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Abstract
Let Y be a smooth dimensionally transverse intersection of the Grassmannian Gr(2, n) with 3

Plücker hyperplanes. We show that Y admits a multiplicative Chow–Künneth decomposition,
in the sense of Shen–Vial. As a consequence, a certain tautological subring of the Chow ring
of powers of Y injects into cohomology.

1. Introduction

1. Introduction
Given a smooth projective variety Y overC, let Ai(Y) := CHi(Y)Q denote the Chow groups

of Y , i.e. the groups of codimension i algebraic cycles on Y with Q-coefficients, modulo
rational equivalence. Let us write A∗hom(Y) and A∗AJ(Y) for the subgroups of homologically
trivial (resp. Abel–Jacobi trivial) cycles. Intersection product defines a ring structure on
A∗(Y) =

⊕
i Ai(Y), the Chow ring of Y [16]. In the case of K3 surfaces, this ring structure

has a peculiar property:

Theorem 1.1 (Beauville–Voisin [3]). Let S be a K3 surface. The Q-subalgebra

R∗(S) :=
〈
A1(S), c j(S)

〉 ⊂ A∗(S)

injects into cohomology under the cycle class map.

Inspired by the remarkable behaviour of K3 surfaces and of abelian varieties, Beauville
[2] has famously conjectured that for certain special varieties, the Chow ring should admit
a multiplicative splitting. To make concrete sense of Beauville’s elusive “splitting property
conjecture”, Shen–Vial [42] have introduced the concept of multiplicative Chow–Künneth
decomposition; let us abbreviate this to “MCK decomposition”.

What can one say about the class of special varieties admitting an MCK decomposition?
This class is not yet well-understood. Varieties with A∗hom() = 0 (i.e. varieties with trivial
Chow groups) admit an MCK decomposition, for trivial reasons. The question becomes
interesting for varieties with A∗AJ() = 0 (conjecturally, these are exactly the varieties with
Hodge level at most 1, i.e. the Hodge numbers hp,q are zero for |p− q| > 1). It is known that
hyperelliptic curves have an MCK decomposition [42, Example 8.16], but the very general
curve of genus ≥ 3 does not have an MCK decomposition [13, Example 2.3] (for more
details, cf. subsection 2.1 below). Also, there exist Fano threefolds that do not admit an
MCK decomposition. On the positive side, here are some higher-dimensional varieties with
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16 R. Laterveer

Hodge level 1 that are known to have an MCK decomposition:
• cubic threefolds and cubic fivefolds [7], [13];
• Fano threefolds of genus 8 [28];
• complete intersections of 2 quadrics [27];
• Gushel–Mukai fivefolds [26].

The goal of the present note is to add some new varieties with Hodge level 1 to this list:

Theorem (=Theorem 3.7). Let Y be a smooth dimensionally transverse intersection

Y := Gr(2, n) ∩ H1 ∩ H2 ∩ H3 ⊂ P(n
2)−1 ,

where Gr(2, n) denotes the Grassmannian of 2-dimensional linear subspaces of a fixed n-
dimensional vector space, and the Hj are Plücker hyperplanes. Then Y has an MCK decom-
position.

In case n is odd, a variety Y as in Theorem 3.7 has trivial Chow groups and so the state-
ment is vacuously true. In case n is even, there is a curve C naturally associated to Y , and
one has a relation of Chow motives

(1) h(Y) � h(C)((1 − dim Y)/2) ⊕
⊕

1(∗) in rat

(cf. Theorem 3.2). The relation between Y and C has previously been studied on the level
of Hodge theory in [8], and on the level of derived categories in [20], [21]. As a result of
independent interest, we prove here (Theorem 3.2) that the relation (1) also holds on the
level of Chow motives.

The existence of an MCK decomposition has profound intersection-theoretic conse-
quences. This is exemplified by the following corollary, which is about a certain tauto-
logical subring of the Chow ring of powers of Y:

Corollary (=Corollary 4.1). Let Y be as in Theorem 3.7, and m ∈ N. Let

R∗(Ym) :=
〈
(pi)∗ Im

(
A∗(Gr(2, n))→ A∗(Y)

)
, (pi j)∗(ΔY)

〉
⊂ A∗(Ym)

be the Q-subalgebra generated by (pullbacks of) cycles coming from the Grassmannian and
the diagonal ΔY ∈ A∗(Y × Y). (Here pi and pi j denote the various projections from Ym to Y
resp. to Y × Y). The cycle class map induces injections

R∗(Ym) ↪→ H∗(Ym,Q) for all m ∈ N .
Corollary 4.1 is somewhat surprising, because the corresponding statement for the asso-

ciated curve C is false: in general it is not true that the Q-subalgebra〈
(pi)∗(h), (pi j)∗(ΔC)

〉
⊂ A∗(Cm)

injects into cohomology (cf. Proposition 4.3 for the precise statement). This means that the
injection

A∗(Cm) ↪→ A∗(Ym)

induced by (1) does not send tautological cycles to tautological cycles !
Let us end this introduction with an open question. In view of Theorem 3.7, one might

ask whether more generally smooth complete intersections of Grassmannians Gr(k, n) with
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an arbitrary number of Plücker hyperplanes have an MCK decomposition. This concerns in
particular the Debarre–Voisin 20folds

Gr(3, 10) ∩ H ,

which are Fano varieties of K3 type [6], and also the Fano eightfolds

Gr(2, 8) ∩ H1 ∩ · · · ∩ H4 ,

which are again of K3 type [41], [10]. Such varieties (being of Hodge level > 1) are out of
scope of the argument of the present note.

Conventions. In this note, the word variety will refer to a reduced irreducible scheme
of finite type over C. A subvariety is a (possibly reducible) reduced subscheme which is
equidimensional.

All Chow groups will be with rational coefficients: we denote by Aj(Y) the Chow group
of j-dimensional cycles on Y with Q-coefficients; for Y smooth of dimension n the notations
Aj(Y) and An− j(Y) are used interchangeably. The notations Aj

hom(Y) and Aj
AJ(Y) will be used

to indicate the subgroup of homologically trivial (resp. Abel–Jacobi trivial) cycles.
The contravariant category of Chow motives (i.e., pure motives with respect to rational

equivalence as in [39], [34]) will be denoted rat.

2. Preliminaries

2. Preliminaries2.1. MCK decomposition.
2.1. MCK decomposition.

Definition 2.1 (Murre [33]). Let X be a smooth projective variety of dimension n. We
say that X has a CK decomposition if there exists a decomposition of the diagonal

ΔX = π
0
X + π

1
X + · · · + π2n

X in An(X × X) ,

such that the πi
X are mutually orthogonal idempotents and (πi

X)∗H∗(X,Q) = Hi(X,Q).
(NB: “CK decomposition” is shorthand for “Chow–Künneth decomposition”.)

Remark 2.2. The existence of a CK decomposition for any smooth projective variety is
part of Murre’s conjectures [33], [17].

Definition 2.3 (Shen–Vial [42]). Let X be a smooth projective variety of dimension n.
Let Δsm

X ∈ A2n(X × X × X) be the class of the small diagonal

Δsm
X :=

{
(x, x, x) | x ∈ X

} ⊂ X × X × X .

An MCK decomposition is a CK decomposition {πi
X} of X that is multiplicative, i.e. it satis-

fies

πk
X ◦ Δsm

X ◦ (πi
X × π j

X) = 0 in A2n(X × X × X) for all i + j � k .

(NB: “MCK decomposition” is shorthand for “multiplicative Chow–Künneth decompo-
sition”.)
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Remark 2.4. The small diagonal (seen as a correspondence from X × X to X) induces the
multiplication morphism

Δsm
X : h(X) ⊗ h(X) → h(X) in rat .

Let us assume X has a CK decomposition

h(X) =
2n⊕
i=0

hi(X) in rat .

By definition, this decomposition is multiplicative if for any i, j the composition

hi(X) ⊗ h j(X) → h(X) ⊗ h(X)
Δsm

X−−→ h(X) in rat

factors through hi+ j(X).
If X has an MCK decomposition, then setting

Ai
( j)(X) := (π2i− j

X )∗Ai(X) ,

one obtains a bigraded ring structure on the Chow ring: that is, the intersection product
sends Ai

( j)(X) ⊗ Ai′
( j′)(X) to Ai+i′

( j+ j′)(X).
It is expected that for any X with an MCK decomposition, one has

Ai
( j)(X) ??

= 0 for j < 0 , Ai
(0)(X) ∩ Ai

hom(X) ??
= 0 ;

this is related to Murre’s conjectures B and D, that have been formulated for any CK decom-
position [33].

The property of having an MCK decomposition is restrictive, and is closely related to
Beauville’s “splitting property conjecture” [2]. To give an idea: hyperelliptic curves have an
MCK decomposition [42, Example 8.16], but the very general curve of genus ≥ 3 does not
have an MCK decomposition [13, Example 2.3]. As for surfaces: a smooth quartic in P3 has
an MCK decomposition, but a very general surface of degree ≥ 7 in P3 should not have an
MCK decomposition [13, Proposition 3.4]. There are examples of Fano threefolds that do
not admit an MCK decomposition [13, Example 1.11].

For more detailed discussion, and examples of varieties with an MCK decomposition, we
refer to [42, Section 8], as well as [48], [43], [14], [22], [32], [23], [24], [27], [30], [13].

2.2. The Franchetta property.
2.2. The Franchetta property.

Definition 2.5. Let  → B be a smooth projective morphism, where  , B are smooth
quasi-projective varieties. We say that  → B has the Franchetta property in codimension
j if the following holds: for every Γ ∈ Aj() such that the restriction Γ|Yb is homologically
trivial for the very general b ∈ B, the restriction Γ|b is zero in Aj(Yb) for all b ∈ B.

We say that  → B has the Franchetta property if  → B has the Franchetta property in
codimension j for all j.

This property is studied in [37], [4], [11], [12].
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Definition 2.6. Given a family  → B as above, with Y := Yb a fiber, we write

GDAj
B(Y) := Im

(
Aj()→ Aj(Y)

)

for the subgroup of generically defined cycles. In a context where it is clear to which family
we are referring, the index B will often be suppressed from the notation.

With this notation, the Franchetta property amounts to saying that GDA∗B(Y) injects into
cohomology, under the cycle class map, for every fiber Y .

There is some flexibility with respect to the base B:

Lemma 2.7. Let  → B be a smooth projective family, and B0 ⊂ B the intersection of a
countable number of dense open subsets. Then  → B has the Franchetta property if and
only if  → B0 has the Franchetta property.

Proof. This follows from a well-known spread lemma [50, Lemma 3.2]. �

2.3. A Franchetta-type result.
2.3. A Franchetta-type result.

Proposition 2.8. Let M be a smooth projective variety with trivial Chow groups. Let
L1, . . . , Lr → M be very ample line bundles, and let  → B be the universal family of
smooth dimensionally transverse complete intersections of type

Y = M ∩ H1 ∩ · · · ∩ Hr , Hj ∈ |Lj| .
Assume the fibers Y = Yb have Hdim Y

tr (Y,Q) � 0. There is an inclusion

ker
(
GDAdim Y

B (Y × Y)→ H2 dim Y(Y × Y,Q)
)
⊂
〈
(p1)∗GDA∗B(Y), (p2)∗GDA∗B(Y)

〉
.

Proof. This is essentially Voisin’s “spread” result [49, Proposition 1.6] (cf. also [31,
Proposition 5.1] for a reformulation of Voisin’s result). We give a proof which is somewhat
different from [49]. Let B̄ := PH0(M, L1 ⊕ · · · ⊕ Lr) (so B ⊂ B̄ is a Zariski open), and let us
consider the projection

π :  ×B̄  → M × M .

Using the very ampleness assumption, one finds that π is a Ps-bundle over (M × M) \ ΔM,
and a Pt-bundle over ΔM. That is, π is what is termed a stratified projective bundle in [11].
As such, [11, Proposition 5.2] implies the equality

(2) GDA∗B(Y × Y) = Im
(
A∗(M × M)→ A∗(Y × Y)

)
+ Δ∗GDA∗B(Y) ,

where Δ : Y → Y × Y is the inclusion along the diagonal. As M has trivial Chow groups,
A∗(M × M) is generated by A∗(M) ⊗ A∗(M). Base-point freeness of the Lj implies that

GDA∗B(Y) = Im
(
A∗(M)→ A∗(Y)

)
.

The equality (2) thus reduces to

GDA∗B(Y × Y) =
〈
(p1)∗GDA∗B(Y), (p2)∗GDA∗B(Y),ΔY

〉

(where p1, p2 denote the projection from S × S to first resp. second factor). The assumption
that Y has non-zero transcendental cohomology implies that the class of ΔY is not decom-
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posable in cohomology. It follows that

Im
(
GDAdim Y

B (Y × Y)→ H2 dim Y(Y × Y,Q)
)
=

Im
(
Decdim Y(Y × Y)→ H2 dim Y(Y × Y,Q)

)
⊕ Q[ΔY] ,

where we use the shorthand

Dec j(Y × Y) :=
〈
(p1)∗GDA∗B(Y), (p2)∗GDA∗B(Y)

〉
∩ Aj(Y × Y)

for the decomposable cycles. We now see that if Γ ∈ GDAdim Y(Y × Y) is homologically
trivial, then Γ does not involve the diagonal and so Γ ∈ Decdim Y(Y × Y). This proves the
proposition. �

Corollary 2.9. Let  → B be as in Proposition 2.8. Assume that  → B has the
Franchetta property. Then for any fiber Y the cycle class map induces an injection

GDAdim Y(Y × Y) ↪→ H2 dim Y(Y × Y,Q) .

Proof. This is immediate from Proposition 2.8: the Franchetta property for  → B,
combined with the Künneth decomposition in cohomology, implies that the right-hand side
of Proposition 2.8 injects into cohomology. �

2.4. A CK decomposition.
2.4. A CK decomposition.

Lemma 2.10. Let M be a smooth projective variety with trivial Chow groups. Let Y ⊂ M
be a smooth complete intersection of dimension dim Y = d defined by ample line bundles.
The variety Y has a self-dual CK decomposition {π j

Y } with the property that

h j(Y) := (Y, π j
Y , 0) = ⊕1(∗) in rat ∀ j � d .

Moreover, this CK decomposition is generically defined: writing  → B for the uni-
versal family (of complete intersections of the type of Y), there exist relative projectors
π

j

∈ Ad( ×B ) such that π j

Y = π
j

|b (where Y = Yb for b ∈ B).

Proof. This is a standard construction, one can look for instance at [38] (in case d is
odd, which will be the case in this note, the “variable motive” h(Y)var of [38, Theorem 4.4]
coincides with hd(Y)). �

3. Main results

3. Main results3.1. An isomorphism of motives.
3.1. An isomorphism of motives.

Definition 3.1. Let V be a vector space of dimension n, and let

Gr(2, n) := Gr(2,V) ⊂ P(∧2V)

be the Grassmannian (parametrizing 2-dimensional subspaces of V) in its Plücker embed-
ding. Assuming n is even, let

Pf ⊂ P(∧2V∨)

denote the projective dual of Gr(2, n) ⊂ P(∧2V), called the Pfaffian. (The Pfaffian Pf is a
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hypersurface of degree n/2 and singular locus of codimension 7.)
Assume n is even. Given a linear subspace U ⊂ ∧2V of codimension 3, one can define

varieties by intersecting on the Grassmannian side and on the Pfaffian side:

Y = YU := Gr(2,V) ∩ P(U) ⊂ P(∧2V) ,

C = CU := Pf ∩P(U⊥) ⊂ P(∧2V∨) .

We say that Y and C are dual. For U generic, the intersections Y and C are smooth and
dimensionally transverse, of dimension 2(n − 2) − 3 resp. 1.

Theorem 3.2. Let Y be a smooth dimensionally transverse intersection

Y := Gr(2, n) ∩ H1 ∩ H2 ∩ H3 ,

where the Hj are Plücker hyperplanes.
(i) Assume n is odd. Then A∗hom(Y) = 0.
(ii) Assume that n is even, and that Y has a smooth dual curve C. There is an isomorphism

hd(Y) � h1(C)((1 − d)/2) in rat ,

where d := dim Y and hd(Y) is as in Lemma (2.10).

Proof. This is a special case of [29, Theorem 3.17]. Since this is crucial to the present
note, let us include a (sketch of) proof.

With notation as in Definition 3.1, let us consider

Q :=
{
(T,Cω) ∈ Gr(2,V) × P(U⊥)

∣∣∣ ω|T = 0
}
⊂ Gr(2,V) × P(U⊥) ,

the so-called Cayley hypersurface. There is a diagram

(3)

QY ↪→ Q ←↩ QC

↙ p ↙ ↘ q ↘

Y ↪→ Gr(2,V) P(U⊥) ←↩ C

Here, C is defined to be the empty set for n is odd, and the dual curve C ⊂ Pf in case
n is even. The morphisms p and q are induced by the natural projections, and the closed
subvarieties QY ,QC ⊂ Q are defined as p−1(Y) resp. q−1(C).

The restriction of p to Q \QY is trivial with fibre Qu � P1, while the restriction of p to QY

is Zariski locally trivial with fibre QY,y � P2. This allows us to relate the motives of Q and
Y: an application of the “motivic Cayley trick” [18, Corollary 3.2] gives an isomorphism

h(Q) � h(Y)(−2) ⊕ h(Gr(2, n)) ⊕ h(Gr(2, n))(−1)(4)

� h(Y)(−2) ⊕
⊕

1(∗) in rat .

The restriction of q to QC is piecewise trivial (in the sense of [40, Section 4.2]) with
constant fiber F1, while the restriction of q to Q \ QC is piecewise trivial with constant fiber
F2. The fibers F1 and F2 are explicitly known; they have only algebraic cohomology [29,
Lemma 3.5]. This allows to relate Q and C on the level of the Grothendieck ring of varieties,
and hence also on the level of cohomology:
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(5) h(Q) � h(C)(2 − n) ⊕
⊕

1(∗) in hom .

(Here the convention is that h(C) = 0 in case n is odd.)
Combining (4) and (5), we find a split injection of homological motives

(6) hd(Y) ↪→ h1(C)((1 − d)/2) in hom .

Let us now consider things family-wise. Writing B0 ⊂ B̄ := PH0(P(∧2V),(1)⊕3) for the
dense open parametrizing sections such that both Yb := Gr(2, n)∩Hb

1 ∩Hb
2 ∩Hb

3 and the dual
curve Cb ⊂ Pf are smooth and dimensionally transverse (and in addition Cb is contained in
the non-singular locus Pf◦ ⊂ Pf), we have universal families

 → B0 ,  → B0 .

The above construction can be performed for every fiber Y = Yb of the family  → B0.
A Hilbert schemes argument [29, Proposition 2.11] then allows to find generically defined
correspondences (with respect to B0) inducing the split injection (6). Then, the Franchetta-
type result (Proposition 2.8) allows to lift the split injection (6) to an injection of Chow
groups:

(7) A∗hom(Y) = A∗
(
hd(Y)

)
↪→ A∗hom

(
h1(C)((1 − d)/2)

)
= A1

hom(C) .

We conclude from (7) that A∗AJ(Y) = 0 and so Y is Kimura finite-dimensional (i.e. h(Y)
is finite-dimensional in the sense of [19]). Combining (4) and (5), we find a numerical
equality dim Hd(Y,Q) = dim H1(C,Q) and so the injection (6) is actually an isomorphism of
homological motives. Using Kimura finite-dimensionality of both sides, it follows that (6)
is also an isomorphism of Chow motives:

hd(Y)
�−→ h1(C)((1 − d)/2) in rat .

This proves the theorem. �

3.2. Some instances of the Franchetta property.
3.2. Some instances of the Franchetta property.

Notation 3.3. Let B̄ and B0 be as in the proof of Theorem 3.2, and let B ⊃ B0 be the set
parametrizing smooth dimensionally transverse intersections Yb = Gr(2, n)∩H1 ∩H2 ∩H3;
there is a universal family

 → B .

Assuming n is even, let us write

 → B0

for the universal family of smooth dual curves Cb ⊂ Pf◦, as in the proof of Theorem 3.2.

Proposition 3.4. The following families have the Franchetta property:
(i) the family  → B;
(ii) the family  → B0.

Proof. For (i), let us note that the statement is vacuously true in case n is odd, because
then each fiber Yb has trivial Chow groups (Theorem 3.2(i)). Let us now assume that n is
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even, say n = 2m. We observe that the projection

̄ → Gr(2, n)

is a projective bundle, and so (reasoning with the projective bundle formula, or directly
applying [11, Proposition 5.2]) one finds that for any fiber Y := Yb there is equality

GDAj(Y) = Im
(
Aj(Gr(2, n))→ Aj(Y)

)
.

We know from Theorem 3.2(ii) that the only non-trivial Chow group of Y is

A(d+1)/2(Y) = A(2(n−2)−3+1)/2(Y) = A2m−3(Y) ,

and so we only need to prove that GDA2m−3(Y) injects into cohomology. The Chow ring of
the Grassmannian is

A∗(Gr(2, n)) =
〈
h, c
〉
,

where c := c2(Q) ∈ A2(Gr(2, n)) is the second Chern class of the tautological quotient bundle
[9], and so

A2m−4(Gr(2, n))
·h−→ A2m−3(Gr(2, n))

is surjective (and hence an isomorphism, by hard Lefschetz). Let τ : Y → Gr(2, n) denote
the inclusion morphism. The normal bundle formula tells us that the composition

A2m−4(Gr(2, n))
·h−→ A2m−3(Gr(2, n))

τ∗−→ A2m−3(Y)
τ∗−→ A2m(Gr(2, n))

is a non-zero multiple of

A2m−4(Gr(2, n))
·h4

−−→ A2m(Gr(2, n)) .

This last map is the same as

H4m−8(Gr(2, n),Q)
·h4

−−→ H4m(Gr(2, n),Q) ,

which is an isomorphism thanks to hard Lefschetz for the (4m − 4)-dimensional variety
Gr(2, n). This proves the required injectivity of GDA2m−3(Y) into cohomology.

As for (ii), one can either prove this directly, or can reduce to (i) via the generically
defined isomorphism

A1
hom(C)

�−→ A2m−3
hom (Y)

given by Theorem 3.2(ii). �

Proposition 3.5. The following families have the Franchetta property:
(i) the family  ×B0  → B0;
(ii) the family  ×B  → B.

Proof. (i) Let ̄ ⊂ Pf ×B̄ denote the projective closure of , and let us consider the
projection

π : ̄ ×B̄ ̄ → Pf × Pf .
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This is a stratified projective bundle (in the sense of [11]). As such, [11, Proposition 5.2]
implies the equality

(8) GDA∗B0
(C ×C) = Im

(
A∗(Pf◦ × Pf◦)→ A∗(C ×C)

)
+ Δ∗GDA∗B0

(C) ,

where Δ : C → C × C is the inclusion along the diagonal, and Pf◦ ⊂ Pf denotes the non-
singular locus of the Pfaffian. As Pf◦ has the Chow–Künneth property [29, Example 2.7],
A∗(Pf◦ × Pf◦) is generated by A∗(Pf◦) ⊗ A∗(Pf◦). The equality (8) thus simplifies to

(9) GDA∗B0
(C ×C) =

〈
(p j)∗ Im

(
Aj(Pf◦)→ A∗(C)

)
, ΔC

〉
.

We now proceed to check that GDAj
B0

(C ×C) injects into cohomology:
In case j = 1, we know that ΔC is linearly independent from the decomposable classes〈

(p j)∗ Im
(
Aj(Pf◦)→ A∗(C)

)〉

in cohomology (indeed, we may assume that C has genus > 0, for otherwise the statement
is vacuously true). The required injectivity then reduces to Proposition 3.4(ii).

In case j = 2, we know that A1(Pf◦) is 1-dimensional, generated by a hyperplane class H
(cf. Lemma 3.6 below). Since C ⊂ P2 is a plane curve, clearly we have an equality

ΔC · (pi)∗(H) =
2∑

r=0

1
deg C

(p1)∗(Hr) · (p2)∗(H2−r) in A2(C ×C) ,

and so

GDA2
B0

(C ×C) =
〈
(p j)∗ Im

(
Aj(Pf◦)→ A∗(C)

)
, ΔC

〉
∩ A2(C ×C)

=
〈
(p j)∗ Im

(
Aj(Pf◦)→ A∗(C)

)〉 ∩ A2(C ×C) .

The required injectivity then reduces to Proposition 3.4(ii).
In the above, we have used the following lemma:

Lemma 3.6. Let Pf◦ ⊂ Pf denote (as above) the non-singular locus of the Pfaffian. We
have

A1(Pf◦) � Q[H] .

Proof. (of the lemma.) We consider

P̃f :=
{
(ω,K) ∈ Pf ×Gr(2, n)

∣∣∣∣K ⊂ kerω
}
⊂ Pf ×Gr(2, n) .

The projection P̃f → Gr(2, n) is a projective bundle (and so P̃f is smooth), and the projection
P̃f → Pf is an isomorphism over the non-singular locus (and so P̃f → Pf is a resolution of
singularities).

Being a projective bundle over a Grassmannian, P̃f has Picard number 2:

A1(P̃f) = Q2 .

The complement of (the isomorphic pre-image of) Pf◦ inside P̃f is an irreducible divisor D
(it is a partial flag variety). The localization sequence

A∗(D) → A1(P̃f) → A1(Pf◦) → 0
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then gives the result. �

(ii) Again, we may assume that n is even (for otherwise the statement is vacuously fulfilled).
In view of Lemma 2.7, it will suffice to prove the Franchetta property for  ×B0  → B0.
Thanks to Theorem 3.2(ii), for any fiber Y = Yb with b ∈ B0 we have split injections

Aj(Y × Y) ↪→ Aj+1−d(C ×C) ⊕
⊕

A∗(C) ⊕ Qs .

The isomorphism of Theorem 3.2 being generically defined, there are also split injections

GDAj(Y × Y) ↪→ GDAj+1−d(C ×C) ⊕
⊕

GDA∗(C) ⊕ Qs .

The required injectivity now follows from (i) and Proposition 3.4(ii). �

3.3. MCK.
3.3. MCK.

Theorem 3.7. Let Y be a smooth dimensionally transverse intersection

Y := Gr(2, n) ∩ H1 ∩ H2 ∩ H3 ,

where the Hj are Plücker hyperplanes. Then Y has an MCK decomposition.

Proof. In case n is odd, Y has trivial Chow groups (Theorem 3.2(i)) and so the statement
is vacuously true. In case n = 4, Y is a rational curve and again the statement is vacuously
true. We may thus suppose that n is even and ≥ 6. We have the following general result:

Proposition 3.8. Let  → B be a family of smooth projective varieties, verifying
(a1) the fibers Yb are of odd dimension d ≥ 5 and

Aj
hom(Yb) = 0 ∀ j > (d + 1)/2 ∀ b ∈ B ;

(a2) the fibers Yb have a generically defined Künneth decomposition, i.e. there exist {π j

} ∈

Ad( ×B ) such that the fiberwise restriction π j
Yb

:= π j

|b ∈ Ad(Yb × Yb) is a Künneth

decomposition for all b ∈ B;
(a3) the family  ×B  → B has the Franchetta property.

Then {π j
Yb
} is an MCK decomposition for any b ∈ B.

Proof. (of Proposition 3.8.) Condition (a1) implies (via the Bloch–Srinivas argument, cf.
[5]) that for every fiber Yb there exists a curve Cb and a split injection of motives

(10) h(Yb) ↪→ h(Cb)((1 − d)/2) ⊕
⊕

1(∗) in rat .

Condition (a3) implies that the Künneth decomposition {π j
Yb
} of (a2) is a self-dual CK

decomposition. Let h(Yb) = ⊕ jh j(Yb) denote the corresponding decomposition of the motive
of X. Using the injection (10), one finds that h j(Yb) = ⊕1(∗) for all j � d, while for j = d
one finds a split injection

(11) hd(Yb) ↪→ h1(Cb)((1 − d)/2) in rat .

Let us now establish that the CK decomposition {π j
Yb
} is MCK. By definition, what we

need to check is that the cycle

Γi jk := πk
Yb
◦ Δsm

Yb
◦ (πi

Yb
× π j

Yb
) ∈ A2d(Yb × Yb × Yb)
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is zero for all i + j � k.
Let us assume at least one of the integers i, j, k is different from d. In this case, there is an

injection

Γi jk ∈ (π2d−i
Yb
× π2d− j

Yb
× πk

Yb
)∗A2d(Yb × Yb × Yb) ↪→

⊕
A∗(Yb × Yb) ,

and this injection sends generically defined cycles to generically defined cycles. But Γi jk is
generically defined and homologically trivial, and so the Franchetta property for ×B → B
gives the required vanishing Γi jk = 0.

Next, let us assume i = j = k = d. In this case, the injection of motives (11) induces an
injection of Chow groups

Γi jk ∈ (πd
Yb
× πd

Yb
× πd

Yb
)∗A2d(Yb × Yb × Yb) ↪→ A(d+3)/2(Cb ×Cb ×Cb) .

But the right-hand side vanishes for dimension reasons for any d ≥ 5, and so Γi jk = 0. �

Let us now consider the family  → B of all smooth complete intersections Gr(2, n) ∩
H1∩H2∩H3, where n ≥ 6 is even. Each fiber Yb has a generically defined CK decomposition
{π j

Yb
} (Lemma 2.10). To check that {π j

Yb
} is MCK, it suffices to do this over a dense open of

B; for instance we may take B0 ⊂ B the locus as before where Yb has a smooth dual curve
Cb contained in Pf◦. Let us check that  → B0 verifies the conditions of Proposition 3.8.
Condition (a1) is immediate from Theorem 3.2(ii). Condition (a2) is fulfilled by the {π j

Yb
}.

As for condition (a3), this is Proposition 3.5(ii). This ends the proof. �

4. The tautological ring

4. The tautological ring4.1. A positive result.
4.1. A positive result.

Corollary 4.1. Let Y be as in Theorem 3.7, and m ∈ N. Let

R∗(Ym) :=
〈
(pi)∗ Im

(
A∗(Gr(2, n))→ A∗(Y)

)
, (pi j)∗(ΔY)

〉
⊂ A∗(Ym)

be the Q-subalgebra generated by (pullbacks of) cycles coming from Gr(2, n) and (pullbacks
of) the diagonal ΔY ∈ Ad(Y × Y). (Here pi and pi j denote the various projections from Ym to
Y resp. to Y × Y). The cycle class map induces injections

R∗(Ym) ↪→ H∗(Ym,Q) for all m ∈ N .
Proof. This is inspired by the analogous result for cubic hypersurfaces [12, Section 2.3],

which in turn is inspired by analogous results for hyperelliptic curves [44], [45] (cf. Remark
4.2 below) and for K3 surfaces [51].

The Chow ring A∗(Gr(2, n)) is generated by the Plücker polarization h ∈ A1(Gr(2, n)) and
the Chern class c2(Q) ∈ A2(Gr(2, n)), where Q → Gr(2, n) is the universal quotient bundle
[9]. As in [12, Section 2.3], let us write

o :=
1

deg(hd)
hd ∈ Ad(Y) , c := c2(Q)|Y ∈ A2(Y) ,

and
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τ := πd
Y = ΔY −

∑
j�d

π
j
Y ∈ Ad(Y × Y) ,

where the π j
Y are as above, and d := dim Y .

Moreover, for any 1 ≤ i < j ≤ m let us write

oi := (pi)∗(o) ∈ Ad(Ym) ,

hi := (pi)∗(h) ∈ A1(Ym) ,

ci := (pi)∗(c) ∈ A2(Ym) ,

τi j := (pi j)∗(τ) ∈ Ad(Ym) .

Note that (by definition) we have

R∗(Ym) =
〈
oi, hi, ci, τi j

〉
⊂ A∗(Ym) .

Let us now define the Q-subalgebra

R̄∗(Ym) :=
〈
oi, hi, ci, τi j

〉
⊂ H∗(Ym,Q)

(where i ranges over 1 ≤ i ≤ m, and 1 ≤ i < j ≤ m); this is the image of R∗(Ym) in
cohomology. One can prove (just as [12, Lemma 2.11] and [51, Lemma 2.3]) that the Q-
algebra R̄∗(Ym) is isomorphic to the free graded Q-algebra generated by oi, hi, ci, τi j, modulo
the following relations:

(12) hi · oi = ci · oi = 0, c(d+1)/2
i = 0, c(d−1)/2

i = λhd−1
i , . . . , hd

i = deg(hd) oi ;

(13) τi j · oi = τi j · hi = τi j · ci = 0, τi j · τi j = −bd oi · o j ;

(14) τi j · τik = τ jk · oi ;

(15)
∑
σ∈Sbd+2

bd/2+1∏
i=1

τσ(2i−1),σ(2i) = 0 .

Here λ ∈ Q, and the dots “. . .” in (12) indicate certain relations of type cmj

i hn j

i = λ jh
2mj+n j

i .
By definition, bd := dim Hd(Y,Q) and Sr denotes the symmetric group on r elements.

To prove Corollary 4.1, it suffices to check that all these relations are verified modulo
rational equivalence. The relations (12) take place in R∗(Y) and so they follow from the
Franchetta property for Y (Proposition 3.4). The relations (13) take place in R∗(Y2). The last
relation is trivially verified, because (Y being Fano) A2d(Y2) = Q. As for the other relations
of (13), these follow from the Franchetta property for Y × Y (Proposition 3.5).

Relation (14) takes place in R∗(Y3) and follows from the MCK decomposition. Indeed,
we have

Δsm
Y ◦ (πd

Y × πd
Y) = π2d

Y ◦ Δsm
Y ◦ (πd

Y × πd
Y) in A2d(Y3) ,

which (using Lieberman’s lemma) translates into

(πd
Y × πd

Y × ΔY)∗Δsm
Y = (πd

Y × πd
Y × π2d

Y )∗Δsm
Y in A2d(Y3) ,
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which means that

τ13 · τ23 = τ12 · o3 in A2d(Y3) .

Finally, relation (15), which takes place in R∗(Ybd+2), is related to the Kimura finite-
dimensionality relation [19]: relation (15) expresses the vanishing

Symbd+2 Hd(Y,Q) = 0 ,

where Hd(Y,Q) is seen as a super vector space. This relation is also verified modulo rational
equivalence, (i.e., relation (15) is also true in Ad(bd+2)(Ybd+2)): relation (15) involves a cycle
in

A∗(Symbd+2 hd(Y)) ,

and Symbd+2 hd(Y) is 0 because Y has Kimura finite-dimensional motive (Theorem 3.2).
This ends the proof. �

Remark 4.2. Given any curve C and an integer m ∈ N, one can define the tautological
ring

R∗(Cm) :=
〈
(pi)∗(KC), (pi j)∗(ΔC)

〉 ⊂ A∗(Cm)

(where pi, pi j denote the various projections from Cm to C resp. C ×C). Tavakol has proven
[45, Corollary 6.4] that if C is a hyperelliptic curve, the cycle class map induces injections

R∗(Cm) ↪→ H∗(Cm,Q) for all m ∈ N .
On the other hand, there exist curves for which the tautological ring R∗(C3) does not inject

into cohomology, cf. Proposition 4.3 below.

4.2. A negative result.
4.2. A negative result.

Proposition 4.3. Let

Y := Gr(2, n) ∩ H1 ∩ H2 ∩ H3

be a very general intersection of the Grassmannian with 3 Plücker hyperplanes, where n
is even and 8 ≤ n ≤ 2000. Let C ⊂ Pf be the curve dual to Y (Definition 3.1). The
Q-subalgebra

R∗(Cm) :=
〈
(pi)∗(KC), (pi j)∗(ΔC)

〉 ⊂ A∗(Cm)

does not inject into cohomology for m = 3.

Proof. The point is that C is a plane curve of degree n/2, and that the general plane curve
of degree n/2 arises in this way [1]. Using the spread lemma (Lemma 2.7), it follows that
the assumption that R∗(Cm) injects into cohomology for the very general C as in Proposition
4.3 would imply that R∗(Cm) injects into cohomology for every plane curve of degree n/2.
Taking m = 3, this would mean that every plane curve of degree n/2 has a self-dual MCK
decomposition. As explained in [15, Proposition 7.1] and [13, Remark 2.4], this would
imply that for every plane curve C of degree n/2 the Ceresa cycle
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C − [−1]∗(C) ∈ A1(Jac(C))

is algebraically trivial. But this is known to be false for the Fermat curve of degree between
4 and 1000, cf. [36]. �

Acknowledgements. Thanks to Lie Fu and Charles Vial for lots of inspiring exchanges
around MCK.

References

[1] A. Beauville: Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39–64.
[2] A. Beauville: On the splitting of the Bloch–Beilinson filtration; in Algebraic Cycles and Motives, London

Math. Soc. Lecture Notes 344, Cambridge University Press, Cambridge, 2007.
[3] A. Beauville and C. Voisin: On the Chow ring of a K3 surface, J. Algebraic. Geom. 13 (2004), 417–426.
[4] N. Bergeron and Z. Li: Tautological classes on moduli space of hyperKähler manifolds, Duke Math. J. 168

(2019), 1179–1230.
[5] S. Bloch and V. Srinivas: Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983),

1235–1253.
[6] O. Debarre and C. Voisin: Hyper-Kähler fourfolds and Grassmann geometry, J. Reine Angew. Math. 649

(2010), 63–87.
[7] H. Diaz: The Chow ring of a cubic hypersurface, to appear in Int. Math. Res. Not. IMRN.
[8] R. Donagi: On the geometry of Grassmannians, Duke Math. J. 44 (1977), 795–837.
[9] D. Eisenbud and J. Harris: 3264 and All That: A Second Course in Algebraic Geometry, Cambridge

University Press, Cambridge, 2016.
[10] E. Fatighenti and G. Mongardi: Fano varieties of K3 type and IHS manifolds, arXiv:1904.05679.
[11] L. Fu, R. Laterveer and Ch. Vial: The generalized Franchetta conjecture for some hyper-Kähler varieties,

with an appendix joint with M. Shen, J. Math. Pures Appl. (9) 130 (2019), 1–35.
[12] L. Fu, R. Laterveer and Ch. Vial: The generalized Franchetta conjecture for some hyper-Kähler varieties,
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