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Abstract
In this paper, we study the algebraic rank and the analytic rank of the Jacobian of hyperelliptic

curves y2 = x5 + m2 for integers m. Namely, we first provide a condition on m that gives
a bound of the size of Selmer group and then we provide a condition on m that makes L-
functions non-vanishing. As a consequence, we construct a Jacobian that satisfies the rank part
of the Birch–Swinnerton-Dyer conjecture.

1. Introduction

1. Introduction
For each integer A, we define a hyperelliptic curve CA : y2 = x5 + A and its Jacobian JA.

In [6, 7] Stoll studied the arithmetic of CA and in [9] Stoll and Yang studied the L-values
of CA. In this paper, we focus on the case of A = m2 where m is a square-free integer.
More precisely, we study the algebraic rank and the analytic rank of Jm2 . We note that every
hyperelliptic curve in our family does not satisfy the conditions [6, (1.3)], so this curve is
not covered in [6].

To get an algebraic rank, a standard method is to give a bound of the Selmer groups of
the Jacobians. Using the result of Schaefer [5] and the calculation of the root numbers [7],
we obtain the following.

Theorem 1.1. There are infinitely many integers m where J = Jm2 satisfies

J(Q) � Z/5Z.

On the other hand, there are infinitely many m such that

J(Q) � Z/5Z ⊕ Z
under the parity conjecture.

We recall that the parity conjecture claims that the algebraic rank and the analytic rank
are equal modulo 2.

For simplicity, we mainly consider the case where m is a prime. However, our proof
of this theorem can be applied to general Jm2 for square-free m such that all of the prime
divisors p of m satisfy p � 1 (mod 5), and there is at most one p ≡ 4 (mod 5) among them.
In this case, the primes of K above m satisfy a certain kind of orthogonality (i.e. there exist
generators πp, πp′ such that πp is trivial in K×p′/K

×5
p′ and vice versa). This property makes the

descent computation much easier as we will see in Proposition 3.3. For the case where m
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is not a prime, see Remark 3.2 and Example 3.6. As an example, we consider m = 101 a
prime equivalent to 1 modulo 5 in Proposition 3.5.

On the analytic side, there are results on the special L-value of the hyperelliptic curves
CA like [9, 2]. Such curves have complex multiplication, so there is a Hecke character ηA

satisfying

L(s,CA) = L(s, JA) = L(s, ηA).

Based on the work [10, 11, 12] on the non-vanishings of L-functions of Hecke characters
and [6, 7] on hyperelliptic curves CA, Stoll and Yang showed that

L(1, J1) � 0

in [9]. In this paper, we extend this result for the curve CA with certain conditions on A, in
Proposition 4.3 which gives an expression of L(1, ηA). As a consequence, we obtain

Theorem 1.2. Let JA be a Jacobian of CA whose root number is +1. If A is a square
integer such that every prime divisor is a prime equivalent to 1 modulo 5, and (A4 − 1) is
divided by 25, then L(1, JA) � 0.

Note that the rational primes p ≡ 1 (mod 5) are exactly the ones split completely in
K. In formula (8), one can see from (7) that the factors involving primes v of F split in K
are non-zero. To see whether the factors involving primes of F inert in K vanish or not,
one need to evaluate integral (5), which seems to be complicated. However, when it comes
to the descent on Cm2 , the situation seems complementary. More precisely, if m only has
prime factors which are not totally split, then the descent is manageable. However, if m has
prime factors which split completely in K, then the descent become more complicated to
deal with. This explains why we cannot obtain an infinite family of Jacobians of the form
Jm2 satisfying the rank part of the Birch–Swinnerton-Dyer conjecture. Instead of this, we
give an illustration for the case p ≡ 1 (mod 5):

Corollary 1.3. A Jacobian J1012 satisfies the rank part of the Birch–Swinnerton-Dyer
conjecture.

We note that Corollary 1.3 may be deduced from 2-descent available in Magma and the
numerical computation of L-values since the rank of J1012 is zero, but we want to emphasize
that the analogous result for other primes p ≡ 1 (mod 5) may be deduced from our (1− ζ5)-
descent with less computational complexity.

In Section 2, we list some facts on local fields and recall the computation of the root
number of Jm2 . Based on these results, we describe descent for Jacobians in Section 3 and
give a proof of Theorem 1.1. After computing the special L-value in Section 4, we will show
Theorem 1.2 and Corollary 1.3.

2. Preliminaries

2. Preliminaries2.1. Local field computation.
2.1. Local field computation. We list some notations which will be used in Sections 2

and 3. We fix a fifth root of unity ζ5 in Q. Let K = Q(ζ5) and F = Q(
√

5). We recall that
a rational prime p is inert, splits into two primes, splits completely in K/Q if and only if
p ≡ 2 or 3, p ≡ 4, p ≡ 1 modulo 5, respectively. In each case, we denote primes of K above
a rational prime p by p, w, v and its generator by p, πw, πv, respectively. The unique prime
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above 5 is denoted by v5, but we also admit the notations K5 and π5 for Kv5 and πv5 . We use
a symbol p to indicate a prime ideal of K and π to a prime element. For the integer ring of a
local field with a maximal ideal p,

U(i) := 1 + pi.

Also we use the notation ζn for a primitive n-th root of unity in K or any local fields, if it
exists.

In this section, we compute the images of prime elements π in K×p /K×5
p . We first compute

the group K×p /K×5
p . When p = v5, we fix a generator π5 by (1 − ζ5). Since

K×5 � π
Z
5 × μ4 × U(1) and U(2) � Z4

5,

we have

(1) K×5 /K
×5
5 � 〈π5, 1 + π5, 1 + π2

5, 1 + π
3
5, 1 + π

4
5, 1 + π

5
5〉

and every element in U(6) is a fifth-power. We rename the generating elements by 〈α, β, γ, δ,
ε, η〉. For all other primes p � v5, 5 is invertible in the ring of integers K,p. So we have

(2) K×p /K
×5
p � 〈πp, ζ5n〉

where ζ5n generates the 5-part of the root of unities of K×p . We also rename the generating
elements by 〈αp, βp〉 and drop the subscript whenever the meaning is clear from the context.
We note that every element in U(2) is a fifth-power in this case.

We need π5-expansions of some elements in K5. By expanding π4
5 = (1 − ζ5)4, we have

5 = 4π4
5 + 3π5

5 + 3π6
5 + 4π7

5 + π
8
5 + 3π9

5 + O(π11
5 ).

We choose
√

5 and ζ4 in K5 such that
√

5 ≡ 2π2
5 (mod π3

5) and ζ4 ≡ 2 (mod π5)

respectively. Then, one may verify that
√

5 = 2π2
5 + 2π3

5 + π
4
5 + O(π7

5),

ζ4 = 2 + 4π4
5 + 3π5

5 + O(π6
5),

ζ3
4 = 3 + 2π4

5 + 4π5
5 + O(π6

5),

−
⎛⎜⎜⎜⎜⎝1 +

√
5

2

⎞⎟⎟⎟⎟⎠ = 2 + 4π2
5 + 4π3

5 + π
5
5 + O(π6

5),

where the last one is a fundamental unit of F, which we will denote by uF . We note that
{1, uF} is an integral basis of F , so we can choose a generator πw = a + b

√
5 for a, b ∈ 1

2Z,
or πw = a + buF for a, b ∈ Z.

Now we can describe the images of the prime elements of K which is not above a rational
prime p ≡ 1 (mod 5) in K×5 /K

×5
5 .

Lemma 2.1. (1) Let n be a rational integer not divided by 5. Then, the image of n in
K×5 /K

×5
5 is
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1 if n ≡ 1, 7, 18, 24 (mod 25)
εη2 if n ≡ 3, 4, 21, 22 (mod 25)
ε2η4 if n ≡ 9, 12, 13, 16 (mod 25)
ε3η if n ≡ 2, 11, 14, 23 (mod 25)
ε4η3 if n ≡ 6, 8, 17, 19 (mod 25)

(2) For a prime w above a rational prime p ≡ 4 (mod 5) and its generator πw = a + b
√

5
with a, b ∈ 1

2Z, the image of πw in K×5 /K
×5
5 is given by the following table.

a (mod 5) p ≡ 4 p ≡ 9 p ≡ 14 p ≡ 19 p ≡ 24
2 γbδbεb+3η γbδbεb+1η2 γbδbεb+4η3 γbδbεb+2η4 γbδbεb

4 γ3bδ3bε3b+3η γ3bδ3bε3b+1η2 γ3bδ3bε3b+4η3 γ3bδ3bε3b+2η4 γ3bδ3bε3b

3 γ4bδ4bε4b+3η γ4bδ4bε4b+1η2 γ4bδ4bε4b+4η3 γ4bδ4bε4b+4η4 γ4bδ4bε4b

1 γ2bδ2bε2b+3η γ2bδ2bε2b+1η2 γ2bδ2bε2b+4η3 γ2bδ2bε2b+1η4 γ2bδ2bε2b

Here p ≡ a means p is equivalent to a modulo 25.

Proof. For a generator σ : ζ5 	→ ζ2
5 of Gal(K5/Q5), we have

σ(1 + π5, 1 + π2
5, 1 + π

3
5, 1 + π

4
5, 1 + π

5
5)

≡ (1 + 2π5 + 4π2
5, 1 + 4π2

5 + π
3
5 + π

4
5, 1 + 3π3

5 + 3π4
5 + π

5
5, 1 + π

4
5 + 3π5

5, 1 + 2π5
5),

modulo K×5
5 , which implies

σ(β, γ, δ, ε, η) ≡ (β2γ3δ4εη, γ4δη, δ3ε3η, εη3, η2) (mod K×5
5 ).

For a prime p not above 5, any generator πp of p is not divided by π5 so we can write

πp ≡ ζ i
4β

bγcδdεeη f (mod π6
5).

A (multiplicative) F5-vector space 〈β, γ, δ, ε, η〉 is decomposed by eigenvectors
{
εη2, γδε, η,

βγε, δε4η3
}

of σ such that

σ(εη2, γδε, η, βγε, δε4η3) ≡ (εη2, (γδε)4, η2, (βγε)2, (δε4η3)3) (mod K×5
5 ).

(1) Since σ(n) = n for all n ∈ Z, the class of n in K×5 /K
×5
5 is a power of εη2, which is the

unique eigenvector with eigenvalue +1. Note that

εη2(1+ π6
5)2(1+ π7

5) ≡ 1+ π4
5 + 2π5

5 + 2π6
5 + π

7
5 ≡ 21 (mod π8

5), and ζ4 ≡ 7 (mod π8
5).

So for i = 0, 1, 2, 3,

ζ i
4εη

2(1 + π6
5)2(1 + π7

5) ≡ 21, 22, 3, 4 (mod 25)
ζ i

4ε
2η4(1 + π6

5)4(1 + π7
5)2 ≡ 16, 12, 9, 13 (mod 25)

ζ i
4ε

3η(1 + π6
5)6(1 + π7

5)3 ≡ 11, 2, 14, 23 (mod 25)
ζ i

4ε
4η3(1 + π6

5)8(1 + π7
5)4 ≡ 6, 17, 19, 8 (mod 25)

ζ i
4 ≡ 1, 7, 24, 18 (mod 25)

where (1 + π6
5)2(1 + π7

5) is a 5th-power in K×5 .
(2) Since p ≡ 4 (mod 5), p splits into two primes. For a generator πw, σπw � πw but

σ2πw = πw. Hence the image of πw in K×5 /K
×5
5 is a product of a nontrivial power of the

eigenvector γδε with eigenvalue −1 and a power of the eigenvector εη2 with eigenvalue +1,
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say

πw = (γδε)c(εη2)e (mod K×5
5 ).

Also, πw ·σπw ≡ (εη2)2e (mod K×5
5 ) and πw ·σπw ≡ p (mod K×5

5 ) imply that the exponent e
is 0, 1, 2, 3, 4 when p ≡ 24, 9, 19, 4, 14 (mod 25) respectively. We also have

−uF ≡ 2 + 4π2
5 + 4π3

5 + π
5
5 ≡ ζ4(1 + 2π2

5 + 2π3
5 + 3π4

5 + 4π5
5) (mod π6

5)

≡ ζ4γ
2δ2ε2 (mod π6

5).

Since uF is a fundamental unit of Q(
√

5), we note that another choice of a generator of the
form a′ + b′

√
5 for a′, b′ ∈ 1

2Z should be a product of power of −1, uF , and a + b
√

5. Let
πw = a + b

√
5 be a generator for w with a, b ∈ 1

2Z and let a ≡ 2k (mod 5) with 1 ≤ k ≤ 4.
Since

−1 − √5
2

(a + b
√

5) = −a + 5b
2
−

(
a + b

2

)√
5

and (−a − 5b)/2 ≡ 2a (mod 5), we can find another generator

π′w = a′ + b′
√

5 =
⎛⎜⎜⎜⎜⎝−1 +

√
5

2

⎞⎟⎟⎟⎟⎠5−k

πw

of w, where a′ ≡ 2 (mod 5). We also note that every generator of w is equivalent to one of
π′w up to K×5.

Now assume a ≡ 2 (mod 5). Then

ζ3
4 · (a + b

√
5) = (3 + 2π4

5 + 4π5
5 + O(π6

5))(a + b(2π2
5 + 2π3

5 + π
4
5 + O(π6

5)))

= 1 + bπ2
5 + O(π3

5)

implies that πw = (γδε)b(εη2)e in K×/K×5. This induces the first row of the table. The other
rows are determined by the relation between π′w and πw and the value of −(1 +

√
5)/2 in

K×5 /K
×5
5 . �

In the next section, we will need the images of {ζ5, 1 ± ζ5, 2} in K×p /K×5
p also. We begin

with p = 2. Recall that K×2 /K
×5
2 � 〈2, ζ5〉 = 〈α, β〉 in (2).

Lemma 2.2. (1) The image of (ζ5, 1 + ζ5, 1 − ζ5, 2) in K×2 /K
×5
2 is (β, β3, β3, α).

(2) The images of odd integers and prime elements πw = a + buF for a, b ∈ Z in K×2 /K
×5
2

are trivial.

Proof. (1) To describe 2-expansions of elements of K2, we fix an isomorphism

F16 � F2[t]/(t4 + t + 1).

We choose an embedding of K in K2 which sends ζ5 ∈ K to t3 ∈ F16. Since

(t3 + 1)(t2 + t + 1) = t3 + t, (t2 + t + 1)3 = 1, t9 = t3 + t,

we know that (1 + ζ5)ζ3 = ζ
3
5 in K2. Since ζ3 is trivial in K×2 /K

×5
2 , the image of (1 + ζ5) in

K×2 /K
×5
2 is β3. Also, the 2-expansion of the image of (1 − ζ5) in K2 is

1 − ζ5 = 1 + t3(1 + 2 + O(22)) = (1 + t3)(1 + (1 + t3)−1t32 + O(22)).
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Hence the image of (1 − ζ5) in K×2 /K
×5
2 is β3 also.

(2) Since U(1) vanishes in K×2 /K
×5
2 , every odd integer maps to the trivial element in

K×2 /K
×5
2 . In K2, one has

√
5 = 1 + (t2 + t)2 + O(22) and uF = (t2 + t + 1) + O(2).

Therefore, the image of a+buF in F×16 is contained in
{
t2 + t + 1, t2 + t, 1

}
which is the group

generated by ζ3. �

Lemma 2.3. Let p � 2 be a rational prime inert in K/Q and let πw be a prime element
defined by a + b

√
5 for a, b ∈ 1

2Z.
(1) For p = (p) or (πw), the image of {ζ5, 1 + ζ5, 1 − ζ5} in K×p /K×5

p is in 〈βp〉.
(2) For p = (p), the images of rational primes relatively prime to p and prime elements

πw′ = a′ + b′
√

5 for a′, b′ ∈ 1
2Z are trivial in K×p /K×5

p .
(3) For p = (πw), the images of rational primes relatively prime to p and a prime element

πw := a − b
√

5 are trivial in K×p /K×5
p .

Proof. (1) We recall that K×p � pZ × μp4−1 × U(1) and K×w � πZw × μp2−1 × U(1), i.e.
K×p /K×5

p = 〈αp, βp〉 for p = (p) or (w) in (2). Especially, the U(1)-part vanishes in K×p /K×5
p .

Since ζ5, 1 ± ζ5 are not divided by p, their images are in 〈βp〉.
(2) Every rational integer relatively prime to p and πw′ maps to F×p2 modulo p. Since the

fifth-power map on F×p2 is bijective, every element maps to F×p2 vanish in K×p /K×5
p .

(3) Similarly, every integer and πw maps to F×pw where pw is the rational prime divided by
πw. �

2.2. The root numbers.
2.2. The root numbers. We recall the result of [7] on the root numbers of y2 = xl + A,

where l is an odd prime.

Theorem 2.4 ([7, Theorem 3.2]). The root number w(A) of the curve y2 = xl + A over Q
where A is a 2l-th power free integer not divisible by l, is given by

w(A) =

⎧⎪⎪⎨⎪⎪⎩
(

2AvA
l

)
if l | ql(A),

−
(

2ql(A)vA
l

)
if l � ql(A),

where ql(A) = (Al−1 − 1)/l and vA = 2 f2(A) ∏
p|A,p�2 p where f2 is given by

f2(A) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 if e = 2l − 2 and B ≡ 1 (mod 4),
1 if e < 2l − 2 and is even and B ≡ 1 (mod 4),
2 if e is even and B ≡ −1 (mod 4),
3 if e is odd

for A = 2eB with B odd.

In this paper, we only need the following special case.

Corollary 2.5. For an odd square-free integer m, the root number w(m2) of the hyper-
elliptic curve y2 = x5 + m2 over Q is given by

w(m2) =
{
+1 if m ≡ 1, 2, 4, 6, 12, 13, 19, 21, 23, 24 (mod 25),
−1 if m ≡ 3, 7, 8, 9, 11, 14, 16, 17, 18, 22 (mod 25).
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3. Descent for Jacobian of hyperelliptic curves

3. Descent for Jacobian of hyperelliptic curves
We recall the general facts on the descent for Jacobian of hyperelliptic curves of odd

prime degree. The main reference is [5].
Let p be an odd prime, let K be a number field containing ζp, and let C be a curve defined

by an equation yp = f (x). Let J be the Jacobian of C and consider an endomorphism φ of
J. The φ-Selmer group of J/K is defined by

Selφ(J/K) := ker

⎛⎜⎜⎜⎜⎜⎜⎝H1(K, J[φ])→
∏
p

H1(Kp, J)

⎞⎟⎟⎟⎟⎟⎟⎠
where p is taken over all primes of K. Following the Schaefer’s idea, instead of using the
first cohomology group we will use more concrete object which we will describe as follows.
Assume that J[φ] has a prime power exponent q. We define

L := K[T ]/( f (T )), H := ker
(
Norm : L×/L×q → K×/K×q) .

Let λ : J → Ĵ be the canonical polarization of J and let φ̂ be the dual isogeny of φ. Let
Ψ := λ−1(Ĵ[φ̂]) ⊂ J[q] and choose a GK-invariant set of divisor classes that generate Ψ.
We also define Div0

⊥(C) as a set of degree zero divisors of C with support not intersecting
with the generating set of Ψ. For each element of J(K), we may choose its representative in
Div0

⊥(C). There is a map

F : Div0
⊥(C)→ L×

which induces F : J(K)/φJ(K)→ L×/L×q by [5, Lemma 2.1, Theorem 2.3].
Now we consider our cases p = 5, K = Q(ζ5), Cm2 : y2 = x5 +m2 and φ = (1 − ζ5) where

ζ5(x0, y0) := (ζ5x0, y0). We note that the class number of K is one and there is a fundamental
unit (1 + ζ5). Let Jm2 be the Jacobian of Cm2 . The polynomial f (T ) = T 2 − m2 is reducible
so we have L � K ⊕ K, and the norm map is given by (k1, k2) → k1k2. After identifying H
with K×, we have

H1(K, Jm2 [φ]; S) � K(S, 5)

where K(S, 5) is a subset of K×/K×5 consisting of elements trivial outside S, by [5, Propo-
sition 3.4]. Since the set of bad primes S consists of the primes above 10m, we note that
K(S, 5) is generated by

ζ5, 1 + ζ5, 2, 1 − ζ5

and prime elements dividing m. We also have λ−1(Ĵm2 [φ̂]) = Jm2 [φ] and (0,m)−∞ generates
Jm2 [φ] by [5, Propositions 3.1, 3.2]. Furthermore, we have

(3) Selφ(J/K) �
⋂
p∈S

(i−1
p ◦ Fp)

(
Jm2 (Kp)/φJm2 (Kp)

)
,

where ip is a natural map L× → L×p . For the concrete computation, we remind that

(4) dimFp(Jm2 (Kp)/φJm2 (Kp)) =
{

3 if p | 5,
1 otherwise,

by [5, Corollary 3.6]. This result guides us when we stop finding the independent points
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of Jm2 (Kp)/φJm2 (Kp). Also, for D = Q1 + · · · + Qr − r∞ where Qi are K-conjugates with
x(Qi) � 0,

Fp([D]) ≡
r∏

i=1

(y(Qi) − T ) (mod L×5
p )

and for D = (0,±m) −∞ = Q −∞,

Fp([D]) ≡ (−y(Q) − T )−1 + (y(Q) − T ) (mod L×5
p )

by [5, Proposition 3.3]. As Schaefer did in [5, Propositions 3.9, 3.12], we denote Fp by the
composition of the original Fp and the isomorphism L � K ⊕ K. For example, the image of
Fp of D = (0,m) −∞ is (−2m, (−2m)−1) and written by

y + m y − m
[(0,m) −∞] −2m (−2m)−1

We remark that

rank(Jm2 (Q)) = dimF5 (Jm2 (K)/φJm2 (K)) − dimF5 Jm2 (K)[φ],

by [5, Corollary 3.7, Proposition 3.8].
One of the main goals of the paper is computing the Selmer group of Jacobian of Cm2 .

Proposition 3.1. Let m be an odd integer and let Jm2 be a Jacobian of Cm2 . Under the
identifications of K×p /K×5

p as in (1) and (2), we have

F5(Jm2 (K5)/φJm2 (K5)) = 〈δ, ε, η〉 if m ≡ ±1,±7 (mod 25).

If the prime p does not divide 5 or totally split primes, and ordp(m) � 0 (mod 5), then we
have

Fp(Jm2 (Kp)/φJm2 (Kp)) = 〈αp〉.
Proof. In the proof, we denote J by Jm2 . The F5-case is a generalization of [5, Proposition

3.12]. We recall that

K×5 /K
×5
5 � 〈π5, 1 + π5, 1 + π2

5, 1 + π
3
5, 1 + π

4
5, 1 + π

5
5〉 := 〈α, β, γ, δ, ε, η〉

and every element of K×5 which is one modulo π6
5 is a fifth power. When m2 ± 1 ≡ 0

(mod 25), either y2 − m2 ≡ 1 (mod π6
5) or m2 − y2 ≡ 1 (mod π6

5) has solutions πi
5 for

i = 3, 4, 5. Hence, in each case, there is an xi such that [(xi, π
i
5) − ∞] for i = 3, 4, 5 is the

point of J(K5)/φJ(K5). The value of F5((xi, π
i
5) − ∞) is determined by the image of πi

5 + m
in K×5 /K

×5
5 . For m ≡ ±1,±7 (mod 25), the images of πi

5 + m in U(2) are

(1 + πi
5), (1 − πi

5), ζ3
4 (7 + πi

5), ζ3
4 (7 − πi

5)

respectively. Computing the π5-expansion, we get

y + 1 y − 1 y + 7 y − 7
[(x3, π

3
5) −∞] δ δ−1 δ3 δ2

[(x4, π
4
5) −∞] ε ε−1 ε3 ε2

[(x5, π
5
5) −∞] η η−1 η3 η2
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Together with (4) we have

F5(J(K5)/φJ(K5)) = 〈δ, ε, η〉.
Again by (4) for p � 5, we have dimF5 (J(Kp)/φJ(Kp)) = 1. By Lemma 2.2, arbitrary odd

integer m maps to 1 in K×2 /K
×5
2 � 〈2, ζ5〉 = 〈α2, β2〉. Hence,

y + m y − m
[(0,m) −∞] 2 2−1

and F2(J(K2)/φJ(K2)) is 〈α2〉. Similarly for p which does not divide 10 or the totally split-
ting primes, the image of 2 in K×p /K×5

p is trivial by Lemma 2.3. So

y + m y − m
[(0,m) −∞] m m−1

shows that Fp(J(Kp)/φJ(Kp)) = 〈αp〉, when ordp(m) � 0 (mod 5). �

Remark 3.2. We note that Proposition 3.1 is enough to prove the main theorem, but the
same strategy gives F5(Jm2 (K5)/φJm2 (K5)) when one knows the generators of
Jm2 (K5)/φJm2 (K5). For example,

(−π5, 2 + 3π4
5 + 2π5

5), (1, π2
5 + π

3
5 + 3π4

5), (2, 1)

are solutions of y2 ≡ x5 + m2 (mod π6
5) when m ≡ ±12 (mod 25). Therefore,

(ζ2
4 (2 + 3π4

5 + 2π5
5 + 12), ζ3

4 (π2
5 + π

3
5 + 3π4

5 + 12), ζ4(1 + 12))

≡ (1 + 4π5
5, 1 + 3π2

5 + 3π3
5 + π

4
5 + 4π5

5, 1 + 2π4
5 + 4π5

5) (mod π6
5)

≡ (η4, γ3δ3ε, ε2η4) in K×5 /K
×5
5 .

Hence,

F5(Jm2 (K5)/φJm2 (K5)) = 〈γδ, ε, η〉
when m ≡ ±12 (mod 25). Similarly we can compute F5(Jm2 (K5)/φJm2 (K5)) for other cases.
Also, Lemmas 2.2 and 2.3 describe an image of prime element not lying above p ≡ 1
(mod 5). Therefore, we can calculate the Selmer group of Jm2 when m is square-free and

(a) if p divides m then p � 1 (mod 5),
(b) there is at most one prime divisor p of m such that p ≡ 4 (mod 5),

even though we do not fully describe the result. We will give an example in the end of this
section.

Proposition 3.3. Let m be an odd square-free integer satisfying the above two conditions
(a), (b) and let p � 5 be a prime of K dividing m. Then, (i−1

p ◦Fp)(Jm2 (Kp)/φJm2 (Kp)) contains
2 and prime generators dividing m chosen as in Lemma 2.3.

Proof. This is a direct consequence of Lemma 2.3 and Proposition 3.1. �

Corollary 3.4. For a rational prime p and the Jacobian Jp2 , we have

dimF5 Selφ(Jp2/Q) = 2, if p ≡ 7, 8 (mod 25).
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When p ≡ 24 (mod 25), there is a generator πw of w above p satisfies πw = a + b
√

5 for
a, b ∈ 1

2Z. Then,

dimF5 Selφ(Jp2/Q) =
{

1 b � 0 (mod 5),
3 b ≡ 0 (mod 5).

Proof. In the proof, we denote J by Jp2 . We first consider the case of p ≡ 7, 8 (mod 25).
We recall that i5 : K(S, 5) → K×/K×5, and K(S, 5) is generated by ζ5, 1 + ζ5, 2, 1 − ζ5 and a
prime p, which is inert in K/Q. Since

i5(ζ5, 1 + ζ5, 2, 1 − ζ5, 7, 8) = (βγε, β2γ4δ2ε4, ε3η, α, 1, ε4η3)

by Lemma 2.1, we have

F5(J(K5)/φJ(K5)) = 〈δ, ε, η〉, im i5 = 〈βγε, β2γ4δ2ε4, ε3η, α〉,
together with Proposition 3.1. A sort of linear algebra shows that

im i5 ∩ F5(J(K5)/φJ(K5)) = 〈ε3η〉,
and

(i−1
5 ◦ F5)(J(K5)/φJ(K5)) = 〈2, p〉.

By Proposition 3.1, Fp(J(Kp)/φJ(Kp)) = 〈αp〉 for a prime p not above 5. Now, Proposition
3.3 gives

(i−1
2 ◦ F2)(J(K2)/φJ(K2)) ⊃ 〈2, p〉, (i−1

p ◦ Fp)(J(Kp)/φJ(Kp)) ⊃ 〈2, p〉,
which shows that dimF5 Selφ(J/Q) = 2.

When p ≡ 24 (mod 25), we choose the generators πw, πw above p by a ± b
√

5 for a, b ∈
1
2Z. We still have F5(J(K5)/φJ(K5)) � 〈δ, ε, η〉. By Lemma 2.1, the images under i5 of the
generators above p ≡ 24 are in 〈γδε〉 and trivial when b ≡ 0 (mod 5). Hence,

im i5 ⊂ 〈βγε, β2γ4δ2ε4, ε3η, α, γδε〉.
Since (βγε)3(β2γ4δ2ε4)(γδε)3 is trivial, the dimension of the space in the right hand side is
4. Hence, the similar argument gives

im i5 ∩ F5(J(K5)/φJ(K5)) = 〈ε3η〉,
and

(i−1
5 ◦ F5)(J(K5)/φJ(K5)) =

{ 〈2〉 if b � 0 (mod 5),
〈2, πw, πw〉 if b ≡ 0 (mod 5).

Together with Proposition 3.3, we know that the dimension of the Selmer group Selφ(Jp2/Q)
is 1 or 3, and dimension 3 if and only if b ≡ 0 (mod 5). �

Proof of Theorem 1.1. By the Dirichlet theorem on arithmetic progressions for number
fields, there are infinitely many primes in a ray class modulo an ideal. Let us denote two real
embeddings by σ1, σ2. For a modulus (50) ·σ1σ2 and a ray class (2+

√
5), there are infinitely

many prime elements π which are congruent modulo (50) ·σ1σ2 to one of u2n
F (2+

√
5) where

uF = (1 +
√

5)/2.
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Using an integral basis {1, uF} of F , we may write

π = u2n
F (2 +

√
5) + 50z1 + 50z2uF

for some z1, z2 ∈ Z. Then, the norm of π is −1 (mod 25). Let an and bn be integers satisfying

un
F = an + bnuF .

Then,

π = u2n
F (2 +

√
5 ± 50z1 (a−2n + b−2nuF) ± 50z2 (a−2n+1 + b−2n+1uF))

= u2n
F (2 +

√
5 ± 25(z1(2a−2n + b−2n) + z2(2a−2n+1 + b−2n+1) +

√
5(z1b−2n + z2b−2n+1))).

For a rational prime p ≡ 24 (mod 25) divided by π, there is a generator of (π) satisfying the
condition of Corollary 3.4 with b � 0 (mod 5). From the exact sequence

0 ��
Jp2 (Q)
φJp2 (Q)

�� Selφ(Jp2/Q) �� X(Jp2/Q)[φ] �� 0

and Jp2 (Q)tor � Z/5Z (see [9, p. 286] and [8, p. 80], or [1, Theorem 4.1]. Note that the latter
contains a detailed proof), one can deduce that Jp2 (Q) � Z/5Z.

Also, for a prime p ≡ 7, 8 (mod 25) we have

Z/5Z ≤ Jp2 (Q) ≤ Z/5Z × Z, w(p2) = −1

by Corollary 3.4 and Corollary 2.5. Under the parity conjecture, the algebraic rank is also
an odd number when the root number is −1. This proves the second part of the theorem.

�

We note that the machinery also works for the totally split primes, even though one need
to compute everything directly.

Proposition 3.5. The Mordell–Weil rank of J1012/Q is zero.

Proof. We will show that dimF5 Selφ(J1012/Q) = 1. We note that Sagemath [4] runs most
of computation in the proof. Let p j for j = 1, 2, 3, 4 be a prime ideal of K above p = 101,
and let us choose generators π j by

ζ3
5 + 3ζ2

5 − ζ5 + 1, 3ζ3
5 + 4ζ2

5 + 2ζ5 + 2, −4ζ3
5 − 2ζ2

5 − ζ5 − 2, −2ζ3
5 − ζ2

5 + 2ζ5.

We note that π1π2π3π4 = 101. Also,

K(S, 5) = 〈2, ζ5, 1 + ζ5, 1 − ζ5, π1, π2, π3, π4〉.
Now we want to compute the image of i1 := iπ1 : K(S, 5)→ K×p1

/K×5
p1

of the above generators.
In Section 2 we showed that K×p1

/K×5
p1

is generated by two elements αp1 , βp1 which is πp1 and
ζ25, respectively. Let ρ1 : K,p1 → K,p1/p1K,p1 � F101 be a projection map. Then,

ρ1(2, ζ5, 1 + ζ5, 1 − ζ5, π2, π3, π4) = (2, 95, 96, 7, 92, 89, 81).

We also denote ρ1 as a composition of the previous map and the quotient F×101 → F×101/F
×5
101.

Then, we know that
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ρ1(2, ζ5, 1 + ζ5, 1 − ζ5, π2, π3, π4) = (2, 1, 3, 3, 8, 2, 2).

Note that 2
3
= 8 and 2 is a multiplicative inverse of 3. Since the elements above are not

divided by π1, we can describe the images of elements in K(S, 5) in K×p1
/K×5
p1

. Now

y + m y − m
[(0,m) −∞] 2m (2m)−1

Therefore, Fp1 (J(Kp1 )/φJ(Kp1 )) is generated by the product of αp1 and the image of 2.
Hence,

(i−1
1 ◦ Fp1 )(J(Kp1 )/φJ(Kp1 )) = 〈2π1, ζ5, 2(1 + ζ5), 2(1 − ζ5), 22π2, 24π3, 24π4〉.

Similarly, we have

ρ2(2, ζ5, 1 + ζ5, 1 − ζ5, π1, π3, π4) = (2, 1, 3, 8, 2, 8, 2),

so Fp2 (J(Kp2 )/φJ(Kp2 )) is generated by the product of αp2 and the image of 2. Hence,

(i−1
2 ◦ Fp2 )(J(Kp2 )/φJ(Kp2 )) = 〈2π2, ζ5, 2(1 + ζ5), 22(1 − ζ5), 24π1, 22π3, 24π4〉.

Also,

ρ3(2, ζ5, 1 + ζ5, 1 − ζ5, π1, π2, π4) = (2, 1, 3, 3, 2, 2, 8),

ρ4(2, ζ5, 1 + ζ5, 1 − ζ5, π1, π2, π3) = (2, 1, 2, 8, 8, 2, 2)

and

(i−1
3 ◦ Fp3 )(J(Kp3 )/φJ(Kp3 )) = 〈2π3, ζ5, 2(1 + ζ5), 2(1 − ζ5), 24π1, 24π2, 22π4〉,

(i−1
4 ◦ Fp4 )(J(Kp4 )/φJ(Kp4 )) = 〈2π4, ζ5, 24(1 + ζ5), 22(1 − ζ5), 22π1, 24π2, 24π3〉.

We denote each vector space (i−1
j ◦Fp j)(J(Kp j)/φJ(Kp j)) over F5 by Vj for j = 1, 2, 3, 4. One

can check that

W := V1 ∩ V2 ∩ V3 ∩ V4 = 〈ζ5, 2π1π2π3π4, 22π2π4(1 − ζ5), 24(1 − ζ5)2(1 + ζ5)4π1π3π
3
4〉.

We recall that our embedding of K into K5 maps ζ5 to 1 − π5. Then, π1, π2, π3, π4 are also
mapped to

π1 	→ −(1 + 3π5 + 4π2
5 + π

3
5 + π

4
5)

π2 	→ 1 + π5 + 3π2
5 + 2π3

5 + 3π4
5 + 4π5

5
π3 	→ 1 + 2π5 + π

2
5 + 4π3

5 + 2π4
5

π4 	→ −(1 + 4π5 + 2π2
5 + 3π3

5 + π
5
5)

modulo O(π6
5). So −π1, π2, π3,−π4 correspond to the U(1)-part. By a routine computation,

we have

i5(π1, π2, π3, π4) = (β3γδ2ε2η3, βγ3δ4εη3, β2δ4ε4η2, β4γε3η2).

We already know that

i5(2, ζ5, 1 + ζ5, 1 − ζ5) = (ε3η, βγε, β2γ4δ2ε4, α)

and F5(Jm2 (K5)/φJm2 (K5)) = 〈δ, ε, η〉 by Proposition 3.1. The images of our basis members
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of W in the quotient space (K×5 /K
×5
5 )/F5(Jm2 (K5)/φJm2 (K5)) are βγ, 1, αγ4, α2, respectively.

Therefore Selφ(J1012/Q) is one dimensional vector space generated by 2π1π2π3π4. �

We conclude this section with an example on general m which is not divided by a rational
prime equivalent to one modulo five.

Example 3.6 (m = p1 p2 where (p1, p2) ≡ (3, 4) (mod 25).). Let p1 ≡ 3 and p2 ≡ 4
(mod 25), and πw and πw be prime elements a± b

√
5 for a, b ∈ 1

2Z of K lying over p2. Then,
by Remark 3.2 and Lemma 2.1,

F5(J(K5)/φ(J(K5))) = 〈γδ, ε, η〉 and im i5 = 〈βγε, β2γ4δ2ε4, ε3η, α, εη2, (γδε)b〉.
So the previous argument shows that

(i−1
5 ◦ F5)(J(K5)/φJ(K5)) =

{ 〈2, p1〉 if b � 0 (mod 5),
〈2, p1, πw, πw〉 if b ≡ 0 (mod 5).

For the other bad primes p we have (i−1
p ◦ Fp)(J(Kp)/φJ(Kp)) contains 〈2, p1, πw, πw〉, by

Proposition 3.3. Therefore, for such m = p1 p2,

dimF5 Selφ(Jm/Q) =
{

2 if b � 0 (mod 5),
4 if b ≡ 0 (mod 5).

4. Special values of L-functions

4. Special values of L-functions
In this section we will find sufficient conditions on A such that L(1, JA) becomes nonzero.

By [3, Theorem 4], there is a Hecke character ηA of K such that

L(s, JA) = L(s, ηA).

Following [9, Section 2], we denote F := Q(
√

5) and χA := ηA| · |1/2A with A := AF the ring
of adèles so that

L(1, JA) = L(1, ηA) = L
(
1
2
, χA

)
.

From now on, we assume that the global root number of χA is 1. Based on the work of
[10, 12], Stoll and Yang give the following:

Proposition 4.1 ([9, Proposition 3.1]). With the notation in [9], we have

L(1, ηA) =
π2

50C1C2

∣∣∣∣∣∣∣∣
∑
x∈F

∏
v�2A

φv(x)
∏
v|2A

Iv(x)

∣∣∣∣∣∣∣∣
2

for some constant C1 and C2.

Here φ =
∏

v φv ∈ S(A) is an appropriately chosen Schwartz–Bruhat function and

Iv(x) =
∫

Gv

ωα,χA,v(g)φv(x)dg(5)

as in [9, p. 277]. We will introduce more precise notations later. Stoll and Yang further give
a concrete choice of φv for v � 5A and infinite v. It allows them to compute L(1, η1). In this
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paper, we choose φv for v | 5A and consider when Iv(x) is non-zero.
Since the global root number of χA is +1, there is a unique α ∈ F× up to norm from K×

such that ∏
w places of K

w|v

ε

(
1
2
, χA,w,

1
2
ψKw

)
χA,w(δ) = εv(α)

for all places v of F (cf. [9, p. 276]). Here δ := ζ−2
5 − ζ2

5 , ψ is an additive character of AF

given by ψ =
∏

v ψv for ψv(x) = e−2π
√−1λv(x) where

λv : Fv

TrFv/Qp �� Qp �� Qp/Zp �� Q/Z ,

and ψK := ψ ◦ TrK/F . Also, ε on the left hand side are the local root numbers as in [9,
Proposition 2.2], and εv is the local part of the Hecke character belonging to K/F. We
let rings act on additive characters defined on them by multiplication with arguments. For
example, (

1
2
ψKw

)
(x) := ψKw

(
1
2

x
)
.

Since we only concern the case where A is a square not divisible by 2, [9, Lemma 2.3] tells
us that we may choose

α ∈
⎛⎜⎜⎜⎜⎜⎜⎝ ∏

2�p|A
p

⎞⎟⎟⎟⎟⎟⎟⎠ · NK/F K×

where NK/F denotes the norm. Next, we need to choose an appropriate Schwartz–Bruhat
function φ =

∏
v φv ∈ S(A) as in [9, p. 277]. To be more precise, we introduce more notations

in [9, Section 2]. We fix an embedding K ↪→ C such that ζ5 	→ exp(2π
√−1/5). We also fix

a CM type Φ = {σ2, σ4} of K where σr(ζ5) = exp(2πr
√−1/5). Then the following lemma

tells us a possible choice of φv for almost all places v.

Lemma 4.2 ([9, Lemma 3.2]). Denote char(X) the characteristic function of the set X.
Then,

φv(x) =

⎧⎪⎪⎨⎪⎪⎩ char(F,v)(x) v � 10A∞, α ∈ ×F,v,
|2σ j(αδ3)|1/4 exp

(
−π|σ j(αδ3)|σ j(x)2

)
v = σ j ∈ {σ2, σ4}.

If we choose α ∈ F× as above such that α ∈ Z×2 , then [9, Corollary 5.8] tells us that we
may choose

φ2 = char
(
1
2
+ F,2

)
.

We note that φ2 = I2 and I2 is a constant function (See [9, §4]). At v =
√

5, [12, Proposition
1.2, Corollary 1.4] tell us that we may choose

φ√5 = 5
2n(χA,λ)−1

4 ξλ · char(F,
√

5).

Here, by denoting Δ := δ2,
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(1) λ := 1 − ζ5 ∈ K is a prime element lying over
√

5.
(2) n(χA,λ) is the conductor exponent of χA,λ which is completely determined
by q5(A) = (A4 − 1)/5 (see [9, Proposition 2.2 (5)]):

n(χA,λ) =
{

1 if 5 | q5(A),
2 if 5 � q5(A).

(3) With G = {±1} × U(1)
K , write g = x + yδ ∈ G and set

ξλ(g) =
{
χA,λ(δ(g − 1))(Δ,−y)F if g ∈ U(1)

K ,

χA,λ(δ(g − 1))(Δ,−2α)Fε( 1
2 , εKw/Fv

, ψKλ
) if g ∈ G \ U(1)

K .

This comes from [12, Proposition 1.2 (1)].1

By Proposition 4.1 and Lemma 4.2, we obtain

L(1, ηA) =
π2

50C1C2
· 5 2n(χA,λ)−1

2 ·
∣∣∣∣∣∣∣∣
∑
x∈X′A

ξλ(x)φσ2 (x)φσ4 (x) ·
⎛⎜⎜⎜⎜⎜⎜⎝∏
v|A

Iv(x)

⎞⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣
2

(6)

where

X′A = F ∩
⎛⎜⎜⎜⎜⎜⎜⎝ ⋂
v�2A∞

F,v

⎞⎟⎟⎟⎟⎟⎟⎠ ∩
(
1
2
+ F,2

)
.

For v | A and w a place of K dividing v, we always have n(χA,w) = 1 by [7, Proposition
3.3]. First, we consider the case v | A splits in K/F. In this case we apply [10, Section 2].
Under the identification

Kv �
F[t]

(t2 − Δ)
⊗F Fv � Fv · δ ⊕ Fv · (−δ)

we have δ = (1,−1) ∈ Fv ⊕ Fv. Denote πFv
∈ F,v by a uniformizer and in this case nv = 1.

To get φv = φv,1, following the notation of [10, Theorem 2.15], we first compute

ρ
(
char

(
1 + πFv

F,v
))

(x) := |α| 12v ψv
(
αx2

2

) ∫
Fv

ψv(αxy)ψv

(
αy2

4

)
char

(
1 + πFv

F,v
)

(y)dy

= |α| 12v ψv
(
αx2

2

) ∫
1+πFvF,v

ψv(αxy)dy

= |α| 12v ψv
(
αx2

2

) ∫
πFvF,v

ψv(αx(y + 1))dy

= |α| 12v ψv
(
αx2

2
+ αx

) ∫
πFvF,v

ψv(αxy)dy

= |α| 12v ψv
(
αx2

2
+ αx

)
meas(πFv

F,v)char
(
π−2

Fv
F,v

)
(x).

Hence we get

φv = meas(F,v)−
1
2 meas(πFv

F,v)q
1
2
v |α|

1
2
v ψv

(
αx2

2
+ αx

)
char

(
π−2

Fv
F,v

)
(x).

1It seems that there is a typo in [12, Proposition 1.2 (1)]. Compare the statement and its proof [12, pp.
354–355].



58 K. Jeong, J. Park and D. Yhee

To apply [9, Proposition 3.1], we need to compute

Iv(x) :=
∫

×
F,v

ωα,χA,v(g)φv(x)dg

=

∫

×
F,v

χA,v(g)|g| 12v φv(xg)dg

=

∫

×
F,v

φv(xg)dg

= meas(F,v)−
1
2 meas(πFv

F,v)q
1
2
v |α|

1
2
v

∫

×
F,v

ψv

(
α

2
(xg)2 + α(xg)

)
char

(
π−2

Fv
F,v

)
(xg)dg

= meas(F,v)−
1
2 meas(πFv

F,v)q
1
2
v |α|

1
2
v char

(
π−2

Fv
F,v

)
(x)

∫

×
F,v

ψv

(
α

2
(xg)2 + α(xg)

)
dg.

We note that the action of Weil representation ω is described in [10, Corollary 2.10]. Since
there is a representative

α ∈
⎛⎜⎜⎜⎜⎜⎜⎝ ∏

2�p|A
p

⎞⎟⎟⎟⎟⎟⎟⎠ · NK/F K×,

we choose α such that ψv
(
α
2 (xg)2 + α(xg)

)
= 1 for g ∈ 

×
F,v and x ∈ π−2

Fv
F,v for all v | A

splitting in K/F. Then

Iv|π−2
Fv
F,v
= meas(F,v)−

1
2 meas(πFv

F,v)q
1
2
v |α|

1
2
v

∫

×
F,v

dg =
meas(×F,v)

meas(F,v)
1
2

meas(πFv
F,v)q

1
2
v |α|

1
2
v

is a non-zero constant. Therefore, there is a non-zero constant cv(α) such that

Iv(x) = cv(α)char(π−2
Fv
F,v)(x),(7)

when v | A splits in K/F.
Finally, consider the case v | A is inert in K. Following the notation of [12, p. 339], we

have

n(ψ′Kv
) = n

(
αδ

4
ψKv

)
= n(ψKv

) − ordFv
(α) = −ordFv

(α).

We choose α so that ordFv
(α) = 1 and n(ψ′Kv

) = −1. Since we have n(χA,v) = 1 and w | v is
unramified, we are in the case of [12, Proposition 1.5] with η = 1 the trivial character. Then
we may choose,

φv(x) = char(πFv
F,v)(πFv

x)

+
1

2G(ψ′′Fv
)

∑
(S,T )∈κ2

v

S2−T 2≡Δ mod πFv

ξ−1
v

(S + δ
T

) (T
κv

)
ψ′′Fv

(
Δα

2
S(πFv

x)2
)

char(F,v)(πFv
x)

when ξv(−1) =
(−1
κv

)
, or
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　φv(x) := char(1+πFv
F,v)(πFv

x)−char(−1+πFv
F,v)(πFv

x)

+
1

G(ψ′′Fv
)

∑
(S,T )∈κ2

v

S2−T 2≡Δ mod πFv

ξ−1
v

(S+δ
T

) (T
κv

)
ψ′′Fv

(S(πFv
x)2−2TπFv

x+S)char(F,v)(πFv
x)

when ξv(−1) = −
(−1
κv

)
and ξ−1

v � η0, where κv := F,v/πFv
is the residue field of Fv. Note

that ψ′′Fv
in [12, Proposition 1.5] has conductor πFv

F,v (see the proof of [11, Proposition
3.4] for the detail) so we regard ψ′′Fv

as a character of κv and G(ψ′′Fv
) is the Gauss sum of ψ′′Fv

.
Together with (6), we obtain

Proposition 4.3. Let A be a square integer such that the root number of ηA is +1. Then,
there is a non-zero constant cv(α) such that

L(1, ηA) =
π2

50C1C2
· 5 2n(χA,λ)−1

2 ·
∏
v|A
v split

cv(α) ·

∣∣∣∣∣∣∣∣∣∣
∑
x∈XA

ξλ(x)φσ2 (x)φσ4 (x) ·
∏
v|A
v inert

Iv(x)

∣∣∣∣∣∣∣∣∣∣
2

(8)

where Iv(x) is taken from (5) and

XA = F ∩
⎛⎜⎜⎜⎜⎜⎜⎝ ⋂
v�2A∞

F,v

⎞⎟⎟⎟⎟⎟⎟⎠ ∩
(
1
2
+ F,2

)
∩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋂
v|A
v split

π−2
Fv
F,v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Proof of Theorem 1.2. When 52 | (A4 − 1), we have n(χA,λ) = 1 which implies that ξλ

is trivial (See [12, Proposition 1.2, Corollary 1.4]). Since every prime divisor of A splits in
K/F, we obtain that

L(1, ηA) =
π2

50C1C2
· 5 1

2 ·
∏
v|A
v split

cv(α) ·
∣∣∣∣∣∣∣
∑
x∈XA

φσ2 (x)φσ4 (x)

∣∣∣∣∣∣∣
2

.(9)

Recall that σ2 and σ4 have real values on F and XA is a subset of F. Therefore,

φσ2 (x)φσ4 (x) =
√

2α
1
2 5

3
8 exp

⎛⎜⎜⎜⎜⎜⎝−πα
⎛⎜⎜⎜⎜⎜⎝
(
2 sin

2π
5

)3

σ2(x)2 +

(
2 sin

4π
5

)3

σ4(x)2

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠

is positive and the last term of (9) does not vanish. Hence L(1, ηA) is non-zero. �

Proof of Corollary 1.3. We note that q5(1012) is divided by 5. Now the result follows
from Proposition 3.5 and Theorem 1.2. �
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