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Abstract
In this paper, we study the algebraic rank and the analytic rank of the Jacobian of hyperelliptic
curves y> = x> + m? for integers m. Namely, we first provide a condition on m that gives
a bound of the size of Selmer group and then we provide a condition on m that makes L-
functions non-vanishing. As a consequence, we construct a Jacobian that satisfies the rank part
of the Birch—Swinnerton-Dyer conjecture.

1. Introduction

For each integer A, we define a hyperelliptic curve Cy : y*> = x° + A and its Jacobian Jy4.
In [6, 7] Stoll studied the arithmetic of C4 and in [9] Stoll and Yang studied the L-values
of C4. In this paper, we focus on the case of A = m? where m is a square-free integer.
More precisely, we study the algebraic rank and the analytic rank of J,.. We note that every
hyperelliptic curve in our family does not satisfy the conditions [6, (1.3)], so this curve is
not covered in [6].

To get an algebraic rank, a standard method is to give a bound of the Selmer groups of
the Jacobians. Using the result of Schaefer [5] and the calculation of the root numbers [7],
we obtain the following.

Theorem 1.1. There are infinitely many integers m where J = J,» satisfies
J(Q) =Z/5Z.
On the other hand, there are infinitely many m such that
JQ)=2Z/52Z
under the parity conjecture.

We recall that the parity conjecture claims that the algebraic rank and the analytic rank
are equal modulo 2.

For simplicity, we mainly consider the case where m is a prime. However, our proof
of this theorem can be applied to general J,. for square-free m such that all of the prime
divisors p of m satisfy p # 1 (mod 5), and there is at most one p =4 (mod 5) among them.
In this case, the primes of K above m satisfy a certain kind of orthogonality (i.e. there exist
generators 7, T,y such that mr, is trivial in K;j, / K;<,5 and vice versa). This property makes the
descent computation much easier as we will see in Proposition 3.3. For the case where m
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is not a prime, see Remark 3.2 and Example 3.6. As an example, we consider m = 101 a
prime equivalent to 1 modulo 5 in Proposition 3.5.

On the analytic side, there are results on the special L-value of the hyperelliptic curves
Cy like [9, 2]. Such curves have complex multiplication, so there is a Hecke character 14
satisfying

L(s,Cy) = L(s,Ja) = L(s,14).

Based on the work [10, 11, 12] on the non-vanishings of L-functions of Hecke characters
and [6, 7] on hyperelliptic curves C,, Stoll and Yang showed that

L(1,J1) #0

in [9]. In this paper, we extend this result for the curve C4 with certain conditions on A, in
Proposition 4.3 which gives an expression of L(1,74). As a consequence, we obtain

Theorem 1.2. Let J4 be a Jacobian of C4 whose root number is +1. If A is a square
integer such that every prime divisor is a prime equivalent to 1 modulo 5, and (A* — 1) is
divided by 25, then L(1, J4) # 0.

Note that the rational primes p = 1 (mod 5) are exactly the ones split completely in
K. In formula (8), one can see from (7) that the factors involving primes v of F split in K
are non-zero. To see whether the factors involving primes of F inert in K vanish or not,
one need to evaluate integral (5), which seems to be complicated. However, when it comes
to the descent on C,,.2, the situation seems complementary. More precisely, if m only has
prime factors which are not totally split, then the descent is manageable. However, if m has
prime factors which split completely in K, then the descent become more complicated to
deal with. This explains why we cannot obtain an infinite family of Jacobians of the form
J2 satisfying the rank part of the Birch—-Swinnerton-Dyer conjecture. Instead of this, we
give an illustration for the case p = 1 (mod 5):

Corollary 1.3. A Jacobian J,y» satisfies the rank part of the Birch-Swinnerton-Dyer
conjecture.

We note that Corollary 1.3 may be deduced from 2-descent available in Magma and the
numerical computation of L-values since the rank of Jy;2 is zero, but we want to emphasize
that the analogous result for other primes p = 1 (mod 5) may be deduced from our (1 — {s)-
descent with less computational complexity.

In Section 2, we list some facts on local fields and recall the computation of the root
number of J,.. Based on these results, we describe descent for Jacobians in Section 3 and
give a proof of Theorem 1.1. After computing the special L-value in Section 4, we will show
Theorem 1.2 and Corollary 1.3.

2. Preliminaries

2.1. Local field computation. We list some notations which will be used in Sections 2
and 3. We fix a fifth root of unity {5 in @ Let K = Q(s5) and F = Q(\/g). We recall that
a rational prime p is inert, splits into two primes, splits completely in K/Q if and only if
p=2or3, p=4, p=1modulo 5, respectively. In each case, we denote primes of K above
a rational prime p by p, w, v and its generator by p, m,, m,, respectively. The unique prime
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above 5 is denoted by vs, but we also admit the notations K5 and n5 for K, and m,,. We use
a symbol p to indicate a prime ideal of K and 7 to a prime element. For the integer ring of a
local field with a maximal ideal p,

U? =1+

Also we use the notation ¢, for a primitive n-th root of unity in K or any local fields, if it
exists.

In this section, we compute the images of prime elements 7 in K}/ Kfjs. We first compute
the group K?/K;d. When p = vs, we fix a generator 75 by (1 — {5). Since

K = 77% Xy x UV and U® = Zg,
we have
(1) KX/KE = (ns, 1 + s, 1 + 12, 1+ 73, 1 + 78,1 +72)

and every element in U® is a fifth-power. We rename the generating elements by {(a, 3,7, 5,
€, 1. For all other primes p # vs, 5 is invertible in the ring of integers Ok . So we have

2) KK = (my, sn)

where 5. generates the 5-part of the root of unities of KY. We also rename the generating
elements by (a,, 8y) and drop the subscript whenever the meaning is clear from the context.
We note that every element in U® is a fifth-power in this case.

We need n5-expansions of some elements in Ks. By expanding 7r‘51 = (1 - ¢5)*, we have

5= 47r§' + 37rg + 37rg’ + 47r; + 7T§ + 37rg + 0(71';]).
We choose V5 and {4 1n K5 such that
V5 = 27r§ (mod ﬂg) and {4 =2 (mod ms)
respectively. Then, one may verify that
V5 = 272 + 273 + 7t + O(x),
{4 =2 +47% + 310 + O(nd),
{3 =3+ 218 +4n% + O(nd),

_(1+2\/§

] =2 +4nl + 41 + 72 + O(nD),

where the last one is a fundamental unit of F, which we will denote by ur. We note that
{1, ur} is an integral basis of Of, so we can choose a generator m,, = a + bV5 fora, b € %Z,
orm, =a+ bup fora,b € Z.

Now we can describe the images of the prime elements of K which is not above a rational
prime p =1 (mod 5) in K;/K;s.

Lemma 2.1. (1) Let n be a rational integer not divided by 5. Then, the image of n in
KX KXS :
S/KS is
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1 ifn=1,7,18,24 (mod 25)
e’ ifn=3,4,21,22 (mod 25)
en* ifn=9,12,13,16 (mod 25)
en ifn=2,11,14,23 (mod 25)
e’ ifn=6,8,17,19 (mod 25)

(2) For a prime w above a rational prime p = 4 (mod 5) and its generator m, = a + bV5
with a,b € %Z, the image of m, in K;/K;S is given by the following table.

a (mod)>5) p=4 pP=9 p=14 p=19 p=24
2 VPP ey VPP VPSP b3 VPSP P2 YP s e
4 b3 3b¥3 ) |y 3b 530 3o T2 3D 53b 3b+a 3 | 3b 53b 3h+2 4 | 3b 53 ¢3b
3 b5 B3 A b ABT, 2 Ab b Ab+ 3 Ab b b [ Ab b A
1 20§20 203y "y 2§20 2B 2 b 526 b3 b 526 2B T A 2 52 (2

Here p = a means p is equivalent to a modulo 25.
Proof. For a generator o : {5 — {52 of Gal(K5/Qs), we have
o(l +ms, 1+ 73, 1+, 1 + 74,1 +72)

= (1 + 275 + 473, 1 +4n3 + 72 + 78, 1 + 313 + 372 + 7d, 1 + 78 + 372, 1 + 273),

modulo K2°, which implies
o(B,y.6.e,m) = (B*y’*en,y*on.8°€n, e’ . p°)  (mod K2°).
For a prime p not above 5, any generator m, of p is not divided by 75 so we can write
Ty = §jﬂby”6deenf (mod ng).

A (multiplicative) Fs-vector space (8, v, 6, €, 1) is decomposed by eigenvectors {6772, Y0E, 1,
Bve, 664173} of o such that

o(en®, yoe, 0, Bye, o€'n’) = (en’, (yoe) ,n*, (Bye)*, (6€'n’)’)  (mod KZ°).

(1) Since o(n) = n for all n € Z, the class of n in K;/KSXS is a power of en?, which is the
unique eigenvector with eigenvalue +1. Note that
eI+ +al)=1+nt+27l+278 +7nl =21 (mod #f), and ¢ =7 (mod rd).
Sofori=0,1,2,3,
gen’(1+m9)*(1 +
gent 1+ ) +xl)?
;16377(1 +79)°(1 + xl)?
Tetni(1 + ng)S(l +nl)t
4
where (1 + ﬂ'g)z(l + ﬂz) is a Sth-power in K;.
(2) Since p = 4 (mod 5), p splits into two primes. For a generator r,,, om, # m, but
o?’n, = m,. Hence the image of m, in KSX /K;<5 is a product of a nontrivial power of the
eigenvector yde with eigenvalue —1 and a power of the eigenvector en® with eigenvalue +1,

21,22,3,4 (mod 25)
16,12,9,13 (mod 25)
11,2,14,23 (mod 25)
6,17,19,8 (mod 25)
1,7,24,18 (mod 25)



ON THE JacoBiAN OF HYPERELLIPTIC CURVES 47

say
T = (Yoo (en”)  (mod KX°).
Also, 7, - o1,y = (en?)* (mod K;S) and 7, - o, = p (mod sts) imply that the exponent e
is0,1,2,3,4 when p = 24,9,19,4, 14 (mod 25) respectively. We also have
—up =2+ 415 + 4md + 13 = Lo(1 + 273 + 272 + 37t + 4n2)  (mod #%)
= f4y*6%€  (mod ﬂg).

Since ur is a fundamental unit of Q(\/g), we note that another choice of a generator of the
form @’ + b'V5 for o', b’ € %Z should be a product of power of —1, ur, and a + bV5. Let

7w = a+ bV/5 be a generator for w with a,b € 1Z and let a = 2 (mod 5) with | < k < 4.
Since

-1-45 a+5b a+b
5 (a+bV5)=-— 5 —( 5 )\/5

and (—a — 5b)/2 = 2a (mod 5), we can find another generator
5—k
1 5
no=d +bV5 = (— +2\/_) Ty

of w, where @’ = 2 (mod 5). We also note that every generator of w is equivalent to one of
7/ up to K.
Now assume a = 2 (mod 5). Then

4 - (a+bV5) = 3+ 2xt + 472 + 0(xd))(a + b2r? + 273 + 7t + 0(2d)))
=1+ bns + O(r3)

implies that 7, = (yd€)’(en?)¢ in K* /K. This induces the first row of the table. The other
rows are determined by the relation between 7}, and =, and the value of —(1 + \/§) /2 in
KX/KZ. u!

In the next section, we will need the images of {{s, 1 + 5,2} in K;/K?S also. We begin
with p = 2. Recall that K5 /K° = (2,5) = (@, B) in (2).

Lemma 2.2. (1) The image of ({s,1 + 5,1 —5,2) in Iq/KzX5 is (3,5°, 8, ).
(2) The images of odd integers and prime elements n,, = a + buy for a,b € Z in K3/ K;S
are trivial.

Proof. (1) To describe 2-expansions of elements of K;, we fix an isomorphism
Fio = Folt]/(* + 1+ 1).
We choose an embedding of K in K; which sends {5 € K to > € Fj6. Since
E+DE+t+1) =1 +1, P +r+ 17 =1, £ =7r+1,

we know that (1 + {5)¢3 = £ in K». Since 3 is trivial in K5/K;°, the image of (1 + 5) in
KX/ K;S is 3. Also, the 2-expansion of the image of (1 — /5) in K> is

1-45=1+20+2+02) =1+ + (1 +£)'P2+ 02%)).
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Hence the image of (1 — ¢5) in K /K;° is 8 also.
(2) Since UV vanishes in KY/K3°, every odd integer maps to the trivial element in
KX/K3. In K,, one has

V5=1+EF+02+002% and up=@E+t+1)+0Q).

Therefore, the image of a + buy in FY is contained in {t2 +t+ 1,2 +1, 1} which is the group
generated by 3. |

Lemma 2.3. Let p # 2 be a rational prime inert in K/Q and let n,, be a prime element
defined by a + b5 for a,b € %Z.

(1) For p = (p) or (1), the image of {{s,1 + 5,1 — s} in K;/K;S is in {By).

(2) For p = (p), the images of rational primes relatively prime to p and prime elements
Ty =a + b’\/gfor a,b e %Z are trivial in K;(/Kfjs.

(3) For p = (ny), the images of rational primes relatively prime to v and a prime element
g = a — b5 are trivial in K;/K;js.

Proof. (1) We recall that KX = p* X p,a_; x UV and K = 7% X p,ey x U, ie.
K:;/K;S = (ay,Byp) for p = (p) or (w) in (2). Especially, the UV-part vanishes in K;/K;S.
Since {5, 1 + {5 are not divided by p, their images are in (8,).

(2) Every rational integer relatively prime to p and m,, maps to IF;2 modulo p. Since the
fifth-power map on IF";2 is bijective, every element maps to IF’:Z vanish in K/ K;s.

(3) Similarly, every integer and 7z maps to F, where p,, is the rational prime divided by
T O

2.2. The root numbers. We recall the result of [7] on the root numbers of y* = x' + A,
where [ is an odd prime.

Theorem 2.4 ([7, Theorem 3.2]). The root number w(A) of the curve y* = x' + A over Q
where A is a 2l-th power free integer not divisible by [, is given by

() g,
w(A) = { _(@) i1 qi(A),

where qi(A) = (A™' = 1)/l and vy = 2P [1pia,p#2 P where f> is given by

0 ife=21-2and B=1 (mod 4),

F(A) = 1 ife<2l—-2andisevenand B=1 (mod 4),
S ) ifeisevenand B= -1 (mod 4),
3 ifeisodd

for A = 2°B with B odd.
In this paper, we only need the following special case.

Corollary 2.5. For an odd square-free integer m, the root number w(m?>) of the hyper-
elliptic curve y> = x* + m? over Q is given by
m?) +1 ifm=1,2,4,6,12,13,19,21,23,24 (mod 25),
w =
-1 ifm=3,7,8,9,11,14,16,17,18,22 (mod 25).
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3. Descent for Jacobian of hyperelliptic curves

We recall the general facts on the descent for Jacobian of hyperelliptic curves of odd
prime degree. The main reference is [5].

Let p be an odd prime, let K be a number field containing ¢}, and let C be a curve defined
by an equation y” = f(x). Let J be the Jacobian of C and consider an endomorphism ¢ of
J. The ¢-Selmer group of J/K is defined by

Sely(J/K) := ker| H'(K, JIg)) — | | H'(K;, J)
P
where p is taken over all primes of K. Following the Schaefer’s idea, instead of using the
first cohomology group we will use more concrete object which we will describe as follows.
Assume that J[¢] has a prime power exponent g. We define

L := K[T1/(f(T)), H :=ker(Norm : L*/L*? — K*/K*9).

Let A : J — J be the canonical polarization of J and let ¢ be the dual isogeny of ¢. Let
Y= /1‘1(7[5]) C Jlg] and choose a Gg-invariant set of divisor classes that generate V.
We also define Div’ (C) as a set of degree zero divisors of C with support not intersecting
with the generating set of 'W. For each element of J(K), we may choose its representative in
Div(i(C ). There is a map

F:Divy(C) - L*

which induces F : J(K)/¢J(K) — L*/L* by [5, Lemma 2.1, Theorem 2.3].

Now we consider our cases p = 5, K = Q({s5), C,2 : y> = x° + m*> and ¢ = (1 — (5) where
s(xo, yo) := ({sx0, yo). We note that the class number of K is one and there is a fundamental
unit (1 + £5). Let J,» be the Jacobian of C,.. The polynomial f(T) = T? — m? is reducible
so we have L = K @ K, and the norm map is given by (ki, k) — kik,. After identifying H
with K*, we have

HY (K, J,2[¢];S) = K(S,5)

where K(S,5) is a subset of K*/K*? consisting of elements trivial outside S, by [5, Propo-
sition 3.4]. Since the set of bad primes S consists of the primes above 10m, we note that
K(S,5) is generated by

51+ 05,2,1 =5

and prime elements dividing m. We also have /1_1(.7,;2 [3]) = J,2[#] and (0, m) — co generates
J.2[¢] by [5, Propositions 3.1, 3.2]. Furthermore, we have

(3) Sely(J/K) = ()" 0 Fy) (e (K)/9J,(Ky)
pes
where i, is a natural map L* — Lj. For the concrete computation, we remind that

3 ifpl5,

4) dimg, (J,,2(Ky)/$J 2 (Ky)) ={ 1 otherwise

by [5, Corollary 3.6]. This result guides us when we stop finding the independent points
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of J,2(Ky)/¢J,2(Ky). Also, for D = Q) + -+ + O, — roo where Q; are K-conjugates with
x(Q:) # 0,

Fy@0D = [ Jw@) 1) (mod L)

i=1
and for D = (0,2m) — 00 = Q — o0,
F(DD) = (-y(Q) -T)"'+@(Q)—T) (mod L)

by [5, Proposition 3.3]. As Schaefer did in [5, Propositions 3.9, 3.12], we denote F,, by the
composition of the original F, and the isomorphism L = K @ K. For example, the image of
F, of D = (0,m) — oo is (=2m, (—=2m)~") and written by

y+m y—m
[(0,m) —c0] —2m (=2m)~!

We remark that

rank(J,2(Q)) = dimg,(J,2(K)/¢J 2 (K)) — dimg, J,2(K)[ ],

by [5, Corollary 3.7, Proposition 3.8].
One of the main goals of the paper is computing the Selmer group of Jacobian of C,,..

Proposition 3.1. Let m be an odd integer and let J,» be a Jacobian of C,.. Under the
identifications of K}y / K§5 as in (1) and (2), we have

Fs(J,2(Ks)/$J,2(Ks)) = (6, €,1m) ifm==+1,+£7 (mod 25).

If the prime p does not divide 5 or totally split primes, and ord,(m) # 0 (mod 5), then we
have

Fo(J1ye (Kp) [ d,2(Ky)) = (@)

Proof. In the proof, we denote J by J,2. The Fs-case is a generalization of [5, Proposition
3.12]. We recall that

K?/K;S = (75,1 + 75,1 +7r§,1 +7r§, 1 +7r‘5‘, 1 +7Tg> ={a,B,7,6,€1n)

and every element of KX which is one modulo 7% is a fifth power. When m* £ 1 = 0
(mod 25), either y* — m* = 1 (mod 78) or m* — y* = 1 (mod x%) has solutions 7% for
i = 3,4,5. Hence, in each case, there is an x; such that [(x;, 715) — 0] fori = 3,4,5 is the
point of J(K5)/¢J(Ks). The value of Fs5((x;, 5) — 00) is determined by the image of 75 + m
in K;/KSXS. Form = +1,+7 (mod 25), the images of ng +min U? are

(1+7b), (1-7b), & +7b), VAU
respectively. Computing the 7s-expansion, we get

y+1 y—1 y+7 y-7

() —co] & &1 & &
[(x4,7) -] € €' €€ €
[(xs.7) =0l p gt
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Together with (4) we have

F5(J(Ks)/¢J(Ks)) = (6, €,1).

Again by (4) for p 1 5, we have dimg, (J(K,)/¢J(K;)) = 1. By Lemma 2.2, arbitrary odd
integer m maps to 1 in K;/K;<5 = (2,{s5) = {ay,52). Hence,
y+m y—m
[(0,m)—c0] 2 27!

and F»(J(K3)/¢J(K3)) is {ay). Similarly for p which does not divide 10 or the totally split-
ting primes, the image of 2 in K7}/ K;S is trivial by Lemma 2.3. So

y+m y—m
[(0,m)—c0] m  m!

shows that F,(J(K,)/¢J(K},)) = {ap), when ord,(m) £ 0 (mod 5). O

RemMaArk 3.2. We note that Proposition 3.1 is enough to prove the main theorem, but the
same strategy gives Fs5(J,2(Ks)/¢J,2(Ks)) when one knows the generators of
Jw2(Ks)/dJ,2(Ks). For example,

(—7s5,2 + 373 + 271d), (1, 7% + 73 + 3nd), 2, 1)
are solutions of y> = x° + m?> (mod ﬂ'g) when m = =12 (mod 25). Therefore,
(£3(2 + 372 + 272 + 12), 4 (3 + 73 + 374 + 12), Za(1 + 12))
= (1 +4nd, 1 + 373 + 373 + 74 + 4m3, 1 + 278 + 4n2)  (mod 72)
= (' y'd'e ) in KS/KS
Hence,
F5(J2(Ks)/¢J,2(Ks)) = y6, €,m)

when m = £12 (mod 25). Similarly we can compute Fs5(J,2(Ks)/¢J,2(Ks)) for other cases.
Also, Lemmas 2.2 and 2.3 describe an image of prime element not lying above p = 1
(mod 5). Therefore, we can calculate the Selmer group of J,» when m is square-free and
(a) if p divides m then p # 1 (mod 5),
(b) there is at most one prime divisor p of m such that p =4 (mod 5),

even though we do not fully describe the result. We will give an example in the end of this
section.

Proposition 3.3. Let m be an odd square-free integer satisfying the above two conditions
(a), (b) and let v 1 5 be a prime of K dividing m. Then, (i;1 o Fy)(J,2(Ky)/9J 2 (Ky)) contains
2 and prime generators dividing m chosen as in Lemma 2.3.

Proof. This is a direct consequence of Lemma 2.3 and Proposition 3.1. O

Corollary 3.4. For a rational prime p and the Jacobian J 2, we have

dimg; Sely(J,2/Q) = 2, ifp=7,8 (mod 25).
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When p = 24 (mod 25), there is a generator m,, of w above p satisfies m,, = a + b\/5 for
a,be %Z. Then,

1 b#0 (mod>5),

dim]ps S€1¢(JPZ/Q) = { 3 =0 (mod 5)

Proof. In the proof, we denote J by J,». We first consider the case of p = 7,8 (mod 25).
We recall that is : K(S,5) — K*/K>, and K(S,5) is generated by /5,1 + ¢5,2,1 — {5 and a
prime p, which is inert in K/Q. Since

is(Cs, 1+ ¢5,2,1 = 5,7, 8) = (Bye, B2y 6%, €€, a, 1, ')

by Lemma 2.1, we have

Fs(J(K5)/¢J(Ks)) = (6, €,m),  imis = ({Bye, f*y*5°€*, €, ),

together with Proposition 3.1. A sort of linear algebra shows that

imis N Fs(J(Ks)/pJ(Ks)) = (€n),

and

(i5' o F5)(J(Ks)/$J(Ks)) = (2, p).

By Proposition 3.1, F,(J(K,)/¢J(K,)) = {a,) for a prime p not above 5. Now, Proposition
3.3 gives

(i, o F)(J(K2)/¢J(K2) D (2, p), (i)' o Fp)(J(K)[9J(K}) D (2, p),

which shows that dimg, Sels(J/Q) = 2.

When p = 24 (mod 25), we choose the generators r,,, 1 above p by a + b5 for a,b e
%Z. We still have F5(J(Ks)/@J(Ks)) = (0, €,17). By Lemma 2.1, the images under is of the
generators above p = 24 are in (yde) and trivial when b = 0 (mod 5). Hence,

imis C (Bye, f7y*0’e!, €1, @ yoe).
Since (Bye)}(B2y*5%€*)(yde)? is trivial, the dimension of the space in the right hand side is
4. Hence, the similar argument gives

imis N Fs(J(Ks)/oJ(Ks)) = (€),

and

(2) ifb#0 (mod5),

1 _
(i5° o F5)(J(K5)/¢J(Ks)) = { Qurony ifb=0 (mod 5).

Together with Proposition 3.3, we know that the dimension of the Selmer group Sely(J,2/Q)
is 1 or 3, and dimension 3 if and only if » = 0 (mod 5). m]

Proof of Theorem 1.1. By the Dirichlet theorem on arithmetic progressions for number
fields, there are infinitely many primes in a ray class modulo an ideal. Let us denote two real
embeddings by o1, 0. For a modulus (50)-¢7 07 and a ray class (2+V/5), there are infinitely
many prime elements 7 which are congruent modulo (50) - 010 to one of u%”(Z + \/5) where

up = (1+V5)/2.
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Using an integral basis {1, ur} of O, we may write
7= 122 + V5) + 50z; + 50z5up
for some z;, z; € Z. Then, the norm of 7is —1 (mod 25). Let a,, and b, be integers satisfying
Up = ay + byur.
Then,
7t = up(2 + V5 £ 502 (a_an + booyitr) 5023 (a_zner + boour1tir))
= U7 (2 + V5 £ 25(21(2a-2, + bo2y) + 22202041 + Dogit) + V521D, + 22b-2041))).

For a rational prime p = 24 (mod 25) divided by , there is a generator of (i) satisfying the
condition of Corollary 3.4 with b # 0 (mod 5). From the exact sequence

J2(Q)
¢J 2 (Q)
and J 2 (Q)or = Z/5Z (see [9, p. 286] and [8, p. 80], or [1, Theorem 4.1]. Note that the latter

contains a detailed proof), one can deduce that J,»(Q) = Z/5Z.
Also, for a prime p = 7,8 (mod 25) we have

Sely(J,2/Q) —— L1(J,2 /Q)[¢] —> 0

Z/5Z < J»(Q) < Z/5Z X Z, w(p?) = -1

by Corollary 3.4 and Corollary 2.5. Under the parity conjecture, the algebraic rank is also
an odd number when the root number is —1. This proves the second part of the theorem.
O

We note that the machinery also works for the totally split primes, even though one need
to compute everything directly.

Proposition 3.5. The Mordell-Weil rank of J,012/Q is zero.

Proof. We will show that dimg, Sely(J19;2/Q) = 1. We note that Sagemath [4] runs most
of computation in the proof. Let p; for j = 1,2, 3,4 be a prime ideal of K above p = 101,
and let us choose generators ; by

C+305-4+1, 30 +402+ 205+ 2, —403 =208 - 5 -2, —203 - 3+ 2s.
We note that mymom3my = 101. Also,
K(S,5) =42,05,1 + 5,1 = {5,my, o, 3, 74).

Now we want to compute the image of i} := i, : K(S,5) — K;l / K;ls of the above generators.
In Section 2 we showed that K, / Kfjls is generated by two elements a,,, 8, which is 7, and
(s, respectively. Let py : Ok, — Okp, /910k,, = Fio1 be a projection map. Then,

012,85, 1+ 45,1 = s, ma, 3, ) = (2,95,96,7,92, 89, 81).

X5

We also denote p; as a composition of the previous map and the quotient Fj,, — F}, /F7,.

Then, we know that
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12,805, 1+ 5,1 = s,mo,m3,m4) = (2,1,3,3,8,2,2).

-3 — — —
Note that 2 = 8 and 2 is a multiplicative inverse of 3. Since the elements above are not
divided by 1, we can describe the images of elements in K(S,5) in K;l / K;ff. Now

y+m y—m
[(0,m)—oc0] 2m  (2m)~!

Therefore, F, (J(K,,)/9J(K,,)) is generated by the product of @, and the image of 2.
Hence,

(7' o Fp)(J(Kp)/$J(Kyp)) = (21,85, 2(1 + 5),2(1 = £5), 2°m2, 273, 2% ).

Similarly, we have

0202,85,1 + 5,1 = s,my,m3,m4) = (2,1,3,8,2,8,2),

so Fy,(J(Ky,)/dJ(K,,)) is generated by the product of @, and the image of 2. Hence,

(iy" 0 Fp,)(J(Ky,) /9T (Kyy)) = (272, &5, 2(1 + £5), 22 (1 = &5), 2%y, 2273, 20 my).
Also,

042,85, 1 + 45,1 = Es,my,mo,m3) = (2,1,2,8,8,2,2)
and
(i3" 0 Fp )(J(Ky,) /9 (Kyy)) = (273, &5, 2(1 + £5), 2(1 = £5), 2%y, 24 ma, 2%,
(iy" o Fp)(J(Ky)/9J(Ky,)) = (2ma, &5, 24 (1 + £5),2%(1 = £5), 2%y, 2%ma, 2% 3).

We denote each vector space (i]‘.1 oFy )(J(Ky,)/9J(Ky))) over Fs by V; for j = 1,2,3,4. One
can check that

W= ViNVanVsn Vg =G, 2mmamsma, 22 mma(1 = &5), 24 (1 = £5)2(1 + &5)*mimsmy).

We recall that our embedding of K into Ks maps 5 to 1 — zs. Then, my, 75, w3, 14 are also
mapped to

m = —(1 4375 +47r§ +7r§ +7r‘5‘)

b9 l—>1+7r5+37r§+27rg+37r‘5‘+47r§
3 |—>1+27r5+7r§+47rg+27r‘5‘

my > —(1 +4ns + 273 + 373 + 77)

modulo O(x%). So —my, m,, 3, =74 correspond to the UM-part. By a routine computation,
we have

is(n1, 7m0, 73, 74) = (BPyo €’ By 5 e’ BP6 e’ Brye ).
We already know that

is(2,45, 1+ 85,1 = &5) = (€1, Bye, B2y 6%, @)

and F5(J,2(Ks)/¢J,2(Ks)) = (9, €, 1) by Proposition 3.1. The images of our basis members
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of W in the quotient space (KSX/ sts) [Fs(J,2(Ks)/$J,2(Ks)) are ,B_y, 1, oz_y“, E, respectively.
Therefore Sels(J1912/Q) is one dimensional vector space generated by 27 mym3my. |

We conclude this section with an example on general m which is not divided by a rational
prime equivalent to one modulo five.

ExampLE 3.6 (m = p;p> WHERE (p1, p2) = (3,4) (mod 25).). Let p; = 3 and p, = 4
(mod 25), and 7, and 75 be prime elements a + b5 for a,be %Z of K lying over p;. Then,
by Remark 3.2 and Lemma 2.1,

F5(J(Ks)/$(J(Ks))) = (y6,€,1) and imis = (Bye, f7y*6°¢", €n,a, en’, (y5€)").
So the previous argument shows that

2,p1)  ifb#0 (mod5),

—1 _
(i oFs)(J(K5>/¢J(K5))—{ ey 20 (mod 5

For the other bad primes p we have (i;l o Fp)(J(K,)/¢J(K,)) contains (2, py, my, T5), by
Proposition 3.3. Therefore, for such m = p; p»,

2 ifb£0 (mod)5),

di]‘n]}:‘5 Sel¢(-]m/Q) = { 4 ifb=0 (mOd 5)

4. Special values of L-functions

In this section we will find sufficient conditions on A such that L(1, J4) becomes nonzero.
By [3, Theorem 4], there is a Hecke character 4 of K such that

L(s, Ja) = L(s,m4).

Following [9, Section 2], we denote F := Q(\/g) and y4 := nal - |X2 with A := Ay the ring
of adeles so that

1
L(l’JA) = L(la UA) = L(E’XA) .

From now on, we assume that the global root number of y4 is 1. Based on the work of
[10, 12], Stoll and Yang give the following:

Proposition 4.1 ([9, Proposition 3.1]). With the notation in [9], we have

D o] | rw

x€F vf2A v2A

2

2
L(1,n4) = m

for some constant C| and C,.

Here ¢ =[], ¢, € S(A) is an appropriately chosen Schwartz—Bruhat function and

5) 1) = fG Voo @)Bu(x)dg

asin [9, p. 277]. We will introduce more precise notations later. Stoll and Yang further give
a concrete choice of ¢, for v ¥ 5A and infinite v. It allows them to compute L(1,17;). In this
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paper, we choose ¢, for v | 5A and consider when /,(x) is non-zero.
Since the global root number of y,4 is +1, there is a unique @ € F* up to norm from K*
such that

1 1
E(E,XA,wa EWK,,,)XA,w((S) = EU(CL')

w places of K
wlv

for all places v of F' (cf. [9, p. 276]). Here 6 := {5 2 - (52, Y is an additive character of Ap
given by ¢ = [], ¥ for ¢, (x) = e V14 where

/l . F Tr["v/@p
v - v—>Qp—>Qp/Zp—>Q/Z,

and Y g = i o Trg/r. Also, € on the left hand side are the local root numbers as in [9,
Proposition 2.2], and ¢, is the local part of the Hecke character belonging to K/F. We
let rings act on additive characters defined on them by multiplication with arguments. For

example,
1 1
(E'J’Kw) (%) := Yk, (Ex)

Since we only concern the case where A is a square not divisible by 2, [9, Lemma 2.3] tells
us that we may choose

G’E[l_[ p}'NK/FKX

2#plA

where Ng/r denotes the norm. Next, we need to choose an appropriate Schwartz—Bruhat
function ¢ = [, ¢, € S(A) asin [9, p. 277]. To be more precise, we introduce more notations
in [9, Section 2]. We fix an embedding K — C such that {5 — exp(27r\/—_1 /5). We also fix
a CM type © = {0, 04} of K where 0,({s) = exp(27rr\/—_1 /5). Then the following lemma
tells us a possible choice of ¢, for almost all places v.

Lemma 4.2 ([9, Lemma 3.2]). Denote char(X) the characteristic function of the set X.
Then,

4 = { char(OF,)(x) vt 1040, a € OF,

20 j(a6®)[/* exp (-7l j(@6d)loj(x)?) v =0 € {0, 0a).

If we choose a € F* as above such that o € Z;, then [9, Corollary 5.8] tells us that we
may choose

1
¢2 = char(i + (9[{2) .

We note that ¢, = I, and I, is a constant function (See [9, §4]). Atv = 3, [12, Proposition
1.2, Corollary 1.4] tell us that we may choose

2n(xp 2)-1

(ﬁ‘/g =5+ &- ChaI'(OF’\/g).

Here, by denoting A := 62,
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(1) A:=1-{5 € K is a prime element lying over V5.
(2) n(xa.,) is the conductor exponent of y4 4 which is completely determined
by gs(A) = (A* - 1)/5 (see [9, Proposition 2.2 (5)]):

_J 1 it 5]¢s(A),
nxa) = { 2 if 54 gs(A).
(3) With G = {1} x U, write g = x + y& € G and set
£x(g) = { x44(8(g = DA, —y)r if geU,
xa(8(g = D)A, —2a)re(3, ek, r, k) if geG\UY.

This comes from [12, Proposition 1.2 (D].!
By Proposition 4.1 and Lemma 4.2, we obtain

2
2 2"()(/“)
(6) L) = e ZX] E1()B e, (X)ber, () - [];[I(x))
where
Xy=Fnl () O n(l +(9F,2).
vf{2Ac0 2

For v | A and w a place of K dividing v, we always have n(y4,) = 1 by [7, Proposition
3.3]. First, we consider the case v | A splits in K/F. In this case we apply [10, Section 2].
Under the identification

_ Flil
T -)
we have 6 = (1,-1) € F, ® F,. Denote ny, € OF, by a uniformizer and in this case n, = 1.
To get ¢, = ¢,,1, following the notation of [10, Theorem 2.15], we first compute

@rF,=2F,-00F, (-9)

P (Char (1 + ﬂFUOF,U)) (x) = |a|v%¢’v ( ) f l//u(a/xy)% ( )Char (1 + TF, OFU) (.’/)dy

ax

T) f Yo(axy)dy
1+7TFU(9F,U

(0%

)f Yo(ax(y + 1))dy
7r, OFy

_ 2 o
|al; v( >
| 2
= lal; U(ﬂwx) f vulaxy)dy
2 ”FUOF,U
ax? _
Ia/IU /3 (T x) meas(ng, OF,)char (77 Ff(?gv) (x).

Hence we get

1 2
b, = meas((?F,U)‘%meas(nFU(Dp’,))q,f lal; v, (% + a/x) char (7'[']_:”20[7’”) (x).

1Tt seems that there is a typo in [12, Proposition 1.2 (1)]. Compare the statement and its proof [12, pp.
354-355].



58 K. JEoNG, J. PARK AND D. YHEE

To apply [9, Proposition 3.1], we need to compute

100 = [ onuale)dg

Fo

- f@  xad)gli 0,(x9)dg

- f bu(x9)dg
o5,

= meas(Or,) *meas(tr, Or,)qz2|al? f w,,(%(xg)z +a(xg))char(n;f(9m) (xg)dg
OX

Fuo

1 1
= meas(Or,) > meas(rr, Or,)q; lal; char (1;20r, ) (x) f wv(%ug)z + a(xg))dg.
o5,

We note that the action of Weil representation w is described in [10, Corollary 2.10]. Since
there is a representative

a € ( l_[ p} 'NK/FKX,

2#plA

we choose a such that ¢, (%(xg)2 + a(xg)) =1forg € OEU and x € ﬂ;fOF,U forallv | A
splitting in K/F. Then

meas(O%.)

11
f dg = —————meas(nr,OF,)q; lal;
o5, meas(Or,)?

=

_1 1
Ivln;_f@” = meas(Of,) meas(nr,OF,)q; |al;

is a non-zero constant. Therefore, there is a non-zero constant ¢,(«) such that
(7 I,(x) = cy(@)char(> OF,)(x),

when v | A splits in K/F.
Finally, consider the case v | A is inert in K. Following the notation of [12, p. 339], we
have

0
nWi) =n( Sk = nwx) - ordp, (@) = —ordy, @).

We choose « so that ordg, (@) = 1 and I’l(lﬁ;{y) = —1. Since we have n(y4,) = 1l and w | v is
unramified, we are in the case of [12, Proposition 1.5] with = 1 the trivial character. Then
we may choose,

¢y(x) = char(np,OF,)(mF,x)
1 £ (S +0
260, (S.T)ex? T

§2-T?=A mod 7,

+ ) (KZU) gﬁ%v (%S(ﬂpvxf) Char(OF,u)(ﬂFUx)

when &,(-1) = (_—1), or

Ky
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¢p(x) :=char(14+7p, OF,)(mF,x)—char(—=14+7mp, OF,)(F, x)

1 S+6
+G(z//”) Z & ( ; )( ):,bjé (S(ﬂ'FU)C)Z—2T7TF”X+S)Char(0F’U)(7TFUX)
£y (S.T)e>

§2-T?=A mod 7,

when &,(-1) = — (;—1) and fv‘l # 1o, where k, := Op,/np, is the residue field of F,. Note
that r,lz%v in [12, Proposition 1.5] has conductor 77, OF, (see the proof of [11, Proposition
3.4] for the detail) so we regard ;l/;iu as a character of «, and G(a,l/’,ﬁu) is the Gauss sum of z,b;i
Together with (6), we obtain

Proposition 4.3. Let A be a square integer such that the root number of na is +1. Then,
there is a non-zero constant c,(«) such that
2

2 2n(xp 2)-1

T
®  Lla=gee S ];[ co(@) - ;}(Afxx)%(x)%(x)- ];[ I,(x)
v split vinert

where 1,(x) is taken from (5) and

ﬂ OF,U

vf2A00

XA:Fﬂ

( +(9F2) ﬂﬂF OFU .

v|A
vsplit

Proof of Theorem 1.2. When 5% | (A* — 1), we have n(y4.,) = 1 which implies that &,
is trivial (See [12, Proposition 1.2, Corollary 1.4]). Since every prime divisor of A splits in
K/F, we obtain that

2
2
©) Lm0 = g5 [ [ a@) | 3 60,0900,
UlA xeXy
v split

Recall that o, and o4 have real values on F' and X, is a subset of F. Therefore,

3 3
G, (X)Per, (X) = V2a253 exp (—ﬂ'af ((2 sin 25_7r) o (x)* + (2 sin 45—7T) 0'4(x)2]]

is positive and the last term of (9) does not vanish. Hence L(1,17,) is non-zero. m|

Proof of Corollary 1.3.  We note that g5(101?) is divided by 5. Now the result follows
from Proposition 3.5 and Theorem 1.2. O
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