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Abstract
In this paper, we consider the equivariant index of a generalized Bott manifold. We show the

multiplicity function of the equivariant index is given by the density function of a generalized
twisted cube. In addition, we give a Demazure-type character formula of this representation.

1. Introduction

1. Introduction
A Bott tower of height n is a sequence:

Mn
πn→ Mn−1

πn−1→ · · · π2→ M1
π1→ M0 = {a point}

of complex manifolds Mj = P(C ⊕ E j), where C is the trivial line bundle over Mj−1, E j is a
holomorphic line bundle over Mj−1, P(·) denotes the projectivization, and π j : Mj → Mj−1

is the projection of the CP1-bundle. We call Mj a j-stage Bott manifold. The notion of a
Bott tower was introduced by Grossberg and Karshon ([6]).

A generalized Bott tower is a generalization of a Bott tower. A generalized Bott tower of
height m is a sequence:

Bm
πm→ Bm−1

πm−1→ · · · π2→ B1
π1→ B0 = {a point},

of complex manifolds Bj = P(C ⊕ E(1)
j ⊕ · · · ⊕ E(n j)

j ), where C is the trivial line bundle

over Bj−1, E(k)
j is a holomorphic line bundle over Bj−1 for k = 1, . . . , n j. We call Bj a j-stage

generalized Bott manifold. A generalized Bott tower has been studied from various points of
view (see, e.g., [2, 3, 8]). Generalized Bott manifolds are a certain class of toric manifolds,
so it is interesting to investigate the specific properties of generalized Bott towers.

In [6], Grossberg and Karshon showed the multiplicity function of the equivariant index
(see §2.4) for a holomorphic line bundle over a Bott manifold is given by the density function
of a twisted cube, which is determined by the structure of the Bott manifold and the line
bundle over it. From this, they derived a Demazure-type character formula.

The purpose of this paper is to generalize the results in [6] to generalized Bott manifolds.
We generalize the twisted cube, and we call it the generalized twisted cube. It is a special
case of twisted polytope introduced by Karshon and Tolman [9] for the presymplectic toric
manifold, and it is a special case of multi-polytope introduced by Hattori and Masuda [7]
for the torus manifold. We show the multiplicity function of the equivariant index for a
holomorphic line bundle over the generalized Bott manifold is given by the density function
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of the associated generalized twisted cube. From this, we derive a Demazure-type character
formula. In order to state the main results, we give some notation. Let L be a holomorphic
line bundle over a generalized Bott manifold Bm, which is constructed from integers {�i} and
{c(k)

i, j } (see §2.1). Let N =
∑m

j=1 n j, and let T N = S1 × · · · × S1. We consider the action of T N

on Bm as follows:

(t1, . . . , tm) · [z1, . . . , zm] = [t1z1, . . . , tmzm],

where ti = (ti,1, . . . , ti,ni), zi = (zi,0, . . . , zi,ni), tizi = (zi,0, ti,1zi,1, . . . , ti,nizi,ni) for i = 1, . . . ,m.
Also we consider the action of T = T N × S1 on L as follows:

(1.1) (t1, . . . , tm, tm+1) · [z1, . . . , zm, v] = [t1z1, . . . , tmzm, tm+1v].

We define the generalized twisted cube as follows. It is defined to be the set of x =
(x1,1, . . . , xm,nm) ∈ RN which satisfies

Ai(x) ≤
ni∑

k=1

xi,k ≤ 0, xi,k ≤ 0 (1 ≤ k ≤ ni)

or 0 <
ni∑

k=1

xi,k < Ai(x), xi,k > 0 (1 ≤ k ≤ ni),

for 1 ≤ i ≤ m, where

Ai(x) =

⎧⎪⎪⎨⎪⎪⎩−�m (i = m)

−(�i +
∑m

j=i+1
∑n j

k=1 c(k)
i, j x j,k) (1 ≤ i ≤ m − 1).

We denote the generalized twisted cube by C. We also define sgn(xi,k) = 1 for xi,k > 0 and
sgn(xi,k) = −1 for xi,k ≤ 0. The density function of the generalized twisted cube is defined to
be ρ(x) = (−1)N ∏

1≤i≤m,1≤k≤ni
sgn(xi,k) when x ∈ C and 0 elsewhere.

Let t be the Lie algebra of T and let t∗ be its dual space. Let �∗ ⊂ it∗ be the integral weight
lattice and let mult : �∗ → Z be the multiplicity function of the equivariant index. The first
main result of this paper is the following:

Theorem 1.1. Fix integers {c(k)
i, j } and {� j}. Let L → Bm be the corresponding line bundle

over a generalized Bott manifold. Let ρ : RN → {−1, 0, 1} be the density function of the
generalized twisted cube C which is determined by these integers. Consider the torus action
of T = T N × S1 as in (1.1). Then the multiplicity function for �∗ � ZN × Z is given by

mult(x, k) =

⎧⎪⎪⎨⎪⎪⎩ρ(x) (k = 1)

0 (k � 1).

Karshon and Tolman found a toric manifold for which the multiplicities of the equivariant
index are 0,−1, or −2 ([9, Example 6.7]). A generalized Bott manifold is different from this
case by Theorem 1.1.

Next, we give our character formula. Let {e1,1, . . . , em,nm , em+1} be the standard basis in
R

N+1, xi = (xi,1, . . . , xi,ni), and ei = (ei,1, . . . , ei,ni). Let Δ−n,r =
{
z = (z1, . . . , zn) ∈ Zn

≤0

∣∣∣
z1 + · · · + zn = −r

}
, and let Δ+n,r =

{
z = (z1, . . . , zn) ∈ Zn

>0

∣∣∣ z1 + · · · + zn = r − 1
}
. Let 〈xi, ei〉

= xi,1ei,1 + · · · + xi,niei,ni . For every integral weight μ ∈ �∗ we have a homomorphism λμ :
T → S1. We denote the integral combinations of these λμ’s by Z[T ]. Then the operators
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Di : Z[T ]→ Z[T ] are defined using c(k)
i, j and � j in the following way:

Di(λμ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
0≤r≤ki

∑
xi∈Δ−ni ,r

λμ+〈xi,ei〉 if ki ≥ 0

0 if − ni ≤ ki ≤ −1∑
ni+1≤r≤−ki

∑
xi∈Δ+ni ,r

(−1)niλμ+〈xi,ei〉 if ki ≤ −ni − 1,

where the functions ki are defined as follows: if μ = em+1 +
∑m

j=i+1
∑n j

k=1 x j,ke j,k, then ki(μ) =
�i +

∑m
j=i+1

∑n j

k=1 c(k)
i, j x j,k. From Theorem 1.1, we obtain the following theorem:

Theorem 1.2. Consider the action of the torus T on L → Bm as in (1.1). Denote the
(N + 1)-th component of the standard basis in RN+1 by em+1. Then the character is given by
the following element of Z[T ]:

χ = D1 · · ·Dm(λem+1 ).

This is a Demazure-type character formula. On the other hand, the character is also given
by the localization formula with respect to the action of T ([7, Corollary 7.4]). We compare
our formula with the localization formula (see Remark 3.8).

This paper is organized as follows. In Section 2, we recall the generalized Bott towers and
the equivariant index, and we give the definition of generalized twisted cubes. In Section 3,
we prove the main theorems.

2. Preliminaries

2. Preliminaries
In this section, we set up the tools to prove the main theorems.

2.1. Generalized Bott manifolds.
2.1. Generalized Bott manifolds.

Definition 2.1 ([2]). A generalized Bott tower of height m is a sequence:

Bm
πm→ Bm−1

πm−1→ · · · π2→ B1
π1→ B0 = {a point},

of manifolds Bj = P(C⊕E(1)
j ⊕· · ·⊕E(n j)

j ), where C is the trivial line bundle over Bj−1, E(k)
j is

a holomorphic line bundle over Bj−1 for k = 1, . . . n j, and P(·) denotes the projectivization.
We call Bj a j-stage generalized Bott manifold.

The construction of the generalized Bott tower is as follows. A 1-step generalized Bott
tower can be written as B1 = CPn1 = (Cn1+1)×/C×, where C× acts diagonally. We construct
a line bundle over B1 by E(k)

2 = (Cn1+1)× ×C× C for k = 1, . . . , n2, where C× acts on C by
a : v �→ a−ckv for some integer ck. In E(k)

2 we have [z1,0, . . . , z1,n1 , v] = [z1,0a, . . . , z1,n1a, a
ckv]

for all a ∈ C×. A 2-step generalized Bott tower B2 = P(C ⊕ E(1)
2 ⊕ · · · ⊕ E(n2)

2 ) can be written
as B2 = ((Cn1+1)× × (Cn2+1)×)/G, where the right action of G = (C×)2 is given by

(z1, z2) · (a1, a2) = (z1,0a1, z1,1a1, . . . , z1,n1a1, z2,0a2, a
c1
1 z2,1a2, . . . , a

cn2
1 z2,n2a2),

where z j = (z j,0, z j,1, . . . , z j,n j) for j = 1, 2.
We can construct higher generalized Bott tower in a similar way. In this way we get an

m-step generalized Bott manifold Bm = P(C ⊕ E(1)
m ⊕ · · · ⊕ E(nm)

m ) from any collection of
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integers {c(k)
i, j }:

Bm = ((Cn1+1)× × · · · × (Cnm+1)×)/G,

where the right action of G = (C×)m is given by

(z1, . . . , zm) · a = (z′1, z
′
2, . . . , z

′
m),

where zi = (zi,0, . . . , zi,ni) for i = 1, . . . ,m, a = (a1, . . . , am) ∈ (C×)m,

z′1 = (z1,0a1, z1,1a1, . . . , z1,n1a1) and z′j = (z j,0a j, a
c(1)

1, j

1 · · · a
c(1)

j−1, j

j−1 z j,1a j, . . . , a
c

(n j)
1, j

1 · · · ac
(n j)
j−1, j

j−1 z j,n ja j)
for j = 2, . . . ,m. We can construct a line bundle over Bm from the integers (�1, . . . , �m) by

L = ((Cn1+1)× × · · · × (Cnm+1)×) ×G C,

where G = (C×)m acts by

(2.1) ((z1, . . . , zm), v) · a = (z′1, z
′
2, . . . , z

′
m, a

�1
1 · · · a�mm v).

2.2. Torus action on generalized Bott towers.
2.2. Torus action on generalized Bott towers. Let N =

∑m
j=1 n j and let T N = S1×· · ·×S1.

We consider the action of T N on Bm as follows:

(t1, . . . , tm) · [z1, . . . , zm] = [t1 · z1, . . . , tm · zm],

where ti = (ti,1, . . . , ti,ni) and ti · zi = (zi,0, ti,1zi,1, . . . , ti,nizi,ni) for i = 1, . . . ,m. Also we
consider the action of T = T N × S1 on L as follows:

(2.2) (t1, . . . , tm, tm+1) · [z1, . . . , zm, v] = [t1 · z1, . . . , tm · zm, tm+1v].

2.3. Generalized twisted cubes.
2.3. Generalized twisted cubes.

Definition 2.2. A generalized twisted cube C is defined to be the set of x = (x1,1, . . . ,

xm,nm) ∈ RN which satisfies

Ai(x) ≤
ni∑

k=1

xi,k ≤ 0, xi,k ≤ 0 (1 ≤ k ≤ ni)(2.3)

or 0 <
ni∑

k=1

xi,k < Ai(x), xi,k > 0 (1 ≤ k ≤ ni),

for all 1 ≤ i ≤ m, where

Ai(x) =

⎧⎪⎪⎨⎪⎪⎩−�m (i = m)

−(�i +
∑m

j=i+1
∑n j

k=1 c(k)
i, j x j,k) (1 ≤ i ≤ m − 1).

Remark 2.3. (i) The generalized twisted cube is a special case of multi-polytope defined
in [7]. In particular, it is a special case of twisted polytope defined in [9].

(ii) When ni = 1 for all 1 ≤ i ≤ m, the generalized twisted cube is the twisted cube given
in [6, (2.21)].

Definition 2.4. We define sgn(xi,k) = 1 for xi,k > 0 and sgn(xi,k) = −1 for xi,k ≤ 0. The
density function of the generalized twisted cube is then defined to be ρ(x) =

(−1)N ∏
1≤i≤m,1≤k≤ni

sgn(xi,k) when x ∈ C and 0 elsewhere.
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Fig.1.

Example 2.5. Suppose that m = 2, n1 = 1, n2 = 2, �1 = 1, and �2 = 2. We set c(1)
1,2 = 2 and

c(2)
1,2 = −1. Then the generalized twisted cube is the set of x = (x1,1, x2,1, x2,2) which satisfies
• −2 ≤ x2,1 + x2,2 ≤ 0, x2,1, x2,2 ≤ 0,
• −1 − 2x2,1 + x2,2 ≤ x1,1 ≤ 0 or 0 < x1,1 < −1 − 2x2,1 + x2,2.

In Figure 1, the black dots represent the lattice points of the sign +1 and the white dots
represent the sign −1.

Example 2.6. Suppose that m = 2, n1 = 2, n2 = 1, �1 = 2, and �2 = −6. We set c(1)
1,2 = −1.

Then the generalized twisted cube is the set of x = (x1,1, x1,2, x2,1) which satisfies
• 0 < x2,1 < 6,
• −2+ x2,1 ≤ x1,1+ x1,2 ≤ 0, x1,1, x1,2 ≤ 0 or 0 < x1,1+ x1,2 < −2+ x2,1, x1,1, x1,2 > 0.

In Figure 2, the white dots represent the sign −1.

Example 2.7. Suppose that m = 2, n1 = n2 = 2, �1 = 1, and �2 = 2. We set c(1)
1,2 = 2 and

c(2)
1,2 = −1. Then the generalized twisted cube is the set of x = (x1,1, x1,2, x2,1, x2,2) which

satisfies
• −2 ≤ x2,1 + x2,2 ≤ 0, x2,1, x2,2 ≤ 0,
• −1 − 2x2,1 + x2,2 ≤ x1,1 + x1,2 ≤ 0, x1,1, x1,2 ≤ 0

or 0 < x1,1 + x1,2 < −1 − 2x2,1 + x2,2, x1,1, x1,2 > 0.
The lattice points in the generalized twisted cube represent the sign −1.

2.4. Equivariant index.
2.4. Equivariant index. Let L be a holomorphic line bundle over a generalized Bott

manifold Bm with the action of the torus T as in (2.2). Let L be the sheaf of holomor-
phic sections. The equivariant index of a generalized Bott manifold is the formal sum of
representation of T :

index(Bm,L) =
∑

(−1)iHi(Bm,L).
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Fig.2.

The character of the equivariant index is the function χ : T → C which is given by χ =∑
(−1)iχi where χi(a) = trace{a : Hi(Bm,L) → Hi(Bm,L)} for a ∈ T . Let t be the Lie

algebra of T and let t∗ be its dual space. Every μ in the integral weight lattice �∗ ⊂ it∗

defines a homomorphism λμ : T → S1. We can write χ =
∑
μ∈�∗ mμλμ. The coefficients are

given by a function mult : �∗ → Z, sending μ �→ mμ, called the multiplicity function for the
equivariant index.

3. Main theorems

3. Main theorems3.1. Multiplicity function of the equivariant index.
3.1. Multiplicity function of the equivariant index. We will show that the multiplicity

function of the equivariant index of a generalized Bott manifold is given by the density func-
tion of a generalized twisted cube C. In particular, all the weights occur with a multiplicity
−1, 0, or 1.

Theorem 3.1. Fix integers {c(k)
i, j } and {� j}. Let L → Bm be the corresponding line bundle

over a generalized Bott manifold. Let ρ : RN → {−1, 0, 1} be the density function of the
generalized twisted cube C which is determined by these integers as in (2.3). Consider the
torus action of T = T N × S1 as in (2.2). Then the multiplicity function for �∗ � ZN × Z is
given by

mult(x, k) =

⎧⎪⎪⎨⎪⎪⎩ρ(x) (k = 1)

0 (k � 1).

Proof. We compute H∗(Bm,L). Take the covering ̃ = {Ur1 × · · · × Urm} of (Cn1+1)× ×
· · · × (Cnm+1)× for r1, . . . , rm ∈ {0, 1, . . . , n�} (� = 1, . . . ,m), where Urj = C × · · · × C︸��������︷︷��������︸

r j

×C× ×

C × · · · × C︸��������︷︷��������︸
n�−r j

. This descends to the covering  of Bm; every intersection of sets in  is

isomorphic to a product of C’s and C×’s. The coverings ̃ and  are the Leray coverings
([5]).
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Let  be the sheaf of holomorphic functions, and let G = (C×)m. Since holomorphic
sections of L are given by holomorphic sections of  which are G-invariant with respect
to the action (2.1) ([9]), H∗( ,L) is isomorphic to the G-invariant part of H∗(̃ ,). By
the Leray theorem, H∗(Bm,L) is isomorphic to the G-invariant part of H∗((Cn1+1)× × · · · ×
(Cnm+1)×,).

In order to compute H∗((Cn1+1)× × · · · × (Cnm+1)×,), we compute H∗((Cn+1)×,). Let

′ = {U0,U1, . . . ,Un} be the covering of (Cn+1)×, let j0, j1, . . . , jk ∈ {0, 1, . . . , n} for k =

0, 1, . . . , n and let U j0 j1··· jk = U j0 ∩ U j1 ∩ · · · ∩ U jk . Let I = (i0, i1, . . . , in) ∈ Zn+1. The
holomorphic functions on U j0 j1··· jk are given by

Γhol(U j0 j1··· jk ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

I∈Zn+1,i�≥0(�� j0, j1,..., jk)

aIz
i0
0 zi1

1 · · · zin
n

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
Consider the Čech cochain complex

0→ Č0( ′,)
δ0→ Č1( ′,)

δ1→ · · · δ
n−1

→ Čn( ′,)
δn→ 0,

where Či( ′,) = ⊕Γhol(U j0 j1··· ji) (i = 0, . . . , n). The map δp : Čp( ′,) → Čp+1( ′,)
is given by { f j0 j1··· jp} �→ {g j0 j1··· jp+1}, g j0 j1··· jp+1 =

∑
(−1)k f j0 j1··· ĵk ··· jp+1

. Recall that
H0((Cn+1)×,) = Ker δ0, and Hn((Cn+1)×,) = Coker δn−1. The torus T n+1 = (S1)n+1 acts
on the holomorphic functions by ((t0, . . . , tn) · f )(z0, . . . , zn) = f (t−1

0 z0, . . . , t−1
n zn). This action

descends to the cohomology. The corresponding weight spaces for the weight I ∈ Zn+1 are

H0((Cn+1)×,)I =

⎧⎪⎪⎨⎪⎪⎩span(z−i0
0 · · · z−in

n ) (I ∈ Zn+1
≤0 )

0 otherwise

Hn((Cn+1)×,)I =

⎧⎪⎪⎨⎪⎪⎩span(z−i0
0 · · · z−in

n ) (I ∈ Zn+1
>0 )

0 otherwise.

We now prove Hq((Cn+1)×,) = 0 for 1 ≤ q ≤ n − 1. Let Δ be the fan of (Cn+1)×, and let
|Δ| = ∪σ∈Δσ be the support of Δ. Let

Z(I) := {v ∈ |Δ| ; 〈I, v〉 ≤ ϕ(v)},
where ϕ is the support function. From [4],

Hq((Cn+1)×,)I = Hq(|Δ|, |Δ| \ Z(I) ; C).

Since  is the sheaf of holomorphic function, ϕ(v) = 0 for all v ∈ |Δ|. In the case that i j ≤ 0
for all j, since |Δ| is contractible,

Hq((Cn+1)×,)I = 0 (q ≥ 1).

In the case that i j > 0 for all j, Z(I) = {0}. Since |Δ| \ {0} is homotopic to Sn−1,

Hq((Cn+1)×,)I = 0 (q � n).

In other case, since |Δ| \ Z(I) is path-connected and contractible,

Hq((Cn+1)×,)I = 0
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for all q.
We now compute H∗((Cn1+1)× × · · · × (Cnm+1)×,). Consider the natural action of T N+m =

(S1)N+m on the holomorphic function. The weights are multi-indices I′ ∈ ZN+m; we write
I′ = (i′1, . . . , i

′
m), where i′j = (i j,0, i j,1, . . . , i j,n j) for j = 1, . . . ,m. From the cohomology of

(Cn+1)× that we have computed and from the Künneth formula ([1]), it follows that

Hq((Cn1+1)× × · · · × (Cnm+1)×,)I′ =

⎧⎪⎪⎨⎪⎪⎩span(z−i1,0
1,0 z−i1,1

1,1 · · · z−im,nm
m,nm )

0.

The former occurs if for all � we have sgn(i�,0) = sgn(i�,1) = · · · = sgn(i�,n�) =: ε�,
here q =

∑
{� | ε�=1,1≤�≤m} n�, and q = 0 when ε� = −1 for all �. In particular, (−1)q =

(−1)N ∏
1≤�≤m,1≤p≤n� sgn(i�,p).

The action (2.1) induces an action on functions given by

(ak f )(z1,0, . . . , zm,nm)

= a�kk f (z1,0, . . . , zk−1,nk−1 , zk,0a−1
k , zk,1a−1

k , . . . , zk,nk a
−1
k , . . . , z�,0, a

−c(1)
k,�

k z�,1, . . . , a
−c(n� )

k,�

k z�,n� , . . . ).

The monomial z−i1,0
1,0 z−i1,1

1,1 · · · z−im,nm
m,nm is then a weight vector with a weight whose k-th coordi-

nate is �k + ik,0 + · · ·+ ik,nk +
∑m
�=k+1

∑n�
p=1 c(p)

k,� i�,p. Thus the G-invariant part of H∗((Cn1+1)× ×
· · · × (Cnm+1)×,) consists of those monomials z−i1,0

1,0 z−i1,1
1,1 · · · z−im,nm

m,nm for which

�1 + i1,0 + · · · + i1,n1 +

m∑
�=2

n�∑
p=1

c(p)
1,� i�,p = 0(3.1)

�2 + i2,0 + · · · + i2,n2 +

m∑
�=3

n�∑
p=1

c(p)
2,� i�,p = 0

...

�m + im,0 + · · · + im,nm = 0.

The action (2.2) induces a T action on the functions given by

((t1,1, . . . , tm,nm , tm+1) · f )(z1,0, . . . , zm,nm)

= tm+1 f (z1,0, t−1
1,1z1,1, . . . , zm,0, t−1

m,1zm,1, . . . , t−1
m,nm

zm,nm).

The weight of the monomial z−i1,0
1,0 z−i1,1

1,1 · · · z−im,nm
m,nm with respect to this T action is (i1, i2, . . . , im,

1), where i j = (i j,1, . . . , i j,n j) for j = 1, . . . ,m. Thus the index of (Bm,L) is given by
the set of x = (x1,1, . . . , xm,nm , 1) = (i1,1, . . . , im,nm , 1) for which there exist (i1,0, . . . , im,0)
such that (3.1) is satisfied and such that sgn(i�,0) = sgn(i�,1) = · · · = sgn(i�,n�) for all
�. This is exactly the set (2.3). Therefore the multiplicity of the equivariant index is
(−1)N ∏

1≤�≤m,1≤p≤n� sgn(i�,p) = (−1)N ∏
1≤�≤m,1≤p≤n� sgn(x�,p) = ρ(x). �

3.2. Character formula for the equivariant index.
3.2. Character formula for the equivariant index. In the following the theorem we

give a formula for the character χ : T → C of the equivariant index of a generalized Bott
manifold. For every integral weight μ ∈ �∗ we have a homomorphism λμ : T → S1.
We denote the integral combinations of these λμ’s by Z[T ]. Then χ ∈ Z[T ] is given by
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χ =
∑
μ∈�∗ mμλμ where mμ = mult(μ).

Definition 3.2. Let {e1,1, . . . , em,nm , em+1} be the standard basis in RN+1, xi =
(
xi,1, . . . ,

xi,ni

)
and ei = (ei,1, . . . , ei,ni). Let Δ−n,r =

{
z = (z1, . . . , zn) ∈ Zn

≤0

∣∣∣ z1 + · · · + zn = −r
}
, and let

Δ+n,r =
{
z = (z1, . . . , zn) ∈ Zn

>0

∣∣∣ z1 + · · · + zn = r − 1
}
. Let 〈xi, ei〉 = xi,1ei,1 + · · · + xi,niei,ni .

Then the operators Di : Z[T ]→ Z[T ] are defined using c(k)
i, j and � j in the following way:

Di(λμ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
0≤r≤ki

∑
xi∈Δ−ni ,r

λμ+〈xi,ei〉 if ki ≥ 0

0 if − ni ≤ ki ≤ −1∑
ni+1≤r≤−ki

∑
xi∈Δ+ni ,r

(−1)niλμ+〈xi,ei〉 if ki ≤ −ni − 1,

where the functions ki are defined as follows: if μ = em+1 +
∑m

j=i+1
∑n j

k=1 x j,ke j,k, then ki(μ) =
�i +

∑m
j=i+1

∑n j

k=1 c(k)
i, j x j,k.

From Theorem 3.1, we immediately obtain the following theorem.

Theorem 3.3. Consider the action of the torus T on L → Bm as in (2.2). Denote the
(N + 1)-th component of the standard basis in RN+1 by em+1. Then the character is given by
the following element of Z[T ]:

χ = D1 · · ·Dm(λem+1 ).

Remark 3.4. When ni = 1 for all i, the operator Di is given by

Di(λμ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λμ + λμ−ei,1 + · · · + λμ−kiei,1 if ki ≥ 0

0 if ki = −1

−λμ+ei,1 − λμ+2ei,1 − · · · − λμ−(ki+1)ei,1 if ki ≤ −2.

We can check that this operator agrees with the one in [6, Proposition 2.32].

Example 3.5. Suppose that m = 2, n1 = 1, and n2 = 2. We set �1 = 1, �2 = 2, c(1)
1,2 = 2, and

c(2)
1,2 = −1 as in Example 2.5. Then the corresponding character χ is given by

χ = D1D2(λe3 )

= D1(λe3 + λe3−e2,1 + λe3−e2,2 + λe3−2e2,1 + λe3−e2,1−e2,2 + λe3−2e2,2 )

= λe3 + λe3−e1,1 + λe3−e2,2 + λe3−e2,2−e1,1 + λe3−e2,2−2e1,1 − λe3−2e2,1+e1,1 − λe3−2e2,1+2e1,1

+ λe3−e2,1−e2,2 + λe3−2e2,2 + λe3−2e2,2−e1,1 + λe3−2e2,2−2e1,1 + λe3−2e2,2−3e1,1 .

Example 3.6. Suppose that m = 2, n1 = 2, and n2 = 1. We set �1 = 2, �2 = −6, and
c(1)

1,2 = −1 as in Example 2.6. Then the corresponding character χ is given by

χ = D1D2(λe3 )

= D1(−λe3+e2,1 − λe3+2e2,1 − λe3+3e2,1 − λe3+4e2,1 − λe3+5e2,1 )

= −λe3+e2,1 − λe3+e2,1−e1,1 − λe3+e2,1−e1,2 − λe3+2e2,1 − λe3+5e2,1+e1,1+e1,2 .
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Example 3.7. Suppose that m = 2, n1 = 2, and n2 = 2. We set �1 = 1, �2 = 2, c(1)
1,2 = 2, and

c(2)
1,2 = −1 as in Example 2.7. Then the corresponding character χ is given by

χ = D1D2(λe3 )

= D1(λe3 + λe3−e2,1 + λe3−e2,2 + λe3−2e2,1 + λe3−e2,1−e2,2 + λe3−2e2,2 )

= λe3 + λe3−e1,1 + λe3−e1,2 + λe3−e2,2 + λe3−e2,2−e1,1 + λe3−e2,2−e1,2 + λe3−e2,2−2e1,1

+ λe3−e2,2−e1,1−e1,2 + λe3−e2,2−2e1,2 + λe3−2e2,1+e1,1+e1,2 + λe3−e2,1−e2,2 + λe3−2e2,2

+ λe3−2e2,2−e1,1 + λe3−2e2,2−e1,2 + λe3−2e2,2−2e1,1 + λe3−2e2,2−e1,1−e1,2 + λe3−2e2,2−2e1,2

+ λe3−2e2,2−3e1,1 + λe3−2e2,2−2e1,1−e1,2 + λe3−2e2,2−e1,1−2e1,2 + λe3−2e2,2−3e1,2 .

Remark 3.8. We gave the formula for the character using the Demazure-type operators.
On the other hand, the character is also given by the localization formula ([7, Corollary 7.4]).
For example, when we set the parameters as in Example 3.5, the character is computed using
the localization formula as follows:

χ = λe3

(
1

(1 − λ−e1,1 )(1 − λ−e2,1 )(1 − λ−e2,2 )
+

λ−2e2,2

(1 − λ−e1,1 )(1 − λ−e2,1+e2,2 )(1 − λe2,2 )

+
λ−2e2,1

(1 − λ−e1,1 )(1 − λe2,1−e2,2 )(1 − λe2,1 )
+

λ−e1,1

(1 − λe1,1 )(1 − λ2e1,1−e2,1 )(1 − λ−e1,1−e2,2 )

+
λ−3e1,1−2e2,2

(1 − λe1,1 )(1 − λ3e1,1−e2,1+e2,2 )(1 − λe1,1+e2,2 )

+
λ3e1,1−2e2,1

(1 − λe1,1 )(1 − λ−3e1,1+e2,1−e2,2 )(1 − λ−2e1,1+e2,1 )

)
.

We can check that this result agrees with the result in Example 3.5.
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