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Abstract
Elliptic equations on configurationsW = W1 [ � � � [ WN with edgeY and com-

ponentsWj of different dimension can be treated in the frame of pseudo-differential
analysis on manifolds with geometric singularities, here edges. Starting from edge-
degenerate operators onWj , j = 1; : : : ; N , we construct an algebra with extra ‘trans-
mission’ conditions onY that satisfy an analogue of the Shapiro-Lopatinskij condi-
tion. Ellipticity refers to a two-component symbolic hierarchy with an interior and
an edge part; the latter one is operator-valued, operating on the union of different
dimensional model cones. We construct parametrices withinour calculus, where ex-
change of information between the various components is encoded in Green and
Mellin operators that are smoothing onW n Y . Moreover, we obtain regularity of
solutions in weighted edge spaces with asymptotics.

Introduction

This paper is aimed at studying elliptic operators on a configuration with edges,
locally described by wedges with model cones of different dimensions. A specific fea-
ture is a new class of transmission operators between the different components, that
control the interaction of data across the edges. To be more precise, ifX is a (say,
compact) topological space andX1 :=

�
R+ � X�Æ(f0g � X) the cone with baseX

(where f0g �X in the quotient space corresponds to the tipv of the cone), the Carte-
sian productX1�� with a C1 manifold� is a wedge. The edge is�, andX1 will
be called the model cone of the wedge. In our case we assumeX = X1[� � �[XN to be
a disjoint union of compact and closedC1 manifoldsXj of dimensionsnj = dimXj .
Then X1 is a cone of the form[vX1j := [X1j =�, where[v is the disjoint union
combined with the quotient map that identifies the tips of theconesX1j with a single
point v. An example of a (local) edge configuration of this type is shown in Fig. 1
below (with the baseX2 of dimension 0). Other examples can easily be constructed in
terms of transversal intersections of embeddedC1 manifolds of different dimensions;
the intersections are then the edges.
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Configurations of that kind occur in a number of applications, for instance, in
heat diffusion and other models of applied sciences, see themore specific remarks be-
low in this introduction. Ellipticity on cones[vX1j with different-dimensionalXj has
been investigated in [22]. Models with transmission effectsin network-like situations
have been studied by Ali Mehmeti for hyperbolic equations, see [1] and the references
there. It is also interesting to consider operators on spaces with ‘higher’ edges and cor-
ners, i.e., spaces composed of subspaces of different dimensions and (say, piecewise
smooth) singular geometry, although such a calculus is not yet established; it would
be of a similar complexity to a corresponding theory for manifolds with higher sin-
gularities in the sense of [24]. Another motivation of our calculus is the problem of
approximating singular subsets of a smooth structure by exhaustion via a sequence of
regular domains, where the behaviour of the limit may dependboth on the final ge-
ometry as well as on the way of approximation. A first step in the present case of
different-dimensional singularities should be the ‘exact’ calculus to be reached as a
corresponding limit.

Differential and pseudo-differential operators on manifolds with geometric singu-
larities such as conical points or edges have a long history and are studied from dif-
ferent points of view by many authors before, cf. Kondratyev[12], Melrose, Mendoza
[15], Mazzeo [14]. Concerning further references, cf. [7] or[21]. A pseudo-differential
approach for edge-degenerate operators, first establishedin [20] for ‘standard’ mani-
folds with edges, combines ideas from the analysis of boundary value problems in the
sense of Boutet de Monvel [3] or Rempel and Schulze [18] with special Mellin quan-
tisations in model cone direction and quantisation in edge direction, see [21], [23],
based on twisted homogeneity of operator-valued symbols, connected with strongly
continuous groups of isomorphisms on weighted spaces on themodel cones. This tech-
nique also plays a role in the index theory on singular spaces, see, e.g., Fedosov,
Schulze and Tarkhanov [8] and the bibliography there. It is typical in this context to
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study corresponding algebras of 2� 2 block matrix operators with trace and potential
conditions along edges. The latter ones satisfy an analogueof the Shapiro-Lopatinskij
condition in the elliptic case. Similar to boundary value problems, cf. Atiyah and Bott
[2], there is a topological obstruction for the existence ofsuch conditions. For the edge
case with different model cones it may happen (as for, say, the Cauchy-Riemann oper-
ator and transmission problems on a manifold with respect toan interface of codimen-
sion 1) that for operators from one side the obstruction may be non-vanishing although
from both sides it vanishes. Transmission problems in general (for pseudo-differential
operators with or without transmission property at the interface) are, in fact, special
cases of our calculus, where the normal half lines in the two opposite directions are
just the model cones of corresponding local wedges. In the present paper we develop
an algebra with transmission operators on a configuration with edges.

Ellipticity is determined by a bijectivity condition for a symbolic hierarchy, con-
sisting of interior and edge components, and we construct parametrices within the al-
gebra. Regularity of solutions is controlled in weighted spaces and subspaces with dis-
crete or continuous asymptotics. The scenario we are considering here has relations to
other investigations on spaces with geometric singularities, as they play a role in crack
theory, cf. the monograph [10].

In recent years it became popular to study boundary-contactproblems, which oc-
cur, e.g., in the mechanics of media consisting of components of different material
parameters. There are then transmission effects at the interior boundaries. Those are
particularly subtle when the boundaries are not smooth or combined with cracks em-
anated by one of the sub-bodies. To the best knowledge of the authors, there was noth-
ing done so far in terms of a systematic calculus, which produces parametrices and
asymptotics of solutions close to the interfaces (when their dimension is greater than
zero).

In order to illustrate the position of our calculus for treating problems of that kind,
we consider a ballM := fx 2 R3 : jxj � 2g with a subbody of the formB [ C forB := fx 2 R3 : jxj � 1g, C := fx 2 R3 : 1 � jxj � 3=2; x3 = 0g, see Fig. 2 above.
In A = M n (B [ C) and B we assume to be given different elliptic operators (e.g.,
in the simplest case, the Laplacian multiplied by differentconstants). Then the prob-
lem is to describe the behaviour (especially, regularity and asymptotics) of solutionsu and v in A and intB, respectively, whereu satisfies two-sided crack conditions onC (e.g., Dirichlet or Neumann) andu; v suitable transmission conditions across�B,
which, of course, interact with the crack conditions in a neighbourhood of� = �B\C.
This problem can be interpreted as an edge problem with edge� and a fairly complex
model cone. Localisations of the problem to theA- andB-sides give rise to subcalculi
with corresponding simpler model cones, where in the present paper we are dealing
with the B-side, includingC. In our pictureB is smooth; even in that case the edge
interpretation is necessary, though we admit� to be an edge anyway.
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For notational convenience, throughout the paper we formulate the calculus whenB is closed. The case with boundary has an analogous structure: when some of theXj
(in the notation at the beginning) are manifolds with boundary, the parameter-
dependent form of Boutet de Monvel’s calculus is to be used, rather than the
parameter-dependent ‘standard’ pseudo-differential operators, as the values of operator-
valued Mellin symbols.

Note that the calculus for theA-side (which we do not carry out here) would em-
ploy more tools than those established in this paper. A part of the relevant techniques
may be found in [24]. Otherwise, as it is known from the analysis on singular spaces
in general, different geometries induce different non-equivalent calculi, and the results
of [24] are not involved in the ones here for theB-side of the configuration.

Let us briefly outline the structure of the paper. In Section 1we introduce op-
erators on cones with different components of the base spaces. Apart from elements
of the ‘usual’ cone algebra, see [23], those encode the interchange of data between
the components in terms of transmission operators, here with continuous asymptotics
across the common tip of the ‘full’ cone, no matter whether the dimensions of the
cone components are equal or not. The choice of that version of cone calculus, which
extends material from [22] (mainly by the transmission Mellin plus Green operators
with continuous asymptotics), affects the structure of theinduced cone operator-valued
symbols that we develop in Section 2 as the amplitude functions of a corresponding
edge operator calculus. We obtain, in fact, a structure thatextends the one in [23] by
the new typical transmission objects. The ‘usual’ edge amplitude functions belonging
to the subwedges generated by the single cones appear as a proper substructure of the
present one. In Section 3 we pass to an associated operator calculus with a principal
symbolic hierarchy that admits a specific notion of ellipticity and the construction of
parametrix. As a consequence, we obtain the regularity of solutions in weighted edge
spaces with and without asymptotics.

1. Transmission algebras on cones

1.1. Mellin operators and cone Sobolev spaces. Let us first fix some notation
around the Mellin transform and associated pseudo-differential operators. The Mellin
transformM is given by the formula

(1.1.1) Mu(z) =
Z 1

0
rz�1u(r) dr;

in the simplest case foru 2 C1
0 (R+); then the covariablez varies inC, and we have

Mu(z) 2 A(C) (hereA(U ) for any openU � C denotes the space of all holomor-
phic functions inU ). (1.1.1) will be then extended to various function and distribution
spaces, also vector-valued ones; thenz will vary on subsets ofC, for instance, lines

(1.1.2) 0� := fz 2 C : Rez = �g
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for some real�. Define the weighted Mellin transform with weight 2 R by Mu =
Muj0(1=2)� for u 2 C1

0 (R+). ThenM is interpreted as a map fromC1
0 (R+) to A(C),

which extends to an isomorphismM : rL2(R+)! L2(0(1=2)� ), and the inverse is

M�1 g(r) =
1

2�i
Z
0(1=2)� r�zg(z) dz:

Here and in the sequel, function and distribution spaces, originally given on R, will
also be employed for0� 3 z, where Imz plays the role of the real variable. In par-
ticular, we have symbol spacesS�(R+ � R+ � 0�) in the sense of the Ḧormander
classes, where we writea(r; r 0; z) with � := Im z being the covariable. With symbolsa(r; r 0; z) 2 S�(R+ � R+ � 0(1=2)� ) we associate weighted Mellin pseudo-differential
operators on the half-axis

opM (a)u(r) := M�1 ;z!rfM ;r 0!za(r; r 0; z)u(r 0)g(1.1.3)

=
ZZ 1

0

� rr 0
��((1=2)�+i� ) a(r; r 0; z)u(r 0)dr 0r 0 d�� ;

wherez = (1=2)�  + i� . Note that we can also write

opM (a) = r opM (T � a)r�
where (T � a)(r; r 0; z) = a(r; r 0; z �  ) and opM ( : ) = op0M ( : ). Below we use such a
notation also in the vector- and operator-valued case, where, for instance,a(r; r 0; z) 2C1(R+ � R+; L�(X;0(1=2)� )), and X is a closed compactC1 manifold. HereL�(X; R) denotes the space of all pseudo-differential operators oforder � 2 R on X
that depend on a parameter� 2 R. Recall that such operators are locally described by
amplitude functionsa(x; x 0; � ; � ) in the covariables (�; � ) 2 Rn+1, n = dimX, whileL�1(X; R) = S(R; L�1(X)) with the spaceL�1(X) of smoothing operators onX. In
a similar sense there are parameter-dependent spacesL�(X; Rl) for an l-dimensional
parameter�. All these spaces are equipped with natural Fréchet topologies.

To define weighted Sobolev spaces on a stretched coneX^ := R+ � X with baseX, we employ the fact that for every� 2 R there exists an elementR�(�) 2 L�(X; Rl)
that is parameter-dependent elliptic of order� and induces isomorphismsR�(�) :H s(X)! H s��(X) for all � 2 Rl; s 2 R. HereH s(X) are the standard Sobolev spaces
of smoothnesss 2 R on X. We now choose such a familyRs(� ) with parameter� 2 R
and defineHs; (X^) as the completion ofC1

0 (X^) with respect to the norm

(1.1.4)

(
1

2�i
Z
0((n+1)=2)� kRs(Im z)Mu(z)k2L2(X) dz

)1=2 ;
for n = dimX. The spaceL2(X) is equipped with a scalar product, defined in terms
of a fixed Riemannian metric onX. Recall that when we choose another familyeRs(� )
with analogous properties, we obtain an equivalent norm.
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The spacesHs; (X^) have the meaning of Sobolev spaces based on the Fuchs
type derivative inr 2 R+ and (local) usual derivatives onX. More precisely, fors 2 N
we have

Hs; (X^) =
�u(r; x) 2 r�(n=2)+L2(R+ �X) :

(r�r )kDu(r; x) 2 r�(n=2)+L2(R+ �X) for all k + ordD � s	:(1.1.5)

Here D stands for arbitrary differential operators onX. It can be easily proved that
(1.1.5) is an equivalent definition ofHs; (X^) for s 2 N, and the full scale could be
defined by duality and interpolation. Notice thatH0;0(X^) = r�n=2L2(R+�X) (with L2

being taken with measuredr dx).
By a cut-off function on the half-axis we understand in this paper any real-valued!(r) 2 C1

0

�
R+
�

that is equal to 1 in a neighbourhood ofr = 0.
In the considerations below we will also employ a modified scale of weighted

Sobolev spaces, namelyKs; (X^), defined by

Ks; (X^) :=
�!u + (1� !)v : u 2 Hs; (X^); v 2 H s

cone(X^)
	

for any cut-off!. HereH s
cone(X^) for X = Sn (the unit sphere inRn+1) is the subspace

of all v 2 H s
loc(X^) such that (1�!)v 2 H s(Rn+1) where (r; x) are interpreted as polar

coordinates inRn+1nf0g �= (Sn)^. For generalX, the definition is given by reducing to
the case ofSn, using a partition of unity subordinate to the chosen local coordinates,
see, e.g., [23] for details.

We will be interested in spaces on two (or finitely many) conesX4
1 [v X4

2 for
basesX1; X2 of different dimensions, where[v means disjoint union combined with
an identification of vertices. These will be the model cones of configurations with
edges. In our transmission algebras on (say, local and stretched) wedges

�X1̂ [X2̂

��� for an open set� � Rq we consider operators that share information betweenX1̂ � � andX2̂ � �, encoded below by a kind of smoothing Mellin and Green op-
erators. For the non-smoothing part, because of ‘pseudo-locality,’ we can ignore for
a while the interaction of operators and discuss edge-degenerate symbols for a single
wedgeX^ �� with a smooth compact cone baseX.

Let U � Rn be an open set and leteS��R+ � U � � � R1+n+q� denote the space
of all symbolsp(r; x; y; �; �; �) that have the form

p(r; x; y; �; �; �) =ep(r; x; y; r�; �; r�);
where

ep(r; x; y;e�; �;e�) 2 S��R+ � U ��� R1+n+q� := S� �R� U ��� R1+n+q� ��
R+�U��

(here we use common notation, i.e., Hörmander’s symbol spacesS�(V � RN ), V �
Rm open). By opx(p) and opr (p) we denote the standard pseudo-differential action
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with respect to the variables in the subscript and the corresponding covariables. For in-
stance: opx(p)u(x) =

R e�ix�p(x; � )û(� ) d�� . Given an atlas�j : Gj ! Uj , j = 1; : : : ; N
on X and a system of local symbolspj 2 eS�(R+ � Uj ��� R1+n+q) we can pass to
(r; y; �; �)-dependent families of pseudo-differential operators onX by setting

(1.1.6) p(r; y; �; �) :=
NX
j=1

'j n���1j �
� opx(pj )(r; y; �; �)

o j :
In the formula (1.1.6),f'j gj=1;:::;N is a partition of unity subordinate to the coveringfGj gj=1;:::;N , and f j gj=1;:::;N are functions inC1

0 (Gj ) such that'j j = 'j for all j ,
and

���1j �� is the operator push-forward under��1j .
Let us now introduce parameter-dependent families onX that are holomorphic inz 2 C.

DEFINITION 1.1. LetM�
O

(X; Rq), � 2 R, denote the space of all operator fam-
ilies h(z; �) 2 A

�
Cz; L� �X; Rq��� such thath(z; �)j0��Rq 2 L�(X;0� � Rq) for every� 2 R, uniformly in compact�-intervals. Forq = 0 we simply writeM�

O
(X).

The spaceM�
O

(X; Rq) is Fŕechet in a canonical way, and we then have spaces of
the kindC1�R+��;M�

O
(X; Rq)�. We now recall a Mellin quantisation result that will

be essential in our operator algebra below.

Theorem 1.2. For everyp(r; y; �; �) of the form(1.1.6) there is aneh(r; y; z; �) 2C1�R+ � �;M�
O

(X; Rq)� such thath(r; y; z; �) :=eh(r; y; z; r�) satisfies the following
relation:

(1.1.7) opr (p)(y; �)� op�M (h)(y; �) 2 C1(�;L�1(X^; Rq))
for every� 2 R (where operators are interpreted in the senseC1

0 (X^)! C1(X^)),
andeh is uniquemodC1�R+ ��;M�1

O
(X; Rq)�.

REMARK 1.3. If we definep0(r; y; �; �) in terms of symbolspj;0(r; y; �; �) :=epj (0; y; r�; r�) and seth0(r; y; z; �) :=eh(0; y; z; r�), the relation (1.1.7) implies

opr (p0)(y; �)� op�M (h0)(y; �) 2 C1(�;L�1(X^; Rq)):
The local edge-degenerate symbolspj (r; x; y; %; �; �) give rise to homogeneous

principal symbols in (%; �; �) 6= 0 of order�, denoted by� (opr (p))(r; x; y; %; �; �).
As usual, these are invariantly defined functions onT �(R+ �X ��) n 0.

1.2. Asymptotics and Green operators. Our next objective is to study particu-
lar operator-valued symbols, acting in weighted Sobolev spaces onX1̂ [X2̂ and map-
ping to spaces with asymptotics. Since symbols depend on variables and covariables
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(y; �), asymptotics also will be variable; in fact they will depend on y (not on �). For
this reason we need a sufficiently flexible concept of asymptotics, not only discrete but
also so called continuous ones. To introduce basic notions,we first look at a single
coneX^.

Let us define subspacesKs;P (X^) of Ks; (X^) with asymptotics of typeP , associ-
ated with weight datag = ( ;2) where2 = (#;0], �1 � # < 0, is a weight interval.
By a discrete asymptotic typeP we understand a sequenceP = f(pj ;mj ; Lj )gj=0;:::;N
for an N = N(P ) that is finite for finite2, where

�CP := fpj gj=0;:::;N �
�z 2 C :

n + 1

2
�  + # < Rez < n + 1

2
� � ;

n = dimX, and (for the caseN(P ) = 1) Repj ! �1 as j ! 1, furthermj 2 N,
while Lj � C1(X) is a subspace of finite dimension. Set

K
s;2 (X^) = lim �">0

Ks;�#�"(X^)

endowed with the Fréchet topology of the projective limit. If2 is finite, we denote by
EP (X^) the vector space whose elements are all the functions whichare of the form

u(r; x) = !(r) X
(pj ;mj ;Lj )2P

mjX
k=0

jk(x)r�pj logk r;
where ! is a fixed cut-off function andjk 2 Lj . Observe that thenEP (X^) �
K1; (X^), and we haveEP (X^)\Ks;2 (X^) = f0g. We then setKs;P (X^) := K

s;2 (X^)+
EP (X^) in the Fŕechet topology of the direct sum. To defineKs;P (X^) for # = �1 we
choose an arbitrary sequencef#kgk2N, such that#k+1 < #k < 0 and limk!1 #k = �1,
set

Pk =

�
(p;m;L) 2 P :

n + 1

2
�  + #k < Rep < n + 1

2
� �

and define

(1.2.1) K
s;Pk (X^) := K

s;2k (X^) + EPk (X^)

where2k := (#k;0]. This is a direct sum for everyk, and the corresponding Fréchet
topology in (1.2.1) is independent of the choice of!. We haveKs;Pk+1

(X^) ,! K
s;Pk (X^)

for all k, and we then set

K
s;P (X^) = lim �k2N

K
s;Pk (X^)

in the (Fŕechet) topology of the projective limit. The elements ofEPk (X^) are called
singular functions of the discrete asymptotics for the cone.
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To pass to continuous asymptotics we first reinterpret the discrete ones in the fol-
lowing form. Let us first assume that2 is finite; thenK := �CP is a finite set. Choose
a (say, smooth) curveC in the strip (n+1)=2� +# < Rez < (n+1)=2� surrounding
the setK counter-clockwise. Fix a cut-off function, and setf (z) := M�(n=2)(!u)(z)
for u 2 K

s;P (X^). The functionf is then a meromorphic (C1(X)-valued) function
with poles atpj of multiplicities mj + 1 and Laurent coefficientsk!(�1)kjk(x) at (z�pj )�(k+1), wherejk 2 Lj , 0� k � mj , j = 0; : : : ; N(P ). We have also

(1.2.2) u(r)� !(r)
2�i

Z
C

f (z)r�z dz 2 K
s;2 (X^):

This relation has the following more general background. Let f (z) be an arbitrary
meromorphicC1(X)-valued function with the indicated poles, multiplicities and Lau-
rent coefficients. Then withf we can associate an analytic functional�f in C carried
by K, namely

(1.2.3)

�f ; h� :=

1

2�i
Z
C

f (z)h(z) dz; h 2 A(C):
In the present notation we just have

(1.2.4)

�f ; h� =

X
j

mjX
k=0

(�1)kjk(x)
dkdzk h(z)����z=pj :

In other words, if we denote for a moment byF (K) the set of all meromorphic func-
tions f associated withP in the described way, we have

EP (X^) =
�
�f ; r�z�!(r) : f 2 F (K)

	 :
Thus, we can produce all singular functions in terms of a certain set ofC1(X)-valued
analytic functionals carried byK = �CP . The idea of continuous asymptotics is now to
replaceK by an arbitrary compact set inC, the so-called “carrier ofP ,” and to admit
arbitrary � 2 A0(K;C1(X)), see, e.g., [23] for details. HereA0(K) denotes the space
of all (scalar) analytic functionals carried byK in its (nuclear) Fŕechet topology, and
A0(K;E) (= A0(K)
̂�E) for any Fŕechet spaceE is the corresponding vector-valued
variant.

If P is an asymptotic type connected with weight data ( ;2) (discrete or contin-
uous), we set

(1.2.5) S
P (X^) =

n!u + (1� !)v : u 2 K
1;P (X^); v 2 S

�
R+; C1(X)

�o
for any cut-off function!. Clearly the space (1.2.5) is independent of the specific!
and is Fŕechet in a natural way.
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REMARK 1.4. The spacesKs; (X^) are equipped with a strongly continuous
group of isomorphismsf�n� g�2R+ , defined by (�n�u)(r; x) = �(n+1)=2u(�r; x) where n =
dimX. In addition the spacesKs;P (X^) as well asSP (X^) (both for discrete and con-
tinuous asymptotic typesP ) can be written as projective limits of Hilbert spacesfHj gj2N with continuous embeddingsHj+1 ,! Hj for all j andH0 = Ks; (X^), wheref�n� g�2R+ restricts to a strongly continuous group of isomorphisms oneveryHj .

DEFINITION 1.5. Let X and Y be closed compactC1 manifolds, n = dimX,m = dimY , and choose reals ; Æ 2 R and a weight interval2 = (#;0], �1 � # < 0.
ThenCG(X^; Y^; ( ; Æ;2)) is defined to be the space of all continuous maps

G : Ks+(n=2);+(n=2)(X^)! K1;Æ+(m=2)(Y^);
s 2 R, that induce continuous operators

G : Ks+(n=2);+(n=2)(X^)! S
Æ+(m=2)P (Y^)

and

G� : Ks�(m=2);�Æ+(m=2)(Y^)! S
�+(n=2)Q (X^)

for all s 2 R, with asymptotic typesP 2 As(Y; (Æ + (m=2);2)) andQ 2 As(X; (� +
(n=2);2)). HereG� is the formal adjoint ofG in the sense

(Au; v)K0;m=2(Y^) = (u;A�v)K0;n=2(X^)

for all u 2 C1
0 (X^), v 2 C1

0 (Y^) via the scalar products ofK0;n=2(X^) and
K0;m=2(Y^), respectively. The elements ofCG(X^; Y^; ( ; Æ;2)) are called Green op-
erators of the transmission cone algebra with continuous asymptotics.

REMARK 1.6. An analogous definition makes sense for discrete asymptotic typesP;Q. Moreover, there is a straightforward extension of Definition 1.5 to operators

Ks+(n=2);+(n=2)(X^; E)! K1;Æ+(m=2)(Y^; F )

acting between distributional sections of vector bundlesE on X^ and F on Y^, en-
dowed with suitable Hermitian metrics (with an obvious generalisation of asymptotic
types), cf. Section 2.1 below.

1.3. Mellin operators with asymptotics. We now turn to a specific class of
pseudo-differential operators onX^ = R+ �X 3 (r; x) for a compact, closedC1 man-
ifold X, based on the Mellin transform inr 2 R+, with operator-valued symbols that
reflect asymptotics. A sequence

(1.3.1) R := f(pj ;mj ; Lj )gj2Z



EDGE CALCULUS 73

is called a discrete asymptotic type for Mellin symbols, if for �CR := fpj gj2Z � C
the set�CR \ fz :  � Rez � 0g is finite for every  � 0, moreover,mj 2 N,
and Lj � L�1(X) are finite-dimensional subspaces of operators of finite rank. We
also admit finite sequences (1.3.1), where a triple (p;m;L) may be ignored as soon
asL = f0g.M�1R (X) for R given as (1.3.1) is defined to be the set of allf 2 A(C n �CR;L�1(X)) such thatf is meromorphic with poles atpj of multiplicity mj + 1 and
Laurent coefficients at (z� pj )�(k+1) in Lj for 0� k � mj , where

�(z)f (z)j0� 2 S(0� ; L�1(X))

for every real�, uniformly in compact�-intervals; here� denotes any�CR-excision
function, that is� 2 C1(C) and �(z) = 0 in a neighbourhood of�CR and �(z) = 1
for dist(z; �CR) > " for some" > 0.

Let us now pass to an analogue of continuous asymptotics. First, fix  < 0, and
let M�1

O
(X)(;0) defined to be the set of allh 2 A(f < Rez < 0g; L�1(X)) such thathj0� 2 L�1(X;0� ) for every real�, uniformly in compact�-intervals of (; 0). Then,

defineV as the system of all closed subsetsV � C such thatV \ fz 2 C :  � Rez �0g is compact for every � 0 and z0; z1 2 V , Rez0 = Rez1 implies (1��)z0+�z1 2 V
for all 0 � � � 1. Now, let V 2 V and setV(;0) := V \ f � Rez � 0g, which is a
compact set. There is then a map

A0(V(;0); L�1(X))! A(C n V(;0); L�1(X));
� 7! f� , by settingf� (z) := M ;r!z�
�w; !(r)r�w��, with the weighted Mellin trans-
form M for any  < 1=2� 0. The spaceFV(;0) of all functions f� that belong to
A(CnV(;0); L�1(X)) is isomorphic toA0(V(;0); L�1(X)), and therefore has a canon-
ical Fŕechet topology. We then defineM�1V (X)(;0) as the space of all elementsh(z) +f� (z)jf<Rez<0g for h 2 M�1

O
(X)(;0), � 2 A0(V(;0); L�1(X)), endowed with the topol-

ogy of the non-direct sum ofM�1
O

(X)(;0) + FV(;0) taken in the spaceA(f < Rez <0g nV(;0); L�1(X)) (clearly the spaceFV(;0) depends on the choice of! but the non-
direct sum is independent of the specific cut-off function).Notice that for anye � ,0 �e0 we have a continuous embeddingM�1V (X)(e;e0) ,! M�1V (X)(;0). We then de-
fine the space

M�1V (X) := lim �N2N

M�1V (X)(�N;N)

as a projective limit. The elements ofM�1V (X) are interpreted as smoothing Mellin
symbols with continuous asymptotics of typeV . Setting againn = dimX, if !(r) ande!(r) are cut-off functions, with everyf 2 M�1V (X) we can associate a continuous
operator

(1.3.2) ! opM (f )e! : Ks;+(n=2)(X^)! K1;+(n=2)(X^);
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provided thatV \ 0(1=2)� = ;. More precisely, (1.3.2) induces continuous operators

! opM (f )e! : Ks;+(n=2)P (X^)! K
1;+(n=2)Q (X^)

for everyP 2 As(X; ( +(n=2);2)) and some resultingQ 2 As(X; ( +(n=2);2)), that
depends onP and f , not on s 2 R. A similar result is true for discrete asymptotic
typesR for Mellin symbols instead ofV and discrete asymptotic typeseP ;eQ in place
of P;Q, cf. the notation in Section 1.2. Recall that some Riemannian metric onX is
kept fixed. There is then an identification betweenL�1(X) and the space of integral
operators onX with kernels inC1(X�X). Let us now generalise the construction of
spaces of smoothing Mellin symbols to the caseY �X. To simplify notation, we iden-
tify the space of all operators

Ts2R L(H s(X); H1(Y )) with the spaceC1(Y �X) via
integral kernels. LetAs�(X; Y ) denote the set of all sequences (1.3.1) with (pj ;mj ) 2
C� N as before, whileLj is a finite-dimensional subspace ofC1(Y �X).

Let M�1R (X; Y ) for R 2 As�(X; Y ) denote the set of allf (z) 2A(Cn�CR;C1(Y�X)) such thatf (z) is meromorphic with poles at the pointspj of multiplicities mj +
1 and Laurent coefficients at (z � pj )k+1, 0 � k � mj , in Lj , where �(z)f (z) 2
S(0� ; C1(Y �X)) for every� 2 R, uniformly in compact�-intervals, for every�CR-
excision function� .

In a similar manner, for everyV 2 V we can define a Fréchet spaceM�1V (X; Y )
by replacingL�1(X) in the above construction byC1(Y �X). The extension of this
definition that allows us to introduce the spaceM�1V (X; Y ;E;F ) with closed compact
manifoldsX; Y and vector bundlesE 2 Vect(X), F 2 Vect(Y ), is immediate, cf. Re-
mark 1.6.

DEFINITION 1.7. Let X; Y be smooth closed, compact manifolds andE 2
Vect(X), F 2 Vect(Y ) vector bundles, further ( ; Æ;2),  ; Æ 2 R, 2 = (�(k+1);0], k 2
N weight data. Then, the spaceCM+G(X^; Y^; ( ; Æ;2);E; F ) is defined to be the set
of all the operatorsA = M +G whereG is a Green operator inCG(X^; Y^; ( ; Æ;2);E;F ) (as introduced in Definition 1.5 and Remark 1.6) while

M = rÆ�! kX
j=0

rj nop�M (fj ) + op
e�M �ef j �oe! :

Ks;+(n=2)(X^; E)! K1;Æ+(m=2)(Y^; F )

(1.3.3)

with fj 2 M�1Wj (X; Y ;E;F ), ef j 2 M�1eWj (X; Y ;E;F ) and reals� = �(j );e� = e�(j )

such thatWj \ 0(1=2)�� = ;, eWj \ 0(1=2)�e� = ;, j + � �  � �, j +e� �  � e�,j = 0; : : : ; k. The spaceCM+G(X^; Y^; ( ; Æ;2);E;F ) for the infinite weight interval2 = (�1;0] is defined by taking intersections over the correspondingspaces for2k =
(�k;0], k 2 N.
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Note that the terms involvingef j , j = 1; : : : ; k in (1.3.3) can be suppressed in the
case of discrete asymptotics. Moreover, in the case2 = (�(k + 1);0], a term like those
in the sum (1.3.3) withj � k + 1 is in fact a Green operator. Let us set

(1.3.4) �M(M)(z) := f0(z) + ef 0(z)
regarded as az-dependent family of continuous operators

�M(M) : H s(X;E)! H s(Y; F );
s 2 R, called the principal conormal symbol of the operatorM.

REMARK 1.8. The choice of the weights�;e� (under the mentioned conditions)
as well as of cut-off functions!;e! is arbitrary. If eM is an expression of analogous
structure asM in (1.3.3) with the same Mellin symbols but other weights or cut-off
functions, then we haveM � eM 2 CG(X^; Y^; ( ; Æ; (�1;0]);E;F ). In view of this,
except forj = 0 (where necessarily�(0) =e�(0) =  ), we can choose them in a ‘nor-
malised way,’ setting�(j ) =  � (1=3), e�(j ) =  � (2=3) for j = 1; : : : ; k.

Proposition 1.9. Let !;e! be cut-off functions, and let f (z) 2 M�1V (X; Y ), V 2
V, whereV \ 01=2� = ; for some 2 R. Then

(1.3.5) ! opM (f )e! : Ks;+(n=2)(X^)! K1;+(m=2)(Y^)

is a continuous operator for alls 2 R, and (1.3.5) induces continuous operators

! opM (f )e! : Ks;+(n=2)P (X^)! K
1;+(m=2)Q (Y^)

for everyP 2 As(X; ( + (n=2);2)) with someQ 2 As(Y; ( + (m=2);2)), s 2 R. In
addition the formal adjoint of(1.3.5) in the sense(Au; v)K0;m=2(Y^) = (u;A�v)K0;n=2(X^)

for all u 2 C1
0 (X^), v 2 C1

0 (Y^) has the form

e! op�M �f (�)�!
where f (�)(z) := f �(1� z ) with subscript� denoting the pointwise formal adjoint in
the sense(f '; )L2(Y ) = ('; f � )L2(X) for all ' 2 C1(X),  2 C1(Y ).

1.4. Transmission algebras. Let us now introduce algebras of block matrix op-
erators onX1̂ [X2̂ , that we call transmission algebras. Let us fix weights ; Æ 2 R, a
weight interval2 = (�(k + 1);0], k 2 N, vector bundlesEj ; Fj 2 Vect(Xĵ ), j = 1;2.
Set v := (E1; F1;E2; F2) and g = ( ; Æ;2). We will also use the following abbrevi-
ations: X^ := (X1̂ ; X2̂ ), n := (n1; n2), E := (E1; E2), F := (F1; F2). Similar notation
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will be used for pairs of asymptotic types,P := (P1; P2), Q := (Q1;Q2), and for direct
sums of spaces,

C1
0 (X^;E) :=

C1
0 (X1̂ ; E1)�C1
0 (X2̂ ; E2)

; H s+(n=2)(X^;E) :=
H s+(n1=2)(X1̂ ; E1)�H s+(n2=2)(X2̂ ; E2)

;

Ks+(n=2);+(n=2)(X^;E) :=
Ks+(n1=2);+(n1=2)(X1̂ ; E1)�
Ks+(n2=2);+(n2=2)(X2̂ ; E2)

; S
+(n=2)
P (X^;E) :=

S
+(n1=2)P1

(X1̂ ; E1)�
S
+(n2=2)P2

(X2̂ ; E2)
;

as well as forKs+(n=2);+(n=2)
P (X^;E). We will use the subscript ‘(P)’ when a formula

or result holds in the cases with and without asymptotics.
To define the elements of our transmission algebra, we need torecall briefly the

concept of symbol with exit behaviourand some notions about the corresponding
pseudo-differential calculus. To keep the notation simple, here we limit our description
to the scalar case, but operators on bundles can be considered as well. More details
about theexit calculusand its extension to themanifolds with exits(see below) can
be found in [4], [5], [17], [19], [23] and the references listed therein.

A smooth functionp 2 C1(Rn � Rn) is an exit symbol belonging to the classS�;Æ(Rn), �; Æ 2 R, if jD��D�xp(x; � )j � C��h�i��j�jhxiÆ�j�j for any x; � and all �; �,
with suitable positive constantsC�� . The associated pseudo-differential operatorP =
op(p) is defined in the standard way, and it turns out to be continuous onS(Rn) and
extendable to a continuous operator onS 0(Rn): we denote byL�;Æ(Rn) the class of
all operators with symbolp 2 S�;Æ(Rn). This gives a graded algebra of operators, in
the sense thatL�;Æ(Rn) �L�0;Æ0(Rn) � L�+�0;Æ+Æ0 (Rn). The residual classL�1;�1(Rn) is
given by all the integral operators whose kernel is inS(Rn � Rn).

In addition to the usual principal symbol� (P ), an operatorP 2 L�;0(M) on a
manifold with exitsM has another principal symbol, the so-calledexit symbol�e(P ),
which is the equivalence class of the symbolp 2 S�;0(M) of P in the spaceS�;0(M)

ÆS">0 S�;�"(M), i.e.,

(1.4.1) �e(p) =
�pe 2 S�;Æ(M) : p � pe 2 S�;Æ�"(M) for some" > 0

	 :
Note that the exit symbol has an invariant meaning onM, and it behaves multiplica-
tively with respect to the operator composition, i.e.�e(PQ) = �e(P )�e(Q), in the sense
of multiplication of equivalence classes.

Finally, we fix arbitrary cut-off functions!, e!, ee! (their specific choice is unim-
portant, but, for convenience, we assume!e! = !, !ee! = ee!).

DEFINITION 1.10. The spaceC�(X^; g; v) is defined to be the set of all opera-
tors of the form

(1.4.2) A = diag(A1; A2) +M +G;
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where the ingredients are as follows:
(i) Aj = rÆ�! opM (hj )e! + (1 � !)Aj (1 � ee!), for arbitrary symbolshj (r; z) 2C1�R+;M�

O
(Xj ;Ej ; Fj )� and operatorsAj 2 L�;0(Xĵ ;Ej ; Fj ), j = 1;2;

(ii) M +G = (Mij +Gij )i;j=1;2 is a block matrix of operators belonging toCM+G(Xĵ ;Xî ; ( ; Æ;2);Ej ; Fi).
We write CM+G(X; g; v) or CG(X; g; v) for the subspaces of operators (1.4.2)

whereA1 andA2 vanish or, respectively,A1, A2 andM vanish. Setting for a moment
gk := ( ; Æ; (�(k + 1);0]), we can pass to a spaceC�(X^; g; v) for g = ( ; Æ; (�1;0])
by

C� �X^; g; v� =
\
k2N

C� �X^; gk; v� :
All essential elements of our calculus for a finite weight interval (�(k + 1);0] remain
true also for2 = (�1;0]; for this reason we mainly discuss the finite case.

Theorem 1.11. An operatorA 2 C�(X^; g; v) induces continuous operators

A : Ks+(n=2);+(n=2)
(P)

�
X^;E

�! K
s��+(n=2);Æ+(n=2)
(Q)

�
X^;F

�
for every s 2 R and every pair of asymptotic typesP with some resultingQ, depen-
dent onP and onA.

The components of asymptotic typesP := (P1; P2) and Q := (Q1;Q2) are assumed
to be associated to weight data corresponding to the weightsin the spaces and the
chosen weight interval2 = (�(k + 1);0], and we admit discrete as well as continuous
asymptotic types.

Proof. The only terms that have to be explicitly considered are those fromM, in
particular the mixed termsM21 andM12, that have been treated in Proposition 1.9. The
other ingredients ofA belong to the standard cone algebras onXĵ , j = 1;2, except
for G21 andG12, where the mapping properties follow from Definition 1.5.

We now pass to the symbolic structure of operatorsA 2 C�(X^; g; v). First, for
the operatorsAj in (1.4.2) we have homogeneous principal symbols of order� that
are (up to weight factors) Fuchs-degenerate nearr = 0, namely

(1.4.3) � (Aj ) : ��jEj ! ��j Fj ;
where�j : T �Xĵ n 0! Xĵ denotes the canonical projections. Locally, nearr = 0 we
can write

(1.4.4) � (Aj )(r; xj ; %; �j ) = rÆ�e� (Aj )(r; xj ;e%; �j )je%=r%
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for bundle homomorphismse� (Aj ) that are smooth inr up to r = 0. To illustrate
this structure in more detail, let us look at the scalar case,i.e., trivial bundles of fiber
dimension 1. Then, as is known from Mellin pseudo-differential operators of the pre-
scribed form, in local coordinatesxj 2 Rnj on Xj the operatorsAj have amplitude

functionspj (r; xj ; %; �j ) = rÆ�epj (r; xj ;e%; �j )je%=r% whereepj �r; xj ;e%; �j � 2 S�cl

�
R+ �

6 � R
nj+1e%;�j �, 6 � Rnj open. In other words, locallyAj is equal to opr;xj (pj )

modL�1(R+ � 6). Then,e� (Aj ) just corresponds to the homogeneous principal part
of epj of order�.

As Aj is, in particular, an operator inL�;0(Xĵ ; Ej ; Fj ), it admits an invariantly
defined exit symbol�e(Aj ) := �e(Aj ), cf. (1.4.1). The pair�e(A) = (�e(A1); �e(A2)) is
called the exit symbol of the operatorA.

Finally, the principal conormal symbol�M(A) is defined to be the family of maps

(1.4.5) �M(A)(z) = diag(�M(A1)(z); �M(A2)(z)) + �M(M)(z)
where, according to the common cone calculus,

�M(Aj ) = hj (0; z); j = 1;2;
cf. Definition 1.10 (i), and

�M(M)(z) = (�M(Mjk)(z))j;k=1;2;
cf. the formula (1.4.5). Note that�M(A) gives rise to az-dependent family of maps�M(A) : H s(X;E)! H s��(X;F), where we have used the same letters for the restric-
tions of the bundles to the cone basesX1; X2. Let us set

(1.4.6) � (A) = (� (A); �M(A); �e(A));
called the symbol ofA.

Let us now pass to the composition of operators

A 2 C�(X^; g; v); B 2 C�(X^;h;w)

for g = ( ; Æ;2), v = (F1;G1;F2;G2) and h = (�;  ;2), w = (E1; F1;E2; F2). Set
g Æ h = (�; Æ;2), v Æ w = (E1;G1;E2;G2).

Theorem 1.12. We haveAB 2 C�+�(X^; g Æ h; v Æ w) and � (AB) = � (A) � (B)
with componentwise composition, where

� (AB) = � (A)� (B); �e(AB) = �e(A)�e(B);
�M(AB)(z) =

�T �� �M(A)(z)� �M(B)(z):
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If A or B belongs to the class with subscriptM +G or G, then the same is true of
the composition.

Proof. Let us writeA = diag(A1; A2) + M + G andB = diag(B1; B2) + M 0 + G0,
where the various terms are described in Definition 1.10. Theproduct is of the type
diag(A1B1; A2B2) + C, and, due to the algebra property in the case of a single cone,
we only have to show thatC 2 CM+G(X^; g Æ h; v Æ w). Most of the terms appear-
ing in the diagonal components ofC turn out to be of the correct type, since they
come from compositions of operators belonging to the cone algebras onX1̂ andX2̂ .
Moreover, all the compositions with Green operators coming from G andG0 are Green
operators, as one can easily verify by their mapping properties, cf. Definition 1.5 and
Theorem 1.11. In addition to this the terms of the block (21) are of the same nature
of those of the block (12), by exchanging the role ofX1̂ andX2̂ . So the only terms
that we have to examine explicitly areQ11 = M12M 0

21, Q22 = M21M 0
12, Q1

12 = A1M 0
12,Q2

12 = M12B2, Q3
12 = M11M 0

12 andQ4
12 = M12M 0

22. For simplicity, we consider, from
now on, trivial bundles.

Let us start by focusing onQ11. Of course, it is enough to take into account
only one of the terms arising from this composition. Adapting Lemmas 2.3.69, 2.3.70
and 2.3.72 of [23] to the present situation, we can, modulo Green remainders, modify
the expressions ofM andM 0 by commutingr powers with Mellin operators having
meromorphic smoothing symbol, changing the cut-off functions and shifting the weight
lines, provided that the carriers of the asymptotics do not meet the weight lines them-
selves, cf. Remark 1.8.

Similarly, cf. Lemma 2.3.73 of [23], we have

!1 opM (f )(1� !) opM (f 0)!2 2 CG �X1̂ ; X1̂ ; ( ;  ; (�1;0])
�

for arbitrary cut-off functions!;!1; !2 and smoothing meromorphic symbolsf 0 2M�1V 0 (X1; X2), f 2 M�1V (X2; X1), when the carriersV and V 0 do not intersect the
weight line 0(1=2)� . Then, modulo Green remainders, it suffices to consider terms of
the kind

rÆ�!rj+� opM (T ��f )!r��+j 0+� 0+�� opM �T �� 0f 0� r�� 0!
with j +� �  � �, j 0 +� 0 � � � � 0, and we can follow the same argument of the last
part of the proof of Theorem 2.3.84 of [23], obtaining smoothing Mellin operators onX1 of the type

(1.4.7) rÆ��!rj+j 0 ope�M ��T ���j 0f � f 0�!
with j + j 0 +e� � � �e�.

The required property forQ3
12 follows in the same way, since the involved terms

are essentially of the same kind of those inQ11 (the only difference being the fact that
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M11 takes values in operators with kernel inC1(X1�X1) instead ofC1(X1 �X2)).

Now, note thatQ1
12 = rÆ�! opM (h1)e!M 0

12 + (1�!)A1 �1�ee!�M 0
12. The first term

can again be treated as above, ifh does not depend onr: indeed,h1 is holomorphic
and its pointwise composition with the symbolsfj , ef j appearing inM 0

12 gives an op-
erator with kernel inC1(X1 � X1). In the general case, the result is obtained via a
Taylor expansion argument, since remainders with high enough r power are Green op-
erators, cf. the proof of Proposition 2.3.69 and Theorem 2.4.15 in [23]. Choosing a
suitable cut-off function!0, the second term can be written asH = (1� !)A1 �1�ee!�!0M 0

12. Since
�
1� ee!�!0 2 C1

0 (R+), it turns out, by the mapping properties of the
involved factors, thatH is again a Green operator.

Finally, Q22, Q2
12 andQ4

12 can be treated asQ11, Q1
12 andQ3

12, respectively.

The symbolic rules for the - and e-components of� (AB) are immediate, both
following from the usual composition rules for the diagonalnon-smoothing terms ofA
andB. The formula for�M(AB) is a consequence of the similar one for the standard
cone algebra and of (1.4.7) withj = j 0 = 0.

For A 2 C�(X^; g; v), g = ( ; Æ; (�(k + 1);0]), v = (E1; F1;E2; F2) we can define
the formal adjoint by (Au; v)K0;n=2(X^;F) = (u;A�v)K0;n=2(X^;E) for u 2 C1

0 (X^;E), v 2C1
0 (X^;F), cf. Definition 1.5. We omit the proof of the next theorems, which follows

by Definition 1.5, Proposition 1.9 and the similar result forthe standard cone algebra.

Theorem 1.13. A 2 C�(X^; g; v) impliesA� 2 C�(X^; g�; v�) for g� = (�Æ;� ;
(�(k + 1);0]), v� = (F1; E1;F2; E2) and we have� (A�) = � (A)�, where � refers to
each component in the symbolic triple. More precisely, � (A)� is the adjoint symbol
from the standard pseudo-differential calculus, �M(A�)(z) = T �Æ�M(A)�, while �e(A)�
is again the standard rule from the exit calculus of pseudo-differential operators.

DEFINITION 1.14. An operatorA 2 C�(X^; g; v) (in the notation of Defini-
tion 1.10) is said to be elliptic, if it is elliptic with respect to the three components
of � (A), that is

(i) the interior symbols (1.4.3) are bundle isomorphisms,j = 1;2, where alsoe� (Aj )
from (1.4.4) are isomorphisms up tor = 0;
(ii) the conormal symbol�M(A)(z) : H s+(n=2)(X;E) ! H s��+(n=2)(X;F) is a family of
isomorphisms for allz 2 0(1=2)� ;
(iii) the exit symbol�e(A) is elliptic.

Given an operatorA 2 C�(X^; g; v), a P 2 C��(X^; g�1; v�1) for g�1 = (Æ;  ;2),v�1 = (F1; E1;F2; E2) is called a parametrix ofA if

(1.4.8) Cl := 1� PA and Cr = 1� AP
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belong toCG(X^; gl ; vl) andCG(X^; gr ; vr ), respectively, where

gl = ( ;  ;2); vl = (E1; E1;E2; E2);
gr = (Æ; Æ;2); vr = (F1; F1;F2; F2):

Theorem 1.15. Let A 2 C�(X^; g; v) be elliptic. Then, A admits a parametrixP 2 C��(X^; g�1; v�1).

The following three theorems are consequence of Theorem 1.15, by arguments
similar to those valid for the standard cone algebra.

Theorem 1.16. For an operatorA 2 C�(X^; g; v) the following conditions are
equivalent:
(i) A is elliptic;
(ii) the operator

(1.4.9) A : Ks;+(n=2)(X^;E)! Ks��;Æ+(n=2)(X^;F)

is Fredholm for certains 2 R.

Theorem 1.17. Let A 2 C�(X^; g; v) be an element that induces a Fredholm op-
erator (1.4.9) for certain fixeds 2 R. ThenA is a Fredholm operator(1.4.9) for ar-
bitrary s 2 R. The parametrixP of A can be chosen in such a way thatCl is a pro-
jection toV := kerA and Cr a projection to a complementW of ImA for every fixeds 2 R. Moreover, there are asymptotic typesP and Q such thatV � S

+(n=2)
P (X^;E)

and the spaceW can be chosen to be a finite dimensional subspace ofS
Æ+(n=2)
Q (X^;F)

such thatImA +W = Ks��;Æ+(n=2)(X^;F) and ImA \W = f0g for all s 2 R.

Theorem 1.18. Let A 2 C�(X^; g; v) be an operator such that

(1.4.10) A : Ks; (X^;E)! Ks��;Æ(X^;F)

is an isomorphism for as = s0 2 R. Then (1.4.10) is invertible for all s 2 R andA�1 2 C��(X^; g�1; v�1).

2. The edge symbolic calculus

2.1. Spaces with edges and model cones of different dimensions. Spaces with
edges we are talking about can locally be formulated in termsof wedgesX1 �� for
(in simplest cases) a closed compactC1 manifold X and an open set� � Rq . Con-
structions will always be given in a splitting of variables on (X1nfvg)�� �= X^�� 3
(r; x; y), and we then have to observe invariance under an admitted cocycle of transi-
tion maps. A system of diffeomorphisms� : (X1 n fvg) � � ! X^ � � is said to
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be a wedge structure onX1 � � if for every two elements�1 and �2 of that system
the transition map�2��1

1 : X^ � � ! X^ � � is the restriction of a diffeomorphism
R � X � � ! R � X � � to R+ � X � �. In other words, we also get a cocycle
of transitionsR+ � X � �! R+ � X � � (that are smooth up tor = 0). Looking at
the components of these maps (r; x; y)! (er(r; x; y);ex(r; x; y);ey(r; x; y)) we then haveer(0; x; y) = 0 andey(0; x; y) only depends ony, i.e., y !ey induces a diffeomorphism�! �.

A manifold W with edgeY is defined as a topological space, such thatW nY andY areC1 manifolds, and that pointsy 2 Y have neighbourhoods modeled byX1��;
then Y itself has local coordinates in�. Together with the cocycle of transition mapsX^��! X^�� for W nY nearY we also have the mapsR+�X��! R+�X��
that allow us to interpretW n Y as

R
W for a C1 manifold W with boundary�W

that is aX bundle overY . The transition maps for�W are just given by (x; y) !
(ex;ey )jr=0. For convenience, in the following we content ourselves with the case that�W is a trivial X bundle, i.e.,�W = X�Y , and that the splittings of variables (r; x; y)
near �W are chosen in such a way that we have (r; x; y) ! (er;ex;ey ) = (r; x;ey ) for
0� r < " for some" > 0.

Global operators onW will be connected with vector bundlesE 2 Vect(W) andJ 2 Vect(Y ), and we want to fix some notation. By definition,�W has a neighbour-
hood of the form [0;1)�X�Y in the corresponding splitting of variables (r; x; y), and
with E we obtain an associated bundleEj[0;1)�X�Y , that can be regarded as a pull-
back ofEjf0g�X�Y to [0;1)�X � Y under the canonical projection [0;1)�X � Y !f0g � X � Y , (r; x; y) ! (0; x; y). A similar projectionR+ � X � Y ! f0g � X � Y
gives rise to a pull-back ofEjf0g�X�Y to R+�X�Y . For convenience, we employ for
these bundles the same letterE; it will be clear from the context whereE is given.
Moreover, in everyE 2 Vect(W) we fix a Hermitian metric in such a way that the
induced metric onEj[0;1)�X�Y does not depend onr 2 [0;1), and we then take a sim-
ilar r-independent Hermitian metric on the pull-back toR+ � X � Y . In this way, the
spaceK0;n=2(X^; Ey), for n = dimX and Ey := EjX^�fyg, is equipped with a scalar
product that will be taken below in the definition of adjoints, similarly to adjoints in
the cone calculus, cf. Section 1.2 above. In local considerations with respect to coor-
dinate neighbourhoodsU on Y , we also have restrictions of bundlesE on X^ � Y toX^ � U , and then, analogously to trivialisations of bundles in theusual sense, it will
be admitted to regardEjX^�U as a pull-back ofEjX^�fyg to X^�U under the projec-
tion X^�U ! X^. Again, we will use the same letterE for the local version of the
bundle. It will then make sense to talk about spaces like

(2.1.1) C1 �U � Rq ;L �Ks; (X^; E);Kes;e (X^; F )
��

for bundlesE;F 2 Vect(W), etc., where in (2.1.1) we mean the local versions of the
bundles we just described. Our calculus below will have the right invariance properties
that justify these conventions.
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Let us now pass to configurations with edges where the model cones are of dif-
ferent dimension. The simplest examples are Cartesian productsW = X1 � Y , where
X1 is as in the introduction a cone with base manifoldsX1; : : : ; XN of different di-
mension. In general we assume thatW is a topological space with a subspaceY such
that W n Y is the disjoint union of spaces of the form intWj , for manifoldsWj , j =
1; : : : ; N , with the same edgeY as described before, andW has, locally nearY , the
structureX1 �� for some open subset� � Rq (which corresponds to a chart onY ).
We then define the stretched spaceW associated withW as the quotient space of the
disjoint unionW1[� � �[WN that identifies the different copies ofY . In particular, the

stretched space ofW = X1�Y is equal toW =
nSNj=1 R+ �Xjo�Y . For convenience,

we also writeW = (W1; : : : ;WN ) keeping in mind the mentioned identification map.
In the following we assumeW to be compact.

As before, for simplicity, from now on we consider the caseN = 2, and we
use shortened notation analogous to those used in Section 1,in particular also for di-
agonal matrix block operatorsh�in=2 := diag

�h�in1=2; h�in2=2�, �n� := diag
��n1� ; �n2� �,�n=2�n� := diag

��n1=2�n1� ; �n2=2�n2� �. Moreover intW := (int W1; int W2), while, for anyJ� 2 Vect(Y ), we setv := (E1; F1;E2; F2; J�; J+) for the bundle data. The abbrevia-
tion w := (E1; F1;E2; F2; j�; j+) for local bundle data will be used for the description
of the symbolic structures below, where, making use of the mentioned abuse of nota-
tion, the local bundles are obtained fromEj ; Fj 2 Vect(Wj ), j = 1;2, as explained
before.

Typical differential operators on intW are (because of locality) pairs of indepen-
dently given differential operatorsAj on intWj , j = 1;2. They will be assumed to be
edge-degenerate, i.e., differential operators with smooth coefficients that, in the split-
ting of variables (r; x; y) 2 R+ �Xj �� close to the edge, are of the form

(2.1.2) Aj = r�� X
k+j�j�� ajk�(r; y)

��r ��r
�k

(rDy)�

with coefficientsajk� 2 C1�R+��;Diff ��(k+j�j)(Xj )�, j = 1;2. Examples are Laplace-
Beltrami operators belonging to ‘wedge’-metrics

dr2 + r2gXj (r; y) + dy2

with Riemannian metricsgXj on Xj , smoothly dependent on (r; y) 2 R+��, j = 1;2.
For the analysis it will be adequate to take the same axial variable r on both sides
close to the edge; in fact,r is nothing else than the ‘distance’ variable of a point inW to the edge, regardless of the side. As we will see below, objects of interests are
the principal edge symbols of edge-degenerate operators; in the case (2.1.2) we have

(2.1.3) �3(Aj )(y; �) = r�� X
k+j�j�� ajk�(0; y)

��r ��r
�k

(rDy)�
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for (y; �) 2 T �� n 0.
The program of this section is a calculus of edge-degeneratepseudo-differential

operators onW . Because of pseudo-locality, information between both sides is
exchanged only on the level of a specific kind of smoothing operators. A main con-
cept in the discussion below is the following notion of operator-valued symbol. For
details, the reader can refer, e.g., to [23].

DEFINITION 2.1. Consider an open set� � Rq , � 2 R, and Hilbert spacesH; eH endowed with strongly continuous groups of isomorphisms��, e��, � 2 R+. ThenS��� � Rq ;H; eH � denotes the space of alla 2 C1�� � Rq;L�H; eH �� satisfyinge��1h�i�D�yD�� a(y; �)
	�h�iL(H;eH) � ��Kh�i��j�j for all �; � 2 Nq , � 2 Rq , y 2 K ⋐ �

and suitable constants��K � 0.

An elementa 2 C1��� (Rq nf0g);L�H; eH �� is called (positively twisted-) homo-
geneous of order� if

(2.1.4) a(y; ��) = ��e��a(y; �)��1�
for all � 2 R+, (y; �) 2 � � (Rq n f0g). Note that, for every excision function� and
any a satisfying (2.1.4),�(�)a(y; �) 2 S��� � Rq ;H; eH �. It is then natural to in-
troduceS�cl

�� � Rq ;H; eH �, the subset of classical operator-valued symbols of order�, which consists of alla 2 S��� � Rq ;H; eH � that admit an asymptotic expansiona �Pj �a(��j ) with a(��j ) homogeneous of order�� j in the sense of (2.1.4).

2.2. Edge Sobolev spaces.
DEFINITION 2.2. Let H be a Hilbert space equipped with a strongly continu-

ous group of isomorphismsf��g�2R+ . The abstract wedge Sobolev spaceW s(Rq ; H )
of smoothnesss 2 R is the completion ofS(Rq ; H ) with respect to the norm

(2.2.1) kukWs (Rq ;H ) =

�Z h�i2s ��1h�i (Fy!�u)(�)
2

H d�
�1=2 ;

whereFy!� is the Fourier transform inRq .
The construction ofW s(Rq ; H ) will be used also for Fŕechet spacesH that are

written as projective limits of Hilbert spacesfH j gj2N, with continuous embeddingsH j+1 ,! H j ,! � � � ,! H 0 and a strongly continuous groupf��g�2R+ of isomorphisms
on H 0 that restricts to strongly continuous groups of isomorphisms onH j for everyj . Then we have continuous embeddingsW s(Rq ; H j+1) ,!W s(Rq ; H j ) for all j , and
W s(Rq ; H ) is the projective limit ofW s(Rq ; H j ), j 2 N.

We apply this construction to the weighted Sobolev spacesKs+(n=2);+(n=2)(X^; E)
and Fŕechet subspacesKs+(n=2);+(n=2)P (X^; E) with asymptotics of typeP ; here we ap-
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ply Remark 1.4 and the action�� defined there. We then obtain the spaces

(2.2.2) W
s+(n=2);+(n=2)
(P ) (X^ � Rq ; E) := W s+(n=2)

�
Rq ;Ks+(n=2);+(n=2)

(P ) (X^; E)
�

and then, globally, on a corresponding (compact, stretched) manifold W with edgeY
we obtain the spacesW s+(n=2);+(n=2)

(P ) (W; E). In this construction we use several use-
ful properties of theW s-spaces. In particular, that the spaces (2.2.2) are contained inH s+(n=2)

loc (X^ � Rq) for every s;  ; we then haveW s+(n=2);+(n=2)
(P ) (W) � H s+(n=2)

loc (int W).
This is the construction for a single manifold with edges. For the caseW = (W1;W2)
we simply take the direct sums of the corresponding spaces.

As for the standard Sobolev spaces there are ‘comp’ and ‘loc’versions ofW s-
spaces on open sets� � Rq , first for the context of Definition 2.2, and then also
for the specific spaces on configurationsW = (W1;W2) with edges when we drop the
assumption of compactness.

DEFINITION 2.3. The space of smoothing operatorsY1(W; g; v) in the trans-
mission algebra onW, with g := ( ;  � �;2) and v as in Section 2.1, is defined
to be the set of all continuous operators

C :
C1

0 (int W;E)�C1
0 (Y; J�)

! C1 (int W;F)�C1(Y; J+)

that extend the continuous operators

C :
W s+(n=2);+(n=2)(W;E)�H s�(1=2)(Y; J�)

! W
1;��+(n=2)
P (W;F)�H1(Y; J+)

where the formal adjointC� extends to continuous operators

C� :
W s+(n=2);�+�+(n=2)(W;F)�H s�(1=2)(Y; J+)

! W
1;�+(n=2)
Q (W;E)�H1(Y; J�)

for all s 2 R, with certain asymptotic typesP and Q depending onC. Here the formal
adjoint C� is defined by

(Cu; v)W0;n=2(W;F)�L2(Y;J+) = (u; C�v)W0;n=2(W;E)�L2(Y;J�)

for all u 2 C1
0 (int W;E)� C1

0 (Y; J�), v 2 C1
0 (int W;F)� C1

0 (Y; J+).
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2.3. Green symbols. We now turn to a first important element of the edge
symbolic structure, the so called Green symbols. They play an analogous role for our
calculus as the ‘singular Green’ symbols in standard boundary value problems in the
context of Boutet de Monvel [3]. A specific point in the presentsituation is that Green
symbols (and associated Green operators below) transmit information between the
different-dimensional parts of our configuration across the edge.

Let g := ( ; ��;2), 2 = (�(k+1);0], � 2 R, ��� 2 N andw := (E1; F1;E2; F2;j�; j+).

DEFINITION 2.4. R�G(��Rq ; g;w) for open� � Rq is defined to be the set of
all families of continuous maps

g(y; �) 2 C1 ��� Rq ;L �Ks;+(n=2)(X^;E)� Cj� ;K1;��+(n=2)(X^;F)� Cj+
��

such that forg0(y; �) = diag(h�in=2; h�i�1=2)g(y; �) diag(h�in=2; h�i�1=2)�1 we have

(2.3.3) g0(y; �) 2 S�cl

��� Rq ;Ks;+(n=2)(X^;E)� Cj� ;S��+(n=2)
P (X^;F)� Cj+

�

and

g�0(y; �) 2 S�cl

��� Rq ;Ks;�+�+(n=2)(X^;F)� Cj+;S�
Q (X^;E)� Cj��

for all s 2 R. The elements ofR�G(� � Rq ; g;w) are called Green symbols (of our
transmission calculus).

By definition, the entries of Green symbolsg(y; �) = (gij (y; �))i;j=1;2;3 are classi-
cal operator-valued symbols, acting between the respective components of the involved
spaces. Anyway, note that multiplication by powers ofh�i does not preserve the sym-
bol classesR�M+G(��Rq ; g;w) andR�(��Rq ; g;w) that we introduce below. A sim-
ilar phenomenon already occurs in the usual situation, where one hasL�(Rnx � �y) �L�(�y) 6� L�+�(Rnx � �y). The reason for introducing this operation in the definitions
concerns the administration of the order in a ‘unified’ way, in the spirit of Douglis and
Nirenberg. In fact, we have DN homogeneity in the following sense. First,g0(y; �) is
classical of order�, i.e., there is a homogeneous principal partg0;(�)(y; �), such that

(2.3.4) g0;(�)(y; ��) = �� diag
��n� ; id� g0;(�)(y; �) diag

��n� ; id��1

for all (y; �) 2 � � (Rq n f0g), � 2 R+. For g(y; �) itself the entries have different
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orders, that are immediate from Definition 2.4. We obtain thematrix of orders

(2.3.5) � :=

0
BBBBBB�

� � +
n2� n1

2
� � n1 + 1

2

� � n2 � n1

2
� � � n2 + 1

2

� +
n1 + 1

2
� +

n2 + 1

2
�

1
CCCCCCA

Let g(�)(y; �) = (gij;(�ij )(y; �))i;j=1;2;3 denote the matrix of homogeneous principal com-
ponents ofg(y; �). Then, DN homogeneity ofg(�)(y; �) itself means

(2.3.6) g(�)(y; ��) = �� diag
��n=2�n� ; ��1=2 id

� g(�)(y; �) diag
��n=2�n� ; ��1=2 id

��1

for all (y; �) 2 �� (Rq n f0g), � 2 R+.

2.4. Mellin transmission symbols. Another specific part of the symbolic struc-
ture of transmission operators (with information being exchanged between theX1̂ andX2̂ -sides of the configuration) are symbols with values in theCM+G algebra, cf. Defi-
nition 1.7. In the following, with [: ] we will denote a positive smooth function such
that [�] = j�j for j�j �  and some fixed constant > 0.

DEFINITION 2.5. LetR�M+G(��Rq ; g;w) for g := ( ;  ��;2) as in the begin-
ning of Section 2.3 andw := (E1; F1;E2; F2; j�; j+) defined to be the set of all opera-
tor families (m+g)(y; �) : Ks;+(n=2)(X^;E)�Cj� ! K1;��+(n=2)(X^;F)�Cj+ , s 2 R,
whereg(y; �)2R�G(��Rq ; g;w), cf. Definition 2.4, whilem(y; �) := (mij (y; �))i;j=1;2;3
for i; j = 1;2 is given by

mij (y; �) = r��!(r[�])
kX
l=0

r l X
j�j�l+(���)

n
op�M (fl�;ij ) + op

e�M �ef l�;ij �o ��e!(r[�])

: Ks;+(n=2)(X^;E)! K1;��+(n=2)(X^;F)

(2.4.1)

with arbitrary Mellin symbolsfl�;ij (y; z) 2 C1�U;M�1Wl�;ij (Xj ; Xi ;Ej ; Fi)�, ef l�;ij (y; z)
2 C1 �U;M�1eWl�;ij (Xj ; Xi ;Ej ; Fi)

�
, cut-off functions!;e!, and weights� = �(l), e� =e�(l), such thatWl�;ij \ 0(1=2)�� = eWl�;ij \ 0(1=2)�e� = ; for all l; �; i; j . Concerning the

weights � ande� we can (and will) choose them in the same normalised way as in
Remark 1.8. Finally,mij (y; �) := 0 for i = 3 or j = 3.
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Without loss of generality we setef 00;ij � 0; then, the principal conormal symbol
of (m + g)(y; �) of (conormal) order� is defined as

(2.4.2) �M(m + g)(y; z; �) =

0
� X
j�j����

�f0�;ij (y; z) + ef 0�;ij (y; z)� ��
1
A
i;j=1;2

;
which, in the case� = �, reduces to

(2.4.3) �M(m + g)(y; z; �) = (f00;ij (y; z))i;j=1;2:
Proposition 2.6. Every operator inR�M+G(��Rq ; g;w) with g and w as in Def-

inition 2.5 above is a classical operator-valued symbol. We have, for all � 2 Nq ,� 2 Nq , D�yD��R�M+G(� � Rq ; g;w) � R
��j�jM+G (� � Rq ; g;w), and � < � � k implies

R�M+G(�� Rq ; g;w) � R�G(�� Rq ; g;w).

In fact, settinga(y; �) := (m + g)(y; �) and

(2.4.4) a0(y; �) = diag
�h�in=2; h�i�1=2� a(y; �) diag

�h�in=2; h�i�1=2��1 ;
we have the relation

(2.4.5) a0(y; �) 2 S�cl

��� Rq ;Ks;+(n=2)
(P) (X^;E)� Cj�;K1;��+(n=2)

(Q) (X^;F)� Cj+

�
for all s 2 R (the interpretation with asymptotics is that for every pairof asymp-
totic typesP there is a pair of asymptotic typesQ depending ona(y; �) as well as
on P, and that the corresponding relation holds). To see (2.4.5), because of Defini-
tion 2.4 it suffices to consider the finite sum of Mellin expressions (2.4.1) that are
smooth in (y; �) as operator functions and homogeneous for largej�j: the latter prop-
erty just implies that the Mellin part ofa0(y; �) is also a classical operator-valued
symbol. If u(y; �) denotes a summand of (2.4.1) containingr l�� we have

u(y; ��) = ���l+j�j diag
��n=2�n� ; ��1=2 id

� u(y; �) diag
��n=2�n� ; ��1=2 id

��1

for all � � 1, j�j �  with some sufficiently large > 0. Analogously to (2.3.4),
we have a homogeneous principal symbola0;(�)(y; �) of a0(y; �) of order � (clearly
with actions in the spaces involved in (2.4.5)). Moreover, returning from a0(y; �) to
the original symbola(y; �) via the relation (2.4.4) we obtain, according to the scheme
(2.3.5) of DN orders, a matrixa(�)(y; �) = (aij;(�ij )(y; �))i;j=1;2;3 of homogeneous prin-
cipal components ofa(y; �). Then, DN homogeneity ofa(�)(y; �) means

(2.4.6) a(�)(y; ��) = �� diag
��n=2�n� ; ��1=2 id

� a(�)(y; �) diag
��n=2�n� ; ��1=2 id

��1

for all (y; �) 2 �� (Rq n f0g), � 2 R+.
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2.5. Edge amplitude functions. We describe here a specific space of operators-
valued amplitude functions that will produce below our transmission operators modulo
smoothing operators in the transmission operator algebra.

We first return to the reformulation of pseudo-differentialactions on cones in
terms of the Mellin transform in axial direction, cf. Theorem1.2. We start from opera-
tor functionspl(r; y; %; �) of analogous structure as (1.1.6) where here (because of the
full symbolic calculus) we take them of order� in place of�. We then consider ele-
mentsehl(r; y; z; �) 2 C1�R+��;M�

O
(Xl ; Rq)� such thathl(r; y; z; �) :=ehl(r; y; z; r�)

satisfies the relation

(2.5.1) opr (pl)(y; �) = op�M (hl)(y; �) modC1 ��;L�1 �Xl̂ ; Rq��
for every�. Similarly, we have a corresponding version of Remark 1.3. Let us setg :=
( ;  � �;2) for 2 = (�(k + 1);0], andw := (E1; F1;E2; F2; j�; j+).

DEFINITION 2.7. The spaceR�(��Rq ; g;w) for ��� 2 N is defined to be the
set of all operator functions of the form

(2.5.2) a(y; �) := diag(a1(y; �); a2(y; �);0) + (m + g)(y; �)

where
(i) al(y; �) := �(r)nr��!(r[�]) opM (hl)(y; �)e!(r[�]) + r��(1 � !(r[�])) opr (pl)(y; �) ��
1 � ee!(r[�])

�oe�(r) for operator functionspl and hl fulfilling (2.5.1), l = 1;2, and

�;e�; !;e!;ee! arbitrary cut-off functions satisfying!e! = !, !ee! = ee!;
(ii) (m + g)(y; �) 2 R�M+G(�� Rq ; g;w).

REMARK 2.8. As it was proved in [9], the edge-amplitudesal can equivalently
be written in the form

al(y; �) = �(r)r�� opM (hl)(y; �)e�(r) + gl(y; �)

wheregl is a suitable Green symbol of order� in the edge algebra onWl , l = 1;2.

The following proposition completes Proposition 2.6 by a corresponding property of
the diagonal elementsaj (y; �) in (2.5.2), which are operator-valued symbols in the
edge calculus onWj , cf. [23].

Proposition 2.9. Elementsa(y; �) 2 R�(� � Rq ; g;w) are operator-valued sym-
bols in the sense that the correspondinga0(y; �) defined by(2.4.4) belong to the
spaces

S� ��� Rq ;Ks+(n=2);+(n=2)
(P) (X^;E)� Cj�;Ks��+(n=2);��+(n=2)

(Q) (X^;F)� Cj+

�
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for all s 2 R (with interpretation analogous to the one given after(2.4.5)).

Let us now introduce DN homogeneous principal edge symbols for elementsa(y;�)2
R�(� � Rq ; g;w). The smoothing Mellin plus Green part (m + g)(y; �) has been dis-
cussed in Sections 2.3, 2.4. Concerning the target spaces wetake those which are suit-
able for the remaining entriesai(y; �), i = 1;2, in the representation (2.5.2). We set

al;(�)(y; �) := r��!(rj�j) opM (hl;0)(y; �)e!(rj�j)
+ r��(1� !(rj�j)) opr (pl;0)(y; �)

�
1�ee!(rj�j)�

where subscripts 0 athl andpl have the same meaning as in Remark 1.3.
We then finally define

a(�)(y; �) := diag(a1;(�)(y; �); a2;(�)(y; �);0) + (m + g)(�)(y; �);
which is regarded as a family of operators

a(�)(y; �) : Ks+(n=2);+(n=2)(X^;E)� Cj� ! Ks��+(n=2);��+(n=2)(X^;F)� Cj+;
(y; �) 2 T �� n 0, DN homogeneous in the sense of the relation (2.4.6). According to
the notation in Section 1.1, we have homogeneous principal symbols � (opr (pl)), and
we set

� (al)(r; x; y; %; �; �) := �(r) r��� (pl)(r; x; y; %; �; �);
(%; �; �) 6= 0, l = 1;2. For purposes below we also introduce the compressed variants

(2.5.3) e� (al)(r; x; y; %; �; �) := �(r)� (pl) �r; x; y; r�1%; �; r�1��
that are smooth up tor = 0. For a(y; �) 2 R�(�� Rq ; g;w), then we have altogether

� (a) := diag(� (a1); � (a2))

ande� (a) := diag(e� (a1);e� (a2)).

REMARK 2.10. The construction of the symbol classes could be repeated with
no changes in the case where� � Rq 0 with q 0 > q. This allows us to consider also
the so called ‘double symbols’a(y; y 0; �), taking values in the same spaces as those
described above. In particular, one can introduce, in this case, left and right symbols
of operators initially formed via double symbols. Note that, owing to Proposition 2.6,
the asymptotic summations involved in such constructions for smoothing Mellin oper-
ators would produce, after a finite number of derivatives, Green operators.
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3. Edge problems

3.1. Edge transmission operators. Let us fix a cut-off function �(r) 2C1
0

�
R+
�

and a partition of unityf'j gj=1;:::;N belonging to a finite atlas on the edgeY . Moreover, letf j gj=1;:::;N beC1 functions with compact support in the charts such
that j � 1 on supp'j for all j . For convenience, operators of multiplication by 3�3
diagonal matrices containing� or 'j ,  j in the diagonal will be denoted by the same
symbols� , etc. Let g = ( ;  � �;2), � 2 R, � � � 2 N, v = (E1; F1;E2; F2; J�; J+)
andw = (E1; F1;E2; F2; j�; j+), where the local bundles inw are related to the global
ones inv as explained in Section 2.1 (and denoted by the same letters).

DEFINITION 3.1. The spaceY�(W; g; v) of edge transmission operators of order� on W associated with weight datag is defined to be the set of all operators

A :
C1

0 (int W;E)�C1
0 (Y; J�)

! C1 (int W;F)�C1(Y; J+)

of the form

(3.1.1) A = �
0
� NX
j=1

'jAj j
1
Ae� + (1� �)Aint

�
1�ee�� + C

where

(i) Aj = Op(aj ) for someaj (y; �) 2 R�(�� Rq ; g;w), j = 1; : : : ; N ;
(ii) Aint = diag(A1;int; A2;int;0) for operatorsAk;int 2 L�cl(int Wk;Ek; Fk), k = 1;2;
(iii) C 2 Y1(W; g; v).

Let Y�M+G(W; g; v) or Y�G(W; g; v) denote the subsets whereAj;int vanishes,j =
1;2 andaj (y; �) 2 R�M+G or R�G for all j = 1; : : : ; N .

For the case that the fiber dimensions ofJ� are zero we use the same notation
Y� , Y�M+G andY�G for the respective classes; clearly theJ�-components inv then dis-
appear.

Theorem 3.2. EveryA 2 Y�(W; g; v) extends to continuous operators

(3.1.2) A :
W s+(n=2);+(n=2)(W;E)�H s�(1=2)(Y; J�)

! W s��+(n=2);��+(n=2)(W;F)�H s�(1=2)��(Y; J+)

for all s 2 R. Moreover, for every pair P of asymptotic types there is a pairQ such
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that (3.1.2) restricts to continuous operators

(3.1.3) A :
W

s+(n=2);+(n=2)
P (W;E)�H s�(1=2)(Y; J�)

! W
s��+(n=2);��+(n=2)
Q (W;F)�H s�(1=2)��(Y; J+)

for all s 2 R.

Proof. It is enough to prove the assertion for the local situation near the edge.
The result then follows by Proposition 2.9 and by the continuity of pseudo-differential
operators defined by operator-valued symbols in abstract wedge Sobolev spaces. In fact,
Op(a) : W s(Rq ; E) ! W s��(Rq ;eE) for a 2 S�(� � Rq ;E;eE), and, in particular,
Op(h�iÆ) : W s(Rq ; E) ! W s�Æ(Rq ; E), are continuous maps for arbitrary�; s; Æ 2 R,
see [23], Proposition 1.3.24.

By definition, the elementsA 2 Y�(W; g; v) can be viewed as operator block ma-
tricesA = (Aij )i;j=1;2;3.

By the conditionsAij = 0 when i 6= k or j 6= k, k = 1;2, we obtain subspaces
of Y�(W; g; v), called Y�(Wk; g; vk) for vk = (Ek; Fk). These are nothing else than
the edge operator spaces on a (stretched) manifoldWk with edgeY in the sense of
[23] (with some abuse of notation in the definition of weight data). Conversely, every
Ak 2 Y�(Wk; g; vk) can be embedded as an elementA0k 2 Y�(W; g; v) by filling up it
by zeros to a corresponding 3� 3 block matrix. Then everyA 2 Y�(W; g; v) has the
form

(3.1.4) A = A0
1 + A0

2 + M + G;
whereAk 2 Y�(Wk; g; vk)), k = 1;2, andM + G 2 Y�M+G(W; g; v).

REMARK 3.3. A 2 Y�(W; g; v) andA0kjint Wk 2 L�1(int Wk; vk) for k = 1;2 im-
plies A 2 Y�M+G(W; g; v).

REMARK 3.4. Note that everyG 2 Y�G(W; g; v) induces continuous operators

G :
W s+(n=2);+(n=2)(W;E)�H s�(1=2)(Y; J�)

! W
s��+(n=2);��+(n=2)
Q (W;F)�H s�(1=2)��(Y; J+)

for every s, with some asymptotic typeQ, depending onG. This is a consequence of
the nature of Green amplitude functions, cf. (2.3.3) in Definition 2.4, and of that of
smoothing operators, cf. Definition 2.3.
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Let us now introduce the principal symbolic structure (in fact, symbolic hierarchy)
of elements in our transmission operator spaces. For everyA 2 Y�(W; g; v) we define

� (A) := (� (A); �3(A));
where� (A) is the pair of homogeneous principal interior symbols in the edge alge-
bras onWk
(3.1.5) � (Ak) : ��int WkEk ! ��int WkFk; k = 1;2;
�int Wk : T �(int Wk) n 0! int Wk, for the operatorsAk belonging toA0k in the formula
(3.1.4). It remains to specify�3(A). First, from the calculus forAk 2 Y�(Wk; g; vk),
we have associated homogeneous principal edge symbols
(3.1.6)

�3 (Ak) : ��Y
0
� Ks+(nk=2);+(nk=2)

�Xk̂ ; Ek��J�
1
A! ��Y

0
� Ks��+(nk=2);��+(nk=2)

�Xk̂ ; Fk��J+

1
A ;

k = 1;2, �Y : T �Y n 0 ! Y , recall (2.1.1) and the description of the local bundles
in Section 2.1. Explicit expressions in the case of edge-degenerate differential opera-
tors were mentioned, cf. (2.1.3). The principal edge symbols �3(Ak) give rise to cor-
responding families�3(A0k) by filling up block matrices by zero entries. Moreover, we
have the local homogeneous principal edge symbols ofM + G that are the principal
parts of classical operator-valued symbols, and we then get�3(M + G) globally onT �Y n 0. Then

�3(A) := �3 �A0
1

�
+ �3 �A0

2

�
+ �3(M + G)

is a family of maps
(3.1.7)

�3(A) : ��Y
0
� Ks+(n=2);+(n=2)(X^;E)�J�

1
A! ��Y

0
� Ks��+(n=2);��+(n=2)(X^;F)�J+

1
A :

By virtue of the DN homogeneity of the ingredients of�3(A), formulated above, we
have

(3.1.8) �3(A)(y; ��) = �� diag
��n=2�n� ; ��1=2 id

� �3(A)(y; �) diag
��n=2�n� ; ��1=2 id

��1

for all (y; �) 2 T �Y n 0, � 2 R+.

REMARK 3.5. Because of the edge-degenerate behaviour of the upper left corner
of an operatorA, cf. Definition 2.7, locally near the edge in the splitting ofvariables
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into (r; x(k); y) with covariables (%; �(k); �), the symbols (3.1.6) have the form

� (Ak)(r; x(k); y; %; �(k); �) = r��e� (Ak)(r; x(k); y;e%; �(k);e�)e%=r%;e�=r�;
wheree� (Ak) is smooth up tor = 0, cf. (2.5.3) and the end of Section 2.5.

REMARK 3.6. Note that, together with the map� : A 7! � (A) = (� (A); �3(A))
defined above, we could define a map op:p = (p ; p3) 7! op(p) = P such that� (P) = p.

3.2. Composition and adjoint. We now discuss the algebra property for the
edge operators introduced in Definition 3.1. As in Section 1,we concentrate on the
composition, and only state the next theorem about adjoints.

Theorem 3.7. Let A 2 Y�(W; g; v) with g = ( ; ��;2), ��� 2 N, 2 = (�(k+
1);0], v = (F1;G1;F2;G2; J�; J+). Then, the formal adjointA�, formed in the same
sense ofDefinition 2.3, satisfiesA� 2 Y��(W; g�; v�), where g� = (� + �;� ;2)
and v� = (F1; E1;F2; E2; J+; J�), while �� refers to the fact that the matrix of orders
for the entries ofA� is the transpose of(2.3.5). Moreover, � (A�) = � (A)�, with an
obvious meaning of� on the right.

Theorem 3.8. A 2 Y�(W; g; v) and B 2 Ye�(W;h;w), for g = (� � e�; � � � �e�;2), h = (�; � � e�;2), 2 = (�(k + 1);0], v = (F1;G1;F2;G2;eJ ; J+) and w =
(E1; F1;E2; F2; J�;eJ ) impliesAB 2 Y�+e�(W; gÆh; vÆw) with gÆh = (�; ����e�;2),v Æ w = (E1;G1;E2;G2; J�; J+) (cf . the notation ofTheorem 1.12),and we have

(3.2.1) � (AB) = � (A)� (B)

with componentwise composition. If one factor belongs to the subclass with subscriptM +G or G, then the same is true of the composition.

Proof. We assume, for simplicity, that the bundles inv and w are trivial, and
omit them from the notation from now on.

Let us writeA = A0 + A1 + C, B = B0 + B1 + D, where the decomposition refers
to (3.1.1), with finite sums of operatorsA0, B0 referring to edge-amplitude functions,
interior operatorsA1, B1 localised far from the edge, and smoothing operatorsC, D,
respectively. The nature of compositions containingC or D as factors is clear from
Definition 2.3 and Theorems 3.2, 3.7. Moreover, the composition A1B1 of interior op-
erators entirely refers to the standard pseudo-differential calculus and yields again an
operator of the required structure. From the productsA0B1 andA1B0 we also get in-
terior operators plus smoothing operators in the calculus because of pseudo-locality,
that gives us smoothing operators whenever an operator in our class is composed from
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both sides byC1 functions of disjoint support. Thus, there remains to consider A0B0.
Without loss of generality we assume that our open covering on Y is chosen in such
a way that whenever open sets have a non-empty intersection,their union is contained
in a coordinate neighbourhood. Then, using again pseudo-locality of summands inA0

or B0, the essential contributions are of the form op(a) op(b) for local amplitude func-
tions a(y; y 0; �) and b(y; y 0; �) in an open set� � Rq , cf. Remark 2.10. In this con-
struction, because of involved factors of compact supportsin y or y 0, the amplitude
functions may be regarded as elements ofR�(Rq � Rq � Rq ; g) and R�(Rq � Rq �
Rq ;h) with variables/covariables (y; y 0; �) and compact support in (y; y 0). This meets
the standard scenario of pseudo-differential calculus globally on Rq with uniform sym-
bol estimates, in the variant of operator-valued symbols. The general calculus allows
us to pass from double symbolsa(y; y 0; �) to left or right symbolsaL(y; �) or aR(y 0; �)
on the level of operators, modulo operators of order�1. In other words, we have

(3.2.2) op(a) � op(aL) and op(b) � op(bR);
where� indicates equality modulo operators of order�1. A technical point is to
verify that these remainders are even smoothing in our calculus. Looking at the struc-
ture of our amplitude functions, there are non-smoothing summands only referring to
W1 or W2. The corresponding considerations for those summands are known from the
usual edge calculus, see also the scheme of Theorem 1.12 for the pointwise behaviour
of operator functions on the respective model cones. Therefore, to characterise remain-
ders in (3.2.2) we have to deal only with the case of amplitudefunctions belonging to
R�M+G and Re�M+G, respectively. In the finite weight interval case we are considering,
those are finite sums of Mellin terms plus Green terms. By Definition 2.4, the Green
symbols are completely covered by the abstract scheme of operator-valued symbols. So
there remain amplitude functions consisting of finitely many summands of expressions
of the form

(3.2.3) rj!(r[�]) op�M (h)(y; y 0)��e!(r[�]);
j�j � j , for smoothing Mellin symbolsh(y; y 0; z) and certain weights�. Owing to the
structure of the amplitude functions (3.2.3), we can pass toleft or right symbol repre-
sentations directly, by a finite Taylor expansion iny 0 at the diagonal of���, modulo
Green remainders as treated before, cf. Proposition 2.6 and[23], Theorems 1.1.30 and
1.1.54. In other words, we arrive at the composition op(aL) op(bR) = op(aLbR) after
ignoring terms with smoothing factors that yield smoothingoperators in our calculus.

Concerning (aLbR)(y; y 0; �), we have to verifyaLbR 2 R�(Rq � Rq � Rq ; g Æ h).
There are again some summands known from the theory of standard manifolds with
edges. The main contribution of the latter category comes from the non-smoothing
terms with holomorphic Mellin symbols. They are treated thoroughly in the paper [9].
Concerning compositions where one factor is of Green type weobtain again Green
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symbols, similarly to the corresponding calculations for the standard edge algebra.
Thus there remain terms in the composition of the 2� 2 upper left corner ofaL andbR. After the observations before, all of them are treated, except when one factor is of
the form (3.2.3). If both factors are of this type, we obtain an operator of typeR�M+G
(again, see the analogous result for the pointwise composition in the proof of Theo-
rem 1.12). So the last kind of terms is the one involving one factor like (3.2.3) and
one non-smoothing. When composing with symbols localised in the interior, the pres-
ence of factors of the type'(t) = e!(t)(1� !)(t), compactly supported in (0;1), im-
mediately gives Green operators (note also that cut-off functions evaluated inr[�] turn
out to be classical operator-valued symbols). The other type of composition of Mellin
operators gives expressions similar to those appearing in the standard edge calculus,
namely

(3.2.4) !(r[�]) r�� op�M (f )(y)e!(r[�]) r�e� op�M (h)(y 0; �)ee!(r[�]):
They are formally treated as the similar terms examined in the composition of oper-
ators on the cones, and give symbols of Mellin plus Green type.This completes the
proof of aLbR 2 R�(Rq � Rq � Rq ; g Æ h). The last step is now to pass again to a
left symbol (aLbR)L modulo a smoothing remainder on the level of operators, which
is possible, by the considerations above.

The symbolic rule for the � component of� (AB) is clear. That also the princi-
pal edge symbols are multiplied is again a consequence of theanalogous rule for the
standard edge algebra and of the following observation: since the Mellin symbols ap-
pearing in the products (3.2.4) can be written aseh(r; y; z; r�) =eh(0; y; z; r�) + reh(1)(r;y; z; r�) with a smooth remaindereh(1), only the product of the principal edge symbols
of A andB can contribute to�3(AB), due to the presence of at least oner factor in
the other three terms.

3.3. Ellipticity.
DEFINITION 3.9. An elementA 2 Y�(W; g; v) for g = ( ;  � �;2) and v =

(E1; F1;E2; F2; J�; J+), is said to be elliptic if
(i) both the bundle homomorphisms (3.1.5) are isomorphisms, where also the ‘com-
pressed variants’ (locally near the edge)e� (Ak), k = 1;2, are isomorphisms up tor = 0;
(ii) the family of maps (3.1.7) is a bundle isomorphism for ans = s0 2 R.

REMARK 3.10. Similarly to the ‘usual’ edge calculus, condition (ii) implies that
(3.1.7) is an isomorphism for alls 2 R.

REMARK 3.11. Condition (ii) is an analogue of the classical Shapiro-Lopatinskij
condition for boundary value problems: here they have the shape of transmission con-
ditions.
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Note that the values of�3(A)(y; �) for (y; �) 2 T �Y n 0 are uniquely determined
by the restriction toS�Y , the unit cosphere bundle induced byT �Y (recall that we
have fixed a Riemannian metric onY ). In particular, the relation

�3(A)(y; �) = j�j� diag
�j�jn1=2�n1j�j; j�jn2=2�n2j�j; ��1=2 id

��1 �3(A)

�y; �j�j
�

� diag
�j�jn1=2�n1j�j; j�jn2=2�n2j�j; ��1=2 id

�(3.3.1)

defines the extension of�3(A)(y; �)jS�Y by homogeneity toT �Y n 0. Clearly, the re-
striction �3(A)(y; �)jS�Y is a family of isomorphisms if and only if so is�3(A)(y; �)
for all (y; �) 2 T �Y n 0.

Let us now draw some further conclusions from the ellipticity condition on�3(A).
Write �3(A)(y; �)jS�Y =: a(y; �) = (aij (y; �))i;j=1;2;3, b(y; �) := (aij (y; �))i;j=1;2. Then,
if a(y; �) is invertible,

(3.3.2) b(y; �) : Ks+(n=2);+(n=2)(X^;E)! Ks��+(n=2);��+(n=2)(X^;F)

is a family of Fredholm operators, belonging to the cone transmission algebra of Sec-
tion 1. As such, there is the symbolic structure of cone operators from that calculus.
In particular, we have the principal conormal symbol

(3.3.3) �M(b)(y; z) : H s+(n=2)(X;E)! H s��+(n=2)(X;F)

which has the form

�M(b)(y; z) = (�M(bij )(y; �))i;j=1;2;
�M(bij )(y; z) = diag(h1;0(0; y; z;0); h2;0(0; y; z;0)) + (f00;ij (y; z))i;j=1;2;

cf. the notation in Definition 2.7 (i), Remark 1.3, and the formula (2.4.3) (for� = �).
From the cone calculus onX^ we know that the Fredholm property of (3.3.2) at a
point (y; �) 2 S�Y implies that (3.3.2) is a family of bijections, for ally 2 Y , z 20(1=2)� .

REMARK 3.12. The ellipticity of the operatorA with respect to the interior sym-
bol � (A), cf. Definition 3.9 (i), implies that (3.3.2) is elliptic inthe sense of the� -
and�e- components of principal symbols from the cone theory, for every (y; �) 2 S�Y ,
in particular,bjj (y; �) is �e-elliptic (i.e., exit elliptic for r ! +1), j = 1;2. The ellip-
ticity with respect to�M(A) is not automatic. If we require that (3.3.3) is a family of
isomorphisms for ally 2 Y , z 2 0(1=2)� (for any fixed s, which implies the same for
all s 2 R), then (if (Aij )i;j=1;2 denotes the 2� 2 upper left corner ofA) the operators

b(y; �) := �3((Aij )i;j=1;2)(y; �) : Ks+(n=2);+(n=2)(X^;E)! Ks��+(n=2);��+(n=2)(X^;F)

form a family of Fredholm operators, parametrised by (y; �) 2 S�Y , cf. Theorem 1.16.
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From the regularity properties of solutions to elliptic transmission equations on the
infinite stretched coneX^ we know that kerb(y; �) and cokerb(y; �) of the Fredholm
operators (3.3.2) are independent ofs. Let us assume for simplicity thatS�Y is con-
nected. Then, indb(y; �) is constant, i.e., independent of (y; �) 2 S�Y .

From standard construction ofK-theory in connection with families of Fredholm
operators parametrised by a compact topological space we have an index element

indS�Y b 2 K(S�Y );
whereK( : ) denotes theK-group of the space in brackets. The canonical projection�1 : S�Y ! Y gives rise to a pull-back��1K(Y )! K(S�Y ). In the present case, from
the fact that (3.1.7) is an isomorphism, we can read off the index element ofb explic-
itly, namely,

indS�Y b = [��1J+] � [��1J�];
which belongs to��1K(Y ). In this connection we have the following theorem, that ex-
tends a topological criterion of Atiyah and Bott [2] about the existence of Shapiro-
Lopatinskij elliptic conditions to an elliptic operator ona manifold with boundary.

Theorem 3.13. Let A = (Aij )i;j=1;2 2 Y�(W; g;w) for g = ( ;  � �;2) andw = (E1; F1;E2; F2) be an operator that is� -elliptic in the sense ofDefinition 3.9 (i)
and such that(3.3.2) is a family of Fredholm operators. Then, there exists an elliptic
operator A = (Aij )i;j=1;2;3 2 Y�(W; g; v) for v := (E1; F1;E2; F2; J�; J+) and suitableJ� 2 Vect(Y ) with A = (Aij )i;j=1;2 if and only if indS�Y b 2 ��1K(Y ).

3.4. Parametrices and regularity with asymptotics.
DEFINITION 3.14. LetA 2 Y�(W; g; v) be an operator in the notation of Defi-

nition 3.9. Then an operatorP 2 Y��(W; g�1; v�1) for g�1 := ( � �;  ;2), v�1 :=
(F1; E1;F2; E2; J+; J�) is said to be a parametrix ofA if

AP � I 2 Y1(W; gr ; vr ) andPA� I 2 Y1(W; gl ; vl)
for gr = ( � �;  � �;2), vr = (F1; F1;F2; F2; J+; J+) and gl = ( ;  ;2), vl =
(E1; E1;E2; E2; J�; J�).

Theorem 3.15. Let A 2 Y�(W; g; v) be elliptic in the sense ofDefinition 3.9.
Then, A has a parametrixP 2 Y��(W; g�1; v�1).

Proof. For convenience, we consider the case whereEk andFk, k = 1;2, are triv-
ial bundles of fiber dimension 1 and omit the bundle data from the notation. Moreover,
for every 3� 3 matrix B we will write eB for its 2� 2 upper left corner (Bij )i;j=1;2.
In view of (3.1.4), the operatorA can be written in the form diag(A1;A2;0) +M+G,
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for Ak 2 Y�(Wk; g) andM+G 2 Y�(W; g). By virtue of Definition 3.9 (i), applied to
Ak for k = 1;2, from the elliptic theory in the edge algebra onWk we find operators
Bk 2 Y��(Wk; g�1) such thatBkAk = I modY0M+G(Wk; ( ;  ;2)), cf. Remark 3.3.
SettingP0 := diag(B1;B2;0) we then obtain

P0A = I modY0M+G(W; gl):
On the level of principal conormal symbols this yields the identity

�M(P0)(y; z +�)�M(A)(y; z) = 1 +f (y; z)
for a function f 2 C1(Y;M�1R ) where M�1R is the space of 2� 2 matrices of
smoothing operator-valued Mellin symbolsfij 2 M�1Rij (Xi; Xj ) with asymptotic typesRij , j = 1;2 (recall that, by Definition 2.5, onlyeA contributes to the Mellin principal
symbol). Since (1+f (y; z))�1 = 1+ef (y; z) for another elementef (y; z) 2 C1(Y;M�1S )
and some matrixS of asymptotic types, we obtain

��1
M (A)(y; z) = (1 +ef (y; z))�M(P0)(y; z +�) = �M(P0)(y; z +�) + l(y; z +�)

for somel(y; z) 2 C1(Y;M�1P ) with a resulting asymptotic typeP , where the carrier
of P does not intersect01=2�(��). The next step in the construction of the parametrix
is to pass toeP1 := eP0 + M0, whereM0 = r�!(r[�]) op��M (l)(y)e!(r[�]) is an operator
such that

(3.4.1) �M
�eP1

�
(y; z +�) = �M(A)�1(y; z):

We thus obtaineP1 eA = I�M1 where, because of (3.4.1), the highest conormal symbol
of M1 vanishes. Thus, settingeP2 :=

Pkj=0M
j
1
eP1, we obtaineP2 eA = I � G for a 2� 2

matrix G of Green operators of order 0.
The �3-ellipticity of the operatorA shows that

(3.4.2) �3 � eA � (y; �) : Ks+(n=2);+(n=2)(X^)! Ks��+(n=2);��+(n=2)(X^)

is a family of Fredholm operators, parametrised by (y; �) 2 S�Y , where

indS�Y �3 � eA � = [��1J+] � [��1J�]:
(3.4.2) is a family of elliptic operators in the sense of the cone algebra onX^ (cf. Sec-
tion 1), and�3(eP2)(y; �) is a family of parametrices in that algebra, which implies

indS�Y �3 �eP2
�

= [��1J�] � [��1J+]:
Now, similarly to the considerations in the proof of Theorem3.13, we find a family
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of isomorphisms
(3.4.3)

p(y; �) :=

� �3(eP2) �3(K)�3(T ) �3(Q)

�
(y; �) :

Ks+(n=2);+(n=2)(X^)�
(J+ � CN )y ! Ks+�+(n=2);+�+(n=2)(X^)�

(J� � CN )y
for some (sufficiently large)N . The entries�3(K), �3(T ), �3(Q) may be extended
by homogeneity�� (with respect to the group actions, cf. the relation (3.3.1)) to a
family that has the structure of a homogeneous Green symbol of order �� in our
edge symbolic algebra. In order to invert�3(A)(y; �), we compose (from the right)a = diag(�3(A)jS�Y ; idCN ) with (3.4.3) and get a family of operators that has the formb(y; �) = (bij (y; �))i;j=1;2 whereb11 takes values inC0M+G(X^; g) and (by construction)
satisfies�M(b11) = 1 for all (y; �) 2 S�Y , while the other entriesbij (y; �) are of finite
rank. Since the involved factors in the composition are invertible, b(y; �) is a family
of invertible operators as well.

We now obtain

(3.4.4) b(y; �)a(y; �) = 1 +g(y; �)

for an elementg(y; �) 2 �3�R0G(��Rq ; g)
���S�Y . The invertibility of a(y; �) andb(y; �)

implies that also (3.4.4) is invertible. Using the fact thatthere is an elementh 2�3�R0G(� � Rq ; g)
���S�Y such that 1 +h(y; �) = (1 + g(y; �))�1 we can pass to (1 +h(y; �))b(y; �) = a�1(y; �). Sincea(y; �) is a block matrix with idCN in the right lower

corner, the same is true ofa�1(y; �), i.e., the latter expression gives us�3(A)�1(y; �)jS�Y itself. Since the above multiplications preserve the nature of oper-
ator families onS�Y that belong to�3�R0(��Rq ; g)

���S�Y , we obtain this same prop-
erty for �3(A)�1(y; �)jS�Y . Thus, by an extension by homogeneity��, we can pro-
duce

�3(A)�1(y; �) 2 �3 �R��(�� Rq ; g)
� :

Using Remark 3.6, we obtain an operatorP3 2 Y��(W; g�1) such that � (P3) =� (A)�1. This givesP3A = I + C for C 2 Y�1(W; g�1). Since in the spaces of our
specific operator-valued symbols it is possible to perform asymptotic summations, a
formal Neumann series argument gives the desired result.

Theorem 3.16. If A 2 Y�(W; g; v) is elliptic, the conditions

(i) Au = f 2W
s��+(n=2);��+(n=2)
(Q) (W;F)�H s�(1=2)��(Y; J+),

(ii) u 2W�1;��+(n=2)(W;E)�H�1(Y; J�)
imply u 2 W

s+(n=2);+(n=2)
(P) (W;E) � H s�(1=2)(Y; J+) for every s 2 R. Here Q is any

asymptotic type andP depends onQ and A (not on s).
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Theorem 3.17. Let A 2 Y�(W; g; v) be elliptic. Then the operator(3.1.2) is
Fredholm for everys 2 R. Moreover, kerA is a finite-dimensional subspaceV �
W

1;+(n=2)
P (W;E) � H1(Y; J�) for some asymptotic typeP, and there is a finite-

dimensional subspaceW �W1;��+(n=2)(W;F)�H1(Y; J+) such thatImA\W = f0g
and ImA+W = W s��+(n=2);��+(n=2)(W;F)�H s�(1=2)��(Y; J+). This is valid for all s 2
R with s-independentV andW . Finally, there is a parametrixP 2 Y��(W; g�1; v�1)
such thatI � PA and I �AP are projections toV andW respectively.

Theorem 3.16 above expresses elliptic regularity of solutions in weighted edge
Sobolev spaces and subspaces with asymptotics. The proof isbased on Theorem 3.15
and employsP as a left parametrix, together with Theorems 3.2 and 3.8. In fact, start-
ing from the conditions (i) and (ii) we obtainPAu = (I+G)u for some Green operator
G. Using the continuity ofP in spaces with or without asymptotics, cf. Theorem 3.2,
as well as the mapping properties of Green operators, cf. Remark 3.4, we immediately
obtain the assertion.

The proof of Theorem 3.17 employs Theorem 3.16 together withP as a right
parametrix. Generalities of Fredholm operators acting in scales of spaces in the present
situation then tell us thatA admits a parametrix in the asserted special form.
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