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Abstract

Elliptic equations on configuration® = W; U --- U Wy with edgeY and com-
ponentsW; of different dimension can be treated in the frame of psedifferential
analysis on manifolds with geometric singularities, hedges. Starting from edge-
degenerate operators 6%;, j = 1,..., N, we construct an algebra with extra ‘trans-
mission’ conditions orY that satisfy an analogue of the Shapiro-Lopatinskij condi-
tion. Ellipticity refers to a two-component symbolic hiegshy with an interior and
an edge part; the latter one is operator-valued, operatmghe union of different
dimensional model cones. We construct parametrices wiahincalculus, where ex-
change of information between the various components idaw in Green and
Mellin operators that are smoothing o \ Y. Moreover, we obtain regularity of
solutions in weighted edge spaces with asymptotics.

Introduction

This paper is aimed at studying elliptic operators on a condiion with edges,
locally described by wedges with model cones of differembetisions. A specific fea-
ture is a new class of transmission operators between tlierafit components, that
control the interaction of data across the edges. To be mureise, if X is a (say,
compact) topological space and® := (R. x X)/({0} x X) the cone with basex
(where {0} x X in the quotient space corresponds to theutipf the cone), the Carte-
sian productX® x  with a C* manifold Q is a wedge. The edge &, and X2 will
be called the model cone of the wedge. In our case we as3ime&;U---UXy to be
a disjoint union of compact and clos&™ manifolds X; of dimensionsn; = dimX;.
Then X2 is a cone of the formJUXjA = UXf/~, where U, is the disjoint union
combined with the quotient map that identifies the tips of ctbe\eszA with a single
point v. An example of a (local) edge configuration of this type isvehdn Fig. 1
below (with the baseX, of dimension 0). Other examples can easily be constructed in
terms of transversal intersections of embedd®d manifolds of different dimensions;
the intersections are then the edges.
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Fig. 2.

Configurations of that kind occur in a number of applicatiofer instance, in
heat diffusion and other models of applied sciences, seenthre specific remarks be-
low in this introduction. Ellipticity on coneszXj?A with different-dimensionalX; has
been investigated in [22]. Models with transmission effdatsietwork-like situations
have been studied by Ali Mehmeti for hyperbolic equationg g4 and the references
there. It is also interesting to consider operators on spadth ‘higher’ edges and cor-
ners, i.e., spaces composed of subspaces of different diamsnand (say, piecewise
smooth) singular geometry, although such a calculus is eotegtablished; it would
be of a similar complexity to a corresponding theory for nmalds with higher sin-
gularities in the sense of [24]. Another motivation of oulccéus is the problem of
approximating singular subsets of a smooth structure byestion via a sequence of
regular domains, where the behaviour of the limit may depeoth on the final ge-
ometry as well as on the way of approximation. A first step ia firesent case of
different-dimensional singularities should be the ‘ekamlculus to be reached as a
corresponding limit.

Differential and pseudo-differential operators on maldi$owith geometric singu-
larities such as conical points or edges have a long histody aae studied from dif-
ferent points of view by many authors before, cf. Kondraty&®], Melrose, Mendoza
[15], Mazzeo [14]. Concerning further references, cf. [7][2t]. A pseudo-differential
approach for edge-degenerate operators, first establish§D] for ‘standard’ mani-
folds with edges, combines ideas from the analysis of bayndalue problems in the
sense of Boutet de Monvel [3] or Rempel and Schulze [18] witkced Mellin quan-
tisations in model cone direction and quantisation in edgectlon, see [21], [23],
based on twisted homogeneity of operator-valued symbasnected with strongly
continuous groups of isomorphisms on weighted spaces omtuel cones. This tech-
nique also plays a role in the index theory on singular spases, e.g., Fedosov,
Schulze and Tarkhanov [8] and the bibliography there. Itygidal in this context to
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study corresponding algebras ofx22 block matrix operators with trace and potential
conditions along edges. The latter ones satisfy an analoftlee Shapiro-Lopatinskij
condition in the elliptic case. Similar to boundary valueliems, cf. Atiyah and Bott
[2], there is a topological obstruction for the existencesoth conditions. For the edge
case with different model cones it may happen (as for, s& Qauchy-Riemann oper-
ator and transmission problems on a manifold with respeeintanterface of codimen-
sion 1) that for operators from one side the obstruction maydn-vanishing although
from both sides it vanishes. Transmission problems in gén@or pseudo-differential
operators with or without transmission property at the riiatee) are, in fact, special
cases of our calculus, where the normal half lines in the twposite directions are
just the model cones of corresponding local wedges. In tkesemt paper we develop
an algebra with transmission operators on a configuratidh edlges.

Ellipticity is determined by a bijectivity condition for aysbolic hierarchy, con-
sisting of interior and edge components, and we construnpetrices within the al-
gebra. Regularity of solutions is controlled in weighteéags and subspaces with dis-
crete or continuous asymptotics. The scenario we are cemsglhere has relations to
other investigations on spaces with geometric singuée;itas they play a role in crack
theory, cf. the monograph [10].

In recent years it became popular to study boundary-comaatilems, which oc-
cur, e.g., in the mechanics of media consisting of companeitdifferent material
parameters. There are then transmission effects at thaointeoundaries. Those are
particularly subtle when the boundaries are not smooth anbéoed with cracks em-
anated by one of the sub-bodies. To the best knowledge ofuti®rs, there was noth-
ing done so far in terms of a systematic calculus, which preduparametrices and
asymptotics of solutions close to the interfaces (whenrttgnension is greater than
zero).

In order to illustrate the position of our calculus for tiegtproblems of that kind,
we consider a ball := {x € R3: |x| < 2} with a subbody of the formB U C for
B ={x eR% x| <1}, C:={x e R®: 1< |x|] <3/2 x3 =0}, see Fig. 2 above.
In A =M\ (BUC) and B we assume to be given different elliptic operators (e.g.,
in the simplest case, the Laplacian multiplied by differenhstants). Then the prob-
lem is to describe the behaviour (especially, regularity asymptotics) of solutions
u andv in A and intB, respectively, where: satisfies two-sided crack conditions on
C (e.g., Dirichlet or Neumann) and, v suitable transmission conditions acro%B,
which, of course, interact with the crack conditions in aghéiourhood of2 = 9BNC.
This problem can be interpreted as an edge problem with €dgad a fairly complex
model cone. Localisations of the problem to the and B-sides give rise to subcalculi
with corresponding simpler model cones, where in the ptepaper we are dealing
with the B-side, includingC. In our picture B is smooth; even in that case the edge
interpretation is necessary, though we adfaito be an edge anyway.
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For notational convenience, throughout the paper we fatauthe calculus when
B is closed. The case with boundary has an analogous strugthen some of theX ;
(in the notation at the beginning) are manifolds with bougdathe parameter-
dependent form of Boutet de Monvel's calculus is to be usedherathan the
parameter-dependent ‘standard’ pseudo-differentiatadpes, as the values of operator-
valued Mellin symbols.

Note that the calculus for thd-side (which we do not carry out here) would em-
ploy more tools than those established in this paper. A plath® relevant techniques
may be found in [24]. Otherwise, as it is known from the anialyan singular spaces
in general, different geometries induce different noniealant calculi, and the results
of [24] are not involved in the ones here for tieside of the configuration.

Let us briefly outline the structure of the paper. In Sectionvd introduce op-
erators on cones with different components of the base spdqgeart from elements
of the ‘usual’ cone algebra, see [23], those encode thecimege of data between
the components in terms of transmission operators, hefle @dhtinuous asymptotics
across the common tip of the ‘full’ cone, no matter whethe timensions of the
cone components are equal or not. The choice of that verdi@more calculus, which
extends material from [22] (mainly by the transmission Melplus Green operators
with continuous asymptotics), affects the structure of ittduced cone operator-valued
symbols that we develop in Section 2 as the amplitude funstiof a corresponding
edge operator calculus. We obtain, in fact, a structure ¢xtgnds the one in [23] by
the new typical transmission objects. The ‘usual’ edge @og# functions belonging
to the subwedges generated by the single cones appear apex puibstructure of the
present one. In Section 3 we pass to an associated operdtafusawith a principal
symbolic hierarchy that admits a specific notion of ellifiyicand the construction of
parametrix. As a consequence, we obtain the regularity bftisas in weighted edge
spaces with and without asymptotics.

1. Transmission algebras on cones

1.1. Mdlin operators and cone Sobolev spaces. Let us first fix some notation
around the Mellin transform and associated pseudo-diffelenperators. The Mellin
transform M is given by the formula

(1.1.1) ./\/lu(z):/O i tu(r) dr,

in the simplest case far € C3°(R+); then the covariable varies inC, and we have
Mu(z) € A(C) (here A(U) for any openU < C denotes the space of all holomor-
phic functions inU). (1.1.1) will be then extended to various function and riistion
spaces, also vector-valued ones; thewill vary on subsets ofC, for instance, lines

(1.1.2) I's:={z € C: Rez =}
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for some realB. Define the weighted Mellin transform with weighte R by M, u =
Mulr,,, , for u e C3°(R.). Then M, is interpreted as a map frodg°(R.) to A(C),
which extends to an isomorphisi,, : r¥ L?([R+) — L*(I'(1/2)-,), and the inverse is

1
M) =5 [
2i Jryp.,

Here and in the sequel, function and distribution spaceginaily given onRR, will
also be employed foi's > z, where Imz plays the role of the real variable. In par-
ticular, we have symbol space®‘(R:+ x R: x I'g) in the sense of the &tmander
classes, where we write(r, r’, z) with t := Imz being the covariable. With symbols
a(r,r',z) € S*(R+ x R+ x I'i1/2—,) We associate weighted Mellin pseudo-differential
operators on the half-axis

(1.1.3) op,(@u(r) = ML (M, ozalr, 1, 2Ju(r)}

N —((1/2)-y+it) dr’
= // (-) a(r, v, Ju(r’)— dr,
0 r/ r/

wherez = (1/2) — y +it. Note that we can also write

opy,(a) =" opy (T Va)yr™

where C~"a)(r,r',z) = a(r,r',z — y) and op,(.) = of,(.). Below we use such a
notation also in the vector- and operator-valued case, eyHer instancea(r,r’, z) €
C*R+ x Ry, LM(X;T(1/2-,)), and X is a closed compacC*® manifold. Here
L*(X;R) denotes the space of all pseudo-differential operatorsrdér © € R on X
that depend on a parameterc R. Recall that such operators are locally described by
amplitude functionsa(x, x', £, 7) in the covariablesg, t) € R, n = dimX, while
L™°(X;R) = S(R, L~>°(X)) with the spacel.~*°(X) of smoothing operators oX. In
a similar sense there are parameter-dependent sgates R’) for an /-dimensional
parameter.. All these spaces are equipped with naturadhet topologies.

To define weighted Sobolev spaces on a stretched aBhe= R, x X with base
X, we employ the fact that for every € R there exists an eleme®“(1) € L*(X;R)
that is parameter-dependent elliptic of order and induces isomorphism&*(1):
H*(X) — H**(X) for all » € R',s € R. Here H*(X) are the standard Sobolev spaces
of smoothness € R on X. We now choose such a familg®(z) with parameterr € R
and defineH*"(X") as the completion o€5°(X") with respect to the norm

1/2
1
(11.4) o [ IRMOMU@IE g dz
2mi C(@+1y2)—y H0

for n = dimX. The spacel?(X) is equipped with a scalar product, defined in terms
of a fixed Riemannian metric oX. Recall that when we choose another famiy(z)
with analogous properties, we obtain an equivalent norm.
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The spacesH*?(X") have the meaning of Sobolev spaces based on the Fuchs
type derivative inr € R, and (local) usual derivatives oki. More precisely, fors € N
we have

H (XY = {u(r, x) € r @Y LA R, x X):

(1.1.5)
(r3,)*Du(r, x) € r="/27 [2(R, x X) for all k+ordD < s}.

Here D stands for arbitrary differential operators dh It can be easily proved that
(1.1.5) is an equivalent definition @f*¥(X") for s € N, and the full scale could be
defined by duality and interpolation. Notice tHaf-%(x") = r—"/2L?(R: x X) (with L2
being taken with measurér dx).

By a cut-off function on the half-axis we understand in tha&per any real-valued
w(r) € C§°(R+) that is equal to 1 in a neighbourhood of 0.

In the considerations below we will also employ a modifiedlesoaf weighted
Sobolev spaces, namelg*-” (X"), defined by

K7(X") = {ou+(1—w)v:u e H(X), ve Hy XM}

for any cut-offw. Here HS, {X”) for X = $" (the unit sphere iR"*1) is the subspace
of all v e H (X") such that (+ w)v € H*(R"*!) where ¢, x) are interpreted as polar
coordinates inR"*1\ {0} = (S§")". For generalX, the definition is given by reducing to
the case ofS”, using a partition of unity subordinate to the chosen locairdinates,
see, e.g., [23] for details.

We will be interested in spaces on two (or finitely many) com‘a‘lé Uy X2A for
basesX,, X, of different dimensions, where, means disjoint union combined with
an identification of vertices. These will be the model conéscanfigurations with
edges. In our transmission algebras on (say, local ancclsee)} wedges{Xf U XQ) X
Q for an open set2 C R? we consider operators that share information between
X7 x Q and X3 x @, encoded below by a kind of smoothing Mellin and Green op-
erators. For the non-smoothing part, because of ‘pseuchdityy we can ignore for
a while the interaction of operators and discuss edge-agegtn symbols for a single
wedge X" x Q with a smooth compact cone ba%e

Let U C R" be an open set and 1&(R. x U x @ x R*"*) denote the space
of all symbolsp(r, x, y, p, &, n) that have the form

pr.x,y,p,6,n)=p(r, x,y,rp, &, ),
where

ﬁ(’%%%ﬁ&ﬁ)e SM(EX U x XR1+"+‘1) = §H (RX U x QXR1+n+q)

RexUxQ

(here we use common notation, i.e.pihander’s symbol space®*(V x RY), V
R™ open). By op(p) and op(p) we denote the standard pseudo-differential action
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with respect to the variables in the subscript and the cpomding covariables. For in-
stance: op(p)u(x) = [ e ™*¢ p(x, §)it(£) @&. Given an atlasy;: G; — U;, j=1,...,N
on X and a system of local symbols; € '5“(]1(?+ x U; x  x R*"*7) we can pass to
(r, y, p, n)-dependent families of pseudo-differential operatorsXoby setting

(1.1.6) p(r,y, p,m) = XN:% {(x,‘l)* op,(p;)(r, v, p, n)} -
j=1

In the formula (1.1.6),{¢,};=1..~ is @ partition of unity subordinate to the covering
{Gj}j=1...n, @and {y;} =1y are functions inC3°(G;) such thaty;vy; = ¢; for all j,
and (x; '), is the operator push-forward undgr*.

Let us now introduce parameter-dependent familiesxothat are holomorphic in
zeC.

DEFINITION 1.1. Let M (X;R?), 1 € R, denote the space of all operator fam-
ilies h(z,n) € A(C., L* (X;R})) such thath(z, n)lr,xrs € L*(X;Ts x R?) for every
B € R, uniformly in compactg-intervals. Forg =0 we simply write M{5(X).

The spaceM,(X;R?) is Frechet in a canonical way, and we then have spaces of
the kind C°°(]R+><Q, M(’g(X;]R‘I)). We now recall a Mellin quantisation result that will
be essential in our operator algebra below.

Theorem 1.2. For everyp(r, y, p, n) of the foLm(1.1.6)there is anﬁ(r, Y,2, 1) €
C™(R+ x Q, M (X;R?)) such thath(r, y, z,n) := h(r, y, z, rn) satisfies the following
relation:

(1.1.7) OR(P)(y, n) — OB, (h)(y, n) € C™(Q, L™(X"; RY))

for every B € R (where operators are interpreted in the senSg(X") — C*(X")),
and h is uniquemodC>(Ry x Q, M5>(X;R7)).

REMARK 1.3. If we define po(r, Vs P n) in terms of symbolsp; o(r, ¥, p, 1) :=
P;(0,y,rp,rn) and setho(r, y, z, n) := h(0, y, z, rn), the relation (1.1.7) implies

op.(po) (v, 1) — opf, (ho)(y, 1) € CX(R, L~ (X" RY)).

The local edge-degenerate symbolg(r, x, y, 0, &, 1) give rise to homogeneous
principal symbols in ¢, &,n) # 0 of orderu, denoted byo,(op.(p))(r, x,y,0,&, n).
As usual, these are invariantly defined functionsTor{R. x X x )\ O.

1.2. Asymptotics and Green operators. Our next objective is to study particu-
lar operator-valued symbols, acting in weighted Soboleacep onX7 U X2 and map-
ping to spaces with asymptotics. Since symbols depend cables and covariables
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(v, n), asymptotics also will be variable; in fact they will deplean y (not onn). For
this reason we need a sufficiently flexible concept of asytigstonot only discrete but
also so called continuous ones. To introduce basic notiamsfirst look at a single
cone X”.

Let us define subspacds,” (X") of K*7(X") with asymptotics of typeP, associ-
ated with weight datg = (y, ®) where® = (¢, 0], —oo < ¥ < 0, is a weight interval.
By a discrete asymptotic typ® we understand a sequenée= {(p;, m;, L;)}j=0,..n
for an N = N(P) that is finite for finite®, where

n =dimX, and (for the caseV(P) = oc) Rep; — —o0 as j — oo, furtherm; € N,
while L; C C™(X) is a subspace of finite dimension. Set

]CBV(XA) - |@ Ics.yfz?fg(x/\)

e>0

endowed with the Fachet topology of the projective limit. K is finite, we denote by
Ep(X") the vector space whose elements are all the functions wdnielof the form

urD =) ) Y eptr " logt,

(pj,mj,Lj)GP k=0

where o is a fixed cut-off function andc;r € L;. Observe that therfp(X") C
K> (X"), and we havegp(X")NKg” (X)) = {0}. We then sefCy” (X7) := Kg" (X)) +
Ep(X™) in the Fichet topology of the direct sum. To defilg;” (X") for ¥ = —oco we
choose an arbitrary sequeng }ien, such thatd;; < 9 < 0 and lim_ o ¥ = —o0,
set

n+l n+l
Pe=y(pym L)€ Pi —=—y+% <Rep < —= —y

and define
(1.2.1) ICf,;A?’(XA) = IC?_;Z(X’\) +Ep (X7)

where ®; := (%, 0]. This is a direct sum for every, and the corresponding &thet
topology in (1.2.1) is independent of the choice«afWe havel;” (X*) — Kp/(X")
for all k, and we then set
KR (x”) = lim K3l (X7)
keN

in the (Féchet) topology of the projective limit. The elements &f(X") are called
singular functions of the discrete asymptotics for the cone
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To pass to continuous asymptotics we first reinterpret tisereie ones in the fol-
lowing form. Let us first assume th& is finite; thenK = n¢ P is a finite set. Choose
a (say, smooth) curvé in the strip ¢+1)/2—y+9% < Rez < (n+1)/2—y surrounding
the setK counter-clockwise. Fix a cut-off function, and sgfz) := M, _(,2)(wu)(z)
for u € K37 (X"). The function f is then a meromorphic>(X)-valued) function
with poles atp; of multiplicities m; +1 and Laurent coefficients!(—1)‘c;x(x) at ¢ —
p;)~«D, wherecjy e Lj, 0<k <m;, j=0,...,N(P). We have also

1.2.2) u(r) — —/ fR)r7dz e Kg'(X™).

This relation has the following more general backgroundt lf¢;) be an arbitrary
meromorphicC*(X)-valued function with the indicated poles, multiplickie@nd Lau-
rent coefficients. Then witlf we can associate an analytic functioral in C carried
by K, namely

(1.2.3) (¢r.oh): =5 ff(z)h(z)dz, h € A(C).

In the present notation we just have

ll'l/

(1.2.4) (cr.h)=> "3 (-1) c,k(x)dkh(z)

j k=0

In other words, if we denote for a moment B(K) the set of all meromorphic func-
tions f associated withP in the described way, we have

Ep(XM) = {(;“f, r_z)a)(r): fe f(K)} .

Thus, we can produce all singular functions in terms of aaterset of C*°(X)-valued
analytic functionals carried b¥X = 7 P. The idea of continuous asymptotics is now to
replaceK by an arbitrary compact set i@, the so-called “carrier of?,” and to admit
arbitrary ¢ € A(K, C*(X)), see, e.g., [23] for details. Hetd'(K) denotes the space
of all (scalar) analytic functionals carried b¥ in its (nuclear) Fechet topology, and
A(K,E) (= A(K)®,E) for any Féchet spaceE is the corresponding vector-valued
variant.

If P is an asymptotic type connected with weight data®) (discrete or contin-
uous), we set

(1.2.5) SL(XN = |wu (- oiue XXM, ve S(’s, c°°(X))}

for any cut-off functionw. Clearly the space (1.2.5) is independent of the speaific
and is Fechet in a natural way.
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REMARK 1.4. The spacesC*?(X") are equipped with a strongly continuous
group of isomorphismgk!'}icr,, defined by £7u)(r, x) = A@*Y/2u(xr, x) wheren =
dim X. In addition the spacek}” (X") as well asS,(X") (both for discrete and con-
tinuous asymptotic types?) can be written as projective limits of Hilbert spaces
{H;}jen With continuous embedding®;.; — H; for all j and Hy = K*"(X"), where
{k]'}rer, restricts to a strongly continuous group of isomorphismsevery H;.

DEFINITION 1.5. LetX and Y be closed compaocf€*> manifolds,n = dimX,
m =dimY, and choose realg, § € R and a weight intervab = (¢#,0], —oo < ¢ < 0.
Then Cq(X", Y, (v, 8, ©)) is defined to be the space of all continuous maps

G- ]Cs+(n/2).y+(n/2)(XA) N KW.S+(m/2)(y/\)’
s € R, that induce continuous operators
G: Ks+(n/2).y+(n/2)(x/\) N Sff(’"/z)(Y’\)
and
G*: ’fo(m/Z),78+(m/2)(Y/\) N Séy+(n/2)(XA)

for all s € R, with asymptotic typesP € As(Y, (8 + (m/2),®)) and Q € As(X, (—y +
(n/2), ®)). Here G* is the formal adjoint ofG in the sense

(Au, v))CO.m/Z(Y/\) = (u, A*U)Ko.n/z(XA)

for all ue C(X"), veCP(Y") via the scalar products of®"/?(x”") and
1COm/2(y ™), respectively. The elements @f;(X”, Y”, (v, 8, ®)) are called Green op-
erators of the transmission cone algebra with continuoympsotics.

REMARK 1.6. An analogous definition makes sense for discrete asfmpypes
P, Q. Moreover, there is a straightforward extension of Definitth5 to operators

K:s+(n/2),y+(n/2)(X/\’ E) — Kw,8+(m/2)(y/\’ F)

acting between distributional sections of vector bundie®n X* and F on Y, en-
dowed with suitable Hermitian metrics (with an obvious gatisation of asymptotic
types), cf. Section 2.1 below.

1.3. Mélin operators with asymptotics. We now turn to a specific class of
pseudo-differential operators at" =R, x X > (r, x) for a compact, closed’> man-
ifold X, based on the Mellin transform in € R,, with operator-valued symbols that
reflect asymptotics. A sequence

(1.3.1) R:={(pj.mj,Lj)}jez
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is called a discrete asymptotic type for Mellin symbols, if tfacR = {p;}jez C C
the setrcR N {z: ¢ < Rez < ('} is finite for everyc < ¢/, moreover,m; € N,
and L; C L™*°(X) are finite-dimensional subspaces of operators of finitek.raide
also admit finite sequences (1.3.1), where a triglen{, L) may be ignored as soon
as L ={0}.

Mz (X) for R given as (1.3.1) is defined to be the set of fille A(C \ ncR,
L™>°(X)) such thatf is meromorphic with poles ap; of multiplicity m; + 1 and
Laurent coefficients atz(— p;)~®*V in L; for 0 <k < m;, where

x(2)f(@)Ir, € SITp, L™(X))

for every realB, uniformly in compactg-intervals; herey denotes anyrc R-excision
function, that isy € C*°(C) and x(z) = 0 in a neighbourhood oficR and x(z) = 1
for dist(z, 7cR) > ¢ for somee > 0.

Let us now pass to an analogue of continuous asymptoticst, Fix ¢ < ¢/, and
let M, (X)) defined to be the set of all € A({c < Rez < ¢’}, L~*°(X)) such that
hlr, € L=>°(X;T'g) for every realg, uniformly in compactg-intervals of ¢, ¢’). Then,
defineV as the system of all closed subsétsc C such thatV N{z € C: ¢ <Rez <
¢’} is compact for every < ¢’ andzg, z1 € V, Rezg = Rez; implies (1-A)zgtAz1 € V
for all 0 < < 1. Now, letV € V and setV . = VN {c < Rez < ¢}, which is a
compact set. There is then a map

A (Vie,ens L=(X)) = A(C\ Vie.ey, L™(X)),

¢ fr, by setting f:(z) = My . ((¢w, o(r)r ™)), with the weighted Mellin trans-
form M, for any y < 1/2— . The spaceFy,, of all functions f; that belong to
A(C\ V(e,ery, L=°(X)) is isomorphic toA'(Vi...y, L~>°(X)), and therefore has a canon-
ical Fréchet topology. We then define|,*(X).. ) as the space of all elememgz) +
fe(@le<rez<cy fOr h € M5>(X) .y, ¢ € A'(Vie.ey, L™°(X)), endowed with the topol-
ogy of the non-direct sum oM, (X)) + Fy, ., taken in the spaced({c < Rez <
I\ Vie,eys L™(X)) (clearly the spacery, ., depends on the choice ef but the non-
direct sum is independent of the specific cut-off functiddtice that for anyc < c,

¢’ <¢ we have a continuous embeddind, ' (X)zz) — M, *(X)c.). We then de-
fine the space

My (X) = lim My (X))
NeN

as a projective limit. The elements af,*°(X) are interpreted as smoothing Mellin
symbols with continuous asymptotics of type Setting agaim = dimX, if o(r) and
o(r) are cut-off functions, with everyf € M, *(X) we can associate a continuous
operator

(13.2) w opy(f) @ : KSVHA(XN) — [CoorHA(x ),



74 S. DRIASCO AND B.-W. SCHULZE

provided thatV NT',2-, =¥. More precisely, (1.3.2) induces continuous operators
~. ,y+(n/2 yHn)2
wop, (fla: K72 — Ky 72 (x)

for every P € As(X, (y +(rn/2), ®)) and some resulting € As(X, (y +(n/2), ®)), that
depends onP and f, not ons € R. A similar result is true for discrete asymptotic
types R for Mellin symbols instead ol and discrete asymptotic typéfs, 0 in place
of P, Q, cf. the notation in Section 1.2. Recall that some Riemanmnitric onX is
kept fixed. There is then an identification between*(X) and the space of integral
operators onX with kernels inC*°(X x X). Let us now generalise the construction of
spaces of smoothing Mellin symbols to the casg X. To simplify notation, we iden-
tify the space of all operator), . £L(H*(X), H*(Y)) with the spaceC*(Y x X) via
integral kernels. LeAs’(X, Y) denote the set of all sequences (1.3.1) with, (n;) €
C x N as before, whileL; is a finite-dimensional subspace 6f°(Y x X).

Let M;>(X,Y) for R € As’(X, Y) denote the set of alf(z) € A(C\ncR, C(Y x
X)) such thatf(z) is meromorphic with poles at the points; of multiplicities m ; +
1 and Laurent coefficients at & p;)*', 0 < k < m;, in L;, where x(2)f(z) €
S(Tp, C*(Y x X)) for every g € R, uniformly in compactg-intervals, for everyrcR-
excision functiony.

In a similar manner, for every € V we can define a Echet spacé,,*(X,Y)
by replacingL~>°(X) in the above construction bg*°(Y x X). The extension of this
definition that allows us to introduce the spad& (X, Y; E, F) with closed compact
manifolds X, Y and vector bundle€ e Vect(X), F € Vect(Y), is immediate, cf. Re-
mark 1.6.

DEFINITION 1.7. Let X,Y be smooth closed, compact manifolds afd e
Vect(X), F € Vect(Y) vector bundles, furthenf, 8, ®), y,8 e R, ® = (—(k+1),0], k
N weight data. Then, the spac®,.q(X", Y";(y, s, ®); E, F) is defined to be the set
of all the operatorsA = M + G where G is a Green operator i€ (X", Y", (v, §, ©®);
E, F) (as introduced in Definition 1.5 and Remark 1.6) while

‘S”a)Zr/[ (fj)+0 ( )}Zf)

]Cb-l’*'(”/z)(xf\’ E) - ’Coo.8+(m/2)(y/\’ F)

(1.3.3)

with f; € My™(X,Y;E, F), f; € Mz™(X.Y;E, F) and realsg = B(j). B = B())

such thatW,; N T =¥, W;NTupy 3 =0 j+B =y =B, j+B =y = B,

j=0,..., k. The spaceCy+c(X",Y";(y, 8, ®); E, F) for the infinite weight interval
® = (—o00, 0] is defined by taking intersections over the correspondipgaces fol®; =

(—k,0], k e N.
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Note that the terms invoIvingN’j, j=1,...,k in (1.3.3) can be suppressed in the
case of discrete asymptotics. Moreover, in the case (—(k+1), 0], a term like those
in the sum (1.3.3) withj > k+ 1 is in fact a Green operator. Let us set

(1.3.4) om(M)(2) = fo@) + fol2)

regarded as g-dependent family of continuous operators
om(M): H(X, E) - H*(Y, F),

s € R, called the principal conormal symbol of the operatdr

REMARK 1.8. The choice of the Weights,ﬁ (under the mentioned conditions)
as well as of cut-off functionsv, @ is arbitrary. If M is an expression of analogous
structure asM in (1.3.3) with the same Mellin symbols but other weights ot-affi
functions, then we havel — M € Cs(X", Y", (v, 8, (—00, 0]); E, F). In view of this,
except forj = 0 (where necessarilg(0) = E(O) =y), we can choose them in a ‘nor-
malised way, settings(j) =y — (1/3), E(j) =y —(2/3)for j=1,...,k.

Proposition 1.9. Let w,® be cut-off functionsand let f(z) € M,,*(X,Y), V €
V, whereV NIy, =0 for somey € R. Then

(1.3.5) wOp, (f)@: K7 A(XN) — Kor /Ay

is a continuous operator for alt € R, and (1.3.5) induces continuous operators
a)opﬁlu(f)c'T): IC;V"’("/Z)(X/\) N Kg-y+(n1/2)(yA)

for every P € As(X, (y + (n/2), ®)) with someQ € As(Y, (y + (m/2), ®)), s € R. In

addition the formal adjoint of(1.3.5) in the sensAu, v)iomzyry = (U, A*V)jconz(xr)
for all u € C(X"), v e CF(Y") has the form

»op, (f%) e

where f®)(z) := f*(1 — z) with subscript* denoting the pointwise formal adjoint in
the sense £, ¥)i2w) = (9, f*¥)izx) for all g € C2(X), ¥ € C=(¥).

1.4. Transmission algebras. Let us now introduce algebras of block matrix op-
erators onX7 U X2, that we call transmission algebras. Let us fix weight$ € R, a
weight interval® = (—(k +1),0], k € N, vector bundlesE;, F; € Vect(X?}), j = 1,2
Setv = (E1, F1, E, Fo) and g = (y, §;®). We will also use the following abbrevi-
ations: X" := (X7, X3), n = (n1,n2), E := (E1, Eo), F := (F1, F). Similar notation
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will be used for pairs of asymptotic typeB,:= (P1, P2), Q = (Q1, Q>), and for direct
sums of spaces,

C& (X7, Ex) H0/A(XD, Ey)

CP(XME):= @ , H'IXNE):= ® ,

C& (X5, E2) H*02(X4, Ey)
ICS+(”1/2)'V+(”1/2)(Xf, E1) 811;;('11/2)()(/\’ E1)
K:s+(n/2).y+(n/2)(x/\’ E):= ® , Sg+(n/2)(xA, E):= ® ’
K3+ /2 v+ 02/2(X 5. ) SLHD(xp | Ey)

as well as forkcy ™27 (V2(x~ E). We will use the subscript R)’ when a formula

or result holds in the cases with and without asymptotics.

To define the elements of our transmission algebra, we needcall briefly the
concept of symbol with exit behaviouand some notions about the corresponding
pseudo-differential calculus. To keep the notation simpkre we limit our description
to the scalar case, but operators on bundles can be cortidsrevell. More details
about theexit calculusand its extension to thenanifolds with exitysee below) can
be found in [4], [5], [17], [19], [23] and the references &dttherein.

A smooth functionp € C*(R" x R") is an exit symbol belonging to the class
SR, 1,8 € R, if |Dngp(x,§)| < Cyp()~1*1(x)?=1Fl for any x, & and alla, B,
with suitable positive constantS,s. The associated pseudo-differential operafor=
op(p) is defined in the standard way, and it turns out to be contisuon S(R") and
extendable to a continuous operator S/{R"): we denote byL*’(R") the class of
all operators with symbop e $*#(R"). This gives a graded algebra of operators, in
the sense that.™3(R") - L% (R") ¢ L**#-3*(R"). The residual clasg —>~*(R") is
given by all the integral operators whose kernel isS{R"” x R").

In addition to the usual principal symbei,(P), an operatorP € L*%(M) on a
manifold with exits M has another principal symbol, the so-callexit symboloe(P),
which is the equivalence class of the symbok $“°(M) of P in the spaces*°(M)/
U, S*78(M), ie.,

(1.4.1) oe(p) = {pe € SH(M): p — pe € S3=¢(M) for somes > 0}.

Note that the exit symbol has an invariant meaningMn and it behaves multiplica-
tively with respect to the operator composition, ieg(P Q) = oe(P)oe(Q), in the sense
of multiplication of equivalence classes.

Finally, we fix arbitrary cut-off functionss, @, @ (their specific choice is unim-
portant, but, for convenience, we assum® = v, ww = ).

DEFINITION 1.10. The spac&€* (X", g;v) is defined to be the set of all opera-
tors of the form

(1.4.2) A =diag(A, Ap) + M + G,
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where the ingredients are as follows:

() A; = rP7ooph))d + (1 — w)A;,(1 — @), for arbitrary symbolsh;(r,z) €
C*(Ry, M{(X;; E;, F))) and operatorsd ;, € LMO(X2 E; F)), j=1,2;

(i) M+G = (M +Gij)ij=12 is a block matrix of operators belonging @y+c(X7,
X1 (v,8,0) E;, Fy).

We write Cy+g(X, g;v) or Cg(X, g;v) for the subspaces of operators (1.4.2)
where A; and A, vanish or, respectivelyA;, A, and M vanish. Setting for a moment
or = (y, 8, (—(k +1),0]), we can pass to a spac& (X", g;v) for g=(y, s, (—o0, 0])
by

CH (X", giv) = [ C* (X . giiv) .
keN

All essential elements of our calculus for a finite weightemal (—(k + 1), 0] remain
true also for® = (—o0, 0]; for this reason we mainly discuss the finite case.

Theorem 1.11. An operatorA € C*(X”, g;v) induces continuous operators
. 4s*(n/2),y+(n/2) s—u+(n/2),6+(n/2)
A Ky "7 (X", E) = Ko’ (X", F)

for everys € R and every pair of asymptotic typds with some resultingQ, depen-
dent onP and on A.

The components of asymptotic tyges= (P, P,) and Q := (Q1, Q) are assumed
to be associated to weight data corresponding to the weightthe spaces and the
chosen weight interva® = (—(k + 1), 0], and we admit discrete as well as continuous
asymptotic types

Proof. The only terms that have to be explicitly considereal those fromM, in
particular the mixed terma/,; and M;,, that have been treated in Proposition 1.9. The
other ingredients ofd belong to the standard cone algebrasxm j =1,2, except
for G,1 and Gi12, where the mapping properties follow from Definition 1.5. [l

We now pass to the symbolic structure of operatare C*(X",g;v). First, for
the operatorsA; in (1.4.2) we have homogeneous principal symbols of opdethat
are (up to weight factors) Fuchs-degenerate meal0, namely

(2.4.3) oy(Aj): T E; — 7} Fj,

wherer; T*Xf \0— XjA denotes the canonical projections. Locally, near 0 we
can write

(144) U‘//(Aj)(rv Xj, 0, éj) = rs_yglﬁ(Aj)(rv Xj, 57 ‘i:j)|§=rg
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for bundle homomorphisms,(A;) that are smooth in- up tor = 0. To illustrate
this structure in more detail, let us look at the scalar case, trivial bundles of fiber
dimension 1. Then, as is known from Mellin pseudo-differ@ntiperators of the pre-
scribed form, in local coordinates; € R" on X; the operatorsA; have amplitude
functions p;(r, x;, 0, &;) = r* 7 B;(r, x;, 0. &)|g=ro Wherep; (r,x;,0,&;) € Sﬁ(@ x

¥ x %,;11) ¥~ < R% open. In other words, locallyd; is equal to op_xj(pj)
mod L~*°(R: x X). Then, oy (A;) just corresponds to the homogeneous principal part
of p; of order .

As A; is, in particular, an operator ilil”’o(Xf, E;, F;), it admits an invariantly
defined exit symbobe(A;) := ge(Ajy), cf. (1.4.1). The paive(A) = (0e(A1), 0e(A2)) is
called the exit symbol of the operatet.

Finally, the principal conormal symbah,(A) is defined to be the family of maps

(1.4.5) om(A)(z) = diagm(A1)(z), om(A2)(z)) + om(M)(2)
where, according to the common cone calculus,

ow(A)) =h;j(0.2), j=12
cf. Definition 1.10 (i), and

om(M)(z) = (om(M i) (2)) j.k=1.2,

cf. the formula (1.4.5). Note thatyw(A) gives rise to az-dependent family of maps
om(A): H'(X,E) - H* (X, F), where we have used the same letters for the restric-
tions of the bundles to the cone basés X». Let us set

(1.4.6) a(A) = (o4 (A), om(A), 0e(A)),

called the symbol ofA.
Let us now pass to the composition of operators

A e CH(X", g;v), B € C'(X", h;w)

for g = (v,68,0), v = (F1,G1; F»,Gy) andh = (8,y,0), w = (Ey, F1; E2, F2). Set
g o h = (ﬂ’ai ®)l vow = (Elv Gla EZ’ G2)

Theorem 1.12. We haveAB € C*™(X",goh;v ow) and 0 (AB) = o(A)o(B)
with componentwise compositiowhere

oy(AB) = oy (A)oy(B), 0e(AB) = 0e(A)oe(B),
om(AB)(z) = (T"77 om(A)(z)) om(B)(2).
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If A or B belongs to the class with subscrip + G or G, then the same is true of
the composition.

Proof. Let us writeA = diag(A1, A2) + M + G and B = diag(B1, B2) + M' + G/,
where the various terms are described in Definition 1.10. pieeluct is of the type
diag(A1B1, A2By) + C, and, due to the algebra property in the case of a single cone,
we only have to show tha€ € Cyp(X", g o h;v o w). Most of the terms appear-
ing in the diagonal components @ turn out to be of the correct type, since they
come from compositions of operators belonging to the cogelehs onX; and X2.
Moreover, all the compositions with Green operators commgfG and G’ are Green
operators, as one can easily verify by their mapping prasrcf. Definition 1.5 and
Theorem 1.11. In addition to this the terms of the block (28 af the same nature
of those of the block (12), by exchanging the roleXf and X3. So the only terms
that we have to examine explicitly a@11 = M1oM5,, Q20 = M1 My, Q%z = A1M},,
032, = M1yBy, Q3, = M1iM;, and Q}, = M1oM,,. For simplicity, we consider, from
now on, trivial bundles.

Let us start by focusing orQ;;. Of course, it is enough to take into account
only one of the terms arising from this composition. Adagticemmas 2.3.69, 2.3.70
and 2.3.72 of [23] to the present situation, we can, moduleeGrremainders, modify
the expressions oM and M’ by commutingr powers with Mellin operators having
meromorphic smoothing symbol, changing the cut-off fumtsi and shifting the weight
lines, provided that the carriers of the asymptotics do neetnthe weight lines them-
selves, cf. Remark 1.8.

Similarly, cf. Lemma 2.3.73 of [23], we have

w1 0P, (f)(1 = w)opy, (f)wz € Co (X7, X7, (v, v, (=00, 0]))

for arbitrary cut-off functionsw, w1, w, and smoothing meromorphic symbol§ e
M, (X1, X2), f € M,*(X2, X1), when the carriers/ and V' do not intersect the
weight line I'¢1/2-,,. Then, modulo Green remainders, it suffices to consider gesfn
the kind

7 wri* opy, (T for™+**r=F op,, (T_K/ f’) r ™ w

with j+x >y >«, j/+k’ > B > «’, and we can follow the same argument of the last
part of the proof of Theorem 2.3.84 of [23], obtaining smaaghMellin operators on
X, of the type

(1.4.7) P Pori* o, ((Tﬁ_y_j’f) f’) w
with j+j +K > B > «.

The required property foQi2 follows in the same way, since the involved terms
are essentially of the same kind of those@n; (the only difference being the fact that



80 S. DRIASCO AND B.-W. SCHULZE

M3, takes values in operators with kernel @°(X; x X3) instead ofC*(X; x X3)).

Now, note thatQi, = r’~7w op}, (h1)@M;, + (1 — @)A1y (1 — &) M;,. The first term
can again be treated as abovejifdoes not depend on: indeed,; is holomorphic
and its pointwise composition with the symbofs, f j appearing inM;, gives an op-
erator with kernel inC*(X; x X1). In the general case, the result is obtained via a
Taylor expansion argument, since remainders with high gneupower are Green op-
erators, cf. the proof of Proposition 2.3.69 and Theorem18.4n [23]. Choosing a
suitable cut-off functionw’, the second term can be written & = (1 — w)A1, (1 —
5)w/M12. Since (1 — 5)w’ e C§°(Rs), it turns out, by the mapping properties of the
involved factors, thatd is again a Green operator.

Finally, Q2,, 0%, and Qf, can be treated a®11, 01, and 03,, respectively.

The symbolic rules for the)- and e-components of (AB) are immediate, both
following from the usual composition rules for the diagonah-smoothing terms of
and B. The formula foroym(AB) is a consequence of the similar one for the standard
cone algebra and of (1.4.7) with= ;' = 0. O

For A € CH(X",g;v), g =(y,6,(—(k +1),0]), v = (Eq, F1; E2, F») we can define
the formal adjoint by Au, v)xonzxr Fy = (U, A*V)xonzxr gy fOr u € CF(X",E), v €
CgF (X", F), cf. Definition 1.5. We omit the proof of the next theoremdjieh follows
by Definition 1.5, Proposition 1.9 and the similar result tbe standard cone algebra.

Theorem 1.13. A € CH*(X", g;v) implies A* € CH(X", g*;v*) for g* = (-6, —y,
(—(k +1),0]), v* = (Fy, Eq; Fo, E2) and we haves(A*) = o(A)*, where* refers to
each component in the symbolic triplslore precisely oy, (A)* is the adjoint symbol
from the standard pseudo-differential calculugy(A*)(z) = TY Pom(A)*, while oe(A)*
is again the standard rule from the exit calculus of pseuifie@ntial operators

DEFINITION 1.14. An operatorA € CH(X",g;v) (in the notation of Defini-
tion 1.10) is said to be elliptic, if it is elliptic with respeto the three components
of o(A), that is
(i) the interior symbols (1.4.3) are bundle isomorphisms; 1, 2, where alsdy, (A ;)
from (1.4.4) are isomorphisms up to= 0;

(i) the conormal symboby(A)(z): H*(/2(X, E) — H* **®2(X F) is a family of
isomorphisms for alk € I'/2)-y;
(iii) the exit symboloe(A) is elliptic.

Given an operatod € C*(X", g;v), aP € C™*#(X",g L v for g™t = (8, y, ©®),
v~ = (Fy, E1; F>, E,) is called a parametrix oft if

(1.4.8) C,=1-PA and C,=1— AP
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belong toCs (X", g;; v;) and Cs(X", g,; v,.), respectively, where

g = (V’ Y, ®)7 v = (Elv El! E2, E2)a
9-=(8,6,0), wv,=(F, F;, F2, F).

Theorem 1.15. Let A € CH#(X", g;v) be elliptic Then A admits a parametrix
P e CH(X", g7t o).

The following three theorems are consequence of Theorerd, by arguments
similar to those valid for the standard cone algebra.

Theorem 1.16. For an operatorA € CH(X", g;v) the following conditions are
equivalent
(i) A is elliptic;
(i) the operator

(1.4.9) A KCSTHVR(XN E) — O 0V2(X A )
is Fredholm for certains € R.

Theorem 1.17. Let A € C*(X", g;v) be an element that induces a Fredholm op-
erator (1.4.9) for certain fixeds € R. Then A is a Fredholm operator(1.4.9) for ar-
bitrary s € R. The parametrixP of A can be chosen in such a way th@t is a pro-
jection toV :=kerA and C, a projection to a complemeri¥ of Im A for every fixed
s € R. Moreover, there are asymptotic typd® and Q such thatV c S,%”(“/z)(XA, E)
and the spacéV can be chosen to be a finite dimensional subspaaﬁgﬂP/z)(XA, F)
such thatlm A + W = [Cs—#3*0/2(X~ 'F) and ImA N W = {0} for all s € R.

Theorem 1.18. Let A € C#(X", g;v) be an operator such that
(1.4.10) A K57 (XM, E) — KSTH3(XM, F)

is an isomorphism for & = so € R. Then(1.4.10)is invertible for all s € R and
A=t e c# (XM, g7 0.

2. The edge symbolic calculus

2.1. Spaces with edges and model cones of different dimensions. Spaces with
edges we are talking about can locally be formulated in tesmaedgesX? x Q for
(in simplest cases) a closed comp&® manifold X and an open se2 C R?. Con-
structions will always be given in a splitting of variables (X2\{v})xQ = X" xQ >
(r, x,y), and we then have to observe invariance under an admittegtleoof transi-
tion maps. A system of diffeomorphisme: (X2 \ (v}) x @ — X" x Q is said to
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be a wedge structure ok* x Q if for every two elementsy; and x, of that system
the transition mamzxgl: X" x Q - X" x Q is the restriction of a diffeomorphism
RxXxQ— RxXxQtoR: xX x Q. In other words, we also get a cocycle
of transitionsR; x X x Q@ — R, x X x Q (that are smooth up te = 0). Looking at
the components of these mapsx(, y) — (¥(r, x, y), X(r, x, y), ¥(r, x, y)) we then have
7(0, x, y) =0 andy(0, x, y) only depends oy, i.e., y = ¥ induces a diffeomorphism
Q- Q.

A manifold W with edgeY is defined as a topological space, such thatY and
Y are C*® manifolds, and that points € ¥ have neighbourhoods modeled By x Q;
thenY itself has local coordinates if2. Together with the cocycle of transition maps
X" xQ — X" xQ for W\Y nearY we also have the map®, x X x Q2 — Ry x X xQ
that allow us to interpre® \ Y as [W for a C> manifold W with boundary W
that is aX bundle overY. The transition maps fodW are just given by X, y) —
(X, 9)l,=0. For convenience, in the following we content ourselveshvifie case that
oW is a trivial X bundle, i.e.,0W = X x Y, and that the splittings of variables, &, y)
near 9W are chosen in such a way that we havex(y) — (7,X,7) = (r,x,7y) for
0 <r < ¢ for somee > 0.

Global operators o'W will be connected with vector bundles € Vect(W) and
J € Vect(Y), and we want to fix some notation. By definitiodyV has a neighbour-
hood of the form [01)x X x Y in the corresponding splitting of variables £, y), and
with E we obtain an associated bundEo 1)xxxy, that can be regarded as a pull-
back of E|jgxxxy t0 [0, 1) x X x ¥ under the canonical projection,[0) x X x ¥ —
{0} x X x Y, (r,x,y) = (0,x,y). A similar projectionRs x X x ¥ — {0} x X x ¥
gives rise to a pull-back of|gxxxy tO R+ x X x Y. For convenience, we employ for
these bundles the same lett&r it will be clear from the context wher& is given.
Moreover, in everyE € Vect(W) we fix a Hermitian metric in such a way that the
induced metric onE|jp 1yxxxy does not depend on¢ [0, 1), and we then take a sim-
ilar r-independent Hermitian metric on the pull-backke x X x Y. In this way, the
spacek®"/?(X", E,), for n = dimX and E, := E|x+x,, IS equipped with a scalar
product that will be taken below in the definition of adjointmilarly to adjoints in
the cone calculus, cf. Section 1.2 above. In local consiaers with respect to coor-
dinate neighbourhood& on Y, we also have restrictions of bundléson X" x Y to
X" x U, and then, analogously to trivialisations of bundles in tiseial sense, it will
be admitted to regar&|x~.y as a pull-back ofE|x~«(y to X” x U under the projec-
tion X* x U — X”. Again, we will use the same lette? for the local version of the
bundle. It will then make sense to talk about spaces like

(2.1.1) C® (U x RY, L (K™ (X", E), K™ (X", F)))
for bundleskE, F € Vect(W), etc., where in (2.1.1) we mean the local versions of the

bundles we just described. Our calculus below will have thbtrinvariance properties
that justify these conventions.
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Let us now pass to configurations with edges where the modetscare of dif-
ferent dimension. The simplest examples are Cartesianupted’ = X2 x Y, where
X2 is as in the introduction a cone with base manifolis ..., Xy of different di-
mension. In general we assume thdtis a topological space with a subspacesuch
that W \ Y is the disjoint union of spaces of the form ¥, for manifolds W;, j =
1,..., N, with the same edg& as described before, anidl has, locally neary, the
structureX® x Q for some open subs&® € R? (which corresponds to a chart df).
We then define the stretched spddkassociated withW as the quotient space of the
disjoint unionW,U- - -UWy that identifies the different copies af. In particular, the
stretched space dV = X* x Y is equal toW = EULE X Xj} x Y. For convenience,
we also writeW = (Wy, ..., Wy) keeping in mind the mentioned identification map.
In the following we assuméV to be compact.

As before, for simplicity, from now on we consider the ca¥e= 2, and we
use shortened notation analogous to those used in Sectionphyticular also for di-
agonal matrix block operator&)"? := diag((n)"/?, (n)"2/?), « = diag(k}*, k;?),
A2l = diag(A"/2kc)t, A"2/2%k?). Moreover infW = (int Wy, int Wy), while, for any
J+ € Vect(Y), we setv = (Ey, F1; Eo, Fo; J_, J.) for the bundle data. The abbrevia-
tion w := (E1, F1; E2, F>; j_, j+) for local bundle data will be used for the description
of the symbolic structures below, where, making use of thetioeed abuse of nota-
tion, the local bundles are obtained froRy, F; € Vect(W;), j = 1,2, as explained
before.

Typical differential operators on i are (because of locality) pairs of indepen-
dently given differential operatord; on intW;, j =1, 2. They will be assumed to be
edge-degenerate, i.e., differential operators with smaatefficients that, in the split-
ting of variables £, x, y) € Ry x X; x Q close to the edge, are of the form

k
(2.1.2) Aj=rH Z ajra(r, y) ("’aa_r) (rDy)*

ktlal<p

with coefficientsa i, € C*(R,x L, Diff ***)(x )), j = 1, 2. Examples are Laplace-
Beltrami operators belonging to ‘wedge’-metrics

dr? + rzng (r,y) +dy?

with Riemannian metricgx, on X;, smoothly dependent om,(y) € R:xQ, j=12.
For the analysis it will be adequate to take the same axiahbiarr on both sides
close to the edge; in fact, is nothing else than the ‘distance’ variable of a point in
W to the edge, regardless of the side. As we will see below,ctdbjef interests are
the principal edge symbols of edge-degenerate operatottiei case (2.1.2) we have

k
(2.1.3) oa(A) ) =r ™ D aji(0. ) (—r%) (rDy)*

ktlal<p



84 S. DRIASCO AND B.-W. SCHULZE

for (y,n) e T*Q\ 0.

The program of this section is a calculus of edge-degengrs¢eido-differential
operators onW. Because of pseudo-locality, information between bothesids
exchanged only on the level of a specific kind of smoothingrajees. A main con-
cept in the discussion below is the following notion of operaalued symbol. For
details, the reader can refer, e.g., to [23].

DEFINITION 2.1. Consider an open s& < RY, u € R, and Hilbert spaces
H, H endowed with strongly continuous groups of isomorphismsk;, A € R.. Then
S*(Q x RY; H, H) denotes the space of all € C®(Q x R?, L(H, H)) satisfying
HI?(:])I{Dg‘Dga(y, 77)}/((,7) ||£(H.}~I) < caﬂK(n)“_W' forall o, eN?, nelRY, ye K € Q
and suitable constantsgx > 0.

An elementa € C™(Q2x (R?\{0}), £(H, H)) is called (positively twisted-) homo-
geneous of ordep if

(2.1.4) a(y, An) = A&aly, ni

for all A € Ry, (y,n) € @ x (R?\ {0}). Note that, for every excision functiop and
any a satisfying (2.1.4),x(n)a(y.n) € $*(Q x R?; H, 171) It is then natural to in-
troduce S, (Q x RY; H, }NI) the subset of classical operator-valued symbols of order
., which consists of alk € $*(Q x R?; H, 171) that admit an asymptotic expansion
a~ Y xag-j With a.—; homogeneous of order — j in the sense of (2.1.4).

2.2. Edge Sobolev spaces.

DEFINITION 2.2. Let H be a Hilbert space equipped with a strongly continu-
ous group of isomorphismé, }icr,. The abstract wedge Sobolev spadé (R?, H)
of smoothness € R is the completion ofS(R?, H) with respect to the norm

2 1/2
(2.2.1) lullw . = { [ it HHdn} ,

where F,_,, is the Fourier transform ifR?.

The construction ofV*(R?, H) will be used also for Fchet spaced that are
written as projective limits of Hilbert spaceld?/};cy, with continuous embeddings
H/*l'<s HI < ... < HO and a strongly continuous groyg,},cr, of isomorphisms
on HO that restricts to strongly continuous groups of isomonmisison H/ for every
j. Then we have continuous embeddings (R?, H/*1) — Ws(R?, H/) for all j, and
WS(R?, H) is the projective limit ofW*(RY, H/), j € N.

We apply this construction to the weighted Sobolev spdce§/2-v+1/2(x" | E)

and Fechet subspaces’, /27*/2(x~ E) with asymptotics of typeP; here we ap-
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ply Remark 1.4 and the action, defined there. We then obtain the spaces
(2.2.2) Wg;)(ﬂ/z)-}’*("/Z)(X/\ xR?, E) = Ws*/2) (Rf]’ ,C-El*;g”/z)s)’*'("/Z)(X/\’ E))

and then, globally, on a corresponding (compact, strefchahifold W with edgeY
we obtain the spacew(s;)("/ 272wy EY. In this construction we use several use-
ful properties of theWW*-spaces. In particular, that the spaces (2.2.2) are cauaim
H2(x~ x R7) for everys, y; we then haveW(S;)(”/ 22wy ¢ HEXD (intw).
This is the construction for a single manifold with edgesr #e caseW = (W1, W)
we simply take the direct sums of the corresponding spaces.

As for the standard Sobolev spaces there are ‘comp’ and ‘tlecsions of \W*-
spaces on open sefd C RY, first for the context of Definition 2.2, and then also
for the specific spaces on configuratios= (W1, W,) with edges when we drop the
assumption of compactness.

DEFINITION 2.3. The space of smoothing operat@ys°(W, g;v) in the trans-
mission algebra oV, with g := (y,y — 1, ®) and v as in Section 2.1, is defined
to be the set of all continuous operators

Cg (intW, E) C>®(intW, F)
C: @ — @
CgF(y, Jo) C>(Y, J+)
that extend the continuous operators

Ws+(n/2).y+(n/2)(W’ E) Wgo,yfm(n/Z)(W’ F)
C: &b — @
H=W2(y, J) H>®(Y, J.)

where the formal adjoin€* extends to continuous operators
Ws+(”/2)'_7’+“+(“/2)(W, F) Wgo-—ﬁ(ﬂ/z)(w’ E)
Cc*: @ - S
H =2y, J,) H>™(Y, J_)

for all s € R, with certain asymptotic typeB and Q depending orC. Here the formal
adjoint C* is defined by

(Cu, v)yworzw Fyar(y.s) = @, C0)worvaw Eyar2(v./.)

for all u € C5° (intW, E) @ C°(Y, J-), v € C° (intW, F) & C3°(Y, J+).



86 S. DRIASCO AND B.-W. SCHULZE

2.3. Green symbols. We now turn to a first important element of the edge
symbolic structure, the so called Green symbols. They plaaralogous role for our
calculus as the ‘singular Green’ symbols in standard bogngalue problems in the
context of Boutet de Monvel [3]. A specific point in the pressittation is that Green
symbols (and associated Green operators below) transiatniation between the
different-dimensional parts of our configuration across ¢ulge.

Letg:=(y,y—u,®), ®=(—(k+1),0], v e R, u—v e N andw := (Eq, F1; E>, F>;
j77 .]+)

DEFINITION 2.4. Ry (2 xR?, g; w) for openQ € R? is defined to be the set of
all families of continuous maps

g(y,n) e C™® (Q xRY, L (,Cs.y+(n/2)(XA’ E)® C/-, ,Coo,yfu+(n/2)(XA’ F)@ Cj*))
such that forgo(y, n) = diag(m)"?, (n)~*?)g(y, n) diag(m)™?, (n)~*?)~* we have
(233)  go(y.m) €S, (sz x RY; K7 V(XA E) @ ©F-, S5 A(XN F) @ <cf+)
and

85(v.n) € Sg (Q x R 77 O2(XN F) @ CF, S5 (XN, E) @ (Cj*)

for all s € R. The elements ofR}, (2 x R?, g; w) are called Green symbols (of our
transmission calculus).

By definition, the entries of Green symbad§y, n) = (gi; (v, n)); j=1.2,3 are classi-
cal operator-valued symbols, acting between the resgectimponents of the involved
spaces. Anyway, note that multiplication by powers(pf does not preserve the sym-
bol classesk;,.;(2xR?, g;w) and R'(Q2xR?, g; w) that we introduce below. A sim-
ilar phenomenon already occurs in the usual situation, vloere hasL*(R} x €,) -
LM(Q,) ¢ LM (RY x €,). The reason for introducing this operation in the defimisio
concerns the administration of the order in a ‘unified’ waythie spirit of Douglis and
Nirenberg. In fact, we have DN homogeneity in the followirense. Firstgo(y, ) is
classical of ordew, i.e., there is a homogeneous principal paft.,(y, ), such that

(2.3.4) g0, (v, An) = A" diag(x?, id) go,)(y, n) diag (il id) "

for all (y,n) € @ x (R?\ {0}), » € R.. For g(y, n) itself the entries have different
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orders, that are immediate from Definition 2.4. We obtain ritnegtrix of orders

np —ny np+1
v v+ v —

2 2
— +1
(2.3.5) vi=] v— Lz”l . b ”ZT
+1 +1
v+—n12 v+n—22 v

Let gw)(y, m) = (8ij.i)(v» M)i.j=1.2.3 denote the matrix of homogeneous principal com-
ponents ofg(y, n). Then, DN homogeneity of(y, ) itself means

(2.36) gy, in) = 1" diag (A2, 2 V2id) g (v, ) diag (A%, A Y2id)
for all (y,n) € @ x (R?7\ {0}), 1 € R;.

2.4. Mdlin transmission symbols. Another specific part of the symbolic struc-
ture of transmission operators (with information beinghaxwged between th&] and
X%-sides of the configuration) are symbols with values in ¢he.¢ algebra, cf. Defi-
nition 1.7. In the following, with [ ] we will denote a positive smooth function such
that [n] = |n| for |n| > ¢ and some fixed constamt> O.

DEFINITION 2.5. LetR},,;(QxR?, g;w) for g:= (v, y —u, ®) as in the begin-
ning of Section 2.3 anav ;= (E1, F1; E», F>; j_, j+) defined to be the set of all opera-
tor families @z +g)(y, n): K7 V2A(XN E) @ C/- — K27 —#+0/2(XA F)@ Ch, 5 € R,
whereg(y, n) e R;(2xR?, g, w), cf. Definition 2.4, whilem(y, n) := (m;;(y, 1)), j=12.3
for i, j =1,2 is given by

k 2 ~
mi o =0t Yo Y {orl e + 0By (Fras) | nea i)
(24.1) 10 lal<i+(u—v)

: ;Cs,V+(n/2)(xA’ E) > ;Coosyf/ﬁ(n/Z)(xA’ F)

with arbitrary Mellin symbolsfi, ;;(y, z) € C® (U, My>” (X;, Xii Ej, F;)), Fraij(,2)
€ C® (U, Mvg,:’o__(Xj,X,-;Ej, F,-)), cut-off functionsw, @, and weightsg = B(l), B =
~ oty ~

B(1), such thatW, ;; N T'/2)-p = Wia.ij N T(1/2-5 =0 for all [, «, i, j. Concerning the

weights 8 and g8 we can (and will) choose them in the same normalised way as in
Remark 1.8. Finallym;;(y, n) :=0 fori =3 or j = 3.
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Without loss of generality we seffoo,,-j = 0; then, the principal conormal symbol
of (m + g)(y, n) of (conormal) orden is defined as

lee]<p—v

(24.2) om(m +g)(y, z,n) = ( D (fouij (D) + Fouij (v, 2) n"‘) ,
i,j=1,2

which, in the caseu = v, reduces to
(2.4.3) om(m +g)(y, z,m) = (foo.ij (¥, 2))i.j=1.2-

Proposition 2.6. Every operator inR},.;(22xR?, g; w) with g and w as in Def-
inition 2.5 above is a classical operator-valued symb@le have for all « € N¢,
B € N4, D;‘DﬁR]”VHG(SZ x R4, g;w) € RyP(Q x R, g;w), and v < pu — k implies
Risc(2 x RY, g;w) C RE(2 x RY, g; w).

In fact, settinga(y, n) := (m + g)(v, n) and

. _ . _ -1
(2.4.4) ao(y. n) = diag((m"?, (n)"?) a(y. n) diag((n)"'?, (n)™?) ~,
we have the relation
(2.4.5) ao(y,n) € chl (Q x RY; be);+(n/2)(x/\’ E) @ (CJ;, KE’S)V*MHH/Q)(X/\’ F) @ (Cj*)

for all s € R (the interpretation with asymptotics is that for every pafrasymp-
totic typesP there is a pair of asymptotic typed depending oru(y, n) as well as
on P, and that the corresponding relation holds). To see (2.48%ause of Defini-
tion 2.4 it suffices to consider the finite sum of Mellin expiess (2.4.1) that are
smooth in §, n) as operator functions and homogeneous for ldrgethe latter prop-
erty just implies that the Mellin part ofig(y, n) is also a classical operator-valued
symbol. If u(y, n) denotes a summand of (2.4.1) containifig® we have

u(y, An) = AVl diag(k”/zlc)'j, A2 id) u(y, n) diag(k”/zlc;’, A2 id)71

for all A > 1, |n] > ¢ with some sufficiently largec > 0. Analogously to (2.3.4),
we have a homogeneous principal symlagl,)(y, n) of ao(y,n) of order v (clearly
with actions in the spaces involved in (2.4.5)). Moreovetumgng from ag(y, n) to

the original symbol(y, n) via the relation (2.4.4) we obtain, according to the scheme
(2.3.5) of DN orders, a matrixw)(y, n) = (aij,@,)(y, 1))i.j=12,3 of homogeneous prin-
cipal components ofi(y, n). Then, DN homogeneity of,)(y, n) means

(2.4.6)  aw(y, ) = A" diag(A"2], A7Y2id) ag,)(y, n) diag (A", 2712 id)*1

for all (v,n) € Q x (R?\ {0}), A € R..
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2.5. Edge amplitude functions. We describe here a specific space of operators-
valued amplitude functions that will produce below our smaission operators modulo
smoothing operators in the transmission operator algebra.

We first return to the reformulation of pseudo-differentattions on cones in
terms of the Mellin transform in axial direction, cf. Theoren?. We start from opera-
tor functions p;(r, y, 0, n) of analogous structure as (1.1.6) where here (becausesof th
full symbol|c calculus) we take them of orderin place ofu. We then consider ele-
mentsh(r, y, z, n) € C®( Ry x @, My (X;; R?)) such thath(r, v, z, n) := hu(r, y, z, 1)
satisfies the relation

(25.1) OR(pr)(y, n) = 0Pl (hr)(y, n) mod C*™ (2, L™ (X{;RY))

for every 8. Similarly, we have a corresponding version of Remark 1. us sefy :=
v,y —u,0) for ©® =(—(k+1),0], andw := (Ey, F1; Ez, F2; j, J+)-

DEFINITION 2.7. The spac&k’(Q2xRY,g;w) for w —v € N is defined to be the
set of all operator functions of the form

(2.5.2) a(y, n) := diag@i(y, n), a=(y, 1), 0) + (m + g)(y, n)

where

0 aly.n) = 9(r)lr‘”w(r[n]) opy, (h)(y. ma(r[n]) + r=(L = w(r[n]) op(p1)(v. n) -
(l - a)(r[r]])) }5(r) for operator functionsp; and h; fulfilling (2 5.1),1 = 1,2, and

0,0, w,w, o arbitrary cut-off functions satisfyingw = w, 0o =&,
(i) (m+g)(y.n) € Riuc(2 xR, g; w).

REMARK 2.8. As it was proved in [9], the edge-amplitud@scan equivalently
be written in the form

ar(y, 1) = 0(r)r=" opy (h)(y, mB(r) + gi(y, )

where g, is a suitable Green symbol of orderin the edge algebra oW,, [ =1, 2.

The following proposition completes Proposition 2.6 by aresponding property of
the diagonal elements;(y, n) in (2.5.2), which are operator-valued symbols in the
edge calculus orW;, cf. [23].

Proposition 2.9. Elementsa(y, n) € R'(2 x R?, g; w) are operator-valued sym-
bols in the sense that the corresponding(y, n) defined by(2.4.4) belong to the

spaces

N (9 x RY; ICY"'(n/Z) V*‘(”/z)(xA E) ® (Cj K:Y l)‘"(”/2) Y= H*‘(”/z)(x/\ F) ® (Cj*)
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for all s € R (with interpretation analogous to the one given affer4.5)).

Let us now introduce DN homogeneous principal edge symimolsléments:(y, n) €
RY(2 x R?, g; w). The smoothing Mellin plus Green pan: (+ g)(y, n) has been dis-
cussed in Sections 2.3, 2.4. Concerning the target spacesked¢hose which are suit-
able for the remaining entrieg(y, n), i =1, 2, in the representation (2.5.2). We set

a, (v, n) = r~"w(rnl) opy, (hi,0)(y, n)a&(r|nl)
+r (1= w(rlnl)) op.(pr.o)(y. 1) (1 — @(r|n]))

where subscripts 0 dt; and p; have the same meaning as in Remark 1.3.
We then finally define

aw)(y, n) = diagay, () (y, 1), az,w)(y, n), 0) + (m + g)w) (v, n),
which is regarded as a family of operators
awy(y, n): ]C5+(n/2)-)’+(”/2)(x/\, E)o C- — ,Csfv+(n/2),yfv+(n/2)(xA’ F)@ C/,

(y,n) € T*Q2\ 0, DN homogeneous in the sense of the relation (2.4.6). Alcgrto
the notation in Section 1.1, we have homogeneous princyrabesls o, (op.(p;)), and
we set

Ul#(al)(rvxv Y, 0, Sv 77) = 0(r)r_”(7¢(p,)(r,x, Y, 0, Ev 77)7

(0,&,n) #0,1=1,2. For purposes below we also introduce the compressedntgaria

(253) 8¢(a1)(r’ X, ¥, 0, S’ 77) = O(F)O'w(p[) (l", X, Y, I,le, 5’ ”7177)

that are smooth up te = 0. Fora(y, n) € R"(22 x R?, g; w), then we have altogether
oy (a) = diagoy (a1), oy (az))
and oy (a) := diag@y (a1), oy (a2)).

REMARK 2.10. The construction of the symbol classes could be redeaith
no changes in the case whefeC R¢ with ¢’ > ¢. This allows us to consider also
the so called ‘double symbolsi(y, y’, n), taking values in the same spaces as those
described above. In particular, one can introduce, in thsecleft and right symbols
of operators initially formed via double symbols. Note thaing to Proposition 2.6,
the asymptotic summations involved in such constructiarssfnoothing Mellin oper-
ators would produce, after a finite number of derivativesgearoperators.
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3. Edge problems

3.1. Edge transmission operators. Let us fix a cut-off function 6(r) €

thatvy; = 1 on suppp; for all j. For convenience, operators of multiplication by 3
diagonal matrices containing or ¢;, ¥; in the diagonal will be denoted by the same
symbolso, etc. Letg=(y,y —u,0),veR, u—veN, v=(Ey, F1;Ez, F2;J_, Js)
andw = (Ey, F1; E2, F2; j—, j+), where the local bundles iw are related to the global
ones inv as explained in Section 2.1 (and denoted by the same letters)

DEFINITION 3.1. The spac&”(W, g; v) of edge transmission operators of order
v on W associated with weight datg is defined to be the set of all operators

Cg° (intW, E) C® (intW, F)

A: ® — ®
c(Y, J-) C®(Y, Js)
of the form
N ~ =~
3.1.1) A= S oAy |T+@-0)An (1-8) +C
j=1
where

(i) A; =0Op(@,) for somea;(y,n) e R" (2 xR?,g;w), j=1,...,N;
(i) Aint = diagAyint, A2.int, 0) for operatorsA int € Lo(intWy; Ey, Fi), k = 1, 2;
(iiiy € € Y*(W,g;v).

Let V},.c(W, g;v) or V5:(W, g;v) denote the subsets wherg; ir; vanishes,j =
1,2 anda;(y,n) € R}, Or R, forall j=1,...,N.

For the case that the fiber dimensions .of are zero we use the same notation
V', Yusq and V¢ for the respective classes; clearly tiie-components irv then dis-
appear.

Theorem 3.2. Every A € Y'(W, g; v) extends to continuous operators
W‘v+(n/2),y+(n/2)(W, E) W-Y—V+(n/2),y—u+(n/2)(w’ F)
(3.1.2) A: @ - @
Hx—(l/Z)(Y’ J_) Hs—(l/2)—u(Y’ J+)

for all s € R. Moreover, for every pairP of asymptotic types there is a pa® such
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that (3.1.2) restricts to continuous operators

W;‘*‘(n/z)-)’*‘(n/z)(W E) W(s)fv+(n/2).y7u+(n/2)(w F)
3.13) A @ - ®
HS_(:L/Z)(Y, Jﬁ) Hs7(1/2)7v(Y’ J+)

for all s e R.

Proof. It is enough to prove the assertion for the local sibmanear the edge.
The result then follows by Proposition 2.9 and by the coritynaf pseudo-differential
operators defined by operator-valued symbols in abstradg@&obolev spaces. In fact,
Op@): W'(R?, E) — W““(R‘i,ﬁ) for a € SH(Q x RY; E, E), and, in particular,
op((n)®): WS(R?, E) — W*S™%(RY, E), are continuous maps for arbitragy, s, § € R,
see [23], Proposition 1.3.24. I

By definition, the elementsl € V'(W, g; v) can be viewed as operator block ma-
trices A = (A[j)i,j:lqzq?,-

By the conditions4;; = 0 wheni # k or j Z k, k = 1,2, we obtain subspaces
of Y'(W, g;v), called Y'(Wy, g;v) for v, = (Ex, Fi). These are nothing else than
the edge operator spaces on a (stretched) maniféjdwith edgeY in the sense of
[23] (with some abuse of notation in the definition of weiglata). Conversely, every
A € Y'(Wy, g; ) can be embedded as an elemetfte V' (W, g;v) by filling up it
by zeros to a corresponding>33 block matrix. Then everyd € Y'(W, g; v) has the
form

(3.1.4) A=A+ A+ M +G,
where 4, € V'(Wi, g;v)), k=1,2, andM +G € Yy, (W, g; v).

REMARK 3.3. A € Y"(W, g;v) and Aintw, € L™°(intWy; v;) for k = 1,2 im-
plies A € Vy,.c(W, g;v).

REMARK 3.4. Note that eveng € Vi (W, g; v) induces continuous operators

W2+ (/2G| E) Wé—v+(n/2)-r—u+(n/2)(w’ F)
g: ® e ®
Hs—(l/Z)(y7 J) H&*(l/Z)*U(Y’ Jy)

for every s, with some asymptotic typ€®, depending org. This is a consequence of
the nature of Green amplitude functions, cf. (2.3.3) in Ogfin 2.4, and of that of
smoothing operators, cf. Definition 2.3.
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Let us now introduce the principal symbolic structure (iotfasymbolic hierarchy)
of elements in our transmission operator spaces. For edery)” (W, g; v) we define

o (A) := (o4 (A), oa(A)),

where o, (A) is the pair of homogeneous principal interior symbols ie #tge alge-
bras onW,

(3.1.5) oy (A mnew, Ex = minew, Fro k=12,
Tintw, © T(INtW,) \ 0 — intW,, for the operators4, belonging toAg in the formula

(3.1.4). It remains to specify,(A). First, from the calculus fotd, € Y''(Wy, g; vy),
we have associated homogeneous principal edge symbols

(3.1.6)
[+ Dy l2) (X7 E) [ Dyt 2) (X))
on (Ax) @ oy 2] — 7y ey ,
J_ Jy

k=12 ny: T*Y \ 0 — Y, recall (2.1.1) and the description of the local bundles
in Section 2.1. Explicit expressions in the case of edgexdemte differential opera-
tors were mentioned, cf. (2.1.3). The principal edge symsbal(4;) give rise to cor-
responding familiesr, (A?) by filling up block matrices by zero entries. Moreover, we
have the local homogeneous principal edge symbolg\vbf- G that are the principal
parts of classical operator-valued symbols, and we thenogét + G) globally on
T*Y \ 0. Then

oa(A) =0 (A) + 04 (A) +oa (M +G)

is a family of maps

3.1.7)
/CS+(n/2)-V+(n/2)(xA, E) /Cs—v+(n/2)-r—u+(n/2)(xA, F)
oa(A): 7y @ — 7y &)
J_ J+

By virtue of the DN homogeneity of the ingredients @f (A), formulated above, we
have

(3.1.8) aa(A)(y, An) = A" diag(A"2k, A 72id) oa (A)(y, n) diag ("%, 2 ~1/2 iol)*l
for all (y,n) e T*Y \ 0, A € R,.

REMARK 3.5. Because of the edge-degenerate behaviour of the ugipexotner
of an operatorA, cf. Definition 2.7, locally near the edge in the splitting \@friables
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into (r, xg), y) with covariables ¢, £, ), the symbols (3.1.6) have the form

O—lll(Ak)(ra -x(/()’ ya Qa %-(k), ]7) = riva:lll(Ak)(ra x(k)’ ya 57 E(k)’ ’]\7’)527@.}7:7'77’

where g, (Ay) is smooth up tar =0, cf. (2.5.3) and the end of Section 2.5.

REMARK 3.6. Note that, together with the map A > o (A) = (o (A), oa(A))
defined above, we could define a map gp= (py, pa) = op(p) = P such that

a(P) = p.

3.2. Composition and adjoint. We now discuss the algebra property for the
edge operators introduced in Definition 3.1. As in Sectionvg, concentrate on the
composition, and only state the next theorem about adjoints

Theorem 3.7. Let A e Y'(W,g;v) withg=(y,y—u,®), u—veN, ®=(—(k+
1),0], v = (F1, Gy; F>, Go; J_, J:). Then the formal adjointA*, formed in the same
sense ofDefinition 2.3, satisfies A* € YV (W, g*;v*), whereg* = (—y + u, —y, ®)
and v* = (Fy, Eq; F», E5; J+, J_), while v* refers to the fact that the matrix of orders
for the entries ofA* is the transpose 0{2.3.5). Moreover o(A*) = o(A)*, with an
obvious meaning of on the right

Theorem 38. A e Y'(W,g;v) and B € Y’ (W,h;w), forg= (8 — 1,8 — i —
%,0),h=(BB—-00), 0 = (—(k+1),0], v = (Fi,G1;, F, G2 J,J,) and w =
(E1, F1; Ez, Fo; J_, J) implies AB € Y"*(W, goh; vow) with goh = (8, B—pn—F, ©),
vow = (Ey, Gy; Ez, Go; J_, J4) (cf. the notation of Theorem 1.12)and we have

(3.2.1) o (AB) = o (A)o (B)

with componentwise composition. If one factor belongs ® shbclass with subscript
M + G or G, then the same is true of the composition

Proof. We assume, for simplicity, that the bundlesvirand w are trivial, and
omit them from the notation from now on.

Let us write A = Ag+ A1 +C, B = By + B1 + D, where the decomposition refers
to (3.1.1), with finite sums of operatotdy, By referring to edge-amplitude functions,
interior operatorsA;, B; localised far from the edge, and smoothing operatard,
respectively. The nature of compositions containthgr D as factors is clear from
Definition 2.3 and Theorems 3.2, 3.7. Moreover, the composid,3; of interior op-
erators entirely refers to the standard pseudo-diffeskmthlculus and yields again an
operator of the required structure. From the produd§®; and A;5, we also get in-
terior operators plus smoothing operators in the calculesabse of pseudo-locality,
that gives us smoothing operators whenever an operatorrirclass is composed from
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both sides byC* functions of disjoint support. Thus, there remains to ceisidyBo.
Without loss of generality we assume that our open coverimg’ds chosen in such
a way that whenever open sets have a non-empty intersedfiein,union is contained
in a coordinate neighbourhood. Then, using again pseuthdip of summands indg
or By, the essential contributions are of the form @pip() for local amplitude func-
tions a(y, y’,n) and b(y, y', n) in an open sef2 C RY, cf. Remark 2.10. In this con-
struction, because of involved factors of compact suppiorts or y’, the amplitude
functions may be regarded as elementsiRIf(R? x R? x R?,g) and R'(R? x R? x
R?, h) with variables/covariablesy(y’, n) and compact support iny(y’). This meets
the standard scenario of pseudo-differential calculubajlp on R? with uniform sym-
bol estimates, in the variant of operator-valued symbolse §eneral calculus allows
us to pass from double symbaigy, y’, n) to left or right symbolsz; (v, n) or agr(y’, n)
on the level of operators, modulo operators of ordex. In other words, we have

(8.2.2) op¢) ~ op(ar) and opb) ~ op(r),

where ~ indicates equality modulo operators of ordepo. A technical point is to
verify that these remainders are even smoothing in our kecl.ooking at the struc-
ture of our amplitude functions, there are non-smoothingireands only referring to
Wi or W,. The corresponding considerations for those summandsrenerkfrom the
usual edge calculus, see also the scheme of Theorem 1.1Befgrointwise behaviour
of operator functions on the respective model cones. Taereto characterise remain-
ders in (3.2.2) we have to deal only with the case of amplitiuchetions belonging to
Ry.c and R,FVHG, respectively. In the finite weight interval case we are @®ering,
those are finite sums of Mellin terms plus Green terms. By D@fimi2.4, the Green
symbols are completely covered by the abstract scheme ohtoperalued symbols. So
there remain amplitude functions consisting of finitely maummands of expressions
of the form

(3.2.3) ro(r[n]) oph, (h)(y, y')n*a(r[nl).

lo| < j, for smoothing Mellin symbols:(y, y’, z) and certain weightg. Owing to the
structure of the amplitude functions (3.2.3), we can pasteftoor right symbol repre-
sentations directly, by a finite Taylor expansionyihat the diagonal of2 x 2, modulo
Green remainders as treated before, cf. Proposition 2.628]d Theorems 1.1.30 and
1.1.54. In other words, we arrive at the compositionagpbp(br) = oplarbr) after
ignoring terms with smoothing factors that yield smoothigerators in our calculus.
Concerning §.bg)(y, y', n), we have to verifya;bgr € R'(R? x R? x R?, g o h).
There are again some summands known from the theory of sthrmdanifolds with
edges. The main contribution of the latter category comes fthe non-smoothing
terms with holomorphic Mellin symbols. They are treated thughly in the paper [9].
Concerning compositions where one factor is of Green typeobin again Green
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symbols, similarly to the corresponding calculations foe tstandard edge algebra.
Thus there remain terms in the composition of the 2 upper left corner of:; and
bg. After the observations before, all of them are treatedepkevhen one factor is of
the form (3.2.3). If both factors are of this type, we obtain aperator of typeR)}, . ;
(again, see the analogous result for the pointwise coniposih the proof of Theo-
rem 1.12). So the last kind of terms is the one involving ongtdialike (3.2.3) and
one non-smoothing. When composing with symbols localisethé interior, the pres-
ence of factors of the type(r) = @(r)(1 — w)(¢), compactly supported in (@), im-
mediately gives Green operators (note also that cut-ofttfans evaluated im[n] turn
out to be classical operator-valued symbols). The othee jpcomposition of Mellin
operators gives expressions similar to those appearingnenstandard edge calculus,
namely

(3.2.4) o(r[n]) r=" opl, ())& [n]) r" o, (', m) &(rln)).

They are formally treated as the similar terms examined & domposition of oper-
ators on the cones, and give symbols of Mellin plus Green tyiés completes the
proof of abr € R'(R? x R? x R7,g o h). The last step is now to pass again to a
left symbol @;br); modulo a smoothing remainder on the level of operators, lwhic
is possible, by the considerations above.

The symbolic rule for they — component ofs (AB) is clear. That also the princi-
pal edge symbols are multiplied is again a consequence oérhégous rule for the
standard edge algebra and of the following observatiorcesthe Mellin symbols ap-
pearing in the products (3.2.4) can be written/ds y, z, rn) = h(0, y, z, rn) +rﬁ(1)(r,
¥, z,rn) with a smooth remaindef (1), only the product of the principal edge symbols
of A and B can contribute tar, (AB), due to the presence of at least onéactor in
the other three terms. O

3.3. Ellipticity.

DEFINITION 3.9. An elementd € Y*(W,g;v) for g = (y,y — u,0®) andv =
(Eq1, F1; Eo, Fo; J_, J.), is said to be elliptic if
(i) both the bundle homomorphisms (3.1.5) are isomorphjsnigere also the ‘com-
pressed variants’ (locally near the edd&)(Ai), k = 1,2, are isomorphisms up to
r=0;
(ii) the family of maps (3.1.7) is a bundle isomorphism for am 5o € R.

REMARK 3.10. Similarly to the ‘usual’ edge calculus, conditior) {inplies that
(3.1.7) is an isomorphism for all € R.

REMARK 3.11. Condition (ii) is an analogue of the classical Shapwpatinskij
condition for boundary value problems: here they have trepslof transmission con-
ditions.
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Note that the values of,(A)(y, n) for (y,n) € T*Y \ 0 are uniquely determined
by the restriction toS*Y, the unit cosphere bundle induced ByY (recall that we
have fixed a Riemannian metric df). In particular, the relation

-1
oa(A)y. n) = Inl" diag(lnl’”/zxf;ﬁ, In|"2/%ic2, A2 id) aa(A) (y, l)

(3.3.1) 7]

; 2 2 —-1/2;
x diag (Il "2, 2~ 21d)

defines the extension af,(A)(y, n)|s<y by homogeneity tor*Y \ 0. Clearly, the re-
striction o4 (A)(y, n)|s«y is a family of isomorphisms if and only if so i85 (A)(y, n)
for all (y,n) e T*Y \ 0.

Let us now draw some further conclusions from the ellipficondition ono, (A).
Write oa (A)(y, n)lsy =1 a(y, n) = (ai;(y, m))i.j=123, b(y,n) = (@i;(y, n))ij=12. Then,
if a(y, n) is invertible,

(332) b(y, 77): K‘v+(n/2).y+(n/2)(x/\’ E) _ ICS—/J,'F(I"I/Z),)/—/J‘F(H/Z)(X/\’ F)

is a family of Fredholm operators, belonging to the conedmaigsion algebra of Sec-
tion 1. As such, there is the symbolic structure of cone dpesafrom that calculus.
In particular, we have the principal conormal symbol

(3.3.3) om(b)(y, z): H'A(X, E) — H~*2(X F)
which has the form

om )y, z) = (om(bi;)(y, m)i.j=1.2,
om(bij)(y, z) = diag(1,0(0, y, z, 0), h2,0(0, y, z, 0)) + (foo.i; (¥, 2))i.j=1.2

cf. the notation in Definition 2.7 (i), Remark 1.3, and thenfiota (2.4.3) (foru = v).
From the cone calculus oX" we know that the Fredholm property of (3.3.2) at a
point (y,n) € S*Y implies that (3.3.2) is a family of bijections, for all € Y, z €
L2y

REMARK 3.12. The ellipticity of the operatad with respect to the interior sym-
bol oy (A), cf. Definition 3.9 (i), implies that (3.3.2) is elliptic ithe sense of the,-
and o.- components of principal symbols from the cone theory, fa@re (v, n) € S*Y,
in particular,b;;(y, n) is oe-elliptic (i.e., exit elliptic forr — +oc), j =1, 2. The ellip-
ticity with respect tooy (.4) is not automatic. If we require that (3.3.3) is a family of
isomorphisms for ally € Y, z € I'¢3/2)—, (for any fixeds, which implies the same for
all s € R), then (if (4;;); j=1.2 denotes the X 2 upper left corner ofd) the operators

b(y,n) =ox ((-Aij)i.jzl_z)(y, n): ,C‘Y+(n/2)-y+(n/2)(XA, E) — Ks—u+(n/2),y—u+(n/2)(XA’ F)

form a family of Fredholm operators, parametrised byr) € S*Y, cf. Theorem 1.16.
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From the regularity properties of solutions to ellipticrisanission equations on the
infinite stretched con&” we know that keb(y, n) and cokeb(y, n) of the Fredholm
operators (3.3.2) are independentsofLet us assume for simplicity tha*Y is con-
nected. Then, ind(y, n) is constant, i.e., independent of, ) € S*Y.

From standard construction & -theory in connection with families of Fredholm
operators parametrised by a compact topological space we daindex element

inds*y be K(S*Y),

where K( . ) denotes thekK-group of the space in brackets. The canonical projection
m1: §*Y — Y gives rise to a pull-back; K (Y) — K(S*Y). In the present case, from
the fact that (3.1.7) is an isomorphism, we can read off tliexnelement ob explic-

itly, namely,

indg-y b =[] Js] — [7{J_],

which belongs tar; K (Y). In this connection we have the following theorem, that ex-
tends a topological criterion of Atiyah and Bott [2] abouketlexistence of Shapiro-
Lopatinskij elliptic conditions to an elliptic operator anmanifold with boundary.

Theorem 3.13. Let A = (Aij)ij=12 € Y*(W,g;w) for g = (y,y — u, ®) and
w = (E1, Fi; Eo, F») be an operator that i -elliptic in the sense oDefinition 3.9 (i)
and such that(3.3.2) is a family of Fredholm operators. Then, there exists arpgdi
operator A = (Aij)i, j=123 € Y*(W, g;v) for v := (Eq, F1; Eo, Fo; J_, J+) and suitable
Jy € Vect(Y) with A = (A4;;),j=1,2 if and only ifinds-y b € 77 K(Y).

3.4. Parametrices and regularity with asymptotics.

DEerFINITION 3.14. LetA € Y*(W, g;v) be an operator in the notation of Defi-
nition 3.9. Then an operatdP € Y #“(W,g Lo ) forgt:==(y — u,y.®), v1:=
(F1, E1; F», Ez; Ji, J) is said to be a parametrix ofl if

AP —T € Y*(W,g,;v,) andPA—-T € Y*(W, g;; v))

for g = (V — MK,y — MK, @), v, = (Fl, Fi, F>, F, Jy, J+) and g = (V, J/,®), v =
(E1, Ex; E2, Ep; J_, J_).

Theorem 3.15. Let A € Y*(W, g;v) be elliptic in the sense oDefinition 3.9.
Then A has a parametrixP € Y“(W, g~%;v71).

Proof. For convenience, we consider the case wligrand F, k = 1, 2, are triv-
ial bundles of fiber dimension 1 and omit the bundle data fromnotation. Moreover,
for every 3x 3 matrix B we will write B for its 2 x 2 upper left corner &§;;); j=12.
In view of (3.1.4), the operatad can be written in the form diagl{y, A2, 0) +M +G,
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for Ay € Y*(Wy, g) and M+G € Y*(W, g). By virtue of Definition 3.9 (i), applied to
A for k = 1,2, from the elliptic theory in the edge algebra W, we find operators
By € YH(Wy, g1 such thatBy Ay = Z mod V9, (Wy, (v, y, ®)), cf. Remark 3.3.
Setting Py := diag(B1, B2, 0) we then obtain

PoA=T modYy.c(W.q).
On the level of principal conormal symbols this yields theritity

om(Po)(y, z + Wom(A)(y, 2) =1+ f(v, 2)

for a function f € C*(Y, Mz™) where M;*> is the space of Z 2 matrices of
smoothing operator-valued Mellin symbo)s; € M,;:"(X,-, X ;) with asymptotic types
Rij, j =1, 2 (recall that, by Definition 2.5, onIyZ contributes to the Mellin principal
symbol). Since (1¥(y, z))"* = 1+f(y, z) for another elemenf(y, z) € C>(Y, M)
and some matriX§ of asymptotic types, we obtain

o (A, 2) = @A+ (0, 2)omPo)(y, 2+ 1) = om(Po) (v, 2 + ) +1(y, 2+ 1)

for somel(y, z) € C*®(Y, M,*) with a resulting asymptotic typ®, where the carrier
of P does not intersed'1/>—,—,). The next step in the construction of the parametrix
is to pass toP; := Pg + Mo, where Mg = r*w(r[n]) op;, “()(y)&(r[n]) is an operator
such that

(3.4.1) om (P) (v, 2+ ) = om(A) (. 2).
We thus obtairP;.4 = T—M; where, because of (3.4.1), the highest conormal symbol
of Mj vanishes. Thus, setting, := Z’;ZOM{PL we obtainP,A=7 -G for a 2x 2
matrix G of Green operators of order 0.

The o,-ellipticity of the operatorA shows that
(3.4.2) oA (.Z) (y,n): ;Cs+(n/2)~y+(ﬂ/2)(xA) N ;Cs—u+(n/2)-y—u+(n/2)(xA)
is a family of Fredholm operators, parametrised byr) € S*Y, where

inds-y oa (A) = [f 4] — [7fJ_].

(3.4.2) is a family of elliptic operators in the sense of tlome algebra oiX”" (cf. Sec-
tion 1), ando(P2)(y, n) is a family of parametrices in that algebra, which implies

inds-y o (P2) = [7J-] — [75 Ju].

Now, similarly to the considerations in the proof of Theor&ui13, we find a family
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of isomorphisms

(3.4.3)
]CS+(ﬂ/2)-y+(n/2)(xA) /Cs+u+(n/2)-r+u+(n/2)(xf\)

_ { oa(P2) oa(K) .
Py, ) .:( A )(y, n): ® - @
oa(T) oa(Q) (J, ®CY), (J-CM),

for some (sufficiently large)V. The entrieso,(K), oa(T), oA(Q) may be extended
by homogeneity—u (with respect to the group actions, cf. the relation (3)3tb) a
family that has the structure of a homogeneous Green symbalrder —u in our
edge symbolic algebra. In order to inverk (A)(y, n), we compose (from the right)
a = diagoa (A)ls+y, idcy) with (3.4.3) and get a family of operators that has the form
b(y, n) = (bij(y, n))i.j=1.2 Where by, takes values irCY, . (X", g) and (by construction)
satisfiesom(b11) = 1 for all (v, n) € $*Y, while the other entrie$;;(y, n) are of finite
rank. Since the involved factors in the composition are ritilvke, b(y, n) is a family
of invertible operators as well.

We now obtain

(3.4.4) b(y,ma(y,n) =1+g(y,n)

for an elemeng(y, n) € oA (R (QxRY, 9))|,.,,- The invertibility of a(y, n) andb(y. n)
implies that also (3.4.4) is invertible. Using the fact ttihere is an elemenk €
on(RA(Q x R?, g))|., such that 1 +(y,n) = (1 +g(y,n))"* we can pass to (1 +
h(y, )b(y,n) =a=(y, n). Sincea(y, n) is a block matrix with i@~ in the right lower
corner, the same is true ok (y,n), i.e., the latter expression gives us
oa(A)1(y, n)|s+y itself. Since the above multiplications preserve the reatoir oper-
ator families ons*Y that belong too, (R(2 x R, 9))|.,» We obtain this same prop-
erty for o5 (A)"1(y, n)ls-y. Thus, by an extension by homogeneity:, we can pro-
duce

oa(A) (v, m) € oa (R x R, 9)).

Using Remark 3.6, we obtain an operat®s ¢ Y“(W, g™ !) such thato(Ps) =
o(A)~L. This givesPzA = Z +C for C € Y"XW, g™?). Since in the spaces of our
specific operator-valued symbols it is possible to perfosgngototic summations, a
formal Neumann series argument gives the desired result. L]

Theorem 3.16. If A e Y*(W,g;v) is elliptic, the conditions
() Au=fec W(S(g)ﬂﬂn/z)a)/*l“(n/z)(w’ F)® H‘Y*(l/Z)*M(Y’ J+),
(i) u e Wr—r*0V2(W E)@ H=®(Y, J.)
imply u € W(S;)("/Z)””(n/z)(w, E) @ H~W2(y, J,) for everys € R. Here Q is any
asymptotic type an@® depends orQ and A (not ons).
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Theorem 3.17. Let A € Y*(W,g;v) be elliptic Then the operaton(3.1.2) is
Fredholm for everys € R. Moreover kerA is a finite-dimensional subspacé c
WA E) @ H™(Y, J_) for some asymptotic typ®, and there is a finite-
dimensional subspacW c W=+ V2)(W F)@ H®(Y, J.) such thatim ANW = {0}
and Im A+W = W02y =0/ Fyg H-1/2-1(y, J,). This is valid for alls €
R with s-independent/ and W. Finally, there is a parametrix? € J~*(W, g ;v 1)
such thatZ — PA andZ — AP are projections toV and W respectively

Theorem 3.16 above expresses elliptic regularity of somhgtiin weighted edge
Sobolev spaces and subspaces with asymptotics. The praafsed on Theorem 3.15
and employsP as a left parametrix, together with Theorems 3.2 and 3.8adn, Start-
ing from the conditions (i) and (ii) we obtai®.Au = (Z+G)u for some Green operator
G. Using the continuity ofP in spaces with or without asymptotics, cf. Theorem 3.2,
as well as the mapping properties of Green operators, cf.aRef4, we immediately
obtain the assertion.

The proof of Theorem 3.17 employs Theorem 3.16 together Witlas a right
parametrix. Generalities of Fredholm operators actingcales of spaces in the present
situation then tell us thad admits a parametrix in the asserted special form.
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