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Abstract
We study a generalized nonlinear Schrödinger equations with spatial variable coefficients,

which models the remarkable inhomogeneous Schrö dinger maps (ISM). A new weighted
Sobolev space 1,q(R+) is introduced and the existence of blow-up solutions of this equations,
including the integrable radial ISM, with the initial data in 1,2(R+) is proved.

1. Introduction

1. Introduction
In this paper, we consider the following nonlinear Schrödinger equation with spatial vari-

able coefficients:

i∂tv + Aμv = λ1rp3 |v|bv + λ2v

∫ r

0
(r′)p4 |v|cdr′,(1.1)

v(r, 0) = v0(r), v(0, t) = 0, (r, t) ∈ R+ × R,
where v : R+ × R→ C, r = |x|, (x ∈ Rn) is the radius, λ1, λ2 ∈ R, b, c ≥ 1 and the operator

Aμ := arp0 (∂rr +
p1

r
∂r − p2

r2 ), a < 0,

with the array (p0, p1, p2) satisfies the assumption

p0 < min{p1 + 1, 2}, p1 > −1, p2 := (
2 − p0

2
μ)2 − (

p1 − 1
2

)2, μ ≥ 0.

The elliptic operator Aμ = arp0 (∂rr +
p1
r ∂r − p2

r2 ) plays a key role in searching the solution
of (1.1). Schrödinger type equations with variable coefficients have been of considerable
interest among both mathematicians and physicists, and some remarkable progress on the
Cauchy problem have been made, see e.g. [10]-[13] for a detailed discussion. The mathe-
matical interest in (1.1) comes mainly from the spatial variable coefficient rp0 , which arises
in a model for the inhomogeneous Schrödinger maps (ISM) with �S ∈ S2 ⊂ R3

(1.2) ∂t�S(x, t) = �(x)(�S × Δ�S) + ∇�(x) · (�S × ∇�S),

or, equivalently, the nonlinear Schrödinger equation

ivt + �(vrr +
n − 1

r
vr − n − 1

r2 v + 2|v|2v) + 2�rvr(1.3)
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+ [�rr +
n − 1

r
�r + 2

∫ r

0
�r′ |v|2dr′ + 4(n − 1)

∫ r

0

�

r′
|v|2dr′]v = 0,

based on a known geometrical process [4, 12], where Δ is the Laplacian in Rn, × denotes the
cross product in R3, and

∇�(x) · (�S × ∇�S) =
n∑

j=1

∂�(x)
∂x j

(�S × ∂�S
∂x j

).

Obviously, the factor rp0 in Aμ corresponds to the inhomogeneity �(r) in (1.3). Noticing
that (1.1) includes radial ISM (1.2) with �(r) = rp0 .

When � is a constant, the ISM (1.2) reduces to the well-known (homogeneous)
Schrödinger maps

(1.4) ∂t�S(x, t) = �S × Δ�S,
of which global well-posedness problem has attracted a great deal of attention in past years.
Local existence for smooth initial data goes back to [14], see also [8]. Some progress of
small initial data existence results can be found in [3] and [1] for n ≥ 2. Especially, the
classical solution with small energy is global in time for the radial case [3]. For some
special large initial data, the possibility of finite time blowup and the blowup rate have been
proved [9, 11].

In the setting of the ISM (1.2), when the inhomogeneity � is chosen as

(1.5) �(r) = ε1r2(n−1) + ε2rn−2,

in which case (1.2) is completely integrable by means of the inverse scattering transform,
Daniel et al. [4] present some soliton like solutions of (1.2) by using the equivalent
Schrödinger equation (1.3). Based on the above equivalent relation, some further works
about the possible blowup of the solutions, in the particular case where �(r) = r2−n, is made
by the author [16] in an energy space 1,2(R+) (see Definition 1.1).

In this paper, we concentrate on a nonintegrable case (�(r) = rp0 ), and investigate the
global behavior of the deduced equation (1.1), which is a generalized version of (1.3). For
technical reasons, we require p3, p4 satisfy

(1.6)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
max{(p1 − 1)b0 + 2(p0 − 2), −2d} ≤ 2p3 ≤ (d +

p0 − 2
2

n)b0,

max{−2d − 2, 2p0 − 6 + (p1 − 1)c0} ≤ 2p4 ≤ (d +
p0 − 2

2
n)c0 − 2,

with b0 := 2(p3−p0+2)
p1−p0+1 , c0 := 2(p4−p0+3)

p1−p0+1 , d := p1 − p0 + 1.
We introduce the definition of a new weighted Sobolev spaces 1,p(R+) and weighted

space-time spaces Lh(I; Lp
κ,σ).

Definition 1.1 ([17]). For 1 ≤ p, h ≤ ∞ and κ := 2−p0
2 μ + 1−p1

2 , we define the weighted
Sobolev space 1,p(R+) by


1,p(R+) = {u ∈ Lp

κ,σ(R+) : Dru ∈ Lp
κ,σ̃

(R+), Dr := rp0−p1∂r},
endowed with the norm ‖u‖1,p(R+) = ‖u‖Lp

κ,σ(R+) + ‖Dru‖Lp
κ,σ̃

(R+), where the norm of the
weighted Lebesgue space Lp

κ,σ(R+) and space-time space Lh(I; Lp
κ,σ) of function v are de-
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fined as

‖v‖Lp
κ,σ(R+) = (

∫
R+

|v|pr−κpdσr)
1
p < ∞,

‖v‖Lh(I;Lp
κ,σ) = (

∫
I
‖v‖hLp

κ,σ
dt)

1
h ,

with a usual modification when p or h is infinity, where dσr = r2κ+p1−p0dr, dσ̃r =

r2κ+3p1−2p0dr are the Lebesgue measures. For simplicity, ‖ f ‖Lp(R+) = (
∫
R+
| f (r)|pdr)

1
p .

Moreover, we also define the function space 
1,p
0 (R+) as the closure of C∞0 (R+) in

1,p(R+).

Thanks to Strichartz estimates, the Cauchy problem for (1.1) is locally well-posed in
1,q(R+) (see [17], Theorem 1.4): for any v0 ∈ 

1,2
0 (R+), there exists T ∈ (0,∞) and a

unique solution v(t) of (1.1) with v(r, 0) = v0 such that

v ∈ Xq(I) := L∞(I;1,q
0 (R+)) ∩ Lm(I;1,l

0 (R+)),

where I = [0, T ], the triplet (m, l, q) is an Lq
κ,σ-admissible in the Strichartz’s sense, if 1 < q ≤

l < γq
γ−1 and satisfy

(1.7)
1
m
= γ(

1
q
− 1

l
), γ :=

2κ + p1 − p0 + 1
2 − p0

.

Let v(r, t) be a solution of the equation (1.1), we define the following quantities:

M(v(t)) = ‖v(t)‖2L2
κ,σ(R+),(1.8)

E(v(t)) = −a
2

∫
R+

(rp1 |∂rv|2 + p2rp1−2|v|2)dr − λ1

b + 2

∫
R+

|v|b+2rp3+p1−p0dr.(1.9)

It is easy to prove that if v is a solution of (1.1), then M(v(t)) = M(v0) and

(1.10)
d
dt

E(v(t)) = −aλ2Im
∫
R+

|v|cv∂rvrp4+p1dr, t ∈ [0, T ].

We remark the energy E(v) defined above is no anymore conserved along the flow of (1.1)
(unless the nonlocal term of the equation (1.1) vanishes, i.e. λ2 = 0), which is a key chal-
lenge what we faced to develop the global behavior of (1.1).

In order to overcome it, we need to refine the variance defined by

(t) :=
1

(2 − p0)2 ‖r
2−p0

2 v(t)‖2L2
κ,σ(R+),

in the spirit of the seminal work of R. Glassey [5], which relies heavily on the conservation
of the energy. The main blow up result of (1.1) is stated as follows:

Theorem 1.2. Let p2 ≥ 0, and p3, p4 satisfy (1.6). Assume that (1.1) admits a local
solution v ∈ X2([0, T ]) with Schwartz initial data v0 ∈ 

1,2
0 (R+) where T is the maximal

existence time. If (0) and

(1.11) 
′(0) :=

2a
2 − p0

Im
∫
R+

v0∂rv0rp1−p0+1dr > 0

are finite, then blow up occurs in each of the following cases:
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(1) λ1 > 0, b = b0 with M(v0)
b
2 ≤ −a(b+2)

2λ1Cb+2
b

:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ2 < 0 : c = c0, M(v0)

c
2 ≤ 2 − p0

λ2Cc+2
c

[a +
2λ1Cb+2

b

b + 2
M(v0)

b
2 ],

λ2 ≥ 0 : for all c.
(1.12)

(2) λ1 ≤ 0, b ≥ b0 :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ2 < 0 : c = c0, M(v0)

c
2 ≤ (p1 − p0 + 3)a

λ2Cc+2
c

,

λ2 ≥ 0 : for all c and M(v0).
(1.13)

Moreover, let

C̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝ 8a

a + 2λ1
b+2Cb+2

b M(v0)
b
2 − λ2

2−p0
Cc+2

c M(v0)
c
2

⎞⎟⎟⎟⎟⎟⎟⎠
1
2

, λ1 > 0, b = b0, (1.12),

(
8a(2 − p0)

(2 − p0)a − λ2Cc+2
c M(v0)

c
2

) 1
2

, λ1 ≤ 0, b ≥ b0, (1.13).

the solution v of (1.1) blows up at finite time provided C̃ < 1.

Remark. Here are some comments on Theorem 1.2.

(i) When b < 2(p3−p0+2)
p1−p0+1 or λ2 < 0, c � 2(p4−p0+3)

p1−p0+1 , the global behavior of the solutions to
(1.1) has not been proved yet. This restriction is due to the absence of energy monotonicity
inequality about (1.1).

(ii) This theorem is stronger than the result in [16] and generalize the range of both the
nonlinear power and the spatial variable coefficient.

2. Preliminaries

2. Preliminaries
In this section, we give some identities which will be used in the proof of Theorem 1.2.

The Cauchy problem to be considered is the following:

(2.1) i∂tv + arp0 (∂rr +
p1

r
∂r)v = U(r)v +W(r)|v|bv + H(v)v,

where the functions U, W : R+ → R and H : C → R. In particular, (2.1) includes the
equation (1.1) with

U(r) = ap2rp0−2, W(r) = λ1rp3 , H(v) = λ2

∫ r

0
(r′)p4 |v|cdr′.

We begin with a lemma giving a sufficient condition for the energy quantity (1.10):

Lemma 2.1. If v is the solution to the equation (2.1) with the initial data v0(r), then the
solution v satisfies

(2.2)
d
dt
(v(t)) = −aIm

∫
R+

rp1∂rv∂r(H(v)v)dr,

where the energy
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(v) := −a
2

∫
R+

rp1 |∂rv|2dr − 1
2

∫
R+

U(r)|v|2rp1−p0dr − 1
b + 2

∫
R+

W(r)|v|b+2rp1−p0dr.

Proof. We multiply the equation (2.1) by vtrp1−p0 , integrate over R+ and take the real part
of the result to obtain

d
dt

(−a
2

∫
R+

rp1 |∂rv|2dr − 1
2

∫
R+

U(r)|v|2rp1−p0dr − 1
b + 2

∫
R+

W(r)|v|b+2rp1−p0dr)(2.3)

= Re
∫
R+

H(v)vvtrp1−p0dr.

For the right hand side of (2.3), it is easy to derive from (2.1)

Re
∫
R+

H(v)vvtrp1−p0dr = aIm
∫
R+

rp1 (∂rr +
p1

r
∂r)vH(v)vdr = −aIm

∫
R+

rp1∂rv∂r(H(v)v)dr,

(2.4)

which together with (2.3) yield that

d
dt
(v) = −aIm

∫
R+

rp1∂rv∂r(H(v)v)dr. �

Given a real valued function ψ(r), we consider

ψ(t) :=
∫
R+

ψ(r)|v(t)|2rp1−p0dr.

An important preliminary step in this analysis is the following virial identity:

Lemma 2.2. If v is a (sufficiently smooth and decaying) solution to the equation (2.1),
and let φ(r), ψ(r) ∈ C(R+) be real-valued functions with compact support that satisfy

∂rψ =
∂rφ

rp0+p1
, ∀ r ∈ R+,

then


′
ψ(t) = 2aIm

∫
R+

v∂rv∂rψrp1dr,(2.5)


′′
ψ (t) = 2a2

∫
R+

�1(φ)|∂rv|2dr − a2
∫
R+

�2(φ)|v|2dr +
2a

b + 2

∫
R+

�3(φ)|v|b+2dr,(2.6)

where v̄ denotes the conjugate of v, and

�1(φ) = 2∂2
rφ −

p0 + 2p1

r
∂rφ,

�2(φ) = ∂4
rφ +

Q3

r
∂3

rφ +
Q2

r2 ∂
2
rφ +

Q1

r3 ∂rφ +
2
a

(∂rU + ∂rH(v))r−p0∂rφ,

�3(φ) = br−p0 [(∂2
rφ −

p0

r
∂rφ)W(r) − 2

b
∂rφ∂rW],

with Q3 := −p1 − p0, Q2 := p1 + p0(p1 + 2), Q1 := −2p0(p1 + 1).

Proof. (1) Multiplying the equation (2.1) by vrp1−p0 and taking the imaginary part of the
result, we get
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(2.7)
∂

∂t
(|v|2rp1−p0 ) = −2aIm[v∂r(rp1∂rv)].

We multiply (2.7) by ψ(r) and integrate over R+ to get

d
dt

∫
R+

ψ(r)|v|2rp1−p0dr = 2aIm
∫
R+

v∂rv∂rψrp1dr.

(2) For ∂rψ =
∂rφ

rp0+p1 , by writing

(2.8) ψ(t) := 2aIm
∫
R+

v∂rvr−p0∂rφdr,

we claim that

(2.9) 
′
ψ(t) = −2aIm

∫
R+

vt[2(r−p0∂rφ)∂rv + ∂r(r−p0∂rφ)v]dr.

Indeed, we deduce from (2.8) that


′
ψ(t) = −2aIm

∫
R+

vt∂rvr−p0∂rφdr − 2aIm
∫
R+

v∂rvtr
−p0∂rφdr,

and (2.9) follows by integration by parts, since

v∂rvtr
−p0∂rφ = ∂r[vvtr−p0∂rφ] − vt∂r(vr−p0∂rφ),

which proves the claim.
Now using the equation (2.1) with N(v) := U(r)v +W(r)|v|bv + H(v)v, we see that Im vt =

−Re [−arp0−p1∂r(rp1∂rv) + N(v)], and


′
ψ(t) = 2aRe

∫
R+

[−arp0−p1∂r(rp1∂rv) + N(v)][2(r−p0∂rφ)∂rv + ∂r(r−p0∂rφ)v]dr(2.10)

:= (B1
L + B2

L) + (B1
N + B2

N).

Next, an elementary calculation shows that

B1
L = 2a2Re

∫
R+

rp1∂rv∂r[2(r−p1∂rφ)∂rv]dr(2.11)

= 4a2
∫
R+

rp1 |∂rv|2∂r(r−p1∂rφ)dr − 2a2
∫
R+

|∂rv|2∂2
rφdr

= 2a2
∫
R+

[2rp1∂r(r−p1∂rφ) − ∂2
rφ)]|∂rv|2dr,

and

B2
L = 2a2Re

∫
R+

rp1∂rv∂r[rp0−p1v∂r(r−p0∂rφ)]dr(2.12)

= 2a2
∫
R+

rp0 |∂rv|2∂r(r−p0∂rφ)dr + 2a2
∫
R+

rp1

×∂r[rp0−p1∂r(r−p0∂rφ)]Re(v∂rv)dr.

We now calculate the various terms corresponding to N(v). The first term

B1
N = 4aRe

∫
R+

[U(r)v +W(r)|v|bv + H(v)v]∂rv(r−p0∂rφ)dr(2.13)
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= −2a
∫
R+

|v|2∂r[(U(r) + H(v))(r−p0∂rφ)]dr

− 4a
b + 2

∫
R+

|v|b+2∂r[W(r)(r−p0∂rφ)]dr,

and the second term

(2.14) B2
N = 2a

∫
R+

[U(r)|v|2 +W(r)|v|b+2 + H(v)|v|2]∂r(r−p0∂rφ)dr.

Finally, combining (2.11), (2.12), (2.13) with (2.14), we deduce from (2.10) that


′
ε(t) = 2a2

∫
R+

[2rp1∂r(r−p0∂rφ) − ∂2
rφ + rp0∂r(r−p0∂rφ)]|∂rv|2dr(2.15)

+2a2
∫
R+

rp1∂r[rp0−p1∂r(r−p0∂rφ)]Re(v∂rv)dr

−2a
∫
R+

|v|2∂r[(U(r) + H(v))(r−p0∂rφ)]dr

− 4a
b + 2

∫
R+

|v|b+2∂r[W(r)(r−p0∂rφ)]dr

+2a
∫
R+

[U(r)|v|2 +W(r)|v|b+2 + H(v)|v|2]∂r(r−p0∂rφ)dr

:= 2a2
∫
R+

�1(φ)|∂rv|2dr − a2
∫
R+

�2(φ)|v|2dr +
2a

b + 2

∫
R+

|v|b+2�3(φ)dr,

where

�1(φ) = 2∂2
rφ −

p0 + 2p1

r
∂rφ,

�2(φ) = ∂4
rφ +

Q3

r
∂3

rφ +
Q2

r2 ∂
2
rφ +

Q1

r3 ∂rφ +
2
a

(∂rU + ∂rH(v))r−p0∂rφ,

�3(φ) = br−p0 [(∂2
rφ −

p0

r
∂rφ)W(r) − 2

b
∂rφ∂rW],

with Q3 := −p1 − p0, Q2 := p1 + p0(p1 + 2), Q1 := −2p0(p1 + 1). The proof of Lemma 2.2
is completed. �

As a consequence, we can prove a variant of [15, Corollary 5.1] related to (1.1).

Corollary 2.3. Let v be a local solution to the Cauchy problem (1.1) in C([0, T );


1,2
0 (R+)), and let ∂rψ =

r1−p0

2−p0
, then for t ∈ [0, T ),


′′(t) = −4aE(v) + D0

∫
R+

|v|2rp1−2dr + D1

∫
R+

|v|b+2rp3+p1−p0dr(2.16)

+D2

∫
R+

|v|c+2rp4+p1−p0+1dr,

with D0 := 2a2 p2(σ−2)
2−p0

,D1 := 2aλ1[b(p1−p0+1)−2(p3−p0+2)]
(b+2)(2−p0) ,D2 := − 2aλ2

2−p0
.

Proof. As in the previous Lemma 2.2, for R > 0, let ∂rφR(r) ∈ C∞0 (R+) satisfies

(2.17) ∂rφR(r) :=

⎧⎪⎪⎨⎪⎪⎩ r, if r ≤ R,

0, if r ≥ 2R,
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and ∂rψR =
∂rφR

rp0+p1 , Lemma 2.2 implies


′′
ψR

(t) = 2a2
∫
R+

�1(φR)|∂rv|2dr − a2
∫
R+

�2(φR)|v|2dr +
2a

b + 2

∫
R+

�3(φR)|v|b+2dr.(2.18)

Noting that as R→ ∞, the right side converges to

2a2
∫
R+

rp1 |∂rv|2dr + 2a2 p2

∫
R+

|v|2rp1−2dr(2.19)

+C0

∫
R+

|v|b+2rp1−p0+p3dr − 2aλ2

2 − p0

∫
R+

|v|c+2rp1−p0+p4+1dr,

with C0 := 2aλ1(b(p1−p0+1)−2p3)
(b+2)(2−p0) , that is bounded for v to be a local solution to the Cauchy

problem (1.1) in C([0, T );1,2
0 (R+)). So from (2.19) and Lemma 2.2, we obtain


′′(t) = 2a2

∫
R+

rp1 |∂rv|2dr + 2a2 p2

∫
R+

|v|2rp1−2dr

+C0

∫
R+

|v|b+2rp1−p0+p3dr − 2aλ2

2 − p0

∫
R+

|v|c+2rp1−p0+p4+1dr,

which together with (1.9) imply the desired result. �

At the end of this section, we recall the known Caffarelli-Kohn-Nirenberg inequality:

Lemma 2.4 ([2]). If p, q ≥ 1, l > 0, α, β, γ satisfy γ = aσ + (1 − a)β, 0 ≤ a ≤ 1
and 1

p +
α
n ,

1
q +

β
n ,

1
l +

γ
n > 0, then there exists a positive constant C such that the following

inequality holds for all u ∈ C∞0 (Rn)

(2.20) ‖|x|γu‖Ll(Rn) ≤ C‖|x|α∇u‖aLp(Rn)‖|x|βu‖1−a
Lq(Rn)

if and only if the following relations hold:

(2.21)
1
l
+
γ

n
= a(

1
p
+
α − 1

n
) + (1 − a)(

1
q
+
β

n
),

α − σ ≥ 0 if a > 0.

and

α − σ ≤ 1 if a > 0,
1
p
+
α − 1

n
=

1
l
+
γ

n
.

3. Blowup Results

3. Blowup Results
In this section, we prove the theorem 1.2 using the virial method developed in Section 2.
Proof. Assume the Schwartz initial data v0 ∈1,2

0 (R+), we prove the result by contradic-
tion. Suppose the maximal existence time T of the solution v to (1.1) is infinity.

Whenever v exists we put (t) = 1
(2−p0)2

∫
R+
|v|2rp1−2p0+2dr. From (2.16) in Corollary 2.3,

we have

(3.1) 
′′(t) ≥ −4aE(v) + D1

∫
R+

|v|b+2rp3+p1−p0dr + D2

∫
R+

|v|c+2rp1−p0+1+p4dr,

where D1 =
2aλ1[b(p1−p0+1)−2(p3−p0+2)]

(b+2)(2−p0) ,D2 = − 2aλ2
2−p0

.
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For p0 < min{p1 + 1, 2}, p1 > −1, and the hypothesis (1.6), set b = b0, we invoke the
Caffarelli-Kohn-Nirenberg inequality (2.20) to obtain

(3.2) ‖r p3+p1−p0
b+2 v‖Lb+2(R+) ≤ Cb‖r

p1
2 ∂rv‖

2
b+2

L2(R+)‖r
p1−p0

2 v‖ b
b+2

L2(R+).

Notice that (1.8), (1.9) give

E(v(t)) ≥ −a
2

∫
R+

rp1 |∂rv|2dr − λ1

b + 2

∫
R+

|v|b+2rp3+p1−p0dr,(3.3)

≥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
[−a

2
− λ1

b + 2
Cb+2

b M(v0)
b
2 ]

∫
R+

rp1 |∂rv|2dr, λ1 > 0, b = b0,

− a
2

∫
R+

rp1 |∂rv|2dr, λ1 ≤ 0,

where the last inequality are deduced from (3.2). Thus we divide it into two steps as follows:
Case 1. λ1 > 0 and b = b0 :
From (3.3) with M(v0)

b
2 ≤ −a(b+2)

2λ1Cb+2
b

, we deduce that

(3.4)
∫
R+

rp1 |∂rv|2dr ≤ E(v)

− a
2 − λ1

b+2Cb+2
b M(v0)

b
2

.

(i) When λ2 < 0, since D1 ≡ 0 in case of b = b0, applying the following Caffarelli-Kohn-
Nirenberg inequality:

(3.5) ‖r p4+1+p1−p0
c+2 v‖Lc+2(R+) ≤ Cc‖r

p1
2 ∂rv‖

2
c+2

L2(R+)‖r
p1−p0

2 v‖ c
c+2

L2(R+),

to the inequality (3.1) under the assumption of c = c0 and (1.6), we infer that


′′(t) ≥ −4aE(v) + D2Cc+2

c M(v0)
c
2

∫
R+

rp1 |∂rv|2dr.

Now using (3.4), we further have

(3.6) 
′′(t) ≥ [−4a +

D2Cc+2
c M(v0)

c
2

− a
2 − λ1

b+2Cb+2
b M(v0)

b
2

]E(v),

which implies that  ′′(t) ≥ 0 for λ2
2−p0

Cc+2
c M(v0)

c
2 ≥ a + 2λ1

b+2Cb+2
b M(v0)

b
2 .

(ii) When λ2 ≥ 0, it is obvious that for M(v0)
b
2 ≤ −a(b+2)

2λ1Cb+2
b

,


′′(t) ≥ −4aE(v) ≥ 0.

Hence, for λ1 > 0 and b = b0, we conclude that

(3.7) 
′′(t) ≥ [−4a +

D2Cc+2
c M(v0)

c
2

− a
2 − λ1

b+2Cb+2
b M(v0)

b
2

]E(v) ≥ 0,

provided M(v0)
b
2 ≤ −a(b+2)

2λ1Cb+2
b

and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ2 < 0 : c = c0, M(v0)

c
2 ≤ 2 − p0

λ2Cc+2
c

[a +
2λ1Cb+2

b

b + 2
M(v0)

b
2 ],

λ2 ≥ 0 : for all c.
(3.8)
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Case 2. λ1 ≤ 0 and b ≥ b0 :
From (3.3), we have

(3.9)
∫
R+

rp1 |∂rv|2dr ≤ −2
a

E(v).

(i) When λ2 < 0.
Applying (3.5) to the inequality (3.1), similar to the procedure of (i) in Case 1, we have


′′(t) ≥ −4aE(v) + D2Cc+2

c M(v0)
c
2

∫
R+

rp1 |∂rv|2dr

≥ [−4a − 2D2Cc+2
c M(v0)

c
2

a
]E(v),

for c = c0, which yields that  ′′(t) ≥ 0 with λ2
2−p0

Cc+2
c M(v0)

c
2 ≥ a.

(ii) When λ2 ≥ 0, we have


′′(t) ≥ −4aE(v) ≥ 0.

Hence, for λ1 ≤ 0 and b ≥ b0, we conclude that

(3.10) 
′′(t) ≥ [−4a − 2D2Cc+2

c M(v0)
c
2

a
]E(v) ≥ 0,

provided ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ2 < 0 : c = c0, M(v0)

c
2 ≤ (2 − p0)a

λ2Cc+2
c

,

λ2 ≥ 0 : for all c and M(v0).
(3.11)

On the one hand, from (2.5) in Lemma 2.2, we notice that


′(t) ≤ −4a

2 − p0
(
∫
R+

rp1 |∂rv|2dr)
1
2 (
∫
R+

|v|2rp1−2p0+2dr)
1
2(3.12)

= −4a(t)
1
2 (
∫
R+

rp1 |∂rv|2dr)
1
2 .

According to the above analysis, the integral term in (3.12) can be bounded by the fol-
lowing:

(1) For λ1 ≤ 0, from (3.9) in Case 2 and (3.10), we have

(
∫
R+

rp1 |∂rv|2dr)
1
2 ≤

⎛⎜⎜⎜⎜⎜⎜⎜⎝−2
a

 ′′(t)

[−4a − 2D2Cc+2
c M(v0)

c
2

a ]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
2

.(3.13)

(2) For λ1 > 0, from (3.4) in Case 1 and (3.7), we have

(
∫
R+

rp1 |∂rv|2dr)
1
2 ≤

⎛⎜⎜⎜⎜⎜⎜⎝ 1

2a2 + 4aλ1
b+2 Cb+2

b M(v0)
b
2 − 2aλ2

2−p0
Cc+2

c M(v0)
c
2

⎞⎟⎟⎟⎟⎟⎟⎠
1
2


′′(t)

1
2 .(3.14)

Substituting (3.13), (3.14) into (3.12), we obtain the exact estimate of  ′(t) as follows:


′(t) ≤ C̃(t)

1
2
′′(t)

1
2 ,

where
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C̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝ 8a

a + 2λ1
b+2Cb+2

b M(v0)
b
2 − λ2

2−p0
Cc+2

c M(v0)
c
2

⎞⎟⎟⎟⎟⎟⎟⎠
1
2

, for λ1 > 0, b = b0, and (3.8),

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 8a

a − λ2Cc+2
c M(v0)

c
2

2−p0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
2

, for λ1 ≤ 0, b ≥ b0, and (3.11).

Since  ′(0) > 0, then from the continuity, at least for t small enough, we have  ′(t) > 0
and

(3.15)
 ′(t)
 ′(0)

≥ (
(t)
(0)

)
1

C̃2 , for all t > 0.

In case of C̃ < 1, we discover that (t) blows up in finite time.
On the other hand, we deduce from (3.7) and (3.10) that

(3.16) (t) ≥ (0) +  ′(0)t, ∀ t > 0.

Noting that (3.2) implies that the energy E(v(t)) is well defined for v(·, t) ∈ 
1,2
0 (R+).

Furthermore since

(0) =
1

(2 − p0)2

∫
R+

|v0|2rp1−2p0+2dr,  ′(0) =
2a

2 − p0
Im

∫
R+

v0∂rv0rp1−p0+1dr

are finite, (3.1) implies that (t) is finite for t > 0. Since  ′(0) > 0, then (t) → ∞ as
t → ∞. Hence v blows up. �
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