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Altunöz, T., Pamuk, M. and Yildiz, O.
Osaka J. Math.
60 (2023), 61–75

GENERATING THE EXTENDED MAPPING CLASS GROUP
BY THREE INVOLUTIONS
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Abstract
We prove that the extended mapping class group, Mod∗(Σg), of a connected orientable surface

of genus g, can be generated by three involutions for g ≥ 5. In the presence of punctures, we
prove that Mod∗(Σg,p) can be generated by three involutions for g ≥ 10 and p ≥ 6 (with the
exception that for g ≥ 11, p should be at least 15).

1. Introduction

1. Introduction
Let Σg,p denote a connected orientable surface of genus gwith p ≥ 0 punctures. When p =

0, we drop it from the notation and write Σg. The mapping class group of Σg is the group of
isotopy classes of orientation preserving diffeomorphisms and is denoted by Mod(Σg). It is a
classical result that Mod(Σg) is generated by finitely many Dehn twists about nonseparating
simple closed curves [4, 9, 14]. The study of algebraic properties of mapping class group,
finding small generating sets, generating sets with particular properties, is an active one
leading to interesting developments. Wajnryb [23] showed that Mod(Σg) can be generated
by two elements given as a product of Dehn twists. As the group is not abelian, this is the
smallest possible. Korkmaz [11] improved this result by first showing that one of the two
generators can be taken as a Dehn twist and the other as a torsion element. He also proved
that Mod(Σg) can be generated by two torsion elements. Recently, the third author showed
that Mod(Σg) is generated by two torsions of small orders [24].

Generating Mod(Σg) by involutions was first considered by McCarthy and Papadopoulus
[17]. They showed that the group can be generated by infinitely many conjugates of a single
involution (element of order two) for g ≥ 3. In terms of generating by finitely many involu-
tions, Luo [16] showed that any Dehn twist about a nonseparating simple closed curve can
be written as a product six involutions, which in turn implies that Mod(Σg) can be generated
by 12g+ 6 involutions. Brendle and Farb [2] obtained a generating set of six involutions for
g ≥ 3. Following their work, Kassabov [10] showed that Mod(Σg) can be generated by four
involutions if g ≥ 7. Recently, Korkmaz [12] showed that Mod(Σg) is generated by three
involutions if g ≥ 8 and four involutions if g ≥ 3. The third author improved these results
by showing that this group can be generated by three involutions if g ≥ 6 [25].

The extended mapping class group Mod∗(Σg) is defined to be the group of isotopy classes
of all self-diffeomorphisms of Σg. The mapping class group Mod(Σg) is an index two nor-
mal subgroup of Mod∗(Σg). In [11], it is proved that Mod∗(Σg) can be generated by two
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elements, one of which is a Dehn twist. Moreover, it follows from [11, Theorem 14] that
Mod∗(Σg) can be generated by three torsion elements for g ≥ 1. Also, Du [5, 6] proved that
Mod∗(Σg) can be generated by two torsion elements of order 2 and 4g+2 for g ≥ 3. In terms
of involution generators, as it contains nonabelian free groups, the minimal number of invo-
lution generators is three and Stukow [22] proved that Mod∗(Σg) can be generated by three
involutions for g ≥ 1. Although our main interest in this paper is to find minimal generating
sets for the extended mapping class group in the presence of punctures, in Section 3, we test
our techniques to find minimal generating sets of involutions. In this direction, we obtain
the following result(see Theorems 3.2 and 3.3):

Theorem A. For g ≥ 5, the extended mapping class group Mod∗(Σg) can be generated
by three involutions.

In the presence of punctures, the mapping class group Mod(Σg,p) is defined to be the
group of isotopy classes of orientation-preserving self-diffeomorphisms of Σg,p preserving
the set of punctures. The extended mapping class group Mod∗(Σg,p) is defined as the group
of isotopy classes of all (including orientation-reversing) self-diffeomorphisms of Σg,p that
preserve the set of punctures. Kassabov [10] gave involution generators of Mod(Σg,p), prov-
ing that this group can be generated by four involutions if g > 7 or g = 7 and p is even, five
involutions if g > 5 or g = 5 and p is even, six involutions if g > 3 or g = 3 and p is even (Al-
lowing orientation reversing involutions these results can also be used for Mod∗(Σg,p) [10,
Remark 3]). Later, Monden [18] removed the parity conditions on the number of punctures.
For g ≥ 1 and p ≥ 2, he [19] also proved that Mod(Σg,p) can be generated by three elements,
one of which is a Dehn twist. Moreover, he gave a similar generating set for Mod∗(Σg,p)
consisting of three elements. Recently, Monden showed that Mod(Σg,p) and Mod∗(Σg,p) are
generated by two elements [20].

In Section 4, we prove the following result, giving a partial answer to Question 5.6 of
[18].

Theorem B. For g ≥ 10 and p ≥ 6 (with the exception that for g ≥ 11, p should
be at least 15), the extended mapping class group Mod∗(Σg,p) can be generated by three
involutions.

Remark. At the end of the paper, we also show that the same result holds for g ≥ 10 and
p = 1, 2, 3.

Before we finish the introduction, let us point out that by the version of Dehn-Nielsen-
Baer theorem for punctured surfaces (see [7, Section 8.2.7]), Mod∗(Σg,p) is isomorphic to
the subgroup of the outer automorphism group Out(π1(Σg,p)) consisting of elements that
preserve the set of conjugacy classes of the simple closed curves surrounding individual
punctures. Note also that these conjugacy classes are precisely the primitive conjugacy
classes that correspond to the parabolic elements of the group of isometries of the hyperbolic
plane.

2. Background and Results on Mapping Class Groups

2. Background and Results on Mapping Class Groups
Let Σg,p be a connected orientable surface of genus g with p punctures specified by the

set P = {z1, z2, . . . , zp} of p distinguished points. If p is zero then we omit from the notation.



GeneratingMod∗(Σg,p) by Three Involutions 63

The mapping class group Mod(Σg,p) of the surface Σg,p is defined to be the group of the
isotopy classes of orientation preserving diffeomorphisms Σg,p → Σg,p which fix the set P.
The extended mapping class group Mod∗(Σg,p) of the surface Σg,p is defined to be the group
of isotopy classes of all (including orientation-reversing) diffeomorphisms of Σg,p which fix
the set P. Let Mod∗0(Σg,p) denote the subgroup of Mod∗(Σg,p) which consists of elements
fixing the set P pointwise. It is obvious that we have the exact sequence:

1 −→ Mod∗0(Σg,p) −→ Mod∗(Σg,p) −→ Sp −→ 1,

where Sp denotes the symmetric group on the set {1, 2, . . . , p} and the restriction of the iso-
topy class of a diffeomorphism to its action on the puncture points gives the last projection.

Let βi, j be an embedded arc joining two punctures zi and z j and not intersecting δ on
Σg,p. Let Di, j be a closed regular neighbourhood of βi, j such that it is a disk with two
punctures. There is a diffeomorphism Hi, j : Di, j → Di, j, which interchanges the punctures
such that H2

i, j is the right handed Dehn twist about ∂Di, j and is equal to the identity on the
complement of the interior of Di, j. Such a diffeomorphism is called the (right handed) half
twist about βi, j. One can extend it to a diffeomorphism of Mod(Σg,p). Throughout the paper
we do not distinguish a diffeomorphism from its isotopy class. For the composition of two
diffeomorphisms, we use the functional notation; if g and h are two diffeomorphisms, then
the composition gh means that h is applied first.

For a simple closed curve a on Σg,p, following [1, 12] the right-handed Dehn twist ta about
a will be denoted by the corresponding capital letter A.

Now, let us recall the following basic properties of Dehn twists which we use frequently in
the remaining of the paper. Let a and b be simple closed curves on Σg,p and f ∈ Mod∗(Σg,p).

• Commutativity: If a and b are disjoint, then AB = BA.
• Conjugation: If f (a) = b, then f A f −1 = Bs, where s = ±1 depending on whether

f is orientation preserving or orientation reversing on a neighbourhood of a with
respect to the chosen orientation.

3. Involution generators for Mod∗(Σg)

3. Involution generators for Mod∗(Σg)
We start with this section by embedding Σg into R3 so that it is invariant under the reflec-

tions ρ1 and ρ2 (see Figures 1 and 2). Here, ρ1 and ρ2 are the reflections in the xz-plane so
that R = ρ1ρ2 is the rotation by 2π

g
about the x-axis. Now, let us recall the following set of

generators given by Korkmaz [12, Theorem 5].

Theorem 3.1. If g ≥ 3, then the mapping class group Mod(Σg) is generated by the four
elements R, A1A−1

2 , B1B−1
2 , C1C−1

2 .

By adding an orientation reversing self-diffeomorphism to the above generating set, one
can easily see that Mod∗(Σg) can be generated by five elements. In the following theorems,
we show that one can reduce the number of generators to three and all the generators are of
order two.

Theorem 3.2. If g ≥ 5 and odd, then Mod∗(Σg) is generated by the involutions ρ1, ρ2 and
ρ1A1B2C g+3

2
A3.
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Fig.1. The reflections ρ1 and ρ2 on Σg if g = 2k + 1.

Fig.2. The reflections ρ1 and ρ2 on Σg if g = 2k.

Proof. Consider the surface Σg as in Figure 1 and observe that the involution ρ1 satisfies

ρ1(a1) = a3, ρ1(b2) = b2 and ρ1(c g+3
2

) = c g+3
2
.

Since ρ1 reverses the orientation of a neighbourhood of any simple closed curve, we get

ρ1A1ρ1 = A−1
3 , ρ1B2ρ1 = B−1

2 and ρ1C g+3
2
ρ1 = C−1

g+3
2
.

It is easily seen that ρ1A1B2C g+3
2

A3 is an involution. Let K be the subgroup of Mod∗(Σg)
generated by the set

{ρ1, ρ2, ρ1A1B2C g+3
2

A3}.
Note that the rotation R and the orientation reversing diffeomorphism ρ1 (or ρ2) are contained
in K. Hence, all we need to show is that the elements A1A−1

2 , B1B−1
2 and C1C−1

2 belong to K.
For g ≥ 7 and odd, by proof of [1, Theorem 3.4], these elements are contained in K. For
g = 5, the proof follows from the proof of [1, Theorem 3.3].
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Next, we deal with the even genera case.

Theorem 3.3. If g ≥ 6 and even, then Mod∗(Σg) is generated by the involutions ρ1, ρ2

and ρ1A2C g
2
B g+4

2
C g+6

2
.

Proof. Consider the surface Σg as in Figure 2 when g ≥ 6 and even. The involution ρ1

satisfies

ρ1(a2) = a2, ρ1(b g+4
2

) = b g+4
2

and ρ1(c g
2
) = c g+6

2
.

Since ρ1 reverses the orientation of a neighbourhood of any simple closed curve, we have

ρ1A2ρ1 = A−1
2 , ρ1B g+4

2
ρ1 = B−1

g+4
2

and ρ1C g
2
ρ1 = C−1

g+6
2
.

It can be shown that ρ1A2C g
2
B g+4

2
C g+6

2
is an involution. Let H be the subgroup of Mod∗(Σg)

generated by the set

{ρ1, ρ2, ρ1A2C g
2
B g+4

2
C g+6

2
}.

Note that the rotation R is in H. Since H contains the orientation reversing diffeomorphism
ρ1 (or ρ2), again all we need to show is that the elements A1A−1

2 , B1B−1
2 and C1C−1

2 are
contained in H. By the proof of [1, Theorem 3.5], these elements are contained in H.

4. Involution generators for Mod∗(Σg,p)

4. Involution generators for Mod∗(Σg,p)
In this section, we introduce punctures on a genus g surface and present involution gener-

ators for the extended mapping class group Mod∗(Σg,p). First, we recall the following basic
lemma from algebra.

Lemma 4.1. Let G and K be groups, Suppose that we have the following short exact
sequence holds,

1 −→ N
i−→ G

π−→ K −→ 1.

Then the subgroup H contains i(N) and has a surjection to K if and only if H = G.

For G = Mod∗(Σg,p) and N = Mod∗0(Σg,p) (self-diffeomorphisms fixing the punctures
pointwise), we have the following short exact sequence:

1 −→ Mod∗0(Σg,p) −→ Mod∗(Σg,p) −→ Sp −→ 1,

where Sp denotes the symmetric group on the set {1, 2, . . . , p}. Therefore, we have the
following useful result which follows immediately from Lemma 4.1. Let H be a subgroup
of Mod∗(Σg,p). If the subgroup H contains Mod∗0(Σg,p) and has a surjection to Sp then H =
Mod∗(Σg,p).

In the presence of punctures, we consider the reflections ρ1 and ρ2 as shown in Figures 3,
4, 5 and 6. Note that the element R = ρ1ρ2 is contained in Mod∗(Σg,p) and we have

• R(ai) = ai+1, R(bi) = bi+1 for i = 1, . . . , g − 1 and R(bg) = b1,
• R(ci) = ci+1 for i = 1, . . . , g − 2,
• R(z1) = zp and R(zi) = zi−1 for i = 2, . . . , p.

In the proof of the following lemmata, we basically follow Theorem 3.1.
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Fig.3. The reflections ρ1 and ρ2 if g = 2k and p = 2b + 1.

Fig.4. The reflections ρ1 and ρ2 if g = 2k and p = 2b.

Fig.5. The reflections ρ1 and ρ2 if g = 2k + 1 and p = 2b + 1.
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Fig.6. The reflections ρ1 and ρ2 if g = 2k + 1 and p = 2b.

Lemma 4.2. For g = 2k ≥ 10, the subgroup H of Mod∗(Σg,p) generated by
⎧
⎪⎪⎨
⎪⎪⎩

ρ1, ρ2, ρ2Hb,b+2Bk−3Ak−1CkAk+2Bk+4 if p = 2b + 1 ≥ 7,

ρ1, ρ2, ρ2Hb,b+1Bk−3Ak−1CkAk+2Bk+4 if p = 2b ≥ 6

contains the Dehn twists Ai, Bi and C j for i = 1, . . . , g and j = 1, . . . , g − 1.

Proof. Consider the models for Σg,p as shown in Figures 3 and 4. Start with the case
p = 2b+ 1. Let E1 := Hb,b+2Bk−3Ak−1CkAk+2Bk+4 so that the subgroup H is generated by the
elements ρ1, ρ2 and ρ2E1. Since H contains the elements ρ1, ρ2 and ρ2E1, it follows that H
also contains the elements R = ρ1ρ2 and E1 = ρ2ρ2E1.

Let E2 denote the conjugation of E1 by R−1. Since

R−1(bk−3, ak−1, ck, ak+2, bk+4) = (bk−4, ak−2, ck−1, ak+1, bk+3)

and

R−1(zb, zb+2) = (zb+1, zb+3),

it follows that E2 = R−1E1R = Hb+1,b+3Bk−4Ak−2Ck−1Ak+1Bk+3 ∈ H. Let E3 be the conjuga-
tion of E2 by R3. Since the element R3 satisfies

R3(bk−4, ak−2, ck−1, ak+1, bk+3) = (bk−1, ak+1, ck+2, ak+4, bk+6)

and

R3(zb+1, zb+3) = (zb−2, zb),

the element

E3 = R3E2R−3 = Hb−2,bBk−1Ak+1Ck+2Ak+4Bk+6 ∈ H.

Consider the element E4 = (E2E3)E2(E2E3)−1, which is contained in H. Thus,

E4 = Hb+1,b+3Bk−4Ak−2Bk−1Ak+1Ck+2
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As we have similar cases in the remaining parts of the paper, let us explain this calcula-
tion in more details. It is easy to verify that the diffeomorphism E2E3 maps the curves
{bk−4, ak−2, ck−1, ak+1, bk+3} to the curves {bk−4, ak−2, bk−1, ak+1, ck+2}, respectively. Since the
half twists Hb+1,b+3 and Hb−2,b commute, we get

E4 = (E2E3)E2(E2E3)−1

= (E2E3)(Hb+1,b+3Bk−4Ak−2Ck−1Ak+1Bk+3)(E2E3)−1

= Hb+1,b+3Bk−4Ak−2Bk−1Ak+1Ck+2.

We also get the element

E5 = RE4R−1 = Hb,b+2Bk−3Ak−1BkAk+2Ck+3 ∈ H.

Hence the subgroup H contains the element

E6 = E1E−1
5 = CkBk+4C−1

k+3B−1
k .

Moreover, we have the following elements:

E7 = RE5R−1 = Hb−1,b+1Bk−2AkBk+1Ak+3Ck+4,

E8 = R−3E7R3 = Hb+2,b+4Bk−5Ak−3Bk−2AkCk+1 and

E9 = (E7E8)E7(E7E8)−1 = Hb−1,b+1Bk−2AkCk+1Ak+3Ck+4,

are contained in H. Thus, we obtain the element E7E−1
9 = Bk+1C−1

k+1 ∈ H. By conjugating
Bk+1C−1

k+1 with powers of R, we have BiC−1
i ∈ H for all i = 1, . . . , g−1. Moreover, the element

E6(BkC−1
k ) = Bk+4C−1

k+3 is contained in H. Thus, each Bi+1C−1
i is in H for all i = 1, . . . , g − 1

by conjugating this element with powers of R. Consider the elements

E10 = (BkC−1
k )(Bk+5C−1

k+4)(Ck+4B−1
k+4)E1

= Hb,b+2Bk−3Ak−1BkAk+2Bk+5,

E11 = R−1E10R = Hb+1,b+3Bk−4Ak−2Bk−1Ak+1Bk+4

E12 = R3E11R−3 = Hb−2,bBk−1Ak+1Bk+2Ak+4Bk+7 and

E13 = (E11E12)E11(E11E12)−1 = Hb+1,b+3Bk−4Ak−2Bk−1Ak+1Ak+4,

which are contained in H. Hence, H contains the element E13E−1
11 = Ak+4B−1

k+4. Hence,
AiB−1

i ∈ H for i = 1, . . . g, by conjugating Ak+4B−1
k+4 with powers of R. Finally, we obtain the

following elements:

A1A−1
2 = (A1B−1

1 )(B1C−1
1 )(C1B−1

2 )(B2A−1
2 ),

B1B−1
2 = (B1C−1

1 )(C1B−1
2 ) and

C1C−1
2 = (C1B−1

2 )(B2C−1
2 ),

which are all contained in H. This completes the proof for p = 2b + 1 ≥ 7 by Theorem 3.1.
For p = 2b ≥ 6, one can replace Hb,b+2 with Hb,b+1 and follow exactly the same steps as

above.
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Lemma 4.3. For g = 2k + 1 ≥ 13, the subgroup H of Mod∗(Σg,p) generated by
⎧
⎪⎪⎨
⎪⎪⎩

ρ1, ρ2, ρ2Hb,b+2Ak−1Ck−3Bk+1Ck+4Ak+3 if p = 2b + 1 ≥ 7,

ρ1, ρ2, ρ2Hb,b+1Ak−1Ck−3Bk+1Ck+4Ak+3 if p = 2b ≥ 6

contains the Dehn twists Ai, Bi and C j for i = 1, . . . , g and j = 1, . . . , g − 1.

Proof. Consider the models for Σg,p as shown in Figures 5 and 6. First let us consider the
case p = 2b + 1. Let F1 = Hb,b+2Ak−1Ck−3Bk+1Ck+4Ak+3 so that the subgroup H generated
by the elements ρ1, ρ2 and ρ2F1. It follows from H contains the elements ρ1, ρ2 and ρ2F1

that H also contains the elements R = ρ1ρ2 and F1 = ρ2ρ2F1.
Let F2 denote the conjugation of F1 by R−1 so that

F2 = R−1F1R = Hb+1,b+3Ak−2Ck−4BkCk+3Ak+2 ∈ H.

and let F3 be the conjugation of F2 by R3:

F3 = R3F2R−3 = Hb−2,bAk+1Ck−1Bk+3Ck+6Ak+5 ∈ H.

From these, we get the following element:

F4 = (F2F3)F2(F2F3)−1

= Hb+1,b+3Ak−2Ck−4Ck−1Bk+3Ak+2,

which is contained in H. Thus, the subgroup H contains the element

F5 = F4F−1
2 = Ck−1Bk+3C−1

k+3B−1
k .

Also we get the following elements:

F6 = R3F4R−3 = Hb−2,bAk+1Ck−1Ck+2Bk+6Ak+5 and

F7 = (F4F6)F4(F4F6)−1 = Hb+1,b+3Ak−2Ck−4Ck−1Ck+2Ak+2,

which are contained in H. Hence, we see that the element F7F−1
4 = Ck+2B−1

k+3 ∈ H, which
implies that CiB−1

i+1 ∈ H for all i = 1, . . . , g − 1 by the action of R. It follows from the
element BkC−1

k−1 ∈ H that F5(BkC−1
k−1) = Bk+3C−1

k+3 is also contained in H. Similarly we have
BiC−1

i ∈ H for all i = 1, . . . , g − 1 by the action of R. Moreover, the elements

F8 = (Bk+1C−1
k )(CkB−1

k )F2

= Hb+1,b+3Ak−2Ck−4Bk+1Ck+3Ak+2,

F9 = R3F8R−3 = Hb−2,bAk+1Ck−1Bk+4Ck+6Ak+5 and

F10 = (F8F9)F8(F8F9)−1 = Hb+1,b+3Ak−2Ck−4Ak+1Bk+4Ak+2

are all in H. Thus H contains the element F8F−1
10 (Bk+4C−1

k+3) = Bk+1A−1
k+1. Hence, BiA−1

i ∈ H
for i = 1, . . . , g by conjugating this element with powers of R. The remaining part of the
proof can be completed as in the proof of Lemma 4.2.

Lemma 4.4. For g = 11, the subgroup H of Mod∗(Σg,p) generated by
⎧
⎪⎪⎨
⎪⎪⎩

ρ1, ρ2, ρ1Hb,b+1B1A4C6A9 if p = 2b + 1 ≥ 15,

ρ1, ρ2, ρ1Hb−1,b+1B1A4C6A9 if p = 2b ≥ 16
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contains the Dehn twists Ai, Bi and C j for i = 1, . . . , g and j = 1, . . . , g − 1.

Proof. Consider the models for Σg,p as shown in Figures 5 and 6. Let us first consider the
case p = 2b + 1. Let G1 = Hb,b+1B1A4C6A9 and H be the group generated by the elements
ρ1, ρ2 and ρ1G1. It is easy to see that H contains the elements R = ρ1ρ2 and G1 = ρ1ρ1G1.
We then have the following elements:

G2 = R−3G1R3 = Hb+3,b+4B9A1C3A6,

G3 = (G1G2)G1(G1G2)−1 = Hb,b+1A1A4C6B9,

G4 = R3G3R−3 = Hb−3,b−2A4A7C9B1,

G5 = (G4G3)G4(G4G3)−1 = Hb−3,b−2A4A7B9A1,

G6 = R3G5R−3 = Hb−6,b−5A7A10B1A4 and

G7 = (G5G6)G5(G5G6)−1 = Hb−3,b−2A4A7B9B1,

which are all in H. Thus, we obtain the element G5G−1
7 = A1B−1

1 . By conjugating by powers
of R, we see that AiB−1

i ∈ H for i = 1, 2, . . . , g. We also have

G8 = (B4A−1
4 )G1 = Hb,b+1B1B4C6A9 ∈ H,

G9 = R−3G8R3 = Hb+3,b+4B9B1C3A6 ∈ H and

G10 = (G9G8)G9(G9G8)−1 = Hb+3,b+4A9B1B4A6 ∈ H.

Hence, we get G9G−1
10 (A9B−1

9 ) = C3B−1
4 ∈ H, which implies that CiBi+1 ∈ H for i =

1, 2, . . . , g − 1 by the action of R. Moreover, the subgroup H contains the following ele-
ments:

G11 = (B9A−1
9 )G1 = Hb,b+1B1A4C6B9,

G12 = R−3G11R3 = Hb+3,b+4B9A1C3B6 and

G13 = (G12G11)G12(G12G11)−1 = Hb+3,b+4B9B1C3C6.

It follows that G12G−1
13 (B1A−1

1 ) = B6C−1
6 . Again, by the action of R, the elements BiC−1

i ∈ H.
One can complete the remaining part of the proof as in the proof of Lemma 4.2.

Fig.7. The curves γi and ei, j on the surface Σg,p.
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Lemma 4.5. Let g ≥ 2. For i = 1, . . . , g − 1, in the mapping class group Mod(Σg,p), the
element

φi = Bi+1Γ
−1
i CiBi

maps the curve ei, j to the curve ei+1, j, where the curves γi and ei, j’s are as in Figure 7.
Moreover, the diffeomorphism φi is contained in the group H for i = 1, . . . , g − 1.

Proof. It is easy to see that the diffeomorphism φi maps ei, j to ei+1, j. Consider the diffeo-
morphism

S = A1B1C1 · · ·Cg−2Bg−1Cg−1Bg.

Since S ∈ H and S maps a2 to γ1, the element SA2S−1 = Γ1 ∈ H. By conjugating with
powers of R, the element Γi is in H. We conclude that φi ∈ H.

Let H be the subgroup of Mod∗(Σg,p) generated by the elements given explicitly in lem-
mata 4.2, 4.3 and 4.4 with the conditions mentioned in these lemmata.

Lemma 4.6. The group Mod∗0(Σg,p) is contained in the group H.

Proof. Since the group H contains the Dehn twists A1, A2, B1, B2, . . . , Bg and C1,C2, . . . ,

Cg−1 by lemmata 4.2, 4.3 and 4.4, it suffices to prove that H also contains the elements Ei. j

for some fixed i and j = 1, 2, . . . , p−1. First note that H contains Ag and R = ρ1ρ2. Consider
the models for Σg,p as shown in Figures 3, 4. 5 and 6, Since the diffeomorphism R maps ag
to e1,p−1, we have

RAgR−1 = E1,p−1 ∈ H.

The diffeomorphism φg−1 · · · φ2φ1 in Lemma 4.5 is given by φi = Bi+1Γ
−1
i CiBi which maps

each ei, j to ei+1, j for j = 1, 2, . . . , p − 1 (see Figure 7). So we get

φg−1 · · · φ2φ1E1,p−1(φg−1 · · · φ2φ1)−1 = Eg,p−1 ∈ H.

Similarly, the diffeomorphism R sends eg,p−1 to e1,p−2. Then we have

REg,p−1R−1 = E1,p−2 ∈ H.

It follows from

φg−1 · · · φ2φ1E1,p−2(φg−1 · · · φ2φ1)−1 = Eg,p−2 ∈ H

that

R(Eg,p−2)R−1 = E1,p−3 ∈ H.

Continuing in this way, we conclude that the elements E1,1, E1,2, . . . , E1,p−1 are contained in
H. This completes the proof.
We thank the referee for pointing us the proof of the following lemma.

Lemma 4.7. The symmetric group S2b+1 is generated by the transposition (b, b + 2) and
the (2b + 1)-cycle (1, 2, . . . , 2b + 1).
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Proof. Set τ = (b, b + 2) and σ = (1, 2, . . . , 2b + 1). It is easy to verify that

σ2 = (1, 3, 5, . . . , 2b + 1, 2, 4, 6, . . . , 2b).

Now, rewrite si = 2i − 1 for i = 1, 2, . . . , b + 1 and sb+1+i = 2i for i = 1, 2, . . . , b. This gives

σ−b+1τσb−1 = (s1, s2),

σ2 = (s1, s2, . . . , s2b+1).

Since (s1, s2) and (s1, s2, . . . , s2b+1) generate S2b+1, we see that S2b+1 = 〈τ, σ〉.

Now, we are ready to prove the main theorem of this section.
Proof of Theorem B. Consider the surface Σg,p as in Figures 3 and 4.

If g = 2k ≥ 10 and p ≥ 6: In this case, consider the surface Σg,p as in Figures 3 and 4. Since

ρ2(bk−3) = bk+4, ρ2(ak−1) = ak+2 and ρ2(ck) = ck

and ρ2 is an orientation reversing diffeomorphism, we get

ρ2Bk−3ρ2 = B−1
k+4, ρ2Ak−1ρ2 = A−1

k+2 and ρ2Ckρ2 = C−1
k .

Also, observe that ρ2Hb,b+2ρ2 = H−1
b,b+2 for p = 2b + 1 and ρ2Hb,b+1ρ2 = H−1

b,b+1 for p = 2b.
Then it is easy to see that each

⎧
⎪⎪⎨
⎪⎪⎩

ρ2Hb,b+2Bk−3Ak−1CkAk+2Bk+4 if p = 2b + 1,

ρ2Hb,b+1Bk−3Ak−1CkAk+2Bk+4 if p = 2b

is an involution. Therefore, the generators of the subgroup H given in Lemma 4.2 are invo-
lutions.

If g = 2k + 1 ≥ 13 and p ≥ 6: In this case, consider the surface Σg,p as in Figures 5 and 6.
It follows from

ρ2(ak−1) = ak+3, ρ2(ck−3) = ck+4 and ρ2(bk+1) = bk+1

and ρ2 is an orientation reversing diffeomorphism that

ρ2Ak−1ρ2 = A−1
k+3, ρ2Ck−3ρ2 = C−1

k+4 and ρ2Bk+1ρ2 = B−1
k+1.

Also, by the fact that ρ2Hb,b+2ρ2 = H−1
b,b+2 for p = 2b+1 and ρ2Hb,b+1ρ2 = H−1

b,b+1 for p = 2b,
it is easy to see that the elements

⎧
⎪⎪⎨
⎪⎪⎩

ρ2Hb,b+2Ak−1Ck−3Bk+1Ck+4Ak+3 if p = 2b + 1,

ρ2Hb,b+1Ak−1Ck−3Bk+1Ck+4Ak+3 if p = 2b

are involutions.
If g = 11 and p ≥ 15: Consider the surface Σg,p as in Figures 5 and 6. It is easy to see

that

ρ1(b1) = b1, ρ1(a4) = a9 and ρ1(c6) = c6

and ρ1 is an orientation reversing diffeomorphism that
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ρ1B1ρ1 = B−1
1 , ρ1A4ρ1 = A−1

9 and ρ1C6ρ1 = C−1
6 .

Also, since ρ1Hb,b+1ρ1 = H−1
b,b+1 for p = 2b + 1 and ρ1Hb−1,b+1ρ1 = H−1

b−1,b+1 for p = 2b, it is
easy to verify that the elements

⎧
⎪⎪⎨
⎪⎪⎩

ρ1Hb,b+1B1A4C6A9 if p = 2b + 1,

ρ1Hb−1,b+1B1A4C6A9 if p = 2b

are involutions. We see that the generators of the subgroup H given in Lemma 4.4 are
involutions.

The group Mod∗0(Σg,p) is contained in H by Lemma 4.6. We finish the proof by showing
that H is mapped surjectively onto Sp by Lemma 4.1: The subgroup H contains the element
ρ2ρ1 which has the image (1, 2, . . . , p) ∈ Sp. For g � 11, since the subgroup H contains
the Dehn twists Ai, Bi and Ci by lemmata 4.2 and 4.3 , the group H contains the half twist
Hb,b+2 if p = 2b + 1 and the half twist Hb,b+1 if p = 2b. For p = 2b + 1, it follows from
Lemma 4.7 that the image of Hb,b+2 which is (b, b+ 2) and the p-cycle (1, 2, . . . , p) generate
Sp. For p = 2b, it is clear that the image of Hb,b+1 which is (b, b + 1) and again the p-cycle
(1, 2, . . . , p) generate Sp. Likewise, for g = 11, by Lemma 4.4, the subgroup H contains
the half twist Hb,b+1 if p = 2b + 1, the half twist Hb−1,b+1 if p = 2b. For the latter case
H also contains the half twist R−1Hb−1,b+1R = Hb,b+2. This finishes the proof by the above
argument.

Before we finish the paper let us mention the cases p = 2 or p = 3. In these cases, the
generating set of H can be chosen as

H =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{ρ1, ρ2, ρ2Bk−3Ak−1CkAk+2Bk+4} if g = 2k ≥ 10,
{ρ1, ρ2, ρ2Ak−1Ck−3Bk+1Ck+4Ak+3} if g = 2k + 1 ≥ 13.
{ρ1, ρ2, ρ1B1A4C6A9} if g = 11.

One can easily prove that the group H contains Mod∗0(Σg,p) by the similar arguments in the
proofs of lemmata 4.3, 4.2, 4.4 and 4.6. The element ρ2ρ1 ∈ H has the image (1, 2, . . . , p) ∈
Sp. Thus, for p = 2 this element generates Sp. If p = 3, the element ρ1 has the image (1, 2).
Therefore, the group H is mapped surjectively onto Sp for p = 2, 3, We conclude that the
group H is equal to Mod∗(Σg,p).
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Ankara
Turkey
e-mail: tulinaltunoz@baskent.edu.tr

Mehmetcik Pamuk
Department of Mathematics, Middle East Technical University
Ankara
Turkey
e-mail: mpamuk@metu.edu.tr
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