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Effect of Sigularity in Stress Field on Optimum
Shape of Ceramics/Metal Joint'

Hidekazu MURAKAWA* and Yukio UEDA**

Abstract

Due to their brittleness and poor machinability, ceramics are used in the form of composite structure with
metals. However, stress concentration occurs is the region near the edge of interface between the ceramics and
the metal. Such high stress may cause cracking of ceramics under thermal loads and reduce the reliability
under external loads. In general, the stress concentration greatly depends on the geometry or the shape of the

Joint.

The authors have proposed a shape optimization procedure based on the reliability estimation and demon-
strated the possibility of reducing the failure probability through controlling the shape of the joint in the previous
report. However, the stress field near the edge of the interface exhibits a singularity. It is also known that the
strength of singularity changes with the geometry of- the joint. The relation between the singularity and the
failure probability and that between the strength of singularity and the optimum shape were not discussed in
the previous report. Thus, these points are focused in this report. Further, the primary factor which is the most
effective to reduce the failure probability is investigated.

KEY WORDS:
(Finite Element Method)

1. Introduction

Though new-ceramics have a great potential in various
engineering applications, most of them are brittle and poor
in machinability. These drawbacks are overcome by
introducing composite structure consisting of ceramics and
metal. In most cases, ceramics and metal are joined at
elevated temperature by methods such as brazing or diffu-
sion bonding. Due to the large differnce in thermal expan-
sion coefficients of the two materials, significant magnitude
of residual stress is produced during the cooling process
after joining". Such residual stress created at the bonding
region may cause cracking or reduce the bonding strength.
Thus, it is desirable to minimize the size of the residual
stress and various techniques are developed for this pur-
pose. One such technique is to introduce an interlayer?.
Another possible technique is to reduce stress by control-
ling the shape of the bonding zone®.

The authors treated the problem of reducing the residual
stress through shape control as an optimum design prob-
lem and developed a numerical method to automatically
determine the optimum shape for the given conditions*. In
this method, the shape is optimized so that the failure
probability becomes minimum. The failure probability is

(Shape Optimization) (Optimum Design) (Reliability) (Ceramics) (Metal) (Joint) (Singularity)

estimated based on the weakest link model hypothesis.

As it is known, the stress field at the edge of the interface
has a singularity and its strength changes with the geometry
of the joint®. This suggests a close relation among the
geometry of the joint, singularity of stress field and opti-
mum shape. However, the problem was not discussed from
such an aspect. Thus, in the present research, a serial
computation in which the geometry of the joint is par-
ametrically changed is conducted to clarify these relations.
Based on the results obtained from these computations, the
primary factor which is the most effective to reduce the
failure probability is investigated.

2. Shape Optimization Method
2.1 Failure probability

As one of the methods to evaluate the strength of brittle
materials such as cermics, methods based on the weakest
link hypothesis and the statistics have been proposed®.
According to this method, the failure probability P, can be
estimated as,

P,=1—exp{—f(c/0)" Y (o, 0)dv}

1
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where, ¢; and V; are the maximum principal stress and the
volume of the j-th element in FEM analysis. In the above
equation, ¢, and m are the parameters of weibull distribu-
tion which are given as material constans and Y (g, 0) is
the heaviside step function.

2.2 Constraining condition

In case of practical engineering problems, there are
certain restrictions so that the product can be machined or
produced and fulfill the required function. The shape of the
product is also subjected to various constraints. As one of
the geometrical constraints, the arc length is assumed to be
constant and the optimum shape is sought under this
condition. In other words, when the original arc length is
L,, the arc length of the optimum shape is kept o L,, where
a is a given constant and referred to as arc length factor.
This constraint condition can be written as,

L =al, 2)
2.3 Optimization problem and objective function

The optimization problem can be stated that, to deter-
mine the shape for which the objective function W, which
is the failure probability P, in this case, is minimized under
the given constraint condition, i. e.

W =P, = min (3)

with satisfying Eq. (2).

By introducing the Lagrange multiplier 1, an objective
function W * in which the constraining condition is embed-
ded is derived and it is shown to be,

W *(a, A):l—exp[—§ V; {oi(a;)/ g0 }™]

(4)
— A{L(a;)—aL,}

where, a; are the design parameters which determines the
geometry of the joint. The optimum shape satisfying the
constraint can be obtained by simply minimizing the
objective function W*. The detailed numerical procedures
for optimization are presented in the reference?.

3. Example of Shape Optimization
3.1 Example model

Numerical results of optimization reported in the previ-
ous paper are cited here to give the general idea. The model
for the example problems is shown in Fig. 1. It consists of
ceramics (Al,Q;) and metal (C,) parts with the same size.
Their height and the diameter are 10 mm and 20 mm,
respectively. It is assumed that the variations of material
constants with temperature can be neglected and the values
at room temperature are used. Table 1 shows the Young’s
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Fig. 1 Example model and region to be modified.

Table 1 Mechanical properties of materials.

\ ALO, Cu
Young’s modulus (GPa) 370 130
Poisson’s ratio 0.25 0.3
Thermal expansion coef. (1/K) 7.9x10°¢ 17.7x 1078
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moduli, Poison’s ratios and thermal expansion coefficients
for the two materials.

The parameters of Weibull distribution which deter-
mines the failure probability of the ceramic part, are
assumed to be,

0,=500 MPa, m=15

The above assumed values are not measured ones. They are
arbitrarily assumed fictitious values.

3.2 Condition of optimization

The shapes are optimized under the conditions which are
given as the combination of the following loading condi-
tions and the constraint conditions on the part of the
boudary to be modified.

loading condition

(1) uniform tensile stress of 100 MPa is acting as an
external load

(2) thermal stress due to temperature drop by 100°C

(3) both (1) and (2) are acting simultaneously

boundary to be modified

Side surface of the metal part 2 mm from the interface
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Fig. 2 Distribution of the largest principal stress in the original
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Fig. 3 Optimum shapes and the failure probability under uni-

form external load.
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Fig. 4 Optimum shapes and the failure probability under ther-
mal load.
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Fig. 5 Optimum shapes and the failure probability under com-
bined load.

(A-B in Fig. 1)
arc length: L

L =1.005 L, ~ 1.10 L,
3.3 Numercal result

The distribution of the largest principal stress under
external load in the original shape is shown in Fig. 2 as an
example. The geometry of the joint is optimized for the
three loading cases and the computed optimum shapes and
failure probabilities are shown in Figs. 3,4 and 5. As it has
been discussed in the previous report®), only the concave
shapes are effective to reduce the failure probability in
cases under external load and combined load. However
both concave and convex forms are effective in case of
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thermal load. This suggests that the optimum shape
changes with the loading condition.

Though a potential usefulness of the shape optimization
has been demonstrated, the following two questions were
raised in the previous report.

(1) Whether the failure probability defined by Eq. (1)
takes a fixed value other than 1.0 for stress field with
a certain type of singularity?

(2) What is the primary factor which is effective to reduce
the failure probability?

4. Singularity and Failure Probability

It is known that the stress field at the edge of the inter-
face shows a singularity. Thus it it necessary to examine
- whether the failure probability given by Eq. (1) can be
used for such cases. If the failure probability can be
computed for a joint between dissimilar materials, the
value computed by FEM should converge to a fixed value
as the size of elements becomes small. '

To study the effect of finite element mesh division on the
computed failure probability, a simple automatic mesh
geration method is used. In this method, the domains for
ceramics and metal are divided into nXn elements. The
size of the element varies in arithmetical series. Let Sy,
amd S, are the lengths of the smallest and the largest
elements, the length of each element S; can be given by,

Si=Smin +(i—1)As (5)
where

L_2AB-D R

B+ n(n—1)

¢ _ 2 R 28 R

T+ nt YT B+ n
R is the radius of the specimen and £ is a prameter defined
as

ﬂszax/Smm

Thus, the Finite Element mesh division can be automati-
cally generated if the number of division » and the parame-
ter # are given.

The effect of parameter g on the computed failure
probability P, and the maximum principal stress is studied
for three different load conditions. The number of division
n is kept as 18 for all cases and the parameter £ is changed
from 1.0 to 199.0. The case in which £=1.0 corresponds to
the uniform mesh. The examples of mesh divisions are
shoen for #=1.0 and 29.77 in Fig. 6. The maximum value
of the largest principal stress in the ceramics part oyax and
the failure probability P, are plotted against the size of the
smallest element Sy, in Figs. 7 and 8. It is clearly seen that
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the maximum value of the largest principal stress increases
as Sp, becomes small. In contrast to the tress, the failure
probability plotted in Fig. 8 shows small variation due to
the size of the element when only the external load is
acting. This implies that the stress is strongly affected by
the element size due to its singularity. While, the failure
probability P, shows small effect from mesh division.
However, in case of the thermal load and the combined
load, the failure probability seems to converge to 1.0 as the
size of the element becomes infinitesimally small.
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Fig. 6 Mesh division.
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Fig. 7 Effect of element size on the maximum stress in the
ceramic part.
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Fig. 8 Effect of element size on the failure probability of the
ceramic part.

B =29.77
1.0} m=5
107
o
>
_t" 107 %
-
-
Q
o
3
f 107 %
o - _ _ m=10
8 * —e
5
3 10-4
o 1074
10”5
10-6_
®——o—o m=15
1 I
0.0 0.1 0.2

Fig. 9 Effect of the number of division on the failure probabil-
ity under external load.

113

(113)

Further, the effect of the number of division n is
examined for cases under external load and thermal load.
The effect of material constant m is also examined. In the
serial computation, the parameter § is kept as 29.77. The
computed failure probabilities are plotted in Figs. 9 and
10. As seen from Fig. 9, the failure probabilities are almost
constant for any values of material constant m when
external load is acting. Incase of thermal load with large
m, the failure probability increases with the number of
division 7.

As far as the numerical results shown in Figs. 9 and 10
are examined, the failure probability under external load
may converge to a fixed value when »n becomes infiniterly
large or size of the elements becomes infinitely small. In
case of thermal load, it is difficult to see whether the failure
probability converges to a value other than 1.0 or not. For
a rigorous conclusion, further study is necessary.

5. Effect of Geometrical Factors on Failure
Probability.

As discussed in the previous report, the failure probabil-
ity can be reduced by optimizing the shape of the joint.
However, the primary factor which is most effective to
reduce the failure probability has not been discussed. Thus,

g = 29.77
1.0
—e— - o . m=5
101} c *
o 0
- m=1
E 102
! \k_.__./.'
-
% 15
m=
§ 10-3}
Q
)
o
A
= 104
fxy
10-5_
10-5—
1 1
0.0 0.1 0.2
1/n

Fig. 10 Effect of the number of division on the failure probabil-
ity under thermal load.
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the effect of various factors on the failure probability is
examined in this chapter.

5.1 Strength of singularity in stress field

It is known that certain type of singularity exists at the
edge of interface between dissimilar materials. V. L. Hein
and F. Erdogan® showed that the strength of singularity
changes with the angle between the interface and the side
surface of the joint. Based on the figures reported by them,
the relation between the strength of the singularity 2 and
the angle 6 is plotted in Fig. 11. The Young’s moduli of the
two materials are chosen to be E;, = 370 MPa and E, =
130 MPa, which correspond to Al,O,; and C, in Table 1.
However, Poison’s ratios are assumed to be 0.2 for both

.2t
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Fig. 11 Relation between the strength of singularity and the
angle of interface.

Fig. 12 Geometrical parameters.
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matrials. In case of such combination of materials, the
strength of singularity A becomes zero when the angle # is
roughly greater than 30° and it is about —30°. From this
figure, it may be expected that the failure probability can
be reduced by choosing the joint shape which satisfies the
above condition on the angle. The fact that the strength of
the singularity decreases both in positive and negative
values of @ suggests the possibility of reducing the failure
probability by both concave and convex shapes as in the
case under thermal load shown by Fig. 4.

Though, the strength of singularity A, which is a func-
tion of 4, is an important factor, the failure probability is
affected also by other factors as will be discussed in the
following sections.

5.2 Effect of edge angle

As the geometrical factors characterizing the shape of the
joint, the edge angle # and the taper length H, which are
shown in Fig, 12, are employed. Serial computations, in
which @ and H are parametrically changed, are conducted.
The relations between the failure probability and the edge
angel are shown for the three load conditions discussed
earlier. It is clearly seen that relation between the failure
probability and the edge angle are quite different among
the three load conditions. The variations among the three
curves in Fig. 13 explain the result of optimization which
are shown in Figs. 3, 4 and 5. This implies that the shape
which is effective to reduce the failure probability can not
be determined from angle 6 alone and the load condition
must be also considered. Thus, it is not enough to consider

*J combined load N
Cl

-
(=]
1

w

thermal load

/7 —\\\/

/ 1074

\

\

N
\ .
\
\

= 29.77

m = 15
/
n = 18 /
7
_ w
L | 1
60 40 20

Angle @

(deg.)

Fig. 13 Effect of edge angle on failure probability.
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the strength of singularity A to reduce the failure probabil-
ity, because 1 is determined by the angle § and indepen-
dent on the loading condition.

5.3 Effect of taper length

The effect of the taper length H is examined for the three
load conditions. For this computation, the number of mesh
division and the parameter 8 are chosen to be 18 and 29.77,
respectively. The computed failure probability is plotted
against the taper length H for the two cases in which the
edge angles are +30° in Figs. 14 and 15. In case of the
thermal and combined loads, the large variation in failure
probability is observed for small values of taper length and
P, becomes almost constant when H >2 mm. On the other
hand, the failure probability changes even for the large
values of the taper length when only the external load is
acting. These results implies that the failure is governed by
the local stress field very near to the edge of the interface
and macroscopic stress has small influence when the ther-
mal load is acting. While, in case of external load, macro-
scopic stress shows significant influence on the failure
probability. ‘

1.0} Y — - ——— - ——&
*—o-°
T combined load
10-

external load
10-2

10-%®

10-4

Filure probability P,

8 = 30

el

L et ——r—— T —— = ———
10-5L = 29.77 \\
15 thermal load
m =
n = 18
1 !
0 5 10

Taper length (mm)

Fig. 14 Effect of the taper length on failure probability (con-
cave type).

6 Conclusion

The effect of the singularity of stress field on the failure
probability and the optimum shape are investigated and
the following conclusions are drawn.

(1) It is shown through the numerical computation that
the failure probability converges to a fixed value as the
size of element becomes small when only external load
is acting on the joint. Thus, the weakest link hypoth-
eses can be applied to evaluate the reliability. How-
ever, clear evidence can not be shown for the case in
which thermal load is acting.

(2) The fact that the failure probability under the thermal
load can be reduced by both the concave and the
convex shapes can be explained by the same relation
which holds between the angle of interface and the
strength of singularity in stress field.

(3) Ifit is assumed that the reliability of ceramics can be
estimated based on the weakest link hypothesis, the
optimum shape can not be determined by the strength
of singularity alone. The other factors such as the
lading condition have to be considered.

B =29.77

m = 15
1.0~

n = 18

1o-+

10-2—\\_ 6 - 30
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L‘,r—ﬁ——ﬁ——&——*————.————’
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10-6_
external load

i L
0 5 10

Taper length (mm)

Fig. 15 Effect of the taper length on failure probability (convex
type).
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(4) In case of thermal load, the local stress field which is
closely related to the singularity is the dominant factor
to determine the failure probability and the optimum
shape. The macroscopic stess should be also consid-
ered when only external load is acting.
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