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Abstract
We establish a relative Bertini type theorem for multiplier ideal sheaves. Then we prove a
relative version of the Kollar—Nadel type vanishing theorem as an application.

1. Introduction

Let X be a smooth complex projective variety and let D be an effective Q-divisor on X.
Let H be a general member of a free linear system A on X. Then it is well known and is
easy to see that the equality

S (H,Dlp) = (X, D)lu
holds and that there exists the following short exact sequence
0- 7(X,D)® Ox(-H) » Z(X,D) > J(H,Dly) — 0,

where ¢ (X, D) (resp. 7 (H, D|g)) is the multiplier ideal sheaf associated to D (resp. D|p).
Let ¢ be a quasi-plurisubharmonic function on X. Then, for every smooth subvariety H, the
inclusion

() € 2@l

follows from the Ohsawa-Takegoshi L? extension theorem. Note that F () (resp. 7 (¢ln))
is the multiplier ideal sheaf associated to ¢ (resp. ¢|y). However, the equality

F(ln) = 2@l

does not always hold.
Furthermore, we think that the existence of a smooth member H, of A such that the
equality

F(@luy) = 7 (Pl
holds and that there exists the following natural short exact sequence

0— Z(p)® Ox(-Hp) = F(p) =~ Z(¢lu,) — 0

is highly nontrivial. In [9, Theorem 1.10], we established that there are many members
of A satisfying the above good properties. The main purpose of this paper is to prove the
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208 O. Funno

following theorem.

Theorem 1.1 (Relative Bertini type theorem for multiplier ideal sheaves). Let f : X — S
be a proper surjective morphism from a complex manifold X to a complex analytic space
S. Let 11 be a set of at most countably many quasi-plurisubharmonic functions on X. We
consider the following commutative diagram:

X
h
g
! Sx PV ——=PpV
o
S

where p; is the i-th projection for i = 1,2. We consider the complete linear system
A :=|Oon(1)| =~ PV

on PN, Let ST be any relatively compact open subset of S. We put X := f~1(S%), h" := hlys,
and consider

g:z{H’eA

H' := (W")*H’ is well-defined and is a smooth divisor on X', cA
and 7 (plys) = Z(@)ly+ holds for every ¢ € 11 ’

We note that H' is well-defined if and only if the image of every connected component of X'
by h' is not contained in H'. We also note that F (@) (resp. _Z (@lg+)) is the multiplier ideal

sheaf on X (resp. H') associated to ¢ (resp. @|y+) for every ¢ € II. Then ¥ is dense in A
(= PN) in the classical topology. Furthermore, we put

%”::{H’eg

H := (h")*H’ contains no associated primes of O/ BA™) cw
on X' for every ¢ € I1 '

Then ¢ is also dense in A in the classical topology. More generally, G \ . and 7 \ ./
are dense in A in the classical topology for any analytically meagre subset . of A (see
Definition 3.1 below for analytically meagre subsets). We note that there exists the following
natural short exact sequence

0= 7 (plx)® Oxi(=H") > 7 (glx) > 7 @ly) = 0
for every H' € 5 and every ¢ € T1, where H' = (W'Y H'.

In Theorem 1.1, we are mainly interested in the case where there exists sy € S such
that dim g(f~'(s0)) > 0. We want to cut down g(f~'(sp)) by the linear system A in some
applications (see the proof of Theorem 1.4 below). It may happen that HT = 0 for some
H' € 4 when dimg(f~'(s)) = 0 holds for every s € ST. If S is a point and #I1 = 1, then
Theorem 1.1 is essentially the same as [9, Theorem 1.10] (see also [9, Corollary 3.11]).
Therefore, Theorem 1.1 can be seen as a relative generalization of [9, Theorem 1.10]. We
note that A \ ¢ is not always analytically meagre in the sense of Definition 3.1 (see, for
example, [9, Example 3.10]).

Let ¢ be a quasi-plurisubharmonic function on a compact complex manifold X. We put
IT = {m¢y}en. Then, as a very special case of Theorem 1.1, we have:
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Corollary 1.2. Let X be a compact complex manifold and let ¢ be a quasi-
plurisubharmonic function on X. Let W be a free linear system on X. Then there exists
a dense subset V of W such that every element H of 'V is smooth and that

0— Z(mp)® Ox(-H) — J(mgp) > J(mgly) — 0
is exact for every positive integer m.

Let us recall one of the main results of [15], which is a relative version of [9, Theorem
A]. Of course, the proof of Theorem 1.3 in [15] is much harder than that of [9, Theorem A].
Theorem 1.3 is a generalization of the Enoki injectivity theorem in [4], which is an analytic
counterpart of the Kollar injectivity theorem (see [11]).

Theorem 1.3 ([15, Theorem 1.3]). Let m : X — S be a proper surjective locally Kihler
morphism from a complex manifold X to a complex analytic space S. Let F be a holomorphic
line bundle on X equipped with a singular hermitian metric h and let M be a holomorphic
line bundle on X with a smooth hermitian metric hy. Assume that

V=10, (M) >0 and N-10,(F)—-eV-10,, (M) >0
for some € > 0. Then, for any non-zero holomorphic section s of M, the map
xs:Rir(wx®F® Z(h) = Rin(wx®F® #(h)®M)

induced by the tensor product with s is injective for every q, where wy is the canonical
bundle of X and 7 (h) is the multiplier ideal sheaf associated to the singular hermitian
metric h.

By using Theorems 1.1 and 1.3, we prove a relative version of the Kollar—Nadel type
vanishing theorem (see [7]).

Theorem 1.4 (Relative Kollar—Nadel type vanishing theorem). Let f : X — Y be a
proper surjective locally Kihler morphism from a complex manifold X to a complex analytic
space Y. Let m : Y — Z be a projective surjective morphism between complex analytic
spaces. Let F be a holomorphic line bundle on X equipped with a singular hermitian metric
h. Let H be a m-ample holomorphic line bundle on Y. Assume that there exists a smooth
hermitian metric g on f*H such that

V=10,(f'H) >0 and V-10,(F)-eV-10,(f*H) >0
for some € > 0. Then we have
RaR f(wx®F® #(h)=0

for every i > 0 and j, where wy is the canonical bundle of X and _# (h) is the multiplier
ideal sheaf associated to the singular hermitian metric h.

As an application of Theorem 1.4 and the strong openness in [10], we have:

Corollary 1.5. Let f : X — Y be a proper surjective locally Kdhler morphism from a
complex manifold X to a complex analytic space Y. Let t : Y — Z be a locally projective
surjective morphism between complex analytic spaces. Let F be a holomorphic line bundle
on X equipped with a singular hermitian metric h such that V=10,(F) > 0. Let M be a
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n-nef and nt-big holomorphic line bundle on Y. Then we have
R MR f(wx®F® Z(h)) =0

for every i > 0 and j, where wy is the canonical bundle of X and ¢ (h) is the multiplier
ideal sheaf associated to the singular hermitian metric h.

For related vanishing theorems, see [6], [7], [11], [14], [17], [18], and so on. We recom-
mend the reader to see [8, Chapters 5 and 6], where we discuss various Kollar type vanishing
theorems by using the theory of mixed Hodge structures on cohomology with compact sup-
port and explain their applications to the minimal model program for higher-dimensional
complex algebraic varieties.

We give a remark on Nakano semipositive vector bundles.

REMARK 1.6 (TwisTs BY NAKANO SEMIPOSITIVE VECTOR BUNDLES). Let E be a Nakano semi-
positive holomorphic vector bundle on X. Then it is not difficult to see that Theorems 1.3,
1.4, and Corollary 1.5 hold even when wy is replaced by wy ® E. We leave the details as an
exercise for the reader (see [9, Section 6]).

The following example may help the reader understand Theorem 1.1 and its proof given
in this paper.

ExampLE 1.7. We put
A" ={(z1,...,z0) €CM[zil < 1, Jzal < 1}

Letn: A" - A = {z € C||z] < 1} be the projection given by (zi,...,2,) — z,. Let ¢ be
a quasi-plurisubharmonic function in a neighborhood of A”, that is, the closure of A" in C".
Then, by the Ohsawa-Takegoshi L? extension theorem, we have the following inclusion

@) C _Z@ln,

for every s € A, where H, = n~'(s). Since (@) is a coherent ideal sheaf, it is locally
finitely generated. By applying Fubini’s theorem to each local generator of _Z (¢), we get
the opposite inclusion

(@lu) > 7@,

for almost all s € A. Therefore, the equality

F@lu) = _Z@ln,

holds for almost all s € A.

Recently, Xiankui Meng and Xiangyu Zhou established a simpler and more natural ap-
proach to the Bertini type theorem for multiplier ideal sheaves in [16]. We strongly rec-
ommend the interested reader to see [16]. Moreover, Mingchen Xia answered [9, Problem
1.11] affirmatively by a very clever argument (see [19]).
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2. Preliminaries

For the basic results of the theory of complex analytic spaces, see [2] and [5]. For various
analytic methods used in this paper, we recommend the reader to see [3].

DEeriNiTION 2.1 (SINGULAR HERMITIAN METRICS AND CURVATURES). Let F' be a holomorphic
line bundle on a complex manifold X. A singular hermitian metric on F is a metric & which
is given in every trivialization 8 : F|y ~ U X C by

Il = 10()le™ on U,

where £ is a section of F on U and ¢ € Llloc( U) is an arbitrary function. Here Llloc(U ) is
the space of locally integrable functions on U. We usually call ¢ the weight function of the
metric with respect to the trivialization 6. The curvature of a singular hermitian metric /% is
defined by

Ou(F) := 200y,

where ¢ is a weight function and 80y is taken in the sense of currents. It is easy to see that
the right hand side does not depend on the choice of trivializations. Therefore, we get a
global closed (1, 1)-current ®,(F) on X.

DeriNiTION 2.2 ((QUASI-)PLURISUBHARMONIC FUNCTIONS AND MULTIPLIER IDEAL SHEAVES). A
function ¢ : U — [—o00,00) defined on an open set U C C”" is called plurisubharmonic
if

(i) ¢ is upper semicontinuous, and

(i1) for every complex line L ¢ C", ¢|yn. is subharmonic on U N L, that is, for every
a € U and ¢ € C" satisfying |£| < d(a, U¢) = inf{la — x|| x € U}, the function ¢
satisfies the mean inequality

1 21 .
p(a) < o jo‘ ola + e’gf)dH.

Let X be an n-dimensional complex manifold. A function ¢ : X — [—c0, 00) is said to
be plurisubharmonic if there exists an open cover X = | J;c; U; such that ¢|y, is plurisubhar-
monic on U; (C C") for every i. A quasi-plurisubharmonic function is a function ¢ which is
locally equal to the sum of a plurisubharmonic function and of a smooth function.

Let ¢ be a quasi-plurisubharmonic function on a complex manifold X. Then the multiplier
ideal sheaf ¢ (p) C Oy is defined by

LU, 7 () = {f € Ox(U)||fPe* € L (U)}

for every open set U C X. It is well known that ¢ (¢) is a coherent ideal sheaf on X.

Let S be a complex submanifold of X. Then the restriction _# (¢)|s of the multiplier ideal
sheaf #(¢) to S is defined by the image of _# (¢) under the natural surjective morphism
Ox — Oy, that is,

Hls = (@) F )N Is,

where #s is the defining ideal sheaf of S on X. We note that the restriction _# (¢)|s does not
always coincide with _Z(¢) ® Os = _Z(¢)/ _# (p) Is.
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DEFINITION 2.3 (MULTIPLIER IDEAL SHEAVES ASSOCIATED TO SINGULAR HERMITIAN METRICS). Let
F be a holomorphic line bundle on a complex manifold X and let / be a singular hermitian
metric on F. We assume \/—_1®h(F ) > vy for some smooth (1, 1)-form y on X. We fix a
smooth hermitian metric 4., on F. Then we can write & = ho.e 2 for some VS LIIOC(X).
Then i coincides with a quasi-plurisubharmonic function ¢ on X almost everywhere. In
this situation, we put _# (h) := _#(¢). We note that _# (h) is independent of &, and is well-

defined.

3. Bertini type theorem revisited

In this section, we will reformulate some results in [12] for our purposes. Let us recall
the definition of analytically meagre subsets.

DerniTioN 3.1. A subset . of a complex analytic space X is said to be analytically

meagre if
Y C U Y,

where each Y, is a locally closed analytic subset of X of codimension > 1.

The following result is a slight reformulation of [12, (I.5) Theorem and (II.7) Corollary].
We need it for the proof of Theorem 1.1 in Section 4.

Theorem 3.2 (Bertini type theorem for complex manifolds). Let M be a complex man-
ifold which has a countable base of open subsets and let £ be a holomorphic line bundle
on M. Assume that M has only finitely many connected components. Let t; be an ele-
ment of H'(M, ) for every 1 < | < N + 1 such that {t,,...,ty.1} generates £, that is,
W ®c Oy — £ is surjective, where W is the linear subspace of H*(M, %) spanned by
{t1,...,ty+1}. We consider an (N + 1)-dimensional vector space V = @?:Il Ct,. Then there
exists a dense subset 9 of A = (V — {0})/C*(= PV) such that A\ 9 is analytically meagre

and that for each element of 9 the corresponding divisor on M is smooth.

In Theorem 3.2, we do not assume that {#1,. .., fy4+} is linearly independent.
Proof of Theorem 3.2. If N = 0, then the statement is trivial. Therefore, we may assume
that N > 1.

Step 1. In this step, we will prove that there exists a dense subset & of V, which is a
countable intersection of dense open subsets of V, such that for every s € V the zero set
(s = 0) is a smooth divisor on M if and only if s € &

We take a countable covering {K;};ay of M such that K; is compact for every i. We may
assume that K; is contained in an open subset U; of M such that there exists s; € V which is
never zero on U; for every i. We put

@@,-::{SEV

Then &; is open in V by [12, I Step in the proof of (II.5) Theorem] and is dense in V by [12,
II Step in the proof of (II.5) Theorem]. We put & = (;en ;. Then & is dense in V by the
Baire category theorem. By definition, for every s € V, (s = 0) is a smooth divisor on M if

(s = 0) contains no connected components of M
and is smooth at every point of K; N (s = 0)
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and only if s € &. By definition, &; is C*-invariant and &; Cc V — {0}. We put p(&) = 2,
where p : V — {0} — A is the natural projection. Of course, Z is dense in A.

Step 2. In this step, we will prove that A \ & is a countable union of locally closed
analytic subsets of A.

Let {U,}iey be an open covering of M on which .Z is trivial as in Step 1. With respect to
this trivialization of .Z, we can see that every s € V is a holomorphic function on each U,.
Since the number of connected components of M is finite, we can take a finite number of
linear subspaces {Vj}’j‘.= , of V such that V; C V for every j and that s € V is not identically
zero on any connected component of M if and only if s € V' \ UI;'=1 V. For each i, we can
consider the holomorphic map

F,:UXV->CxV

defined by F;(x, s) = (s(x), s). Since every s € V' := V'\ Ulj‘.zl V; is not identically zero on
any connected component of M, F; is flat on U; x V' (see [12, (IL.1) Lemma]). We consider

A; = {(x, $)eU;x VT | s(x) = 0 and (s = 0) is not smooth at x}
= F'{0) x VY N {(x, 5) € Ui x VT | F7(Fi(x, 5)) is not smooth at (x, s)}.

Then, by [12, (0.3) a) Proposition], A; is an analytic subset of U; x V' for every i. Therefore,

k
A= UA,-U[MXUV,-]

ieN =1
is a countable union of locally closed analytic subsets of M x V. By construction, V \ & =
q(A), where ¢ : M x V — V is the natural projection. Therefore, V \ & is a countable
union of locally closed analytic subsets by [12, Lemma in (0.2)]. Thus we see that A \ Z =
p(g(A) —{0}) is also a countable union of locally closed analytic subsets by [12, Lemma in

(0.2)1.

Hence A \ & is analytically meagre since A \ Z is a countable union of locally closed
analytic subsets by Step 2 and Z is dense by Step 1. m|

Although Theorem 3.2 is sufficient for the proof of Theorem 1.1 in Section 4, we add
some remarks for the reader’s convenience.

Remark 3.3. The proof of Theorem 3.2 says that we can take & such that A\ Z is a
countable union of locally closed analytic subsets of A of codimension > 1 and that for
every s € A the zero set (s = 0) defines a smooth divisor on M if and only if s € Z.

RemMark 3.4. Theorem 3.2 and Remark 3.3 hold true without assuming that M has only
finitely many connected components. We assume that M has infinitely many connected
components. Then we have the irreducible decomposition M = |J,ciy M, since M has a
countable base of open subsets. By applying Theorem 3.2 and Remark 3.3 to each M,,, we
get a dense subset &, of A with the desired properties for every n. We put Z = ezt .-
Then A \ Z is a countable union of locally closed analytic subsets of A of codimension > 1,
and for every s € A the zero set (s = 0) defines a smooth divisor on M if and only if s € 2.
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We prepare easy lemmas for the proof of Theorem 1.1 in Section 4.

Lemma 3.5. Let . be an analytically meagre subset of PN. Let p : PN — {P} — PN~!
be the linear projection from P € P. Then there exists an analytically meagre subset .’
of PN! such that p~'(x) N .7 is an analytically meagre subset of p~'(x) =~ C for every
xe PN\ .7,

Proof. We may assume that .% is a countable union of locally closed analytic subsets
of PV. We note that p(V — {P}) is a countable union of locally closed analytic subsets of
PN-!, where V is any locally closed analytic subset of PV (see, for example, [12, Lemma in
(0.2)]). By taking a suitable subdivision of . into locally closed analytic subsets of PV, we

can write
= (U Y]) U [UZk],
jeN keN
where dimY; = N — 1 suchthatp : Y; — {P} — PN=1 has no positive dimensional fibers for

every j, and any irreducible component of p(Z; — {P}) has dimension < N — 2 for every k.
We put .’ = Ureny P(Zr — {P}). Then . satisfies the desired properties. O

Lemma 3.6 will play an important role in the induction on N.

Lemma 3.6. Let Yy be a subset of PV and let T be an analytically meagre subset of PV.
Let 9y_y be a subset of PN™' such that Gy_; \ Sn_1 is dense in PN~V in the classical topology
for any analytically meagre subset .#y_; of PN™'. Let p : PN — {P} — PN~! be the linear
projection from P € PV. Assume that almost all points of p~'(x) is contained in Gy for every
X € Gy_y with p~'(x) \ Z # 0. Then 9y \ Ly is dense in PV in the classical topology for any
analytically meagre subset Sy of PV.

Proof. We put . = X U.#y. Then .7 is an analytically meagre subset of PV. We
can define an analytically meagre subset .’ of P! as in the proof of Lemma 3.5. Then
Gy_1 \ . is dense in PV~! in the classical topology by assumption. By assumption again,
almost all points of p~!(x) is contained in Yy \ .#y for every x € %y_; \ .. Therefore, we
can easily see that @y \ .y is dense in PV in the classical topology. O

We will use Lemma 3.6 in order to prove the density of ¢ in Theorem 1.1 by induction
onN.

ReMARK 3.7. In Lemma 3.6, we assume that PV is the linear system A = |Opv(1)] as in
Theorem 1.1. We assume that P € PV = A corresponds to a hyperplane Hj on the original
projective space PV. Let p : PV — {P} — PN~! be the linear projection as in Lemma 3.6.
Then we can regard P¥~! as the linear system A| H-

4. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. We prepare some lemmas before we start the
proof of Theorem 1.1. Lemma 4.1 is essentially the same as [9, Lemma 3.2]. Note that a
main ingredient of Lemma 4.1 is the Ohsawa—Takegoshi L? extension theorem.
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Lemma 4.1. Let f: X — S, 1L, A, St X', and h' be as in Theorem 1.1. Let H be an
element of A for 1 < i < k. We assume the following condition:
o Hl.T = (hT)*Hl.’ is a well-defined smooth divisor on X' for every 1 < i < k and Zle HlT
is a simple normal crossing divisor on X'. Moreover, for every 1 <ij < iy < --- <
ii <kandany P € HZ N HZ N---N H; the set {f;,, fi,» - - ., fi,} is a regular sequence
for Oxp| 7 (@)p for every ¢ € 11, where f; is a (local) defining equation of HZ' for
every I.
We put F; := HI N H; N---N HlT for1 <i <k LetF bean irreducible component of Fy.
We assume that the equality

/(90|F) = /(90)|F

holds for some ¢ € I1. Then

A (@lr) = Z(QIr,
holds in a neighborhood of F in Fj for every j.

Remark 4.2. (1) Let (A, m) be a local ring and let M be a finitely generated non-zero
A-module. Let {x;,...,x,} be a sequence of elements of m. We put My = M and M; =
M/x M +---+x;M. Then {xy, ..., x,} is said to be a regular sequence for M if Xx;,1: M; —
M, is injective forevery 0 < i <r— 1.

(2) Condition & in Lemma 4.1 does not depend on the order of {H], HY,--- , H} (see, for
example, [13, Theorem 16.3] and [1, Chapter III, Corollary (3.5)]).

(3) Let .# be a coherent analytic sheaf on a complex manifold X. Then there exists a
locally finite family {Y;};e; of irreducible analytic subsets of X such that

ASSﬁXVX(gZX) = {px,l LI ] px,r(x)}a

where p, 1, ..., Py are prime ideals of Ox, associated to the irreducible components of
the germs x € Y; (see, for example, [12, (1.6) Lemma]). Note that Y; is called an analytic
subset associated with .%. In this paper, we simply say that Y; is an associated prime of
Z if there is no risk of confusion. Then we can check that condition # is equivalent to the
following condition:

° Hj = (hT)*Hlf is a well-defined smooth divisor on X' for every 1 < i < k and
f:l HlT is a simple normal crossing divisor on X'. Moreover, for every 1 < i; <
iy < --- < ip_1 <1 <k, the divisor HI.TI contains no associated primes of Ox/_# (¢)

and ﬁHiTl ] //(gp)lH’f] nenH] for every ¢ € II.

For the proof and the details of Lemma 4.1, see [9, Lemmas 3.1 and 3.2, Remark 3.3, and
Lemma 3.4]. Lemma 4.3 below is similar to [9, Lemma 3.5].

Lemma 4.3. Let f: X — S, I1, A, ST, X', and h' be as in Theorem 1.1. Let Ay be an
m-dimensional sublinear system of A spanned by {H{, ..., H, ,H }suchthat{H],..., H,,
H'’ ..} satisfies . We put

m+1

Fo=1{H € No|{H],..., H,,, H'} satisfies #}.

Then Ay \ Py is analytically meagre.
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Moreover, we assume that 7 (¢lr) = _Z(@)lr holds for some ¢ € 1I, where F is an
irreducible component ofHT N---NH' . Let H be a member of %. Then

m+1°

A (@lu) = 7 (@)lgs
holds in a neighborhood of F in H', where H" = (h")*H’.
Proof. Let Ko be the sublinear system of A, spanned by {H], ..., H, }. Then we see that

t t
Hn--nH,NH

m+1

—y t
=H n---NnH,NH

holds for every H € Ag \ Ko. We note that the number of irreducible components of
HZ ﬂHiTz n--- OH; with 1 < iy < ip < -+ < i; < m is finite. We also note that for

every ¢ € II the number of the associated primes of Ox+/_# (¢)|x+ and the number of the
associated primes of

Oy m---mH;t/f((p)lel n-nH]

n
with 1 < i} < ip < --- < i; £ m are finite (see Remark 4.2 (3) and [12, (I1.6) Lemmal).
Moreover, #I1 is at most countable by assumption. On the other hand, it is obvious that
HI N---N H:Hl is empty on X'\ HI N---N H;Hl' Therefore, by applying Theorem 3.2 to
X'\H/n---nH  andH 0---0H\Hn---0H  forevery 1 <ij <iy<---<ij<m,
we can easily check that Ag \ .% is analytically meagre.
Let H' be a member of .%,. Then

i T T gt i T
Hn--nH,nH  =Hn---nH,NH

always holds. Therefore, F is an irreducible component of HI N---NH, NH. Thus, by
Lemma 4.1 and Remark 4.2, the equality _# (¢lgyt) = _# (¢)ly+ holds in a neighborhood of
F in H' for every H' € .%,. O

Let us prove Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality, we may assume that S has a countable
base of open subsets by shrinking S suitably. Moreover, by replacing S with its smaller
relatively compact open subset if necessary, we may further assume that S is a relatively
compact open subset of a complex analytic space throughout the proof of Theorem 1.1.
Of course, we may assume that every connected component of X intersects with X by
abandoning unnecessary connected components of X. We may assume that ¢ # —oco for
every ¢ € 1.

Step 1. In this step, we will prove that ¢ is dense in A in the classical topology under
the assumption that N = 1. More generally, we will see that .77, 4 \ ./, and 7 \ ./ are
dense in A in the classical topology for any analytically meagre subset . of A under the
assumption that N = 1.

By Sard’s theorem (see, for example, [12, (I.1) Theorem]), there exists a countable subset
T of P! such that X, = h*x is a smooth divisor on X for every x € P! \ . Of course, it may
happen that 27! (x) is empty. By the Ohsawa—Takegoshi L? extension theorem, we have

Flx) C _Z(@lx,
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for every x € P! \ . On the other hand, for every ¢ € I1, by Fubini’s theorem, we see that

T @l) > L@y

holds for almost all x € P! \ X, where Xi := X, N X' (see Example 1.7). Note that #II is
at most countable by assumption. This means that ¢ is dense in A ~ P! in the classical
topology. Since there are only finitely many associated primes of Ox/_# (¢) on X T for every
¢ € II (see Remark 4.2 (3) and [12, (I1.6) Lemma]), ¢4 \ 7 is an analytically meagre subset
of A. We note that (A \ ¥) U . has measure zero for any analytically meagre subset .7
of A =~ P'. Therefore, we see that 77, ¢4 \ .¥, and .7 \ .¥ are dense in A in the classical
topology for any analytically meagre subset .7 of A.

Step 2. By Step 1, we can prove the following lemma.

Lemma 4.4. Let H| and H), be two members of A such that {H{, H,} satisfies &. Let &
be the pencil spanned by H| and H;, that is, & is the sublinear system of A spanned by H/
and Hé. Then, for almost all H' € &2, {H'} satisfies &, and

F(@lu) = 2@y

holds for every ¢ € Il outside HlT N H;, where H' = (h"Y"H’, Hf = (hT)*H;, and H; =
(h")*Hj.

Proof of Lemma 4.4. First, by Lemma 4.3, for almost all H' € &7, {H’} satisfies #. Next,
we consider the following commutative diagram.

X —= SXPa(&) — Ppi (&) —= P!

L |

X Sx PV ———PpN

Note that & = ﬁgl’v’l ® Opi(1), Ppi(&) — PV is the blow-up along H| N H}, and PV --> P!
is the projection from H] N H),. In the above diagram, X is a resolution of the blow-up of
X along #*H/ N h*H,, such that X is nothing but the blow-up of X* along H N H over X".
We apply the argument in Step 1 to X — § x P' — P! and get the desired property, that is,
F(@lgt) = _Z(@)ly+ holds for every ¢ € II outside HlT N H;f for almost all H € &. Note
that a point of P! corresponds to a hyperplane of PV containing H{ N HJ by the projection
PV - P O

Step 3. In this step, we will prove the following lemma, which is the most difficult part
of the proof of Theorem 1.1.

Lemma 4.5. There exists some H' € G such that {H'} satisfies &, equivalently, H' € .

Proof of Lemma 4.5. If N = 1, then this lemma follows from Step 1. From now on,
we assume that N > 2. We take two general hyperplanes H| and H), of PN. We can choose
H{ and H, such that {H], H}} satisfies & since A is free. By Lemma 4.4, we can take a
hyperplane A; of PV such that X; = h*A, is smooth, {A;} satisfies #, and the equality

/(‘plx?) = /(SD)I)(}”
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holds for every ¢ € IT outside HI N H; , where XI =X, N X" = (h")*A,. More precisely, if
ST is not compact, then we take a strictly larger open subset S with ' € S € S and apply
everything to S instead of ST. Then we replace S with S. By this argument, we can make
X; = h*A; smooth on X (not on X"). By applying the induction hypothesis to Al4,, we see
that

{H' € A|X; N H' is smooth and I (@lx,nm) = 7 (@lx)lx,nmt holds for every ¢ € IT}

is dense in A in the classical topology, where H' = (h")*H’.
We can take general hyperplanes A,, ..., Ay of PV such that Q = A; N --- N Ay, X; =
Xo N X' is smooth, where Xy = h™1(Q), and the equality

/(‘Pb@) = /(‘ple)lxg

holds for every ¢ € II by using the induction hypothesis repeatedly. As we saw above, if
necessary, we apply everything to a strictly larger open subset S instead of S* with ST e
S € S and replace S with S in each step. Without loss of generality, we may assume that
XL NH N H; = (. Since /(golxlf) = /(tp)le outside HI N H;,

/(‘P|X1)|X; = j(‘plx}”)b{g = f(()o)b(é

holds for every ¢ € Il. Therefore, we obtain
/(<P|xg) = /(‘Ple)lxg = /(<P)|X;
for every ¢ € II. Of course, we can choose A3, As, ..., Ay such that
{A1,As, ..., AN}

satisfies & with the aid of Lemma 3.6 (see also Remark 3.7) since A is a free linear system.
We put

Ao ={A|Q € A€ |0 (DI} CA,
equivalently, Ay is the sublinear system of A spanned by {Ay,...,Ay}. Then
Fo={H € No|{H,A,,...,Ay} satisfies &}

is non-empty by A; € %, and Ay \ % is analytically meagre by Lemma 4.3. Thus, by
Lemma 4.3, we have:

Claim. The equality 7 (¢lyi) = Z (@)ly: holds in a neighborhood ofngor every g € Il
and for every A, € Fo, where X, := h*A,.

Letm: X > Xbea proper bimeromorphic morphism from a complex manifold X such
that 7 : X — X is nothing but the blow-up of X' along X; over X'. Then we have the
following commutative diagram.

X —= SXP(&) P(&) pN-1

I A

X ——=SxPVN ——PpN
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Of course, pg : PV --» PV~ is the linear projection from Q and P(&) is the blow-up of PV at
0, where P(&) = Ppv-1(Opn-1 ® Opn-1(1)). We consider the following commutative diagram.

X
i
7
7 S x PN-1 — > pN-

P

S

We put Xt = f"(S ™). By induction on N, we can take a general hyperplane B of P¥~! such
that 7*B N X' is smooth and that

(41) /(ﬂ*SDIV}I*BmYT) = /(ﬂ*(p)l’}:*BmYT

holds for every ¢ € I1. Let H’ be the hyperplane of PV spanned by Q and B. Note that, by
induction on N, we can choose B such that

{As, ..., Ay, H'}
satisfies & since A \ % is analytically meagre. Therefore, we obtain that the equality

H@lut) = 7 (@lu

holds for every ¢ € IT by Claim and (4.1), where H' = (h")*H’ as usual. More precisely,
(4.1) implies that the equality

A elu) = Z(@lu
holds outside XTQ and Claim implies that the equality

F(@lut) = 2@y

holds in a neighborhood of X;. Hence this H’ is a desired divisor. O

Step 4. In this step, we will see that ¢ \ . is dense in A in the classical topology for any
analytically meagre subset .7 of A.

By Step 1, we may assume that N > 2. By Lemma 4.5, we can take a member Hj, € ¢
such that {H)} satisfies #. By the same argument as before, if S is not compact, then we
take a strictly larger open subset S with ST € S € S. Then we apply everything to S instead
of S*. By replacing S with S, we may assume that 2*H) is smooth on X. By applying the
induction hypothesis to A| Hy» WE see that

il : —
Hy N HT is smooth and /(‘P|H(§0H+) = /(cpIHg)ngmm }

G =qH €A
holds for every ¢ € I1

is dense in A in the classical topology, where Hg = (hT)*Hé and H' = (h")*H’ as usual.
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Since A is free,
F ={H' € A|{H|, H'} satisfies #}
is non-empty and A \ .7 is analytically meagre. Therefore, we see that
4" .= (H € 9’ |{H, H'} satisfies &}
is also dense in A in the classical topology with the aid of Lemma 3.6. We note that
(4.2) A Plyion) = I @lydlion = Olyion
with HI = (h")*H] for every H} € ¢’ since

I @) = I @y

Here, we used the fact that Hj € ¢. We consider the pencil & spanned by H( and H] € ¢,
that is, the sublinear system of A spanned by H|) and H{. By Lemma 4.4, for almost all
H € &,H" = (h")*H’ is smooth and the equality

F(@lu) = 2@y

holds for every ¢ € II outside Hg NH = Hg N Hf. For almost all H" € 22, {H|, H'} satisfies
o by Lemma 4.3. Therefore, the equality

F(@lu) = 2@y

holds for every ¢ € II in a neighborhood of Hg NH = Hg NH I for almost all H” € & by
Lemma 4.3 and (4.2). Therefore, for almost all H' € &2, H' is smooth and the equality

F(@lu) = 2@y

holds for every ¢ € I1. This means that almost all members of & are contained in ¥.

Let P be a point of PV ~ A corresponding to Hj. WeputX = A\.7, 9y = %’IH(») C Almys
and ¥y = ¢. Then we can apply Lemma 3.6 (see also Remark 3.7). Therefore, ¥ \ . is
dense in A in the classical topology for any analytically meagre subset . of A.

Step 5. In this step, we will see that .77 is dense in A in the classical topology.
We put

T TNE LI 3 _ . . .
P { H e A ‘ H" := (h")"H’ is well-defined and contains no associated primes of }

Ox/| _# () on X' for every ¢ € I1

Then A \ % is analytically meagre. Note that A is free and the number of the associated
primes of Ox/_# () on X' is finite for every ¢ € II and that #II is at most countable.
Therefore, by Step 4, 7 is dense in A in the classical topology because ¢ \ 7 is contained
in an analytically meagre subset of A.

Step 6. Let H’ be a member of /7 and let ¢ be any member of I1. We consider the
following big commutative diagram.
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0 0

00— 7 (ply) ® Ox:(—H") F (¢lxt) —— Cokera ——= 0

B

Oxi(—H") Ox+ Oy 0

(Oxi] 7 (@ly)) ® Oxi(~H") —= Oxi] 7 (@lx)

0 0

Of course, H' is (h")*H’ in the above diagram. Since H' € 7, vy is injective. Therefore, B
is also injective by the snake lemma. Thus we obtain that

Cokera = _Z (¢lx!)lu

by definition. Then we have the following desired short exact sequence

0= Z(@lx)® Ox(=H) = 7 (¢lx) = 7 (@lur) = 0
because 7 (¢ly+) = 7 (¢lx+)|y+ holds for H € 2.

We complete the proof of Theorem 1.1. O

ReEMARK 4.6. Theorem 1.1 says that ¢ is dense in A in the classical topology. However,
the proof of Theorem 1.1 gives no information on the set A \ ¢ in A (=~ PV). This is because
we use Lemma 3.6 for induction on N. We recommend the reader to see [9, Examples 3.9
and 3.10].

We close this section with the proof of Corollary 1.2.
Proof of Corollary 1.2. We assume that S is a point. We put II = {mgp},cn and h =
@y : X — PV, Hence, by using Theorem 1.1, we obtain a desired subset V of W. O

5. Proof of Theorem 1.4

In this section, we prove Theorem 1.4 as an application of Theorems 1.1 and 1.3.
Proof of Theorem 1.4. We take an arbitrary point z € Z. Let us prove

RaR fwy® F® #(h) =0

for every i > 0 and j in a neighborhood of z by induction on dimz~!(z). Without loss of
generality, we may assume that f. Oy ~ Oy and n,.0y ~ O by taking the Stein factorizations
of f and mr. Since 7o f is locally Kéhler (see, for example, [18, Proposition 6.2 (ii)]), we may
assume that X is Kihler by shrinking Z around z. If dimz~'(z) = 0, then 7 : Y — Z is finite
over a neighborhood of z. In this case, it is obvious that R R/ f,(wx ® F® _# (h)) = 0 holds
for every i > 0 and j in a neighborhood of z. From now on, we assume that dimz7~!(z) > 0.
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By replacing H with H®" for some sufficiently large positive integer m, we may assume that
H is m-very ample and

(5.1) Rr.HOR f(wx®F® Z(h)) =0

for every i > 0 and j (see, for example, [2, Chapter IV, Theorem 2.1 (B)]). We may further
assume that there exists the following commutative diagram

X

1\

Y——ZxPN — =PV
14l
z

such that H ~ (p50pv(1))ly by shrinking Z around z suitably (see, for example, [2, Chap-
ter IV, §2]). By Theorem 1.1, we can take a general member A’ of |Opn(1)| such that
Ay := (p3A’)ly contains no associated primes of R/ f.(wx®F® F (p)) forevery j, Ay contains
no irreducible components of 77!(z), A is smooth, where A = f*Ay, and

0— 7(h)® Ox(-A) - F(h) — Z(hla) =0
is exact after shrinking Z around z suitably. Therefore, by adjunction,
0> wx®F® Z(h) > wx®F® Z(h)®Ox(A) > wa®F|a® Z(hla) =0
is exact. Thus, we see that
0 Rif(wxy®F® 7(h) - Rif(wy®F® #(h)® Ox(A))
= RIfwa ® Fla® 7 (hla)) = 0

is exact for every j since Ay contains no associated primes of R’ f,(wx® F® _# (h)) for every
j. We note that R/ f,(wy ® Fly ® _F (hly)) is m,-acyclic in a neighborhood of z by induction
on dim 77 !(z) and that R/ f.(wx ® F ® F (h)® Ox(A)) is m.-acyclic by the above assumption
(see (5.1)). We consider the long exact sequence:

> RrR f(wx® F® 7 (h) = Ra.R f(wx® F® _#(h)® Ox(A))
— RTR f(wa®Fla® FZ(hla)) — - .

Thus, if we shrink Z around z suitably, then we have E’2’ = (0 for every i > 2 and j in the
following commutative diagram of spectral sequences.

EY = RnRif(wx ® F® F (h) =————=>R"(n0 f).(0x® F® 7 (h))
(p,-.,l ¢t
Ey = RnRif(wy®F® 7 (h)® Ox(A) == R™(1o ).y ® F & 7 () ® Ox(A)
We note that ¢'*/ is injective by Theorem 1.3. We also note that

Ey) ——=R"i(mo f).(wx®@F® 7 (1)
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is injective for every j by the fact that E’zj = O foreveryi > 2 and j. By the above assumption
(see (5.1)), we have E;’j = 0 for every j. Therefore, we obtain E;’j = 0 for every j since the
injection

EY o Ri(ro ) (wx ® F® 7 () ~—= R¥i(no f)(wx ® F® 7 (h)® Ox(A)

factors through E;’j = 0. This implies that R'm. R’/ f.(wxy ® F ® _# (h)) = 0 for every i > 0
and j in a neighborhood of an arbitrary point z € Z. This means that

RraR fwx®F® #(h) =0

for every i > 0 and ;. o

6. Proof of Corollary 1.5

By using the strong openness in [10], we can prove Corollary 1.5 as an easy application
of Theorem 1.4.
Let us prepare a lemma suitable for our application.

Lemma 6.1 (cf. [10, Theorem 1.1]). Let X be a complex manifold and let ¢ and  be
quasi-plurisubharmonic functions on X. Let X' be a relatively compact open subset of X.
Then there exists a small positive number € such that

A ()= _F(p+ep)
holds on X'.

Proof. By definition, it is obvious that the natural inclusion

PARACEE)

holds since ¢ is positive.

Let us see the problem locally. Let A" = {(zy,...,zx)|1z1l < 1,--+,]z4] < 1} be the unit
polydisc and let ¢ and ¢ be plurisubharmonic functions on A”. Let fi, ..., fx be holomorphic
functions on A" such that

2 -2
|filfe™¥dA, < oo
Afl

for every i, where d4, is the Lebesgue measure on C", and that {fi, ..., fi} generates ¢ (¢)o,
the stalk of _#(¢) at 0 € A". By [10, Theorem 1.1], we can take r € (0,1) and p > 1 such
that

IfilPe™2P¢d, < oo
A

for every i, where A" = {(z1,...,z,) |21l < 1+ ,|za] < r}. We put ¢ = £ > 0. Then, by

p-1
the Holder inequality, we have

1/q

1/p
IfilFe 2 d, < ( |f,-|2e—2WdAn) ( |ﬁ-|2e—2q€*”dﬂn)
Al A! Ar

By replacing r with a smaller positive number, we can take £ > 0 such that
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f e, < oo
A’l

r

by Skoda’s theorem (see, for example, [3, (5.6) Lemma]). Then we obtain
f fife2#**0da, < o.
AL

This implies that f; € _Z (¢ + &) for every i. Therefore, we obtain the inclusion

(@) C _Z(p+eh).
Then the equality

A (@)= Fp+ep)
holds. So, the equality

F ()= F(p+ey)

holds in a neighborhood of 0 € A" since _# (¢) and _Z (¢ + &) are both coherent.
Thus, we can take £ > 0 such that

Jp)= _F(p+ey)

holds on X' since X" is a relatively compact open subset of X. O

Let us prove Corollary 1.5.
Proof of Corollary 1.5. It is sufficient to prove that

R MR f(wx®F® #(h))=0

holds for every i > 0 and j in a neighborhood of any fixed point z € Z. By shrinking Z
around z, we may assume that X is Kihler since 7 o f is locally Kidhler (see, for example,
[18, Proposition 6.2 (ii)]). Without loss of generality, we may assume that Z is Stein. By
shrinking Z around z, we may further assume that there exists the following commutative
diagram since r : Y — Z is locally projective.

N

Y——ZxPN — =PV

| A

Z

Then we can take a sufficiently large and divisible positive integer m such that
M®m ~H® ﬁY(E)

where H = (p;0pn(1))ly and E is an effective Cartier divisor on Y by Kodaira’s lemma.
Then we obtain

ME™O ~ (MP* @ H)Y® H ® Oy(2E).
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We note that M® ® H is r-ample for every positive integer k since M is r-nef. Since f*H =~
h* Opn(1), we can construct a smooth hermitian metric g on f*H such that V=1 O,(f*H) > 0.
Similarly, f*(M®*®H) has a smooth hermitian metric g; such that V=10, (f*(M®®H)) > 0
after shrinking Z around z suitably because M®* ® H is m-ample. Let s be the canonical
section of Ox(f*E), that is, s € I'(X, Ox(f*E)) with (s = 0) = f*E. Let g, be any smooth
hermitian metric on Ox(f*E). We put

92

g3 =15
K

Then g3 is a singular hermitian metric on Ox(f*E) such that V-10,,(Ox(f*E)) > 0 and that
g3 is smooth outside Supp f*E. We put

, 1
h — (gl . g . g%)Zerk_

Then /' is a singular hermitian metric on f*M, which is smooth outside Supp f*E. By
construction,

V=10,(f'H) >0 and V-10,(f"M) - eV-10,(f*H) > 0

for some & > 0. If k is sufficiently large, then we can make i’ satisfy _# (hh') = _#Z (h) by
Lemma 6.1. We note that we can freely shrink Z around z if necessary. Hence this means
that

V=10,(f*H)>0 and V-10,,(F® f*M)—-eV-10,(f"H) >0
for some & > 0 such that the equality ¢ (hh’) = _# (h) holds. By applying Theorem 1.4, we
obtain that
R MR f(wx®F® Z(h))=RrR f(wox®F®fM® ¢(hh')) =0

holds for every i > 0 and ;. |
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