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Abstract
We establish a relative Bertini type theorem for multiplier ideal sheaves. Then we prove a

relative version of the Kollár–Nadel type vanishing theorem as an application.

1. Introduction

1. Introduction
Let X be a smooth complex projective variety and let D be an effective Q-divisor on X.

Let H be a general member of a free linear system Λ on X. Then it is well known and is
easy to see that the equality

J (H,D|H) =J (X,D)|H
holds and that there exists the following short exact sequence

0→J (X,D) ⊗ OX(−H)→J (X,D)→J (H,D|H)→ 0,

where J (X,D) (resp. J (H,D|H)) is the multiplier ideal sheaf associated to D (resp. D|H).
Let ϕ be a quasi-plurisubharmonic function on X. Then, for every smooth subvariety H, the
inclusion

J (ϕ|H) ⊂J (ϕ)|H
follows from the Ohsawa–Takegoshi L2 extension theorem. Note that J (ϕ) (resp. J (ϕ|H))
is the multiplier ideal sheaf associated to ϕ (resp. ϕ|H). However, the equality

J (ϕ|H) =J (ϕ)|H
does not always hold.

Furthermore, we think that the existence of a smooth member H0 of Λ such that the
equality

J (ϕ|H0 ) =J (ϕ)|H0

holds and that there exists the following natural short exact sequence

0→J (ϕ) ⊗ OX(−H0)→J (ϕ)→J (ϕ|H0 )→ 0

is highly nontrivial. In [9, Theorem 1.10], we established that there are many members
of Λ satisfying the above good properties. The main purpose of this paper is to prove the
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following theorem.

Theorem 1.1 (Relative Bertini type theorem for multiplier ideal sheaves). Let f : X → S
be a proper surjective morphism from a complex manifold X to a complex analytic space
S. Let Π be a set of at most countably many quasi-plurisubharmonic functions on X. We
consider the following commutative diagram:

X
h

���������������������

f

��

g
����

��
��

��
�

S × PN

p1����
��

��
��

� p2
�� PN

S

where pi is the i-th projection for i = 1, 2. We consider the complete linear system

Λ := |OPN (1)| � PN

on PN. Let S† be any relatively compact open subset of S. We put X† := f −1(S†), h† := h|X† ,
and consider

G :=
{

H′ ∈ Λ
∣∣∣∣∣∣ H† := (h†)∗H′ is well-defined and is a smooth divisor on X†,

and J (ϕ|H†) =J (ϕ)|H† holds for every ϕ ∈ Π
}
⊂ Λ.

We note that H† is well-defined if and only if the image of every connected component of X†

by h† is not contained in H′. We also note that J (ϕ) (resp. J (ϕ|H†)) is the multiplier ideal
sheaf on X (resp. H†) associated to ϕ (resp. ϕ|H†) for every ϕ ∈ Π. Then G is dense in Λ
(� PN) in the classical topology. Furthermore, we put

H :=
{

H′ ∈ G

∣∣∣∣∣∣ H† := (h†)∗H′ contains no associated primes of OX/J (ϕ)
on X† for every ϕ ∈ Π

}
⊂ G .

Then H is also dense in Λ in the classical topology. More generally, G \S and H \S

are dense in Λ in the classical topology for any analytically meagre subset S of Λ (see
Definition 3.1 below for analytically meagre subsets). We note that there exists the following
natural short exact sequence

0→J (ϕ|X†) ⊗ OX†(−H†)→J (ϕ|X†)→J (ϕ|H†)→ 0

for every H′ ∈H and every ϕ ∈ Π, where H† = (h†)∗H′.

In Theorem 1.1, we are mainly interested in the case where there exists s0 ∈ S† such
that dim g( f −1(s0)) > 0. We want to cut down g( f −1(s0)) by the linear system Λ in some
applications (see the proof of Theorem 1.4 below). It may happen that H† = 0 for some
H′ ∈ G when dim g( f −1(s)) = 0 holds for every s ∈ S†. If S is a point and #Π = 1, then
Theorem 1.1 is essentially the same as [9, Theorem 1.10] (see also [9, Corollary 3.11]).
Therefore, Theorem 1.1 can be seen as a relative generalization of [9, Theorem 1.10]. We
note that Λ \ G is not always analytically meagre in the sense of Definition 3.1 (see, for
example, [9, Example 3.10]).

Let ϕ be a quasi-plurisubharmonic function on a compact complex manifold X. We put
Π = {mϕ}m∈N. Then, as a very special case of Theorem 1.1, we have:
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Corollary 1.2. Let X be a compact complex manifold and let ϕ be a quasi-
plurisubharmonic function on X. Let W be a free linear system on X. Then there exists
a dense subset V of W such that every element H of V is smooth and that

0→J (mϕ) ⊗ OX(−H)→J (mϕ)→J (mϕ|H)→ 0

is exact for every positive integer m.

Let us recall one of the main results of [15], which is a relative version of [9, Theorem
A]. Of course, the proof of Theorem 1.3 in [15] is much harder than that of [9, Theorem A].
Theorem 1.3 is a generalization of the Enoki injectivity theorem in [4], which is an analytic
counterpart of the Kollár injectivity theorem (see [11]).

Theorem 1.3 ([15, Theorem 1.3]). Let π : X → S be a proper surjective locally Kähler
morphism from a complex manifold X to a complex analytic space S. Let F be a holomorphic
line bundle on X equipped with a singular hermitian metric h and let M be a holomorphic
line bundle on X with a smooth hermitian metric hM. Assume that

√−1ΘhM (M) ≥ 0 and
√−1Θh(F) − ε√−1ΘhM (M) ≥ 0

for some ε > 0. Then, for any non-zero holomorphic section s of M, the map

×s : Rqπ∗(ωX ⊗ F ⊗J (h))→ Rqπ∗(ωX ⊗ F ⊗J (h) ⊗ M)

induced by the tensor product with s is injective for every q, where ωX is the canonical
bundle of X and J (h) is the multiplier ideal sheaf associated to the singular hermitian
metric h.

By using Theorems 1.1 and 1.3, we prove a relative version of the Kollár–Nadel type
vanishing theorem (see [7]).

Theorem 1.4 (Relative Kollár–Nadel type vanishing theorem). Let f : X → Y be a
proper surjective locally Kähler morphism from a complex manifold X to a complex analytic
space Y. Let π : Y → Z be a projective surjective morphism between complex analytic
spaces. Let F be a holomorphic line bundle on X equipped with a singular hermitian metric
h. Let H be a π-ample holomorphic line bundle on Y. Assume that there exists a smooth
hermitian metric g on f ∗H such that

√−1Θg( f ∗H) ≥ 0 and
√−1Θh(F) − ε√−1Θg( f ∗H) ≥ 0

for some ε > 0. Then we have

Riπ∗Rj f∗(ωX ⊗ F ⊗J (h)) = 0

for every i > 0 and j, where ωX is the canonical bundle of X and J (h) is the multiplier
ideal sheaf associated to the singular hermitian metric h.

As an application of Theorem 1.4 and the strong openness in [10], we have:

Corollary 1.5. Let f : X → Y be a proper surjective locally Kähler morphism from a
complex manifold X to a complex analytic space Y. Let π : Y → Z be a locally projective
surjective morphism between complex analytic spaces. Let F be a holomorphic line bundle
on X equipped with a singular hermitian metric h such that

√−1Θh(F) ≥ 0. Let M be a
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π-nef and π-big holomorphic line bundle on Y. Then we have

Riπ∗(M ⊗ Rj f∗(ωX ⊗ F ⊗J (h))) = 0

for every i > 0 and j, where ωX is the canonical bundle of X and J (h) is the multiplier
ideal sheaf associated to the singular hermitian metric h.

For related vanishing theorems, see [6], [7], [11], [14], [17], [18], and so on. We recom-
mend the reader to see [8, Chapters 5 and 6], where we discuss various Kollár type vanishing
theorems by using the theory of mixed Hodge structures on cohomology with compact sup-
port and explain their applications to the minimal model program for higher-dimensional
complex algebraic varieties.

We give a remark on Nakano semipositive vector bundles.

Remark 1.6 (Twists by Nakano semipositive vector bundles). Let E be a Nakano semi-
positive holomorphic vector bundle on X. Then it is not difficult to see that Theorems 1.3,
1.4, and Corollary 1.5 hold even when ωX is replaced by ωX ⊗ E. We leave the details as an
exercise for the reader (see [9, Section 6]).

The following example may help the reader understand Theorem 1.1 and its proof given
in this paper.

Example 1.7. We put

Δn = {(z1, . . . , zn) ∈ Cn | |z1| < 1, · · · , |zn| < 1}.
Let π : Δn → Δ = {z ∈ C | |z| < 1} be the projection given by (z1, . . . , zn) �→ zn. Let ϕ be
a quasi-plurisubharmonic function in a neighborhood of Δn, that is, the closure of Δn in Cn.
Then, by the Ohsawa–Takegoshi L2 extension theorem, we have the following inclusion

J (ϕ|Hs) ⊂J (ϕ)|Hs

for every s ∈ Δ, where Hs = π−1(s). Since J (ϕ) is a coherent ideal sheaf, it is locally
finitely generated. By applying Fubini’s theorem to each local generator of J (ϕ), we get
the opposite inclusion

J (ϕ|Hs) ⊃J (ϕ)|Hs

for almost all s ∈ Δ. Therefore, the equality

J (ϕ|Hs) =J (ϕ)|Hs

holds for almost all s ∈ Δ.

Recently, Xiankui Meng and Xiangyu Zhou established a simpler and more natural ap-
proach to the Bertini type theorem for multiplier ideal sheaves in [16]. We strongly rec-
ommend the interested reader to see [16]. Moreover, Mingchen Xia answered [9, Problem
1.11] affirmatively by a very clever argument (see [19]).
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2. Preliminaries

2. Preliminaries
For the basic results of the theory of complex analytic spaces, see [2] and [5]. For various

analytic methods used in this paper, we recommend the reader to see [3].

Definition 2.1 (Singular hermitian metrics and curvatures). Let F be a holomorphic
line bundle on a complex manifold X. A singular hermitian metric on F is a metric h which
is given in every trivialization θ : F|U � U × C by

|ξ|h = |θ(ξ)|e−ϕ on U,

where ξ is a section of F on U and ϕ ∈ L1
loc(U) is an arbitrary function. Here L1

loc(U) is
the space of locally integrable functions on U. We usually call ϕ the weight function of the
metric with respect to the trivialization θ. The curvature of a singular hermitian metric h is
defined by

Θh(F) := 2∂∂ϕ,

where ϕ is a weight function and ∂∂ϕ is taken in the sense of currents. It is easy to see that
the right hand side does not depend on the choice of trivializations. Therefore, we get a
global closed (1, 1)-current Θh(F) on X.

Definition 2.2 ((Quasi-)plurisubharmonic functions and multiplier ideal sheaves). A
function ϕ : U → [−∞,∞) defined on an open set U ⊂ Cn is called plurisubharmonic
if

(i) ϕ is upper semicontinuous, and
(ii) for every complex line L ⊂ Cn, ϕ|U∩L is subharmonic on U ∩ L, that is, for every

a ∈ U and ξ ∈ Cn satisfying |ξ| < d(a,Uc) = inf{|a − x| | x ∈ Uc}, the function ϕ
satisfies the mean inequality

ϕ(a) ≤ 1
2π

∫ 2π

0
ϕ(a + eiθξ)dθ.

Let X be an n-dimensional complex manifold. A function ϕ : X → [−∞,∞) is said to
be plurisubharmonic if there exists an open cover X =

⋃
i∈I Ui such that ϕ|Ui is plurisubhar-

monic on Ui (⊂ Cn) for every i. A quasi-plurisubharmonic function is a function ϕ which is
locally equal to the sum of a plurisubharmonic function and of a smooth function.

Let ϕ be a quasi-plurisubharmonic function on a complex manifold X. Then the multiplier
ideal sheaf J (ϕ) ⊂ OX is defined by

Γ(U,J (ϕ)) = { f ∈ OX(U) | | f |2e−2ϕ ∈ L1
loc(U)}

for every open set U ⊂ X. It is well known that J (ϕ) is a coherent ideal sheaf on X.
Let S be a complex submanifold of X. Then the restriction J (ϕ)|S of the multiplier ideal

sheaf J (ϕ) to S is defined by the image of J (ϕ) under the natural surjective morphism
OX → OS, that is,

J (ϕ)|S =J (ϕ)/J (ϕ) ∩IS,

where IS is the defining ideal sheaf of S on X. We note that the restriction J (ϕ)|S does not
always coincide with J (ϕ) ⊗ OS =J (ϕ)/J (ϕ) IS.
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Definition 2.3 (Multiplier ideal sheaves associated to singular hermitian metrics). Let
F be a holomorphic line bundle on a complex manifold X and let h be a singular hermitian
metric on F. We assume

√−1Θh(F) ≥ γ for some smooth (1, 1)-form γ on X. We fix a
smooth hermitian metric h∞ on F. Then we can write h = h∞e−2ψ for some ψ ∈ L1

loc(X).
Then ψ coincides with a quasi-plurisubharmonic function ϕ on X almost everywhere. In
this situation, we put J (h) :=J (ϕ). We note that J (h) is independent of h∞ and is well-
defined.

3. Bertini type theorem revisited

3. Bertini type theorem revisited
In this section, we will reformulate some results in [12] for our purposes. Let us recall

the definition of analytically meagre subsets.

Definition 3.1. A subset S of a complex analytic space X is said to be analytically
meagre if

S ⊂
⋃
n∈N

Yn

where each Yn is a locally closed analytic subset of X of codimension ≥ 1.

The following result is a slight reformulation of [12, (II.5) Theorem and (II.7) Corollary].
We need it for the proof of Theorem 1.1 in Section 4.

Theorem 3.2 (Bertini type theorem for complex manifolds). Let M be a complex man-
ifold which has a countable base of open subsets and let L be a holomorphic line bundle
on M. Assume that M has only finitely many connected components. Let tl be an ele-
ment of H0(M,L ) for every 1 ≤ l ≤ N + 1 such that {t1, . . . , tN+1} generates L , that is,
W ⊗C OM → L is surjective, where W is the linear subspace of H0(M,L ) spanned by
{t1, . . . , tN+1}. We consider an (N + 1)-dimensional vector space V =

⊕N+1
l=1 Ctl. Then there

exists a dense subset D of Λ = (V − {0})/C×(� PN) such that Λ \ D is analytically meagre
and that for each element of D the corresponding divisor on M is smooth.

In Theorem 3.2, we do not assume that {t1, . . . , tN+1} is linearly independent.
Proof of Theorem 3.2. If N = 0, then the statement is trivial. Therefore, we may assume

that N ≥ 1.

Step 1. In this step, we will prove that there exists a dense subset E of V , which is a
countable intersection of dense open subsets of V , such that for every s ∈ V the zero set
(s = 0) is a smooth divisor on M if and only if s ∈ E .

We take a countable covering {Ki}i∈N of M such that Ki is compact for every i. We may
assume that Ki is contained in an open subset Ui of M such that there exists si ∈ V which is
never zero on Ui for every i. We put

Ei :=
{

s ∈ V

∣∣∣∣∣∣ (s = 0) contains no connected components of M
and is smooth at every point of Ki ∩ (s = 0)

}
.

Then Ei is open in V by [12, I Step in the proof of (II.5) Theorem] and is dense in V by [12,
II Step in the proof of (II.5) Theorem]. We put E =

⋂
i∈N Ei. Then E is dense in V by the

Baire category theorem. By definition, for every s ∈ V , (s = 0) is a smooth divisor on M if
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and only if s ∈ E . By definition, Ei is C×-invariant and Ei ⊂ V − {0}. We put p(E ) = D ,
where p : V − {0} → Λ is the natural projection. Of course, D is dense in Λ.

Step 2. In this step, we will prove that Λ \ D is a countable union of locally closed
analytic subsets of Λ.

Let {Ui}i∈N be an open covering of M on which L is trivial as in Step 1. With respect to
this trivialization of L , we can see that every s ∈ V is a holomorphic function on each Ui.
Since the number of connected components of M is finite, we can take a finite number of
linear subspaces {Vj}kj=1 of V such that Vj � V for every j and that s ∈ V is not identically
zero on any connected component of M if and only if s ∈ V \⋃k

j=1 Vj. For each i, we can
consider the holomorphic map

Fi : Ui × V → C × V

defined by Fi(x, s) = (s(x), s). Since every s ∈ V† := V \⋃k
j=1 Vj is not identically zero on

any connected component of M, Fi is flat on Ui × V† (see [12, (II.1) Lemma]). We consider

Ai :=
{
(x, s) ∈ Ui × V†

∣∣∣ s(x) = 0 and (s = 0) is not smooth at x
}

= F−1
i ({0} × V†) ∩ {(x, s) ∈ Ui × V† | F−1

i (Fi(x, s)) is not smooth at (x, s)}.
Then, by [12, (0.3) a) Proposition], Ai is an analytic subset of Ui×V† for every i. Therefore,

A :=
⋃
i∈N

Ai ∪
⎛⎜⎜⎜⎜⎜⎜⎝M ×

k⋃
j=1

Vj

⎞⎟⎟⎟⎟⎟⎟⎠
is a countable union of locally closed analytic subsets of M × V . By construction, V \ E =

q(A), where q : M × V → V is the natural projection. Therefore, V \ E is a countable
union of locally closed analytic subsets by [12, Lemma in (0.2)]. Thus we see that Λ \D =

p(q(A) − {0}) is also a countable union of locally closed analytic subsets by [12, Lemma in
(0.2)].

Hence Λ \ D is analytically meagre since Λ \ D is a countable union of locally closed
analytic subsets by Step 2 and D is dense by Step 1. �

Although Theorem 3.2 is sufficient for the proof of Theorem 1.1 in Section 4, we add
some remarks for the reader’s convenience.

Remark 3.3. The proof of Theorem 3.2 says that we can take D such that Λ \ D is a
countable union of locally closed analytic subsets of Λ of codimension ≥ 1 and that for
every s ∈ Λ the zero set (s = 0) defines a smooth divisor on M if and only if s ∈ D .

Remark 3.4. Theorem 3.2 and Remark 3.3 hold true without assuming that M has only
finitely many connected components. We assume that M has infinitely many connected
components. Then we have the irreducible decomposition M =

⋃
n∈N Mn since M has a

countable base of open subsets. By applying Theorem 3.2 and Remark 3.3 to each Mn, we
get a dense subset Dn of Λ with the desired properties for every n. We put D =

⋂
n∈NDn.

Then Λ \D is a countable union of locally closed analytic subsets of Λ of codimension ≥ 1,
and for every s ∈ Λ the zero set (s = 0) defines a smooth divisor on M if and only if s ∈ D .
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We prepare easy lemmas for the proof of Theorem 1.1 in Section 4.

Lemma 3.5. Let S be an analytically meagre subset of PN. Let p : PN − {P} → PN−1

be the linear projection from P ∈ PN. Then there exists an analytically meagre subset S ′

of PN−1 such that p−1(x) ∩ S is an analytically meagre subset of p−1(x) � C for every
x ∈ PN−1 \S ′.

Proof. We may assume that S is a countable union of locally closed analytic subsets
of PN . We note that p(V − {P}) is a countable union of locally closed analytic subsets of
PN−1, where V is any locally closed analytic subset of PN (see, for example, [12, Lemma in
(0.2)]). By taking a suitable subdivision of S into locally closed analytic subsets of PN , we
can write

S =

⎛⎜⎜⎜⎜⎜⎜⎝⋃
j∈N

Yj

⎞⎟⎟⎟⎟⎟⎟⎠ ∪
⎛⎜⎜⎜⎜⎜⎝⋃

k∈N
Zk

⎞⎟⎟⎟⎟⎟⎠ ,
where dim Yj = N − 1 such that p : Yj − {P} → PN−1 has no positive dimensional fibers for
every j, and any irreducible component of p(Zk − {P}) has dimension ≤ N − 2 for every k.
We put S ′ =

⋃
k∈N p(Zk − {P}). Then S ′ satisfies the desired properties. �

Lemma 3.6 will play an important role in the induction on N.

Lemma 3.6. Let GN be a subset of PN and let Σ be an analytically meagre subset of PN.
Let GN−1 be a subset of PN−1 such that GN−1 \SN−1 is dense in PN−1 in the classical topology
for any analytically meagre subset SN−1 of PN−1. Let p : PN − {P} → PN−1 be the linear
projection from P ∈ PN. Assume that almost all points of p−1(x) is contained in GN for every
x ∈ GN−1 with p−1(x) \ Σ � ∅. Then GN \SN is dense in PN in the classical topology for any
analytically meagre subset SN of PN.

Proof. We put S = Σ ∪ SN . Then S is an analytically meagre subset of PN . We
can define an analytically meagre subset S ′ of PN−1 as in the proof of Lemma 3.5. Then
GN−1 \S ′ is dense in PN−1 in the classical topology by assumption. By assumption again,
almost all points of p−1(x) is contained in GN \SN for every x ∈ GN−1 \S ′. Therefore, we
can easily see that GN \SN is dense in PN in the classical topology. �

We will use Lemma 3.6 in order to prove the density of G in Theorem 1.1 by induction
on N.

Remark 3.7. In Lemma 3.6, we assume that PN is the linear system Λ = |OPN (1)| as in
Theorem 1.1. We assume that P ∈ PN = Λ corresponds to a hyperplane H′0 on the original
projective space PN . Let p : PN − {P} → PN−1 be the linear projection as in Lemma 3.6.
Then we can regard PN−1 as the linear system Λ|H′0 .

4. Proof of Theorem 1.1

4. Proof of Theorem 1.1
In this section, we will prove Theorem 1.1. We prepare some lemmas before we start the

proof of Theorem 1.1. Lemma 4.1 is essentially the same as [9, Lemma 3.2]. Note that a
main ingredient of Lemma 4.1 is the Ohsawa–Takegoshi L2 extension theorem.
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Lemma 4.1. Let f : X → S, Π, Λ, S†, X†, and h† be as in Theorem 1.1. Let H′i be an
element of Λ for 1 ≤ i ≤ k. We assume the following condition:

♠ H†i := (h†)∗H′i is a well-defined smooth divisor on X† for every 1 ≤ i ≤ k and
∑k

i=1 H†i
is a simple normal crossing divisor on X†. Moreover, for every 1 ≤ i1 < i2 < · · · <
il ≤ k and any P ∈ H†i1 ∩H†i2 ∩ · · · ∩H†il , the set { fi1 , fi2 , . . . , fil} is a regular sequence
for OX,P/J (ϕ)P for every ϕ ∈ Π, where fi is a (local) defining equation of H†i for
every i.

We put Fi := H†1 ∩ H†2 ∩ · · · ∩ H†i for 1 ≤ i ≤ k. Let F be an irreducible component of Fk.
We assume that the equality

J (ϕ|F) =J (ϕ)|F
holds for some ϕ ∈ Π. Then

J (ϕ|F j) =J (ϕ)|F j

holds in a neighborhood of F in F j for every j.

Remark 4.2. (1) Let (A,m) be a local ring and let M be a finitely generated non-zero
A-module. Let {x1, . . . , xr} be a sequence of elements of m. We put M0 = M and Mi =

M/x1M + · · ·+ xiM. Then {x1, . . . , xr} is said to be a regular sequence for M if ×xi+1 : Mi →
Mi is injective for every 0 ≤ i ≤ r − 1.

(2) Condition ♠ in Lemma 4.1 does not depend on the order of {H′1,H′2, · · · ,H′k} (see, for
example, [13, Theorem 16.3] and [1, Chapter III, Corollary (3.5)]).

(3) Let F be a coherent analytic sheaf on a complex manifold X. Then there exists a
locally finite family {Yi}i∈I of irreducible analytic subsets of X such that

AssOX,x(Fx) = {px,1, . . . , px,r(x)},
where px,1, . . . , px,r(x) are prime ideals of OX,x associated to the irreducible components of
the germs x ∈ Yi (see, for example, [12, (I.6) Lemma]). Note that Yi is called an analytic
subset associated with F . In this paper, we simply say that Yi is an associated prime of
F if there is no risk of confusion. Then we can check that condition ♠ is equivalent to the
following condition:

• H†i := (h†)∗H′i is a well-defined smooth divisor on X† for every 1 ≤ i ≤ k and∑k
i=1 H†i is a simple normal crossing divisor on X†. Moreover, for every 1 ≤ i1 <

i2 < · · · < il−1 < il ≤ k, the divisor H†il contains no associated primes of OX/J (ϕ)
and OH†i1∩···∩H†il−1

/J (ϕ)|H†i1∩···∩H†il−1
for every ϕ ∈ Π.

For the proof and the details of Lemma 4.1, see [9, Lemmas 3.1 and 3.2, Remark 3.3, and
Lemma 3.4]. Lemma 4.3 below is similar to [9, Lemma 3.5].

Lemma 4.3. Let f : X → S, Π, Λ, S†, X†, and h† be as in Theorem 1.1. Let Λ0 be an
m-dimensional sublinear system of Λ spanned by {H′1, . . . ,H′m,H′m+1} such that {H′1, . . . ,H′m,
H′m+1} satisfies ♠. We put

F0 = {H′ ∈ Λ0 | {H′1, . . . ,H′m,H′} satisfies ♠}.
Then Λ0 \F0 is analytically meagre.
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Moreover, we assume that J (ϕ|F) = J (ϕ)|F holds for some ϕ ∈ Π, where F is an
irreducible component of H†1 ∩ · · · ∩ H†m+1. Let H′ be a member of F0. Then

J (ϕ|H†) =J (ϕ)|H†
holds in a neighborhood of F in H†, where H† = (h†)∗H′.

Proof. Let Λ̃0 be the sublinear system of Λ0 spanned by {H′1, . . . ,H′m}. Then we see that

H†1 ∩ · · · ∩ H†m ∩ H†m+1 = H†1 ∩ · · · ∩ H†m ∩ H†

holds for every H′ ∈ Λ0 \ Λ̃0. We note that the number of irreducible components of
H†i1 ∩ H†i2 ∩ · · · ∩ H†il with 1 ≤ i1 < i2 < · · · < il ≤ m is finite. We also note that for
every ϕ ∈ Π the number of the associated primes of OX†/J (ϕ)|X† and the number of the
associated primes of

OH†i1∩···∩H†il
/J (ϕ)|H†i1∩···∩H†il

with 1 ≤ i1 < i2 < · · · < il ≤ m are finite (see Remark 4.2 (3) and [12, (I.6) Lemma]).
Moreover, #Π is at most countable by assumption. On the other hand, it is obvious that
H†1 ∩ · · · ∩ H†m+1 is empty on X† \ H†1 ∩ · · · ∩ H†m+1. Therefore, by applying Theorem 3.2 to
X† \H†1∩· · ·∩H†m+1 and H†i1 ∩ · · · ∩ H†il \H†1∩· · ·∩H†m+1 for every 1 ≤ i1 < i2 < · · · < il ≤ m,
we can easily check that Λ0 \F0 is analytically meagre.

Let H′ be a member of F0. Then

H†1 ∩ · · · ∩ H†m ∩ H†m+1 = H†1 ∩ · · · ∩ H†m ∩ H†

always holds. Therefore, F is an irreducible component of H†1 ∩ · · · ∩ H†m ∩ H†. Thus, by
Lemma 4.1 and Remark 4.2, the equality J (ϕ|H†) = J (ϕ)|H† holds in a neighborhood of
F in H† for every H′ ∈ F0. �

Let us prove Theorem 1.1.
Proof of Theorem 1.1. Without loss of generality, we may assume that S has a countable

base of open subsets by shrinking S suitably. Moreover, by replacing S with its smaller
relatively compact open subset if necessary, we may further assume that S is a relatively
compact open subset of a complex analytic space throughout the proof of Theorem 1.1.
Of course, we may assume that every connected component of X intersects with X† by
abandoning unnecessary connected components of X. We may assume that ϕ � −∞ for
every ϕ ∈ Π.

Step 1. In this step, we will prove that G is dense in Λ in the classical topology under
the assumption that N = 1. More generally, we will see that H , G \S , and H \S are
dense in Λ in the classical topology for any analytically meagre subset S of Λ under the
assumption that N = 1.

By Sard’s theorem (see, for example, [12, (I.1) Theorem]), there exists a countable subset
Σ of P1 such that Xx = h∗x is a smooth divisor on X for every x ∈ P1 \ Σ. Of course, it may
happen that h−1(x) is empty. By the Ohsawa–Takegoshi L2 extension theorem, we have

J (ϕ|Xx) ⊂J (ϕ)|Xx
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for every x ∈ P1 \ Σ. On the other hand, for every ϕ ∈ Π, by Fubini’s theorem, we see that

J (ϕ|X†x ) ⊃J (ϕ)|X†x
holds for almost all x ∈ P1 \ Σ, where X†x := Xx ∩ X† (see Example 1.7). Note that #Π is
at most countable by assumption. This means that G is dense in Λ � P1 in the classical
topology. Since there are only finitely many associated primes of OX/J (ϕ) on X† for every
ϕ ∈ Π (see Remark 4.2 (3) and [12, (I.6) Lemma]), G \H is an analytically meagre subset
of Λ. We note that (Λ \ G ) ∪ S has measure zero for any analytically meagre subset S

of Λ � P1. Therefore, we see that H , G \S , and H \S are dense in Λ in the classical
topology for any analytically meagre subset S of Λ.

Step 2. By Step 1, we can prove the following lemma.

Lemma 4.4. Let H′1 and H′2 be two members of Λ such that {H′1,H′2} satisfies ♠. Let P

be the pencil spanned by H′1 and H′2, that is, P is the sublinear system of Λ spanned by H′1
and H′2. Then, for almost all H′ ∈P , {H′} satisfies ♠, and

J (ϕ|H†) =J (ϕ)|H†
holds for every ϕ ∈ Π outside H†1 ∩ H†2 , where H† = (h†)∗H′, H†1 = (h†)∗H′1, and H†2 =
(h†)∗H′2.

Proof of Lemma 4.4. First, by Lemma 4.3, for almost all H′ ∈P , {H′} satisfies ♠. Next,
we consider the following commutative diagram.

X̃

��

�� S × PP1 (E )

��

�� PP1 (E )

��

�� P1

X �� S × PN �� PN

���
�

�
�

�

Note that E = O⊕N−1
P1 ⊕ OP1 (1), PP1 (E ) → PN is the blow-up along H′1 ∩ H′2, and PN � P1

is the projection from H′1 ∩ H′2. In the above diagram, X̃ is a resolution of the blow-up of
X along h∗H′1 ∩ h∗H′2 such that X̃ is nothing but the blow-up of X† along H†1 ∩ H†2 over X†.
We apply the argument in Step 1 to X̃ → S × P1 → P1 and get the desired property, that is,
J (ϕ|H†) = J (ϕ)|H† holds for every ϕ ∈ Π outside H†1 ∩ H†2 for almost all H′ ∈ P . Note
that a point of P1 corresponds to a hyperplane of PN containing H′1 ∩ H′2 by the projection
PN � P1. �

Step 3. In this step, we will prove the following lemma, which is the most difficult part
of the proof of Theorem 1.1.

Lemma 4.5. There exists some H′ ∈ G such that {H′} satisfies ♠, equivalently, H′ ∈H .

Proof of Lemma 4.5. If N = 1, then this lemma follows from Step 1. From now on,
we assume that N ≥ 2. We take two general hyperplanes H′1 and H′2 of PN . We can choose
H′1 and H′2 such that {H′1,H′2} satisfies ♠ since Λ is free. By Lemma 4.4, we can take a
hyperplane A1 of PN such that X1 = h∗A1 is smooth, {A1} satisfies ♠, and the equality

J (ϕ|X†1 ) =J (ϕ)|X†1
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holds for every ϕ ∈ Π outside H†1 ∩ H†2 , where X†1 = X1 ∩ X† = (h†)∗A1. More precisely, if
S† is not compact, then we take a strictly larger open subset S̃ with S† � S̃ � S and apply
everything to S̃ instead of S†. Then we replace S with S̃. By this argument, we can make
X1 = h∗A1 smooth on X (not on X†). By applying the induction hypothesis to Λ|A1 , we see
that

{H′ ∈ Λ | X1 ∩ H† is smooth and J (ϕ|X1∩H†) =J (ϕ|X1 )|X1∩H† holds for every ϕ ∈ Π}
is dense in Λ in the classical topology, where H† = (h†)∗H′.

We can take general hyperplanes A2, . . . , AN of PN such that Q = A1 ∩ · · · ∩ AN , X†Q :=
XQ ∩ X† is smooth, where XQ = h−1(Q), and the equality

J (ϕ|X†Q) =J (ϕ|X1 )|X†Q
holds for every ϕ ∈ Π by using the induction hypothesis repeatedly. As we saw above, if
necessary, we apply everything to a strictly larger open subset S̃ instead of S† with S† �
S̃ � S and replace S with S̃ in each step. Without loss of generality, we may assume that
X†Q ∩ H†1 ∩ H†2 = ∅. Since J (ϕ|X†1 ) =J (ϕ)|X†1 outside H†1 ∩ H†2 ,

J (ϕ|X1 )|X†Q =J (ϕ|X†1 )|X†Q =J (ϕ)|X†Q
holds for every ϕ ∈ Π. Therefore, we obtain

J (ϕ|X†Q) =J (ϕ|X1 )|X†Q =J (ϕ)|X†Q
for every ϕ ∈ Π. Of course, we can choose A2, A3, . . . , AN such that

{A1, A2, . . . , AN}
satisfies ♠ with the aid of Lemma 3.6 (see also Remark 3.7) since Λ is a free linear system.
We put

Λ0 = {A |Q ∈ A ∈ |OPN (1)|} ⊂ Λ,
equivalently, Λ0 is the sublinear system of Λ spanned by {A1, . . . , AN}. Then

F0 = {H′ ∈ Λ0 | {H′, A2, . . . , AN} satisfies ♠}
is non-empty by A1 ∈ F0 and Λ0 \ F0 is analytically meagre by Lemma 4.3. Thus, by
Lemma 4.3, we have:

Claim. The equality J (ϕ|X†g ) =J (ϕ)|X†g holds in a neighborhood of X†Q for every ϕ ∈ Π
and for every Ag ∈ F0, where Xg := h∗Ag.

Let π : X̃ → X be a proper bimeromorphic morphism from a complex manifold X̃ such
that π : X̃ → X is nothing but the blow-up of X† along X†Q over X†. Then we have the
following commutative diagram.

X̃ ��

π

��

S × P(E ) ��

��

P(E ) ��

��

PN−1

X �� S × PN �� PN

pQ

���
�

�
�

�
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Of course, pQ : PN � PN−1 is the linear projection from Q and P(E ) is the blow-up of PN at
Q, where P(E ) = PPN−1 (OPN−1 ⊕OPN−1 (1)). We consider the following commutative diagram.

X̃
h̃

����������������������

f̃

��

g̃ 		��
��

��
��

��

S × PN−1

p1


���

��
��

��
� p2

�� PN−1

S

We put X̃† = f̃ −1(S†). By induction on N, we can take a general hyperplane B of PN−1 such
that h̃∗B ∩ X̃† is smooth and that

(4.1) J (π∗ϕ|̃h∗B∩X̃†) =J (π∗ϕ)|̃h∗B∩X̃†

holds for every ϕ ∈ Π. Let H′ be the hyperplane of PN spanned by Q and B. Note that, by
induction on N, we can choose B such that

{A2, . . . , AN ,H′}
satisfies ♠ since Λ0 \F0 is analytically meagre. Therefore, we obtain that the equality

J (ϕ|H†) =J (ϕ)|H†
holds for every ϕ ∈ Π by Claim and (4.1), where H† = (h†)∗H′ as usual. More precisely,
(4.1) implies that the equality

J (ϕ|H†) =J (ϕ)|H†
holds outside X†Q and Claim implies that the equality

J (ϕ|H†) =J (ϕ)|H†
holds in a neighborhood of X†Q. Hence this H′ is a desired divisor. �

Step 4. In this step, we will see that G \S is dense in Λ in the classical topology for any
analytically meagre subset S of Λ.

By Step 1, we may assume that N ≥ 2. By Lemma 4.5, we can take a member H′0 ∈ G

such that {H′0} satisfies ♠. By the same argument as before, if S† is not compact, then we
take a strictly larger open subset S̃ with S† � S̃ � S. Then we apply everything to S̃ instead
of S†. By replacing S with S̃, we may assume that h∗H′0 is smooth on X. By applying the
induction hypothesis to Λ|H′0 , we see that

G ′ :=

⎧⎪⎪⎨⎪⎪⎩H′ ∈ Λ
∣∣∣∣∣∣∣ H†0 ∩ H† is smooth and J (ϕ|H†0∩H†) =J (ϕ|H†0 )|H†0∩H†

holds for every ϕ ∈ Π

⎫⎪⎪⎬⎪⎪⎭
is dense in Λ in the classical topology, where H†0 = (h†)∗H′0 and H† = (h†)∗H′ as usual.
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Since Λ is free,

F := {H′ ∈ Λ | {H′0,H′} satisfies ♠}
is non-empty and Λ \F is analytically meagre. Therefore, we see that

G ′′ := {H′ ∈ G ′ | {H′0,H′} satisfies ♠}
is also dense in Λ in the classical topology with the aid of Lemma 3.6. We note that

(4.2) J (ϕ|H†0∩H†1
) =J (ϕ|H†0 )|H†0∩H†1

=J (ϕ)|H†0∩H†1

with H†1 = (h†)∗H′1 for every H′1 ∈ G ′ since

J (ϕ|H†0 ) =J (ϕ)|H†0 .
Here, we used the fact that H′0 ∈ G . We consider the pencil P spanned by H′0 and H′1 ∈ G ′′,
that is, the sublinear system of Λ spanned by H′0 and H′1. By Lemma 4.4, for almost all
H′ ∈P , H† = (h†)∗H′ is smooth and the equality

J (ϕ|H†) =J (ϕ)|H†
holds for every ϕ ∈ Π outside H†0 ∩H† = H†0 ∩H†1 . For almost all H′ ∈P , {H′0,H′} satisfies
♠ by Lemma 4.3. Therefore, the equality

J (ϕ|H†) =J (ϕ)|H†
holds for every ϕ ∈ Π in a neighborhood of H†0 ∩ H† = H†0 ∩ H†1 for almost all H′ ∈ P by
Lemma 4.3 and (4.2). Therefore, for almost all H′ ∈P , H† is smooth and the equality

J (ϕ|H†) =J (ϕ)|H†
holds for every ϕ ∈ Π. This means that almost all members of P are contained in G .

Let P be a point of PN � Λ corresponding to H′0. We put Σ = Λ\F , GN−1 = G ′|H′0 ⊂ Λ|H′0 ,
and GN = G . Then we can apply Lemma 3.6 (see also Remark 3.7). Therefore, G \ S is
dense in Λ in the classical topology for any analytically meagre subset S of Λ.

Step 5. In this step, we will see that H is dense in Λ in the classical topology.
We put

K :=
{

H′ ∈ Λ
∣∣∣∣∣∣ H† := (h†)∗H′ is well-defined and contains no associated primes of

OX/J (ϕ) on X† for every ϕ ∈ Π
}
.

Then Λ \K is analytically meagre. Note that Λ is free and the number of the associated
primes of OX/J (ϕ) on X† is finite for every ϕ ∈ Π and that #Π is at most countable.
Therefore, by Step 4, H is dense in Λ in the classical topology because G \H is contained
in an analytically meagre subset of Λ.

Step 6. Let H′ be a member of H and let ϕ be any member of Π. We consider the
following big commutative diagram.
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0

��

0

��
0 �� J (ϕ|X†) ⊗ OX†(−H†)

��

α �� J (ϕ|X†)

��

�� Cokerα ��

β

��

0

0 �� OX†(−H†)

��

�� OX†

��

�� OH† �� 0

(
OX†/J (ϕ|X†)) ⊗ OX†(−H†)

γ ��

��

OX†/J (ϕ|X†)

��
0 0

Of course, H† is (h†)∗H′ in the above diagram. Since H′ ∈ H , γ is injective. Therefore, β
is also injective by the snake lemma. Thus we obtain that

Cokerα =J (ϕ|X†)|H†
by definition. Then we have the following desired short exact sequence

0→J (ϕ|X†) ⊗ OX†(−H†)→J (ϕ|X†)→J (ϕ|H†)→ 0

because J (ϕ|H†) =J (ϕ|X†)|H† holds for H′ ∈H .

We complete the proof of Theorem 1.1. �

Remark 4.6. Theorem 1.1 says that G is dense in Λ in the classical topology. However,
the proof of Theorem 1.1 gives no information on the set Λ \G in Λ (� PN). This is because
we use Lemma 3.6 for induction on N. We recommend the reader to see [9, Examples 3.9
and 3.10].

We close this section with the proof of Corollary 1.2.
Proof of Corollary 1.2. We assume that S is a point. We put Π = {mϕ}m∈N and h =

ΦW : X → PN . Hence, by using Theorem 1.1, we obtain a desired subset V of W. �

5. Proof of Theorem 1.4

5. Proof of Theorem 1.4
In this section, we prove Theorem 1.4 as an application of Theorems 1.1 and 1.3.
Proof of Theorem 1.4. We take an arbitrary point z ∈ Z. Let us prove

Riπ∗Rj f∗(ωX ⊗ F ⊗J (h)) = 0

for every i > 0 and j in a neighborhood of z by induction on dim π−1(z). Without loss of
generality, we may assume that f∗OX � OY and π∗OY � OZ by taking the Stein factorizations
of f and π. Since π◦ f is locally Kähler (see, for example, [18, Proposition 6.2 (ii)]), we may
assume that X is Kähler by shrinking Z around z. If dim π−1(z) = 0, then π : Y → Z is finite
over a neighborhood of z. In this case, it is obvious that Riπ∗Rj f∗(ωX ⊗F ⊗J (h)) = 0 holds
for every i > 0 and j in a neighborhood of z. From now on, we assume that dim π−1(z) > 0.
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By replacing H with H⊗m for some sufficiently large positive integer m, we may assume that
H is π-very ample and

(5.1) Riπ∗(H ⊗ Rj f∗(ωX ⊗ F ⊗J (h))) = 0

for every i > 0 and j (see, for example, [2, Chapter IV, Theorem 2.1 (B)]). We may further
assume that there exists the following commutative diagram

X

f
�� 		��

��
��

��
�

Y

π

��

� � �� Z × PN

p1

��
��

��
��

� p2
�� PN

Z

such that H � (p∗2OPN (1))|Y by shrinking Z around z suitably (see, for example, [2, Chap-
ter IV, §2]). By Theorem 1.1, we can take a general member A′ of |OPN (1)| such that
AY := (p∗2A′)|Y contains no associated primes of Rj f∗(ωX⊗F⊗J (ϕ)) for every j, AY contains
no irreducible components of π−1(z), A is smooth, where A = f ∗AY , and

0→J (h) ⊗ OX(−A)→J (h)→J (h|A)→ 0

is exact after shrinking Z around z suitably. Therefore, by adjunction,

0→ ωX ⊗ F ⊗J (h)→ ωX ⊗ F ⊗J (h) ⊗ OX(A)→ ωA ⊗ F|A ⊗J (h|A)→ 0

is exact. Thus, we see that

0→ Rj f∗(ωX ⊗ F ⊗J (h))→ Rj f∗(ωX ⊗ F ⊗J (h) ⊗ OX(A))

→ Rj f∗(ωA ⊗ F|A ⊗J (h|A))→ 0

is exact for every j since AY contains no associated primes of Rj f∗(ωX⊗F⊗J (h)) for every
j. We note that Rj f∗(ωA ⊗ F|A ⊗J (h|A)) is π∗-acyclic in a neighborhood of z by induction
on dim π−1(z) and that Rj f∗(ωX ⊗ F ⊗J (h)⊗OX(A)) is π∗-acyclic by the above assumption
(see (5.1)). We consider the long exact sequence:

· · · → Riπ∗Rj f∗(ωX ⊗ F ⊗J (h))→ Riπ∗Rj f∗(ωX ⊗ F ⊗J (h) ⊗ OX(A))

→ Riπ∗Rj f∗(ωA ⊗ F|A ⊗J (h|A))→ · · · .
Thus, if we shrink Z around z suitably, then we have Ei, j

2 = 0 for every i ≥ 2 and j in the
following commutative diagram of spectral sequences.

Ei, j
2 = Riπ∗Rj f∗(ωX ⊗ F ⊗J (h)) ��

ϕi, j

��

Ri+ j(π ◦ f )∗(ωX ⊗ F ⊗J (h))

ϕi+ j

��

E
i, j
2 = Riπ∗Rj f∗(ωX ⊗ F ⊗J (h) ⊗ OX(A)) �� Ri+ j(π ◦ f )∗(ωX ⊗ F ⊗J (h) ⊗ OX(A))

We note that ϕi+ j is injective by Theorem 1.3. We also note that

E1, j
2

α �� R1+ j(π ◦ f )∗(ωX ⊗ F ⊗J (h))
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is injective for every j by the fact that Ei, j
2 = 0 for every i ≥ 2 and j. By the above assumption

(see (5.1)), we have E
1, j
2 = 0 for every j. Therefore, we obtain E1, j

2 = 0 for every j since the
injection

E1, j
2

α �� R1+ j(π ◦ f )∗(ωX ⊗ F ⊗J (h))
ϕ1+ j

�� R1+ j(π ◦ f )∗(ωX ⊗ F ⊗J (h) ⊗ OX(A))

factors through E
1, j
2 = 0. This implies that Riπ∗Rj f∗(ωX ⊗ F ⊗J (h)) = 0 for every i > 0

and j in a neighborhood of an arbitrary point z ∈ Z. This means that

Riπ∗Rj f∗(ωX ⊗ F ⊗J (h)) = 0

for every i > 0 and j. �

6. Proof of Corollary 1.5

6. Proof of Corollary 1.5
By using the strong openness in [10], we can prove Corollary 1.5 as an easy application

of Theorem 1.4.
Let us prepare a lemma suitable for our application.

Lemma 6.1 (cf. [10, Theorem 1.1]). Let X be a complex manifold and let ϕ and ψ be
quasi-plurisubharmonic functions on X. Let X† be a relatively compact open subset of X.
Then there exists a small positive number ε such that

J (ϕ) =J (ϕ + εψ)

holds on X†.

Proof. By definition, it is obvious that the natural inclusion

J (ϕ) ⊃J (ϕ + εψ)

holds since ε is positive.
Let us see the problem locally. Let Δn = {(z1, . . . , zn) | |z1| < 1, · · · , |zn| < 1} be the unit

polydisc and let ϕ and ψ be plurisubharmonic functions on Δn. Let f1, . . . , fk be holomorphic
functions on Δn such that ∫

Δn
| fi|2e−2ϕdλn < ∞

for every i, where dλn is the Lebesgue measure on Cn, and that { f1, . . . , fk} generates J (ϕ)0,
the stalk of J (ϕ) at 0 ∈ Δn. By [10, Theorem 1.1], we can take r ∈ (0, 1) and p > 1 such
that ∫

Δn
r

| fi|2e−2pϕdλn < ∞

for every i, where Δn
r = {(z1, . . . , zn) | |z1| < r, · · · , |zn| < r}. We put q = p

p−1 > 0. Then, by
the Hölder inequality, we have∫

Δn
r

| fi|2e−2(ϕ+εψ)dλn ≤
(∫
Δn

r

| fi|2e−2pϕdλn

)1/p (∫
Δn

r

| fi|2e−2qεψdλn

)1/q

.

By replacing r with a smaller positive number, we can take ε > 0 such that
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Δn

r

e−2qεψdλn < ∞

by Skoda’s theorem (see, for example, [3, (5.6) Lemma]). Then we obtain∫
Δn

r

| fi|2e−2(ϕ+εψ)dλn < ∞.

This implies that fi ∈J (ϕ + εψ)0 for every i. Therefore, we obtain the inclusion

J (ϕ)0 ⊂J (ϕ + εψ)0.

Then the equality

J (ϕ)0 =J (ϕ + εψ)0

holds. So, the equality

J (ϕ) =J (ϕ + εψ)

holds in a neighborhood of 0 ∈ Δn since J (ϕ) and J (ϕ + εψ) are both coherent.
Thus, we can take ε > 0 such that

J (ϕ) =J (ϕ + εψ)

holds on X† since X† is a relatively compact open subset of X. �

Let us prove Corollary 1.5.
Proof of Corollary 1.5. It is sufficient to prove that

Riπ∗(M ⊗ Rj f∗(ωX ⊗ F ⊗J (h))) = 0

holds for every i > 0 and j in a neighborhood of any fixed point z ∈ Z. By shrinking Z
around z, we may assume that X is Kähler since π ◦ f is locally Kähler (see, for example,
[18, Proposition 6.2 (ii)]). Without loss of generality, we may assume that Z is Stein. By
shrinking Z around z, we may further assume that there exists the following commutative
diagram since π : Y → Z is locally projective.

X
h

���������������������

f
�� 		��

��
��

��
�

Y

π

��

� � �� Z × PN

p1

��
��

��
��

� p2
�� PN

Z

Then we can take a sufficiently large and divisible positive integer m such that

M⊗m � H ⊗ OY(E)

where H � (p∗2OPN (1))|Y and E is an effective Cartier divisor on Y by Kodaira’s lemma.
Then we obtain

M⊗(2m+k) � (M⊗k ⊗ H) ⊗ H ⊗ OY(2E).



Relative Bertini Type Theorem 225

We note that M⊗k ⊗H is π-ample for every positive integer k since M is π-nef. Since f ∗H �
h∗OPN (1), we can construct a smooth hermitian metric g on f ∗H such that

√−1Θg( f ∗H) ≥ 0.
Similarly, f ∗(M⊗k⊗H) has a smooth hermitian metric g1 such that

√−1Θg1 ( f ∗(M⊗k⊗H)) ≥ 0
after shrinking Z around z suitably because M⊗k ⊗ H is π-ample. Let s be the canonical
section of OX( f ∗E), that is, s ∈ Γ(X,OX( f ∗E)) with (s = 0) = f ∗E. Let g2 be any smooth
hermitian metric on OX( f ∗E). We put

g3 =
g2

|s|2g2

.

Then g3 is a singular hermitian metric on OX( f ∗E) such that
√−1Θg3 (OX( f ∗E)) ≥ 0 and that

g3 is smooth outside Supp f ∗E. We put

h′ = (g1 · g · g2
3)

1
2m+k .

Then h′ is a singular hermitian metric on f ∗M, which is smooth outside Supp f ∗E. By
construction,

√−1Θg( f ∗H) ≥ 0 and
√−1Θh′( f ∗M) − ε√−1Θg( f ∗H) ≥ 0

for some ε > 0. If k is sufficiently large, then we can make h′ satisfy J (hh′) = J (h) by
Lemma 6.1. We note that we can freely shrink Z around z if necessary. Hence this means
that

√−1Θg( f ∗H) ≥ 0 and
√−1Θhh′(F ⊗ f ∗M) − ε√−1Θg( f ∗H) ≥ 0

for some ε > 0 such that the equality J (hh′) =J (h) holds. By applying Theorem 1.4, we
obtain that

Riπ∗(M ⊗ Rj f∗(ωX ⊗ F ⊗J (h))) = Riπ∗Rj f∗(ωX ⊗ F ⊗ f ∗M ⊗J (hh′)) = 0

holds for every i > 0 and j. �
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