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Constitutive Equation for Thermal Elastic-Plastic Creep StateT

Yukio UEDA* and Keiji NAKACHO **

Abstract

High-temperature structural components such as pressure vessels and pipes in nuclear reactors and chemical plants,
are subjected to repeated loading due to the changes of internal pressure and temperature etc.. In recent years, it has be-
come more important to perform more accurate theoretical analysis of mechanical behaviors of the above structures for
rational design and for critical evaluation of safety. In this study, the thermal elastic-plastic creep theory represented by
the authors will be further developed by introducing more general forms of workhardening rule and creep law respectively.
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1. Introduction

Pressure vessels, pipes and so forth which are the main
structural components in nuclear reactors and chemical
plants, are operated at high temperature and loaded cycli-
cally due to the changes of internal pressure and tempera-
ture, etc.. For some components of these structures, stress
relief annealing is applied in the process of construction.
In recent years, it has become more important to perform
more accurate theoretical analysis of the mechanical be-
haviors, including creep, of structural components and
their materials to be used at high temperature for rational
design and for critical evaluation of safety.

The authors have already presented the theory of
thermal elastic-plastic creep analysis to study the mechani-
cal behaviors of welded joints during welding and stress
relief annealingl)““). Here, the thermal elastic-plastic
creep theory will be further developed by introducing
more general forms of workhardening rule and creep law
respectively, according to the following procedure.

(1) To express creep constitutive equations at multiaxial
stress state in a general form.

(2) To introduce the above creep constitutive equation
into “Theory of Thermal Elastic-Plastic Analysis with
A More General Workhardening Rule” represented by
the authors®). :

2. Creep Strain at Multiaxial Stress State

Creep behavior of metal is usually influenced by stress,
temperature and changes of its internal structure. In this
chapter, such creep behavior at multiaxial stress state will

(Thermal Elastic-Plastic Creep) (Constitutive Equation) (Creep Constitutive Equation)

be expressed in such a general form of equation as to
introduce it into the thermal elastic-plastic theory shown
in Ref. (5).

2.1 Creep constitutive equation in uniaxial stress state
(Creep hardening rule)®)

Creep constitutive equation of metal is usually express-
ed in a differential form for creep strain rate € © which is
regarded as a state function of stress o, temperature T and
suitable internal variables s; (i =1, 2, - -- ,n) which rep-
resent changes of its internal structure as follows.

28> T) €}
85, 1) (G=1,2,-+-,n) )

€C=p(0,8,8,--
s,~=qi(a,sl,s2,-.

As it is considered that change of creep strain rate rep-
resents the hardening of the material, which progresses
with deformation, the theory which rules change of creep
strain rate due to change of the internal structure is called
creep hardening rule. Based on this, unsteady-state creep
constitutive equation can be formulated. Creep hardening
rule is classified according to the kind of physical quanti-
ties to represent internal variables in Eq. (1).

One of such examples is creep strain €®. This is one of
simple measures which represent change of internal struc-
ture, progressing with deformation. In this case, the con-
stitutive equation of creep strain rate is expressed as

€°=p(0,e%T) ?3)

As the above equation assumes that the hardening of the
material is controlled by creep strain, this rule is called
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strain hardening rule. Many detailed examinations about
its appropriateness have been conducted and strain harden-
ing rule is considered superior to most of other classical
creep hardening rules. Thus, this rule is adopted in many
unsteady-state creep analyses.

2.2 Creep constitutive equation in multiaxial stress state

As it is very rare that stress state is uniaxial in actual
engineering creep problems, it is necessary to expand the
uniaxial creep constitutive equation described briefly in
the previous section so as to express the one in multiaxial
stress state. This expansion can be conducted by the same
way as for the plastic constitutive equation, employing
similar hypotheses introduced in plasticity. They are:

(1) no change of volume due to creep deformation

(2) no influence of hydrostatic stress on creep defor-
mation

Appropriateness of the above hypotheses is confirmed for

metals experimentally.

In similar to plastic strain increment, creep strain rate
is expressed as a vector {€° }in a multiaxial state, and the
direction and magnitude of the creep strain rate {€€}
should be determined. Here, the direction and magnitude
of creep strain rate {€€} are assumed to be treated
separately. For the direction, as usual, it is assumed that
the flow law (creep flow law) holds like the case of plastic
deformation and the creep strain rate {€° } is expressed

as fO]lOWS.
9 (o— 0 }
{ ( ) c)

In the above equation, A is a positive scalar coefficient,
and g is a scalar function which depends on the total
histories of stresses, temperature, etc. and is called the
creep potential. Like the yield surface, g=0 represents a
closed curved surface (the creep potential surface) in the
stress space, which contains the current stress point, and
{6. } is a vector which indicates the position of center of
the creep potential surface (see Fig. 1). The creep strain
rate {€°€ } is expressed as a vector outward normal to the
creep potential surface at the current stress point.

Here, Eq. (4) will be rewritten in the same form as
Eq. (13) for plastic strain increment shown in Ref. (5),
adopting a creep potential surface which may move in
the stress space.

{e°}=A “

{é°)Y=¢€Y {nc} (5)

C

where él :the magnitude of the creep strain rate

{€°} (that is, the length of the vector
{e°1)
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I cC1 29 _sC
. {EC}—A{W}— €9 {n.}

.

Fig. 1 Schematic Illustration of Relation between Creep Potential
Surface g=0 and Creep Strain Rate {&C}

{nc} :the unit vector outward normal to the
creep potential surface at the current stress
point

{nc}={a—(¢a_g—ej)}/gi’gi=“a<aag )}

B <{a (oigec)}T{a(oaf ec)}>

In the above equation, the magnitude e of creep
strain rate {€°} is expressed by the creep hardenlng rule
(uniaxial creep constitutive equation) explained briefly in
the previous section.

The characteristics of the creep potential surface de-
pend on the creep characteristics of the metal, like the
creep hardening rule. For the shape of the surface, von
Mises type and Tresca type, for example, can be adopted,
which are widely used for the yield surface. For trans-
lation of the creep potential surface in the stress space,
Bailey’s theory”) and Orowan’s theory®, etc. may be ap-
plied to rule the translation rate {§,} of center of the
creep potential surface.

0=

2.3 Creep strain increment

By introduction of the creep strain increment into the
thermal elastic-plastic theory shown in Ref. (5), thermal
elastic-plastic creep theory can be developed. A creep
strain increment can be obtained by integrating the creep
strain rate, described in the previous section, for each in-

crement. The creep strain rate is usually a function of
stresses, temperature, internal variables and their histories.
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So, there are two procedures for the above integration.
One is to integrate the creep strain rate, regarding it as
constant in each time increment. Another is to integrate
the rate with consideration of the changes of variables
during each time increment. Here, the creep strain incre-
ment will be obtained by the former method which de-
creases the accuracy of the result in comparison with the
latter, but the method is simple and can be applied for all
creep theory (creep strain rate). That is, the creep strain
increment {de® } between t; and t;,, is calculated by
multiplying the creep strain rate {€° } at time t;, by the

time increment dt =t; , | —t;.

{de®} = {€° } dt 6)

In the case where the creep strain increment is express-
ed as Eq.(6), it can be calculated immediately as the
product of two known quantities. Therefore, even if the
creep effect is taken into account in the thermal elastic-
plastic theory, the theory including the creep effect does
not become more complex than the thermal elastic-plastic
one.

If it is necessary to obtain more accurate creep strain
increment, the integration must be performed for a very
small time increment or with consideration of the change
of the creep strain rate. In the latter case, the method of
the integration and the form of the creep strain increment
derived by such accurate integration are usually different
in each cases. The authors have derived the creep strain
increments with consideration of the changes of the vari-
ables (stresses, creep constants) as accurately as possible
for some comparatively simple creep theories (isotropic
power hardening theory’ ), 2), isotropic exponential
hardening theory?), isotropic time hardening theory and
isotropic strain hardening theory®) ).

3. Basic Equations for Thermal Elastic-Plastic State

To develop the constitutive equations (the stress-total
strain incremental relations) for thermal elastic-plastic
creep state in the next chapter, the hypotheses and basic
equations which were used for thermal elastic-plastic state
and appeared in Ref. (5), will be reviewed briefly. (The
same equation number as in Ref. (5) will be used, adding
“P” at the head.)

(1) Thermal strain increment {deT }

{deT } = {a}dT P-1)

where {@} : instantaneous linear expansion coefficient
(expansion or shrinkage due to both tem-
perature change and transformation)
dT : temperature increment
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(2) incremental relation between stress and elastic strain

In the case where the elasticity matrix { D® ] (contain-
ing the material properties) is dependent upon temperature,

d[D¢
faor=mg1 @et+ P yrreey g
h D¢ ] = [D® +d[De] dT | |
where [D3 1 =[D%] T

(3) Workhardening rule and characteristics of yield sur-
face (yield function)

The usual combined rule of isotropic and kinematic
workhardening is adopted and it is expanded so as to in-
clude the effect of temperature changes. In this case, the
yield surface is expressed as follows.

f(aij—e 0,)=0 (P-8)

where {0 } : the translation vector which indicates the
position of center of the yield surface in

the stress space
0, : the measure of the size of the yield surface

ij

0 =0, (€4, T) (P-10)
a0, do
dog = —= deb + —2 dT
de? aT
where e‘{ the length of the locus of the plastic strain
de’f the length of the vector of the plastic strain

increment (see Eq. (P-13))
P = p
€ f de1

{d0} =k def {ng} (P-11)

where k proportional coefficient (the value can be

calculated by Eq. (P-18))

{ng }: the unit vector which indicates the direction
of translation increment of the yield surface

(4) Plastic strain increment {deP }

Plastic strain increment is expressed by separately indi-
cating its direction and magnitude. The direction is defin-
ed in the following form by introducing the yield function
(f of Eq. (P-8)) as the plastic potential.

{deP} = def’ {n} (P-13)

where deg : the magnitude of the plastic strain incre-
ment {deP } ,
{n}: the unit vector outward normal to the

yield surface at the current stress point
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d(0—0) 0(c—0)

=Ga(aaie)}T {a(c‘;a_fe)})i

(5) Increment of yield function df

The following condition must be satisfied in the case
where the material is under loading in the plastic range.

df = 0 (P-14)
(6) Workhardening modulus H
of dap
= =1 - _
H=k ny, —fj 20 (P-18)
1
where ng. = {n}T {ng}
dog=HdeP — £ =1 20 2% 4p 19
TEREI T g, oT ®19)

where dog = {n}T{do }

4. Constitutive Equations for Thermal Elastic-Plastic
Creep State

Though the interaction between plasticity and creep
have been investigated, the existing various theories are
still under discussion. Then, it is assumed in this study
that plasticity and creep are independent phenomena and
there is no interaction between them so that plastic strain
and creep strain are defined separately. Accordingly, the
creep theory described in chapter 2 and the theory of
plasticity reviewed in chapter 3 can be adopted together
with no modification.

4.1 Thermal elastic creep constitutive equation

In the case where the current stress point is inside the
yield surface, that is, the material is in the elastic range,
accompanying temperature changes and creep strains, the
total strain increment {de } is represented as the sum-
mation of the thermal strain increment {de! }, elastic
strain increment {de® } and creep strain increment {de®}.

{de} = {deT } + {de®}+ {de®} (7

The constitutive equation (the stress-total strain in-
cremental relation) for this state will be obtained by using
Eq. (P-6) and transforming its right side in the following
way.

(1) To replace the elastic strain increment {de® } by the
total strain increment {de } etc., using Eq. (7).

(2) To express the thermal strain increment {deT } by
Eq. (P-1) and the creep strain increment {de¢} by
Eq. (6).
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After the above transformations, rearrangement of the
right side of:Eq.(P-6) provides the following thermal
elastic creep constitutive equation,

(do} = [D5] {de} - [D§1{({e)

T 41D° .
—[D§17! _Ei_] {e® }) dT + {ec}dt} ®
This equation is the same as for thermal elastic state
shown in Ref. (5) except that the term, —[D$ ] {€°} dt,
is supplemented on the right side.

4.2 Thermal elastic-plastic creep constitutive equation

In the plastic range, the total strain increment {de } is
expressed by the summation of the components as

{de} = {de” } + {de®} + {deP} + {de°} 9

First, the relationship between the magnitude deI; of
the plastic strain increment {de® } and the total strain in-
crement {de } will be derived, based on Eq. (P-14) for the
loading condition in the plastic range. In the case where
the yield surface and the changes of its size and position
are expressed by Eq. (P-8), Eq. (P-10) and Eq. (P-11) re-
spectively, and there is the relationship of Eq. (P-18) be-
tween the workhardening modulus and them, Eq. (P-14)
is written as

T of
} {d(0—0)} + — do,

0=df={
(0 —0) a0,

= £/ {n}T {do} —f; kngg deP

of 9o, 90,
— 2 deP+ — — dT
do, 8611? do, OT
a0,
=f {n}T _f’Hde? + — —
f] {n}"* {do} fi Hde 50, 3T

(10)
| 1
fi= '{a(oafa)}‘z ({ a(oafe) }T 13(0830)9 ?

1

of '
(nr={5o=5 ) /0
nge = {n}T {ng}

The above equation will be further transformed accord-
ing to the following procedure.

(1) To substitute Eq.(P-6) into the stress increment

{do } which appears in the first term of the right side

of Eq.(10) and éxpress in terms of the elastic strain

where
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increment {de® } etc..

(2) To replace the elastic strain increment {de® }by the
total strain increment {de } etc., using Eq. (9).

(3) To express the thermal strain increment {de’ } by
Eq. (P-1), the plastic strain increment {deP } by Eq.
(P-13) and the creep strain increment {de®} by
Eq. (6).

As a result of this manipulation, Eq. (10) is expressed
by two unknown quantities which are the total strain in-
crement {de } and the magnitude deli of the plastic strain
increment {de®}. Rearrangement of the equation
provides the relationship between {de} and def as

deP = [{n}T [DS] {de} - [{{H}T[Dil({“}

e, d[D°1 _, of da,
SH =t })-t; laﬁ}dfr
+ {n}T[Dg] {éc}dtH /s (11)

where S = {n}T[Dg] {n}+H

The above equation is the same as for thermal elastic-
plastic state shown in Ref.(5) except that the term,
—{n}T [DZ] {é®} dt, is added in the numerator.

Next, the constitutive equation (the stress-total strain
incremental relation) will be derived. Based on Eq. (P-6)
which represents the relationship between the stress in-
crement {do } and the elastic strain increment {de® }, its
right side will be transformed as follows.

(1) To replace the elastic strain increment {de®} by the
total strain increment {de }etc., using Eq. (9).

(2) To express the thermal strain increment {deT} by
Eq. (P-1), the plastic strain increment {deP } by Eq.
(P-13) and the creep strain increment {de®} by Eq.
(6). Further, replace the magnitude deb of {deP }
by {de} etc., using Eq. (11).

As a result of the above calculations, only the total
strain increment {de } remains as an unknown on the
right side of Eq. (P-6), that is, Eq. (P-v6) becomes the in-
cremental equation representing the relationship between
the stress increment {do } and the total strain increment
{de }. Rearrangement of the right side and separation of
the expression into terms relating to the.total strain in-
crement {de} and the other terms furnish the following
thermal elastic-plastic creep constitutive equation.

{do}= [DB] f@e) ~ [ {071 (1)

L dDD] N

_[Dg] 1——dT {e })+ [Dd] {n}fl '
of 0oy ,. : g

o w/ s} arv g yat| (12

where [Dg] = [Dg] - [Dg] {n} {n}T [Dg] /S

The above equation is the same as for the thermal elastic-
plastic state shown in Ref.(5) except that the term,
- [D%] {€°} dt, is added on the right side.

4.3 Application of the finite element method

When very simple creep problems such as in one di-
mension are dealt, the theoretical analysis may be perform-
ed by using only the constitutive equation. However, the
actual problems are usually in two or three dimension and
some analytical method should be employed, such as the
finite element method which is a very powerful tool.
When the finite element method is applied, the basic
equations should be derived, introducing the constitutive
equation. The procedure to derive the basic equations is
the same as for thermal elastic-plastic state described in
Ref. (5).

5. Concluding Remarks

In this study, the creep constitutive equation in multi-
axial stress state is expressed in a general form and is
introduced into “Theory of Thermal Elastic-Plastic Analy-
sis with A More General Workhardening Rule” 5), assum-
ing that there is no interaction between plasticity and
creep. As a result, itis possible to adopt many of complex
workhardening rules and creep laws. For actual analysis
of creep problems except simple cases, some analytical
method should be used. When the finite element method

_is applied, the basic theory of thermal elastic-plastic creep

analysis can be formulated with the aid of the constitutive
equation, taking the same procedure as for thermal elastic-
plastic analysis in Ref. (5).
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