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Abstract
For each connected alternating tangle, we provide an infinite family of non-left-orderable L-

spaces. This gives further support for Conjecture [3] of Boyer, Gordon, and Watson that is
a rational homology 3-sphere is an L-space if and only if it is non-left-orderable. These 3-
manifolds are obtained as Dehn fillings of the double branched covering of any alternating en-
circled tangle. We give a presentation of these non-left-orderable L-spaces as double branched
coverings of S3, branched over some specified links that turn out to be hyperbolic. We show
that the obtained families include many non-Seifert fibered spaces. We also show that these
families include many Seifert fibered spaces and give a surgery description for some of them.
In the process we give another way to prove that the torus knots T (2, 2m+ 1) are L-space-knots
as has already been shown by Ozsváth and Szabó in [24].

1. Introduction

1. Introduction
A group G is said to be left-orderable if there exists a total order < on the elements of G

such that given any two elements a and b in G, if a < b then ca < cb for any c ∈ G. By
convention, the trivial group is non-left-orderable.

One interesting problem studied by topologists is the relationship between the topology
or geometry of a 3-manifold and the left-orderability of its fundamental group. In 2005,
Boyer, Rolfsen, and Wiest showed in [4] that if the fundamental group of a 3-manifold M is
non-left-orderable, then M is a rational homology 3-sphere.

An interesting familiy of rational homology 3-spheres is that of L-spaces which was in-
troduced in 2005 by Ozsváth and Szabó [25]. Recall that a rational homology 3-sphere M is
an L-space if the rank of the Heegaard Floer homology group ĤF(M) is equal to |H1(M;Z)|,
the cardinal of the first homology group of M. Ozsváth and Szabó showed in [24] that Lens
spaces are L-spaces. In particular, the 3-sphere S3 is an L-space. According to the following
conjecture, it seems that L-spaces are the only rational homology 3-spheres which satisfy
the converse of the result showed by Boyer, Rolfsen, and Wiest cited above.

Conjecture 1.1 (L-space conjecture [3]). The fundamental group of a rational homology
3-sphere M is non-left-orderable if and only if M is an L-space.

In 2013, Boyer, Gordon, and Watson showed that this conjecture is true for Seifert fibered
spaces and non-hyperbolic geometric 3-manifolds [3]. Many known families of L-spaces
have non-left-orderable fundamental groups. These families include the double branched
coverings of non-split alternating links and those of genus two positive knots ([14], [15]). On
the other hand, there are many examples of 3-manifolds with non-left-orderable fundamental
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groups detected by Dabkowski, Przytycki and Togha in [10], Roberts and Shareshian in [29],
and Roberts, Shareshian and Stein in [30]. Later on, Clay and Watson in [8], and Peters in
[26] showed that all these 3-manifolds are L-spaces.

In [15], Ito developed a method to show that the fundamental group of the double
branched covering of a non-split link is non-left-ordrable by using the notion of Brunner’s
coarse presentation that looks like usual group presentations. A Brunner’s coarse presenta-
tion is given by a set of generators and relations, but inequalities are allowed as relations. It
is derived from Brunner’s presentation introduced in [5].

In the present paper, we consider the double branched covering of an encircled alternating
tangle whose boundary is a torus. Then by using some specific Dehn fillings we get rational
homology 3-spheres which will be L-spaces. We show that the fundamental groups of these
L-spaces are non-left-orderable by using the coarse Brunner’s presentation. So, we give
further support for the L-space conjecture. Some of these obtained 3-manifolds are non-
Seifert fibered spaces.

More precisely, we consider the alternating encirclement of a connected alternating tangle
T denoted by (B, τ(T )), where B is the 3-ball and τ(T ) is the tangle T encircled by a trivial
simple close curved as in Fig. 6. We denote by Σ2(B, τ(T )) the double branched covering
of (B, τ(T )). It is a 3-manifold whose boundary is a torus. We choose a particular simple
closed curve α on ∂(Σ2(B, τ(T ))) called a slope. The Dehn filling operation consists in
gluing a solid torus V to Σ2(B, τ(T )) by identifying the meridian curve of ∂V with α. The
obtained 3-manifold is denoted by Σ2(B, τ(T ))(α). We use the Monesinos trick which gives
a presentation of that manifold as the double branched covering of S3, the branched set of
which is obtained by attaching a rational tangle to τ(T ) in a prescribed way [22], and then
we show the main following result.

Theorem 1.1. If T is a connected alternating tangle and if (B, τ(T )) is its alternating
encirclement, then for infinitely many slopes α on the torus ∂(Σ2(B, τ(T ))), the manifolds
Σ2(B, τ(T ))(α) are L-spaces with non-left-orderable fundamental groups. Moreover, several
of these manifolds are non-Seifert fibered.

We will give more detailed statements in Paragraph 3.
This paper is organized as follows. In the second section we give a brief overview of the
main tools needed in the paper: Tangles, rational tangles, Montesinos links, quasi-alternating
links, Dehn fillings, Montesinos trick and the Coarse Brunner’s presentation. Then we state
our main results in the second section and give some applications. The third section is
devoted to proofs of the main theorems. At the end of the paper, we ask two interesting
questions raised by some of our results.

2. Preliminaries

2. Preliminaries2.1. Tangles.
2.1. Tangles. In this paper, we call a tangle T any pair (B, A) where B is a 3-ball and A

is properly embedded 1-dimensional manifold in B and which meets the boundary of B in
four distinct points. Two tangles T and T ′ are equivalent if there is an ambient isotopy of
the 3-ball which is the identity on the boundary and which takes T to T ′.
We assume that the four endpoints lie in the great circle of the boundary sphere of a 3-ball
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Fig.1. An alternating tangle diagram T .

Fig.2. Some operations on tangle diagrams.

B3 which joins the two poles. That great circle bounds a two disk B2 in B3. We consider
a regular projection of B3 on B2. The image of a tangle T by that projection in which the
height information is added at each of the double points is called a tangle diagram of T .
Two tangle diagrams will be equivalent if they are related by a finite sequence of planar
isotopies and Reidemeister moves in the interior of the projection disk B2. Two tangles will
be equivalent iff they have equivalent diagrams.
Depending on the context we will denote by T the tangle or its projection.

The four endpoints of the arcs in the diagram are usually labeled NWT ,NET ,SET , and
SWT with symbols referring to the compass directions as in the Fig. 1.

A tangle diagram T is said to be disconnected if either there exists a simple closed curve
embedded in the projection disk, called a splitting loop, which do not meet T , but encircles
a part of it, or there exists a simple arc properly embedded in the projection disk, called a
splitting arc, which do not meet T and splits the projection disk into two disks each one
containing a part of T . A tangle diagram is connected if it is not disconnected.

A tangle diagram T is said to be locally knotted if there exists a simple closed curve C
embedded in the interior of the disk projection, called a factorizing circle of T , which meets
T transversally at two points and bounds a disk inside the disk projection which meets T in
a knotted spanning arc.

We adopt the notations used for rational tangles by Goldman and Kauffman in [11] and
Kauffman and Lambroupoulou in [16]. In Fig. 18, we recall some operations defined on
tangles.
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Fig.3. Flip and Flype moves.

Fig.4. The denominator and the numerator of a tangle diagram T .

A (−π) rotation of a tangle diagram T in the horizontal (respt. vertical) axis is called
horizontal Flip (respt. vertical Flip and will be denoted by Th (respt. Tv). That is the tangle
diagram obtained by rotating the ball containing T in space around the horizontal (respt.
vertical) axis as shown in Fig. 3 and then project the new tangle by the same projection
function as that used to get T . Note that if T is an alternating tangle diagram, then Th is also
alternating. Note that the Flip operation preseves the isotopy class of a rational tangle (Flip
Theorem 1. [11]).

A Flype is an isotopy of tangles that is depicted by the Fig. 3.
A tangle diagram T provides two link diagrams: the Numerator of T , denoted by n(T ),

which is obtained by joining with simple arcs the two upper endpoints (NWT ,NET ) and
the two lower endpoints (SWT , SET ) of T , and the Denominator of T , denoted by d(T ),
which is obtained by joining with simple arcs each pair of the corresponding top and bot-
tom endpoints (NWT , SWT ) and (NET , SET ) of T (see Fig. 4). We denote N(T ) and D(T )
respectively the corresponding links. We denote N(T ) and D(T ) respectively the correspond-
ing links. We also denote by NT and DT the respective determinants of the links N(T ) and
D(T ).

A tangle diagram T is called alternating if the “over” or “under” nature of the crossings
alternates as one moves along any arc of T . A tangle is said to be alternating if it admits
an alternating diagram. If T is a connected alternating tangle diagram such that the link
diagrams n(T ) and d(T ) are both non-split and reduced, then T is said to be a strongly
alternating diagram.

Let T be an alternating connected tangle diagram. Consider the arc of T which have
NWT as an endpoint. Suppose that when we move along that arc starting at NWT we pass
below at the first encountered crossing. Then the arc of T which ends at the point SET

will also pass below at the last encountered crossing before reaching SET and the arc of T
which starts at NET will pass over at the first encountered crossing. It is easy to see that
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Fig.5. Type 1 and Type 2 alternating tangle diagrams.

Fig.6. The alternating encirclement of the tangle T .

the arcs of T coming from diametrically opposite endpoints both pass over or below at the
first encountered crossing. That remark enables us to distinguish two types of alternating
connected tangle diagrams which we call type 1 tangles and type 2 tangles as shown in the
Fig. 5.

In order to achieve our particular 3-manifolds, we will use the tangles obtained as follows.
Let T be a connected alternating tangle. We call the alternating encirclement of T denoted
by τ(T ), the tangle T encircled by a trivial closed curve as depicted in Fig.6 such that the
resulting tangle is alternating. Note that the notion of alternating encircled tangles first
appeared in [31]. If T is of type 2, then τ(T ) is a connected alternating tangle of type 1. In
what follows, we will assume that T is of type 2.

2.2. Rational tangles.
2.2. Rational tangles. A rational tangle t is a tangle in B3 such that the pair (B3, t) is

homeomorphic to (B2 × [0, 1], {x, y} × [0, 1]), where x and y are points in the interior of B2.
The elementary rational tangle diagrams 0, ±1,∞ are shown in Fig. 7. The sum of n copies
of the tangle diagram 1 or of n copies of the tangle −1 are respectively the integer tangle

diagrams denoted also by n and −n. If t is a rational tangle diagram then
1
t c

and
1
t cc

are

equivalent and both represent the inversion of t denoted by
1
t

.
Let t be a rational tangle diagram and p, q ∈ Z, we have the following equivalences:

p + t + q = t + p + q ,
1
p
∗ t ∗ 1

q
= t ∗ 1

p + q
.
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Fig.7. Elementary rational tangles.

Fig. 8. The standard rational tangle diagram [a1, ..., an] according to n is
even (left) or odd (right).

t ∗ 1
p
=

1
p + 1

t

,
1
p
∗ t =

1
1
t + p

.

Using the above notations and equivalences one can naturally associate to any continued
fraction

a1 +
1

a2 +
1

. . .+ 1
an−1+

1
an

, ai ∈ Z,

a tangle diagram as shown in Fig. 8 denoted by [a1, ..., an].
Conversely, it is known that for any rational tangle t, there exists an integer n ≥ 1 and

integers a1 ∈ Z, a2, ..., an ∈ Z \ {0}, all of the same sign, such that t = [a1, ..., an]. Then t
corresponds to a continued fraction and then to a rational number called the fraction of the
tangle.

J. H. Conway showed in [9] that two rational tangles are equivalent if and only if they
have the same fraction. Then any rational tangle t can be represented by a continued fraction



Infinite Families of Non-Left-Orderable L-Spaces 83

[a1, ..., an] = a
b where a and b are two coprime integers.

The standard diagram of a rational tangle t will be the connected alternating diagram
naturally associated to the continued fraction of t described above. In what follows a rational
tangle diagram will mean the standard one.

An algebraic tangle is a tangle obtained from rational tangles by a sequence of + and ∗
operations.

2.3. Montesinos links.
2.3. Montesinos links. Let ti � 0,±1, for i ∈ [[1, n]], be rational numbers, and let e be an

integer. A Montesinos link is defined as M(e; t1, ..., tn) := N(e + 1
t1
+ ... + 1

tn
). Those links

were introduced by Montesinos in [23].
Let t = α

β
be a rational number with β > 0. The floor of t is �t� = max {x ∈ Z/x ≤ t} , and

the fractional part of t is {t} = t − �t� < 1. For t � 1, define t̂ = 1
{1/t} > 1.We also put

(
α

β

) f

=

⎧⎪⎪⎨⎪⎪⎩
α
β−α if α

β
> 0

α
β+α

if α
β
< 0

Let L be the Montesinos link M(e; t1, ..., tn). We define ε(L) = e +
n∑

i=1

�1
ti
�. The link L is

isotopic to M(ε(L); t̂1, ..., t̂n) (Proposition 3.2 , [7]). The link M(ε(L); t̂1, ..., t̂n) is called the
reduced form of the Montesinos link L = M(e; t1, ..., tn).

The double branched covering of the 3-sphere branched over a Montesinos link is a Seifert
fibered space as shown in [23].

2.4. Quasi-alternating links.
2.4. Quasi-alternating links. A link diagram is alternating if the over or under nature

of the crossings alternates along every link-component in the diagram: the crossings go
“...over, under, over, under,...” when considered from any starting point. A link is said to be
alternating if it possesses such a diagram.

The set of quasi-alternating links appeared in the context of link homology as a natural
generalization of alternating links. They were defined in [25] by Ozsváth and Szabó. In [18],
Manolescu and Ozsváth showed that quasi-alternating links are homologically thin for both
Khovanov homology and knot Floer homology as alternating links with which they share
many properties. On the other hand, it was shown in [25] that every non-split alternating
link is quasi-alternating and that the double branched covering of any quasi-alternating link
is an L-space. Recall that a link L is non-split if there is no 2-sphere in the complement of
L in S3 that separates some components of L from the others, and that a link diagram D is
non-split if there exists no simple closed curve in the plane that separates some components
of D from the others.
If D is a link diagram, we denote by (D) the link for which D is a projection. Quasi-
alternating links are defined recursively as follows:

Definition 2.1. The set  of quasi-alternating links is the smallest set of links satisfying
the following properties:

1. The unknot belongs to ,
2. If L is a link with a diagram D containing a crossing c such that

(a) for both smoothings of the diagram D at the crossing c denoted by Dc
0 and Dc∞
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Fig.9. The link diagram D and its smoothings Dc
0 and Dc∞ at the crossing c.

as in figure 9), the links (Dc
0) and (Dc∞) are in  and,

(b) det(L) = det((Dc
0)) + det((Dc∞)).

Then L is in . In this case we will say that c is a quasi-alternating crossing of D
and that D is quasi-alternating at c.

Remark 2.1. A non-split alternating link diagram is quasi-alternating at each non-
nugatory crossing by Lemma 3.2 in [25]. So, we can compute the determinant of a non-
split alternating link by performing successive smoothings at the non-nugatory crossings
and then by adding the determinants of the links produced at each step until we get the
trivial knot. We will use this remark in our computations.

2.5. Dehn fillings.
2.5. Dehn fillings. Let α and β be unoriented simple closed curves on a torus T 2. Then

α and β are isotopic if and only if [α] = ± [
β
] ∈ H1(T 2). A slope on T 2 is an isotopy class

of unoriented essential simple closed curves on T 2. Recall that T 2 bounds a solid torus V .
A meridian m of T 2 is an unoriented essential simple closed curve on T 2 that bounds a disk
in V . Note that the meridian is unique up to isotopy. A longitude l of T 2 is an unoriented
essential simple closed curve on T 2 that meets the meridian tranversally at a single point.
The pair (m, l) provides a basis of H1(T 2) � Z ⊕ Z. More precisely, if α is a slope on T 2,
then [α] = ±(a [m]+b [l]) ∈ H1(T 2) for some coprime integers a and b. The correspondence
α ↔ a

b is one to one. This establishes an identification of the slopes on T 2 with the set
Q ∪

{
1
0

}
.

Let K be a knot in S3. Let V be a tubular neighborhood of K. Let m be the meridian of
∂V . We choose a longitude l of ∂V to be the trace of a Seifert surface of K on ∂V . So l is
null-homologous in the exterior of K. Recall that the choice of such longitude is unique up
to ambient isotopy.
Recall that the surgery on S3 along K with slope

a
b

, a, b ∈ Z, is the operation which consists

in removing the interior of V and then gluing a solid torus S1 × B2 to S3 \ ◦
V such that the

meridian (∗ × ∂B2) of S1 × B2 is identified with the slope [α] = a [m] + b [l]. A surgery with
an integer slope is said to be an integer surgery.

Let M be a 3-manifold with torus boundary T0 and α be a slope on T0. Define the α-Dehn
filling of M denoted by M(α), to be the manifold obtained by gluing a solid torus V to M so
that the boundary of the meridional disk in V is glued to α:

M(α) = M ∪T0=∂V V.

More details about Dehn fillings and surgery can be found in Gordon’s paper [12] and in the
book of Prasolov and Sossinsky [27].
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Fig.10. The pair of curves (γ∞, γ0).

Fig.11. An embedded band in the 3-ball B.

2.6. The Montesinos trick.
2.6. The Montesinos trick. Let T = (B, A) be a tangle and Σ2(B, A) the double branched

covering of B along A. Notice that Σ2(B, A) is a 3-manifold with torus boundary. Let (γ∞, γ0)
be a pair of embedded arcs in ∂B with endpoints on ∂A as shown in Fig. 10. The pair
(γ∞, γ0) lifts to a (unoriented) basis (γ̃∞, γ̃0) for H1(∂Σ2(B, A),Z). By fixing an orientation
so that γ̃∞.γ̃0 = 1, we obtain a basis to do Dehn fillings of Σ2(B, A) called the standard
basis. Montesinos observed in [22] that a Dehn filling of Σ2(B, A) may be viewed as a
double branched covering of S3 along a specified link. More precisely, for a given slope
α = pγ̃∞ + qγ̃0 in ∂Σ2(B, A), Montesinos showed that Σ2(B, A)(α) � Σ2(S3,N(− p

q + T )),
where Σ2(S3,N(− p

q + T )) is the double branched covering of S3 along N(− p
q + T ). This

observation is referred to as the Montesinos trick. For the seek of simplicity, we denote by
Σ2(B, A)( p

q ) the manifold Σ2(B, A)(α) when α is the slope corresponding to the fraction p
q

with respect to the standard basis for Dehn fillings of Σ2(B, A).
Band surgery. Let L be a link in S3 and b : I× I → S3 an embedding such that L∩b(I× I) =
b(∂I × I), where I is the unit interval. Let L′ denote the link obtained by replacing b(∂I × I)
in L by b(I × ∂I). Then we say the link L′ results from band surgery along L.
If L is a link obtained by a band surgery along the trivial knot U, then we can describe a
surgery on S3 that provides the double branched covering of the link L as follows.
Let α denote the simple arc b(I ×

{
1
2

}
). Note that α is embedded in S3 with endpoints

on U. Let B be a regular neighborhood of α in S3. Without loss of generality, one can
assume that b(I × I) ⊂ B and ∂B ∩ b(I × I) = b({(0, 0), (1, 0), (0, 1), (1, 1)}), meaning that
the band b(I × I) is entirely contained in B and meets the boundary of B only at its four
corners (see Fig. 11). Note that the pair (S3 \ ◦

B, (S3 \ ◦
B) ∩ U) is a tangle and the pairs

(B, B ∩ b(I × ∂I)) and (B, B ∩ U) are rational tangles. By using the Montesinos trick, we
have that Σ2(S3 \ ◦

B, (S3 \ ◦
B)∩U)( p

q ) is homeomorphic to Σ2(S3, L), where − p
q is the fraction
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Fig.12. Assignment of labeled edges to twisted bands.

of the rational tangle (B, B∩ b(I × ∂I)). This is equivalent to say that the manifold Σ2(S3, L)
is obtained by a surgery on Σ2(S3,U) � S3 along a lift of the arc α (which is a knot in S3).

2.7. Coarse Brunner’s presentation.
2.7. Coarse Brunner’s presentation. In this section we recall the construction of the

coarse Brunner’s presentation and the non-left-orderability criterion based on that presenta-
tion. For more details we refer to Paragraph 3 in [15].

2.7.1. Brunner’s presentation. Let D be a diagram of a non-split link L. We consider
a checkerboard coloring of D with the convention that the unbounded region is not colored.
Then we get a surface, possibly non-orientable, whose boundary is the link L. We call the
obtained surface a checkerboard surface.
Decomposition graph. The checkerboard surface is decomposed as a union of disks and
twisted bands in an obvious way. Among these decompositions we choose the maximal
one, that is the disc-twisted band decomposition having the minimal number of twisted
bands. The obtained decomposition is called a disk-band decomposition of the checker-
board surface. To such a decomposition we associate a labeled planar graph GD, called the
decomposition graph, as follows: we assign a vertex to each disk, and to each twisted band
that connects two disks we assign a labeled edge connecting the corresponding vertices. The
labeling of edges is done according to Fig.12. A component of R2 \GD is called a region of
the diagram D. A region of D is identified with a white colored region of the diagram D.
Connectivity graph. From the decomposition graph, we construct an oriented planar graph
called the connectivity graph, denoted by G̃D, as follows: The vertices of G̃D are the same
as those of GD, while an edge is obtained by connecting two vertices (discs) by a single arc
corresponding to one twisted band connecting them. Explicitly, this amounts to connect two
vertices by choosing one of the edges connecting the two vertices in GD.Then we orient the
edges of G̃D according to the rule shown in Fig.13. We endow the decomposition graph GD

with the orientation induced by that of the connectivity graph G̃D in the obvious way.
For an edge w of GD, we distinguish two regions of D, the left-adjacent region Rl(w) and

the right-adjacent region Rr(w), as shown in Fig.13.
By using these notions, Brunner’s presentation of π1(Σ2(S3, L)) is given as follows [5]:

Theorem 2.1. Let L be a non-split link in S3 represented by a diagram D, and GD and G̃D

be the decomposition and the connectivity graphs. Then the fundamental group of Σ2(S3, L)
has the following presentation called Brunner’s presentation.
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Fig.13. The left-adjacent and right-adjacent regions of an oriented edge.

[Generators]
Edge generators: The edges {Wi} of the connectivity graph G̃D.
Region generators: The regions

{
Rj

}
of the link diagram D.

[Relations]
Local edge relations: W = (Rl(w)−1Rr(w))a, where w is an edge of the decomposition

graph GD with label a, and W is an edge generator corresponding to w.
Global cycle relations: W±1

n ...W
±1
1 = 1, if the edge-path W±1

n ...W
±1
1 represents a loop in

R2.
Vanishing relation: R0 = 1, where R0 is the unbounded region generator.

Here, the edge W−1 is the edge W with the opposite orientation. Also, we use the conven-
tion that W2W1 is representing the edge-path that travels along W1 first, then along W2.

Example 2.1. Let D be the link diagram on the left in Fig. 14. We construct the decom-
position and connectivity graphs as shown in the same figure. The Brunner’s presentation of
the group π1(Σ2(S3,(D))) is written as follows.

Fig. 14. A checkerboard surface of a link diagram D (left), the associated
decomposition graph GD (middle), and the associated connectivity graph
G̃D (right).
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〈 W1 = R3
1,W2 = R−1

2 R1,W3 = R−1
4 R1,W4 = R2,W5 = R4,

W6 = (R−1
3 R2)2 = (R−1

4 R2)2

{Wi}1≤i≤6 ,
{
Rj

}
1≤ j≤4

W−1
1 W2W3 = W−1

2 W4W6 = W−1
5 W6W3 = 1

〉

2.7.2. Universal ranges. Let G be a group, h ∈ G, and <G be a left-order on G. For any
rational numbers P = a

b ,Q =
c
d such that a

b ≤ c
d and b, d > 0, let � a

b ,
c
d�h,<G be a subset of G

defined by

�P , Q�h,<G =

⎧⎪⎪⎨⎪⎪⎩
{
g ∈ G|gh = hg, ha ≤G g

b, gd ≤G hc
}

if h ≥G 1{
g ∈ G|gh = hg, gb ≤G ha, hc ≤G g

d
}

if h ≤G 1

Note that under the assumption that b, d > 0, and for any m, n ∈ Z \ {0}, we have

�
a
b
,

c
d
�h,<G = �

ma
mb
,

nc
nd
�h,<G .

So the set �P , Q�h,<G does not depend on the choice of the representatives of the rational
numbers P and Q.

We define

�P , +∞�h,<G =
⋃
Q>P

�P , Q�h,<G ,

�−∞ , Q�h,<G =
⋃
P<Q

�P , Q�h,<G ,

�−∞ , +∞�h,<G =
⋃

P∈Z>0

�−P , P�h,<G .

For P ∈ Q ∪ {−∞}, Q ∈ Q ∪ {+∞}, P ≤ Q, define

�P , Q�h =
⋂
<G∈LOG

�P , Q�h,<G ,

where LOG is the set of all left-orders on G. If g ∈ �P , Q�h, then we say that �P , Q� is an
h-universal range of g.

2.7.3. A left-orderability criterion. Any link diagram D can be decomposed into em-
bedded algebraic tangles attached together with a set of strands. Such a decomposition of
D induces a decomposition of its checkerboard surface into a set of disks and subsurfaces
corresponding to tangles. The last decomposition is called a tangle-strand decomposition of
D.
Let S be a subsurface of the checkerboard surface of a link diagram D. Let Δ be the pro-
jection disk of the corresponding tangle. We consider the two arcs which constitute the
intersection of ∂Δ with S. To distinguish the isotopy class of the tangle we will use, we
agree that the endpoints of these two arcs will be labelled in the following way: one of them
connects NW to SW while the other connects NE to SE. We denote by t the tangle corre-
sponding to this labelling. Then the subsurface S is denoted by Q(t) and is called the tangle
part corresponding to t (See elementary cases in Fig.15).
Coarse decomposition graph. To a tangle-strand decomposition of D, we associate an ori-
ented planar graph ΓD, called the coarse decomposition graph of D in the following way.
The vertex of ΓD is a disk part of the tangle-strand decomposition. To each tangle part,
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Fig.15. Labeling of the tangle parts.

Fig.16. Assignment of oriented edges to tangle parts.

we assign an edge connecting the vertices that correspond to the disks connected by the
considered tangle part. We orient that edge according to the rule depicted in Fig.16.

Let Q(t) be a subsurface of the checkerboard surface as that introduced above. Denote
by G̃t the subgraph of ΓD derived from the sub-diagram t of D. Let u and v be the vertices
corresponding to the disk parts joined by Q(t) in the tangle-strand decomposition. We de-
note by Wt ∈ π1(Σ2(S3,(D))), the tangle element which is the uppermost edge-path in G̃t

connecting the vertices u and v. For convenience, the edge of ΓD that corresponds to Q(t)
is also denoted by Wt. Note that the regions of ΓD are elements of π1(Σ2(S3,(D))). For
each edge Wt of ΓD, we distinguish two special regions: the left-adjacent region Rl(t), and
the right-adjacent region Rr(t) as depicted in Fig.16. Ito showed that Wt commutes with
Rl(t)−1Rr(t) (Lemma 3.3, [15]).
A universal range of t is an (Rl(t)−1Rr(t))-universal range of Wt. A tangle-strand decompo-
sition is said to be nice if all tangles have universal range in �−∞ , +∞�. Now we are ready
to define the coarse Brunner’s presentation
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Let D be a link diagram representing a non-split link together with a coarse decomposi-
tion graph ΓD associated to a nice tangle-strand decomposition of D. The coarse Brunner’s
presentation  of D associated to ΓD is a set of generators and relations given as follows:

[Generators]
Tangle generators: The tangle elements {Wi} (the edges of the coarse decomposition

graph ΓD).
Region generators: The regions

{
Rj

}
of the coarse decomposition graph ΓD.

[Relations]
Local coarse relations: Wt ∈ �Pt , Qt�(Rl(t)−1Rr(t)), where �Pt , Qt� is a universal range of

t.
Global cycle relations: W±1

n ...W
±1
1 = 1, if the edge-path W±1

n ...W
±1
1 represents a loop in

R2.
Vanishing relation: R0 = 1, where R0 is the unbounded region generator.
Here, the edge W−1 is the edge W with the opposite orientation.
In [15], Ito observed that when π1(Σ2(S3,(D))) is left-orderable, then if Rl(t) = Rr(t) =

Wt = 1, then all edge and region generators that appear in G̃t are trivial. This observation,
together with the convention that the trivial group is non-left-orderable allowed Ito to give
the following left-orderability criterion.

Theorem 2.2 (Theorem 3.11, [15]). Let  be a coarse Brunner’s presentation asso-
ciated to a nice tangle-strand decomposition of a link diagram D. If π1(Σ2(S3,(D))) is
left-orderable, then at least one region generator in  is non-trivial.

3. Main results and some applications

3. Main results and some applications
In this section, we state our main theorems and then we give some applications.

3.1. Main Theorems.
3.1. Main Theorems.

Theorem 3.1. If T is a connected alternating tangle and if (B, τ(T )) is its alternating
encirclement, then for any slope α = pγ̃∞ + (p + q)γ̃0 on the torus ∂(Σ2(B, τ(T ))) such that
p
q ≤ 1, the manifolds Σ2(B, τ(T ))(α) and Σ2(B, τ(T ))( 1

α
) have non-left-orderable fundamental

groups.

Theorem 3.2. If T is a connected alternating tangle and if (B, τ(T )) is its alternating
encirclement, then for any slope α = pγ̃∞ + (p + q)γ̃0 on the torus ∂(Σ2(B, τ(T ))) such that
p
q ≤ 1, the manifolds Σ2(B, τ(T ))(α) and Σ2(B, τ(T ))( 1

α
) are L-spaces.

In particular, by using the tangles Tn shown in Fig.17, where n is a positive integer, and
the boxes stand for the vertical rational tangles − 1

2n or − 1
2n−1 , Theorems 3.1 and 3.2 provide

a non-Seifert, non left-orderable L-spaces as stated in the following proposition.

Proposition 3.3. Let n be a positive integer and let (B, τ(Tn)) be the alternating encir-
clement of the tangle Tn. Then for any slope α = pγ̃∞+(p+q)γ̃0 on the torus ∂(Σ2(B, τ(Tn)))
such that p

q < 1 and p is even, the manifolds Σ2(B, τ(Tn))(α) and Σ2(B, τ(Tn))( 1
α

) are non-
Seifert fibered spaces.

Before giving the proofs of these results in the next section, we look into some particular
cases.
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Fig.17. The tangle diagram Tn.

3.2. Special cases.
3.2. Special cases. Among the rational homology 3-spheres we have considered in The-

orems 3.1 and 3.2, there are many Seifert fibered spaces. In the following proposition we
give a surgery description of these 3-manifolds in some particular cases.

Proposition 3.4. If T is the rational tangle −a
b

such that a, b > 0, then the manifold

Σ2(B, τ(T ))( 1
2 ) is a Seifert fibered space. Moreover, if T is an integer tangle, then there exists

an integer k, |k| ≥ 1, such that the manifold Σ2(B, τ(T ))( 1
2 ) can be obtained from the sphere

S3 by an integer surgery along the torus knot T (2, 2k + 1).

In order to show Proposition 3.4, we will need some background and Lemma 3.5.
Let D be a reduced alternating projection of a nontrivial non-split alternating link L. Let

J be an embedded circle in the complement of L in S3 such that J intersects the projection
plane in two points and bounds a disk that lies in a plane perpendicular to the projection
plane. The link L ∪ J is called an augmentation of L. If L is prime and non-isotopic to any
torus link T (2, k), then the link L∪ J is called an augmented alternating link. Recall that the
torus link T (2, k) is the link D( 1

k ) which is the only alternating torus link. Adams proved in
[2] that augmented alternating links are hyperbolic.

Let T be a connected alternating tangle and τ(T ) its alternating encirclement. If p
q is

a rational number such that 0 < p
q ≤ 1, then the link N(− p

p+q + τ(T )) is isotopic to an
augmentation of the alternating link N((T ∗ (−1)) + (− p

q )) as explained in Fig. 18. The
bottom left diagram in Fig. 18 is called the augmented form of the link N(− p

p+q + τ(T )).

Lemma 3.5. If T is a connected alternating tangle and if τ(T ) is its alternating encir-
clement, then for any rational number p

q , 0 < p
q ≤ 1, the link N(− p

p+q + τ(T )) is an augmen-
tation of a non-trivial non-split alternating link. Moreover, if T is locally unknotted, and if
the determinants NT and DT satisfy NT > 1 and DT ≥ c(T ) where c(T ) is the number of
crossings in the tangle diagram T, then the link N(− p

p+q +τ(T )) is an augmented alternating
link, and so it is a hyperbolic link.
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Fig.18. Isotopies bringing the link N(− p
p+q + τ(T )) into an augmentation of

an alternating link.

Proof. Let [a1, ..., as] be the continued fraction of the rational tangle q
p . If s = 1, then

q
p = m, where m ≥ 1 is an integer. By Proposition 3.4 in [1], the determinant of the
alternating link L = N((T ∗ (−1))+ (− p

q )) is equal to mNT∗(−1) +DT∗(−1). It is easy to see that
N(T ∗ (−1)) is isotopic to N(T ). By Remark 2.1 we have DT∗(−1) = NT + DT . Finaly, we get
that det(L) = (m+1)NT +mDT . On the other hand, since n((T ∗(−1))+(− 1

m )) is an alternating
reduced and non-split diagram of L, then by Corollary 1 in [32] the crossing number c(L)
is equal to the number of crossings in n((T ∗ (−1)) + (− 1

m )) which is m + 1 + c(T ), where
c(T ) is the number of crossings in the tangle diagram T . Then we note that if DT ≥ c(T )
and NT > 1, then c(L) < det(L). But, this inequality is not satisfied by the torus links T (2, k)
for which we have c(T (2, k)) = det(T (2, k)) = k. Hence, whenever we have DT ≥ c(T ) and
NT > 1, the link L will not be equivalent to T (2, k) for any integer k. Moreover, if T is
locally unknotted, then the reduced alternating link diagram n((T ∗ (−1)) + (− 1

m )) is prime
by Lemma 2.2 in [1]. Consequently, if T is locally unknotted, then the link L is prime by
Theorem 1 in [21].
Now, a simple induction argument on s shows that if NT > 1 and DT ≥ c(T ), then

det(N((T ∗ (−1)) + (− p
q

))) > c(N((T ∗ (−1)) + (− p
q

))).

Furthermore, if T is locally unknotted, then the alternating link N((T ∗ (−1))+ (− p
q )) is prime

by Lemma 2.2 in [1] and Theorem 1 in [21]. This shows that the link N(− p
p+q + τ(T )) is an

augmentation of a prime alternating link which is not a torus link, and hence is a hyperbolic
link. �

Proof of Proposition 3.4. Assume that T is the rational tangle − a
b , a > 0. The augmented

form of the link N(− 1
2 + τ(T )), as depicted in the bottom left corner of Fig. 18 when p

q = 1,
corresponds to the Montesinos link M(0;−2, 2, 2a+b

a+b ). Then if T is rational, the Dehn filling
Σ2(B, τ(T ))( 1

2 ) is a Seifert fibered space.
In Fig. 19, we exhibit a band-surgery on the link D(T ) that provides the augmented form

of the link N(− 1
2 + τ(T )).
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Fig.19. A band-surgery on the link D(T ) which provides the link N(− 1
2 + τ(T )).

Fig.20. A description of an isotopy transforming D(T )∪α into U ∪α′ (top
of the figure). The arc α′ lifts to the torus knot T (2,−2m−1) (bottom of the
figure).

Assume now that a
b = m. Note that in this case, the link D(T ) is the trivial knot U. Let Kα

be the lift of the arc α depicted in Fig. 19 in Σ2(S3,D(T )) � S3. By the Montesinos trick, the
space Σ2(B, τ(T ))( 1

2 ) = Σ2(S3,N(− 1
2 + τ(T ))) is obtained by an integer Dehn surgery in M

along the knot Kα. The 1-manifold D(T )∪α is isotopic in S3 to U ∪α′, where α′ is a simple
arc in S3 with endpoints on U as depicted in the top of Fig. 20. The lift Kα′ of the arc α′

in Σ2(S3,U) = S3 turns out to be the torus knot T (2,−2m − 1) as explained in the bottom of
Fig. 20. Finally, we get that the space Σ2(B, τ(−m))( 1

2 ) = Σ2(S3,N(− 1
2 + τ(T ))) is provided

by an integer Dehn surgery on S3 along the torus knot T (2,−2m − 1). �

Remark 3.1. 1. We know by Proposition 3.4 that Σ2(B, τ(− a
b ))( 1

2 ) is a Seifert fibered
space. Moreover, Theorem 3.1 shows that it is non-left-orderable and Theorem 3.2
shows that it is an L-space. So this matches the fact that Seifert fibered spaces satisfy
Conjecture 1.1 (see [3]).

2. Theorem 3.2 shows that Σ2(B, τ(−m))( 1
2 ) in an L-space and Proposition 3.4 shows
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Fig. 21. The link diagram D representing the link N(− p
p+q + τ(T )) with a

specified nice tangle-strand decomposition (left), and the associated coarse-
decomposition graph ΓD (right).

that it can be obtained by an integer Dehn surgey on S3 along the torus knot T (2,
−(2m + 1)). So, we get an other way to prove that the torus knots T (2, 2m + 1) are
L-space knots as was firstly shown by Ozsváth and Szabó in [24].

4. Proof of main results

4. Proof of main results
At first, we note that the link N(− p

p+q + τ(T )) has the diagram D depicted in the left of
Fig. 21. We construct a nice tangle-strand decomposition of D as follows: each crossing of
the tangle T is regarded as a tangle part. The other tangle parts are specified in Fig. 21. By
our sign convention, each tangle part inside T is the elementary tangle (−1). We denote
by ΓD the obtained coarse-decomposition graph.

Denote by ΓT the sub-graph of ΓD corresponding to the sub-diagram T . Let Ek...E1 be
the uppermost edge-path in ΓT . The coarse-decomposition graph ΓD is depicted in the right
of Fig. 21.

The following is a partial description of the coarse Brunner’s presentation provided by
the coarse-decomposition graph on the right in Fig.21.

Tangle generators: {Wi}1≤i≤5.

Region generators: {Ri}1≤i≤3.

Global cycle relations: The cycles in the considered graph give the relations

(1) W−1
1 W2W3 = 1, W−1

5 W−1
4 W2W3 = 1 and W−1

1 W4W5 = 1.

Hence W1 = W2W3 = W4W5.

Local coarse relations: By applying Corollary 3.6 in [15] we deduce the following rela-
tions.
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(2) W p
1 = Rp+q

1 , W2 = R−1
2 R1 , W3 = R−1

3 R1 , W4 = R2 , W5 = R3.

In particular we get that

W1 = W4W5 = R2R3.

Remark 4.1. If t and T are respectively a rational tangle of type 1 and an alternating
tangle of type 2, the link diagram n(t + T ) is equivalent, up to mirror image, to the link
diagram n( 1

t +
1
T c) as shown in the figure below. If T is an alternating encircled tangle, then

it is clear that 1
T c is again an alternating encircled tangle. Hence, one can only restrict to

the case where 0 < |t| < 1 when considering the numerator closure of t summed with an
alternating encircled tangle diagram.

Remark 4.2. Let T be a connected alternating tangle and (B, τ(T )) its alternating en-
circlement. Let α be the slope p

p+q with respect to the standard basis for Dehn fillings of
Σ2(B, τ(T )). The previous remark implies that Σ2(S3,N( p+q

p + τ(T ))) and Σ2(S3,N(− p
p+q +

τ(− 1
T c))) are homeomorphic. This is equivalent to Σ2(B, τ(T ))( 1

α
) and Σ2(B, τ(− 1

T c)))(−α)
are homeomorphic. This will allow us to prove our main results only for the manifold
Σ2(B, τ(T ))(α). A simple adaptation of signs in our argument will provide the same results
for the manifold Σ2(B, τ(T ))( 1

α
).

The following remark allows us to reduce the cases that must be studied.

Remark 4.3. We note that if p
q < 0, the manifolds Σ2(B, τ(T ))(α) and Σ2(B, τ(T ))( 1

α
) are

double branched coverings of non-split alternating links. So they are non-left-ordrerable
L-spaces. Then we will restrict ourselves in the proofs to the case 0 < p

q ≤ 1.

Lemma 4.1. If π1(Σ2(B, τ(T ))( p
p+q )) is left-orderable, then the region generators R2 and

R3 have opposite signs.

Proof. We start from the local coarse relation W2 = R−1
2 R1 in (2). Then R−1

2 W2 = R−2
2 R1.

The second global cycle relation in (1) yields W2 = W4W5W−1
3 . By using local coarse

relations again, we get that W2 = R2R3R−1
1 R3. Hence R−2

2 R1 = R3R−1
1 R3. Now by using the

relation W1 = R2R3 we note that:

R−2
2 R1 = R3R−1

1 R3

⇔ R−1
2 R1R−1

3 = (R2R3)R−1
1

⇔ R−1
2 R1R−1

3 = W1R−1
1

⇔ R3R−1
1 R2 = R1W−1

1

This implies that

(3) (R3R−1
1 R2)p+q = (R1W−1

1 )p+q
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By Lemma 3.3 in [15], the generators W±1
1 and R±1

1 commute and a simple induction argu-
ment shows that

(R3R−1
1 R2)k = R3R−k

1 Wk−1
1 R2, for any integer k ≥ 1.

Finally, one can transform the equality (3) and get the following:

(4) R3R−(p+q)
1 W p+q−1

1 R2 = Rp+q
1 W−(p+q)

1 ⇔ R3Wq−1
1 R2 = W−q

1

We will prove the result for R2 ≥ 1. The other case can be shown in a similar way.
Case 1: Wq−1

1 ≤ 1.
Since q ≥ 1, then necessarily W1 ≤ 1. Since W1 = R2R3, this implies that R3 ≤ R−1

2 . So
the result follows from the assumption that R2 ≥ 1.

Case 2: Wq−1
1 ≥ 1.

In this case, one has that R3Wq−1
1 ≥ R3. On the other hand, the assumption R2 ≥ 1 implies

that R3Wq−1
1 R2 ≥ R3Wq−1

1 . Hence, by the equality (4) one gets that W−q
1 ≥ R3. But since,

Wq−1
1 ≥ 1 and q ≥ 1, then necessarily one has that W1 ≥ 1, which implies that 1 ≥ W−q

1 ≥ R3.
This completes the proof. �

Proof of Theorem 3.1. Suppose that π1(Σ2(B, τ(T ))( p
p+q )) is left-orderable. Assume that

R2 ≥ 1, the other case can be shown in a similar way by interchanging the roles of R2 and
R3. By Lemma 4.1, we have R3 ≤ 1 ≤ R2.

If the graph ΓT has no regions (we exclude here the unbounded region of ΓT since we
consider it only as a sub-graph), then it is clear that the only edges of ΓT are the edges
Ei = R−1

3 R2, 1 ≤ i ≤ k. This implies that Ei ≥ 1, for every 1 ≤ i ≤ k. Consequently, we will
have the following:

1 ≤ R2 ≤ R2(Ek...E1)

⇒ 1 ≤ W4(Ek...E1)

⇒ 1 ≤ W2

⇒ R2 ≤ R1

We note that the third of the last inequalities is obtained by the global cycle relation 1 =
W−1

2 W4Ek...E1, which comes from the boundary loop of the region R2.
And also, we have

1 ≤ R−1
3 ≤ R−1

3 (Ek...E1)

⇒ 1 ≤ W−1
5 (Ek...E1)

⇒ 1 ≤ W−1
3

⇒ R1 ≤ R3

Also, in the last inequalities, we note that the third one is obtained by the global cycle
relation

1 = W−1
3 W5Ek...E1,

coming from the boundary loop of the union of the region R2 and the graph ΓT (shaded
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region in Fig. 21).
Finally, we get 1 ≤ R2 ≤ R1 ≤ R3 ≤ 1. This is a contradiction by Theorem 2.2.
Assume now that the sub-graph ΓT has at least one region and let R denote the < -maximal

region among the regions of ΓT . The cycle that constitutes the boundary of the region R can
be expressed as (el...e1)( f −1

1 ... f
−1
n ) = 1, where Rr(ei) = Rl( f j) = R for every 1 ≤ i ≤ l and

1 ≤ j ≤ n. We have ei = R−1Rl(ei) and f j = Rr( f j)−1R.
Case 1: R ≥ R2. In this case, we have ei ≤ 1 and f j ≥ 1 for every 1 ≤ i ≤ l and 1 ≤ j ≤ n.

Suppose that there exists some 1 ≤ i0 ≤ l such that Rl(ei0 ) < R, then ei0 < 1. Hence, we get
the following:

ei0 (ei0−1...e1) ≤ ei0 < 1

⇒ (el...e1) < el...ei0+1 ≤ 1

⇒ (el...e1)( f −1
1 ... f

−1
n ) < 1

The last inequality contradicts the fact that (el...e1)( f −1
1 ... f

−1
n ) = 1. Similarly, we get a

contradiction if we suppose that there exists some 1 ≤ j0 ≤ n such that Rr( f j0 ) < R. Finally,
for all 1 ≤ i ≤ l and 1 ≤ j ≤ n, we have Rl(ei) = Rr( f j) = R. This shows that any region in
ΓT ∪ {R2,R3} which shares an edge with R is equal to R. If we adapt the previous argument
to the regions sharing edges with R, we show that each region that shares an edge with
these regions is again equal to R. We iterate this process until we show that all regions of
ΓT ∪ {R2,R3} are equal to R. Hence 1 ≤ R2 = R = R3 ≤ 1. And since W1 = R2R3 = 1
and W p

1 = Rp+q
1 = 1, then R1 = 1. Hence, all region generators in the coarse-Bunner’s

presentation are trivial. This is a contradiction by Theorem 2.2.
Case 2: R < R2. In this case, we have Ei > 1 for every 1 ≤ i ≤ k. Hence

1 ≤ R2 < R2(Ek...E1)

⇒ 1 < W4(Ek...E1)

⇒ 1 < W2

⇒ R2 < R1

And also, we have

1 ≤ R−1
3 < R−1

3 (Ek...E1)

⇒ 1 < W−1
5 (Ek...E1)

⇒ 1 < W−1
3

⇒ R1 < R3

Finally, we get 1 ≤ R2 < R1 < R3 ≤ 1. Which is a contradiction �

Lemma 4.2. If T is a connected alternating tangle and τ(T ) is its alternating encir-
clement, then

Nτ(T ) = Dτ(T ) = 4(NT + DT ).

Proof. Since D(τ(T )) is a non-split alternating link, then we can compute its determinant
by smoothing one by one non-nugatory crossings. This is done in Fig. 22 where the obtained
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Fig.22. Smoothing non-nugatory crossings of the link D(τ(T )) until reach-
ing some links with known determinants.

Fig.23. The link diagram D representing the link N(− 1
2 + τ(T )).

links are labeled according to our notations. The determinant of the link D(− 1
2 ∗ T ) is

2NT +DT by Proposition 3.4 in [1], and the determinant of the link D(T )#T (2, 2) is equal to
det(T (2, 2)) × DT = 2DT . This gives that Dτ(T ) = 2(2NT + DT ) + 2DT = 4(NT + DT ). Now,
since the obtained formula for Dτ(T ) is unaffected by the inverse operation on tangles, and
since N(τ(T )) and D(− 1

τ(T ) c
) are the same, then Nτ(T ) is equal to Dτ(T ). �

Proof of Theorem 3.2. Let T be a connected alternating tangle and τ(T ) be its alternating
encirclement. Let D be the link diagram n(− 1

2 + τ(T )) depicted in Fig. 23. We will show
that D is quasi-alternating at the marked crossing c.

As explained in Fig. 24,25, the links (Dc
0) and (Dc∞) are respectively equivalent to the

links N( 4
3 + (− 1

T cc)v) and D(T ), which are alternating links.
By Proposition 3.4 in [1], we have that det(Dc

0) = 4NT + 3DT , which is a non-zero
integer. This shows that (Dc

0) is a non-split alternating link. This is also the case for
the link (Dc∞) by connectedness of the tangle T . on the other hand, by Lemma 4.2, and
Proposition 3.4 in [1], we have that det(D) =

∣∣∣2Nτ(T ) − Dτ(T )
∣∣∣ = 4(NT + DT ). This shows

that det(D) = det(Dc
0) + det(Dc∞), and hence the link diagram D is quasi-alternating at the
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Fig.24. An isotopy bringing the link (Dc
0) into N( 4

3 + (− 1
T cc)v).

Fig.25. An isotopy bringing the link (Dc∞) into D(T ).

crossing c. Now, since (D) is the link N(− 1
2 + τ(T )), then by Corollary 4 in [1], the link

diagram n(− 1
3 + τ(T )) is quasi-alternating at each of the three crossings of the elementary

vertical tangle − 1
3 . We can extend the top one by the rational tangle − p

q−p and obtain the link
N(− p

p+q + τ(T )). Thus, the link N(− p
p+q + τ(T )) is quasi-alternating by Theorem 2.1 in [6].

This shows that Σ2(B, τ(T ))( p
p+q ) � Σ2(S3,N(− p

p+q + τ(T ))) is an L-space. �

It remains for us to prove Proposition 3.3. Our main argument is based on the following
remark: It is known that if the double branched covering of a link L is a Seifert fibered space,
then L is either a Seifert link or a Montesinos link.
We note that, for each integer n > 1, if Tn is the tangle in Fig. 17, the link Ln = N(− p

p+q +

τ(Tn)) is neither a Seifert link nor a Montesinos link. In this way, we get an infinite family of
non-Seifert fibered 3-manifolds which are non-left-orderable L-spaces. To do that, we will
need the following lemma:

Lemma 4.3. If 0 < p
q < 1 is a rational number such that p is even, then for any integer

n > 0, the link Ln = N(− p
p+q + τ(Tn)) has two components one of which is trivial and the

other is neither rational nor a torus knot.

Recall that a rational link is the closure of a rational tangle. If a link diagram is the closure
of a standard rational tangle diagram then it is called a standard rational link diagram. It
is shown in [33] (Theorem 4.1 and Proposition 5.2) that any alternating link diagram of a
rational link is a standard rational diagram.

Proof. Since the tangle diagram Tn is strongly alternating, then by Corollary 1 in [32]
we have that c(Tn) = c(N(Tn)) = c(D(Tn)). Hence, by Proposition 3.1 in [28], we have
that 1 < c(Tn) ≤ NT and c(Tn) ≤ DT . Moreover, since Tn is locally unknotted, then by
Lemma 3.4, the link Ln is an augmented alternating link. So Ln has a trivial component.
More precisely, it is an augmentation of the prime, alternating, and non-torus link Kn :=
N((Tn ∗ (−1)) + (− p

q )). To complete the proof of the lemma, it remains to show that Kn is a
non-rational knot.
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Fig.26. The knot diagram Dn where the dashed (gray) arc represents a piece
of Ct (Cb).

To see that Kn is non-rational, we consider the particular diagram Dn := n(Tn + (− p
q ∗ (−1)))

of Kn shown in Fig. 26 (this can be easily seen by moving the crossing (−1) away from
Tn towards the rational tangle − p

q ). Moreover, since Tn is strongly alternating, then by
Corollary 5.1 in [17], Tn is non-rational. This implies that the alternating link diagram Dn is
not a standard rational diagram. Hence, by Theorem 4.1 and Proposition 5.2 in [33] the link
Kn is not rational for any n > 0.
Now we show that Kn is a knot. At first, recall that N(Tn) is a knot for any n > 0, so the
numerator closure arcs of n(Tn) belong the single component of N(Tn). On the other hand,
since p is an even integer equal to N− p

q ∗(−1), then by Theorem 6 and Corollary 1 in [16],
the link diagram n(− p

q ∗ (−1)) has two components each containing a different numerator
closure arc. Let Ct (respectively Cb) denote the component of N(− p

q ∗ (−1)) containing the
top (respectively the bottom) numerator closure arc. One can easily see that when we join
the top and the bottom endpoints of Tn respectively with the top and the bottom endpoints
of the rational tangle − p

q ∗ (−1) to build the diagram Dn, the two components Ct and Cb are
inserted in the single component of N(Tn) as explained in Fig. 26. Then Kn is a knot. �

Proof of Proposition 3.3. By Lemma 4.3, the link Ln has two components, one of which
is trivial and the other is neither a torus knot nor a rational knot. Then by Lemma 2.7 in
[20], the link Ln is not a Seifert link. Moreover, by Criteria 2.15 in [20], the link Ln is not
a Montesinos link. Now since a link that has a Seifert fibered double branched covering is
a Seifert link or a Montesinos link as mentioned in the introduction of [19], then the double
branched covering of the link Ln, which is homeomorphic to Σ2(B, τ(T ))(α), cannot be a
Seifert fibered space. The result for the manifold Σ2(B, τ(T ))( 1

α
) is deduced by Remark 5.

�

We end this paper with two questions that are motivated by Proposition 3.3.

Let T be a connected alternating tangle, and let (B, τ(T )) be its alternating encirclement.
By using the same argument as in the proof of Theorem 3.1, one can show that the filling
Σ2(B, τ(T ))( k

k+1 ), which is homeomorphic to the double branched covering of the link L :=



Infinite Families of Non-Left-Orderable L-Spaces 101

N(− k
k+1 + τ(T )), has a non-left-orderable fundamental group for every integer k ≥ 1. By

Proposition 3.4 in [1] and Lemma 4.2, the determinant of the link L is equal to (k+1)Nτ(T )−
kDτ(T ) = 4(NT+DT ). On the other hand, we have that c(n(− k

k+1+τ(T ))) = k+1+c(τ(T )) = k+
5+c(T ). Hence, for k > 4(NT+DT )−(c(T )+5), we will have that c(n(− k

k+1+τ(T ))) > det(L).
By using Proposition 5.4 in [1], it follows that if k > 4(NT + DT ) − (c(T ) + 5), then the link
L is non-quasi-alternating. But, it may happen that the double branched covering of the link
L := N(− k

k+1 + τ(T )) is also the double branched covering of other quasi-alternating link.
Consequently, the double branched covering description of the 3-manifold Σ2(B, τ(T ))( k

k+1 )
does not tell us wether it is an L-space or not. This fact motivates the following question.

Question 1. Is the non-left-orderable 3-manifold Σ2(B, τ(T ))( k
k+1 ) an L-space for every

integer k ≥ 1?

Our last discussion yields another interesting question. In 2011, Greene stated the fol-
lowing conjecture [13]:

Conjecture 4.1. If a pair of links have homeomorphic branched double-covers, then
either both are alternating or both are non-alternating.

Then we can ask the similar following question for quasi-alternating links:

Question 2. Can a closed orientable 3-manifold be the branched double-cover of both a
quasi-alternating link and a non-quasi-alternating link?
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