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Abstract
We prove that the extended mapping class group, Mod*(Z,), of a connected orientable surface
of genus g, can be generated by three involutions for g > 5. In the presence of punctures, we
prove that Mod"(%, ,) can be generated by three involutions for g > 10 and p > 6 (with the
exception that for g > 11, p should be at least 15).

1. Introduction

Let X, , denote a connected orientable surface of genus g with p > 0 punctures. When p =
0, we drop it from the notation and write X,. The mapping class group of X, is the group of
isotopy classes of orientation preserving diffeomorphisms and is denoted by Mod(Z,). Itis a
classical result that Mod(X,) is generated by finitely many Dehn twists about nonseparating
simple closed curves [4, 9, 14]. The study of algebraic properties of mapping class group,
finding small generating sets, generating sets with particular properties, is an active one
leading to interesting developments. Wajnryb [23] showed that Mod(X,) can be generated
by two elements given as a product of Dehn twists. As the group is not abelian, this is the
smallest possible. Korkmaz [11] improved this result by first showing that one of the two
generators can be taken as a Dehn twist and the other as a torsion element. He also proved
that Mod(%,) can be generated by two torsion elements. Recently, the third author showed
that Mod(Z,) is generated by two torsions of small orders [24].

Generating Mod(Z,)) by involutions was first considered by McCarthy and Papadopoulus
[17]. They showed that the group can be generated by infinitely many conjugates of a single
involution (element of order two) for g > 3. In terms of generating by finitely many involu-
tions, Luo [16] showed that any Dehn twist about a nonseparating simple closed curve can
be written as a product six involutions, which in turn implies that Mod(Z,) can be generated
by 12g + 6 involutions. Brendle and Farb [2] obtained a generating set of six involutions for
g > 3. Following their work, Kassabov [10] showed that Mod(X,) can be generated by four
involutions if g > 7. Recently, Korkmaz [12] showed that Mod(X,) is generated by three
involutions if g > 8 and four involutions if g > 3. The third author improved these results
by showing that this group can be generated by three involutions if g > 6 [25].

The extended mapping class group Mod*(Z,) is defined to be the group of isotopy classes
of all self-diffeomorphisms of X,. The mapping class group Mod(X,) is an index two nor-
mal subgroup of Mod"(%,). In [11], it is proved that Mod*(Z,) can be generated by two
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elements, one of which is a Dehn twist. Moreover, it follows from [11, Theorem 14] that
Mod*(Z,) can be generated by three torsion elements for g > 1. Also, Du [5, 6] proved that
Mod*(Z,) can be generated by two torsion elements of order 2 and 4g + 2 for g > 3. In terms
of involution generators, as it contains nonabelian free groups, the minimal number of invo-
lution generators is three and Stukow [22] proved that Mod*(Z,) can be generated by three
involutions for g > 1. Although our main interest in this paper is to find minimal generating
sets for the extended mapping class group in the presence of punctures, in Section 3, we test
our techniques to find minimal generating sets of involutions. In this direction, we obtain
the following result(see Theorems 3.2 and 3.3):

Theorem A. For g > 5, the extended mapping class group Mod*(Z,) can be generated
by three involutions.

In the presence of punctures, the mapping class group Mod(Z, ) is defined to be the
group of isotopy classes of orientation-preserving self-diffeomorphisms of %, , preserving
the set of punctures. The extended mapping class group Mod*(%, ) is defined as the group
of isotopy classes of all (including orientation-reversing) self-diffeomorphisms of X, , that
preserve the set of punctures. Kassabov [10] gave involution generators of Mod(Z, ), prov-
ing that this group can be generated by four involutions if g > 7 or g = 7 and p is even, five
involutions if g > 5 or g = 5 and p is even, six involutions if g > 3 or g = 3 and p is even (Al-
lowing orientation reversing involutions these results can also be used for Mod* (%, ,) [10,
Remark 3]). Later, Monden [18] removed the parity conditions on the number of punctures.
Forg > 1 and p > 2, he [19] also proved that Mod(Z, ,) can be generated by three elements,
one of which is a Dehn twist. Moreover, he gave a similar generating set for Mod" (%, )
consisting of three elements. Recently, Monden showed that Mod(Z, ,) and Mod" (%, ) are
generated by two elements [20].

In Section 4, we prove the following result, giving a partial answer to Question 5.6 of
[18].

Theorem B. For g > 10 and p > 6 (with the exception that for g > 11, p should
be at least 15), the extended mapping class group Mod*(%, ,) can be generated by three
involutions.

Remark. At the end of the paper, we also show that the same result holds for g > 10 and
p=1273.

Before we finish the introduction, let us point out that by the version of Dehn-Nielsen-
Baer theorem for punctured surfaces (see [7, Section 8.2.7]), Mod*(%, ) is isomorphic to
the subgroup of the outer automorphism group Out(ri(Z, ,)) consisting of elements that
preserve the set of conjugacy classes of the simple closed curves surrounding individual
punctures. Note also that these conjugacy classes are precisely the primitive conjugacy
classes that correspond to the parabolic elements of the group of isometries of the hyperbolic
plane.

2. Background and Results on Mapping Class Groups

Let X, , be a connected orientable surface of genus g with p punctures specified by the
set P = {z1,22,...,2,} of p distinguished points. If p is zero then we omit from the notation.
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The mapping class group Mod(Z, ) of the surface X, , is defined to be the group of the
isotopy classes of orientation preserving diffeomorphisms X, , — X, , which fix the set P.
The extended mapping class group Mod* (%, ,) of the surface X, , is defined to be the group
of isotopy classes of all (including orientation-reversing) diffeomorphisms of X, , which fix
the set P. Let Mod;(Z, ,) denote the subgroup of Mod*(X, ,) which consists of elements
fixing the set P pointwise. It is obvious that we have the exact sequence:

1 — Mody(%,,,) — Mod*(Z,,) — S, — 1,

where S, denotes the symmetric group on the set {1,2,..., p} and the restriction of the iso-
topy class of a diffeomorphism to its action on the puncture points gives the last projection.

Let B;; be an embedded arc joining two punctures z; and z; and not intersecting 6 on
X, p- Let D;; be a closed regular neighbourhood of g;; such that it is a disk with two
punctures. There is a diffeomorphism H;; : D;; — D, ;, which interchanges the punctures
such that Hfj is the right handed Dehn twist about dD; ; and is equal to the identity on the
complement of the interior of D; ;. Such a diffeomorphism is called the (right handed) half
twist about S; ;. One can extend it to a diffeomorphism of Mod(Z, ,). Throughout the paper
we do not distinguish a diffeomorphism from its isotopy class. For the composition of two
diffeomorphisms, we use the functional notation; if g and & are two diffeomorphisms, then
the composition gh means that 4 is applied first.

For a simple closed curve a on X, ,, following [1, 12] the right-handed Dehn twist ¢, about
a will be denoted by the corresponding capital letter A.

Now, let us recall the following basic properties of Dehn twists which we use frequently in
the remaining of the paper. Let a and b be simple closed curves on X, , and f € Mod*(Z, ).

o Commutativity: If a and b are disjoint, then AB = BA.

e Conjugation: If f(a) = b, then fAf~! = B*, where s = +1 depending on whether
f is orientation preserving or orientation reversing on a neighbourhood of a with
respect to the chosen orientation.

3. Involution generators for Mod*(X,)

We start with this section by embedding %, into R3 so that it is invariant under the reflec-
tions p; and p, (see Figures 1 and 2). Here, p; and p, are the reflections in the xz-plane so
that R = p;p, is the rotation by 2—; about the x-axis. Now, let us recall the following set of
generators given by Korkmaz [12, Theorem 5].

Theorem 3.1. If g > 3, then the mapping class group Mod(X,) is generated by the four
elements R, AlAgl, BlBgl, C1C2_1.

By adding an orientation reversing self-diffeomorphism to the above generating set, one
can easily see that Mod*(Z,) can be generated by five elements. In the following theorems,
we show that one can reduce the number of generators to three and all the generators are of
order two.

Theorem 3.2. If g > 5 and odd, then Mod™ (%) is generated by the involutions p,, p> and
p1A132C¥A3.
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Fig.2. The reflections p; and p, on X, if g = 2k.

Proof. Consider the surface X, as in Figure 1 and observe that the involution p; satisfies
pilar) = as, pi(b2) = by and pi(ce) = Cu.
Since p; reverses the orientation of a neighbourhood of any simple closed curve, we get

p1Aipr = A3' . p1Bopy = By and p1Conpr = C,h.
2
It is easily seen that pjA;B,C43Aj3 is an involution. Let K be the subgroup of Mod*(Z,)
2
generated by the set

{Pl,Pz,,DlAleC#Aﬁ-

Note that the rotation R and the orientation reversing diffeomorphism p; (or p,) are contained
in K. Hence, all we need to show is that the elements A;A;", B{B;" and C;C;' belong to K.
For g > 7 and odd, by proof of [1, Theorem 3.4], these elements are contained in K. For
g = 5, the proof follows from the proof of [1, Theorem 3.3]. O
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Next, we deal with the even genera case.

Theorem 3.3. If g > 6 and even, then Mod"(%,) is generated by the involutions py, p,
andp1A2C%B#C@.
2

Proof. Consider the surface X, as in Figure 2 when g > 6 and even. The involution p;
satisfies

pi(az) = az, pi(buxt) = bt and pi(cy) = Coss.
Since p; reverses the orientation of a neighbourhood of any simple closed curve, we have
p1Azp1 = Ay' p1Buspr = By and piCypp = Col.
2 2

It can be shown that p;A,C g B% C 4 is an involution. Let H be the subgroup of Mod"(Z,)
2
generated by the set

{plapZ:plAZC%B%lC%ﬁ }.

Note that the rotation R is in H. Since H contains the orientation reversing diffeomorphism
p1 (or p), again all we need to show is that the elements AjA7 I,BIBE I and C\C; I are
contained in H. By the proof of [1, Theorem 3.5], these elements are contained in H. O

4. Involution generators for Mod*(X, ;)

In this section, we introduce punctures on a genus g surface and present involution gener-
ators for the extended mapping class group Mod" (%, ,). First, we recall the following basic
lemma from algebra.

Lemma 4.1. Let G and K be groups, Suppose that we have the following short exact
sequence holds,

1 —>N-5G65K—1.
Then the subgroup H contains i(N) and has a surjection to K if and only if H = G.

For G = Mod*(Z,,) and N = Mod;(%, ) (self-diffeomorphisms fixing the punctures
pointwise), we have the following short exact sequence:

1 — Mody(Z,,,) — Mod*(Z,,) — S, — 1,

where S, denotes the symmetric group on the set {1,2,...,p}. Therefore, we have the
following useful result which follows immediately from Lemma 4.1. Let H be a subgroup
of Mod*(Z, ). If the subgroup H contains Mod(%, ,) and has a surjection to S, then H =
Mod*(Z, ).
In the presence of punctures, we consider the reflections p; and p, as shown in Figures 3,
4,5 and 6. Note that the element R = p;p, is contained in Mod"(Z,,,) and we have
° R(a,-) = dj+1, R(bl) = bi+1 fori = 1, e g— 1 and R(bg) = b],
e R(c))=cjp fori=1,...,9 -2,
® R(z1) =zpand R(z;) = z;i-1 fori =2,..., p.
In the proof of the following lemmata, we basically follow Theorem 3.1.
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Fig.5. The reflections p; and p; if g =2k + 1 and p = 2b + 1.
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Fig.6. The reflections p; and p; if g = 2k + 1 and p = 2b.

Lemma 4.2. For g = 2k > 10, the subgroup H of Mod* (X, ,) generated by

01,02, P2Hp ps2 Bk 3A1—1CrArs2Brss  if p=2b+12>7,
01,02, P2Hp 1 Bk 3A1—1CrArs2Bis if p=2b>6
contains the Dehn twists A;, Biand C; fori=1,...,gand j=1,...,9 - 1.

Proof. Consider the models for X, , as shown in Figures 3 and 4. Start with the case
p=2b+1.Let E| := Hpp42Br_3Ai—1CrAk+2Br14 so that the subgroup H is generated by the
elements p;, p; and p, E;. Since H contains the elements p;, p» and p, E|, it follows that H
also contains the elements R = p;p; and E| = proo E|.

Let E, denote the conjugation of E; by R™!. Since

-1
R (bk-3, k-1, Cks Qrs25 bira) = (br—s, Qr—2, Ci—1, rs15 bis3)
and
-1
R (2p, 2b+2) = (241, 243)s

it follows that £, = R_IEIR = Hpi1 p+3Br-aAk-2Cr_1Ar+1Bi+3 € H. Let E3 be the conjuga-
tion of E5 by R3. Since the element R* satisfies

R*(bis, k-2, k1, k1, biss) = (Brots Qi Chss Qi bices)
and
R*(2p41,20+3) = (22, 20),
the element
E3 = R°E;R™ = Hyo pBio1 A1 CrioArsaBrss € H.
Consider the element E4 = (E,E3)E>(E>E3)™!, which is contained in H. Thus,
Ey = Hp11,p43Bi-4Ar2Bi-1Ak11Cri2
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As we have similar cases in the remaining parts of the paper, let us explain this calcula-
tion in more details. It is easy to verify that the diffeomorphism E;FE3; maps the curves
{bi_4,ar_2, Ck—1, Ais1, brs3} to the curves {by_4, ax—2, bi—1, Aks1, Crs2}, respectively. Since the
half twists Hp41 543 and Hp_p; commute, we get

Ey = (EyE3)Ex(ErE3)"!
= (E2E3)(Hps1 p+3BiaAirCrot g1 Bias (B2 E3) ™!
= Hpi1p+3Br-4Ar-2Bi-1Ak+1Crs2-
We also get the element
Es = RE4R™" = Hyp12Bi—3As-1 BiAr2Cri3 € H.
Hence the subgroup H contains the element
E¢ = E\E5' = CyBaCi 5B,
Moreover, we have the following elements:
E; = REsR™' = Hy | 1B 2ABis1Ats3Croa,
Es = RPER’ = HpiopiaBi-sAi—3Br2ArCryy and
Ey = (E7ES)E7(E7E3)”" = Hp1 ps1 BiorAkCri1 Ars3Choa,

are contained in H. Thus, we obtain the element E7E;' = By, C;!, € H. By conjugating

B.1C;!, with powers of R, we have B,C;' € H foralli = 1,...,g—1. Moreover, the clement
E6(BkC]:1) = Bk+4C];+13 is contained in H. Thus, each Bi+lC,-_1 isin Hforalli=1,...,g -1

by conjugating this element with powers of R. Consider the elements

Ep = (BiC;)(BisCrpy)(CraaBiiyE
= Hpp+2Br-3Ak-1BrAg+2Biss,

Eiy = RER = Hp1p43Bi-sAr2Bic1Ars1 Bisa

E, = RE\ R = Hp B 1Ak BrirArsaBisy and

Eis = (EnEn)En(EnEnR)" = Hpwt pi3BiosAr2Bio1Ar1 Arsss
which are contained in H. Hence, H contains the element E13E1‘11 = Ak+4B,:+14. Hence,
A,-Bl.‘1 € Hfori=1,...g, by conjugating Ak+4B,;1 4, With powers of R. Finally, we obtain the
following elements:

AAY = (A ByY)(BICTD(C By ) (BaASY),
B\B;' = (B,C;{")(C:B,")and
CiC' = (C1B)BLCYY,

which are all contained in H. This completes the proof for p = 2b + 1 > 7 by Theorem 3.1.
For p = 2b > 6, one can replace Hj, ;4> with Hy, . and follow exactly the same steps as
above. O
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Lemma 4.3. For g = 2k + 1 > 13, the subgroup H of Mod* (X, ,) generated by
P1, 02, P2Hp 12 Ak 1Cr 3B 1 CrpaApss ifp=2b+12>7,
01,02, P2Hp p11Ak-1Ck3Bis1CriaAiss  if p=2b>6
contains the Dehn twists A;, Biand C; fori=1,...,gand j=1,...,9— L

Proof. Consider the models for X, , as shown in Figures 5 and 6. First let us consider the
case p = 2b + 1. Let F| = Hpp12Ak—1Cr_3Bi+1CriaArs3 so that the subgroup H generated
by the elements p;, p, and p, F';. It follows from H contains the elements p;, p> and p, F
that H also contains the elements R = p1p, and F; = pyp2F1.

Let F, denote the conjugation of F; by R~! so that

Fy = R7'F\R = Hyy1 13A1-2C-4BiCri3Ars2 € H.
and let F be the conjugation of F, by R*:

F3 = R F2R = Hyp A1 Ci1 BrasCrasArss € H.
From these, we get the following element:

Fy = (F2F3)Fy(FyF3)"!
= Hpy1p134k2Ck-4Cio1 Bii3Ais2,

which is contained in H. Thus, the subgroup H contains the element
Fs = F4F;' = Ci-1Br3Cr 3By
Also we get the following elements:

Fs = RF4R = Hp2pApr1Ci-1Cri2BrisArss and
Fy (F4F6)F4(F4F6)™" = Hpi1 p13Ak-2Ck-aCro1 CrinArsa,

which are contained in H. Hence, we see that the element F7F;1 = Ck+zB,;}3 € H, which
implies that CB:l e Hforalli =1,..., g — 1 by the action of R. It follows from the

element B,C; ', le”H that F5(BcC;',) = Biy3Cy is also contained in H. Similarly we have
B,-Ci‘l € Hforalli=1,...,g— 1 by the action of R. Moreover, the elements
Fs = (B Gy )CiBHF
= Hpy1p13Ak2Ck-4Bii1Cri3Ai42,
Fy = RFsR> = Hyp2pApe1Cr1BrsaCricArss and
Fio = (FsFo)Fs(FsFo)"' = Hps1ps3Ax-2ChosAks1 BrssAriz
are all in H. Thus H contains the element F3F | (B4C;};) = BiiALl,. Hence, BA;' € H

fori = 1,...,g by conjugating this element with powers of R. The remaining part of the
proof can be completed as in the proof of Lemma 4.2. O

Lemma 4.4. For g = 11, the subgroup H of Mod" (%, ,) generated by

p1,02,p1Hp 11 B1ALCsAg  if p=2b+1215,
01,02, P1Hp_1p11B1AsCsAg  if p=2b> 16
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contains the Dehn twists A;, Biand C; fori=1,...,gand j=1,...,9— L

Proof. Consider the models for X, , as shown in Figures 5 and 6. Let us first consider the
case p = 2b + 1. Let G| = Hpp+1B1A4CsAg and H be the group generated by the elements
p1, p2 and p1Gy. It is easy to see that H contains the elements R = pp, and G| = p10,Gy.
We then have the following elements:

Gy = R7G\R® = Hy3p14BoA C3As,

Gy = (G1G2)GI(G1Gy)™" = Hpp11A1A4CB,
Gy = RG3R™ =Hy, 3, 24,A:C9B),

Gs = (G4G3)G4(G4G3)™' = Hy352A4A7BoA,,
Gs = RGsR™ = H, ¢,_sA7A10B A4 and

G7 = (G5G¢)Gs(GsGe)™' = Hy_3,-20A4A7By B,

which are all in H. Thus, we obtain the element GsG> =4 B[l. By conjugating by powers
of R, we see that A,»Bl.‘l e Hfori=1,2,...,9. We also have

Gs = (B4A;")G1 = Hypi1BiBsCoAg € H,
Gg = R_3G8R3 = Hb+3,b+4BgBIC3A6 € H and
Gio = (G9Gs)Go(GoGs)™' = Hps3praAoBiBsAg € H.

Hence, we get GoGj(A9B,') = C3B;' € H, which implies that C;B;,; € H for i =
1,2,...,9 — 1 by the action of R. Moreover, the subgroup H contains the following ele-

ments:
G = (B9A§1)G1 = Hp,p+1B1A4CsBo,
Gi» = R7G R’ = Hpy3p14BoA1C3Bg and
Gis = (G1nG11)G1a(G1aG1) ™" = Hpy344B9B1C3Cs.

It follows that G12G73(B1A]") = BC,'. Again, by the action of R, the elements B,C;' € H.
One can complete the remaining part of the proof as in the proof of Lemma 4.2. O

Fig.7. The curves y; and e; ; on the surface X .
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Lemma 4.5. Letg > 2. Fori=1,...,9 — 1, in the mapping class group Mod(X, ), the
element

-1
¢i = BinI'; CiB,;
maps the curve e; ; to the curve e,y j, where the curves y; and e;;’s are as in Figure 7.

Moreover, the diffeomorphism ¢; is contained in the group H fori=1,...,9 — L.

Proof. It is easy to see that the diffeomorphism ¢; maps ¢; ; to e;;1 ;. Consider the diffeo-
morphism

S=AB,Cy--- Cg_ng_ng_lBg.

Since S € H and S maps a, to y;, the element SA,S™' = I'; € H. By conjugating with
powers of R, the element I'; is in H. We conclude that ¢; € H. O

Let H be the subgroup of Mod*(X, ,) generated by the elements given explicitly in lem-
mata 4.2, 4.3 and 4.4 with the conditions mentioned in these lemmata.

Lemma 4.6. The group Mod (%, ,) is contained in the group H.

Proof. Since the group H contains the Dehn twists Ay, A2, By, Ba, ..., B, and Cy,Cy, ...,
C,y-1 by lemmata 4.2, 4.3 and 4.4, it suffices to prove that H also contains the elements E;
for some fixediand j = 1,2,..., p—1. First note that H contains A, and R = pp,. Consider
the models for X, , as shown in Figures 3, 4. 5 and 6, Since the diffeomorphism R maps a,
to e ,—1, we have

RA,R'=E,, €H.

The diffeomorphism ¢,_; - - - ¢2¢1 in Lemma 4.5 is given by ¢; = B,~+1Fi‘1CiBi which maps
eache;jto ey jfor j=1,2,...,p—1 (see Figure 7). So we get

Gg-1 G201 E1 po1(fg-1 - $2p1) ™' = Egpor € H.
Similarly, the diffeomorphism R sends e, ,—1 to e; ,-». Then we have
RE,, \R"'=E;,,€H.
It follows from

Gg-1- D201 E1 po(dg1 -~ o) = E;p2€H

that

R(E,, )R =E;,3€H.
Continuing in this way, we conclude that the elements E; 1, E; 5, ..., Ey - are contained in
H. This completes the proof. O

We thank the referee for pointing us the proof of the following lemma.

Lemma 4.7. The symmetric group Srp+1 is generated by the transposition (b, b + 2) and
the 2b + 1)-cycle (1,2,...,2b + 1).
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Proof. Set 7 = (b,b+2)and o = (1,2,...,2b + 1). It is easy to verify that
o’ = (1,3,5,...,2b+1,2,4,6,...,2b).

Now, rewrite s; = 2i — 1 fori =1,2,...,b+ 1 and sp,14; = 2i fori = 1,2,...,b. This gives

oot = (51, 5),
2 _
0" = (51,52, ., 52+1)-
Since (s1, 52) and (s1, 52, . .., S2p+1) generate Sppy1, we see that Sppy1 = (T, 0). |

Now, we are ready to prove the main theorem of this section.
Proof of Theorem B. Consider the surface X, , as in Figures 3 and 4.
If g = 2k > 10 and p > 6: In this case, consider the surface X, , as in Figures 3 and 4. Since

P2(bk-3) = bysa, p2(ax-1) = ax+2 and pa(cx) = cx
and p, is an orientation reversing diffeomorphism, we get
p2Bio3pr = Bily. p2Ai-1p2 = Aply and paCepr = G

Also, observe that p, Hp 1202 = for p = 2b.

Then it is easy to see that each

for p = 2b+ 1 and szb b+102 =

bb+2 hb+l

P2Hp pioBi3Ai-1CrAp2Bres  if p=2b+1,
P2Hp p i1 Bi—3Ai-1CkAgs2Biys  if p =2b

is an involution. Therefore, the generators of the subgroup H given in Lemma 4.2 are invo-
lutions.

If g =2k +1 > 13 and p > 6: In this case, consider the surface X, , as in Figures 5 and 6.
It follows from

p2(ax-1) = aks3, P2(Ck-3) = Crrq and P2 (bgy1) = bpyy
and p, is an orientation reversing diffeomorphism that
p2Aic1p2 = ALy p2Crspr = Cily and paBisipo = Bl

Also, by the fact that py Hj, p1202 = for p = 2b,

it is easy to see that the elements

bb+2 fOI'p 2b+1 andszbepz =

bb+1
P2Hp p2A1Cr 3B 1 CriaAgys it p=2b+1,
P2Hp p11Ak—1Cr3Bis1CrpaArs  if p=2b

are involutions.

If g =11 and p > 15: Consider the surface X, , as in Figures 5 and 6. It is easy to see
that

p1(b1) = b1, pi1(as) = ag and pi(ce) = g

and p; is an orientation reversing diffeomorphism that
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p1Bip1 = B!, p1Aspr = Ay' and piCepy = C5'.

Also, since P1Hppr1p1 = HI:}JH forp=2b+1 al’ldleb,l’pr] = H}:

—ll,b+1 for p = 2b, itis
easy to verify that the elements

P1Hpp1B1ALCeAg  if p =2b + 1,
leb—l,b+lBlA4C6A9 lfp =2b

are involutions. We see that the generators of the subgroup H given in Lemma 4.4 are
involutions.

The group Mod; (%, ,) is contained in H by Lemma 4.6. We finish the proof by showing
that H is mapped surjectively onto S, by Lemma 4.1: The subgroup H contains the element
p2p1 which has the image (1,2,...,p) € S,. For g # 11, since the subgroup H contains
the Dehn twists A;, B; and C; by lemmata 4.2 and 4.3 , the group H contains the half twist
Hppio if p = 2b + 1 and the half twist Hp 41 if p = 2b. For p = 2b + 1, it follows from
Lemma 4.7 that the image of Hj, 5., which is (b, b+ 2) and the p-cycle (1,2,..., p) generate
Sp. For p = 2b, it is clear that the image of Hj ;.1 which is (b, b + 1) and again the p-cycle
(1,2,..., p) generate S,. Likewise, for g = 11, by Lemma 4.4, the subgroup H contains
the half twist Hp 41 if p = 2b + 1, the half twist H,_; . if p = 2b. For the latter case
H also contains the half twist Rle;,_l,;,HR = Hp 2. This finishes the proof by the above
argument.

Before we finish the paper let us mention the cases p = 2 or p = 3. In these cases, the
generating set of H can be chosen as

01,02, P2B—3Ak-1 CrAr2Brsa}  if g =2k > 10,
H =14 {p1,02,02Ak-1Ck3Bps1CrisAi3} if g=2k+1>13.
{1, 02,1 B1A4CsAg} if g=11I1

One can easily prove that the group H contains Mod;(Z, ,) by the similar arguments in the
proofs of lemmata 4.3, 4.2, 4.4 and 4.6. The element p,p; € H has the image (1,2,...,p) €
Sp. Thus, for p = 2 this element generates S,. If p = 3, the element p; has the image (1, 2).
Therefore, the group H is mapped surjectively onto S, for p = 2,3, We conclude that the
group H is equal to Mod* (%, ). O
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