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Abstract
In this paper, first we introduce a general notion of affine Killing vector fields on the complex

quadric Qm, which is weaker than usual Killing vector field. Next, we give a complete clas-
sification of Hopf real hypersurfaces M with affine Killing Reeb vector field in the complex
quadric Qm, m ≥ 3.

1. Introduction

1. Introduction
It is well known that the importance of Killing vector fields on Riemannian manifolds

and Mathematical Physics is highly evaluated (see [2], [22], [28], and [34]). Recall that a
vector field V on a Riemannian manifold (M̄, g) is said to be Killing if the Lie derivative of
the metric tensor g along the direction of V is invariant, that is,

(1.1) (Vg)(X, Y) = 0,

or equivalently,

(1.2) g(∇̄XV, Y) = −g(∇̄YV, X), X, Y ∈ X(M̄),

where ∇̄ denotes the Riemannian connection on (M̄, g) and X(M̄) the set of differentiable
vector fields on M̄. In terms of local components, (1.1) can be expressed as Vgi j = 0.

When we consider a real hypersurface (M, g) in a Hermitian symmetric space (M̄, g),
there exists a Reeb vector field ξ on M defined by ξ = −JN, where J denotes the Kähler
structure on M̄. Then, the Reeb vector field ξ is Killing (or M has isometric Reeb flow) if and
only if the Lie derivative of the induced metric tensor g along the Reeb direction vanishes,
ξg = 0. By using the Lie algebraic methods given in [1] and [3], Berndt and Suh [7]
gave a complete classification of real hypersurfaces with isometric Reeb flow in Hermitian
symmetric spaces.

On a Riemannian manifold (M̄, g) we say that a vector field V is affine Killing if it satisfies

VΓ
i
jk = ∇̄ j∇̄kVi + Ri

km j Vm = 0

where Γi
jk and ∇̄ denote Christoffel symbols and the Riemannian connection defined on

(M̄, g). From such a view point let us define an affine Killing vector field on a Riemannian
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manifold (M̄, g) as follows:

Definition 1.1. Let (M̄, g) be a Riemannian manifold with Riemannian connection ∇̄. A
vector field V is said to be an affine Killing vector field, if it satisfies

(1.3) (V∇̄)(X, Y) = 0,

or equivalently,

(1.4) [V, ∇̄XY] − ∇̄[V,X]Y − ∇̄X[V, Y] = 0

for all differentiable vector fields X and Y ∈ X(M̄). In particular, the Reeb vector field ξ is
said to be affine Killing, if (ξ∇̄)(X, Y) = 0 (see also [11] and [13]).

In fact, the Riemannian connection ∇̄ of M̄ is the unique linear connection being torsion-
free defined by ∇̄(X, Y) = ∇̄XY for any X, Y ∈ X(M̄). From this and the properties of Lie
derivative, XY = [X, Y] and [X, Y] = ∇̄XY − ∇̄Y X, we get

(V∇̄)(X, Y) = V(∇̄(X, Y)) − ∇̄(V X, Y) − ∇̄(X,VY)(1.5)

= [V, ∇̄XY] − ∇̄[V,X]Y − ∇̄X[V, Y]

= ∇̄V∇̄XY − ∇̄∇̄XYV − ∇̄[V,X]Y − ∇̄X∇̄VY + ∇̄X∇̄YV

= R̄(V, X)Y − ∇̄∇̄XYV + ∇̄X∇̄YV,

where the curvature tensor R̄ of M is a (1,3) tensor field defined by

(1.6) R̄(X, Y)Z = ∇̄X∇̄YZ − ∇̄Y∇̄XZ − ∇̄[X,Y]Z

for any X, Y , Z ∈ X(M̄).
In [35], Yano proved the existence of Killing vector fields on a compact orientable Rie-

mannian manifold. Moreover, from the integrability condition of Killing vector fields we
see that every Killing vector field on a Riemannian manifold (M̄, g) is affine Killing, but, the
converse is not necessarily true (see [11], [34], and [35]). Thus, in this paper we are inter-
ested in the study of real hypersurfaces with affine Killing Reeb vector field in the complex
quadric Qm.

The complex quadric Qm = SOm+2/SOmSO2 which is a complex hypersurface in the
complex projective space CPm+1 can be regarded as a kind of real Grassmann manifold
of compact type with rank 2 (see [4], [6], [12], and [16]). Accordingly, Qm admits two
important geometric structures, so-called a real structure A and a complex structure J which
anti-commute with each other, that is, AJ = −JA. By using the method of Lie algebra in
[17], the triple (Qm, J, g) is a Hermitian symmetric space of compact type with rank 2 and
its maximal sectional curvature is equal to 4 (see also [12], [27], and [29]).

As a typical characterization, Berndt–Suh [5] considered a notion of isometric Reeb flow
for real hypersurfaces in Qm and gave a classification theorem as follows:

Theorem A ([5]). Let M be a connected orientable real hypersurface in the complex
quadric Qm, m ≥ 3. Then, the Reeb flow on M is isometric if and only if m is even, say
m = 2k, and M is locally congruent to an open part of a tube around some totally geodesic
CPk in Q2k.
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It can be easily checked that the isometric Reeb flow is equivalent to the fact that the shape
operator S of M commutes with the structure tensor φ, that is, Sφ = φS. From this, a real
hypersurface M with isometric Reeb flow in Qm is Hopf. The notion of Hopf means that the
Reeb vector field ξ of M is principal for the shape operator S of M, that is, Sξ = g(Sξ, ξ)ξ =
αξ. If the Reeb function α = g(Sξ, ξ) identically vanishes on M, we say that M has vanishing
geodesic Reeb flow.

A nonzero tangent vector W ∈ T[z]Qm is called singular if it is tangent to more than one
maximal flat in Qm. The complex quadric Qm is a Hermitian symmetric space of rank 2. So,
there exist two types of singular tangent vectors in Qm: Let V(A) = {Z ∈ T[z]Qm | AZ = Z}
and JV(A) = {Z ∈ T[z]Qm | AZ = −Z} be the (+1)-eigenspace and (−1)-eigenspace for the
involution A on the tangent space T[z]Qm of Qm at any point [z] ∈ Qm.

• If there exists a conjugation A ∈ A = {Aλz̄ | λ ∈ S1⊂C} such that W ∈ V(A), then W
is singular, and it is called A-principal.
• If there exist a conjugation A ∈ A and orthonormal vectors Z1, Z2 ∈ V(A) such that

W/||W || = (Z1 + JZ2)/
√

2, then W is singular, and it is called A-isotropic.
Related to the singularity of tangent vector fields of Qm, Lee and Suh [20] gave a classi-

fication of Hopf real hypersurfaces in the complex quadric Qm as follows:

Theorem B ([20]). Let M be a Hopf real hypersurface in the complex quadric Qm, m ≥ 3.
Then the unit normal vector field N of M is A-principal if and only if M is locally congruent
to an open part of a tube around the m-dimensional sphere Sm which is totally real and
totally geodesic in Qm.

Remark 1.2. Usually, if the Reeb vector field ξ is Killing, that is, ξgi j = 0, then it is
affine Killing. So, the notion of affine Killing is more general and weaker than usual notion
of Killing. In fact, we note that

ξΓ
i
jk =

1
2
gim
{
∇̄ j(ξ gkm) + ∇̄k(ξ g jm) − ∇̄m(ξ g jk)

}
= 0.

Therefore, the Reeb vector field ξ is affine Killing (see [13]). The detailed proof also will be
given in Lemma 4.1 in section 4.

Motivated by Theorems A and B, and above Remark 1.2, we give a characterization of
Hopf real hypersurfaces with affine Killing Reeb vector field in the complex quadric Qm as
follows:

Theorem 1.3. Let M be a Hopf real hypersurface with affine Killing Reeb vector field ξ
in the complex quadric Qm, m ≥ 3. Then, the unit normal vector field N of M is singular,
that is, either A-principal or A-isotropic.

Then, we can obtain a characterization for real hypersurfaces in Theorem A as follows:

Theorem 1.4. Let M be a Hopf real hypersurface in the complex quadric Qm, m ≥ 3.
The Reeb vector field ξ is affine Killing if and only if M is locally congruent to an open part
of a tube around some totally geodesic CPk in Qm, where m = 2k.

Finally, as another generalization of Killing vector fields on a Riemannian manifold
(M̄, g), we introduce the notion of conformal Killing vector field on (M̄, g) as follows: A
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vector field V is said to be conformal Killing, if it satisfies

(1.7) (Vg)(X, Y) = 2δg(X, Y)

for a differentiable function δ, or equivalently,

(1.8) g(∇̄XV, Y) + g(∇̄YV, X) = 2δg(X, Y)

for all differentiable vector fields X, Y ∈ X(M̄). In this case, we say that the Reeb vector
field ξ is conformal Killing if it satisfies (1.7).

From (1.7), a Killing vector field becomes a conformal Killing for a vanishing function,
δ = 0. As a converse problem, by Theorem 1.4, we obtain as a corollary that the Reeb vector
field ξ should be Killing if ξ is conformal Killing as follows:

Corollary 1.5. Let M be a Hopf real hypersurface in the complex quadric Qm, m ≥ 3.
The Reeb vector field ξ is conformal Killing if and only if M is locally congruent to an open
part of a tube around some totally geodesic CPk in Qm, where m = 2k.

2. The complex quadric

2. The complex quadric
As mentioned in section 1, the complex quadric Qm is the complex hypersurface in CPm+1

defined by the equation z2
1 + · · ·+ z2

m+2 = 0, where z1, . . . , zm+2 are homogeneous coordinates
on CPm+1. We equip Qm with the Riemannian metric which is induced from the Fubini
Study metric on CPm+1 with constant holomorphic sectional curvature 4. The Kähler struc-
ture on CPm+1 induces canonically a Kähler structure (J, g) on the complex quadric. The
complex quadric Q1 is isometric to a sphere S2 with constant curvature, and Q2 is isometric
to the Riemannian product of two 2-spheres with constant curvature. For this reason we will
assume m ≥ 3 from now on (see [5]).

For a nonzero vector z ∈ Cm+2 we denote by [z] the complex span of z, that is,

[z] = Cz = {λz | λ ∈ S1 ⊂ C}.
Note that, by definition, [z] is a point in CPm+1. For each [z] ∈ Qm ⊂ CPm+1 we identify
T[z]CPm+1 with the orthogonal complement Cm+2�Cz of Cz in Cm+2. Then, the tangent space
T[z]Qm can be identified canonically with the orthogonal complement Cm+2 � (Cz ⊕ Cρ) of
Cz ⊕ Cρ in Cm+2, where ρ ∈ ν[z]Qm is a normal vector of Qm in CPm+1 at the point [z] (see
[17]).

For a unit normal vector ρ of Qm at a point [z] ∈ Qm we denote by A = Aρ the shape
operator of Qm in CPm+1 with respect to ρ. The shape operator A is an involution on the
tangent space T[z]Qm and

T[z]Qm = V(Aρ) ⊕ JV(Aρ),

where V(Aρ) is the (+1)-eigenspace and JV(Aρ) is the (−1)-eigenspace of Aρ. Geometrically
this means that the shape operator Aρ defines a real structure on the tangent space T[z]Qm.
Since the real codimension of Qm in CPm+1 is 2, this induces an S1-subbundle A of the
endomorphism bundle End(T Qm) consisting of real structures, that is, A = {Aλρ | λ ∈ S1 ⊂
C}. Then, the subbundle A is parallel, which means that there exists a certain 1-form q
defined on T Qm such that



Affine Killing Reeb Vector Field 137

(∇̄U A)W = q(U)JAW

for any vector fields U and W on Qm (see [27] and [29]). Moreover, for every unit tangent
vector W ∈ T[z]Qm there exist a conjugation A ∈ A and orthonormal vectors Z1, Z2 ∈ V(A)
such that

(2.1) W = cos(t)Z1 + sin(t)JZ2

for some t ∈ [0, π/4] (see Proposition 3 in [27]). The singular tangent vectors of Qm corre-
spond to the values t = 0 and t = π/4.

The Gauss equation for Qm in CPm+1 implies that the Riemannian curvature tensor R̄
of Qm can be described in terms of the complex structure J and the complex conjugations
A ∈ A:

R̄(X, Y)Z = g(Y, Z)X − g(X, Z)Y + g(JY,Z)JX − g(JX, Z)JY(2.2)

− 2g(JX, Y)JZ + g(AY, Z)AX

− g(AX, Z)AY + g(JAY, Z)JAX − g(JAX, Z)JAY.

For more background to this section we refer to [5], [8], [14], [17], [19], [26], [27], [31],
[32], and [33].

3. Real hypersurfaces in Qm

3. Real hypersurfaces in QmLet M be a real hypersurface in Qm and denote by N a unit normal vector field of M.
Then, we obtain the induced almost contact metric structure (φ, ξ, η, g) on M. From this, for
any vector field X tangent to M, we may put JX = φX + η(X)N and JN = −ξ, where φX
is the tangential component of JX. The tangent bundle T M of M splits orthogonally into
T M =  ⊕ Rξ, where  = ker η is the maximal complex subbundle of T M. The structure
tensor field φ restricted to  coincides with the complex structure J restricted to , and
φξ = 0.

Denote by ∇ and S the induced Riemannian connection and the shape operator on M,
respectively. Then the Gauss and Weingarten formulas are given respectively by

∇̄XY = ∇XY + g(SX, Y)N, ∇̄XY = −SX,

where ∇̄ is the connection on Qm. Also, we have

(3.1) (∇Xφ)Y = η(Y)SX − g(SX, Y)ξ, ∇Xξ = φSX.

Moreover, since the complex quadric Qm has also a real structure A, we decompose AX
into its tangential and normal components for a fixed A ∈ A[z] and X ∈ T[z]M:

AX = BX + g(AX,N)N

where BX denotes the tangential component of AX.
On the other hand, since the normal vector field N belongs to T[z]Qm, [z] ∈ M, from (2.1),

we can choose A ∈ A[z] such that

(3.2) N = cos(t)Z1 + sin(t)JZ2

for some orthonormal vectors Z1, Z2 ∈ V(A) and 0 ≤ t ≤ π4 . If t = 0, then N = Z1 ∈ V(A),
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therefore we see that the unit normal vector field N of M becomes an A-principal vector
field. On the other hand, if t = π4 , then N = 1√

2
(Z1 + JZ2). That is, N is A-isotropic.

It is known that the Reeb vector field ξ is defined by ξ = −JN. Then, it follows that

(3.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ξ = sin(t)Z2 − cos(t)JZ1,

AN = cos(t)Z1 − sin(t)JZ2,

Aξ = sin(t)Z2 + cos(t)JZ1.

From this, we have g(Aξ,N) = 0 and g(Aξ, ξ) = −g(AN,N) = − cos(2t) on M. In particular,
from the former equation we know that the unit vector field Aξ is tangent to M. So, we get

(3.4) AN = AJξ = −JAξ = −φAξ − η(Aξ)N,
where we have used the property of JA = −AJ. Hereafter, for our convenience sake, we
denote the smooth function g(Aξ, ξ) by κ, that is,

κ = g(Aξ, ξ) = − cos(2t).

Moreover, by using the Gauss and Weingarten formulas, the left side of (2.2) becomes

R̄(X, Y)Z = R(X, Y)Z − g(SY, Z)SX + g(SX, Z)SY +
{
g((∇XS)Y, Z) − g((∇YS)X, Z)

}
N,

where R and S denote the Riemannian curvature tensor and the shape operator of M in
Qm, respectively. From this formula, taking tangential and normal components of (2.2), we
obtain respectively

R(X, Y)Z = g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY(3.5)

− 2g(φX, Y)φZ + g(BY, Z)BX − g(BX, Z)BY

+ g(φBY, Z)φBX + g(φBY, Z)g(X, φAξ)ξ

+ g(Y, φAξ)η(Z)φBX − g(φBX, Z)φBY

− g(φBX, Z)g(Y, φAξ)ξ − g(X, φAξ)η(Z)φBY

+ g(SY, Z)SX − g(SX, Z)SY

and

(∇XS)Y − (∇YS)X = η(X)φY − η(Y)φX − 2g(φX, Y)ξ(3.6)

− g(φAξ, X)BY + g(φAξ, Y)BX

+ g(Aξ, X)φBY + g(Aξ, X)g(φAξ, Y)ξ

− g(Aξ, Y)φBX − g(Aξ, Y)g(φAξ, X)ξ,

which are called the equations of Gauss and Codazzi.
Now let us assume that M is a Hopf real hypersurface in the complex quadric Qm. That

is, the shape operator S of M in Qm satisfies Sξ = αξ where the Reeb function α of M is
given by α = g(Sξ, ξ). By Codazzi equation (3.6) and (3.4), we obtain:

Lemma 3.1 ([5]). Let M be a Hopf hypersurface in Qm, m ≥ 3. Then, we obtain

(3.7) Xα = (ξα)η(X) − 2κg(φAξ, X)

and
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2SφSX − αφSX − αSφX − 2φX − 2g(φAξ, X)Aξ(3.8)

+ 2g(Aξ, X)φAξ + 2κg(φAξ, X)ξ − 2κη(X)φAξ = 0

for any tangent vector fields X and Y on M.

Remark 3.2 ([18]). By (3.7) we know that if M has vanishing geodesic Reeb flow, then
the unit normal vector field N of M in Qm becomes singular. Moreover, by the definition,
the unit vector field N is A-isotropic if the smooth function κ = g(Aξ, ξ) identically vanishes
on M in Qm.

From (3.8) we want to give some information about principal curvatures for Hopf real
hypersurfaces in Qm with A-principal normal vector field as follows:

Lemma 3.3 ([30]). Let M be a Hopf hypersurface in Qm such that the normal vector
field N is A-principal everywhere. Then, the Reeb function α is constant. Moreover, if
X ∈  is a principal curvature vector of M with principal curvature λ, then 2λ � α and its
corresponding vector φX is a principal curvature vector of M with principal curvature αλ+2

2λ−α .

In addition, when the unit normal vector field N of M is A-principal, we obtain that
Aξ = −ξ and AN = N from (3.2) and (3.3). By using these formulas we get

Lemma 3.4 ([21]). Let M be a real hypersurface with A-principal normal vector field N
in the complex quadric Qm, m ≥ 3. Then we obtain:

(a) AX = BX,
(b) AφX = −φAX,
(c) AφSX = −φSX and q(X) = 2g(SX, ξ),
(d) ASX = SX − 2g(SX, ξ)ξ and SAX = SX − 2η(X)Sξ

for all X ∈ T M.

If a real hypersurface M in Qm has an A-isotropic unit normal vector field N, it yields

g(Aξ,N) = 0 and g(AN,N) = g(Aξ, ξ) = 0.

From this and (3.4), we see that the two unit vector fields Aξ and AN belong to the distri-
bution  = [ξ]⊥, which is the orthogonal complement of the Reeb vector field ξ. Thus, it
follows that AN = −φAξ, so Aξ⊥AN. This implies that the tangent vector bundle T M of M
can be decomposed as

T M = [ξ] ⊕ span{Aξ, AN} ⊕,
where [ξ] = span{ξ} and  �  = ⊥ = span{Aξ, AN}. Using such a decomposition and
(3.8), we get the following:

Lemma 3.5 ([21]). Let M be a Hopf hypersurface in Qm, m ≥ 3, such that the normal
vector field N is A-isotropic everywhere. Then the following statements hold.

(a) The Reeb function α is constant.
(b) The unit tangent vector fields Aξ and AN = −φAξ are principal for the shape oper-

ator and their principal curvature is zero, that is,

SAξ = SAN = SφAξ = 0.
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(c) If X ∈  is a principal curvature vector of M with principal curvature λ, then 2λ � α
and its corresponding vector φX is a principal curvature vector of M with principal
curvature αλ+2

2λ−α .

4. Hopf real hypersurfaces with affine Killing Reeb vector field

4. Hopf real hypersurfaces with affine Killing Reeb vector field
In this section, first, we will give an important result concerned with Killing and affine

Killing vector fields on Riemannian manifolds (M̄, g). In addition, by using this property,
we will give a some basic formula about Hopf real hypersurfaces with affine Killing Reeb
vector field in the complex quadric Qm, m ≥ 3.

We will prove the following.

Lemma 4.1. Let (M̄, g) be a Riemannian manifold with Riemannian connection ∇̄ and
V be a differentiable vector field on M̄. If V is a Killing vector field, then it is also affine
Killing.

Proof. The curvature tensor R̄ satisfies

g(R̄(X, Y)U,W) = g(R̄(U,W)X, Y) (Interchange Symmetry)

and

g(R̄(X, Y)U,W) = −g(R̄(X, Y)W,U) (Skew Symmetry)

for any X, Y,U,W ∈ X(M̄). By using these properties and (1.6), we obtain

g(R̄(X, Y)V,W) + g(R̄(Y,V)X,W) − g(R̄(V, X)Y,W)(4.1)

= g(R̄(X, Y)V,W) − g(R̄(X,W)V, Y) − g(R̄(Y,W)V, X)

= g(∇̄X∇̄YV,W) − g(∇̄Y∇̄XV,W) − g(∇̄[X,Y]V,W)

− g(∇̄X∇̄WV, Y) + g(∇̄W∇̄XV, Y) + g(∇̄[X,W]V, Y)

− g(∇̄Y∇̄WV, X) + g(∇̄W∇̄YV, X) + g(∇̄[Y,W]V, X)

for any vector fields X, Y,V and W ∈ X(M̄). By the first Bianchi identity,

R̄(X, Y)V + R̄(Y,V)X + R̄(V, X)Y = 0,

the left side of (4.1) becomes

g(R̄(X, Y)V,W) + g(R̄(Y,V)X,W) − g(R̄(V, X)Y,W) = −2g(R̄(V, X)Y,W).(4.2)

On the other hand, from the assumption of V being Killing, (1.2) yields

(4.3) g(∇̄XV,W) = −g(∇̄WV, X)

for all vector fields X,W ∈ X(M̄). Since [X, Y] = ∇̄XY − ∇̄Y X ∈ X(M̄), (4.3) gives us

g(∇̄[X,Y]V,W) = −g(∇̄WV, [X, Y]) = −g(∇̄WV, ∇̄XY) + g(∇̄WV, ∇̄Y X).(4.4)

Moreover, taking the covariant derivative of (4.3) along the Y-direction gives

(4.5) g(∇̄Y ∇̄XV,W) = −g(∇̄Y∇̄WV, X) − g(∇̄WV, ∇̄Y X) − g(∇̄XV, ∇̄YW).

Then, from (4.4) and (4.5), we obtain
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g(∇̄X∇̄YV,W) − g(∇̄Y∇̄XV,W) − g(∇̄[X,Y]V,W)(4.6)

= g(∇̄X∇̄YV,W) + g(∇̄Y∇̄WV, X) + g(∇̄XV, ∇̄YW) + g(∇̄WV, ∇̄XY).

Similarly, we get

g(∇̄X∇̄WV, Y) − g(∇̄W∇̄XV, Y) − g(∇̄[X,W]V, Y)(4.7)

= g(∇̄X∇̄WV, Y) + g(∇̄W∇̄YV, X) + g(∇̄XV, ∇̄WY) + g(∇̄YV, ∇̄XW)

and

g(∇̄Y∇̄WV, X) − g(∇̄W∇̄YV, X) − g(∇̄[Y,W]V, X)(4.8)

= g(∇̄Y∇̄WV, X) + g(∇̄W∇̄XV, Y) + g(∇̄YV, ∇̄W X) + g(∇̄XV, ∇̄YW).

Substituting (4.6), (4.7), and (4.8) into the right side of (4.1), it follows:

g(R̄(X, Y)V,W) + g(R̄(Y,V)X,W) − g(R̄(V, X)Y,W)(4.9)

= g(∇̄X∇̄YV,W) + g(∇̄Y∇̄WV, X) + g(∇̄XV, ∇̄YW) + g(∇̄WV, ∇̄XY)

− g(∇̄X∇̄WV, Y) − g(∇̄W∇̄YV, X) − g(∇̄XV, ∇̄WY) − g(∇̄YV, ∇̄XW)

− g(∇̄Y∇̄WV, X) − g(∇̄W∇̄XV, Y) − g(∇̄YV, ∇̄W X) − g(∇̄XV, ∇̄YW)

= g(∇̄X∇̄YV,W) + g(∇̄XV, ∇̄YW) + g(∇̄WV, ∇̄XY)

− g(∇̄X∇̄WV, Y) − g(∇̄W∇̄YV, X) − g(∇̄XV, ∇̄WY) − g(∇̄YV, ∇̄XW)

− g(∇̄W∇̄XV, Y) − g(∇̄YV, ∇̄W X) − g(∇̄XV, ∇̄YW).

Applying the formula (4.5) to the two terms g(∇̄X∇̄WV, Y) and g(∇̄W∇̄XV, Y) in the right side
of (4.9), then it follows that

g(R̄(X, Y)V,W) + g(R̄(Y,V)X,W) − g(R̄(V, X)Y,W)(4.10)

= 2g(∇̄X∇̄YV,W) + 2g(∇̄WV, ∇̄XY).

Then, by using (4.2) and (4.3), the formula (4.10) can be rewritten as follows:

−2g(R̄(V, X)Y,W) = g(R̄(X, Y)V,W) + g(R̄(Y,V)X,W) − g(R̄(V, X)Y,W)

= 2g(∇̄X∇̄YV,W) + 2g(∇̄WV, ∇̄XY)

= 2g(∇̄X∇̄YV,W) − 2g(∇̄∇̄XYV,W),

that is,

g(R̄(V, X)Y,W) = −g(∇̄X∇̄YV,W) + g(∇̄∇̄XYV,W)

for any vector fields X, Y and W ∈ X(M̄). From this, we get

R̄(V, X)Y = −∇̄X∇̄YV + ∇̄∇̄XYV.

By (1.5), it implies that for any differentiable vector fields X, Y ∈ X(M̄)

(V∇̄)(X, Y) = 0,

which means that the Killing vector field V is affine Killing. �

Bearing this result in mind, let us consider the case of the Reeb vector field ξ of M being
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affine Killing. Here, M denotes a Hopf real hypersurface in the complex quadric Qm, m ≥ 3.
That is, the Reeb vector field ξ of M satisfies ξ∇ = 0, where ∇ is the Levi-Civita connection
of M. Then, (1.5), together with ∇Xξ = φSX, yields

0 = (ξ∇)(X, Y) = R(ξ, X)Y + ∇X∇Yξ − ∇∇XYξ(4.11)

= R(ξ, X)Y + ∇X(φSY) − φS(∇XY)

= R(ξ, X)Y + (∇Xφ)SY + φ(∇XS)Y,

where we used ∇X(φSY) − φS(∇XY) = (∇Xφ)SY + φ(∇XS)Y for any vector fields X and
Y ∈ T M. Moreover, from (3.1) we get

(∇Xφ)SY = η(SY)SX − g(SX, SY)ξ.

By this formula and (3.5), the equation (4.11) becomes

0 = R(ξ, X)Y + η(SY)SX − g(SX, SY)ξ + φ(∇XS)Y(4.12)

= g(X, Y)ξ − η(Y)X + g(BX, Y)Aξ − g(Aξ, Y)BX + g(φBX, Y)φAξ

+ g(X, φAξ)η(Y)φAξ − g(φAξ, Y)φBX − g(φAξ, Y)g(X, φAξ)ξ

+ g(SX, Y)Sξ − g(SX, SY)ξ + φ(∇XS)Y.

Moreover, from our assumption of M being Hopf, the Reeb vector field ξ satisfies Sξ = αξ.
Then, (4.12) can be written as

g(X, Y)ξ − η(Y)X + g(BX, Y)Aξ − g(Aξ, Y)BX + g(φBX, Y)φAξ(4.13)

+ g(X, φAξ)η(Y)φAξ − g(φAξ, Y)φBX − g(φAξ, Y)g(X, φAξ)ξ

+ αg(SX, Y)ξ − g(SX, SY)ξ + φ(∇XS)Y = 0

for any tangent vector fields X and Y on M. Consequently, (4.13) is equivalent to the as-
sumption of the Reeb vector field ξ being affine Killing.

5. Proof of Theorem 1.3

5. Proof of Theorem 1.3
In this section, we want to show that the unit normal vector field N is singular for Hopf

real hypersurfaces M in Qm with affine Killing Reeb vector field. Then, we can use (4.13).
So, if we put Y = ξ in (4.13), it follows that

0 = η(X)ξ − X + g(Aξ, X)Aξ − κBX + g(φAξ, X)φAξ + φ(∇XS)ξ

= η(X)ξ − X + g(Aξ, X)Aξ − κBX + g(φAξ, X)φAξ

− αSX + α2η(X)ξ − φSφSX,

where we have used (∇XS)ξ = (Xα)ξ+αφSX−SφSX and φ2SX = −SX+g(SX, ξ)ξ. Applying
the structure tensor φ of M to this equation becomes

−φX + g(Aξ, X)φAξ − κφBX − g(φAξ, X)Aξ + κg(φAξ, X)ξ − αφSX + SφSX = 0,

that is,

(5.1) SφSX − φX + g(Aξ, X)φAξ − g(φAξ, X)Aξ + κg(φAξ, X)ξ = αφSX + κφBX.

Moreover, from (3.8) we obtain



Affine Killing Reeb Vector Field 143

2SφSX − 2φX + 2g(Aξ, X)φAξ − 2g(φAξ, X)Aξ + 2κg(φAξ, X)ξ(5.2)

= αφSX + αSφX + 2κη(X)φAξ.

Hence, both equations (5.1) and (5.2) give

(5.3) α(φS − Sφ)X = 2κ
{
η(X)φAξ − φBX

}
for any tangent vector field X on M.

As mentioned in Remark 3.2, we know that if either the Reeb function α = g(Sξ, ξ) or the
smooth function κ = g(Aξ, ξ) identically vanishes on M, then the unit normal vector field N
becomes singular. Thus, in the remaining part of this section we only consider the case of
both α and κ being non-vanishing.

Proposition 5.1. Let M be a Hopf real hypersurface with non-vanishing geodesic Reeb
flow in the complex quadric Qm, m ≥ 3. If the Reeb vector field ξ of M is affine Killing and
κ � 0, then the unit normal vector field N of M is A-principal.

Proof. Putting X = Aξ in (5.3) and using BAξ = A2ξ − g(A2ξ,N)N = ξ, together with
α � 0, we get

(5.4) SφAξ = φSAξ + σφAξ,

where σ = − 2κ2
α

. Taking X = φAξ in (3.8) and using (5.4), together with g(φAξ, φAξ) =
1 − κ2, we obtain

(5.5) S2Aξ = −2κ3ξ + (α − σ)SAξ.

On the other hand, taking the inner product of (4.13) with ξ and using Bξ = Aξ, we obtain

g(X, Y) − η(X)η(Y) + κg(BX, Y) − g(Aξ, X)g(Aξ, Y)(5.6)

− g(φAξ, X)g(φAξ, Y) + αg(SX, Y) − g(SX, SY) = 0

for any tangent vector fields X and Y on M. Taking X = Aξ in (5.6) we obtain

αg(SAξ, Y) − g(S2Aξ, Y) = 0 ∀Y ∈ T M,

which implies that

(5.7) S2Aξ = αSAξ.

From this and (5.5), we see that

(5.8) SAξ = ακξ.

Moreover, from (5.8) equation (5.4) becomes

(5.9) SφAξ = σφAξ.

Putting X = φAξ in (5.6), and using (5.9), we get

0 = φAξ + κBφAξ − (1 − κ2)φAξ + ασφAξ − σ2φAξ(5.10)

= (2κ2 + ασ − σ2)φAξ

= −σ2φAξ,
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where we used

BφAξ = AφAξ − g(AφAξ,N)N

= A(−AN − κN) − g(AN,−AN − κN)N

= −N − κAN + g(AN, AN)N + κg(AN,N)N

= −κAN + κg(AN,N)N

= κφAξ + κ2N + κg(AN,N)N

= κφAξ,

together with AN = −φAξ − κN, A2X = X and κ = g(Aξ, ξ) = −g(AN,N).
Since the smooth functions α and κ are non-vanishing on M, we get

σ = −2κ2

α
� 0.

Thus, (5.10) tells that the vector field φAξ vanishes on M, that is, φAξ = 0. Since g(φAξ,
φAξ) = 1 − κ2, it means κ = ±1. Meanwhile, from (3.3) we see that the smooth function κ =
g(Aξ, ξ) is given by κ(t) = − cos(2t) where t ∈ [0, π4 ). By such two facts related to κ, we
consequently have t = 0. This means that the unit normal vector field N satisfies N = Z1 ∈
V(A). Therefore, we claim that the unit normal vector field N is A-principal. �

Summing up Remark 3.2 and Proposition 5.1 we give a complete proof of our Theo-
rem 1.3.

6. Proof of Theorem 1.4

6. Proof of Theorem 1.4
In this section, unless otherwise stated, let M be a Hopf real hypersurface with affine

Killing Reeb vector field in the complex quadric Qm, m ≥ 3.
First, by virtue of our Theorem 1.3, we consider the case where M has an A-principal

normal vector field N in Qm. Then, Theorem B tells that M with A-principal normal vector
field N is locally congruent to an open part of a tube around the m-dimensional sphere Sm.
Hereafter, we call such a model space (resp. a model space in Theorem A) a real hypersur-
face of type (B) (resp. a real hypersurface of type (A)) and denote such a model space by
(B) (resp. (A)).

As a converse of this statement, naturally, the following question arises.
Has the real hypersurface (B) of type (B) in Qm an affine Killing Reeb
vector field ξ?

To solve this problem, we introduce the following proposition given in [30].

Proposition A. Let (B) be the tube of radius 0 < r < π

2
√

2
around the m-dimensional

sphere Sm in Qm. Then the following statements hold:

(i) (B) is a Hopf hypersurface.
(ii) The normal bundle of (B) consists of A-principal vector fields.

(iii) (B) has three distinct constant principal curvatures. The principal curvatures and
corresponding principal curvature spaces of (B) are as follows:
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principal curvature eigenspace multiplicity
α = −√2 cot(

√
2r) Tα = RJN 1

λ =
√

2 tan(
√

2r) Tλ = V(A) ∩  = {X ∈  | AX = X} m − 1
μ = 0 Tμ = JV(A) ∩  = {X ∈  | AX = −X} m − 1

(iv) Sφ + φS = 2τφ, τ = − 1
α
� 0 (contact hypersurface).

By (i) and (ii) in Proposition A, we know that (B) is a Hopf real hypersurface with A-
principal normal vector field N in Qm, m ≥ 3.

Assume that the Reeb vector field ξ of (B) satisfies the affine Killing property (4.11).
It implies (4.13) for all tangent vector fields X and Y on T (B) = Tα ⊕ Tλ ⊕ Tμ. Then, by
Lemma 3.4 and (4.13) we obtain for Y = ξ

2η(X)ξ − X + AX − αSX + α2η(X)ξ − φSφSX = 0,(6.1)

where we have used Aξ = −ξ and φ(∇XS)ξ = α2η(X)ξ − αSX − φSφSX. Then, by Proposi-
tion A, the left side of (6.1) becomes

(6.2) 2η(X)ξ − X + AX − αSX + α2η(X)ξ − φSφSX =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if X ∈ Tα

2X if X ∈ Tλ
−2X if X ∈ Tμ.

Then, comparing (6.1) with (6.2), we get a contradiction. Summing up all the facts, we get
the following

Lemma 6.1. There does not exist any Hopf real hypersurface with affine Killing Reeb
vector field in the complex quadric Qm, m ≥ 3, whose unit normal vector field N is A-
principal.

From this lemma, together with Theorem 1.3, it follows that

Proposition 6.2. Let M be a Hopf real hypersurface with affine Killing Reeb vector field
in the complex quadric Qm, m ≥ 3. Then, the unit normal vector field N in Qm is A-isotropic.

By virtue of Proposition 6.2, the unit normal vector field N of M is A-isotropic. Thus, N
is expressed as

N =
1√
2

(Z1 + JZ2)

for some orthonormal vector fields Z1, Z2 ∈ V(A), where V(A) denotes the (+1)-eigenspace
of the complex conjugation A ∈ A. Since AJ = −JA and J2X = −X, it follows that

AN =
1√
2

(Z1 − JZ2), JN =
1√
2

(JZ1 − Z2), and AJN = − 1√
2

(JZ1 + Z2).

Then it gives that

κ = g(ξ, Aξ) = g(JN, AJN) = 0 = −g(AN,N)

and

g(ξ, AN) = −g(JN, AN) = 0,

which means that the vector fields AN = −φAξ and Aξ are tangent to M. From κ = 0 and
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(5.3), it follows that

(6.3) α(φS − Sφ)X = 0

for any tangent vector field X on M. If M has non-vanishing geodesic Reeb flow, that is,
α � 0, (6.3) gives that the shape operator S commutes with the structure tensor φ on M,
that is, Sφ = φS. So, the Reeb vector field ξ becomes Killing if the Reeb function α is
non-vanishing on M.

In the following proposition let us consider the case that M has vanishing geodesic Reeb
flow, that is, α = 0. In fact, from Lemma 3.5 we obtain:

Proposition 6.3. Let M be a Hopf real hypersurface with affine Killing Reeb vector field
in the complex quadric Qm, m ≥ 3. If M has vanishing geodesic Reeb flow, the Reeb vector
field ξ is Killing. That is, the shape operator S of M commutes with the structure tensor φ
on M.

Proof. Since M is a Hopf real hypersurface with affine Killing Reeb vector field ξ in Qm,
we see that the unit normal vector field N is A-isotropic. That is, it implies κ = g(Aξ, ξ) = 0.
By using this fact and our assumption α = 0, if we take the inner product of (4.13) with ξ, it
follows that

g(X, Y) − η(X)η(Y) − g(Aξ, X)g(Aξ, Y) − g(φAξ, X)g(φAξ, Y) − g(SX, SY) = 0

for any tangent vector fields X and Y on M. Then, we get

(6.4) X − η(X)ξ − g(Aξ, X)Aξ − g(φAξ, X)φAξ − S2X = 0

for any X ∈ T M.
On the other hand, by the fact (b) in Lemma 3.5, the tangent bundle T M of M is given by

T M = [ξ] ⊕  = [ξ] ⊕⊥ ⊕,
where  = [ξ]⊥ and ⊥ = span{Aξ, AN} ⊂ . So, (6.4) provides

S2X = X − η(X)ξ − g(Aξ, X)Aξ − g(φAξ, X)φAξ =
{

0 if X ∈ [ξ] ⊕⊥
X if X ∈  .(6.5)

Now, choose some unit tangent vector field X0 of  such that SX0 = λX0. Substituting
X = X0 in (6.5) yields λ2 = 1, that is, λ = ±1. Moreover, from Lemma 3.5 we see that
the corresponding unit vector field φX0 is also a principal curvature vector field of M with
principal curvature μ := 1

λ
. That is, we obtain either SφX0 = φX0 if SX0 = X0 or SφX0 =

−φX0 if SX0 = −X0. From this, we know that the eigenspace Tλ = {X ∈  ⊂  | SX = λX} is
φ-invariant, that is, φTλ = Tλ.

On the other hand, it is well-known that the shape operator S is diagonalizable, that is, S
has a basis of eigenvectors. From such a view point, we take

B =

{
ξ, Aξ, AN, e1, e2 = φe1, . . . , ep−1, ep = φep−1,

ep+1, ep+2 = φep+1, . . . , e2m−5, e2m−4 := φe2m−5

}

as the basis of M satisfying

Sξ = SAξ = SAN = 0
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and

Sek =

{
ek for k = 1, 2, . . . , p,
−ek for k = p + 1, . . . , 2m − 4.

Then, any tangent vector field X ∈  is expressed by the basis B as

X = g(X, ξ)ξ + g(X, Aξ)Aξ + g(X, AN)AN +
2m−4∑
k=1

g(X, ek)ek =

2m−4∑
k=1

g(X, ek)ek.(6.6)

Applying the operator φS of T M to (6.6) yields

φSX =
2m−4∑
k=1

g(X, ek)φSek =

p∑
k=1

g(X, ek)φSek +

2m−4∑
k=p+1

g(X, ek)φSek(6.7)

=

p∑
k=1

g(X, ek)φek −
2m−4∑
k=p+1

g(X, ek)φek

= g(X, e1)φe1 + g(X, e2)φe2 + · · · + g(X, ep−1)φep−1

+ g(X, ep)φep − g(X, ep+1)φep+1 − g(X, ep+2)φep+2

− · · · − g(X, e2m−5)φe2m−5 − g(X, e2m−4)φeem−4

= g(X, e1)e2 + g(X, e2)φ2e1 + · · · + g(X, ep−1)ep

+ g(X, ep)φ2ep−1 − g(X, ep+1)ep+2 − g(X, ep+2)φ2ep+1

− · · · − · · · − g(X, e2m−5)e2m−4 − g(X, e2m−4)φ2eem−5

= g(X, e1)e2 − g(X, e2)e1 + · · · + g(X, ep−1)ep

− g(X, ep)ep−1 − g(X, ep+1)ep+2 + g(X, ep+2)ep+1

− · · · − g(X, e2m−5)e2m−4 + g(X, e2m−4)eem−5

= g(X, e1)e2 + · · · + g(X, ep−1)ep + g(X, ep+2)ep+1 + · · ·
+ g(X, e2m−4)e2m−5 − g(X, e2)e1 − · · · − g(X, ep)ep−1

− g(X, ep+1)ep+2 − · · · − g(X, e2m−5)e2m−4,

where we have used φ2ek = −ek + η(ek)ξ = −ek for any k = 1, 2, . . . , 2m − 4.
On the other hand, by using linear combination with our basis and the symmetric property

of S, the tangent vector field SφX is given as follows:

SφX = g(SφX, ξ)ξ + g(SφX, Aξ)Aξ + g(SφX, AN)AN(6.8)

+ g(SφX, e1)e1 + g(SφX, φe1)φe1 + · · · + g(SφX, ep−1)ep−1

+ g(SφX, φep−1)φep−1 + g(SφX, ep+1)ep+1 + g(SφX, φep+1)φep+1

+ · · · + g(SφX, e2m−5)e2m−5 + g(SφX, φe2m−5)φe2m−5

= g(φX, Se1)e1 + g(φX, Sφe1)φe1 + · · · + g(φX, Sep−1)ep−1

+ g(φX, Sφep−1)φep−1 + g(φX, Sep+1)ep+1 + g(φX, Sφep+1)φep+1

+ · · · + g(φX, Se2m−5)e2m−5 + g(φX, Sφe2m−5)φe2m−5

= g(φX, e1)e1 + g(φX, φe1)φe1 + · · · + g(φX, ep−1)ep−1

+ g(φX, φep−1)φep−1 − g(φX, ep+1)ep+1 − g(φX, φep+1)φep+1
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− · · · − g(φX, e2m−5)e2m−5 − g(φX, φe2m−5)φe2m−5

= −g(X, φe1)e1 − g(X, φ2e1)φe1 + · · · − g(X, φep−1)ep−1

− g(X, φ2ep−1)φep−1 + g(X, φep+1)ep+1 + g(X, φ2ep+1)φep+1

+ · · · + g(X, φe2m−5)e2m−5 + g(X, φ2e2m−5)φe2m−5

= −g(X, φe1)e1 + g(X, e1)φe1 + · · · − g(X, φep−1)ep−1 + g(X, ep−1)φep−1

+ g(X, φep+1)ep+1 − g(X, ep+1)φep+1

+ · · · + g(X, φe2m−5)e2m−5 − g(X, e2m−5)φe2m−5

= −g(X, e2)e1 + g(X, e1)e2 + · · · − g(X, ep)ep−1 + g(X, ep−1)ep

+ g(X, ep+2)ep+1 − g(X, ep+1)ep+2

+ · · · + g(X, e2m−4)e2m−5 − g(X, e2m−5)e2m−4

= g(X, e1)e2 + · · · + g(X, ep−1)ep + g(X, ep+2)ep+1 + · · · + g(X, e2m−4)e2m−5

− g(X, e2)e1 − · · · − g(X, ep)ep−1 − g(X, ep+1)ep+2 − · · · − g(X, e2m−5)e2m−4

for any tangent vector field X ∈ . From (6.7) and (6.8) we see that the shape operator S of
M commutes with the structure tensor φ on M, that is, Sφ = φS on .

Bearing in mind Sξ = SAξ = SAN = 0, together with φ2Aξ = −Aξ, we naturally obtain
that the commuting property Sφ = φS holds on [ξ] ⊕⊥.

From these facts, we conclude that the shape operator S commutes with the structure
tensor φ on M, when the Reeb function α identically vanishes on M. It completes the proof
of our proposition. �

Consequently, Proposition 6.3 and (6.3) assure that the affine Killing Reeb vector field ξ
of M must be Killing. Moreover, by virtue of this fact and Lemma 4.1 we give a complete
proof of Theorem 1.4.

7. Proof of Corollary 1.5

7. Proof of Corollary 1.5
As a generalized notion of Killing vector field of Riemannian manifolds (M̄, g), we intro-

duced conformal vector fields in the introduction. In fact, in (1.7)

(Vg)(X, Y) = 2δg(X, Y)

for any vector fields X and Y and the smooth function δ = 0 on M̄ implies that any conformal
Killing vector field V satisfies the Killing property (1.1). From this, it assures:

Fact A. Any Killing vector field V of M̄ becomes conformal Killing with δ = 0.

Motivated by this assertion, let us consider the converse problem of Fact A. That is,
we prove that if the Reeb vector field ξ of a Hopf real hypersurface in Qm is conformal, it
satisfies the Killing property as follows:

Lemma 7.1. Let M be a Hopf real hypersurface in the complex quadric Qm, m ≥ 3, with
conformal Killing Reeb vector field ξ . Then, the Reeb vector field ξ becomes Killing. That
is, the shape operator S of M commutes with the structure tensor φ on M.
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Proof. From the assumption of the Reeb vector field being conformal Killing, (1.8) gives

(7.1) φSX − SφX = 2δX

for any tangent vector field X on M. Substituting X = ξ in this equation and using M being
Hopf implies the smooth function δ identically vanishes on M. From this, the conformal
Killing property (7.1) becomes for any tangent vector field X on M

φSX − SφX = 0,

which means that the vector field ξ is Killing. �

From Lemma 7.1, together with Theorem A, we give a complete proof of Corollary 1.5.
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