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Abstract. In ProvSec 2018, Yasuda proposed a multivariate public key
cryptosystem using the pq-method, whose security is based on the con-
strained MQ problem. Afterward, in SCIS 2020, he improved the cryp-
tosystem by adding noise elements and simultaneously considered the
cryptanalysis using the NTRU method. This improved cryptosystem is
the first one combining lattice and multivariate public-key cryptosystem.
In this paper, we propose three variants of Yasuda’s cryptosystem. The
main improvement is that we invite the linear structures instead of the
multivariate quadratic polynomials. In particular, we simplify the pro-
cedure in key generation mechanism by using a linear mapping mask
which produces resistance against the key-recovery attack. Furthermore,
we propose a ring version that is quite efficient compared to the standard
versions. Finally, we adopt the ring-LWE method instead of the original
NTRU method to give a more promising cryptanalysis.

Keywords: Post-Quantum Cryptography, Lattice, Public Key Cryptography

1 Introduction

Nowadays, the security of modern public-key cryptographic schemes, such as
RSA, ECC, DSA, ElGamal, and Diffie-Hellman key exchange, are based on num-
ber theoretic hard problems such as integer factorization problem (IFP), discrete
logarithm problem (DLP) and their elliptic curve variants in certain groups, etc.
With elaborately chosen parameters and implementations, the above crypto-
graphic schemes are temporarily secure against current computing resources.
However, it is known that overwhelming computing power is available by a
quantum computer compared to classic computers. By coordinating with Shor’s
quantum algorithm [19], most of the above crypto algorithms are vulnerable to
being broken in polynomial time by a sufficiently powerful quantum computer in
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the near future. Since the above cryptosystems are widely deployed in real-world
applications (e.g., IoT, HTTPS, online banking, cryptocurrency, software, etc.),
developing secure and practical next-generation cryptographic algorithms is ur-
gent. The well-known “post-quantum cryptography” (PQC) is highly expected to
withstand outstanding quantum attacks. Actually, some international standards
organizations such as NIST, ISO, and IETF already started the PQC standard-
ization projects several years ago. They mainly focus on three primitives: Public-
Key Encryption algorithms (PKE), the Key Encapsulation Mechanism (KEM),
and the digital signature schemes. Among the several categories, lattice-based
cryptography is considered a promising contender for its robust security strength,
comparative light communication cost, desirable efficiency, and excellent adapta-
tion capabilities [1]. Indeed, three over four PKE/KEM/signature algorithms are
lattice-based candidates in PQC standardization announced by NIST in 2022 [2].
Further, four PKE/KEM algorithms are selected for the fourth-round candidate
finalists.

The Multivariate Public-Key Cryptography (MPKC) is also one important
component in PQC, where there is one multivariate scheme among three digital
signature candidates in the third-round finalists [2]. The security of MPKC is
based on the hardness of solving Multivariate Quadratic polynomials (MQ) prob-
lems. On the one side, the MPKC signature scheme is efficient due to conducting
in a small number field. On the other side, MPKC is generally not adaptable
for PKE due to its larger key length compared to other categories. For instance,
some encryption schemes such as Simple Matrix Scheme [22], EFC [21], and
HFERP [13] have been proposed these years. All these cryptosystems are suf-
fering from a common and critical shortcoming: a large number of variables are
required for a relatively secure level but incur a higher cost for encryption and
decryption. One method to overcome this shortcoming is constructing trapdoor
one-way functions given by injective polynomial maps. However, it is observed
that one can turn a polynomial map injective easily by adding a restriction on
its definition range. Namely, by using a constrained polynomial map, it is easy to
construct an injective trapdoor one-way function. As a result, this function can
be used to construct secure MPKC encryption schemes whose security is based
on the hardness of solving the constrained multivariate polynomial problem.

It is known that the key sizes or the ciphertext sizes of MPKC or lattice-
based cryptography are usually larger than twice the sizes conducted in most
classical public key crypto schemes in cases of AES-128 bit security. However,
due to the security of the latter being based on some number of theoretical
problems, the computation cost takes more than the former securely based on
the algebraic problems. In ProvSec2018, Yasuda proposed a multivariate PKE
using the so-called pq-method [27]. The security of pq-method is based on the
difficulty of solving the constrained MQ problem which is a hard problem in
MPKC. Substantially, the constrained MQ problem can be seen as a quadratic
version of the Inhomogeneous Short Integer Solution (ISIS) problem in lattice
theory as well. For this reason, the cryptosystem using pq-method is considered
the first PKE combining lattice and MPKC. In order to reduce the size of the
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public key, Yasuda further improved the pq-method by inviting an error term in
the encryption phase [28]. This idea is from the classical Learning with Error
(LWE) problem in lattice theory which has been widely used in lattice-based
cryptography [17]. The improved version of pq-method is named by pqe-method.

1.1 Motivations and Contributions

Motivations. The combination of an MPKC and lattice-based cryptography is
a novel idea that may derive some benefits from the aspects of both computa-
tional cost and security: on the one side, the linear algebraic structure in lattice
may provide a desirable efficiency and comparative communication cost, while
cryptanalysis is challenging to handle due to a lack of thoroughgoing grasp of
lattice (reduction) algorithms; on the other side, MPKC holds robust security
but requires more variables resulting in relatively lower efficiency. Particularly,
solving quadratic polynomials in MPKC obviously takes more effort than dealing
with linear polynomials in lattice. This circumstance occurs in both mentioned
above pq-method and the pqe-method, where we consider proposed methods that
enjoy the lattice’s fast computation and low cost and further strengthen their
security from MPKC.

Contributions. We list the following contributions in this paper. Here, n is the
number of variables, and p, q are moduli in the schemes.

- First, we improve the pq-method and the pqe-method by using linear struc-
tures instead of the quadratic polynomials, which we call linear-pq method and
linear-pqe method, respectively. Due to different cryptanalysis, it is difficult to
directly compare the keysize and ciphertext size between the improved crypto
schemes and the original ones. Nevertheless, we can see the results by compar-
ing the inside parameters used in each scheme. We summarize the parameter
size and the polynomial multiplication cost in the following table.

original
pq method

linear-pq
method

original
pqe method

linear-pqe
method

q O(n4p6) O(n2p4) O(n4p6) O(n2p5)
computational cost O(n4) O(n2 log n) O(n4) O(n2 log n)

- Moreover, applying a linear mapping mask at the end of key generation can
strengthen the security against the key-recovery attack using the property of
MPKC.

- Additionally, we propose a ring version of the linear-pqe method. As a result,
the key size and computational cost are substantially reduced by a factor of
1/n, which makes it the most efficient with the smallest key size among the
three proposals.

- The security parameters are evaluated by the ring-LWE method rather than
the original NTRU method.
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1.2 Organization

Section 2 recalls the notations and background, including some hard problems in
lattice theory and multivariate polynomial theory. In particular, the predecessor
of our proposals is introduced in this section. Then, we introduce our proposed
public key encryption algorithms in Section 3. In Section 4, we estimate the
security parameters with respect to AES-128 bit security using the 2016 estimate
which is commonly used in cryptanalysis for lattice-based cryptosystems. We also
evaluate the size of keys and ciphertext, and show the practical performance of
each proposal. Finally, we conclude our work in Section 5.

2 Preliminaries

In this section, we prepare some mathematical notations used in the paper. Then
we recall the computational problems associated with lattices and multivariate
polynomials. At last, we review the pq-method [27] and the pqe-method [28]
proposed by Yasuda, respectively.

Notations. Let m, n and l be positive integers (∈ Z>0). The set [m] means
{1, . . . ,m}. Denote by Zl the residue ring modulo l, i.e. the elements in Zl are
from 0 to l−1. For an element a ∈ Zl, we define a lift function of a by liftl(a) ∈ Il
where Il := (−l/2, l/2] ∩ Z. Simultaneously, we denote a finite field Fq with q a
prime number. We represent n independent variables of xi∈[n] by a row vector
of x = (x1, . . . , xn). The set of polynomials with variables in x and coefficients
in Fq is denoted by Fq[x]. Then, we prepare a sequence of m (upper triangular)
matrices A1, . . . , Am ∈ Fn×nq , m row vectors b1, . . . ,bm ∈ Fnq , and m constants
c1, . . . , cm ∈ Fq. By using the above notations, we define a quadratic polynomial
system in Fq[x]m as F(x) := {fi(x) := xAix

T +bix
T +ci :=

∑
j,k∈[n] aijkxjxk+∑

j∈[n] bijxj+ci ( mod q)}i∈[m]. For the sake of convenience, we write its vector

form by F(x) = (f1(x), . . . , fm(x)) ∈ Fq[x]m in this paper. Moreover, we define
NextPrime(x) the first prime number no smaller than x ∈ R.

2.1 Lattice

Lattice. A lattice L is generated by a basis B which is a set of linearly inde-
pendent vectors b1, . . . ,bn in Rm: L(b1, . . . ,bn) = {

∑n
i=1 xibi, xi ∈ Z}. Note

that in this paper we use integer lattices for convenience and we write the basis
in a matrix form as B = (b1, . . . ,bn) ∈ Zm×n. The integer n is the rank of the
lattice, which equals to the dimension of the vector space spanned by L, i.e.
n = dim(span(L)). It is called full-rank lattice when m = n.

The Euclidean norm of a lattice vector v ∈ Rm, also known as l2-norm, is
‖v‖ :=

√
v · v. There are at least two non-zero vectors with the same minimal

Euclidean norm but contrary sign in a lattice L with basis B = (b1,b2, . . . ,bn):
this norm is called the 1-st successive minimum λ1(L) of L(B). A shortest vector
of L is of norm λ1(L).
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The Shortest Vector Problem. Given a basis B = (b1, . . . ,bn) of a lattice
L, the Shortest Vector Problem asks to find a non-zero shortest vector in L. SVP
is NP-hard for randomized reductions.

Unique Shortest Vector Problem. The Unique SVP Problem (uSVP) is for
a given lattice L which satisfies λ1(L) � λ2(L), to find the shortest nonzero
vector in L. It is called γ Unique SVP problem if the gap of λ2(L)/λ1(L) = γ is
known.

Inhomogeneous Short Integer Solution Problem. Given an integer q, a
matrix A ∈ Zn×mq and a vector v ∈ Znq , Inhomogeneous Short Integer Solution
Problem is to compute a short vector y ∈ B s.t. Ay ≡ v ( mod q), where B is
a set of short vectors with some Euclidean norm bound.

Learning with Errors (LWE) Problem [17]. There are four parameters in
the LWE problem: the number of samples m ∈ Z, the length n ∈ Z of secret
vector, modulo q ∈ Z and the standard deviation σ ∈ R>0 for the discrete
Gaussian distribution DZn,σ. Sample a matrix A ∈ Zm×nq and a secret vector s ∈
Znq uniformly at random, and randomly sample a relatively small perturbation

vector e ∈ Zmq from Gaussian distribution DZn,σ, i.e. e
$←− DZn,σ. The LWE

distribution Ψ is constructed by pairs (A,b ≡ As + e (mod q)) ∈ (Zm×nq ,Zmq )
sampled as above. The search learning with errors problem (LWE problem) is
for a given pair (A,b) sampled from LWE distribution Ψ , to compute the pair
(s, e). The decision version of LWE problem asks to distinguish if the given pair
(A,b) is sampled from LWE or uniform distribution. The proof of equivalent
hardness between these two versions is given in the original LWE paper [17].

Ring Learning With Errors (Ring-LWE) Problem [14] Let m ≥ 1 be a
power of 2 and q ≥ 2 be an integer. Let Rq = Zq[x]/Φm(x), where Φ(x) is an irre-
ducible polynomial with degree n. Let χ be a β-bounded distribution. For secret

polynomial s
$←− Rq and error polynomial e

$←− χ, choosing a ∈ Rq uniformly at
random, output (a,b = a · s + e) ∈ (Rq, Rq). The search version of ring learning

with errors problem (Ring-LWE problem) is: for s
$←− Rq, given poly(n) number

of samples of (a,b = a · s + e) ∈ (Rq, Rq), find s (and e simultaneously).

2.2 Multivariate public key cryptography (MPKC)

In this subsection, we introduce the MP/MQ problems and their constrained
variants used as security bases in MPKC.

Multivariate Polynomial Problem. Given a polynomial system of F(x) ∈
Fq[x]m with n variables and m polynomials, the multivariate polynomial problem
(MP problem) is to find a solution of x0 = (x01, . . . , x0n) ∈ Fnq such that F(x0) =
0. The hardness of MP problem is proven to be NP-complete [11].

Constrained Multivariate Polynomial Problem [27]. Given a bound pa-
rameter L ∈ Z>0 and a polynomial system of F(x) ∈ Fq[x]m with n variables and
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m polynomials, the constrained multivariate polynomial problem (constrained-
MP problem) asks to find a solution of x0 = (x01, . . . , x0n) ∈ InL such that
F(x0) = 0.

When only quadratic polynomials are used in the MP problem (or the con-
strained MP problem), the problem is called the MQ problem (or the con-
strained MQ problem, respectively). Namely, the more specific MQ problem
and constrained-MQ problem being used in multivariate public key cryptogra-
phy are the versions invoking quadratic polynomials in the MP problem and
Constrained-MP problem, respectively.

Common construction of quadratic MPKC based on MQ problem. Let
n,m be two integers and q be a prime number. In a quadratic MPKC, the secret
keys include an invertible quadratic map F : Fnq [x]→ Fmq [x] and two affine maps
of S : Fnq [x]→ Fnq [x] and T : Fmq [x]→ Fmq [x]; the public key is bipolar structure
with a composition P = S ◦ F ◦ T : Fnq [x] → Fmq [x]. A plaintext m ∈ Fnq is
encrypted by c = P (m); and c can be decrypted by m = T−1(F−1(S−1(c)). The
security of MPKC is based on the assumption that P is hard to invert without
the secret keys. Matsumoto and Imai initially proposed the crypto scheme based
on MP problem in EUROCRYPT’88 [15]. However, it was broken by Patarin in
CRYPTO’95 [16].

2.3 MPKC using pq-method and pqe-method

First, we recap the cryptosystem using the pq-method proposed by Yasuda
in [27]. Refer to the original paper for more details of the regime constructing
the multivariate polynomial trapdoor function system G(x).

• Key Generation:
Let p be an odd prime number, n be a positive integer, and lψ be a positive
odd integer.

1) Randomly sample a multivariate quadratic polynomial system Φ(x) ∈
Z[x]n. Here Φ(x) mod p is (almost) injective, and its inverse can be
computed efficiently.

2) Make a quadratic multivariate polynomial system Ψ(x) ∈ Z[x]n with coeffi-
cients sampled from Ilψ uniformly at random. (Note that Ilψ = (−lψ/2, lψ/2]∩ Z)

3) Choose a prime number q satisfying q > 4MψMφ, where

Mψ ≥ max
i∈[n]

{
|ψi(d)|

∣∣∣d ∈ Inp } ,
Mφ ≥ max

i∈[n]

{
|φi(d)|

∣∣∣d ∈ Inp } . (1)

4) Select a series of integers r1, . . . , rn in the range of (Mφ, q) satisfying
2Mφ < min

k∈[2Mψ]
|liftq(rik)|i∈[n]. Go back to Step 3 if it failed to sample

such r1, . . . , rn. Here we denote by Λi = {liftq(rik)|k = 0,±1, . . . ,±Mψ}.
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5) Compute ΨR(x) = (r1ψ1(x), . . . , rnψn(x)) ∈ Z[x]n, andG(x) = (g1(x), . . . , gn(x)) =
(Φ(x) + ΨR(x)) mod q ∈ Fq[x]n.

6) Randomly sample an affine transformation T on Fnq ; randomly sample a
permutation matrix S of size n.

7) Compute F = T ◦G ◦ S : Zn → Fnq .
Secret key: Φ(x) mod p, {ri}i∈[n], T and S;
Public key: p and F (x).

• Encryption:
Given a plaintext m ∈ Inp , compute the ciphertext c = F (m) ∈ Fnq .

• Decryption:
1) Compute c′ = (c′1, . . . , c

′
n) = T−1(c).

2) Find a (unique) λi ∈ Λi such that |liftq(c′i − λi)| < Mφ for all i ∈ [n]. Set
c̃i = liftq(c

′
i − λi) ∈ Z.

3) Calculate the solution b̃ ∈ Inp of the equations Φ(x) ≡ (c̃1, . . . , c̃n) mod p.

4) Compute m′ = S−1(b̃) which matches with the plaintext m.

In SCIS 2020 [28], Yasuda further improved the pq-method by adding a noise
polynomial into the encryption process called pqe-method. Given a matrix A =
(aij) ∈ Zn×n, we set

MA = max
i∈[n]
{
n∑
j=1

|aij |}. (2)

We show the pqe-method in the following algorithm.

• Key Generation:
Let p be an odd prime number and n be a positive integer. lψ, lA, lB be positive
odd integers of size close to p.

1) Randomly sample a multivariate quadratic polynomial system Φ(x) ∈
Z[x]n. Here Φ(x) mod p is (almost) injective and its inverse can be com-
puted efficiently.

2) Make a multivariate polynomial system Ψ(x) ∈ Z[x]n with coefficients
sampled from Ilψ uniformly at random.

3) Randomly sample matrices A ∈ In×nlA
and B ∈ In×nlB

.
4) Compute Mφ,Mψ by (1) and MA,MB by (2). Then compute

M̃φ = Mφ +MA · lA−12

M̃ψ = Mψ +MB · lB−12 .

5) Choose a prime number q satisfying q > 4M̃ψM̃φ.

6) Select a series of integers r1, . . . , rn in the range of (M̃φ, q) satisfying 2M̃φ <

min
k∈[2M̃ψ]

|liftq(rik)|i∈[n]. Here we set Λi = {liftq(rik)|k = 0,±1, . . . ,±M̃ψ}.

Return to Step 5 and choose a larger q, if it failed to sample such r1, . . . , rn.
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7) Compute BR(x) = (rjbij) and C = (pA + BR) mod q ∈ Fq[x]n×n. Set
T = C−1 if C is non-singular, go back to Step 3.

8) Set ΨR(x) = (r1ψ1(x), . . . , rnψn(x)) ∈ Z[x]n andG(x) = (g1(x), . . . , gn(x)) =
(Φ(x) + ΨR(x)) mod q ∈ Fq[x]n.

9) Randomly sample a permutation matrix S of size n and compute F =
T ◦G ◦ S : Zn → Fnq .
Secret key: Φ(x) mod p, {ri}i∈[n], T and S;
Public key: p and F (x).

• Encryption:
The following process encrypts a plaintext m ∈ Inp .

1) Randomly sample a perturbation vector e ∈ Inp .
2) Compute the ciphertext c = F (m) + e ∈ Fnq .

• Decryption:

1) Compute c′ = (c′1, . . . , c
′
n) = T−1(c).

2) Find a (unique) λi ∈ Λi such that |liftq(c′i − λi)| < M̃φ for all i ∈ [n]. Set
c̃i = liftq(c

′
i − λi) ∈ Z.

3) Calculate the solution b̃ ∈ Inp of the equations Φ(x) ≡ (c̃1, . . . , c̃n) mod p.

4) Compute m′ = S−1(b̃) which matches with the plaintext m.

By invoking a perturbation in encryption, it can shrink the secret param-
eter n and reduce the key length accordingly. Overall, the performance of the
cryptosystem based on pqe-method is improved compared to pq-method.

The security of both pq-method and pqe-method can be reduced to the con-
strained MQ problem, while pqe-method can also be reduced to a lattice problem
NTRU [12]. The performance can be further improved by using a linear structure
instead of a quadratic system. In that case, it mainly executes as a lattice-based
PKC with linear polynomial multiplication and further strengthens its security
by applying some properties from MPKC.

3 Our Proposals

In this section, we propose three variants based on the pq-method and pqe-
method. Note that the original algorithms are both using quadratic polynomi-
als, while our improved cryptosystems adopt linear polynomial systems. For a
positive integer p and a matrix L ∈ Zn×mp , we define ‖L‖p := max

a∈Inp
{|a · L|∞}.

Linear mapping mask. The elements of affine isomorphisms T and S are
sampled from Fq randomly at uniform in the bipolar structure of pq-method.
As a result, the security will not be reduced if we set the S as an identity map
in computing the public key P [29]. Thus, we remain only one map of T where
itself is secret. We call T a linear mapping mask to preserve the secret keys from
a potential key-recovery attack. In addition, eliminating S may (slightly) reduce
the cost of key generation and decryption algorithms.
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3.1 A simplified linear version of pq-method

Firstly, we propose a variant of the pq-based public-key cryptosystem. For the
sake of convenience, we call it linear-pq algorithm.

• Key Generation:
Let p be a small odd prime number and n be a positive integer.

1) Randomly sample a linear polynomial system F (x) = (f1(x), . . . , fn(x)) ∈
Fp[x]n where x = (x1, . . . , xn).

2) Set M = ‖F‖p, and choose integer series of r1, . . . , rn larger than 2M .
3) Randomly sample another polynomial system H(x) = (h1(x), . . . , hn(x)) ∈

Fp[x]n where the number of variables is 2n, i.e. x = (x1, . . . , x2n).
4) Set L = ‖H‖p, r = max

i∈[n]
{ri} and q = NextPrime(2rL+ 2M).

5) Randomly sample an affine transformation T on Fnq such that its inverse
can be computed efficiently.

6) Set

G = [F | 0] +

r1 . . .

rn

H.
and P = T ◦G : F2n

q → Fnq .
Secret key: F , H, {ri}i∈[n], T ;
Public key: p, q, P .

• Encryption:
Given a plaintext m ∈ I2np , compute the ciphertext c = P (m) ∈ Fnq .

• Decryption:
1) Compute c′ = T−1(c).
2) For all i ∈ [n], find a (unique) set of {αi} (−M ≤ αi ≤M) and {βi} (−L ≤

βi ≤ L), such that c′i = αi + riβi.
3) Calculate the solution x0 = (x01, . . . , x0n) of equations (f1, . . . , fn) =

(α1. . . . , αn).
4) Substitute x0 = (x01, . . . , x0n) into c′ = G(x) which remains variables of

i ∈ {n + 1, . . . , 2n}, and calculate a solution x1 = (x0,n+1, . . . , x0,2n) such
that c′i = ri−nβi. m′ = (x01, . . . , x0n, x0,n+1, . . . , x0,2n) coincides with the
plaintext m.

Correctness. For the sake of convenience, we denote by [rj ] (j ∈ [n]) the matrix
constructed with elements in {rj} at Step 6 of Key Generation. In addition, we
further medially separate G = [G1 | G2], H = [H1 | H2] and m = [m1 | m2],
respectively. Now, we substitute c = P (m) ∈ Fnq into c′ = T−1(c). q =
NextPrime(2rL+2M) is set large enough to make sure that the elements inG will
not change after the substitution, thus we can get c′ = G(m) = [G1 | G2](m) =
[F (m1) | 0]+[rj ][H1(m1) | H2(m2)]. Since rj > 2M and M = ‖F‖p, there exists
only one vector of α = (αi) corresponding to F (m1) = α. Namely, at Step 3 of
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Decryption, x0 = (x01, . . . , x0n) coincides with m1. Then, we substitute x0 into
c′ which remains c′i = [rj ]H2(x1) (i ∈ {n + 1, . . . , 2n}) to be recovered. There-
fore, x1 = (x0,n+1, . . . , x0,2n) corresponds to m2 by solving the linear functions.
Finally, the message is correctly recovered by m′ = (x0 | x1) = m.

Discussion. Now we explain the merits derived from linear-pq cryptosystem.
In general, it is difficult to directly compare the improved proposal with the
original one due to different security parameter evaluations. Despite this reality,
we can estimate the size of q = O(n2p4) in the linear-pq cryptosystem, which
is attributed to the design of constructing a public key with two polynomial
systems where the coefficients’ sizes are significantly different. This is intuitively
much smaller than q = O(n4p6) in the pq-method.

Moreover, in the decryption of pq-method, we need to solve a quadratic poly-
nomial system of n equations in n variables with integer coefficients. Accordingly,
it requires O(n4) operations in key generation of the original pq-method by the
state-of-the-art pq-TM method. Meanwhile, in the linear-pq method, the public
key is designed by two linear polynomial systems. The computational cost in the
key generation phase is O(n2 log n) using the best-known Number-Theoretical
Transform (NTT) algorithm for polynomial multiplications.

At the last step of key generation, the remaining T is a linear mapping mask
to preserve the secret keys from a potential key-recovery attack. In addition,
eliminating S may (slightly) reduce the cost of key generation and decryption
algorithms.

The linear-pq method is modified obediently from the original pq-method.
They are deterministic schemes, so they do not hold the security property of
indistinguishability under a chosen-plaintext attack (IND-CPA). Namely, the
adversary can distinguish the ciphertext cb easily by re-encrypting the chosen
plaintexts m0 and m1. Thus, the linear-pq method satisfies indistinguishability
under onewayness attack (OW-CPA) under the hardness assumption of solving
ISIS problems. (The ISIS reduction is explained in section 4.1)

3.2 A linear polynomial version of pqe-method

Secondly, we also propose a linear version for pqe-method, where the methodol-
ogy is similar to the linear-pq algorithm. We call it linear-pqe method.

• Key Generation:
Let p be an odd prime number and n be a positive integer.

1) Sample matrices L1,X , L1,Y , Lr,X , Lr,Y ∈ Fn×np randomly.
2) Choose positive integersM1,X ,M1,Y ,Mr,X ,Mr,Y satisfying ‖La,b‖p ≤Ma,b (a ∈
{1, r}, b ∈ {X,Y }). Set M1 = M1,X + pM1,Y and Mr = Mr,X +Mr,Y .

3) Choose a prime number q satisfying q > 4M1Mr.
4) Select a series of integers 0 < r1, . . . , rn < q and k ∈ [2Mr] satisfying

2M1 < min
k∈[2Mr]

|liftq(rik)|i∈[n]. Return to Step 3 and choose a larger q, if it

failed to sample such r1, . . . , rn.
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5) Compute

LX = L1,X +

r1 . . .

rn

Lr,X ∈ Zn×n

and

LY = pL1,Y +

r1 . . .

rn

Lr,Y ∈ Zn×n.

Set T = L−1Y mod q if LY mod q ∈ Fn×nq is non-singular, or go back
to Step 1.

6) Compute LF = T ◦ LX ∈ Fn×nq and LS = L−11,X mod p.
Secret key: LS , {ri}i∈[n] and LY ;
Public key: p, q and LF .

• Encryption:
The following process encrypts a plaintext m ∈ Inp .
1) Randomly sample a perturbation vector e ∈ Inp .
2) Compute the ciphertext c = LF (m) + e ∈ Fnq .

• Decryption:
1) Compute b = (b1, . . . , bn) = LY · c.
2) Find a (unique) ki such that |liftq(bi − riki)| ≤ M1 and |ki| ≤ Mr for all

i ∈ [n]. Set b̂i = liftq(bi − riki) ∈ Z.

3) Calculate u = b̂ mod p ∈ Fnp and compute m′ = liftp(Ls · u) which
matches with the plaintext m.

Correctness. First we take off the linear mapping mask by b = LY · c =
LY ◦ LF (m) + LY (e) = LY ◦ L−1Y ◦ LX(m) + LY (e) = LX(m) + LY (e) =
L1,X(m) + [ri]Lr,X(m) + pL1,Y (e) + [ri]Lr,Y (e). Then, the computation at Step

2 in Decryption extracts items of b̂ = L1,X(m) + pL1,Y (e) where the bounds

of parameters ensure the items unchanged during the execution. Next, u = b̂
mod p ∈ Fnp = L1,X(m) eliminates the item of pL1,Y (e). Consequently, message

is correctly recovered by m′ = liftp(Ls · u) = liftp(L
−1
1,X ◦ L1,X(m)) = m.

Discussion. Note that the boundary setting for q at Step 3 is because of 2M1×
2Mr from step 4. At step 4, to make sure the decryption succeed by 100%,
it requires 2M1 < |liftq(ri(ka − kb))| for −Mr ≤ ka, kb ≤ Mr, then we get
2M1 < min

k∈[2Mr]
|liftq(rik)|i∈[n] by setting k = ka − kb ∈ [2Mr].

The advantages of linear-pqe algorithm comparing to pqe-method are analo-
gous to that of the linear-pq method in Section 3.1. Due to the key construction
in a linear polynomial system, a smaller modulus q = O(n2p5) is available versus
q = O(n4p6) of the original pqe-method. Following the idea of pqe-method, we
construct the linear mapping mask T in this scheme by computing the inverse
of the secret key  LY . It makes the computation lighter without sampling from
Fnq and tests its reversibility.
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Furthermore, conducting the linear polynomial multiplications costsO(n2 log n)
operations which is more efficient than the O(n4) required in pqe-method. Be-
sides, eliminating the matrix S may (slightly) speed up the composition of public
key LF in linear-pqe method.

3.3 A ring version of linear-pqe algorithm

Finally, we propose a ring version of linear-pqe algorithm, whose key size is
O(1/n) shorter than the other two algorithms. Thus, it derives a much better
performance. We call it ring-pqe method.

We define a polynomial ring R := Z[x]/(xn− 1). For a positive integer p and
a polynomial L ∈ R, we define ‖L‖p := max

a∈Inp
{|a ·L|∞}. In this subsection, we let

Inp represent a set of polynomials of n− 1 degree and coefficients lie in Ip.

• Key Generation:
Let p be an odd prime number and n be a positive integer.
1) Sample matrices L1,X , L1,Y , Lr,X , Lr,Y ∈ R/pR randomly.
2) Choose positive integersM1,X ,M1,Y ,Mr,X ,Mr,Y satisfying ‖La,b‖p ≤Ma,b (a ∈
{1, r}, b ∈ {X,Y }). Set M1 = M1,X + pM1,Y and Mr = Mr,X +Mr,Y .

3) Choose a prime number q satisfying q > 4M1Mr.
4) Select an integer r in (0, q) which satisfies 2M1 < min

k∈[2Mr]
|liftq(rk)|i∈[n].

Return to Step 3 and choose a larger q, if it fails to sample such r.
5) Compute LX = L1,X + rLr,X and LY = pL1,Y + rLr,Y Set T = L−1Y

mod q if LY mod q ∈ R/qR is non-singular, or go back to Step 1.
6) Compute LF = T · LX ∈ R/qR and LS = L−11,X mod p.

Secret key: LS , r and LY ;
Public key: p, q and LF .

• Encryption:
The following process encrypts a plaintext m ∈ Inp .
1) Randomly sample a perturbation vector e ∈ Inp .
2) Compute the ciphertext c = LF (m) + e ∈ R/qR.

• Decryption:
1) Compute b(x) =

∑n−1
i=0 bix

i = LY · c.
2) Find a (unique) ki such that |liftq(bi − rki)| ≤ M1 and |ki| ≤ Mr for all

i ∈ [n]. Set b̂i = liftq(bi − rki) ∈ Z.

3) Calculate u = b̂ mod p ∈ Fnp and compute m′ = liftp(LS · u) which
matches with the plaintext m.

Correctness. We omit the proof here since it is similar to what for the above
linear-pqe method.

Discussion. The ring structure results in an overwhelming reduction on both
the public key size and the secret key size, by the multiplicative factor 1/n. Thus
the ring-pqe crypto scheme outperforms the linear-pqe method. Furthermore, as
the same as linear-pqe method, we design the linear mapping mask T in ring-pqe
by computing from part of the secret key  LY inside.
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4 Cryptanalysis and Performance

In this section, we first evaluate proper security parameters for linear-pq cryp-
tosystem, linear-pqe cryptosystem, and ring-pqe cryptosystem, respectively. We
consider the security levels of AES-128 in the NIST PQC standardization project [1]
that the brute force attack on AES key search requires at least 2143 classical
computing gates. Then we show the key and ciphertext sizes with respect to the
above parameters for each scheme. Finally, we show the experimental results of
the three cryptosystems.

4.1 Evaluating security parameters and key size

To evaluate a proper parameter set of (n, p, q), we consider that the security of
proposed cryptosystems is based on relevant lattice problems. Namely, we can
see the encryption procedure of linear-pq c = P (m) = m · P ∈ Fnq as an ISIS
instance since the norm of m ∈ I2np is much smaller than that of the vector in the
kernel space of L(P ) in Z2n computed by the Gaussian heuristic. Simultaneously,
we can regard the encryption in linear-pqe and ring-pqe as dealing with the
LWE instance and the Ring-LWE instance, respectively. As discussed in the
above proposals, a key recovery attack is not feasible owing to the subtle linear
mapping mask. Hence, we apply the message recovery attacks using the lattice
method against each problem. Simultaneously, we also consider the exhaustive
search for the message recovery attack.

Message recovery attack. Typically the LWE problem and the Ring-LWE
problem can be reduced to the SVP or uSVP using Bai-Galbraith’s embedding
technique [7]. Indeed, the cryptanalysis for linear-pq, linear-pqe and ring-pqe
schemes are equivalent to evaluating the hardness of SVP in (2n+1)-dimensional
lattices with volume of q(n+1). Refer to [23] for a detailed application and analysis
of Bai-Galbraith’s embedding technique.

Moreover, the lattice algorithms are also used in cryptanalysis. One of the
best-known lattice algorithms is BKZ algorithm [18] and its variants [6,9,25,26],
which processes the given basis until being almost β-reduced. In other words,
the projected lengths of each basis vector are the shortest ones in the relative
β-dimensional sub-lattice. BKZ costs exponentially in the blocksize β. In 2001,
Ajtai et al. proposed a sieving algorithm to solve SVP [3]. It requires a running
time of 20.52n+o(n) in dimension n and requires exponential storage of 20.2n+o(n)

as well. For a β-dimensional sub-lattice the cost of sieving algorithm can be
estimated in 20.292β+o(β) operations. If we take sieving as a subroutine in the
β-dimensional sub-lattices inside of an n-dimensional lattice, the total BKZ-β
cost can be estimated by 8n · 20.292β+12.31 operations [4]. We recall the following
two definitions to evaluate the performance of lattice algorithms.

(a) The root Hermite factor [10] is defined as:

δ = rHF(b1, . . . ,bn) = (‖b1‖/Vol(L)1/n)1/n.
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schemes n p q
linear-pq 980 3 61473439 (26 bits)
linear-pqe 1022 3 133693951 (27 bits)
ring-pqe 1022 3 133693951 (27 bits)

Table 1. Parameter choice for AES-128 bit security.

The rHF of a BKZ-β reduced basis B of d-dimensional lattice L(B) can be
evaluated by

δ = (((πβ)1/ββ)/(2πe))
1

2(β−1) . (3)

This is proposed and practically verified by Chen in [8].

(b) In order to estimate the hardness of LWE samples (A,b ≡ As + e (mod q)) ∈
Zm×nq × Zmq , the 2016 estimate [5] states that if the Gaussian heuristic and the
GSA hold for BKZ-β reduced basis and√

β/d · ‖(e|1)‖ ≈
√
βσ ≤ δ2β−d ·Vol(L(A,q))

1/d, (4)

then error e can be found by the BKZ-β reduction algorithm. It has been widely
used in the cryptanalysis [24] for lattice-based cryptoschemes: given the dimen-
sion d, the modular q and the standard deviation σ of ei’s distribution, the 2016
estimate can output the optimal blocksize β in the attack by using equations (3)
(4).

Exhaustive search.
For a ciphertext c, the complexity of finding the solution of P (m) = c in

linear-pq and LF (m) + e = c in the ring-pq by the exhaustive search is the
same of O(p2n). In the case of using Grover’s quantum search algorithm, the
complexity is O(pn).

Parameter suggestion and key sizes. Due to NIST’s call for proposal in the
PQC standardization project [1], any attack on AES-128 bit security requires at
least 143 bits of classical gate operations. We evaluate the relevant parameters
for AES-128 bit security in Table 1. There is no significant difference but just
within one bit for the parameter sizes among different schemes.

schemes pk(kB) sk(kB) ct(kB)
linear-pq 6242.6 3844.8 3.1
linear-pqe 3525.1 3789.7 3.5
ring-pqe 3.5 3.7 3.5

Table 2. The sizes of public key (pk), secret key (sk), and ciphertext (ct) for each
scheme of AES-128 bit security.
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Furthermore, we show the key sizes and ciphertext sizes in each proposed
cryptosystem in Table 2. It shows that the ciphertext sizes are close to each
other, while the key sizes of ring-pq are evidently 1/n of the other two schemes.
This results in a comparatively high efficiency shown in the next section.

4.2 Implementation

schemes KeyGen(ms) Enc(ms) Dec(ms)
linear-pq 21624.4 113.7 48596.6
linear-pqe 54408.5 64.1 161.9
ring-pqe 37.2 0.6 20.2

Table 3. The performance of each scheme with the unit of a millisecond (ms).

We implemented the three proposed crypto schemes in C++ language. In
our implementation, we invite the number theory library (NTL) [20]. In partic-
ular, the number-theoretical transform (NTT) technique is conducted in NTL,
which can speed up the polynomial multiplications over finite fields. Then we
run 1,000 experiments on a computer with Intel Core i9 @ 3.6 GHz CPU, g++
version 7.4.0. We evaluate the average running time for each one in Table 3 with
one decimal precision. It shows that the ring-pqe algorithm is overwhelmingly
efficient compared to the other two schemes.

5 Conclusion

In this paper, we proposed three PKE algorithms based on linear-pq, linear-pqe,
and ring-pqe methods, respectively. Compared to the original algorithms by Ya-
suda, our proposals use a much smaller modulus q and cost less by conducting
linear polynomial multiplications. Besides, our schemes are secure against the
key-recovery attack by invoking a linear mapping mask at the end of key genera-
tions. Furthermore, we evaluated the proper parameters for AES-128 bit security
level and assessed the key size produced in our cryptosystems. In particular, the
linear-pqe cryptosystem outperforms the other two algorithms regarding key size
and practical efficiency.
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5. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange-
a new hope. In USENIX Security Symposium, pages 327–343, 2016.

6. Y. Aono, Y. Wang, T. Hayashi, and T. Takagi. Improved progressive BKZ al-
gorithms and their precise cost estimation by sharp simulator. In Advances in
Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Proceedings, Part I, pages
789–819, 2016.

7. S. Bai and S. D. Galbraith. Lattice decoding attacks on binary LWE. In Informa-
tion Security and Privacy - 19th Australasian Conference, ACISP 2014, Proceed-
ings, pages 322–337, 2014.

8. Y. Chen. Lattice reduction and concrete security of fully homomorphic encryption.
Dept. Informatique, ENS, Paris, France, PhD thesis, 2013.

9. Y. Chen and P. Q. Nguyen. Bkz 2.0: Better lattice security estimates. In Advances
in Cryptology – ASIACRYPT 2011: 17th International Conference on the Theory
and Application of Cryptology and Information Security, Proceedings, pages 1–20,
2011.

10. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In Advances in Cryptology
- EUROCRYPT 2008, 27th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Proceedings, pages 31–51, 2008.

11. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

12. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key
cryptosystem. In Algorithmic Number Theory, Third International Symposium,
ANTS-III, Proceedings, pages 267–288, 1998.

13. Y. Ikematsu, R. A. Perlner, D. Smith-Tone, T. Takagi, and J. Vates. HFERP -
A new multivariate encryption scheme. In T. Lange and R. Steinwandt, editors,
Post-Quantum Cryptography - 9th International Conference, PQCrypto 2018, Fort
Lauderdale, FL, USA, April 9-11, 2018, Proceedings, volume 10786 of Lecture Notes
in Computer Science, pages 396–416. Springer, 2018.

14. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. In Advances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Proceedings, pages 1–23, 2010.

15. T. Matsumoto and H. Imai. Public quadratic polynominal-tuples for efficient
signature-verification and message-encryption. In C. G. Günther, editor, Advances
in Cryptology - EUROCRYPT ’88, Workshop on the Theory and Application of
of Cryptographic Techniques, Davos, Switzerland, May 25-27, 1988, Proceedings,
volume 330 of Lecture Notes in Computer Science, pages 419–453. Springer, 1988.

https://csrc.nist.gov/projects/post-quantum-cryptography/
https://csrc.nist.gov/projects/post-quantum-cryptography/
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4


Lattice-based Public Key Cryptosystems invoking Linear Mapping Mask 17

16. J. Patarin. Cryptanalysis of the matsumoto and imai public key scheme of euro-
crypt’88. In D. Coppersmith, editor, Advances in Cryptology - CRYPTO ’95, 15th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 27-31, 1995, Proceedings, volume 963 of Lecture Notes in Computer Science,
pages 248–261. Springer, 1995.

17. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages
84–93, 2005.

18. C. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Program., 66:181–199, 1994.

19. P. W. Shor. Algorithms for quantum computation: Discrete logarithms and fac-
toring. In 35th Annual Symposium on Foundations of Computer Science, Santa
Fe, Proceeding, pages 124–134, 1994.

20. V. Shoup. NTL, a library for doing number theory. Available at http://www.

shoup.net/ntl/, 2017.
21. A. Szepieniec, J. Ding, and B. Preneel. Extension field cancellation: A new central

trapdoor for multivariate quadratic systems. In T. Takagi, editor, Post-Quantum
Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka, Japan,
February 24-26, 2016, Proceedings, volume 9606 of Lecture Notes in Computer
Science, pages 182–196. Springer, 2016.

22. C. Tao, A. Diene, S. Tang, and J. Ding. Simple matrix scheme for encryption.
In P. Gaborit, editor, Post-Quantum Cryptography - 5th International Workshop,
PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings, volume 7932 of
Lecture Notes in Computer Science, pages 231–242. Springer, 2013.

23. W. Wang, Y. Wang, A. Takayasu, and T. Takagi. Estimated cost for solving
generalized learning with errors problem via embedding techniques. In Advances
in Information and Computer Security - 13th International Workshop on Security,
IWSEC 2018, Sendai, Japan, September 3-5, 2018, Proceedings, pages 87–103,
2018.

24. Y. Wang, Y. Aono, and T. Takagi. Hardness evaluation for search LWE problem
using progressive BKZ simulator. IEICE Transactions, 101-A(12):2162–2170, 2018.

25. Y. Wang and T. Takagi. Studying lattice reduction algorithms improved by quick
reordering technique. Int. J. Inf. Sec., 20(2):257–268, 2021.

26. K. Yamamura, Y. Wang, and E. Fujisaki. Improved lattice enumeration algorithms
by primal and dual reordering methods. In J. H. Park and S. Seo, editors, Infor-
mation Security and Cryptology - ICISC 2021 - 24th International Conference,
Seoul, South Korea, December 1-3, 2021, Revised Selected Papers, volume 13218 of
Lecture Notes in Computer Science, pages 159–174. Springer, 2021.

27. T. Yasuda. Multivariate encryption schemes based on the constrained MQ problem.
In J. Baek, W. Susilo, and J. Kim, editors, Provable Security - 12th International
Conference, ProvSec 2018, Jeju, South Korea, October 25-28, 2018, Proceedings,
volume 11192 of Lecture Notes in Computer Science, pages 129–146. Springer,
2018.

28. T. Yasuda. Multivariate public key system using noise. In SCIS 2020, 2020.
29. T. Yasuda, Y. Wang, and T. Takagi. Multivariate encryption schemes based on

polynomial equations over real numbers. In J. Ding and J. Tillich, editors, Post-
Quantum Cryptography - 11th International Conference, PQCrypto 2020, Paris,
France, April 15-17, 2020, Proceedings, volume 12100 of Lecture Notes in Computer
Science, pages 402–421. Springer, 2020.

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

	Lattice-based Public Key Cryptosystems invoking Linear Mapping Mask

