|

) <

The University of Osaka
Institutional Knowledge Archive

Title Formal groups and zeta-functions

Author(s) |Honda, Taira

Osaka Journal of Mathematics. 1968, 5(2), p.

Citation 199-213

Version Type|VoR

URL https://doi.org/10,18910/8997

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Honda, T.
Osaka J. Math.
5 (1968), 199-213

FORMAL GROUPS AND ZETA-FUNCTIONS

Taira HONDA

(Received July 8, 1968)

Let F(x, y) be a one-parameter formal group over the rational integer ring
Z. 'Then it is easy to see that there is a unique formal power series f(x)=

S n'a,x" with a,€ Z, a,=1 satisfying
n=1

F(x, y) = f(f(x)+f)

and that f'(x)dx= > a,x" 'dx is the canonical invariant differential on F. Let
n=1

C, be an elliptic curve over the rational number field @, uniformized by automor-
phic functions with respect to some congruence modular group T'y(N). In the
language of formal groups results of Eichler [3] and Shimura [14] imply that a
formal completion C, of C, (as an abelian variety) is isomorphic over Z to a
formal group whose invariant differential has essentially the same coeflicients as
the zeta-function of C,.

In this paper we prove that the same holds for any elliptic curve C over @
(th. 5). 'This follows from general theorems which allow us explicit construction
and characterization of certain important (one-parameter) formal groups over
finite fields, p-adic integer rings, and the rational integer ring (th. 2 and th. 3).
The proof of th. 5 depends only on the fact that the Frobenius endomorphism of
an elliptic curve over a finite field is the inverse of a zero of the numerator of the
zeta-function, and implies a general relation between the group law and the zeta-
function of a commutative group variety. In fact it is remarkable that the p-factor
of the zeta-function of C for bad p also can be given a clear interpretation from our
point of view (cf. th. 5). Moreover, we prove that the Dirichlet L-function with
conductor D has the same coefficients as the canonical invariant differential on
a formal group isomorphic, over the ring of integers in @(\/ D), to the algebroid
group x+y++/D xy (th. 4). In this way the zeta-function of a commutative
group variety may be characterized as the L-series whose coefficients give a normal
form of its group law.

1. Preliminaries

Let R be a commutative ring with the identity 1. We denote by R{x},
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R{x, y}, etc. formal power series rings with coefficients in R. 'Two formal power
series are said to be congruent (mod deg #) if and only if they coincide in terms of
degree strictly less than n. A one-parameter formal group (or a group law) over
R is a formal power series F(x, y) € R{x, y} satisfying the following axioms:

() F(z, 0)=F(0, z) = z
(i)  F(F(x, y), 2) = F(x, F(y, 2)) .

If F(x, y)=F(y, x) moreover, F is said to be commutative. Let G be another
group law over R. By a homomorphism of F into G we mean a formal power
series @(x)ER{x} such that @(0)=0 and @oF=Go@p, where we have written
G(o(x), p(¥))=(Gop)(x, ¥). If @ has the inverse function @', @~* is also a
homomorphism of G into F. In this case we say that G is (weakly) isomorphic
to F and write @: F~G. If there is an isomorphism @ of F onto G such that
@(x)=x (mod deg 2), we say that G is strongly isomorphic to F and write ¢: F~
G. If Gis commutative, the set Homg(F, G), consisting of all the homomorphims
of Finto G over R, has a structure of an additive group by defining (@,+@,)(x)
=G(p(x), py(x)) for @,, p,Homy (F, G). In particular Endg (F) (=Homg
(F, F)) forms a ring with the identity [1] (x)=x. We call [n]5 the image of nE
Z under the canonical homomorphism of Z into Endg (F).

Writing A=R{x}, we denote by D(4; R) the space of R-derivations of 4.
It is a free A-module of rank 1 and is generated by D=d/dx. We denote by
D*(4; R) the dual A-module of D(4; R) and call its element a differential of
A. For fe A the map D— Df of D(A4; R) into A4 defines a differential, which
we denote by df. A differential of the form df with f& 4 is called an exact
differential. It is easy to see that dx is an A-basis of D*(4; R) and df=(Df)dx
for any feA4. Let o=+r(x)dx be a differential of 4 and let p(x)= A4 with
@(0)=0. Then y(p(x))dp(x) is again a differential. We denote it by @*(w).
The map @* is an R-endomorphism of D*(4; R). Let F(x, y) be a (one-
parameter) formal group over R. Introducing a new variable ¢, F is considered
a formal group over R{#}. Define the right translation T, of F by T{x)=F(x, t).
A differential » of A is said to be an invariant differential on F if and only if
T*(@)=w. The set of all the invariant differentials on F forms an R-module.
We denote it by D*(F; R).

Proposition 1. Let F(x, y) be a one-parameter formal group over R. Put
«,b(z):(a%F(O, z)>_ and o—(x)dx. Then we have W(0)=1 and D*F; R) is a
Jfree R-module of rank one generated by w.

Proof. Since F(x, y)=x-+y (mod deg 2), we have a% F(0,z)=1 (mod deg
1). Hence yr(z) is well-defined and y»(0)=1. A differential n=2x(x)dx of 4



ForMAL GROUPS AND ZETA-FUNCTIONS 201
is invariant on F if and only if A(x)dx=x\(F(x, z))é%F(x, ?)dx, or

(1) A(x) = MF(x, z))é%F(x, 2).
From (1) we have
20) = M(=)-2- F(0, %)
ox
or
(2) A=) = MO) V(&) .

Define an R-homomorphism ® of D*(F; R) into R by ®(n)=xr(0). By (2) @
is injective. Now differentiating F(u, F(v, w))=F(F(u, v), w) relative to u, we
obtain

(%F(u, F(o, w)) = (%F(F(u, o), w)a% Fu, v),

and then

0 0 0

PO, Fo, @) = = F(o, w) 7 F(0, 9)
or
(3) (WF@, ) = 2 F(o, 0)9(e)

Now (3) implies that +r(x) satisfies (1). Therefore w belongs to D*(F; R) and
is clearly its R-basis.
We shall call this » the canonical invariant differential on F.

Proposition 2. Let F be a one-parameter formal group over a Q-algebra R.
Then we have F(x, y)~x+y over R.

Proof. As R is a Q-algebra, all the differentials of 4 are exact. Let o=
df(x) with f(x)=x(mod deg 2) be the canonical invariant differential on F. Then
we have df(F(x, t))=df(x), i.e. f(F(x, t))—f(x)ER{t}. Put f(F(x, t))=f(x)+g(?).
Then we have f(F(0, t))=0+g(¢), or g(¢)=f(t). Since f(x) is inversible, this
completes the proof.

Prop. 2 was proved in Lazard [5] in an alternative way. More generally we
can prove that a commutative formal group of arbitrary dimension over a @-
algebra is strongly isomorphic to the vector group of the same dimension.

Now let R be an integral domain of characteristic 0 and let K be the fraction
field of R. We note that, if ¢(x)= R{x} satisfies the functional equation @(x—+y)
=@(x)+o(y), ¢(x) must be of the form ax with acR. Let F and G be group
laws over R, let p & Homg(F, G) and let C((p) be the ﬁ_rst-degree coeflicient of P,
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The additive map c¢: p—c(p) of Homp(F, G) into R, which is a unitary ring-
homomorphism in the case F=G, is injective, because F (resp. G)~x+y over K
(cf. Lubin [6]). In particular the series f(x) € K{x} such that f(x)=x (mod deg 2)
and F(x, y)=f"'(f(x)+f(y)) is uniquely determined by F. For this f and for
a€ R we put [a]x(x)=f""(af(x)). It is clear that [a]r=Endg(F) if and only if
[a]F(x)E R{x}.

We now consider formal groups over a field & of characteristic p=>0.

Lemma 1. Let F and G be group laws over k. If p=Homy(F, G) and if
@=[0], there is q=p" such that ¢(x)=ax? [mod deg (¢+1)] with a==0. Moreover
@(x) is a power series in x?.

Proof. See Lazard [5] or Lubin [6]. )

If [p]r(x)=ax? [mod deg (¢+1)] with @=4=0 and g=p*, & is called the height
of F. If [p]r=0, then the height of F is said to be infinite (Lazard [5]). We
denote by A(F) the height of F. It is easy to see that, if A(F)=+h(G), then
Hom,(F, G)=0.

Now it is well known that k{x} has the structure of a topological ring if we
take powers of its maximal ideal as a basis of neighbourhoods at 0. Endowed
with the topology induced by it, Hom(F, G) (resp. End,(F)) becomes a complete
topological group (resp. ring) (Lubin [6]). It is clear that End,(F') has no zero-
divisor. Moreover it is easy to see that, if A(F)<<co, the homomorphism
n—[n]r of Z into End,(F) is injective and this imbedding is continuous relative
to p-adic topology of Z. Since End,(F) is complete, this extends to an imbed-
ding of the p-adic integer ring Z, into Endg(F). In this way Endy(F) is a
Z ,-algebra and Homy(F, G) is a Z,-module.

The following theorem is fundamental in the theory of one-parameter formal
groups over a field of positive characteristic.

Theorem 1. (Lazard [5], Dieudonné [2] and Lubin [6].)

(i) For every h(1<h< oo) there is a formal group of height h over the prime
field of characteristic p>0.

(ii) Let k be an algebraically closed field of characteristic p>>0. If F and G
are group laws over k and if h(F)=h(G), then F~G over k. Moreover, if h(F)
=h(G)=co, then F~G over k.

(iii) Let k be as in (i) and let F be a group law over k. If h=h(F)<oo,
Endy(F) is the maximal order in the central division algebra with invariant 1/h
over Q,,.

Later we shall reprove (i) and (iii) as applications of our results in 2.

2. Certain formal groups over finite fields and p-adic integer rings

Let Rbea complete discrete valuation ring of characteristic 0 such that the
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residue class field k= R/m is of characteristic p>0, where m denotes the maximal
ideal of R. For a group law F over R we obtain a group law over k by reducing
the coefficients of F mod m. We denote it by F*. If G is another group law
over R, we derive the reduction map *: Homg(F, G) > Homy(F*, G*). The
following two lemmas are due to Lubin [6].

Lemma 2. The map c: Homg(F, G)—R is an isomorphism onto a closed
subgroup of R.

This is Lemma 2.1.1. of [6].

Lemma 3. If h(F*)<<co, the reduction map *: Hompg(F, G) — Hom(F*,
G*) is injective.

This is lemma 2.3.1. of [6].

From now on until the end of 2 we denote by o the integer ring in an exten-
sion field K of ,, of finite degree n, and by p the maximal ideal of 0. Let e and
d be the ramification index and the degree of p respectively. The residue

classs field o/p is the finite field F, with ¢ elements, where g=p?. The following
two lemmas play essential roles in our further investigation.

Lemma 4. Let 7 be a prime element of . For any integers v=0, a=1
and m=1 we have

2 ( X+ Y™ = g Xme™ (mod p) .

Proof. It suffices to prove our lemma for a=m=1. We have to prove

(4) (P =0 (mody) for 1=i=p’

P
This is trivial if i=». Assume i<<v. Let p*|i!, but p**' ¥i!l. Then we see
p = GiPHlp 1+ <ilp-tifp =+ = if(p— 1) =i
Hence we have
(F)pr = @ —(pr—i+ 1)-pfil =0 (mod p),

and a fortiori (4).
The following lemma is a trivial generalization of [7], lemma 1.

Lemma 5. Let = be a prime element of o and let a=1 be an integer.
Let f(x) and g(x) be power series in o{x} such that

(5) f(x)=g(x)=nx (mod deg 2) and f(x)=g(x)=x"" (mod p).

Moreover, let L(z,, ++-, z,) be a linear form with coefficients in 0. Then there exists
a unique power series F(z,, ++-, z,) with coefficients in o such that
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F(zy, -+, 2a) = L(2, =+, %) (mod deg 2)
(6) and ’

JF (=, -, 24)) = F(g(2,), -, 8(2n)) -

Proof. See Lubin-Tate [7]. Note that F is the only power series with
coefficients in any overfield of o satisfying (6).

Denote by O the ring of integers in the maximal unramified extension of
K. We are now ready to prove the following:

Theorem 2. Let n be a prime element of o and let a=1 be an integer.
Put f(x)zf] 77*x?" and F(x, y)=f""(f(x)+f(y)). Then we have the following:
=0

(i) Fis agroup law over v and Endgp(F) is the integer ring of the unramified
extension of K of degree a.

(i) F* is a group law of height an over F,. Denoting by Epx the q-th
power endomorphism of F* (i.e. Ep+(x)=x7), we have

(7) [7]F = &5 .

(iii) If G is another group law over o such that [z]cEEndy(G) and such
that [x)E=E%s, then F~G over o.

Proof. We define u(x)= K{x} by
(8) [7]e(x) = f (= f(x)) = *"“+ mu(x) .
We shall prove u(x)=o{x}. From (8) we have
7 f(x) = fx""+ mu(x)) ,
X+ g 2% = w4 ru(x)+ g (9% 4 7ru(x))?*”

and
(9) n(x—u(x)) — vzj [n—V(xqa+nu(x))qav_”_.,xqa(wrn)] )
Put u(x):x+i b;x* and assume b,, -, b,_,E0. Since b, is written as a poly-

nomial of b, +*-, b, by (9), we have b,=0 by applying lemma 4 to (9). This
proves u(x)E o{x}.

This being proved, we can apply lemma 5 to [z]x(x) as is seen from (8).
First F(x, y)Eo{x, y} follows from [z]zcF=Fc[z]r by lemma 5. The equality
(7) follows directly from (8). Now put p—&=°. Then £is a unit in o. We have

[plr = [E]roln]f -
and hence, by (7),
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[p)F+ = (automorphism of F*)o£3

Since £%.(x)=x*"*, we have h(F*)=dae=an, which completes the proof of (ii).
Let G be as in (iii). By prop. 2 there is @(x)E K{x} with p(x)=x (mod deg 2)
such that o F=Gop. Then we have gpo[r]r=[z]gop. Hence @ has coefficients
in o by lemma 5.

It remains to determine Endp(F). Let w be a primitive (¢°—1)-th root of
unity in ©. By definition of f(x) we have f(wx)=wf(x) and so F(wx, wy)=
wkF(x,y). Hence we have wx=[w]z[x]=Endg(F). This implies that the fraction
field L of Endp(F) contains the unramified extension of @ , of degree ad. More-
over, since [7]rE Endp(F), the ramification index of L/Q, is a multiple of e.
Thus we have [L: @ ,]=ade=an. On the other hand, as A(F*)=an, we have
[L: Q,]<an by th. 1, (iii) and by lemma 3. Hence we have [L: Q,]=an. Since
Z ,[w, 7] is the integer ring of L, this proves (ii) and completes the proof of th. 2.

The existence of a formal group F with the properties (i), (ii) in th. 2 was
proved by Lubin ([6], th. 5.1.2.). But his construction of F is not explicit
as ours.

Corollary. Let F be a formal group over Z, such that h(F*)=1. Then we
can find a prime element = of Z, such that [x]§(x)=x?. The map : F—r gives a
bijection ®: {strong isomorphism classes of formal groups F over Z, such that
WF*)=1}—{prime elements of Z,}.

Proof. Since A(F*)=1, the map #*: Endz,(F)—Endg,(F¥) is bijective by
th. 1, (iii). As E&p+(x)=x?EEndp,(F*), this proves the first assertion. The
injectivity of @ follows from th. 2, (iii) and the surjectivity from th. 2, (ii).

We now prove th. 1, (iii) assuming th. 1, (ii). Applying th. 2 to 0=Z, and

f(x)= go p~"x*"", we obtain a group law F* over F,, of height h. Let k be the

algebraic closure of F,. Since Endy(F*) contains [w]} and £+, End,(F*) contains
the maximal order M, in the central division algebra D, of rank 4 over ,, and
invariant 1/h. (For detalis see [6], 5.1.3.) We shall prove End,(F*)=M,. In the
following we write £ instead of &z+ for simplicity. Let 1, be the integer ring in
the unramified extension of degree % over @, and let S be a system of representa-
tives of 11, modulo its maximal ideal. For B&.S, we write [3] instead of [B]}
for brevity. Then we have [B](x)=B*x (mod deg 2). Let @ be any element of
End,(F*) and let p(x)=a,x (mod deg 2). Comparing the r-th degree coeflicients
of po[plk=[pl¥op, where r=p", we have a,=a,’, i.e. a,EF,. Hence we can
find B,€ .S such that (p—[G,]) (*)=0 (mod deg 2). Then, by lemma 1, there is
@, €End,(F¥*) such that ¢ —[B]=¢,cE. Applying the same argument to @,
we obtain B,€S and @,EEnd,(F*) such that ¢,—[B,]=p,°¢. By repeating
the same procedure n-times we derive B3, G, ***, B,_,ES and @,, @,, ***, P,E
Endy(F*) such that @;—[B;]=@;:,°¢ for 0<i<n—1, where p,=@. Then
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we have
P = [Bo]+[ﬁ1]g+“'+[ﬁn—1] E”—l+¢n§” .

Hence the series [B,]4[B,]E+ "+ [Bu-_.] "'+ -+ converges and coincides with
@. Since [B;]€ M,, this proves p= M,

REMARK. Formal groups F* constructed in th. 2 do not exhaust all the
formal groups over finite fields (cf. Serre [13], p. 9).

3. Certain formal groups over Z

We now give explicit global construction of certain formal groups over Z.
The method is based on lemma 4 and lemma 5 as in 2.

Lemma 6. Let p be a prime number and let a,, a,, -+, ay, +- be rational
integers satisfying the following conditions:

(i) If n=p’m with p {'m, then a,=a,va,,

(i) a=1. pJta,.

ay—ayapatpay, =0 for v=0.

Let = be the prime element of Z, satisfying the equation
(10) X'—a,X+p=0.
Put f(x)=3n""a,x" and F(x, y)=f(f#)+A»)). Then we have F(x,y)E
Z {x, ¥}, [7)r(x)E Z,{x} and [z]z(x)=x" (mod p).

Proof. By Hensel’s lemma and by the assumption p ta, the equation (10)
has solutions in Z,. Let z’ be the other root of (10). Itisa unitin Z,. Since

ayri—(rt+n')ayntrray =0,

we have

(11) ayro—n’ i = 7[(de+1—7[’de) for »=0.

Define u(x)EQ,{x} by

(12) [2)e(®) = (e f(2)) = &+ mwu(x) .

The point of the proof is to prove u(x)e Z,{x} as in th. 2. From (12) we obtain
T nz': n7'a,x" = x?+mu(x)+ ”:ZZ n7'a,(x?+ru(x))",

or

(13) 2(x—u(x)) = xP+ 2‘; n a5+ wu(x))"— g nana”
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Put u(x)=i b;x', where b)=1. Assuming b, -+, by_,EZ,, we shall prove
i=1

b,eZ, Bylemma 4 we have

n“(xf’—i—ng b)Y = n'x?™  (mod p).
Hence by (13), we have only to prove that the k-th degree coefficient ¢, in
(14) g n’'a, x"”—ng n”'a, x"

is a multiple of p. If p 'k, this is clear. Assume k=p’m with v=1, p V'm.
We have

—-(v-1 -1 -V -1
e =p "M Ay ,—p'm T wa,

=p m " a,(pay-1—ma,y)
or
(15) cr=p " "m a,n(x" ay-1—ayy).
Applying (11) to (15) repeatedly we have
c=p'mta,n"(n a,—a,)
— _p—vm—lamn_w.l
=0 (modp).

This proves b, Z, and by induction we see in fact u(x)Z,{x}. The fact
F(x, y)€ Z {x, y} follows from this by Lemma 5. (cf. The proof of th. 2)

Lemma 7. Let p be a prime number, let E=-+1 or —1, and let h=1 be
an integer. Let a,, a,, -+, a,, -+ be rational integers satisfying the following condi-
tions:

(i)  If n=p'm with p ¥'m, then a,=a,a,,.
(i) a=1. a,=--=au-1=0.
ay+h=Epr-1a,y for v=0.

Put f(ac)=§:_‘,@1 n'a,x" and F(x, y)=f"'(f(x)+f(y)). Then we have F(x,y)e
Z,{x, y} and [p]p(x)=x*" (mod p).

Proof. Repeat the same reasoning as in the proof of lemma 6. The point
is to prove u(x)E Z,{x}, where u(x) is defined by [€p] r(x)=x?"+pu(x). The
details will be left to the reader.

Theorem 3. Assume that to every prime number p there is given a local
L-series L ,(s) of the type :
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(@)  L9)=1,

() L, (s)=(1—a,p~+p'~*)"" with a,€Z, pLa,,
or

(©)  Ly)=(1—¢&,p"""")" with &,=+1 or —1, h=h,>1.
Define the global (formal) L-series L(s):f] a,n"* by L(s)=I1L,s) and put

n=1 4

f(x)=23n""a,x". Then the formal group F(x, y)=f"(f(x)+f(y)) has coefficients
in Z. Denote by F* the reduction of F mod p. Then we have:

Case (a): F=~x+y over Z,.

Case (b): h(F*)=1 and the p-th power endomorphism of F* is a root of the

equation

X*—a,X+p=0.
Case (¢): W(F*)=h and [€,p]p(x)=x*" (mod p).

Proof. If L,(s)=1, the coefficients of f(x) are p-integral and we have F(x, y)
~x+y over Z, If L,(s)is of type (b) (resp. (c)), it is easily verified that the
sequence a,, a,, ***, 4y, --- satisfies the assumptions of lemma 6 (resp. lemma 7).
Therefore the coefficients of F(x, y) are p-integral for every p. This proves
F(x, y)€ Z{x, y}. The other assertions of our theorem follow from lemma 6 and

lemma 7.
The following proposition is useful in the study of algebroid commutative

formal groups over Q.

Proposition 3. Let p be a prime number and let o be the integer ring of the
quadratic unramified extension of Q,. Put fl(x)_——i PVt fz(x)zi (—p) " x?”

V=0 V=0

and F(x, y)=f7'(fi(x)+f:(y)) for i=1, 2. Then we have the follwoing:

(i) FY¥~F% over Fyp, but F¥xF¥ over F,. If p is odd, then F,~F,
over o.

(i) Let F be a group law over Z, such that F*(x, y)~x-+y-+xy over Fy.

Then we have either F~F, or F~F, over Z, according as F*(x, y)~x-+y+xy
over F or not.

Proof. By th. 3 F; (i=1, 2) has coefficients in Z and [p]r,(x)=[—p]r,(*)
=x” (mod p). Let k be the algebraic closure of F,. Since A(F¥)=hF¥)=1,
there is an inversible series @(x)Ek{x} such that poF¥=F¥op by th. 1, (ii).
Then we have @o[p’]f =[p’]¥cp, ie. p(x**)=qp(x)?*. This implies ¢(x)
EFz{x} and F¥~F¥ over Fpe. If ¢p(x)EF,{x}, we should have

([=21F,°P)(%) = P(x)* = P(x?)
= (po[p]F)(*) = ([p]F,°P)(*) »



ForMAL GROUPS AND ZETA-FUNCTIONS 209

and then
[—_P]}e‘z = [P]jg‘z 3

a contradiction. Hence F¥,cF¥ over F,. If p is odd, o contains the primitive
(p°—1)-th root of unity and there is weo such that w?"'=—1. Then we have
w?’=(—1)"w. Hence f,(wx)=wf,(x) and then F,(wx, wy)=wF,(x, y), which
proves (i). Now the p-th power endomorphism of F* comes from an endomor-
phism of F, say [r]r, since A(F*)=1. As the p-times endomorphism of the
multiplicative group x4-y-+xy over F, is (1+x)?—1=x?, we have F¥(x, y)~x-+
y+xy over F, by th. 1, (ii) and so F*~x+4-y+xy~F¥ over F,.. Let 4 be an
inversible element of Fz{x} such that YroF*=F¥oy. Then

(Vo[ ]B)(®) = Y(x*") = W(x)”* = ([P]%, oV )(x)
= (Vo [p1R)(*)

which implies z°=p?. Then by th. 2, (iii) we have F~F, or F~F, over Z,
according as z=p or —p, i.e. according as F*~x+y-xy or not.

4. Group laws and zeta-functions of group varieties of dimension
one

We now interprete zeta-functions of certain commutative group varieties
from our point of view. Let F(x, y) be a group law over Z. Then there is unique

f(x)=@Q{x} such that f(x)=x (mod deg 2) and F(x, v)=f""(f(x)+f(»)) (cf. 1).
It is clear that df(x)=f'(x)dx is the canonical invariant differential » on F. Let

f’(x):ni a,x"" and define a (formal) L-series L(s) by L(s):g a,n~°. If each

one of I_;, f, o and L(s) is given, the rests are uniquely determi;lled from it.
Theorem 4. Let K be a quadratic number field, let 0 be the integer ring of

K and let D be the discriminant of K. Then the Dirichlet L-function g(%) n-°

is obtained from a group law G(x,y) over Z. Moreover, let F(x, y)=x-+y-++/Dxy.
Then we have F~G over o.

Proof. Let X(n)z(%) be the Kronecker symbol and define
(16) P(u) = 1'£D(1—§“u), where {=exp (2n/—1/|D]).
la=1

It is easy to see P(u)o[u]. Let o be the non-trivial automorphism of K and
put

(17) P(u) = (P*(u)—P(u))/v/DP(u) -

We have only to prove that p(u)=u+--- Eo{u} and
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(18) dp(u)/(1++/Do(u)) = ”Z:l X(n)u" " du ,
since dx/(14-\/Dx) is the canonical invariant differential on F. We recall
(19) X" =X(m)\/D  forany neZ

r mod D

(Gauss sum). The first-degree coefficient of ¢(u) is

(= 2 0+ 2 U)VD

X(b)=-—1 X(a) 1

= (3 XD =1

by (19). Let a; be the i-th degree coefficient of P°—P. We shall prove a;=0
(mod /D). Since (P"—P)°’=—(P°—P), a; is of the form ¢;\/D with 2¢;E Z.
If D is odd, we have at once c;£Z. If D is even, we have D=0 (mod 4). In
this case we can easily check

X(r+D|2) = —X(r) forany reZ

and so {¢{*|a mod D, X(a)=1} coincide with {—¢?| b mod D, X(b)=—1} as a
whole. Hence a;=0 or twice an integer according as ¢ is even or odd. This
shows ¢;€ Z and p(u)Eo{u}. Let us compute do (u)/(1++/Dp(u)). We have

dp(u) = /D' d(P°|P)
_ 1 P =8 v
VD P<21—§” 21—2;“u>
1 P X(r) ¢
\/D ?(rn‘ED 1——§ u) “

— \/5—1Pa—1 E Z X(r)@,’”’u"" du

n=1y mod D

- P"“g X(n)u"'du  (by (19)).

Hence we have
d¢(lt) :P‘Z;X(n)u‘du
I+v/Do()  1-+(P"—P)P
= i X(n)u" " du .

This completes the proof of our theorem.

Now the Dirichlet L-function L(s, X) has an Euler product of the form
II(1—¢&,p7")"" where €,=X(p). By th. 3 &, is uniquely determined by the group
»

law F. From this point of view L(s, X) can be characterized as the L-series
attached to a normal form over Z of the algebroid group F. The Euler product
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implies that the group law F is “the direct product” of group laws over Z,'s
attached to p-factors of L(s, X).

Quite the same holds for elliptic curves over Q. In the following we mean
by an elliptic curve an abelian variety of dimension one. Let C be an elliptic
curve over @. Néron [10] shows that there is an essentially unique (affine)
model for C of the form

(20) YV AAXY+uY = X+aX?+BX+y

where A, u, @, B, v are integers and the discriminant of the equation (18) is as
small as possible. For this model C,=C mod p is an irreducible curve for every
prime number p. 'Then local L-series L,(s) of C are defined as follows.

(I) IfC,is of genus 1, we put
LP(S) — (1_app—s_+_P1—ZS)—1

where 1—a,U+pU? is the numerator of the zeta-function of C,,.

(II) If C, has an ordinary double point, we put €,=-1 or —1 according
as the tangents at the double point are rational over F, or not and write

Lp(s) = (l—epp_s)_l
(IIT) If C, has a cusp, we put
L(s)y=1.

In case (II) the reduction of the group law of C is isomorphic to the mul-
tiplicative group over F2 and is isomorphic to it over F, if and only if €,=--1.
In case (1II) the reduction of the group law of C is the additive group ([10], Chap.
III1, prop. 3).

Now, we take t=X]/Y as a local parameter at the origin. By [15], Chap.
III, prop. 4 ¢ is a local parameter at the origin of C, for every p. Writing down
the group law of C as a formal power series relative to the variable ¢, we obtain a
formal group F(x, y) over Z. (The fact F(x, y)E Z{x, y} can be verified also by
direct computation.) We shall call a formal group over Z, strongly isomorphic
to this F over Z, a formal minimal model for C over Z.

Theorem 5. Let C, C,, L,(s) and F be as above. Let S be any set of prime
numbers which does not contain p=2 or 3, if C, has genus one and a,—+ p, and

put ZS:pQS (Z,NQ). Write ﬁI'ISLﬁ(s)=2 a,n"°, g(x):i] n'a,x" and G(x,y)
=g ' (g(x)+£(»)). Then G(x, y) is a formal group over Z and F~G over Zj.

Proof. If C,has genus one and p|a,, we see easily a,=0 or a,—=+p with
p=2 or 3 by Riemann hypothesis |a,| <2\/p. The latter cases being excluded,
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we can apply th. 3 to ﬁHSLp(s) and obtain G(x, y)€ Z{x, y}. In order to show

F~G over Zs, we have only to prove F~G over Z, for every pE S, since a
power series @(x) such that ¢(x)=x (mod deg 2) and @oF=Gogp is unique.
If C, has genus one for pE .S, then F~G over Z, by th. 3 and th. 2, (iii), since
X?—a,X+p is the characteristic polynomial of the p-th power endomorphism
of C,. In case (II) F mod p is isomorphic to the multiplicative group x+-y-+xy
over F,2 and isomorphic to it over F, is and only if £,=-4-1. Hence we have
F=~G over Z,by prop. 3, (ii), by th. 3 and by th. 2, (iii). In case (III) it is clear
F~G over Z,. 'This completes our proof.

ReMARK. It seems that the assumption on S in th. 5 would be superfluous.
But I have not been able to get rid of it.

Corollary 1. Notations being as in th. 5, assume that a,=+ -+ p for p=2, 3.
Then the formal group attached to the zeta-function L(s; C)=1II L,(s) of C has
coefficients in Z and is a formal minimal model for C. ’

Corollary 2. Let C and C’ be elliptic curves over Q and let S be a set of primes
satisfying the assumption in th. 5 for each curve. Then formal minimal models of
Cand C' are isomorphic over Zg, if and only if p-factors of L(s; C) and L(s;
C') coincide for every pE S.

Corollary 3. Let notations be as in th. 5. If C, has genus one for pE S,
a, mod p is the Hasse invariant of C,.

Proof. Take f(x)=Q{x} such that f(x)=x (mod deg 2) and F(x, y)=
f(f(x)+f()). Then f'(#)dt is the canonical invariant differential on F, i.e. the
t-expansion of an differential of the 1st kind on C. Hence our assertion follows
from definition of Hasse invariant and from th. 5.

RemaRrk. Coroll. 3 is a special case of th. 1 of Manin [9]. So his theorem
is suggestive for generalization of th. 5 to an abelian variety of higher dimension
over an algebraic number field.

Corollary 4. Let C be an elliptic curve over Q and assume a,=0 for a prime
number p. Denote by o the integer ring of the quadratic unramified extension of Q.
Then C has formal complex multiplications over o, i.e. End,(F)=no.

Proof. Let H be the formal group over Z attached to the L-s‘ries (1+
). We have H(x, y)=h""(h(x)+h(y)) where h(x):\g (—p) ™. If
a,=0, then F~H over Z, by th. 5, and our assertion follows from th. 2, (i).

Remark. Existence of elliptic curves, which have no complex multiplication
but have formal complex multiplications over p-adic integer rings, was proved by
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Lubin-Tate [8]. But they did not give an explicit example. Our result has a
meaning in the study of /-adic Lie groups attached to elliptic curves over Q.
(cf. Remark on p. 246 of Serre [12].)

There are some questions concerned with our results. How can we gen-
eralize th. 4 to more general L-functions? Let F and G be as in th. 5 with S=
the set of all the prime numbers. What is the power series @(x) € Z{x} such that
@(x)=x (mod deg 2) and Fop=@oG? How can we generalize th. 5 to an abelian
variety of higher dimension over an algebraic number field ?

OsakA UNIVERSITY.
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