Osaka University Knowledge Archive

Title	Formal groups and zeta-functions
Author(s)	Honda, Taira
Citation	Osaka Journal of Mathematics. 1968, 5(2), p. 199-213
Version Type	VoR
URL	https://doi.org/10.18910/8997
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

FORMAL GROUPS AND ZETA-FUNCTIONS

Taira HONDA

(Received July 8, 1968)

Let $F(x, y)$ be a one-parameter formal group over the rational integer ring \boldsymbol{Z}. Then it is easy to see that there is a unique formal power series $f(x)=$ $\sum_{n=1}^{\infty} n^{-1} a_{n} x^{n}$ with $a_{n} \in Z, a_{1}=1$ satisfying

$$
F(x, y)=f^{-1}(f(x)+f(y))
$$

and that $f^{\prime}(x) d x=\sum_{n=1}^{\infty} a_{n} x^{n-1} d x$ is the canonical invariant differential on F. Let C_{1} be an elliptic curve over the rational number field \boldsymbol{Q}, uniformized by automorphic functions with respect to some congruence modular group $\Gamma_{0}(N)$. In the language of formal groups results of Eichler [3] and Shimura [14] imply that a formal completion \hat{C}_{1} of C_{1} (as an abelian variety) is isomorphic over \boldsymbol{Z} to a formal group whose invariant differential has essentially the same coefficients as the zeta-function of C_{1}.

In this paper we prove that the same holds for any elliptic curve C over \boldsymbol{Q} (th. 5). This follows from general theorems which allow us explicit construction and characterization of certain important (one-parameter) formal groups over finite fields, \mathfrak{p}-adic integer rings, and the rational integer ring (th. 2 and th. 3). The proof of th. 5 depends only on the fact that the Frobenius endomorphism of an elliptic curve over a finite field is the inverse of a zero of the numerator of the zeta-function, and implies a general relation between the group law and the zetafunction of a commutative group variety. In fact it is remarkable that the p-factor of the zeta-function of C for bad p also can be given a clear interpretation from our point of view (cf. th. 5). Moreover, we prove that the Dirichlet L-function with conductor D has the same coefficients as the canonical invariant differential on a formal group isomorphic, over the ring of integers in $\boldsymbol{Q}(\sqrt{D})$, to the algebroid group $x+y+\sqrt{D} x y$ (th. 4). In this way the zeta-function of a commutative group variety may be characterized as the L-series whose coefficients give a normal form of its group law.

1. Preliminaries

Let R be a commutative ring with the identity 1 . We denote by $R\{x\}$,
$R\{x, y\}$, etc. formal power series rings with coefficients in R. Two formal power series are said to be congruent $(\bmod \operatorname{deg} n)$ if and only if they coincide in terms of degree strictly less than n. A one-parameter formal group (or a group law) over R is a formal power series $F(x, y) \in R\{x, y\}$ satisfying the following axioms:
(i) $\quad F(z, 0)=F(0, z)=z$
(ii) $\quad F(F(x, y), z)=F(x, F(y, z))$.

If $F(x, y)=F(y, x)$ moreover, F is said to be commutative. Let G be another group law over R. By a homomorphism of F into G we mean a formal power series $\varphi(x) \in R\{x\}$ such that $\varphi(0)=0$ and $\varphi \circ F=G \circ \varphi$, where we have written $G(\varphi(x), \varphi(y))=\left(G^{\circ} \varphi\right)(x, y)$. If φ has the inverse function $\varphi^{-1}, \varphi^{-1}$ is also a homomorphism of G into F. In this case we say that G is (weakly) isomorphic to F and write $\varphi: F \sim G$. If there is an isomorphism φ of F onto G such that $\varphi(x) \equiv x(\bmod \operatorname{deg} 2)$, we say that G is strongly isomorphic to F and write $\varphi: F \approx$ G. If G is commutative, the set $\operatorname{Hom}_{R}(F, G)$, consisting of all the homomorphims of F into G over R, has a structure of an additive group by defining $\left(\varphi_{1}+\varphi_{2}\right)(x)$ $=G\left(\varphi_{1}(x), \varphi_{2}(x)\right)$ for $\varphi_{1}, \varphi_{2} \in \operatorname{Hom}_{R}(F, G)$. In particular $\operatorname{End}_{R}(F)\left(=\operatorname{Hom}_{R}\right.$ (F, F)) forms a ring with the identity $[1](x)=x$. We call $[n]_{F}$ the image of $n \in$ \boldsymbol{Z} under the canonical homomorphism of \boldsymbol{Z} into $\operatorname{End}_{R}(F)$.

Writing $A=R\{x\}$, we denote by $\mathfrak{D}(A ; R)$ the space of R-derivations of A. It is a free A-module of rank 1 and is generated by $D=d / d x$. We denote by $\mathfrak{D}^{*}(A ; R)$ the dual A-module of $\mathfrak{D}(A ; R)$ and call its element a differential of A. For $f \in A$ the map $D \rightarrow D f$ of $\mathfrak{D}(A ; R)$ into A defines a differential, which we denote by $d f$. A differential of the form $d f$ with $f \in A$ is called an exact differential. It is easy to see that $d x$ is an A-basis of $\mathfrak{D}^{*}(A ; R)$ and $d f=(D f) d x$ for any $f \in A$. Let $\omega=\psi(x) d x$ be a differential of A and let $\varphi(x) \in A$ with $\varphi(0)=0$. Then $\psi(\varphi(x)) d \varphi(x)$ is again a differential. We denote it by $\varphi^{*}(\omega)$. The map φ^{*} is an R-endomorphism of $\mathfrak{D}^{*}(A ; R)$. Let $F(x, y)$ be a (oneparameter) formal group over R. Introducing a new variable t, F is considered a formal group over $R\{t\}$. Define the right translation T_{t} of F by $T_{t}(x)=F(x, t)$. A differential ω of A is said to be an invariant differential on F if and only if $T_{t}{ }^{*}(\omega)=\omega$. The set of all the invariant differentials on F forms an R-module. We denote it by $\mathfrak{D}^{*}(F ; R)$.

Proposition 1. Let $F(x, y)$ be a one-parameter formal group over R. Put $\psi(z)=\left(\frac{\partial}{\partial x} F(0, z)\right)^{-1}$ and $\omega=\psi(x) d x$. Then we have $\psi(0)=1$ and $\mathfrak{D}^{*}(F ; R)$ is a free R-module of rank one generated by ω.

Proof. Since $F(x, y) \equiv x+y(\bmod \operatorname{deg} 2)$, we have $\frac{\partial}{\partial x} F(0, z) \equiv 1(\bmod \operatorname{deg}$ 1). Hence $\psi(z)$ is well-defined and $\psi(0)=1$, A differential $\eta=\lambda(x) d x$ of A
is invariant on F if and only if $\lambda(x) d x=\lambda(F(x, z)) \frac{\partial}{\partial x} F(x, z) d x$, or

$$
\begin{equation*}
\lambda(x)=\lambda(F(x, z)) \frac{\partial}{\partial x} F(x, z) . \tag{1}
\end{equation*}
$$

From (1) we have

$$
\lambda(0)=\lambda(z) \frac{\partial}{\partial x} F(0, z)
$$

or

$$
\begin{equation*}
\lambda(z)=\lambda(0) \psi(z) \tag{2}
\end{equation*}
$$

Define an R-homomorphism Φ of $\mathfrak{D}^{*}(F ; R)$ into R by $\Phi(\eta)=\lambda(0)$. By (2) Φ is injective. Now differentiating $F(u, F(v, w))=F(F(u, v), w)$ relative to u, we obtain

$$
\frac{\partial}{\partial x} F(u, F(v, w))=\frac{\partial}{\partial x} F(F(u, v), w) \frac{\partial}{\partial x} F(u, v),
$$

and then

$$
\frac{\partial}{\partial x} F(0, F(v, w))=\frac{\partial}{\partial x} F(v, w) \frac{\partial}{\partial x} F(0, v),
$$

or

$$
\begin{equation*}
(\psi(F(v, w)))^{-1}=\frac{\partial}{\partial x} F(v, w) \psi(v)^{-1} . \tag{3}
\end{equation*}
$$

Now (3) implies that $\psi(x)$ satisfies (1). Therefore ω belongs to $\mathfrak{D}^{*}(F ; R)$ and is clearly its R-basis.

We shall call this ω the canonical invariant differential on F.
Proposition 2. Let F be a one-parameter formal group over a \boldsymbol{Q}-algebra R. Then we have $F(x, y) \approx x+y$ over R.

Proof. As R is a \boldsymbol{Q}-algebra, all the differentials of A are exact. Let $\omega=$ $d f(x)$ with $f(x) \equiv x(\bmod \operatorname{deg} 2)$ be the canonical invariant differential on F. Then we have $d f(F(x, t))=d f(x)$, i.e. $f(F(x, t))-f(x) \in R\{t\}$. Put $f(F(x, t))=f(x)+g(t)$. Then we have $f(F(0, t))=0+g(t)$, or $g(t)=f(t)$. Since $f(x)$ is inversible, this completes the proof.

Prop. 2 was proved in Lazard [5] in an alternative way. More generally we can prove that a commutative formal group of arbitrary dimension over a \boldsymbol{Q} algebra is strongly isomorphic to the vector group of the same dimension.

Now let R be an integral domain of characteristic 0 and let K be the fraction field of R. We note that, if $\varphi(x) \in R\{x\}$ satisfies the functional equation $\varphi(x+y)$ $=\varphi(x)+\varphi(y), \varphi(x)$ must be of the form $a x$ with $a \in R$. Let F and G be group laws over R, let $\varphi \in \operatorname{Hom}_{R}(F, G)$ and let $c(\varphi)$ be the first-degree coefficient of φ,

The additive map $c: \varphi \rightarrow c(\phi)$ of $\operatorname{Hom}_{R}(F, G)$ into R, which is a unitary ringhomomorphism in the case $F=G$, is injective, because F (resp. G) $\approx x+y$ over K (cf. Lubin [6]). In particular the series $f(x) \in K\{x\}$ such that $f(x) \equiv x(\bmod \operatorname{deg} 2)$ and $F(x, y)=f^{-1}(f(x)+f(y))$ is uniquely determined by F. For this f and for $a \in R$ we put $[a]_{F}(x)=f^{-1}(a f(x))$. It is clear that $[a]_{F} \in \operatorname{End}_{R}(F)$ if and only if $[a]_{F}(x) \in R\{x\}$.

We now consider formal groups over a field k of characteristic $p>0$.
Lemma 1. Let F and G be group laws over k. If $\varphi \in \operatorname{Hom}_{k}(F, G)$ and if $\varphi \neq[0]$, there is $q=p^{r}$ such that $\varphi(x) \equiv a x^{q}[\bmod \operatorname{deg}(q+1)]$ with $a \neq 0$. Moreover $\varphi(x)$ is a power series in x^{q}.

Proof. See Lazard [5] or Lubin [6].
If $[p]_{F}(x) \equiv a x^{q}[\bmod \operatorname{deg}(q+1)]$ with $a \neq 0$ and $\dot{q}=p^{h}, h$ is called the height of F. If $[p]_{F}=0$, then the height of F is said to be infinite (Lazard [5]). We denote by $h(F)$ the height of F. It is easy to see that, if $h(F) \neq h(G)$, then $\operatorname{Hom}_{k}(F, G)=0$.

Now it is well known that $k\{x\}$ has the structure of a topological ring if we take powers of its maximal ideal as a basis of neighbourhoods at 0 . Endowed with the topology induced by it, $\operatorname{Hom}_{k}(F, G)\left(\right.$ resp. $\left.\operatorname{End}_{k}(F)\right)$ becomes a complete topological group (resp. ring) (Lubin [6]). It is clear that $\operatorname{End}_{k}(F)$ has no zerodivisor. Moreover it is easy to see that, if $h(F)<\infty$, the homomorphism $n \rightarrow[n]_{F}$ of \boldsymbol{Z} into $\operatorname{End}_{k}(F)$ is injective and this imbedding is continuous relative to p-adic topology of \boldsymbol{Z}. Since $\operatorname{End}_{k}(F)$ is complete, this extends to an imbedding of the p-adic integer ring \boldsymbol{Z}_{p} into $\operatorname{End}_{k}(F)$. In this way $\operatorname{End}_{k}(F)$ is a \boldsymbol{Z}_{p}-algebra and $\operatorname{Hom}_{k}(F, G)$ is a \boldsymbol{Z}_{p}-module.

The following theorem is fundamental in the theory of one-parameter formal groups over a field of positive characteristic.

Theorem 1. (Lazard [5], Dieudonné [2] and Lubin [6].)
(i) For every $h(1 \leqq h \leqq \infty)$ there is a formal group of height hover the prime field of characteristic $p>0$.
(ii) Let k be an algebraically closed field of characteristic $p>0$. If F and G are group laws over k and if $h(F)=h(G)$, then $F \sim G$ over k. Moreover, if $h(F)$ $=h(G)=\infty$, then $F \approx G$ over k.
(iii) Let k be as in (ii) and let F be a group law over k. If $h=h(F)<\infty$, $\operatorname{End}_{k}(F)$ is the maximal order in the central division algebra with invariant $1 / h$ over \boldsymbol{Q}_{p}.

Later we shall reprove (i) and (iii) as applications of our results in 2.

2. Certain formal groups over finite fields and \mathfrak{p}-adic integer rings

Let R be a complete discrete valuation ring of characteristic 0 such that the
residue class field $k=R / \mathrm{m}$ is of characteristic $p>0$, where m denotes the maximal ideal of R. For a group law F over R we obtain a group law over k by reducing the coefficients of $F \bmod \mathrm{~m}$. We denote it by F^{*}. If G is another group law over R, we derive the reduction map $*: \operatorname{Hom}_{R}(F, G) \rightarrow \operatorname{Hom}_{k}\left(F^{*}, G^{*}\right)$. The following two lemmas are due to Lubin [6].

Lemma 2. The map $c: \operatorname{Hom}_{R}(F, G) \rightarrow R$ is an isomorphism onto a closed subgroup of R.

This is Lemma 2.1.1. of [6].
Lemma 3. If $h\left(F^{*}\right)<\infty$, the reduction map *: $\operatorname{Hom}_{R}(F, G) \rightarrow \operatorname{Hom}_{k}\left(F^{*}\right.$, $\left.G^{*}\right)$ is injective.

This is lemma 2.3.1. of [6].
From now on until the end of 2 we denote by \mathfrak{v} the integer ring in an extension field K of $\boldsymbol{Q}_{\boldsymbol{p}}$, of finite degree n, and by \mathfrak{p} the maximal ideal of \mathfrak{p}. Let e and d be the ramification index and the degree of \mathfrak{p} respectively. The residue classs field $\mathfrak{o} / \mathfrak{p}$ is the finite field \boldsymbol{F}_{q} with q elements, where $q=p^{d}$. The following two lemmas play essential roles in our further investigation.

Lemma 4. Let π be a prime element of $\mathfrak{0}$. For any integers $\nu \geqq 0, a \geqq 1$ and $m \geqq 1$ we have

$$
\pi^{-\nu}(X+\pi Y)^{m p^{a v}} \equiv \pi^{-\nu} X^{m p^{a v}} \quad(\bmod \mathfrak{p})
$$

Proof. It suffices to prove our lemma for $a=m=1$. We have to prove

$$
\begin{equation*}
\binom{p^{\nu}}{i} \pi^{i-\nu} \equiv 0 \quad(\bmod \mathfrak{p}) \quad \text { for } \quad 1 \leqq i \leqq p^{\nu} \tag{4}
\end{equation*}
$$

This is trivial if $i \geqq \nu$. Assume $i<\nu$. Let $p^{\mu} \mid i$!, but $p^{\mu+1} X i$!. Then we see

$$
\mu=[i / p]+\left[i / p^{2}\right]+\cdots<i / p+i / p^{2}+\cdots=i /(p-1) \leqq i
$$

Hence we have

$$
\binom{p^{\nu}}{i} p^{i-\nu}=\left(p^{\nu}-1\right) \cdots\left(p^{\nu}-i+1\right) \cdot p^{i} / i!\equiv 0 \quad(\bmod p)
$$

and a fortiori (4).
The following lemma is a trivial generalization of [7], lemma 1.
Lemma 5. Let π be a prime element of \mathfrak{o} and let $a \geqq 1$ be an integer. Let $f(x)$ and $g(x)$ be power series in $\mathfrak{0}\{x\}$ such that
(5) $\quad f(x) \equiv g(x) \equiv \pi x \quad(\bmod \operatorname{deg} 2) \quad$ and $\quad f(x) \equiv g(x) \equiv x^{q^{a}} \quad(\bmod \mathfrak{p})$.

Moreover, let $L\left(z_{1}, \cdots, z_{n}\right)$ be a linear form with coefficients in $\mathfrak{0}$. Then there exists a unique power series $F\left(z_{1}, \cdots, z_{n}\right)$ with coefficients in $\mathfrak{0}$ such that

$$
\begin{equation*}
F\left(z_{1}, \cdots, z_{n}\right) \equiv L\left(z_{1}, \cdots, z_{n}\right) \quad(\bmod \operatorname{deg} 2) \tag{6}
\end{equation*}
$$

and

$$
f\left(F\left(z_{1}, \cdots, z_{n}\right)\right)=F\left(g\left(z_{1}\right), \cdots, g\left(z_{n}\right)\right)
$$

Proof. See Lubin-Tate [7]. Note that F is the only power series with coefficients in any overfield of o satisfying (6).

Denote by \mathfrak{O} the ring of integers in the maximal unramified extension of K. We are now ready to prove the following:

Theorem 2. Let π be a prime element of 0 and let $a \geqq 1$ be an integer. Put $f(x)=\sum_{\nu=0}^{\infty} \pi^{-v} x^{a \alpha \nu}$ and $F(x, y)=f^{-1}(f(x)+f(y))$. Then we have the following:
(i) F is a group law over $\mathfrak{0}$ and $\operatorname{End}_{\mathfrak{D}}(F)$ is the integer ring of the unramified extension of K of degree a.
(ii) F^{*} is a group law of height an over \boldsymbol{F}_{q}. Denoting by $\xi_{F^{*}}$ the q-th power endomorphism of F^{*} (i.e. $\xi_{F^{*}}(x)=x^{q}$), we have

$$
\begin{equation*}
[\pi]_{F}^{*}=\xi_{F^{*}}^{a} \tag{7}
\end{equation*}
$$

(iii) If G is another group law over o such that $[\pi]_{G} \in \operatorname{End}_{0}(G)$ and such that $[\pi]_{G}^{*}=\xi_{G^{*}}^{a}$, then $F \approx G$ over o .

Proof. We define $u(x) \in K\{x\}$ by

$$
\begin{equation*}
[\pi]_{F}(x)=f^{-1}(\pi f(x))=x^{q a}+\pi u(x) . \tag{8}
\end{equation*}
$$

We shall prove $u(x) \in \mathfrak{o}\{x\}$. From (8) we have

$$
\begin{gathered}
\pi f(x)=f\left(x^{q a}+\pi u(x)\right), \\
\pi x+\sum_{\nu=0}^{\infty} \pi^{-\nu} x^{q^{a(v+1)}}=x^{q^{a}}+\pi u(x)+\sum_{\nu=1}^{\infty} \pi^{-\nu}\left(x^{q a}+\pi u(x)\right)^{q^{a \nu}}
\end{gathered}
$$

and

$$
\begin{equation*}
\pi(x-u(x))=\sum_{\nu=1}^{\infty}\left[\pi^{-\nu}\left(x^{q a}+\pi u(x)\right)^{q^{a v}}-\pi^{-\nu} x^{q^{a(\nu+1)}}\right] . \tag{9}
\end{equation*}
$$

Put $u(x)=x+\sum_{i=2}^{\infty} b_{i} x^{i}$ and assume $b_{2}, \cdots, b_{k-1} \in \mathfrak{o}$. Since b_{k} is written as a polynomial of b_{2}, \cdots, b_{k-1} by (9), we have $b_{k} \in \mathfrak{o}$ by applying lemma 4 to (9). This proves $u(x) \in \mathfrak{o}\{x\}$.

This being proved, we can apply lemma 5 to $[\pi]_{F}(x)$ as is seen from (8). First $F(x, y) \in \mathfrak{o}\{x, y\}$ follows from $[\pi]_{F} \circ F=F \circ[\pi]_{F}$ by lemma 5. The equality (7) follows directly from (8). Now put $p=\varepsilon \pi^{e}$. Then ε is a unit in \mathcal{D}. We have

$$
[p]_{F}=[\varepsilon]_{F} \circ[\pi]_{F}^{e} .
$$

and hence, by (7),

$[p]_{F^{*}}=\left(\right.$ automorphism of $\left.F^{*}\right) \circ \xi_{F^{*}}^{a e}$

Since $\xi_{F^{*}}^{a e}(x)=x^{p d a e}$, we have $h\left(F^{*}\right)=d a e=a n$, which completes the proof of (ii). Let G be as in (iii). By prop. 2 there is $\varphi(x) \in K\{x\}$ with $\varphi(x) \equiv x(\bmod \operatorname{deg} 2)$ such that $\varphi \circ F=G \circ \varphi$. Then we have $\varphi \circ[\pi]_{F}=[\pi]_{G} \circ \varphi$. Hence φ has coefficients in \mathfrak{o} by lemma 5 .

It remains to determine $\operatorname{End}_{\mathfrak{D}}(F)$. Let w be a primitive $\left(q^{a}-1\right)$-th root of unity in $\mathfrak{\cap}$. By definition of $f(x)$ we have $f(w x)=w f(x)$ and so $F(w x, w y)=$ $w F(x, y)$. Hence we have $w x=[w]_{F}[x] \in \operatorname{End}_{\mathfrak{D}}(F)$. This implies that the fraction field L of $\operatorname{End}_{D}(F)$ contains the unramified extension of \boldsymbol{Q}_{p} of degree $a d$. Moreover, since $[\pi]_{F} \in \operatorname{End}_{0}(F)$, the ramification index of L / \boldsymbol{Q}_{p} is a multiple of e. Thus we have $\left[L: \boldsymbol{Q}_{p}\right] \geqq a d e=a n$. On the other hand, as $h\left(F^{*}\right)=a n$, we have $\left[L: \boldsymbol{Q}_{p}\right] \leqq a n$ by th. 1 , (iii) and by lemma 3. Hence we have $\left[L: \boldsymbol{Q}_{p}\right]=a n$. Since $\boldsymbol{Z}_{p}[w, \pi]$ is the integer ring of L, this proves (ii) and completes the proof of th. 2.

The existence of a formal group F with the properties (i), (ii) in th. 2 was proved by Lubin ([6], th. 5.1.2.). But his construction of F is not explicit as ours.

Corollary. Let F be a formal group over \boldsymbol{Z}_{p} such that $h\left(F^{*}\right)=1$. Then we can find a prime element π of \boldsymbol{Z}_{p} such that $[\pi]_{F}^{*}(x)=x^{p}$. The map: $F \rightarrow \pi$ gives a bijection Φ : \{strong isomorphism classes of formal groups F over \boldsymbol{Z}_{p} such that $\left.h\left(F^{*}\right)=1\right\} \rightarrow\left\{\right.$ prime elements of $\left.\boldsymbol{Z}_{p}\right\}$.

Proof. Since $h\left(F^{*}\right)=1$, the map *: $\operatorname{End}_{Z_{p}}(F) \rightarrow \operatorname{End}_{F_{p}}\left(F^{*}\right)$ is bijective by th. 1, (iii). As $\xi_{F^{*}}(x)=x^{p} \in \operatorname{End}_{F_{p}}\left(F^{*}\right)$, this proves the first assertion. The injectivity of Φ follows from th. 2, (iii) and the surjectivity from th. 2, (ii).

We now prove th. 1, (iii) assuming th. 1, (ii). Applying th. 2 to $\mathrm{o}=\boldsymbol{Z}_{p}$ and $f(x)=\sum_{\nu=0}^{\infty} p^{-v} x^{p^{h \nu}}$, we obtain a group law F^{*} over \boldsymbol{F}_{p}, of height h. Let k be the algebraic closure of $\boldsymbol{F}_{\boldsymbol{p}} . \quad$ Since $\operatorname{End}_{k}\left(F^{*}\right)$ contains $[w]_{F}^{*}$ and $\xi_{F^{*}}, \operatorname{End}_{k}\left(F^{*}\right)$ contains the maximal order M_{h} in the central division algebra D_{h} of rank h^{2} over \boldsymbol{Q}_{p}, and invariant $1 / h$. (For detalis see [6], 5.1.3.) We shall prove $\operatorname{End}_{k}\left(F^{*}\right)=M_{h}$. In the following we write ξ instead of $\xi_{F^{*}}$ for simplicity. Let $\mathfrak{1}_{h}$ be the integer ring in the unramified extension of degree h over \boldsymbol{Q}_{p} and let S be a system of representatives of \mathfrak{r}_{h} modulo its maximal ideal. For $\beta \in S$, we write $[\beta]$ instead of $[\beta]_{F}^{*}$ for brevity. Then we have $[\beta](x) \equiv \beta^{*} x(\bmod \operatorname{deg} 2)$. Let ϕ be any element of $\operatorname{End}_{k}\left(F^{*}\right)$ and let $\varphi(x) \equiv \alpha_{0} x(\bmod \operatorname{deg} 2)$. Comparing the r-th degree coefficients of $\varphi \circ[p]_{F}^{*}=[p]_{F}^{*} \circ \rho$, where $r=p^{h}$, we have $\alpha_{0}=\alpha_{0}^{r}$, i.e. $\alpha_{0} \in \boldsymbol{F}_{r}$. Hence we can find $\beta_{0} \in S$ such that $\left(\varphi-\left[\beta_{0}\right]\right)(x) \equiv 0(\bmod \operatorname{deg} 2)$. Then, by lemma 1 , there is $\varphi_{1} \in \operatorname{End}_{k}\left(F^{*}\right)$ such that $\varphi-\left[\beta_{0}\right]=\varphi_{1} \circ \xi$. Applying the same argument to φ_{1}, we obtain $\beta_{1} \in S$ and $\varphi_{2} \in \operatorname{End}_{k}\left(F^{*}\right)$ such that $\varphi_{1}-\left[\beta_{1}\right]=\varphi_{2} \circ \xi$. By repeating the same procedure n-times we derive $\beta_{0}, \beta_{1}, \cdots, \beta_{n-1} \in S$ and $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n} \in$ $\operatorname{End}_{k}\left(F^{*}\right)$ such that $\varphi_{i}-\left[\beta_{i}\right]=\varphi_{i+1} \circ \xi$ for $0 \leqq i \leqq n-1$, where $\varphi_{0}=\varphi$. Then
we have

$$
\varphi=\left[\beta_{0}\right]+\left[\beta_{1}\right] \xi+\cdots+\left[\beta_{n-1}\right] \xi^{n-1}+\varphi_{n} \xi^{n}
$$

Hence the series $\left[\beta_{0}\right]+\left[\beta_{1}\right] \xi+\cdots+\left[\beta_{n-1}\right] \xi^{n-1}+\cdots$ converges and coincides with φ. Since $\left[\beta_{i}\right] \in M_{h}$, this proves $\varphi \in M_{h}$.

Remark. Formal groups F^{*} constructed in th. 2 do not exhaust all the formal groups over finite fields (cf. Serre [13], p. 9).

3. Certain formal groups over \boldsymbol{Z}

We now give explicit global construction of certain formal groups over \boldsymbol{Z}. The method is based on lemma 4 and lemma 5 as in 2.

Lemma 6. Let p be a prime number and let $a_{1}, a_{2}, \cdots, a_{n}, \cdots$ be rational integers satisfying the following conditions:
(i) If $n=p^{\nu} m$ with $p \nmid m$, then $a_{n}=a_{p}{ }^{\nu} a_{m}$
(ii) $a_{1}=1 . \quad p \nmid a_{p}$.

$$
a_{p^{\nu+2}}-a_{p} a_{p^{\nu+1}}+p a_{p^{\nu}}=0 \quad \text { for } \quad \nu \geqq 0
$$

Let π be the prime element of Z_{p} satisfying the equation

$$
\begin{equation*}
X^{2}-a_{p} X+p=0 \tag{10}
\end{equation*}
$$

Put $f(x)=\sum_{n=1}^{\infty} n^{-1} a_{n} x^{n}$ and $F(x, y)=f^{-1}(f(x)+f(y))$. Then we have $F(x, y) \in$ $\boldsymbol{Z}_{p}\{x, y\},[\pi]_{F}(x) \in \boldsymbol{Z}_{p}\{x\}$ and $[\pi]_{F}(x) \equiv x^{p}(\bmod p)$.

Proof. By Hensel's lemma and by the assumption $p X a_{p}$ the equation (10) has solutions in \boldsymbol{Z}_{p}. Let π^{\prime} be the other root of (10). It is a unit in $\boldsymbol{Z}_{\boldsymbol{p}}$. Since

$$
a_{p^{\nu+2}}-\left(\pi+\pi^{\prime}\right) a_{p^{\nu+1}}+\pi \pi^{\prime} a_{p^{v}}=0
$$

we have

$$
\begin{equation*}
a_{p^{\nu+2}}-\pi^{\prime} a_{p^{\nu+1}}=\pi\left(a_{p^{\nu+1}}-\pi^{\prime} a_{p^{\nu}}\right) \quad \text { for } \quad \nu \geqq 0 \tag{11}
\end{equation*}
$$

Define $u(x) \in \boldsymbol{Q}_{p}\{x\}$ by

$$
\begin{equation*}
[\pi]_{F}(x)=f^{-1}(\pi f(x))=x^{p}+\pi u(x) \tag{12}
\end{equation*}
$$

The point of the proof is to prove $u(x) \in \boldsymbol{Z}_{p}\{x\}$ as in th. 2. From (12) we obtain

$$
\pi \sum_{n=1}^{\infty} n^{-1} a_{n} x^{n}=x^{p}+\pi u(x)+\sum_{n=2}^{\infty} n^{-1} a_{n}\left(x^{p}+\pi u(x)\right)^{n}
$$

or

$$
\begin{equation*}
\pi(x-u(x))=x^{p}+\sum_{n=2}^{\infty} n^{-1} a_{n}\left(x^{p}+\pi u(x)\right)^{n}-\pi \sum_{n=2}^{\infty} n^{-1} a_{n} x^{n} . \tag{13}
\end{equation*}
$$

Put $u(x)=\sum_{i=1}^{\infty} b_{i} x^{i}$, where $b_{1}=1$. Assuming $b_{2}, \cdots, b_{k-1} \in Z_{p}$, we shall prove $b_{k} \in \boldsymbol{Z}_{p}$. By lemma 4 we have

$$
n^{-1}\left(x^{p}+\pi \sum_{i=1}^{k-1} b_{i} x^{i}\right)^{n} \equiv n^{-1} x^{p n} \quad(\bmod p)
$$

Hence by (13), we have only to prove that the k-th degree coefficient c_{k} in

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-1} a_{n} x^{p n}-\pi \sum_{n=2}^{\infty} n^{-1} a_{n} x^{n} \tag{14}
\end{equation*}
$$

is a multiple of p. If $p \nmid k$, this is clear. Assume $k=p^{\nu} m$ with $\nu \geqq 1, p \nmid m$. We have

$$
\begin{aligned}
c_{k}=p^{-(\nu-1)} m^{-1} a_{n / p} & -p^{-\nu} m^{-1} \pi a_{n} \\
& =p^{-\nu} m^{-1} a_{m}\left(p a_{p^{\nu-1}}-\pi a_{p^{\nu}}\right)
\end{aligned}
$$

or

$$
\begin{equation*}
c_{k}=p^{-\nu} m^{-1} a_{m} \pi\left(\pi^{\prime} a_{p^{\nu-1}}-a_{p^{\nu}}\right) . \tag{15}
\end{equation*}
$$

Applying (11) to (15) repeatedly we have

$$
\begin{aligned}
c_{k} & =p^{-\nu} m^{-1} a_{m} \pi^{\nu}\left(\pi^{\prime} a_{1}-a_{p}\right) \\
& =-p^{-\nu} m^{-1} a_{m} \pi^{\nu+1} \\
& \equiv 0 \quad(\bmod p) .
\end{aligned}
$$

This proves $b_{k} \in \boldsymbol{Z}_{p}$ and by induction we see in fact $u(x) \in \boldsymbol{Z}_{p}\{x\}$. The fact $F(x, y) \in \boldsymbol{Z}_{p}\{x, y\}$ follows from this by Lemma 5. (cf. The proof of th. 2)

Lemma 7. Let p be a prime number, let $\varepsilon=+1$ or -1 , and let $h \geqq 1$ be an integer. Let $a_{1}, a_{2}, \cdots, a_{n}, \cdots$ be rational integers satisfying the following conditions:
(i) If $n=p^{\nu} m$ with $p \nmid m$, then $a_{n}=a_{p^{\nu}} a_{m}$.
(ii) $\quad a_{1}=1 . \quad a_{p}=\cdots=a_{p^{k-1}}=0$.

$$
a_{p^{\nu+h}}=\varepsilon p_{n-1} a_{p^{\nu}} \quad \text { for } \quad \nu \geqq 0 .
$$

Put $f(x)=\sum_{n=1}^{\infty} n^{-1} a_{n} x^{n}$ and $F(x, y)=f^{-1}(f(x)+f(y))$. Then we have $F(x, y) \in$ $Z_{p}\{x, y\}$ and $[\varepsilon p]_{F}(x) \equiv x^{p^{h}}(\bmod p)$.

Proof. Repeat the same reasoning as in the proof of lemma 6. The point is to prove $u(x) \in \boldsymbol{Z}_{p}\{x\}$, where $u(x)$ is defined by $[\varepsilon p]_{F}(x)=x^{p^{h}}+p u(x)$. The details will be left to the reader.

Theorem 3. Assume that to every prime number p there is given a local L-series $L_{p}(s)$ of the type:
(a) $\quad L_{p}(s)=1$,
(b) $\quad L_{p}(s)=\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1}$ with $a_{p} \in Z, p \nmid a_{p}$,
or
(c) $\quad L_{p}(s)=\left(1-\varepsilon_{p} p^{h-1-h s}\right)^{-1}$ with $\varepsilon_{p}=+1$ or $-1, h=h_{p} \geqq 1$.

Define the global (formal) L-series $L(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}$ by $L(s)=\prod_{p} L_{p}(s)$ and put $f(x)=\sum_{n=1}^{\infty} n^{-1} a_{n} x^{n}$. Then the formal group $F(x, y)=f^{-1}(f(x)+f(y))$ has coefficients in \boldsymbol{Z}. Denote by F^{*} the reduction of $F \bmod p$. Then we have:

Case (a): $\quad F \approx x+y$ over \boldsymbol{Z}_{p}.
Case $(b): \quad h\left(F^{*}\right)=1$ and the p-th power endomorphism of F^{*} is a root of the equation

$$
X^{2}-a_{p} X+p=0
$$

Case $(c): \quad h\left(F^{*}\right)=h$ and $\left[\varepsilon_{p} p\right]_{F}(x) \equiv x^{p^{h}} \quad(\bmod p)$.
Proof. If $L_{p}(s)=1$, the coefficients of $f(x)$ are p-integral and we have $F(x, y)$ $\approx x+y$ over Z_{p}. If $L_{p}(s)$ is of type (b) (resp. (c)), it is easily verified that the sequence $a_{1}, a_{2}, \cdots, a_{n}, \cdots$ satisfies the assumptions of lemma 6 (resp. lemma 7). Therefore the coefficients of $F(x, y)$ are p-integral for every p. This proves $F(x, y) \in \boldsymbol{Z}\{x, y\}$. The other assertions of our theorem follow from lemma 6 and lemma 7.

The following proposition is useful in the study of algebroid commutative formal groups over \boldsymbol{Q}.

Proposition 3. Let p be a prime number and let o be the integer ring of the quadratic unramified extension of \boldsymbol{Q}_{p}. Put $f_{1}(x)=\sum_{\nu=0}^{\infty} p^{-\nu} x^{p^{\nu}}, f_{2}(x)=\sum_{\nu=0}^{\infty}(-p)^{-\nu} x^{p^{\nu}}$ and $F_{i}(x, y)=f_{i}^{-1}\left(f_{i}(x)+f_{i}(y)\right)$ for $i=1,2$. Then we have the follwoing:
(i) $F_{1}^{*} \sim F_{2}^{*}$ over $\boldsymbol{F}_{p^{2}}$, but $F_{1}^{*} \nsim F_{2}^{*}$ over \boldsymbol{F}_{p}. If p is odd, then $F_{1} \sim F_{2}$ over o .
(ii) Let F be a group law over \boldsymbol{Z}_{p} such that $F^{*}(x, y) \sim x+y+x y$ over $\boldsymbol{F}_{p^{2}}$. Then we have either $F \approx F_{1}$ or $F \approx F_{2}$ over Z_{p} according as $F^{*}(x, y) \sim x+y+x y$ over \boldsymbol{F}_{p} or not.

Proof. By th. $3 F_{i}(i=1,2)$ has coefficients in \boldsymbol{Z} and $[p]_{F_{1}}(x) \equiv[-p]_{F_{2}}(x)$ $\equiv x^{p}(\bmod p) . \quad$ Let k be the algebraic closure of $\boldsymbol{F}_{p} . \quad$ Since $h\left(F_{1}^{*}\right)=h\left(F_{2}^{*}\right)=1$, there is an inversible series $\varphi(x) \in k\{x\}$ such that $\varphi \circ F_{1}^{*}=F_{2}^{*} \circ \rho$ by th. 1, (ii). Then we have $\varphi \circ\left[p^{2}\right]_{F_{1}}^{*}=\left[p^{2}\right]_{F_{2}}^{*} \circ \varphi$, i.e. $\varphi\left(x^{p^{2}}\right)=\varphi(x)^{p^{2}}$. This implies $\varphi(x)$ $\in \boldsymbol{F}_{p}{ }^{2}\{x\}$ and $F_{1}^{*} \sim F_{2}^{*}$ over $\boldsymbol{F}_{p^{2}}$. If $\varphi(x) \in \boldsymbol{F}_{p}\{x\}$, we should have

$$
\begin{aligned}
& \left([-p]_{F_{2}}^{*} \circ \varphi\right)(x)=\varphi(x)^{p}=\varphi\left(x^{p}\right) \\
& =\left(\varphi \circ[p]_{F_{1}}^{*}\right)(x)=\left([p]_{F_{2}}^{*} \circ \varphi\right)(x),
\end{aligned}
$$

and then

$$
[-p]_{F_{2}}^{*}=[p]_{F_{2}}^{*},
$$

a contradiction. Hence $F_{1}^{*} \nsim F_{2}^{*}$ over \boldsymbol{F}_{p}. If p is odd, o contains the primitive ($p^{2}-1$)-th root of unity and there is $w \in \mathfrak{o}$ such that $w^{p-1}=-1$. Then we have $w^{p^{\nu}}=(-1)^{\nu} w$. Hence $f_{1}(w x)=w f_{2}(x)$ and then $F_{1}(w x, w y)=w F_{2}(x, y)$, which proves (i). Now the p-th power endomorphism of F^{*} comes from an endomorphism of F, say $[\pi]_{F}$, since $h\left(F^{*}\right)=1$. As the p-times endomorphism of the multiplicative group $x+y+x y$ over \boldsymbol{F}_{p} is $(1+x)^{p}-1=x^{p}$, we have $F_{1}^{*}(x, y) \sim x+$ $y+x y$ over \boldsymbol{F}_{p} by th. 1, (ii) and so $F^{*} \sim x+y+x y \sim F_{1}^{*}$ over $\boldsymbol{F}_{p}{ }^{2}$. Let ψ be an inversible element of $F_{p^{2}}\{x\}$ such that $\psi \circ F^{*}=F_{1}^{*} \circ \psi$. Then

$$
\begin{aligned}
& \left(\psi \circ\left[\pi^{2}\right]_{F}^{*}\right)(x)=\psi\left(x^{p^{2}}\right)=\psi(x)^{p^{2}}=\left(\left[p^{2}\right]_{F_{1}}^{*} \circ \psi\right)(x) \\
& \quad=\left(\psi \circ\left[p^{2}\right]_{F}^{*}\right)(x),
\end{aligned}
$$

which implies $\pi^{2}=p^{2}$. Then by th. 2, (iii) we have $F \approx F_{1}$ or $F \approx F_{2}$ over \boldsymbol{Z}_{p} according as $\pi=p$ or $-p$, i.e. according as $F^{*} \sim x+y+x y$ or not.

4. Group laws and zeta-functions of group varieties of dimension one

We now interprete zeta-functions of certain commutative group varieties from our point of view. Let $F(x, y)$ be a group law over \boldsymbol{Z}. Then there is unique $f(x) \in \boldsymbol{Q}\{x\}$ such that $f(x) \equiv x(\bmod \operatorname{deg} 2)$ and $F(x, y)=f^{-1}(f(x)+f(y))(c f .1)$. It is clear that $d f(x)=f^{\prime}(x) d x$ is the canonical invariant differential ω on F. Let $f^{\prime}(x)=\sum_{n=1}^{\infty} a_{n} x^{n-1}$ and define a (formal) L-series $L(s)$ by $L(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}$. If each one of F, f, ω and $L(s)$ is given, the rests are uniquely determined from it.

Theorem 4. Let K be a quadratic number field, let o be the integer ring of K and let D be the discriminant of K. Then the Dirichlet L-function $\sum_{n=1}^{\infty}\left(\frac{D}{n}\right) n^{-s}$ is obtained from a group law $G(x, y)$ over \boldsymbol{Z}. Moreover, let $F(x, y)=x+y+\sqrt{D} x y$. Then we have $F \approx G$ over 0 .

Proof. Let $\chi(n)=\left(\frac{D}{n}\right)$ be the Kronecker symbol and define

$$
\begin{equation*}
P(u)=\underset{\substack{a \text { mod } D \\ x(a)=1}}{ }\left(1-\zeta^{a} u\right), \quad \text { where } \quad \zeta=\exp (2 \pi \sqrt{-1}| | D \mid) \tag{16}
\end{equation*}
$$

It is easy to see $P(u) \in \mathfrak{o}[u]$. Let σ be the non-trivial automorphism of K and put

$$
\begin{equation*}
\varphi(u)=\left(P^{\sigma}(u)-P(u)\right) / \sqrt{D} P(u) \tag{17}
\end{equation*}
$$

We have only to prove that $\varphi(u)=u+\cdots \in \mathfrak{o}\{u\}$ and

$$
\begin{equation*}
d \varphi(u) /(1+\sqrt{D} \varphi(u))=\sum_{n=1}^{\infty} \chi(n) u^{n-1} d u \tag{18}
\end{equation*}
$$

since $d x /(1+\sqrt{ } \bar{D} x)$ is the canonical invariant differential on F. We recall

$$
\begin{equation*}
\sum_{r \bmod D} \chi(r) \zeta^{n r}=\chi(n) \sqrt{D} \quad \text { for any } \quad n \in Z \tag{19}
\end{equation*}
$$

(Gauss sum). The first-degree coefficient of $\varphi(u)$ is

$$
\begin{aligned}
& \left(-\sum_{\substack{b \bmod D \\
x(b)=-1}} \zeta^{b}+\sum_{\substack{a \bmod D \\
x(a)=1}} \zeta^{a}\right) / \sqrt{D} \\
& =\left(\sum_{r \bmod D} \chi(r) \zeta^{r}\right) / \sqrt{D}=1
\end{aligned}
$$

by (19). Let α_{i} be the i-th degree coefficient of $P^{\sigma}-P$. We shall prove $\alpha_{i} \equiv 0$ $(\bmod \sqrt{\bar{D}})$. Since $\left(P^{\sigma}-P\right)^{\sigma}=-\left(P^{\sigma}-P\right), \alpha_{i}$ is of the form $c_{i} \sqrt{D}$ with $2 c_{i} \in \boldsymbol{Z}$. If D is odd, we have at once $c_{i} \in \boldsymbol{Z}$. If D is even, we have $D \equiv 0(\bmod 4)$. In this case we can easily check

$$
\chi(r+D / 2)=-\chi(r) \quad \text { for any } \quad r \in \boldsymbol{Z}
$$

and so $\left\{\zeta^{a} \mid a \bmod D, \chi(a)=1\right\}$ coincide with $\left\{-\zeta^{b} \mid b \bmod D, \chi(b)=-1\right\}$ as a whole. Hence $\alpha_{i}=0$ or twice an integer according as i is even or odd. This shows $c_{i} \in \boldsymbol{Z}$ and $\varphi(u) \in \mathfrak{o}\{u\}$. Let us compute $d \varphi(u) /(1+\sqrt{D} \varphi(u))$. We have

$$
\begin{aligned}
d \varphi(u) & =\sqrt{ } \bar{D}^{-1} d\left(P^{\sigma} / P\right) \\
& =\frac{1}{\sqrt{ } \bar{D}} \frac{P^{\sigma}}{P}\left(\sum_{b} \frac{-\zeta^{b}}{1-\zeta^{b} u}-\sum_{a} \frac{-\zeta^{a}}{1-\zeta^{a} u}\right) d u \\
& =\frac{1}{\sqrt{ } \bar{D}} \frac{P^{\sigma}}{P}\left(\sum_{r \bmod D} \frac{\chi(r) \zeta^{r}}{1-\zeta^{r} u}\right) d u \\
& =\sqrt{ } \bar{D}^{-1} P^{\sigma-1} \sum_{n=1}^{\infty} \sum_{r \bmod D} \chi(r) \zeta^{n r} u^{n-1} d u \\
& =P^{\sigma-1} \sum_{n=1}^{\infty} \chi(n) u^{n-1} d u \quad(\text { by }(19)) .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\frac{d \varphi(u)}{1+\sqrt{D} \varphi(u)} & =\frac{P^{\sigma-1} \sum_{n=1}^{\infty} \chi(n) u^{n-1} d u}{1+\left(P^{\sigma}-P\right) / P} \\
& =\sum_{n=1}^{\infty} \chi(n) u^{n-1} d u
\end{aligned}
$$

This completes the proof of our theorem.
Now the Dirichlet L-function $L(s, \chi)$ has an Euler product of the form $\Pi_{p}\left(1-\varepsilon_{p} p^{-s}\right)^{-1}$ where $\varepsilon_{p}=\chi(p)$. By th. $3 \varepsilon_{p}$ is uniquely determined by the group law F. From this point of view $L(s, \chi)$ can be characterized as the L-series attached to a normal form over \boldsymbol{Z} of the algebroid group F. The Euler product
implies that the group law F is "the direct product" of group laws over $\boldsymbol{Z}_{\boldsymbol{p}}$'s attached to p-factors of $L(s, \chi)$.

Quite the same holds for elliptic curves over \boldsymbol{Q}. In the following we mean by an elliptic curve an abelian variety of dimension one. Let C be an elliptic curve over \boldsymbol{Q}. Néron [10] shows that there is an essentially unique (affine) model for C of the form

$$
\begin{equation*}
Y^{2}+\lambda X Y+\mu Y=X^{3}+\alpha X^{2}+\beta X+\gamma \tag{20}
\end{equation*}
$$

where $\lambda, \mu, \alpha, \beta, \gamma$ are integers and the discriminant of the equation (18) is as small as possible. For this model $C_{p}=C \bmod p$ is an irreducible curve for every prime number p. Then local L-series $L_{p}(s)$ of C are defined as follows.
(I) If C_{p} is of genus 1 , we put

$$
L_{p}(s)=\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1}
$$

where $1-a_{p} U+p U^{2}$ is the numerator of the zeta-function of C_{p}.
(II) If C_{p} has an ordinary double point, we put $\varepsilon_{p}=+1$ or -1 according as the tangents at the double point are rational over \boldsymbol{F}_{p} or not and write

$$
L_{p}(s)=\left(1-\varepsilon_{p} p^{-s}\right)^{-1}
$$

(III) If C_{p} has a cusp, we put

$$
L_{p}(s)=1
$$

In case (II) the reduction of the group law of C is isomorphic to the multiplicative group over $\boldsymbol{F}_{p^{2}}$ and is isomorphic to it over \boldsymbol{F}_{p} if and only if $\varepsilon_{p}=+1$. In case (III) the reduction of the group law of C is the additive group ([10], Chap. III, prop. 3).

Now, we take $t=X / Y$ as a local parameter at the origin. By [15], Chap. III, prop. $4 t$ is a local parameter at the origin of C_{p} for every p. Writing down the group law of C as a formal power series relative to the variable t, we obtain a formal group $F(x, y)$ over \boldsymbol{Z}. (The fact $F(x, y) \in \boldsymbol{Z}\{x, y\}$ can be verified also by direct computation.) We shall call a formal group over \boldsymbol{Z}, strongly isomorphic to this F over \boldsymbol{Z}, a formal minimal model for C over \boldsymbol{Z}.

Theorem 5. Let $C, C_{p}, L_{p}(s)$ and F be as above. Let S be any set of prime numbers which does not contain $p=2$ or 3 , if C_{p} has genus one and $a_{p}= \pm p$, and put $\boldsymbol{Z}_{S}=\bigcap_{p \in S}\left(\boldsymbol{Z}_{p} \cap \boldsymbol{Q}\right)$. Write $\prod_{p \in S} L_{p}(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}, g(x)=\sum_{n=1}^{\infty} n^{-1} a_{n} x^{n}$ and $G(x, y)$ $=g^{-1}(g(x)+g(y))$. Then $G(x, y)$ is a formal group over \boldsymbol{Z} and $F \approx G$ over \boldsymbol{Z}_{S}.

Proof. If C_{p} has genus one and $p \mid a_{p}$, we see easily $a_{p}=0$ or $a_{p}= \pm p$ with $p=2$ or 3 by Riemann hypothesis $\left|a_{p}\right|<2 \sqrt{p}$. The latter cases being excluded,
we can apply th. 3 to $\prod_{p \in S} L_{p}(s)$ and obtain $G(x, y) \in \boldsymbol{Z}\{x, y\}$. In order to show $F \approx G$ over \boldsymbol{Z}_{S}, we have only to prove $F \approx G$ over \boldsymbol{Z}_{p} for every $p \in S$, since a power series $\varphi(x)$ such that $\varphi(x) \equiv x(\bmod \operatorname{deg} 2)$ and $\varphi \circ F=G \circ \rho$ is unique. If C_{p} has genus one for $p \in S$, then $F \approx G$ over \boldsymbol{Z}_{p} by th. 3 and th. 2, (iii), since $X^{2}-a_{p} X+p$ is the characteristic polynomial of the p-th power endomorphism of C_{p}. In case (II) $F \bmod p$ is isomorphic to the multiplicative group $x+y+x y$ over $\boldsymbol{F}_{p^{2}}$ and isomorphic to it over \boldsymbol{F}_{p} is and only if $\varepsilon_{p}=+1$. Hence we have $F \approx G$ over \boldsymbol{Z}_{p} by prop. 3, (ii), by th. 3 and by th. 2, (iii). In case (III) it is clear $F \approx G$ over \boldsymbol{Z}_{p}. This completes our proof.

Remark. It seems that the assumption on S in th. 5 would be superfluous. But I have not been able to get rid of it.

Corollary 1. Notations being as in th. 5, assume that $a_{p} \neq \pm p$ for $p=2,3$. Then the formal group attached to the zeta-function $L(s ; C)=\prod_{p} L_{p}(s)$ of C has coefficients in \boldsymbol{Z} and is a formal minimal model for C.

Corollary 2. Let C and C^{\prime} be elliptic curves over \boldsymbol{Q} and let S be a set of primes satisfying the assumption in th. 5 for each curve. Then formal minimal models of C and C^{\prime} are isomorphic over \boldsymbol{Z}_{S}, if and only if p-factors of $L(s ; C)$ and $L(s$; C^{\prime}) coincide for every $p \in S$.

Corollary 3. Let notations be as in th. 5. If C_{p} has genus one for $p \in S$, $a_{p} \bmod p$ is the Hasse invariant of C_{p}.

Proof. Take $f(x) \in \boldsymbol{Q}\{x\}$ such that $f(x) \equiv x(\bmod \operatorname{deg} 2)$ and $F(x, y)=$ $f^{-1}(f(x)+f(y))$. Then $f^{\prime}(t) d t$ is the canonical invariant differential on F, i.e. the t-expansion of an differential of the 1st kind on C. Hence our assertion follows from definition of Hasse invariant and from th. 5.

Remark. Coroll. 3 is a special case of th. 1 of Manin [9]. So his theorem is suggestive for generalization of th. 5 to an abelian variety of higher dimension over an algebraic number field.

Corollary 4. Let C be an elliptic curve over \boldsymbol{Q} and assume $a_{p}=0$ for a prime number p. Denote by o the integer ring of the quadratic unramified extension of $\boldsymbol{Q}_{\boldsymbol{p}}$. Then C has formal complex multiplications over \mathfrak{v}, i.e. $\operatorname{End}_{\mathfrak{0}}(F)=\mathfrak{0}$.

Proof. Let H be the formal group over \boldsymbol{Z} attached to the L-s ries $(1+$ $\left.p^{1-2 s}\right)^{-1}$. We have $H(x, y)=h^{-1}(h(x)+h(y))$ where $h(x)=\sum_{\nu=0}^{\infty}(-p)^{-\nu} x^{p^{2 \nu}}$. If $a_{p}=0$, then $F \approx H$ over \boldsymbol{Z}_{p} by th. 5 , and our assertion follows from th. 2, (i).

Remark. Existence of elliptic curves, which have no complex multiplication but have formal complex multiplications over \mathfrak{p}-adic integer rings, was proved by

Lubin-Tate [8]. But they did not give an explicit example. Our result has a meaning in the study of l-adic Lie groups attached to elliptic curves over \boldsymbol{Q}. (cf. Remark on p. 246 of Serre [12].)

There are some questions concerned with our results. How can we generalize th. 4 to more general L-functions? Let F and G be as in th. 5 with $S=$ the set of all the prime numbers. What is the power series $\varphi(x) \in Z\{x\}$ such that $\varphi(x) \equiv x(\bmod \operatorname{deg} 2)$ and $F \circ \varphi=\varphi \circ G$? How can we generalize th. 5 to an abelian variety of higher dimension over an algebraic number field?

Osaka University.

References

[1] M. Deuring: Algebren, Ergebnisse der Math., Berlin, 1935.
[2] J. Dieudonné: Groupes de Lie et hyperalgèbres de Lie sur un corps de caracteristique $p>0$ (VII), Math. Ann. 134 (1957), 114-133.
[3] M. Eichler: Quatenäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion, Arch. Math. 5 (1954), 355-366.
[4] E. Hecke: Über die Modulfunktionen und die Dirichletschen Reihen mit Eulerschen Produktentwickelung I, II, Math. Ann. 114 (1937), 1-28, 316-351.
[5] M. Lazard: Sur les groupes de Lie formels à un paramètre, Bull. Soc. Math. France 83 (1955), 251-274.
[6] J. Lubin: One parameter formal Lie groups over \mathfrak{p}-adic integer rings, Ann. of Math. 80 (1964), 464-484.
[7] J. Lubin and J. Tate: Formal complex multiplication in local fields, Ann. of Math. 81 (1965), 380-387.
[8] J. Lubin and J. Tate: Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94 (1966), 49-60.
[9] Ju. I. Manin: On Hasse-Witt matrix of an algebraic curve (in Russian), Izv. Akad. Nauk 25 (1961), 153-172. (=Amer. Math. Soc. Trans. (2) 45, 245-264.)
[10] A. Néron: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math. I.H.E.S., 21 (1964).
[11] I.R. Šafarevič: Algebraic number fields (in Russian), Proceedings of the International Congress of Mathematicians in Stockholm, 1962, 163-176 (=Amer. Math. Soc. Trans. (2), 31, 25-39).
[12] J. -P. Serre: Groupes de Lie l-adiques attachés aux courbes elliptiques, Les tendances géométriques en algèbre et théorie des nombres, Clermont-Ferrand, 1964, Centre National de la Recherche Scientifique, 1966, 239-256.
[13] J. -P. Serre: Courbes elliptiques et groupes formels, Extrait de l'Annaire du Collège de France, 1966-67.
[14] G. Shimura: Correspondances modulaires et les fonctions ζ de courbes algébriques, J. Math. Soc. Japan 10 (1958), 1-28.
[15] G. Shimura and Y. Taniyama: Complex multiplication of abelian varieties and its applications to number theory, Math. Soc. Japan, Tokyo, 1961.

