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Abstract
We study a generalized nonlinear Schrodinger equations with spatial variable coefficients,
which models the remarkable inhomogeneous Schré dinger maps (ISM). A new weighted
Sobolev space W'4(R*) is introduced and the existence of blow-up solutions of this equations,
including the integrable radial ISM, with the initial data in W!"?(R*) is proved.

1. Introduction

In this paper, we consider the following nonlinear Schrédinger equation with spatial vari-
able coefficients:

(1.1) 0+ Ay = 77 oo + /lzvf (rHYPHoldr’,
0
(r,0) = vo(r), v0,0)=0, (1) eR"xR,
where v : R* XR — C, r = |x|, (x € R") is the radius, 41,4, € R, b, ¢ > 1 and the operator
A, = ar’ (0, + ﬂ(’)r - &), a<0,
r r2
with the array (po, pi, p2) satisfies the assumption

plT_l)z, u=0.

The elliptic operator A, = ar?(9,, + P—;a, - %) plays a key role in searching the solution
of (1.1). Schrodinger type equations with variable coefficients have been of considerable
interest among both mathematicians and physicists, and some remarkable progress on the
Cauchy problem have been made, see e.g. [10]-[13] for a detailed discussion. The mathe-
matical interest in (1.1) comes mainly from the spatial variable coefficient »”°, which arises
in a model for the inhomogeneous Schrodinger maps (ISM) with Ses?cRr?

. 2_
po<min{p; +1, 2}, p;>-1, py:= (Tpoﬂ)z —(

(1.2) 8,5(x, 1) = 0(x)(S X AS) + Vo(x) - (§ x VS),

or, equivalently, the nonlinear Schrodinger equation

(1.3) ity + 00y + 0, = T—v + 2uP0) + 20,0,
r I
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_ 1 T T
tlom+ 220, 42 f ovloPdr +4(n— 1) f £ Par' 1o =0,
r 0 o I

based on a known geometrical process [4, 12], where A is the Laplacian in R", X denotes the
cross product in R3, and

Vo) (§x V8= ag(x)

J=1

. 0§
SX —).
Xj ( xaxj)

Obviously, the factor r7° in A, corresponds to the inhomogeneity o(r) in (1.3). Noticing
that (1.1) includes radial ISM (1.2) with o(r) = r°.

When o is a constant, the ISM (1.2) reduces to the well-known (homogeneous)
Schrédinger maps

(1.4) 8,5(x, 1) = § x AS,

of which global well-posedness problem has attracted a great deal of attention in past years.
Local existence for smooth initial data goes back to [14], see also [8]. Some progress of
small initial data existence results can be found in [3] and [1] for n > 2. Especially, the
classical solution with small energy is global in time for the radial case [3]. For some
special large initial data, the possibility of finite time blowup and the blowup rate have been
proved [9, 11].

In the setting of the ISM (1.2), when the inhomogeneity o is chosen as

(1.5) o(r) = e;r?" D 4 gy 2,

in which case (1.2) is completely integrable by means of the inverse scattering transform,
Daniel et al. [4] present some soliton like solutions of (1.2) by using the equivalent
Schrodinger equation (1.3). Based on the above equivalent relation, some further works
about the possible blowup of the solutions, in the particular case where o(r) = r>™", is made
by the author [16] in an energy space W'2(R") (see Definition 1.1).

In this paper, we concentrate on a nonintegrable case (o(r) = ), and investigate the
global behavior of the deduced equation (1.1), which is a generalized version of (1.3). For
technical reasons, we require p3, py4 satisfy

)
max{(py — Dbo + 2(po — 2), ~2d} < 2p3 < (d + 22" =)y,

(1.6) -2
max{—2d — 2, 2po — 6 + (p1 — 1)co} < 2ps < (d + p°2 n)co — 2,

with bO = 2(p3—po+2) cn = 2(pa—po+3) d = p1—po+ 1.

p1—pot+l 2 ’ pi—po+l ’
We introduce the definition of a new weighted Sobolev spaces W!'”(R*) and weighted

space-time spaces L"(I; LY ).

DermviTioN 1.1 ([17]). For 1 < p, h < o0 and « := @u + 1_%, we define the weighted

Sobolev space W!”(R*) by
WP R = {u € LL,(R") : D€ LY _(R), D, := ™73},

endowed with the norm |[ullyyrgr+y = ||u||L£ﬁ(R+) + ||Dru||L£F(R+), where the norm of the

weighted Lebesgue space L}, (R*) and space-time space L"(I; L) of function v are de-
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fined as

. 1
||U||Lg”(R+) = (f [l r~*Pdo,)r < oo,
R+

h 1
lollnrozz,y = ( f lolly, dyr,
I oon

with a usual modification when p or h is infinity, where do, = PP dy dor, =
1
r2%+3P1=2P0 dr are the Lebesgue measures. For simplicity, || f]lzr@®+) = ( fR+ |f(NIPdr)?.

Moreover, we also define the function space Wé’p (R*) as the closure of C’(R¥) in
WEP(RY).

Thanks to Strichartz estimates, the Cauchy problem for (1.1) is locally well-posed in
WHI(R") (see [17], Theorem 1.4): for any vy € W, *(R™), there exists 7 € (0, o) and a
unique solution v(¢) of (1.1) with v(r, 0) = vy such that

v e Xy(I) := L™, Wy (R) 0 L"(1; WY (RY)),

where I = [0, T'], the triplet (m, [, ¢) is an LZJ—admissible in the Strichartz’s sense, if 1 < g <

vq :
l < 1 and satisfy

1 11
(1.7) —=y(=--),
qg

. 2k+ pr—po+1
: Py .
Let uv(r, t) be a solution of the equation (1.1), we define the following quantities:

(18) M) = oI .,

m

A
(19)  E@®) =-= | ("10,0P + por"pPdr - = f lofP*2 P3P =Py,
2 R+ b + 2 R+

It is easy to prove that if v is a solution of (1.1), then M (v(¢)) = M(vy) and

d _
(1.10) EE(U(O) = —al,Im [v|vd,orP* P dr, te€0,T).
R+

We remark the energy E(v) defined above is no anymore conserved along the flow of (1.1)
(unless the nonlocal term of the equation (1.1) vanishes, i.e. 4, = 0), which is a key chal-
lenge what we faced to develop the global behavior of (1.1).

In order to overcome it, we need to refine the variance defined by

Y% — 1 27% 2
(t) L m ”r U(t)||L%(,(R+)’

in the spirit of the seminal work of R. Glassey [5], which relies heavily on the conservation
of the energy. The main blow up result of (1.1) is stated as follows:

Theorem 1.2. Let p, > 0, and p3, p4 satisfy (1.6). Assume that (1.1) admits a local
solution v € X,([0, T]) with Schwartz initial data vy € W(;’Z(RJr) where T is the maximal
existence time. If V(0) and

(1.11) V'(0) := 2%ap0

are finite, then blow up occurs in each of the following cases:

Imf To0,00r" Pt dr > 0
+
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(1) A1 >0, b = by with M(vg)? < 748+ .

20,Ch2
) ¢ 2—=po 2/11C2+2 b
(112) /12<0. C = (o, M(U())2 < /lzcg+2[a+ b12 M(UQ)Z],
A >0: forallc.
)4, <0,b>by:
(p1 = po + 3)a

A <0: c=cy, M 5 <
(L13) 2 0, M(vo) LC

A =0:  forall c and M(vy).

’

Moreover, let
1
2
8a

|, 4> 0,b = by, (1.12),
{a + 2L CE M) — 2f—;ocg+2M(uo)z]

a
|

1
2 _ 2
( 8a(2 — po) ) ’ A1 <0,b > by, (1.13).

(2 = po)a — H,CS M (vp)*

the solution v of (1.1) blows up at finite time provided C<l1.
Remark. Here are some comments on Theorem 1.2.

(i) When b < 222042 p ) < 0, ¢ # 222089 he global behavior of the solutions to
p1—po+l p1—po+l

(1.1) has not been proved yet. This restriction is due to the absence of energy monotonicity
inequality about (1.1).

(i1) This theorem is stronger than the result in [16] and generalize the range of both the
nonlinear power and the spatial variable coefficient.

2. Preliminaries

In this section, we give some identities which will be used in the proof of Theorem 1.2.
The Cauchy problem to be considered is the following:

(2.1) 10,0 + ar’(0,, + %(’)r)v = U(rw + W)lPv + Ho)o,

where the functions U, W : R* — R and H : C — R. In particular, (2.1) includes the
equation (1.1) with

U(r) = apar™?, W) =4, H@) =1 f (Y oldr.
0

We begin with a lemma giving a sufficient condition for the energy quantity (1.10):

Lemma 2.1. [fv is the solution to the equation (2.1) with the initial data vy(r), then the
solution v satisfies

(2.2) %é’(v(r)) = —alm f P18,00,(H(v)v)dr,

where the energy
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1

1
E@) = —= f P10, dr — = f U)fr’Pdr - —— f W)l 2P~ dr.
2 Jpe 2 Jg- b+2

Proof. We multiply the equation (2.1) by 7”177, integrate over R* and take the real part
of the result to obtain

d 1 1
(2.3) E(_g f e 10,0 dr — 3 fR ) U)loPrP=rodr — ) fR ) W71~ dr)

=Re H)vo,rP'7Podr.

R+
For the right hand side of (2.3), it is easy to derive from (2.1)
2.4)
Re f H)vo,r’' 7 Podr = aImf r’1(0,, + r)vH(v)Udr = —almf P18,00,(H(v)v)dr,
R+ R* R*

which together with (2.3) yield that
d —
— &) = —aImf 10,00, (H()v)dr. |
dt R+

Given a real valued function /(r), we consider
V() := | ()o@ Podr.
R+

An important preliminary step in this analysis is the following virial identity:

Lemma 2.2. If v is a (sufficiently smooth and decaying) solution to the equation (2.1),
and let ¢(r), Y(r) € C(R™) be real-valued functions with compact support that satisfy
0,9

+
r[70+[71’ VreR ’

0 =
then

(2.5 Y,

2alm f 00,00y’ dr,
R+

(2.6) YV,

2a
2a° w1(¢)|3rv|2dr—a2f @2()lv] dr+—f @3 (d)l”2dr,
R¥ R* b+?2

where 0 denotes the conjugate of v, and

+2
@) = 20%¢ - uaras,

0s Qz Q

@2P) = 0+ =0 + 00+ =06+ (a U + 8,H(@v)r ™, ¢,

@s3(¢) = br ™ [(a%¢ - 7 [ OW(r) — Zarasarvv],

with Q3 := —p1 — po, Q2 := p1 + po(p1 +2), Q1 := —2po(p1 + 1).

Proof. (1) Multiplying the equation (2.1) by vr”' 770 and taking the imaginary part of the
result, we get
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0
(2.7) E(Ivlzr”]_"") = —24Im[08,(r" 8,0)].

We multiply (2.7) by (r) and integrate over R™ to get
d
— f (PP rPPdr = 2aImf 00,00y’ dr.
dt R+ R+

(2) For 0,4 = r;?);f;l, by writing

(2.8) My (1) = 2almf

00,0r P09, ¢pdr,
R+

we claim that
(2.9) M, (1) = —2alm f+ v 27770 8,4),0 + 8,(r 7°8,¢)0]dr.
Indeed, we deduce from (2.8) that
M, (1) = —2alm L+ v,0,0r 7°8,¢dr — 2alm »[R; 08,0, P00, pdr,
and (2.9) follows by integration by parts, since
00,0,r 708, = 8,[V0,r 7°8,¢] — 1,0,(vr 78, ¢),

which proves the claim.
Now using the equation (2.1) with N(v) := U(r)v + W(r)|v|’v + H(v)v, we see that Im v, =
—Re [—ar?="9,(r" 0,v) + N(v)], and

(2.10) pr(t) = 2aRef [—ar™™P19,.(r" d,v) + N(v)][2(r‘p°6,¢)8_,v + 0,(r79,¢)vldr
R+
:= (Bl + B}) + (B}, + B).

Next, an elementary calculation shows that

(2.11) Bl = 2d’Re f P 8,00,[2(r 7' 0,4)0,v]dr
= 4a2f rpllarvlzt?r(r_”‘(?r(/))dr—2a2f |(9rv|2(93¢dr
+ R+

= 24° f [2r710,(r 71 8,¢) — 0*¢)1|0,v*dr,
R+
and

(2.12) B;

2a’Re f rP19,00,[r" P 0d,(r 7°0,¢)]dr

= Zazf rpolﬁ,vlzar(r_p°6,¢)dr+2a2f P

X0, [rP7P10,(r 7°0,¢)]Re(v0,v)dr.

We now calculate the various terms corresponding to N(v). The first term

(2.13) B}\, = 4aRef [U(r)v+W(r)IvIbv+H(v)v](?_,v(r_p“(?,gb)dr
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- o f R0, [(U(r) + HW) (7 8,8))dr
R+

4a b+2 —po
552 ). 0”0, [W(r)(r "°0,¢)1dr,
and the second term
(2.14) B2 =2a f (U + WOWl”*? + H)|*10,(r 708, ¢)dr.

Finally, combining (2.11), (2.12), (2.13) with (2.14), we deduce from (2.10) that

Q15) My = 2 | PG00 - Fo+ 000Nl dr
+2a2f P10, [r"7P10,(r 7 6,¢)|Re(vd,v)dr
R+

N o0, [(U(r) + Hw)(r 7d,¢)1d

| P*20,[W (r)(r~°8,¢)1dr

b 2

+2a f [U(r)|v|2 + WP + H)w10,(r 708, ¢)dr
R+
2a
= 2a° | wi(ofPdr—a® | wa(@)lPdr + —— |v|b+21U3(¢)dr,
- - b+2
where

+2
@1(¢) = 2076 — —pl 0,9,

@) = ;¢ + %8% + %a% + =0 Ql 3,9 + <a U +8,H)r 9,9,

@3(6) = br (6 - L0,HW(r) - arcbarW],
with Q3 := —p; — po, 02 := pi +po(p1 +2), 01 := —2po(p1 + 1). The proof of Lemma 2.2

is completed. o

As a consequence, we can prove a variant of [15, Corollary 5.1] related to (1.1).

Corollary 2.3. Let v be a local solution to the Cauchy problem (1.1) in C([0,T);
W, 2 (R)), and let 8,y = ;‘_’j;; , then fort € [0, T),

(2.16) V') = -4aE@)+Dy | [ofr""*dr+ D, f Y
R* R*
+D, |U|C+2r[)4+p1—[?o+1dr’
R+
2a%py(0=2) — 2a[b(pr=po+D=2(p3=po+2)] e 2a1
with Do := =525= D1 ®+D02-po) D2 = =5

Proof. As in the previous Lemma 2.2, for R > 0, let 0,¢x(r) € C8°(R+) satisfies

517 5 r, if r <R,
(2.17) rOR(r) == 0. ifr> 2R,



38 B. ZnenG

and 0,yg = r,,oﬂ,l , Lemma 2.2 implies

2
(218) v{’ﬁ’ (l‘) — 202 | (¢R)|arv|2dr _ azf w2(¢R)|U|2dr + _a f w3(¢R)|U|b+2dr.
! R* . b+2 J
Noting that as R — oo, the right side converges to
(2.19) 2a2f 10,0 dr + 2a2p2f [o)>r” " 2dr
R* R+
+Cof o[+ 2 PPty — 2042 f |o[cH2pPrmPotpat] gy
R 2-po Jr+
with Cy := ZMI(?IETZ;(Z‘);IO))QP 3 that is bounded for v to be a local solution to the Cauchy

problem (1.1) in C([0, T); Wy*(R¥)). So from (2.19) and Lemma 2.2, we obtain

v//(t) = zazf rp‘larvlzdr+2a2p2 |U|21"p'_2dr
+ R+

_ 261/12 . _
+Cy |v|b+2rp‘ POtP3 gy _ |v|‘+2r1" po+p4+1d,,’
R+ 2 - po +

which together with (1.9) imply the desired result. |

At the end of this section, we recall the known Caffarelli-Kohn-Nirenberg inequality:

LemmaZ.4([2) pr, q>1,1>0,a B, ysatisfy y =ac+(1-a)p, 0<a <1
and % + 4, é + é 7 + > 0, then there exists a positive constant C such that the following

inequality holds for all u € Cy(R")
(2.20) Il ull ey < ClXVaallf o NPl o,

if and only if the following relations hold:

@21 T FRUIE)
l n P n q n

a-0c20 ifa>0.

and

1 -1 1
a—-oc<1 ifa>0,—+0[ ==+
p n [

3. Blowup Results

In this section, we prove the theorem 1.2 using the virial method developed in Section 2.

Proof. Assume the Schwartz initial data vy € Wé’z(RJr), we prove the result by contradic-
tion. Suppose the maximal existence time T of the solution v to (1.1) is infinity.

Whenever v exists we put V(f) = fR+ [v|?rP1=2P0*2dr. From (2.16) in Corollary 2.3,
we have

3.1 V'(t) = —4aE(v) + D, f

@- p)2

|U|b+2rp3+p'_p°dr+D2f ||t 21— Pot 4P
R+

+

— 2ai[b(pr=po+D=2(p3=po+2)] ,D> = _ 2a4

where D, B+2)2—po) 2o
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For py < min{p; + 1, 2}, p; > —1, and the hypothesis (1.6), set b = by, we invoke the
Caffarelli-Kohn-Nirenberg inequality (2.20) to obtain

P3+P1=P0

P 2 P1-P0
(3.2) 5 ey < Collr? A2 lr

h+7

U||L2(R+)

Notice that (1.8), (1.9) give

A
(3.3) E(@(@) = —gf rpl|arv|2dr_b+12f [Pt 2pP3tPi=po gy,
+ R+

a A4

=3 = 533G M) f rP10,0Pdr, A1 > 0, b = by,

_4 f P10,02dr, A, <0,
2 R+

where the last inequality are deduced from (3.2). Thus we divide it into two steps as follows:
Casel. 1y >0and b = by :
From (3.3) with M(uvp)? < %, we deduce that
b

E
(3.4) f P ioupdr < — £

-5~ mcb+2M(Uo)2

(i) When A, < 0, since D = 0 in case of b = by, applying the following Caffarelli-Kohn-
Nirenberg inequality:
p4+]+p1 -Po

a7 7L 70 P1—Po
(3.5) llr—e U||Lc+2(R+)<Cc||r 5U||£§2(R+)||r 2

_c
Ull ey

to the inequality (3.1) under the assumption of ¢ = ¢y and (1.6), we infer that

V'(t) = —4aE@)+ D,CM(vp)? f rP110,v)dr.

+

Now using (3.4), we further have

Cc+2 M £
(3.6) V() > [da+ —2 - ;”0)2 1E(v),
-5 - b+2C 2M(vo)?
which implies that V(1) > 0 for 32-C2M(ug)® > a + Z5CH2M(vy)?.
(i1) When A, > 0, it is obvious that for M (vo)g < ;jfl;i) ,
b

Y (t) > —4aE() > 0.

Hence, for 4; > 0 and b = by, we conclude that

D Cc+2M 5
(3.7) V(1) > [4a + 2 . ;UO) 1E(v) 2 0,
—% - mc * M(UO)2
provided M(vg)? < 231(2}22) and

< _2-po 2/11Cl]j+2
/l < 0 - ) M 2 S +
(3.8) 2<0re=co Mo)® <7 moalat =7

A, >0: forallc.

M(vo)?],
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Case2. 1y <0and b > by :
From (3.3), we have

2
(3.9) f rP110,0)7dr < == E(v).
R+ a

(1) When 4, < 0.
Applying (3.5) to the inequality (3.1), similar to the procedure of (i) in Case 1, we have

V(1) = —4aE()+ DyC M(vp)? f 10,0 dr

+

c+2 5
> [—4a—2D2CC M(U())2

1E(v),

for ¢ = ¢o, which yields that V" (¢) > 0 with 2f;o C2M(vp)? > a.
(i1)) When A, > 0, we have

V() > —4aE(@) > 0.
Hence, for 4; < 0 and b > by, we conclude that

2D,C2 M(vy)?

(3.10) V'(t) > [-4a — 1E@) > 0,

provided

c 2_
A <0:c=cy, Mwy)? < w,
(3.11) LCe

A > 0: forall c and M(vy).

On the one hand, from (2.5) in Lemma 2.2, we notice that

—4
([ apPdrC| e
2-po Jr+ R*

—4aV(t)3( f rP119,02dr)z.
R+

IA

(3.12) V(1)

According to the above analysis, the integral term in (3.12) can be bounded by the fol-
lowing:
(1) For A; <0, from (3.9) in Case 2 and (3.10), we have

1

2 V' (t ’
(3.13) ( rP1|a,v|2dr)% < [—— 5 (?2 - ] .
4 C+ )2
R 4-4a - M]

(2) For 4; > 0, from (3.4) in Case 1 and (3.7), we have

1

| !
PAGE

b c
2a% + FACHM(v0)? — 222 CE2 M(vy)

(3.14) | P16,0Pdr)? < (
R+

Substituting (3.13), (3.14) into (3.12), we obtain the exact estimate of V’(¢) as follows:
V(1) < CY) V" (1),

where
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1
2

8
20 b2 ba 1 B —| , for 4; > 0,b = by, and (3.8),
— a+ 555G M) — 2_—ij2+ M(vp)?2
C= |
2
8a
——— | . ford; £0,b>bg,and (3.11).
a— ,CE2 M (vg) 2
2-po

Since V’(0) > 0, then from the continuity, at least for # small enough, we have V'(r) > 0
and

LA > (&)c%, forall r > 0.

19 Vo) = %0

In case of C < 1, we discover that V(r) blows up in finite time.
On the other hand, we deduce from (3.7) and (3.10) that

(3.16) V() =V0)+V'(0)y, Vr>O0.

Noting that (3.2) implies that the energy E(v(?)) is well defined for v(-,1) € WOI’Z(R*).
Furthermore since

1 2
V(0) = —— f oo P02 dr, V' (0) = ———Im f 00, vor? P dr
(2= po)” Jr+ 2-po R*
are finite, (3.1) implies that V() is finite for ¢t > 0. Since V’(0) > 0, then V() — oo as
t — oo. Hence v blows up. i
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