Y, il résulte p(Z) =0, ou Z= proj. (R)—Y.

Facilement, on pout voir que, en vertu de la construction d’ensem-
bles Faum,(R), pour tout y€ Y tel que (Fnm;(R))” n’est pas identique 2
R’, I’'ensemble fermé (Fum(R))’ posséde la propriété (B,) pour (M,)’
n=12-)et &, (n=1,2 -..).

iii) En vertu de i), il suffit de prouver que R, posséde la propriété (A,).
Pour cela, nous allons faire usage de l'induction transfinie.
1°) Pour le cas ou v =1: Puisque R, =§le,,, il y a, en vertu de

Théoréme de Baire, un indice #n’ et un intervalle R R, tels que
RN\M,=R. On peut savoir aussitot que si l'on pose E, = R, alors E,
posséde la propriété (A4,) en posant Fumi(E,)=E,, ou n,=n'+2i,
m=nm+1@¢=12 ).

2°) Pour le cas ou »< Q: Supposé que l’ensemble E,, possédant
les propriétés suivantes, soit défini pour tout w<».

1) E,L=\7R,.,-, ou R, (j=1,2,---) est une suite des intervalles
possédant la IJ;)priété (4,) et n’empiétant pas les uns sur les autres.
2) (W\</‘LEM/)°£(E;~)°, mais (Mg“Ew)°=HE»)°-
Nous allons montrer que si u\<jvE,L:i: R,, il y a un ensemble E, tel que

E (< v+1) posséde les propriétés 1) 2').
Soit A=R,—\/E.. Puisqualors A est un ensemble G; et
w2y

A =C](A N\M,), il y a, en vertu de Théoréme de Baire, un indice »’ et
n=1

deux intervalles R, R’ tels que (R)°\A=£0, ROR' et ANM,
> R°N\A.
L’ensemble {R,;; p<_v,j=1,2,---} est dénombrable, puisque » < Q,

donc l’ensemble \ / OR,L,- se divise en les intervalles R,/ (n =1, 2, ---)

w2y j=1
n’empiétant pas les uns sur les autres et tels que pour tout R, il y a
un R,; contenant R,’. De plus, divisons tout intervalle R, en les inter-
valles R, : =0,1,---7,) tels que R, TR’ et (R,)°/\(R)° =0 (z==0).
Posons R,,= R’ et désignons R,; (n=1,2,.--;i=1,2,..-,4,) par R,;

(=1, 2,---). Alors, nous pouvons montrer que E, =OR\,J- est ’ensem-
ble voulu. 7=0

Pour 1). R,; (j==0) est contenu dans certain intervalle R, ;(x < v),
donc R,; (j==0) posséde la propriété (4,). Par conséquent, il suffit de
prouver que R,, la posséde.
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Posons A* = R'N\A, on a alors M, > A* Car, on a A/\M,
> R°N\A, de sorte que M,, > R°N\AD (R)°N\A D R’NA = A*. Posons
G = (R)°*—A*. G étant ’ensemble ouvert, il y a une suite des intervalles

J. =12, -) tels que G =\j].ﬂ et (J)°N\(J.)° =0 (t==¢"). Puisqu’alors

on a

JE (R —A* SR—A=R'N\(R—A4) =R N\(\JE) = R'/\(S;JV \JRu)
= R'N(\JR) =\J(R'NR,),

ot R"\R/ (n=1,2,..-) est la suite des intervalles possédant la pro-
priété (A,) et n’empiétant pas les uns sur les autres. J; la posséde selon

ii). De plus, on a (R")° T A*+ \? J;, donc R’ posséde la proyriété (4,).
Pour (2). E,= R+ \JRy;=R'+\J \JRu; =R+ \J E.= (R' N\ A)
j=1 w2y j=1 w2y
+\JE,., on adonc (E,)° 2 (\JE.,°. En outre, puisque (R’)°N\A==0, il
v

wZy

y a un point p de (R’)°/\A, par suite pe€ (R)°=(R,,)°(E,)°. Pour le

point on a de plus p€ (\/E,)° dece que pc A et AN(NJE,) =0. Il en
w2y Wy

résulte (E,)°==(\J E.)°.
[P
iiii) Il1y a un », tel que »,<Q et \J E.=R,, puisque (\/ E.)°T( \J Eu)°
W Zp+1

wZvg W

et (\JEw.)°=(\J E,° pour tout u<». On a alors R, =\/E,
e W1

w2y

= \J \JRy, ot R,; (j=1,2,:) est une suite, de total E,, des inter-

w2y J=1

velles possédant la propriété (A,), n’empiétant pas les uns sur les autres.

En notant que \/ ORHJ- se divise en des intervalles R/ (k=1, 2, --)

k< g J=1
tels que (R/)°/N\(R,)° =0 (k==h) et R,/ soit contenu dans certain R,;
pour tout k. On peut voir que R, posséde la propriété (A4,) par ii).

§2. Quelques propriétés de l’'intégrale au sens de Denjoy.

Dans ce chapitre, nous allons étudier la propriété qu’elle-méme
caractérise l’intégrale au sens de Denjoy dans l’espace E, et qui est
regardée comme une base de l'intégrale que nous dennerons dans le
chapitre prochain comme une extension de l’intégration au sens de
Denjoy d’une dimension a l’espace de plusieurs dimensions.

D’abord, commencons par montrer la définition dite constructive
des intégrales de Denjoy basée sur I’'induction transfinie®.

6) S, Saks: Theory of the Integral (1937), p. 254,
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Sait ¥ une opération intégrale. On appelle le domaine de l'opéra-
tion intégrale & sur un intervalle I, 'ensemble de toutes les fonctions
intégrables () sur I,, et le désigne par (). Désignons par I (f; 1)
Iintégrale de f(x) sur I, pour toute f(x) de J(J,). La borne supérieure
des valeurs absolues de (f; I) sur I < I, est désignée par O(; f; 1)
Deux intégrales &, et & sont dites compatibles, lorsque ,(f; 1)
= ,(f; I) pour tout intervalle I et pour toute f(x) intégrable (J,) et
(%,) sur I simultanément. On écrit §, O F,, lorsque les deux intégrales
sont compatibles et que toute fonction intégrable (S¥,) est intégrable (J,).

Soit {J;} une suite d’opérations intégrales, en général transfinie et
telle que J; T X, pour €< 5. Nous désignons alors par 52' JI: 'opéra-

tion intégrale ¥ dont le domaine sur un intervalle I, quel que soit
I'intervalle I, est la somme des domaines des intégrales {; sur I pour
§<a et qui est définie pour toute fonction f(x) appartenant a son
domain sur I par T'égalité J(f; I) = J¢ (f; I), ou & est le moindre des
indices & <  a tels que f(x) est intégrable (J;) sur I

Pour une opération intégrale ¥, on désigne par € l'opération inté-
grale généralisée () de Cauchy et par J#* I'opération intégrale général-
isée () de Harnack au sens restreint.

Ceci dit, soit {€*} la suite transfinie, définie par induction a partir
de lintégrale & de Lebesgue comme il suit:

Q¥ =8, 5= (I LMNH ou a >0.
iZa

Alors, D% = 318X = £,* est l'intégrale de Denjoy (Denjoy-Perron).

i<o

Théoreme 1. Soit f(x) une fonction intégrable au sens de Denjoy sur
un intervalle I, =[a,b] de lespace E,. Posons F(I)= (D) Slf(x) dx
pour tout intervalle I _1,. Alors pour toute suite &, (n=1,2,---) des
nombres positifs telle que &,|0, il y a une suite F, n=1,2, ---) non-
décroissante, de total I,, des ensembles fermés satisfaisant aux conditions
suivantes:

1) f(x) est sommable sur tout F,.

2) A tout ensemble F,, la condition telle que I,\F,==0 pour tout i

entraine IﬁF(I,.)— ﬁ(L) SI-HF f(xydx|<é&,, quel que soit le systeme
=1 i=1 i n

composé des intervalles I, 1 =1, 2, --- ,1,) contenus dans I, et wempiétant
pas les uns sur les autres.

Démonstration. Il suffit de montrer que toute fonction de 2,*(I,)
pour «a<_Q jouit de toutes les propriétés voulues, Nous le démontrons
par l'induction,
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1°) Pour le cas ou a =0: Puisqu’alors L*(l)) = £([,), il suffit de
poser F, = I, pour tout #.

2°) Pour le cas ou a<_ Q: Montrons que si toute fonction de £:*(1,)
pour & < a posséde les propriétés voulues, on en peut tirer que toute
fonction de ¥*(l,) les posséde.

a) Le cas ou fe(g;liég*)c (I,): Soit {a,,a,,---,a,} l'ensemble des
points singuliers” (;85*) de f dans I,. En vertu de la continuité de

FI)= (D) Slf(x) dx, il y a une suite Ji(k=1,2,--- ,/+1; n=1,2, )
d’intervalles telle que:

1/) ]’:g (ak—n ak) ’ ou a,=a, a,,, = b s

2y i< I,

1+
3) w(l,—\/J5) <8, ot 8, est un nombre positif tel que |I|<8,
k=1
entraine |[F([)|< &,/4] pour tout intervalle I I,.
Etant f(x)€ (22“85*)(]7;) pour tout #, k, il y a un & tel que f(x)€ 2L (J?)
et &2< a. En vertu de l'hypothése d’induction, il y a, pour &, 0
donnée d’avance, une suite non-décroissante F?, (m =1, 2, ---), de total
n des ensembles fermés satisfaisant aux conditions suivantes:

1) f(x) est sommable sur tout F%,.

2) A tout ensemble F7,, la condition telle que I;.N\F%,==0 pour
tout ¢ entraine |33 F(I))-- >3 (L) SIimF?Z f(x)dx|< &,/4], quel que soit
le systéme élémentaire composé des intervalles I, (( =1, 2, -+, 4,) con-
tenus dans J? et n’empiétant pas les uns sur les autres.

En notant que J2*! peut étre représanté comme la somme des inter-

valles J¢, I%, et Iy,, n’empiétant pas les uns sur les autres, on peut
savoir facilement qu’on y peut choisir {F?,} tel que F?, > Fril. Il en

1
résulte que la suite d’ensembles fermés F, = {a,, a,, -, a}\J {\JFin
k=1

(n=1, 2, ---) posséde les propriétés voulues.
b) Le cas ou fe (> &*)¢#* (I): Montrons que si toute fonction de
iZa

(3 8:*)C ([,) possede les propriéte voulues, on en peut tirer que toute
=

fonction de £,*(I,) les posséde. Soit S l’ensemble fermé composé de
tous les points singuliers (> &*)¢ de f dans I,. Soit J, (=1, 2, --+)
iZa

la suite des intervalles contigus a l’ensemble formé des points de S et
d’extrémités de I,. Puisqu’alors f(x) est intégrable (> %*)¢ sur S, la
=]

7) S, Saks: ibid. p. 255,
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fonction fs(x) = Cs(x) f(x) (x € 1) est intégrable (>} &*)C sur I, ou Cy(x)
e

est la fonction caractéristique d’ensemble S. En effet, il y a une suite
non-décroissante F;, (n =1, 2, ---), de total I, des ensembles fermés
satisfaisant aux conditions suivantes:

1) fs(x) est sommable sur tout F7,.

2) A tout ensemble FJ,, la condition telle que I;\F,,==0 pour

tout ¢ entraine |3 Fy(l,)— >V (L) SlimF/ f(x)dx|<é&,/8, quel que soit le
(3 % on

systéme élémentaire composé des intervalles I; (1 =1, 2, ---,7) con-
tenus dans I, et n’empiétant pas les uns sur les autres, ou Fg([;)

= (D) S I fs(x)dx pour tout I;,. f étant intégrable (>3 %*)¢ sur J, pour
i tEla

tout k, il y a une suite non-décroissante F,, (=1, 2, ---), de total J,,
des ensembles fermés satisfaisant aux conditions suivantes:

1) f(x) est sommable sur tout F,,.

2) A tout ensemble F,,, la condition telle que I, [\F,m:i:O pour

tout ¢ entraine |>3 F([)— >3 (L) SI-ﬂFk Flx) dx|<&,/2%, quel que soit

le systéme élémentaire composé des intervalles I; (1 =1, 2, ---,4,) con-
tenus dans J, et n’empiétant pas les uns sur les autres.

D’autre part, puisque ZO((Z&*)C [ Jo)< oo, il y a pour &, un
k, tel que Z 0((225*)6 f; ]k)<8,,/8 On y peut choisir {&,} telle

que k, > k,, pour n > w.
kn
En posant F,=F,,+\JF,,, ou F,,= F{,N\S, nous allons montrer
n=1

que F, (n=1, 2, ---) est la suite voulue.

Soit I, 1 =1, 2,.--,7) un systéme élémentaire dans [,. Désignons
par I} i =1, 2, ---,7,) la sous-famille composée des intervalles contenus
kn
dans \//J, et par I?(1=1,2,--,4,) les autres intervalles de celle-ci.
k=1
On a alors

il il kn
D FUN— 3D (1 £, 0 dx| <Z ((6,/247) x 2) < &,/4,

I FID— 2 D) [, ) dx<(6,/8) x2 = &,/4.

D’autre part, désignons par J7; (j =1, 2, ---) la suite des intervalles con-
tigues a I’ensemble formé des pointes de S/\I? et d’extrémités de IZ.
Alors, on a facilement 2 Z O(( 2 B)C S5 Ji) < (6, /) x2=¢,/4. Selon

i=1 j=

la définition, on a F(I2) = (12)+ ZF(I En effet, IEF(I)— Z (L)
=1
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e, F0) A2 11 3 PUD= 230 s, 0 dxl + | 31 PUD= 2 )
Slfanf(x) dx| < &,/4+ | Zj (Fs(IP)+ jﬁ:} F(Ji))— g(L) SfﬁﬂFn Fx)dx|

< &/ I P = 23 (L) § i3y @) d | 4+ | 33 33 P8 | < E/A+ 8,/

+&,/4<E,.
On peut tirer immédiatement de Théoréme 1 deux théorémes
suivants.

Théoréme 2. Soit f(x) une fonction intégrable au sens de Denjoy sur
un intervalle I,. Alors, on peut choisir une suite F,(n=1,2,---) non-
décroissante, de total I,, d’ensembles fermés telle que:

1) (D) SI flx)ydx = }gg (L) Slan f(x)ydx pour tout intervaile I I,.

2) Pour toute suite d’intervalles {I.} nwempiétant pas les uns sur les
autres et dont il y a un indice n, tel que I,/ \Fn==0 pour tout i, on a

S tim (@) [, p A0 diy =lim (D) | 0 £ di}
= 7n-»o0 1 n N> oo ; 'n

En particulier, si le,. est un intervalle I, on a
i=1

D) | @ dx =3 (D) [, Fix) dx.

Démonstration. Comme une suite voulue, il suffit de prendre la
suite F, (n=1, 2, ---) mentionnée au Théoréme 1 pour f(x) et pour
&,10. Pour 1): Il y a pour tout sous-intervalle I de I, un indice

w' =n'(I) tel que F,,/N\I==0; on a donc | (D) Slf(x) dx—(L) Slﬂ 7, f(x)dx|
<&, pour tout n>n’. Par suite, on a 1). Pour 2): Quel que soit
&€>0, il y a un indice #/(6) tel que &/2°>¢&,, et n'(§) >mn,. Pour tout
n>n'(€), il y a un nombre i(n, &) tel que Ii:gl(L) Shanf(x) dx|<&/2
pour tout ¢ >i(n, ). Puisque I;\F,==0 pour tout i =1, 2, --- et n >n,,
on a, pour tout 7 >i(n, €), @1 (D) S o dx— é} (L) S wrr f® dx il/<8”
< ey < E/2. En effet, il en résulte que si #_>#'(€), on a[i‘;{ (D)
SIif(x) dx— g (L) Shanf(x) dx|< &/2+&/2=¢& pour tout ¢ >i(n,E),

oo

de sorte que ]i_‘{ (D) SIVf(x) dx— 3(L) Shﬂan(x) dx|<8 pour tout

2 i=1

n 2 #(€). On a donc 2:]1 (D) Slif(x) dx = }‘LIE (;Zl‘ (L) Sliﬂ F, f(x)dx). Par
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suite, de 1) on a ‘;‘ {lim (L) Slzﬂ 7, f(x)dx} = lim (L) S(Uli)anf(x) dx.

I1 en résulte que (D) Slf(x) dx:i(D) Slif(x) dx, quand \ZL est un

=
intervalle.

Théoréme 3. Soient f(x) une fonction intégrable au sens de Denjoy sur
un intervvalle I, et F(I):(D)Slf(x) dx pour tout 1_1I,. Alors, il y a
une suite F, (n =1, 2, ---) non-décroissante, de total I,, des ensembles fermés
satisfaisant aux conditions suivantes: ’

1) f(x) est sommable sur tout F,,

2) a tout ensemble F, et tout € >0, on peut fairve corrvespondre un
nombre d(n, &) >0 tel que les conditions suivantes:

2.1y I;N\F,3=0 pour tout i,

2.2) w(\JI—F,) < 8(n, &)

entrainent
i iy
D FU)- 2 D) |, p fl0) x| <e.
quel que soit le systéme composé des intervalles I, (i =1, 2, - ,i,) contenus

dans I, et n’empiétant pas les uns sur les autres.

Démonstration. Comme une suite voulue, il suffit de prendre la
suite F, (n =1, 2, ---) mentionnée au Théoréme 1 pour f(x) et pour une
suite &, | 0. Puisque f(x) est sommable sur F,, il y a pour &€ >0 un

nombre p(n, &) >0 tel que wu(E)<p(n, &) entraine |(L) SEﬂF f(x)dx|
< &/2 pour tout ensemble E< I,. Soit #'(n, €) un indice tel que
Evin, s<E/2 et w(m & >mn. Posons &, & = p#'(n, &), E)). Soit
I,i=1,2,.--,i) un systéme des intervalles contenus dans I, et
n’empiétant pas l'un sur lautre. Vu le Théoréme 1, la condition telle
que I;\F,==0 pour tout ¢ entraine ]ﬁ F(I) - ZO] (L) Slﬂ Fure E)f(x) dx|
< Epen, ©<_€/2, puisque Fq,, ., 2 F,. D’autre part, si l'on a ul(\er—Fn)

< B(n; 6), par Suite u’l(\l} (Ii[\Fn’(n: S))—Fn) < B(n’ 8) = P(n/(n, 6)) 6)’ 11
i=1

résulte que |§;(L) Shﬂ(an,e>—Fn)f(x)dxl<8/2' En effet, pour I,

(=1, 2, ---,1,) satisfaisant les conditions 1), 2), ’égalité voulue est vraie.
Maintenant, nous  allons montrer la réciproque dans une forme un
peu générale, que nous donnons ici comme

Theoreme 4. Soit f(x) une fonction définie sur un intervalle I, ct
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telle qu'il vy a wune fonction d’intervalle F(I) fini-additive, une suite
M, (n=1,2,---) non-décvoissante d’ensembles de total I et ume suite
F,(n=1, 2, --.), de presque total I,, non-décroissante des sensembles fermés
tels que F, M, pour tout n, satisfaisant aux conditions suivants:

1) f(x) est sommable sur tout F,.

2) a tout nombre n et tout & >0, on peut faire corrvespondre un
nombre 8(n, &) >0 tel que les conditions:

2.1y I;\M,==0 pour tout i,

2.2) M(\i/L-—Mn) < 8(n, &)

entrainent

ISFI) =2 WD) |} S dxl<e,
quel que soit le systeme composé des intervvalles I, (1 =1, 2 --- ,1,) contenus
dans I, et w’empiétant pas 'un sur I'autre.

Alors, f(x) est intégrable au sens de Denjoy sur I, et F(I)
= (D) Slf(x) dx pour tout I I,.

Démonstration. F(I) est continue, c.-a-d. il existe pour tout & >0
un nombre 7{€) >0 tel que |I| < (&) entraine |F(I)|< é: D’apres ce
qu’on a OM,, =1, il y a selon Lemme 1 une suite non-décroissante des
ensembles fermés Fum; (i =1, 2, ---) contenus dans Mn; et qui jouit de
la propriété (B, pour M, (n=1,2,---) et 4, = min (m, 1/2”) (n =1, 2, ---),

1<m<n
ou n;< m;<_m;,, pour tout ¢. Pour & >0, soient #(§) un nombre
naturel tel que 1/2"%® < &/4 et p(§) un nombre positif tel que w,(E)
< p(é) entraine |(L) Spm.( NE f(x)dx|<&/4. Nous allons montrer que
n(€) = min (p(&), 8(M,,, €/4)) est un nombre voulu. Soit I un intervalle
tel que |I|< 5(€). Alors, si V'on a I\ Fuyeymie; =0, il y a de la pro-
priété (B,) un intervalle I’ tel que 7+ I’ soit un intervalle, (1)°/\(I)° =0, et
pour un nombre naturel tel que #,,, < k< m,,,, |[[+I|< vy, < 8k, 1/2F),
w(I' \Fp)<p(é) et de plus 'un des extrémités de I’ appartient a M,.
11 s’ensuit que |F({U+TI)-(L) Ska (1 fx)dx|<1/2x<1/2"e < E/4
et de méme |F(I')—(L) Spkml,f(x) dx|< &/4. En effet, on a |F(I)]
< |F(I+I)|+ |F(I')|< & Pour le cas ot I/ \Fnieymie,==0, puisqu’alors
IN\Mm;e,==0, il y a un intervalle I tel que I+ I soit un intervalle,
NI =0, | I+I'|<5&) et I'[\Mn,=0. II en résulte que
\F(I)—D) (5, Arf@dz|<e/det [FU+D—L) |p,  Aaer) f@) dzl
< &/4, puisque |I'| < |I+71|<8(m,,, §&/4). On a donc |F(I')|<_2&/4 et



84 S. ENomoTO

|F(I+1)]|<2¢8/4, puisque p(Fmye,\(I+T1))<_p(€). Par suite |F(I)|<é.

F(I) est AC, sur tout M,, autrement dit, quel que soit € >0, il a
un g(n, & >0 tel que, pour toute suite finie d’intervalles {/;} n’empiétant
pas les uns sur les autres et dont les extrémités appartiennent a M, la
condition >3 |I;|< n(n, €) entraine >3 O(F; )< &, ou par O(F;I) on

désigne le plus grand des nombres |[F(I)|(I’ < I): Etant donné un
nomber positif &, désignons par p(x, €) un nombre positif tel que p,(E)
< p(n, &) entraine |(L) San pf(x)dx|<&/4. Posons 5(n, &) =min (p(n, &),
d(n, &/4)). Alors, on peut voir facilement que le nombre 75(n, &) est le
nombre voulu.

F’(x) = f(x) presque partout dans I,: Nous le donnerons dans une
- forme plus générale dans le mémoire prochain®.

En particulier, on peut établir de Théoréme 4, de méme maniére
que Théoréme 3, le

Théoreme 5. Soit f(x) une fonction définie sur un intervalle I, pour
laquelle il existe une fonction d’intervalle F(I) fini-additive, telle que, pour
tout &,)0, il y a une suite non-décroissante d’ensembles M, (n =1, 2, .--)
de total I, et une suite non-décroissante d’ensembles fermés F, (n=1, 2, ---)
de presque total I,, qui satisfont aux conditions suivantes

1) F,<M,.

2) f(x) est sommable sur tout F,.

3) LNM,=0 pour tout i, implique |33 F(I)— (L) {, - . Fx)dx|

< &,, quel gne soit le systéme composé des intervalles I, i =1, 2, .- ,1i)
contenus dans I, et n’empiétant pas les uns sur les autres.
Alors, f(x) est totalisable au sens de Denjoy sur I, et om a F(I)

= (D) Sl‘f(x) dx pour tout 1 I,.

§ 3. Totalisation d’'une fonction de point dans V’espace de
plusieurs dimensions.

Comme on l'a vu dans §2, pour une fonction f(x) intégrable au
sens de Denjoy sur un intervalle I, d’'une dimension, il y a une suite
d’ensembles fermés F, (n =1, 2, ---) telle que les intégrales &, de f(x)
au sens de Lebesgue sur F, (=1, 2, ---) convergent avec # —oco Vers
I'intégrale au sens de Denjoy de f(x) sur I,. Conséquemment, si I’on
prend lintégrale au sens de Lebesgue comme point de départ de la

8) S. Saks: ibid. p. 241.
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totalisation d’une fonction, la suite &, peut étre considérée comme une
suite fondamentale, qui donne une sorte d’approximation par des inté-
grales au sens de Lebesgue pour la totalisation au sens de Denjoy.

A partir de cette notion nous définirons maintenant une totalisa-
tion d’une fonction définie sur un intervalle de l’espace de plusieurs
dimensions, qui sera l’extension de l’intégration au sens de Denjoy qui
jouira de toutes les propriétés fondamentales de comme l’intégration.

Nous allons définir tout d’abord certaines familles d’ensembles
élémentaires de points.

On dit qu’un systéme d’intervalles est é/émentaire, lorsqu’il est com-
posé d’'un nombre fini d’intervalles I, (1 =1, 2, ---,i,) de l'espace Ex,
sans points commun deux a deux, et on le désigne par S: {[; (1 =1, 2, ---,
i,)}. S signifie quelquefois la somme des intervalles [, (1 =1, 2, --- , ;).

20
On écrit simplement |S| pour désigner 3! |[;|. On appelle notamment
i=1

(x)-systeme élémentaire un systéme élémentaire S: {[; (1 =1, 2, --- )}
tel que proj. () = proj. ,(I,) = --- = proj. (Ii;). Un systéme élémentaire
_ N En__
ﬂo 1 ’ﬂO 1 n, 1

composé (x)-systémes élémentaires S,: {([;; (=1, 2,---,7,(/))} (=1, 2,---, L)
s’appelle (xx)-systéme élémentaire, lorsque proj. (S, (\proj. (S,) =0 pour
tout /==7. Eng- Eng-1

Un ensemble ou un systéme d’ensembles dans un sous-espace E, de
I’espace Enx, est appellé parfois I’ensemble ou le systéme de # dimensions
(dans Ex,) respectivement.

Pour une fonction d’intervalle F(I) et un systéme élémentaire

S:{I, =1, 2, -,i)} désignons simplement par F(S) la somme 2_0] F(I).

DerFINITION 1. Etant donnée dans un intervalle R, de l’espace Ex,
une ionction de point quelconque f(p), nous dirons qu’elle est intégrable
(®) dans R,, lorsqu’il existe une fonction d’intervalle F(I) fini-additive,
une suite non-décroissante d’ensembles fermés M, (n =1, 2, --+), de total
R,*, et une suite non-décroissante des ensembles fermés F, (n =1, 2, ---),
de presque total R,, tels que F,< M, pour tout #, satisfaisant aux
conditions suivantes:

1) f(p) est sommable sur tout F,.

2) A tout z et & >0, on peut faire correspondre un nombre
d(n, & >0 tel que les conditions suivantes:

2.1y I;\M,==0 pour tout #,

9) Nous voyons qu’il ne faut pas que M, est fermé.



86 S. ENoMOTO

2‘ 2) /l"’o(i\:jlli _Mn) < 3(”7 8))

2.3) norm (1)< 1/m pour tout ¢
entrainent

|;‘°1F(L->— 2 L), . FBYdD] < e,

quel que soit le systéme élémentaire d’intervalles I, ( =1, 2, --- , 7,) con-
tenus dans K,. Nous dirons que, pour tout intervalle I< R,, F(I) est
intégrale (D) de la fonction f(p) sur I. Nous I’écrivons par (D) SI f(p)dp

ou (D) SS Slf(xl, v X)) A(xy, v, Xn). M, (n=1,2, ...) s’appelle la
suite caractérvistique pour lintégration (D) de f(p) et F,(n=1,2,-..)
s’appelle la suite fondamentale pour l'intégrale (D) de f(p)*®.

Or, nous voyons que dans la définition on peut choisir 8(#, &) de
facon que &(n, &) >>o6(n’, &) pour #' >mn. Par conséquent, nous le sup-
poserons dans la suite. Désormais, on entendra par 8(z, &) le nombre
qu’on a mentionné dans la Définition 1.

§4.. Inteégrales multiples.

Dans ce §, nous montrerons que cette intégrale () peut étre
représentée comme l'intégrale multiple des intégrales au sens de Denjoy
dans l’espace d’une dimension.

Commencons maintenant par trois lemmes qu’on utilisera dans la
démonstration. D’abord, nous allons définir a4 présent certains termes.

Désormais, dans les démonstrations des lemmes suivants, soient f(p)
une fonction intégrable (®) dans lintervalle R, =[0,1;0,1;..-;0,1] de
I’espace Ex,, M, (n =1, 2, ---) une suite caractéristique pour l’intégration
(D) de f(p) et F,(n=1, 2, -..) une suite fondamentale pour l'intégrale
(D) de f(p)-

Soit &/ (n =1, 2, .--) une suite des nombres positifs tels que &, | O.
Désormais, désignons par Fnm; (1 =1, 2, ---), sauf indication contraire,
une suite non-décroissante d’ensembles fermés jouissant de la propriété
(An) pour la suite M, (n =1, 2, .-) et la suite &/ (n=1, 2, ---).

En outre, étant donné un point ¢ de l'ensemble Z = proj. (K,)

- @proj. J(Fnm;), désignons par Fouomia(q) (0 =1, 2, --+), sauf indication
i=1

contraire, une suite non-décroissante d’ensemble fermés jouissant de la
propriété (A,) pour la suite (M)? (n =1, 2, ---) et la suite &/ (n=1, 2, ---).

10) Shizu Enomoto: ibid. IIL
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L’existence des suites Fupm; ¢ =1, 2, ) et Fujomio (i=1 2, -++)
peut étre vue en vertu de Lemme 2 et Lemme 1, puisque \jM R, et

n=1

(M,)? = (R,)? respectivement.

Lemme 3. Pour une fonction f(p) intégrable (D) dans un intervalle
R, de lespace Ex,, il y a une suite non-décroissante des ensembles fermés
B, (h=1, 2, ), de total R, et telle que:

A tout h et tout & >0, on peut faire correspondre un nombre p(h, &) >0
tel que p(h, &) > p(l, &) pour tout h<_h et que les conditions suivantes:

1) il y a pour tout I un point q, de proj. (S, \proj. (B, tel que
(B)%N\I,;==0 pour tout j=1,2, - .(l), "~ By

2) |proj. (S)|<p(h, &), '

75— 1

3) norm (proj. (S,)) < 1/h pour tout /,

70— 1

entrainent

| F(S)|<¢,
quel que soit le (xx)-systéme élémentarire S composé de (x)-systemes
élémentaives S, (I =1, 2, --- | ), ow, pour tout I, S, est composé d’intervalles

1; (7 =1, 2, - ,7,(])) contenus dans R,.

Démonstration. Pour la briéveté, nous allons démontrer le cas ol
n,= 2. Considérons la suite Fum; ({ =1, 2,---) déja mentionée pour
la suite ¢&,/=min (1/n, 5(n, §,/2"*), 8(n, §,/2"°) (n=1, 2,---), ou &,
(n=1, 2, -.-), est une suite telle que &, 0 et 5(n, & est le nombre
positif tel que 7(n, &) >n#, &) pour n<n’ et que u,(E)< 7n(n, &) entraine
(L) SS ENF fx, ) d(x, y)|< & A tout k, nous allons faire correspondre
Fuipymicn, tel que i(h) est le plus grand des nombres i ou m;< k. De
méme, pour tout y de Z = proj. (R)— \J(proj. ,(Fnm,)) considérons la
suite  Fromen(y) (=1,2,---) déja mentionée pour la suite &/
(n=1, 2,--). A tout &, nous allons faire correspondre Fu;.,, v micy, ()
tel que #(y, k) est le plus grand des nombre i ou m,(y) < k. Posons
B, = Fu;pymicn+ \/Fn,(y,h)m micy, ;xn(¥) pour tout A. Evidemment, B,

h=1,2,..,) est une suite non-décroisante des enssembles mesurables de
total R,.

Posons p’(h, &) = min (8(k, €/32h), n(h, E/16k)) et d’abord montrerons
que pour la suite B, (h=1, 2, ), p'(h, &) est le nombre voulu pour %
et &€ >0.

Soit S un systéme satisfaisant aux conditions 1)-3) pour B, et p’(#, €).
Considérons, d’abord, le cas ou S posséde de plus la propriété suivante:
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4) Soit y, le point de proj. (S, N\proj. (B,) pris dans la condition
1) pour tout /. Soient a; le point d’extrémité droite d’intervalle (I},)”:
et b; le point d’extrémité gauche d’intervalle ([,,;.,)”:. Alors, on a
[a;, 8,1\ B,==0 pour tout j =1, 2, ---, 7,(/)—1.

Considérons la famille, s’il en existe, de tous les intervalles I,; tels
que norm (I,;)< 1/h et le désignons simplement par R} (m=1, 2, ---, m,).
On a R\ M,==0 pour tout m, puisqu’alors R:N\B,==0 et B, T M,.

Pour un intervalle I,; tel que norm (I;) >1/h, s’il en existe, con-
sidérons la suite des intervalles contigus a l’ensemble formé des points
de (B))’t/\(;)” et d’extrémités de ([;)”:, soit désignée par [,
(r=1,2,-+), ou, en outre, on peut supposer qu’on ait |/J,;,|=>|/,ul
(r=1, 2, ---). Soit 7,(/, 7) un indice tel que [Jij 00 o1 =1/2R €t | Jijpcr, j5ea
<_1/2h. Soit Ji;, (r =0, 1,---,7,/(/, 7)) la suite des intervalles contigus

ro(l,7)
a P'ensemble formé des points de O\j Jij, et d’extrémités de (/;)”:. On
ro(l, 7) oo
a évidemment \j L= Nt Ji-
= r=ig(l, P+1

Parmi J;;, (=1,2,--,1,7=1,2, - ,5,(),r=0,1, - , 7, 7)), con-
sidérons la famille, s’il en existe, de tous les intervalles Jj;, tels que
| ], 1< 1/h, et a tel J;;,, faisons correspondre l'intervalle proj. .(],;,)
x proj. (S, de E,. Désignons par R: (m=1,2,.--,m,) chacune de tels
intervalles. Alors, on a R2/\M,==0 pour tout m, puisque J;;,/\B,==0
et B, < M,.

Pour J;, tel que |J,;,|>1/h, s’il en existe, soit [}, (s=1,2, -,
s, ([, 7, 7)) une famille d’intervalles d’une dimension n’empiétant pas les
uns sur les autres et dont la somme couvre [/, et 1/2h <]}, |< 1/h.
Or, a tout J}},,, faisons correspondre l'intervalle proj. .([]},,) x proj. (S))
de E, et les désignons par R3 (m =1, 2, -.-, ma). Alors on a R3N\M,==0
pour tout m. Pour cela, il suffit de montrer [/}, [\(B y1==0. Supposons
maintenant que J},,/\(B,)”:=0. Alors, J/ ,,s<\j Ji;», par suite il y a
un J,;, tel que J,, 2 J/5, et 7/ >r,(l, 7). Par suite |J}',|<| ], 1< 1/2h,
contrairement a |J/},.|>1/2h.

Pour la simplicité, posons {R,, (imn=1, 2, ... ,m)} ={R. (m=1,2, ...,
m); REm=1,2,-.-,m); RE(m=1,2 --,m)}. On peut déduire aus-
sitot de la construction de R, m =1, 2, -.- ,m,) qu’elle-méme se divise
en deux systémes élémentaire. D’ailleurs, on a R,/ \M,==0, norm
(R,)<"1/h pour tout m et \j01|Rm(<8(h, &/32h), puisque |proj. (S)]
< p/(h, 8 < 8(h, §/16h) et |proj. (R)|=1. En effect on a par défini-

tion IZF(R) 2°1(L) [§ k. 7 S0 ) d(x, )< (6/32) x2=¢/16h. Par

m=
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suite, on a |2 F(R,)|<_&/16h+¢&/16h = &/8h, puisque |2(L)
SSRMDF f(x, y)d(x, y)|<6/16h d’aprés ce quon a Z |R,,|<_ p(h, &)

< (h, &/16%).

Enfin, considérons J,;, (! =1,2,--,/;; 1 =1,2,---,7,(0); =1, 2, -,
7, 7). A J,,, faisons correspondre un intervalle K,;,, déterminé par
les quatre conditions suivantes: 1°) Kj;, est contenu dans un intervalle
K’ contigu a l'ensemble formé des points de (B,)”: et d’extrémités de
(R,)’r; 2°) une extrémité de K,;, est une des celles de J,;,; 3°) l'autre
extrémité est le point caractéristique de K’; 4°) K,;, > J,;,. Evidem-
ment, K,;, ( =1,2,--,0; 7=1,2,---,7,(), r=1, 2, -+, 7,(l, j) n’ont pas
de points communs deux a deux selon la propriété 4). A J,,, faisons
correspondre l'intervalle Q,;, = proj. .([J;;,) X proj. ,(S,) de I'espace E,. De
méme, faisons correspondre a K,;, [lintervalle @Q];, = proj. (K,;,)
x proj. ,(S,) de 2 dimension. Nous de51gnons simplement @,;,, resp. Q,;,,
(I=1,2,0;j=12-,50); r=1,2,--,7(7j) par @Q, resp.Q,,
n=1,2 .-,n) de facon que Q> Q,.

Pour tout nombre naturel 2 ou 1<C k< k, considérons la famille
Qi (n=1,2, - nk), il en existe, de tous les @, tels que Q' > K,;,,,
ou le point caractéristique appartient 4 M,. Soit Qk, (n =1, 2, --- , #,(k))
la famille telle que Q, < Qk pour tout . On a alors Qk N\M,=0 et
norm (Q} )<1/k<1/h pour tout # en Vertu de la proprlete (B,) pour

&' n=1,2.-). De plus on a pu \J Qr,—M,) < 1,(S)<p'(h, &)

< 8(h, £/32h) < 8(k, £/32h). Puisque an n=1,2, ..-,n,(k) se divise en
deux systémes élémentaires, on a de la définition.

no(k) no(k)
S FQ)— 2 (@) SSQ,; AL fx,3)d(x, )| < (€/32) x 2 = &/16h.

Dallleurs dapres ce qu’on a Z, | Qi |<p'(h, &) < n(h, &/16h) et k<h il
résulte | S‘_, (L) f(x y)d(x,y)|< &/16h. On a donc | 2 F(Q.)|
<€/16h+8/16h__8/8h pour tout 1<<k<h. Par suite, on a
@2 F(Q.)|< €/8. De meéme, on a |§'zg)F(Q,;n_an)|<e/& En

effet, |2 2 F(Qr,)|< /8 +6/8 = &/4.
Conséquemment, on a |F(S)]<|Z F(R,)| + IZ‘, Z F(Qe,)|< €/8h

nn
+&/4<&/2, puisque S= \jR + \j 0\/ Qx,,.
En général, le cas ot S soit un (xx)-systéme élémentaire satis-
faisant aux conditions 1)-3) et composé de (x)-systémes élémentaires
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S(l=1,2,--,0), ou S, est composé d’intervalle I, (7 =1, 2, ---, 7,({)):
Soit S,, 7esp. S,, le (xx)-systéme élémentaire composé des (x)-systémes
Sp,(0=1,2,-.-,1), vesp.S,, (=1, 2,---,1), ou S,,, rvesp.S,,, est composé
des I,,,;, (1 =1,2,-,2/—1<4,(0)), resp. I,,,; (§ = 1, 2, -+, 2] < jo()).
Alors S, et S, jouissent de la propriété 4). Par suite |F(S,)|<&/2 et
|[F(S,)|< &/2 en vertu du résultat mentionné plus haut. On a donc
| F(S)|<¢&.

Enfin, on peut voir facilement que, pour la suite non-décroissante
d’ensembles fermés B, (h=1,2,--), dont le total est R,, le nombre
p(h, &) = p’(h, £/8) est un des ceux qu’on a pour % et & >0. Par consé-
quent, il suffit de prendre B, (h=1, 2, ---) comme la suite B, (¢=1,2, .-
de ce Lemme.

Lemme 4. Etant domnée une fonction f(p) intégrable (D) dans un
intervalle R, = [a,, b;; a,, b,; -+ ; an,, bu,| de lespace Ex,, il y a, pour une
suite &;| 0 quelgonque, une suite non-décroissante d’ensembles fermés
A; (1=1,2, ...) telle que O(A,-)" = (R)? pour tout point q de [ensemble

i=1
\Jproj. (A) et une suite non-décroissante d’ensembles fermés D; (i =1, 2, ---),
=1 ‘E%7 —

0
de presque total R,, telle que D, T A; et f(p) est sommable sur tout D;,
de telles sortes qu'on puisse faive corrvespondre pour tout i un «; >0 tel
que k; >r«;., et les conditions suivantes:

1) norm (proj. ,(S)) < x; pour tout I,

2) il y a z:nﬂensemble Y contenu dans p:'ojl. ,(S) [\g:*ajl. LA, tel que
proj. (S)N\Y==0 pour tout I, wn-i(proj. (S)—Y)< k;, pour tout I si
g€ proj. (SINY, on a (L)' N\A,-=0 pour tout j =1, 2, -, ju(l),
entrc:zgi_ftlent

IF(S)— (D) (g, p, F(D) (D)< &,

quel que soit le (xx)—systéme élémentairve S composé de (x)—systemes élémen-
taires S, (! =1, 2, .- ,1), on S, est composé d’intervalles I,; (1 =1,2, -,
7o) contenus dans R,.

Démonstration. Pour la briéveté, nous allons démontrer le cas ou
n,=2. Pour la suite & (=12, --) donnée d’avance, soit Fum;
(=1, 2,.--) la suite prise dans la démonstration de Lemme 3 pour la
suite &, = min (1/n, 5(n, &,/2"*), 8(n, &,/2"°)( (n=1, 2, ---), ou g5(n, &)
est le nombre positif tel que #(#n, & > y(#/, &) pour n<_n' et que w(E)
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< n(n, & entraine |(L) SSE A p, T ¥ d(x, 3)[< & Posons A; = Fupm,,
D, = Fum; N\ Fm; pour tout i, et montrerons qu’elles sont les suites voulues.

Pour cela, il suffit de montrer l’existence d’un nombre «; >0 qui
jouit des propriétés voulu pour tout 7, puisque les autres conditions
sont évidemment satisfaites.

Posons «; =1/2min (1/m;, n(m;, &/7), 8(m;, &;/28), p(m;, &/8)) ou
p(n, &) est le nombre mentionné a Lemme 3. Désignons par R,,(1;)
m‘-réseau dans I,;. Puisqu’alors I,;/\ A; est fermé, il y a un m, = m,(7),
ou m, >m;, et il y a un systéme R, (s=1, 2, ---, 5,(/, 7)), pouvant étre
vide, composé des mailles de Rm,(l,;) tel que

1) R,;;N\A;==0 pour tout s=1, 2, --- |, 5,(/, 7),

2) R'N\A; =0 pour toute autre maille R’ de Rm([;),
(4, 7)
3) \:/ lefz_llj[\Ai’

’]) lO .

4) /”z( S\:jl ler'—Ai)<’ci/lZ:1]o(l)-

Soit y un point de Y /\proj. (S7) tel qu’il y a une maille R de
RmoI;) (7 =1, 2, ---,7,(])) pour laquelle (R)’/\A;=0. Pour cela, con-
sidérons la famille de toutes les mailles R de Rm(I;;) (7 =1, 2, -+, j,(/))
telles que (RY /N\A,=0, et la désignons par R,(y) (=1, 2, .-, k(/)).

Désignons de plus par L,,(y) (=1, 2, ---, k() le systéme d’intervalles
ho(D)
qui n’ont deux a deux ancun point commun et tel que \/ L,(»)
ko(l) h=1
= \J R,(»). Posons [,,(y) = (L,,(») pour tout 2 On a évidemment
k=1
L, N\A; =0. Puisque /,,(y) est fermé, il y a un intervalle K,,(y) de
2 dimensions pour tout /() (/=1,2,..-,1; h=1,2,..- k() tel que
(K9 =1,1(9), Ki(3) N\A;=0 et proj. (S) D proj. ,(R) 2 (p70j. ,(K;u(9))°
5y, ou R est une maille de Rm([,;) telle que proj. (R)>y. Posons

ho(y) .
J(y) = h/=\1 (proj. ,(Ki(3))).

Soit ¥ un point de Y\ proj. (S7) tel qu’il n’y a aucune maille R de
Rmo(L};) (7 =1, 2, -+, 7,(})) pour laquelle on a (R)’ [\ Fnm; = 0. Pour cela,
soit J'(y) un intervalle de J, tel que proj. (S,) 2> proj. (R) 2 (J(»)° >y,
ou R est une maille de Rmy([;;) telle que proj. (R)>y.

Désignons pour tout point y de densité de ’ensemble Y /\proj. (SY)
((=1,2,..-,1) par {/i(»)} la famille tous les intervalles tels que
T 2 L), (Li(y))° 2y et les deux extrémités de J,(y) appartiennent a
Y. En faisant usage de {/.(y)} pour l'’ensemble Y, il y a, en vertu de
Théoréme de Vitali, J,,(¥,) v =1, 2, ---,7,), ou y,€ Y, désignant simple-
ment par J(y,) v =1, 2, -+ ,v,), possédant les propriétés suivantes;
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1) \/](y,,)<177’0J HS®), | J(3) 1< 1/m;,
2) lu'l(Y_ U](yv))<16”

3) J)N\Iys) =0 pour v==v,

4) les deux extrémités de J(y,) appartiennent a Y.
Désignons par I* l'intervalle proj. .(R) x J(y,) de 2 dimensions pour tout
v=1,2,..-,v,. Par IX(j=1,2,-.--,5,()), pour tout v=1,2,.-,9,
désignons la famille d’intervalles I*N\I,; (j =1, 2,---,7,(/)), ou / le
nombre tel que proj. (S) > J(y,). Soit J/ (u=1,2,--,u,) le systéme
des intervalles contenus dans proj. (S), contigus a 'ensemble formé des

v
points de \oj J(y,) et d’extrémités de tous les intervalles proj. (S))
V=1

=12 --,1). Désignons par I** l'intervalle proj. (R, xJ,/ de 2 dimen-
sions pour tout =1, 2, .- ,u, et par I}* (j =1, 2, ---, j,(»)), pour tout
u=1,2 . u,, la famille d’mtervalles LN\ (j=1,2,-,7,)), oul
le nombre tel que proj. (S) D J., .

Désignons par R, (s=1,2,...,s,()), pour tout v=1,2,..-,9,, la
famille de tous les intervalles de 2 dimensions I,*/\ R,;, contenant des
points communs a A; (j=1,2,-,5(); s=1,2,--,5( 7)), ou I le
nombre tel que proj.,(S) > J(y,). Désignons en outre par K,
(z=1,2, --,2() la famille pouvant étre vide, des intervalles de 2

dimensions contenus dans \j I}, contigus a I'ensemble formé des points
de SO\(Z) R, et des cotés paralleles a laxe y de tous les intervalles
Ivﬂ; (7=12 - )jo(v))

1°)y Pour K,, v=1,2,---,0,; 2=1, 2, - zo(v))' Divisons le systéme

K,(z=1,2,. zo(v)) en les deux systemes v2e =12 - 221

< z,(v)), K, ,. (z =12 ..,22<2,(v)). Simplement, des1gn0ns—les re-
spectivement par K!, (z=1,2, .--,2,), K%, (z=1, 2,---,2(v) pour
tout v=1,2,..-,v,. Désignons par J!, l’intervalle d’'une dimension,
déterminé par les quatre conditions suivantes: 1*) JI. est contenu dans
un intervalle J”/ contigu a l’ensemble formé des points de (Fum;)?» et
d’extrémités d’intervalle (K,)??; 2*) une extrémité de J2, est une des celles
de K!,; 3*) Pautre extrémité est le point caractéristique de I'intervalle J;
4*) J1. 2 (K30, Posons H;,= ], xproj. (K3,) pour tout v, 2. Désignons
par H! e, (2=1,2,-,2(, k) la suite de tous les intervalles H}, tels que
le po1nt caracterlsthue de J },z appartient a M, (n, << k< m;). Alors,
Hﬁk w=12 -,0,; 2=1,2,.--,2/(, k) est le systeme d’intervalles
nempletant pas les uns sur les autres et tel que:

1) HY N\M,=0.
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v, 21(v, k) vy 2,(v, k) .
2) m(\J ) Huy—My<3 > |Ho|<& <k &/24), pui-
sque ’ensemble (F»;m;)” jouit de la propriété (B,) pour (M) (n=1, 2, ---)
et pour &’ n=1,2,-.-.).
3) norm (H,,) < max (|J5 |, |p70j. (K}.)|)< max (&/, 1/m;) < 1/k,
Par suite on a puisque k< m;
v, 2,(v
D) L (P~ (D) [0, 01 1S ) d, 30
(B2 X2 = 8,25,

v, 21(2, k)

En ?ntkre on a 12 > (D) SS L AR f(x, y)d(x, y)l(e /2F ) puisque
v, 2;(v g=1

z,(v, k)
2R HL < e ok, ek/zkw I oen resulte |31 31 P
“e 2. Par suite, (35 F(H,,>|<26/2k*3<em/7<8/7 De

v, 2;(v)
meéme, |3} }_] F(H K},,,)<8/7 On a donc |)_, Z} F(K})
< 2&/7. De méme, on a |L 2 F(K2,)|<2¢,/7. En effet,

vy 2(v)

vy 2Zo(v)
DD F(K,,z)|<(28,./7)><2.—_46,/7. D’autre part, on a |Z Z (L)
v=1 2z=1 =1
SSszmDif(x, ) d(x,y)|=0, puisque K,,NA;=0 et A, D D,.

2°) Désignons simplement par R, (s=1,2,..-,s,) la famille de
toutes les mailles R, (v=1,2,..-,0,; s=1,2,. so(v)). I est un
systéme composé des intervalles n 1mp1etant pas les uns sur les autres,
possédant les propriétés suivantes:

1) Rs[\Mm,-:FO, puisque R;N\A;==0 et Mm, > A;,, pour tout
s=12,-

Iy jo(1)
2) m(\/R Mm)</bz(\JR —-A)< ZJE (\/Rm A)<(rc/2]o(l))
XZJo(l) = r; <_8(m;, &;/28).

3) norm (R)<_1/m;, puisque m;<_m,.
Par suite, en vertu de la définition, on a

133 FR) (D) [, (1 £, 708 ) A5, 90) 1< (/28 x4 = &,/7.

D’autre part,
D ER)=D) ([ 5 f5 9 dlx, )<

So
| 230 (R D0 £, dx, ) +84/7.

So
En outre, on a |33(L) SSRm(Fm‘._mf(x,y)d(x,y)l<8s/7, puisque



94 S. ENoMOTO

So So So
lu’z(s\:Jle /\(le_Dz)) = /l’z(Fmi[\(s\Jle—Ai)) g /‘l’z(s\:les’—Ai)
< we; < ylmy, &;7).

On a done |3 (FR)—(D) ([ (5,06 9 dlx, 1)< 26,7,

3°) Pour I¥* (u=1,2, - ,u,; j=1,2 - ,j(x)): Evidlemment, on a
uy, Jjo(u

norm Ux*)<k;<1l/m;,. On a /u,l(\/ \j proy (LE*) < m(proj. (S)
—\/](y,,))—m[{(MOJ AS)=Y)+(proj. (S)/\Y)} \/](y,,)] m[{(proj. ,(S)
—Y)+Y}— \/](y,,)]<,u1(1>r01 AS)=Y)+ s Y—\/f(y,,)) Lo+ ey = 20, <
p(m;, &/T). Puisque I¥*MN\A,=0, on a I;"*[\Fn,.m,:ko. Donc, I}\Bm=0,
puisque Fum; < Bm; en vertu de la construction de la suite d ensembles

fermés B; (i =1, 2, ---) prise dans le Lemme 3. On adonc IZ E F(I%)|
uy, jo(u)

<&/T. D’autre part, on a ]Z 2 (L)”I % p, S % y)d(x, J’)|<5/7
puisque \j \j [L5* < p(m;, &[T).

4°) Selon 1°)-3%), |F(S)—(L) {{s -, £z, ») dix, 3)|< &,

Remarque (1). On déduit aussitét des constructions des suites A4;, D;
(=1, 2, ---) que pour tout B;, pris dans Lemme 4, il y a un indice
n(i) tel que 0<n(i)< n(’) pour tout i< ¢ et on a D,;, T A,,<B;,
ou l'on pose D,,, = 0 pour (i) =0.

Lemme 5. Soient A, (n=1, 2, ---) une suite non-décroissante d’ensembles
dont le total est un intervalle I, d’une dimension et D, (n=1, 2, ---) une
suite non-décroissante des ensembles mesurables de presque total I, et tels
que D, T A;. Si une fonction f(x), définie sur I, et sommable sur tout
D,, ne jouit pas de la propriété suivante:

() Il y a lim (L) SIHD f(x)dx pour tout I I, et de plus, quel que

soit la suite &, 0, pour tout n il y a un m(n) >n tel que la condition
LNA,wm=F0(t=1,2, .- ,1) entraine

) 1y
IR FUN=3D) . f(x)dx| <6,

quel que soit le systeme élémentaive I, (t =1, ---,1,), on désigne par
F(I) le nombre lim (L) S 10, ) dz.

Alors, il y a un nombre h, >0 et une suite partielle Am; (j =1, 2, ---) de
A, m=1,2,-.), jouissant de la propriété telle que pour tout m, il y a,
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quel que soit 5 >0, un systéme elementaive I,=1(i,n) (t=1,2, -,
= t(7, 1)) tel que:

1) les deux extrémités d’intervalle I, sont les points rationnels pour
tout t.

2) I,N\Am;j==0 pour tout t.

&
3) il y a un mj tel que m/ >m; et }Z(L)Sw/ f(x)dx|
> hy, "
)
4) 12W I, o fEdx<a.

Démonstration. i) Le cas ou il y a un intervalle I tel qu’il n’y a

j_‘Dm]-) ﬂ It

pas lim (L) S AD f(x)dx. Dans le cas il y a un nombre %, >0 et un
m, tels que Dmy\I=:=0 et pour tout m >m, il y a un m’ = m’(m) tel
que m' >m et l(L)S(DmI_Dm)mIf(x)de:ao>h0. Puisque f(x) est
sommable sur D,,, il y a pour tout & >0 tel que &< min (5, @, —A,),
un nombre =(&, m’) tel que w(E) < =(&, m') entraine |(L) SD szf(x) dx|
<&/2.

i.i) Pour le cas ou u(D,, /N\I)<_w(E m’) pour un m certain tel que
m >m,: Soit I, un intervalle, possédant les extrémités rationnelles, tel
que I, D1 et u(l,—I)<_=(& m'). On a I;N\A,,==0, puisque I\ Dm,==0.

On a de plus |(L)S(Dmr~Dm)ﬂI,f(x)dx|21(1’)S(Dm/—Dm)ﬂlf(x)dxl
~1D oy gy FRV dxl = a=8/2 >0y et (D), - fx)dx]

<1y o f@ e+ 1D, - f@dx<e,

i.ii) Pour le cas ou (D, N\I)>=(& m') pour un certain m tel
que m >m,: En vertu du Théoréme de Vitali il y a des intervalles
J.t=1,2,--- t,—1), qui n'ont deux a deux aucun point commun,

possédant les extrémités appartenant a D,, et tels qu’on ait J, T I pour
tout ¢, Ml(tj\j/llﬁ—Dm)(\ (€, m') et ,wl(Dm—tz\:jll],)< (& m’).  Soient
I/ (t=1,2 . ,1,) les intervalles contigus a l’en;emble formé des pointé
de ti\j/j], et d’extrémités de 7. Pour ces intervalles I/ il y a d’autres

intervalles I, ({ =1, 2, --- , ), qui n’ont deux & deux aucun point com-
mun, possédant les extrémités rationnelles et tels que I, > I/ pour tout

to

t et D u,—1))< =& m'). On a alors I,N\A,==0 pour tout #. De
=1 f

plus on a (XD, o F@dx =) (g, o S@ dx] -

t
Loy 1 ("0 g 8 1y AR x| ety — /2Ry et [23(L) ) flx) dx ]|
t=1 t=1 =
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<D fo, (G0 FR dx1 1D §p, 0 Gy 20 1) dx| < E<s. Con-

séquemment, en posant m;=m,+j et m;/ = (m,+j) pour tout j =1, 2, -
on peut voir le résultat voulu par i.i) et i.ii).

IR RAL, dx pour tout I I,: Dans le

cas ou il y a un nombre 4, >0 et un m, tels que pour tout m =>m, il
y a un systéme élémentaire I, (¢t =1, 2, --- , ¢,), dépendant de m, tel que

% t
I,N\A, =0 pour tout ¢ et {ZF(I,)—Z(L)SIHD f(x)dx|>>h,. Par

ii) Le cas ot il y a lim (L)S

suite, puisque F(l,) = lim (L)S f(x)dx, pour tout m >m, il y a un

I: N Dy
m’ = m/(m) tel qu’on alt m >m et IE(L)S(D/ D )mlf(x)dx|>h

On en peut conclure le résultat voulu en raisonnant de la méme maniére
que 1i).

Théoréme 6. Soit f(x,, x,, -, Xn,) une fonction intégrable (D) sur un
intervalle R, =[a,, b;; a,, b,; -+ ; an,, bn,| de l'espace En,. Alors, elle jouit
des propriétés suivantes:

1) Pour tout n(n=1,2,--,n), la fonction f(x,, x,, -, Xn) COn-
sidérée comme fonction de x, dans Uintervalle [a,,b,]| est intégrable au
sens de Denjoy sur [a,, b,| pour presque toutes les valeurs de (x,,---,
Xp1s Xpisys o 5 Xny) de Uintervalle [a,, b,; - ;a, ., b,_; @piyy bpis; oo @ny, by ]

2) @[ [ Sl o, 2 din, e, 2)

'b"1 bn2 Imﬂ0
= D), (D) [ " (D) flxy, e, 200) d(ng)) - d(a,)) dan)),
gt @ )

]
0w Ny, Ny, -+, Nn, Une suite arbitraive composé des nombres 1, 2, ---  n,.
3) Pour tout n(n=1,2,---,n), il vy a une suite des ensembles
fermés D; (i =1, 2, ---), dépendante de n, non-décroissante, de presque total
R, et telle qu'elle jouit de

by
D) |, oo am) d(x) =lm (L) | Flz, e, 20 d),
an >0 D;
pour presque toutes les valeurs de q = (%,, -+, Xpy_y, Xpi1, -+ , Xny) de Uinter-
valle [an b1; 38y bn—1; Qpirs bn+1; 205 Ang, b"o]

Démonstration. Simplement, nous nous bornons au cas de
RK,=1[0,1;0,1]. Commencons d’abord par la démonstration de 1). Soit
& (m=1,2,.--) une suite telle que &,|0 et 2.08,,<oo. Soient A;

n=1

(t=1, 2, ---) et D, (i=1, 2, ---) les deux suites d’ensembles et «, (iI=1, 2, ---)
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la suite de nombres naturels, mentionnés & Lemme 4 pour la fonction
f(x, ) et la suite &, | 0. Il y a alors un sous-ensemble Z, de proj. (R,),
de mesure nulle et tel que pour tout y de proj. (R)—Z,, A (1 =1, 2, ---)
soit la suite non-décroissante des ensembles fermés de total (R,)’, que
D!(i=1,2 -.) soit la suite non-décroissante d’ensembles fermés de
presque total R} et satisfaissant a DY < A? et que f(x, y) soit sommable
comme fonction de x sur D? pour tout ¢. Par suite, vu le Théoréme 5,
il suffit de montrer que pour presque tous les points y de proj. ,(R,)—Z,,
la fonction f(x, y), comme fonction de x, jouit de la propriété (x) de
Lemme 5 pour les deux suites A?, DY (i =1, 2,---). Désignons par Y*
I'ensemble de tous les points y de proj. (R,)—Z,, ne jouissant pas de la
propriété (x). En supposant que la mesure extérieure de Y* soit posi-
tive, nous allons tirer la contradiction.

Pour tout ye Y*, de Lemme 5, il vy a un nombre /4(y) et une suite
partielle Ag’jm (7=12,--) de A¥({ =1, 2, ---) jouissant de la propriété
telle que pour tout i (y) il y a, quel que soit » >0, un systéme élémen-
taire I, = i(y,7,7) ¢t =1,2, .- | t,=1(», ], 5)) d’'une dimension tel que:

1) les deux extrémités de I, sont les points rationnels pour tout #.

2) I,N\Ai»==0 pour tout ¢.

3) il y a un ¢/(y) tel que 7;/(y) >i(y) et

%y R
23 L) (o - D) 11,515 ) A2 > hil).

Ly
4) 13 @) (b (5 3) dx|< .

Soit 4, un nombre positif tel que la mesure extérieure de I’ensemble
Y** de tous les points y de Y*, ou A(y) >h,, est égale a 2k,(>0).
Soient i,,1,,7, les indices tels que 8i0+€,-l<ll°é—k°, &i, <&, et i‘ei<£io.

i=iy

En effet, pour tout y€ Y** il y a deux nombres naturels #'(y), ¢(»),
ou 7'(y) >i(y) >1i,, et un systéme élémentaire I(y) (¢t =1, 2, -+, ()
d’une dimension, jouissant des propriétés suivantes:

a) les deux extrémités de I,(y) sont les points rationnels pour
tout ¢.

B) I(y»NA,,=0 pour tout ¢.
t,(9)
Y -
v) | ;_1. (L) S(Di’(ll)—Di(y))ﬂsz(x’ y)dx| > h,,

th(y) &
8) 1 2D, oy e 3 dx< G

Supposons qu’il y a un sous-ensemble Y’ de Y** tel que la mesure
extérieure >k, et que pour tout y de Y’ on a
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()
) Z; (L) S(Di'(m =Dicwy) M I fx,y)dx > hy

au lieu de ¢), puisqu’il en est de méme du cas contraire.

Soit, pour tout nombre naturel ¢, Y; I’ensemble de tous les points y
de proj. (R)—Z, tels qu’il y a deux nombres naturels #/(y), i(y), ou
i1 >1(y) >i(y) >1,, et un systéme élémentaire I(y) (t =1, 2, ---, {,(»))
d’'une dimension, jouissant des propriétés a), B), ¢), ). Alors, on peut
voir aussitdt que Y, est mesurable (u,). Par suite, il y a un indice #*

1

tel que u (Y4 > 3{k,, puisqu’alors \j Y. > Y’. Posons simplement que
Y, = Yx.

L’ensemble de toutes les combinaisons C: (S, ¢/,7), o S* est un
systéme élémentaire d’'une dimension dans proj. (R,) possédant les
extrémités rationnelles et ¢/, ¢ sont deux nombres naturels tels que 7* >’
>>i>1,, est dénombrable. Donc, nous le désignons simplement par
C,: (S, 7/(s), 1(s), St: {J, (¢ =1,2, .- [ $(8)} (s=1, 2, ---). Pour tout C,,
désignons par Y./ l’ensemble de tous les points de Y, jouissant des
propriétés suivantes:

18*) (.,stx {y})[\Az(s):FO pour tout ¢ = 1) 2) Sty to(s))
ty(s)
7 DD p iy FE D dE >,

&
8%) | 2 D) s A o FE) dx]< 62,

Alors, Y./ est mesurable (z,). Posons Y, = Y’——\J Y/, ou Y, peut étre

Vide On a évidemment Y, = \/Y Par suite, il y a un s, tel que

ZMI(Y)>3/k

En vertu du Théoréme de Vitali, il y a, pour tout s tel que s<<s,
et Y,==0, un systéme élémentaire K§(j =1, 2, --- j,(s)) dans pro; y(R)

tel que K¢ [\ Y :|=O pour tout j, norm (K3)< «; pour tout j, u,(Y,— \jKJ)
< 2 \jK“ Y)<(1/s,) min (3, ), od & un nombre posmf tel

que MZ(E)<8 entraine [(L) SSEDD-*f(x’ ») d(x, y)|<&,/2. Mais, pour
tout s<s, tel que Y, =0, considérons le systéme vide. En outre, K3}

(s=1,2 --,s,;7=12--,7(s5) n'ont deux a deux aucun point
commun.

Posons [Ij;=1I,xKj. Alors S:{I{(s=1,2,--,s,;t=1,2,-,
1(s); 7=1,2,---,7(s)} est (xx)-systéme élémentaire dans R composé

de (x)-systémes élémentaires S,;: {I;; (¢! =1,2,---,{(8)} (s=1,2,-
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7=1,2 - ,7(s). Pour tout s, S,; (j=1, 2, .-, 7,(s)) jouit des propriétés
suivantes:
1) norm (proj. (S,;)) = norm (K5) < «; .

2) Posons Y/ = pm] y( \(j)Ss,)[\ alors on a:
2.1) Y/ < proj. (\/Ss,)[\prOJ SAA), selon B*).
2.2) praj. (Ss])[\ Y’=i=0 pour tout ], puisque K TN Y, ==0.
2.3) wm(proj. (\sz,) Y)——/LI(\/ Y)< min (5, « ).

2.4) Pour touty de S, /'\Ys, on a (I ])y[\A,(s)_(]stx{y})[\A,(s)
=0 pour tout f=1, 2, . t(s)

On a, selon 2.3), g \j (pm] ( \/ S;)— Y‘s’))<slmin (8, %) X s,
0
= min (§, «;+) << min (3, « )__<__IC” ou \ / se désigne la somme par rapport
i(8)=¢

a s tels que i(s) =17 et s<s,.
Conséquemment, en vertu du Lemme 4, on a

Jo(®)
2,78 FS)=D) ([, o p S5 dx <,

i(8)=¢

D’ott on a
i* Jo(®) i*
|3 38 FS) =D ], 7 0 de, 1< 36 S
On a donc

5o Jo($)
FS)= 2 57 @[5, - py, £ 91 9)1< S

. So Jo(8)
Par suite, |F(S)|< &+ [s;: jg (L) SSSUOD,mf(x’ y)d(x,y)|. Or, posons

) to(s) Jo($) Sy Jo(®
simplement V= z\lej“ et W,= J\=j1 Ks. On a alors IZ; j;l

So So
D) [§s,, 0 s 7B P A NI D (v 4 p £ ) dlx, 9) ]+ 123
(L) SS(st(Ws— Y mDm)f(x, »Ndx, y)|< €, /246 /2= &;. Pour le voir,
il suffit de nous rappeler &%) et Ie Théoréeme de Fubini, et ce
qu’on a ﬁul(Ws— Y/)< & et i(s)<7*. Enfin, nons sommes amenés a
I'inégalité importante: |F(S)|< &+ &, < h.k,/8.

D’autre part de méme que le cas de i(s), on peut tirer, pour 7'(2),

!F(S)—Z 2 (L) {5, Doy, S5 9) d(x, )| < &, Par suite, on a |F(S)|
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so Fo(s) » ) ) . S0 Jo(s)
>21 Ex SSSSJ N Dv(s)f(x’ y) d(x, y)—&,. Dailleurs, Ex 2:31' SSSsJ M Dir¢sy

£ a5 > 3 O] v 0 v b £ 9 4@ 9 = 1 33 (D)

S0
(v verrmue FE 2 @@ D 1= 1@ [ 4 - vy 0w, T 2 A&, )]

N ) o)
>(koxﬂ)—ff‘f—él hky —&;. Car, on a iuﬁ(Ys——]\jsKj)<ko/2,
2 2 4
par suite EMI(Y)—Eul(Y) EMI(Y \jK)>/k—7°=%. On

a, de plus, pour tout ye Y/ (s=1,2, --,s,), (L) S(Di’(s)—Di(.?)) A (Verx ()
f(x,y)dx >h,. En effet, en vertu du Théoréme de Fubini, on a

So
82‘1 (L) SS( Vs X Ys/) ﬂ (Di’(s)"D'i(s)) f(x’ y) d(x) y) > h0k0/4' D,aprés 8*)! on a
So So
|§(L) SS(VSXY8,>th(8)f(x’ y) d(x)y)| < 81'1/2. Enﬁn? on a | sgl (L)
. So
I cvasc W= v iy T 2 Al DI e"l/z puisque 2} (W, —Y,) <8 et

z"(s)<i*. Conséquemment, |F(S)]> *-(8,0 hk h8k h08k0’
hk

En effet, pour tout pomt y de proj. (R,) n’appartenant pas a W,
o W, est un ensemble de mesure (u,) nulle, il y a tllrorcl (L) S DY f(x, y)dx,
f(x,y) est intégrable au sens de Denjoy comme fonction de x dans
P70 AR et (D) £, 9 dx = lim (L) [y 715, ) dx.

Passons maintenant a la démonstration de 2). On pose

Fily) = {(L) SDgf(x, ¥)dx pour tout ye€ proj. (R)— W,
0 pour tout ye W,

fly) = {(D) SDgf(x, y)dx pour tout yé€ proj. (R,)— W,
0 pour tout ye W,,

Puisqu’alors f(y)=Ilim fi(y) et f(»), fi(y) (¢=1, 2, --.) sont mesurables («,),
{>oo0

il y a, en vertu du Théoréme d’Egoroff, une suite M/ (:=0,1, 2, ---)
d’ensembles, de total proj. (R,), jouissant des propriétés: A, est l'en-
semble de mesure u, nulle, M/ est fermé pour tout =12, ...,
M., > M; pour tout i =1, 2, ... et la convergence de {f(y)} vers f(y)
dans M, est uniforme pour tout i =1, 2, -...
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Soit B; (f =1, 2, ---) une suite d’ensembles mentionnée a2 Lemme 3

pour la fonction f(x,y). Posons X, = proj. y(Ro)-—O proj. (D).

i=1
M; = {(proj. ,(B,) N\ X)\J proj. (D)} N\ {M/\J M}, N; = proj. (D,) \ M/
pour tout ¢=1,2,-.-. On peut voir aussitot que M, ({ =1, 2, ---) est
la suite non-décoissante d’ensembles telle que OM = proj. (K,;) et que
=1
N; (i =1, 2, -.+) est la suite non-décroissante d’ensembles fermés telle que
M, > N;, u(proj. y(RO)—thlN,-) =0. On voit de plus que f(y) est som-
mable sur tout N,. Car, puisque la convergence de {fi(»)} vers f(¥)
dans N, (< M/) est uniforme, il y a pour tout & >0 un j, = j(&) tel
que | f(y)—fi(y)|< & pour tout ye N;, de sorte que |f(y)|<|fi(»)|+&
pour tout y€ N,. De plus, puisque fj(y) est intégrable sur N, il en
est de méme de f(y).

Conséquemment, il suffit de montrer 2) de la définition 1. Pour un
indice 7 et £€>0, il y a 7,=1(¢, &) tel que 7,>i, &< &[5 et |f(¥)—Ffi(D)]
< &/5 pour tout y€ M;—M,/. Soit z(i, &) un nombre positif tel que
u(E) < nli,, €) entraine |(L) SSEﬂDiOf(x, ) d(x, y)|< €/5. Soit 7*(i, €)
un nombre positif tel que u(E)< 5*(, &) entraine |(L) SEﬂ N, f(y)dy|
< &/5. Posons &(, €) = min (xiy, p(Z, €/5), 5(i,, &), n*(i, €)), ou p(, €/5)
le nombre mentionné 4 Lemme 3. Soit [, (# =1, 2, ---,#) un systeme
élémentaire dans proj. (R,) tel que I,\M;==0 pour tout ¢, u, \jI —M))

s

< 8(i, &) et norm (I,)<_1/i pour tout {. Montrons que |Z G(,)— Z(L)
SI an(y) dy|< ¢, ou G(I)= F(I*), I* = proj. (R)) xI. Désignons par
I,(t=1,2,..-,t) tous les intervalles I, tels que I,/\proj. (D,)==0 parmi
des I, (t=1,2,.--,t) et par L, (t=1,2,-.-,¢) tous les autres inter-

valles. t, 1,
1°) Pour L,(t=1,2, - ,t): m \/ L, = Ml(\/Iu—M,-) < &(i, &)

= p(i, §/5). Posons [} = proj. (R)xL,(t=1,2,---,4). On a alors
zt[\pm] JB)=F0 et norm (IZ,)<1/z Par suite de Lemme 3 on a

|2F(Iz,)|<8/5 I en résulte IZ‘,(L) SI me(y)dy|<8/5 puisque
u,(\/lzt)<8'<z & < ¥, ©). Tn effet, 12 G(L)— 2<L> [ An S @)
<(8/5)><2_28/5.

2°) Pour L, (t=1,2, -, £): 3 GUI~3}L) [, - A0y | < I3 G

4 151 h
D, fawdy + 13 O,y fdy |+ 13 D, A )
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t, I t t
—fuyndyl. On a |G- )|, flydyl=] D FdH— 3 (D)
S #01Dy, f(x,y)d(x, ») <&o<€/5 pulsque L, N\proj. (Azo)=l=0 pour tout
¢, norm (1,,)<xi, pour tout ¢ et u,( UIu \/(qu\l”’O] SD:)) < uy( \/L,

<&, &)< rwi;,. On a IZ(L) S, An ) f‘o(y)) dy|<€&/5, puisque
|f(y) Jfio(¥)|<_E/5 pour tout y€ N;. Enfin, on a IE(L)S if,o(y)dyl

= 13D [t 1, f(x, ) d(z,9)|< €[5, o (L—Ny* = proj. (R)
x(I,,—N,;), puisque \j I,—N)= ,u,l( \j L,—M) < 81, &) < 9(i, 8).
Conséquemment, il en resulte que ZG(L,) E(L) SI AN f(y)dy|
<(¢/5)x3. Evidemment 1°) et 2°) nous donnons le résultat voulu.

Quant a la propriété 3) de ce théoréme on peut la voir dans la

démonstration de 1).
Remarque (2). Pour traiter la cas ou n, >2, il suffit de poser

= {(pro] ABYN\X)\J p70j. (D))} N\ AMSN\J M/}, N, = 1”'0] WD) \ M

=1 -1

pour tout i=1, 2, ..- dans la démonstration de 2) du Theoreme 6 (voir
».101), ot n(Z) est un indice tel que 0 < (/) < n(i') pour tout i<7 et
quon a D,;, T A,;, < B; (pour »n() =0, on pose D, ;= A,,, = 0.

(Recu le 25 Mars, 1955)

11) Voir Remarque (1).





