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Abstract

Structures of highly compressed hydrogen are studied through first princi-
ples calculations of the total energy, vibrational frequencies and the zero-point
motion energy of the nuclei. The band theoretical approach using plane-
wave basis functions is employed with the local density approximation to the
exchange-correlation energy. The electronic states are calculated by the iter-
ative scheme using conjugate gradient method to save the machine time and
memory. In the calculations of the effective force comstants among atoms,
the supercell method which gives exact frequencies at several points in the
Brillouin zone and the Hellman-Feynman theorem are used.

For structures newly proposed by experimental and theoretical studies of
the molecular phase, vibrational optical-mode frequencies have been calcu-
lated in the harmonic approximation and compared with experimental values
obtained by recent Raman scattering and infrared (IR) absorption experi-
ments. Special attention is payed to the Pa3 structure whose possibility is
pointed out by very recent study of the Raman measurement and to the Cmeca
structure which has been predicted to be one of low energy structures and also
suggested in the same Raman experiment.

The optical-mode frequencies in the Pa3 structure is compatible with the
frequencies obtained by the Raman and IR experiments in the phase II but
the pressure dependencies of the frequencies show some discrepancies in the
phase III. The frequencies in the Cmca structure are incompatible at pressures
lower than ~ 200 GPa.

For most probable structures theoretically proposed for the atomic phase
and that for the molecular phase, the phonon frequencies are calculated in

the harmonic approximation at several points in the Brillouin zone. From the



phonon frequencies over the Brillouin zone, the stabilities of the structures
are studied. The zero-point energies of the profon motions are also evalu-
ated and the effects on the pressures, especially on the pressure of molecular
dissociation, are studied.

The Cs — IV structure is stable in the atomic phase. The Cmca struc-
ture of the molecular phase has weakly unstable modes, which are studied in.
detail. The zero-point energies calculated for these two structures by present
harmonic treatments are compared with those of former studies including
quantum Monte Carlo study. Our zero-point energies are close to those ob-
tained for other structures by perturbational methods but are about a half
of those estimated by quantum Monte Carlo calculations. With effect of the
zero-point energy, the dissociation pressure is decreased by about 60 GPa
owing to the larger zero-point energy in the molecular phase than that in
the atomic phase. The decrease of the transition pressure means that the
transition pressure is lower for hydfogen than for the deuterium.

According to the present study, the most probable structures in the molec-
ular phase at pressures lower than 200 GPa are the Pca2; or the Cmc2;
structure. The Cmc2; structure persists above 200 GPa. As the pressure is
further increased, the structure of the C'mc2; becomes close to the that of the
Cmca. The molecular phase persists up to ~ 400 GPa and the phase possibly
become metallic before the molecular dissociation. The C's — IV structure is

probable after the molecular dissociation.
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I. INTRODUCTION

Since Wigner and Huntington’s pioneering work predicting the pressure induced molec-
ular dissociation of hydrogen molecules and its resulting metallic state [1], the metallic
hydrogen has attracted numbers of physicists for more than sixty years. The original sce-
~nario of the metallization proposed by Wigner and Huntington is that, after the molecular
dissociation, the hydrogen atoms each of which has one electron form the half-filled electronic
band, like alkaline metals. And later, another scenario of metallization has been proposed
that the electronic bands formed by the hydrogen molecules, which are the filled bands at
low densities, become overlapped at high densities and form partially filled electronic bands
[2,3]. Both scenarios have been widely studied in experimental as well as theoretical studies.
Possibility of the high temperature superconductivity has added further interests to this
substance [4-7] and has been intensively studied in both molecular and atomic phases [8,9].

Metallic hydrogen has long been a substance of astrophysical interests related to the
interior structure of giant planets [10]. However, owing to recent advancement in high
pressure techniques at laboratories the substance of celestial interests has changed into a
target of experimental challenge in the laboratories [11,12]. The static compression methods
using diamond anvil cells [13], as well as shock-compression [12] ones, are widely used in
recent high pressure experiments. Most remarkable results in recent shock-compression
experiments [12] on the liquid hydrogen and deuterium are ‘sha,rp decrease in the resistivity
(Fig.1), by about four orders of magnitude, observed around 140 GPa (100 GPa = 1 Mbar)
at relatively low temperature of few thousands degrees. Similar experiments reported also
the significant deviation of the compressibility of liquid deuterium from that of the former
theoretical prediction (Fig.2), which suggests the increased molecular dissociation at elevated
temperatures [14]. These results may affect the understanding of the interior structure of

the giant planets [15].
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In the meantime the static compression experiments on the hydrogen and deuterium
using diamond anvil cell have been performed at room and lower temperatures up to ~ 250
GPa [16,17]. The first evidence of the phase transition at megabar pressures is the sudden
drop of the vibron frequencies at around 150 GPa(Fig.3). The pressures at which the drop
occurs are nearly same for hydrogen and for deuterium, which has been mysterious from
the point of view of largest mass effects expected in this substance. Although the nature of
this transition is still not clear, the subsequent experiments revealed new important experi-
mental data [11,16-24] for the determination of the phase diagram. The phase boundaries
among three phases in the solid hydrogen and deuterium have been established experimen-
tally [11,20] (Fig.4), and the lattice of the molecular centers has been determined at room
temperature to be hcp up to ~ 120 GPa by the X-ray experiment [18]. The phase diagram
of deuterium determined by recent experiments is given in Fig.5. Recent Raman experiment
[23] also has reported possibility of further rich phase diagram in the ortho-para [25] mixed
crystals. However, no evidence of the metallization nor the molecular dissociation has been

confirmed so far.
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In the theoretical side, number of theoretical predictions of the molecular dissociation
and the metallization in compressed hydrogen have appeared. The predicted pressures,
however, are widely scattered: the pressure of the metalization ranges over the region of 1
~ 3 Mbar and that of the dissociation over 3 ~ 6 Mbar [26-31]. The theoretical studies can
not, so far, predict which of the scenarios, the metallization by the molecular dissociation
or the metallization by the overlapping of the molecular orbital bands, occurs first at high
pressures. One of the main reasons for the difficulty in the predictions may be the quantum
effects [32-35] expected in this lightest element under condition of lacking the information
of the structures at megabar pressures. The érystal structures in both molecular and atomic
phases are essential to the prediction of the pressure of the band overlapping in the molecular
phase or the molecular dissociation, at low temperatures.

In this thesis, we study structures of compressed hydrogen through ab initio calculations
of the total energy and vibrational frequencies based on the local density approximation
(LDA) and partly on the generalized gradient approximation (GGA) for the exchange cor-
relation energy. We calculate the vibrational frequencies at several points in the Brillouin
zone. From the frequencies and modes, we discuss the stabilities of the structures at high
pressures. We evaluate also the zero-point energy and its effects on the transition pressures.

Following introduction, in section II, we study the total energies of the structures pre-
dicted in earlier studies for both atomic and molecular phases as well as those of newly
proposed structures to pick out the candidate structures. In section III, we study frequen-
cies of the IR and Raman active vibrational modes in the molecular phase at megabar
pressures. In section IV, we study the dispersion of the vibrational frequencies over the
Brillouin zone through the first principle LDA band theoretical treatments and discuss the
stability of the structures. We also calculate the zero-point energy and evaluate its effects
on the pressure of molecular dissociation. In section V, we discuss the probable structures

of hydrogen at megabar pressures. Conclusions and some remarks follow in the last section.



I1. TO SINGLE OUT CANDIDATE STRUCTURES IN EACH PHASE

Owing to extremely wide range of the density interested, the study of compressed hydro-
gen requires appropriate method for each density region and various approaches have been
developed. In the first study of the metallic hydrogen, Wigner and Huntington used the cel-
lular method to obtain the electronic bands and the total energy [1]. They predicted that the
metallization needs around 25 GPa in the most advantageous case. Later the many-body
perturbational approaches were widely used in the calculation of total energy [36-38] for
numbers of structures. The results by perturbational approaches are exact at high density
limit. However, as the density is decreased the higher order terms become important, and
the accuracy is decreased by the ambiguity of contributions from higher order terms. As
computer resources increase, the Hartree-Fock and other band theoretical approaches for
the total energy calculations appeared [2] and used for some structures in the atomic as well
as the molecular phase.

Min, Jansen, and Freeman [39] is the first who employed density functional approach in
the full potential augmented-plane-wave band calculation for the total energy of compressed
hydrogen. They studied cubic structures in the atomic phase and Pa3 structure in the
molecular phase. Following Min et al.’s study many calculations started in search for stable
structures in both atomic and molecular phases. In most recent theoretical studies of the
compressed hydrogen, the local density approximation (LDA) to the exchange-correlation
energy is widely used in the calculation of the electronic bands along with the plane wave
(PW) basis function to reduce the inaccuracy of the energy difference among structures [40].
Numbers of theoretical studies [26,30] in the LDA with use of the PW have been carried out
including molecular dynamics study [41].

We will single‘out, in the following subsections, the structures in the atomic phase as
well as those in the molecular phase from the structures proposed by experimental and

theoretical works on hydrogen and deuterium at megabar and higher pressures.
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A. Atomic Phase

At the extreme limit of pressure, the assembly of atoms looks like the point charges im-
mersed in the uniform neutralizing charge background, which is the classical one component
plasma (OCP) [42] widely studied by the plasma- and astro-physicists. The energy of the
OCP at T=0, which is identical to the Madelung energy of solid, was extensively studied
theoretically and the energy is lower for the lattice of higher coordination like bec, fec, hep
etc. The bec structure is known to be of lowest energy and all matters take the bee structure
at this extreme pressure of celestial interests.

As the density is decreased, the screening effects of the electrons on the nuclear charge
become important. Brovman et al. [36] studied the structures in the atomic phase by the use
of many-body perturbational expansion starting from the system of the protons immersed in
the uniform electron gas. They predicted the possibility of the structure of low coordination,
like two-dimensional (planar) structures and one-dimensional (filamentary) ones.

This possibility was supported by the LDA calculations carried out later [26,43](Fig.6).
The low dimensional anisotropic structures, however, are studied again by the QMC cal-
culations and the energy of the anisotropic structure becomes higher than the diamond
structure when the contribution of the zero-point energy [34] is taken into account. Very
recently Nagao and Nagara studied the family of tetragonal diamond structures (Fig.7) and
point out the possible instability of the cubic diamond structure-[31](Fig.8).

According to the total energy calculation in the clamped nuclei approximation carried
out so far, the candidate structures in the atomic phase into which the structure in the
molecular phase may transforms are the Cs — IV or the § — Sn structure. We will study,

in section IV, the zero-point energy of the proton motion in these structures and its effects.
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B. Molecular Phase

At ambient pressure, hydrogen liquefies at temperature 20 K and as temperature is re-
duced further it becomes solid at 14 K in which hydrogen molecules form a crystal lattice. At
pressure higher than about 5 GPa, the melting point of the solid exceeds room temperature.
The solid which consists of the ortho-species of the hydrogen has the orientationally ordered
structure with space group Pa3 at sufficiently low temperature, in which the molecular cen-
ters sit on the fcc sites. As the temperature is raised the orientational order is destroyed
and the fcc lattice of the molecular center transforms into the hep lattice. The solid of the
para-species of hydrogen which is orientationally isotropic forms hcp lattice of the molecular
centers at all temperatures.

Experimental determination of the structures of hydfogen by the X-ray diffraction faced
great difficulty of low intensity under high pressure due to extremely small sample size in
diamond anvil cells and low X-ray scattering efficiency of the hydrogen atom. The lattice
of the molecular centers was determined to be hep by Hazen et al. [44] at 5.4 GPa and at
room temperature using single crystal and then the hcp structure was confirmed up to 26.5
GPa by the experiment using synchrotron source of X-ray [45]. Very recently Loubeyer et
al. have confirmed the hcp lattice up to 120 GPa at room temperature [18].

The possibility of pressure induced molecular orientation have long been interested in
the crystal of para-hydrogen molecules which are in quantum mechanically spherical states
and the first report on the experimental evidence of the probable orientational order was
published by Silvera et al. [46] in ortho-deuterium at about 28 GPa and later by Lorenzana
et al. [47] at around 110 GPa in para-hydrogen. The point of those phase transitions are

shown in Fig.9.
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From the pressure dependences of the Raman peaks [48] at room temperature the hcp
lattice of the molecular centers are thought to persists to around 150 GPa. The lattice of the

molecular centers at low temperatures are unclear relating to the molecular orientations. The
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available experimental data on the molecular orientations in the solid hydrogen at megabar
pressures are those from Raman and Infrared experiments [21].

Along with the experimental studies, many theoretical studies are now being carried out
by the use of band theoretical approaches [31], molecular dynamics [41] and path integral
approach [49]. The probable structures proposed by experimental and theoretical studies
are: in phase I, the molecular centers are on the hcp lattice as is determined by the X-ray
experiments and the molecules are rotating, in phase II the molecules are oriented to some
pattern of orientational order or of partial order, and in phase III molecules are oriented
in a pattern of order nearly like classical orientation. However more intensive studies are
needed to establish the structures in phase II and III. The proposed orientational patterns

of the molecular orientation in phase II and III are given in Fig.10.
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FIG. 10. Proposed orientational patterns of the molecule in the molecular phase.(From Ref. [50]) Solid
lines represent molecules lying in a c-plane and broken ones in the next c-plane. Arrows indicate the direction

of molecular axes whose direction cosines with the z-axes are positive.

Among those patterns of molecular orientations in the hcp lattice, the total energy

calculation in the LDA and in the clamped nuclei approximation, in which the protons
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are fixed at the position assumed at the beginning of the calculation of electronic states,
predicts that the Pca2, is of lowest energy up to around 200 GPa. The Cmc2; structure
which corresponds to the particular orientation of the molecule in the Pca2; has the total
energy very close to the Pca2;.

Besides the hcp lattice of the molecular centers, possibility of the fcc lattice has been

proposed from experimental study, which will be studied below in detail in section III.

C. Structure above 200 GPa in the Molecular Phase

At pressures near 200 GPa, possibility of the deviation of molecular centers from the sites
of the hcp lattice has been pointed out theoretically [51,41]. The Cmc2; structure permits,
without changing the space group, the displacements of one of the molecular centers of the
hcp lattice towards the site of the C'mca structure which is given in Fig.11. We observe a
series of structural changes from the Pca2; to the Cmca structure. The Pca2; structure
changes into the Cmc2; structure at the special value of the azimuthal angle ¢ = 90° as
shown in Fig.10. With the above displacement of the molecular center, the Cmc2; structure
transforms into the Cmeca at some value of the displacement, which can be seen in Fig.11.

We study the total energy of the Cmc2; structure in the GGA as a function of the
displacement. The results are shown in Fig.12 where the molecular orientations are fixed
in the calculation. At pressures around 150 GPa, the displacement of the molecular center
from the hcp sites are small but as the pressure is increased the deviation becomes large and
around 200 GPa the molecular centers reach to those of the Cmca structﬁre. The pressure
dependence of the enthalpy is plotted in Fig.13 taking the diamond structure of atomic

phase as a reference and compared with those of other structures.
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FIG. 11. Comparison of the Pa3 with the Cmca structure. For the Cmeca the two type of projections
are shown: on the x-y and y-z plane. Solid lines represent molecules lying in a c-plane and broken ones in
the next c-plane. Arrows indicate the direction of molecular axes whose direction cosines with the z-axes

are positive. In the Pa3 structure each molecule is along the three-fold axis.

We studied also the band structure in the Cmc2; changing the displacements of one of
the molecular centers of the hcp lattice towards the site of the Cmeca structure. The band
structures are shown in Fig.14 with m-hcp structure which was first considered to be the
structure having metallic bands. In the Cmc¢2; structure, the band gap decreases as the
displacement of the molecular center increases and the band gap closes at some value of the
displacement. In the Cmeca structure, the band gap is closed at much lower pressures, lower
than about 70 GPa, and the gap is direct.

Those studies presented above for the Cmc2; and the C'mca structure at pressures above
200 GPa are for fixed orientation of the molecules. In the Cmc2, structure, however, the
molecular orientations are related with the displacement of the molecular centers, so further

optimization of the structure are needed.
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the GGA.
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III. THE INFRARED AND RAMAN ACTIVE VIBRATIONAL MODES IN THE
MOLECULAR PHASE

Very recent Raman and infrared (IR) experiments for the vibrons (intramolecular stretch-
ing modes), mid-lying phonons [16] (translational modes of the molecular centers), and other
low-lying phonon and librational modes (the motions of the molecular orientation) [21,24]
at megabar pressures provide important information on the lattices of the molecular centers
and the molecular orientations in the molecular phase of compressed hydrogen. Extensive
theoretical studies on the vibrational modes and their frequencies are needed to analyze the
experimental data [24] and to determine the structure and orientations of the molecules at
megabar pressures.

Many theoretical studies so far, however, have focused mainly on energetics by the use
of band theoretical approach [26,29-31] and the studies of the vibrational modes are rather
scarce except for the vibrons in the molecular phase. Some studies treated the vibron fre-
quencies based on the ab initio calculations [33,41,52], and others treated those based on the
effective force constants or the effective pair interactions corrected by ab initio calculations
[20,53].

Following Cui, Chen, and Silvera’s [20] group theoretical analysis, Nagao and Nagara
have made ab initio calculation of the vibrational frequencies in the molecular phase [50],
where they studied the structure with the hep lattice of the molecular centers and compared
with IR and Raman experiments on the vibrons and phonons at megabar pressures.

Very recently the posvsibility of the fec lattice of the molecular centers are pointed out
experimentally. Also, as studied in the preceding section, possible lattices other than the

hcp are proposed theoretically. We study these structures in the following subsections.
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A. Group theoretical analysis of vibrational modes at the I'-point

Goncharov et al. pointed out the possibility of the fcc lattice of the molecular centers
in the phase II from the selection rules for a Raman phonon line [24]. They observed that
the intensity of the peak becomes very weak when the pressure is increased and entered into
the region of phase II, and they think that the result shows the line is symmetry forbidden
and the molecules sit on the sites with inversion symmetry. They proposed the Pa3 or the
Cmeca structure as are most probable. In the Pa3, the molecular centers are on the fcc sites
and in the Cmca the molecular centers sit on the face centered orthorhombic lattice sites.

In addition to the experimental study, Kohanoff et al. also pointed out that the Pa3
structure is located at the local minimum on the energy surface with the energy higher than
those of some structures of the hcp lattice from their molecular dynamics study.

In this subsection, we study the vibrational frequencies in the Pa3 and the Cmca struc-
. tures, which are shown again in Fig.11. For the hcp lattice of the molecular centers, the
vibrational modes at the I'-point and their frequencies are calculated by Nagao and Nagara
[50]. We follow similar methods of the calculations for the Pa3 and the Cmeca structure.

We analyze the displacements using the group theory and obtain the symmetry coor-
dinates corresponding to the irreducible representations for the space group [54]. By the
use of the symmetry coordinates, we can transform, in advance, the entire force matrix into
the reduced form which consists of submatrices on the diagonal. The matrix elements of
the submatrices are obtained through the force calculations by the use of the displacements
corresponding to the symmetry coordinates which belong to the same irreducible represen-
tation. By this treatment, we can calculate the frequencies of the modes belonging to an
irreducible representation independently from other modes which belong to other irreducible
representations. This treatments can reduce the computational efforts to obtain frequen-
cies corresponding to the modes of interest. They can also enhance the accuracy in the
calculation of the matrix elements.

In the construction of the symmetry coordinates, which are constructed from the sym-
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metry vectors obtained by the use of projection operators [54], we used ambiguity of the
definition of the symmetry coordinates and obtained those which correspond to the vibronic
motion, the librational motion, the phonon-like motion, and the uniform translation, so
that we can specify the characteristics of the modes. The symmetry coordinates we used

are summarized in Table I with those of some other structures.

TABLE 1. Characteristics of the symmetry coordinates used in our calculations of the vibrational
frequencies at the I-point in the Brillouin zone for the Pca2;, the Cmc2y, ’che_ Cmeca, the m-hep, and the
Pa3 structures. Each symmetry coordinate is designated by the name of the irreducible representation
followed by its characteristics in the parentheses. The letters v, p, [, and ¢ are the characteristics and denote
the vibronic, phonon, and librational motions, and the uniform translation, respectively. The ¢ or ¢ in the
parentheses denotes the angle which changes its value by the motion, and z,y, or z the direction of the
motion, and zz, or yz the plane in which molecules moves. The vibronic motions in the first row are of
in-phase and other vibronic motions are of out-of-phase. The letters, R and I, in the brackets indicate the
Raman and IR activities, respectively. Each symmetry coordinate in the same row transfers to that of other
structure when one structure is transformed into the other by changing the orientation of the molecules or

by displacing the molecular centers, except for those of the Pa3.

Pca2y Cmc2y Cmeca m-hcp? Pa3b
Alv) RO Aw) BRI Aly) R Ag(v)  [R] Agy) R
A1-0) BRI A(-6 BRI All-96) [R] E14(l - y2) [R]
Ai1(l—¢) [R]] - - - Eq() [R]
Alp-2z) RD  — — - E)  [R]
Ai(p—vy) R]] A1{p~-y) R Biu(p—-y) (1] BEag(p—v) [R]
Ayt 2) Ax(t-2) Bru(t - 2) Azu(t = 2) Tev)  [R]
To(v) B
A2(v) R - - - Ty(v)  [R]
Ax(1-8) [R] —_ — —
A2(1-4) [R) Ax(1-¢) [R] Big(l-¢) [R] Exg(l - <z) [R] ) B TP0 R
A2(p-2) [R] Az2(p-2) [R] Aulp - 2) Ezg(p-2) [R] V0 B TP0W) R
Ax(p-9) [R] -~ — - n m TPW R
A2(p-2) [R] — — —
Au(P)
Biw) RI — - —




Bi(1-6) [R]
Bi(i-¢) [R]]
Bi(p-y) [R]]
Bi(p-2) R
Bi(t—z)

Ba(v) (R.1]
Bx(l-6) [R.]
Bz (l-¢) [R.]
Bz(p- =) [RJ]
Ba(p-2) [R]]
Ba(t-y)

Bl (l - ‘?S) [R71]

B (t - .7.‘)

B, ('U) I.PWI]
B:(1-6) [R]]
By(p-z) [R.]
Ba(t—-v)

Bag(l-¢) [R]

Bzu(t - z)

Big(v)  [R]
Bsg(1-6) [R]

Bau(p—2) [1]
B2u(t - y)

Eu{l— z2)

Eyu(t— )

By, (v)
Eu(l — yz2)
Bag(p~ 2)
Elu(t - y)

Eu(p)
Eu(p)

Tu(t — z)
Tu(t~ y)
Tu(t ~ 2)

T (p-=) [
T (p - y) [1
M (p-2) [

T3 (p-z) [
T®p-1v) 1
T®(p - 2) [1

2For the m-hcp, doubly degenerate modes designated by Eyg, Fyy, E1,, and Ej, have two indepen-

dent symmetry coordinates, respectively.

bFor the Pa3, two triply degenerate librational modes belonging to the T, representation are

distinguished by the superscript (1) and (@), which is the same for the phonon modes belonging to

the T, representation.
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B. Computation of force by the frozen phonon and the Hellman Feynman theorem

In the calculation of electronic states, we use the conjugate gradient (CG) minimization
technique, in an attempt to use it for the lattice containing more atoms than eight. The CG
method can reduce the CPU time and the memory needed for the calculation of electronic
states when the matrix is large.

We set the energy cutoff, E.,;, of the PW basis at ~65 Ry in our band theoretical
calculations at density, r; = 1.5 ( P ~ 120 GPa), for which the number of the PW is around
125 XN (N is the number of atoms in a unit cell). Here the density parameter, r,, is the
radius of the sphere whose volume is equal to the volume per electron in units of Bohr
radius, ao. These values of the energy cutoff are proved sufficient by che;:king the results
with increased energy cutoff of 80 Ry at r, = 1.6.

The condition for the convergence of the electronic wave functions should be set more
strict in the calculation of the forces than that needed in the total energy calculations,
because the errors in the total energy are of second order in the errors of the wave functions,
as is guaranteed by the variational principle for the total energy, while those in the forces
are of first order.

The many point sampling in the Brillouin zone is crucial in the total energy calculation
of the compressed hydrogen, which is the same in the calculation of the force matrices.
Kohanoff et al. used k - 7 method [41] to obtain the wave functions at points other than
the T-point from the wave function at the I'-point. We do not use this method in the
present study because the wave functions obtained by this method contains considerable
errors at points far from the I'-point. We sampled about 2000/ N z-points in the Brillouin
zone, which is proved sufficient in the present studies. We checked the forces by comparing
the Hellman-Feynman forces with the derivatives of the total energies with respect to the
displacements.

To obtain the force matrix we write the symmetry coordinate as, ¢"* = Y., CianaTnas

where ¢ labels the representation and a distinguishes the independent symmetry coordinates
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belonging to the same irreducible representation and r,, denotes the Cartesian component,
a, of the displacement vector of the atom, n, in the unit cell. And then we calculate the

ia

e . which mean the Cartesian component, a, of the force acting on the atom, n,

force,
when the displacement corresponding to the symmetry coordinate, ¢*¢, is generated in the

system. From above quantities we can obtain the force submatrix,

, 8E O°E
aa! = Y- = Z tana o T o o
0q**0q Orna0q
= — Z Ciama(D ncx/Aqm )s (1)

where E is the total energy per unit cell. And we note that

Z Cia.,naci'a.’,na = 5ia,z"a.’> (2)
no

and
Z Cia,nacz'a,n’a’ = 6na,n’a'7 (3)

ia
as can be shown, for example, from the definition of the symmetry coordinates in Table I of
Ref. [50]. The normal coordinates and the frequencies of the vibrational modes are obtained
through the diagonalization of the submatrices whose dimensions are much smaller than that
of the total force matrix. The matrix elements corresponding to the uniform translations
are trivial and the dimensions of the submatrices containing the uniform translation can be

reduced further.

C. Pressure dependences of the frequencies and comparison with experiments.

The frequencies calculated in the LDA are shown in Fig.15 for some modes for the Pa3
and the Cmca structures. Let us first compare thé present results with those obtained
for the hcp lattice (Fig.16), we observe that the calculated frequencies of the out-of-phase
vibronic modes are higher than that of the in-phase mode, in the fcc lattice also, which is

in agreement with the experiments. The frequencies of the mid-lying phonon modes in the
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structures with fcc molecular centers are in good agreement with the experiments, which is
similar to the results for the structures with hcp molecular centers.

For the Pa3 structure, the pressure dependencies of the frequencies are in good agreement
with those reported by the experiments for the vibrons and mid-lying phdnon modes in
phase II. When we compare the results in phase III, the pressure dependences of the vibron
frequencies show some discrepancies, but the frequency of the T, mode, which is the phonon-
like modes, is very close to the experiment. The IR activity of this mid-lying phonon T,
mode in the Pa3 agrees with the experiment, where an IR phonon mode are observed [16].

However, the rapidly increased and strong IR activity of the vibrons observed in the
experiments in phase III shows that this mode is symmetry allowed, which rules out the
Pa3 structure in the phase III. The Pa3 structure has no IR active vibrons, according to
the group theoretical analysis. We note here that three vibron IR peaks are reported in
phase II [19] although it is not clear that those peaks are symmetry allowed or similar to
those observed in the a-N; [23].

For the C'meca, the calculated frequencies do not agree with the experiments in any phase
at pressures lower than 200 GPa as are shown in Fig.15.

Lastly, we mention the low-lying librational modes. The behavior of the pressure depen-
dences of the calculated frequencies for low-lying librational modes is somewhat different
from those of the experiments [21,24](Fig.17). Our results for the librational modes are seen
in Fig.16 for the Cmc2,. Our frequencies for those modes decrease much slowly as the pres-
sure is decreased, while the experimental values of the frequencies decrease rapidly from the
values in phase IIT and almost vanish at ~ 70 GPa if the curves are extrapolated into phase
II. This behavior might be thought to be related with the large orientational fluctuation of
the molecules, which can not be treated in the present method. The quantum fluctuation
of the molecular orientation will be important even after the orientational order occurred.

We conclude that the frequencies of the vibron and mid-lying phonon modes of the Pa3
structure are compatible with the experiments in phase II, but it is ruled out in phase III

because of the strong IR activity in phase III. The calculated vibron frequencies of the Cmca
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do not agree with the experiments at pressures lower than 200 GPa as are shown in Fig.15.
However, we note that, if the experimental frequencies are extrapolated to above 250 GPa,
the frequencies approach the values calculated in the present study, which supports the

possibility of the Cmea structure above 250 GPa.
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FIG. 15. The pressure dependences of the vibrons and mid-lying phonons in the Pa3 and C'mca struc-
tures. The marks show our data points and lines connecting those points are guides to the eye. The (v), (1),
and (p) denote the vibronic, librational, and phonon modes respectively. Experimental data are taken from
Ref. [16] (p-H;) for IR(p)-2 and from Ref. [11] and [55] (o-p mixed Hy) for the others. The vertical dotted

lines show the boundaries of the phases I, II, and III taken from Ref. [11] and [47].
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IV. DISPERSIONS OF THE VIBRATIONAL FREQUENCIES AND THE
ZERO-POINT ENERGY OF THE PROTON MOTIONS

Total energies studied above do not include the zero-point energy (ZPE) of the proton
motions. The effects of the proton motions have long been thought to be important in
hydrogen, which is the lightest of natural elements. Straus and Ashcroft [32] pointed out
that the static energy of an anisotropic structure which is lower than those of the cubic
structures becomes higher when the ZPE is taken into account. Their study used the
self-consist phonon approach based on the second order perturbational theory treating the
atomic potential as the perturbation to the uniform electron gas, which is of lowest order
and further studies are needed.

Recently Natoli et al. [34] studied the diamond structure and the simple hexagonal
structure which is one of the anisotropic structures of filament-like, using the diffusion Monte
Carlo method which is one of the quantum Monte Carlo (QMC) approaches treating both
electronic and protonic motions quantum mechanically. They proposed that the energy of
the diamond structure becomes lower than the simple hexagonal structure at low densities
in the atomic phase when the ZPE is taken into account. In the following paper, they also
studied the structures in the molecular phase and reported that the ZPE’s are nearly same
when the lattice of the molecular centers are same [35).

The QMC, which was first applied to the hydrogen by Ceperley et al. [56], is exact, in
principle, except for the negative sign problem of the wave function for Fermion system. In
addition to the sign problem, the computer resources available at present, limit the accuracy
of the results with considerable numerical errors. And further studies may be needed to
confirm the results.

In this section, we attempt to calculate the ZPE for some structures in both the atomic

and the molecular phases, in the harmonic approximation.
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A. Obtaining the dispersions in the LDA band calculation

To calculate the ZPE, we need the vibrational frequencies for all modes at all points in
the Brillouin. zone, which require, in principle, the forces of all ranges of the interaction.
" The linear response theory [57](for a review, see Ref. [58]) enables us to calculate those
forces by the use of perturbational approach. The computations, however, are complicated
when the electrons are in the Bloch states. On the other hand, direct methods in which
the forces are calculated either from the electron density obtained by the band calculation
through Hellman-Feynman theorem or from the change of the energy due to the atomic
displacements, are less complicated and straightforward.

We adopt the direct method using the Hellman-Feynman theorem and the supercell
containing up to 32 atoms. Using the force constants among atoms in the supercell, we
can construct the dynamical matrix as is studied in the following subsection. The band
calculations are done using the CG method developed in the studies of the last section by
which structures containing large number of atoms in the unit cell can be treated. As the
number of the atoms in the unit cell is increased keeping the energy cut-off of the PW
fixed, the number of the PW needed to expand the electronic states increases, by which the
dimension of the Hamiltonian matrix becomes very large. The CG minimization technique
requires less CPU time in the calculation of the eigen states than the usual diagonalization
technique when the dimension of the matrix is large [59]. The supercell method which we
will employ in the calculation of the force constants requires a lot of PW basis functions, but
less numbers of 2—points and the CG method is suitable for the present band calculation.
Typically, in our calculations about 4000 PW basis functions and 3x3x 3 E—point mesh are
used for the supercell containing 32 atoms which consists of 8 to 16 primitive cells. With
this number of the plane waves, we can set the energy cutoff of ~75[Ry] at r, = 1.35 and
~95[Ry] at r, = 1.2.

To avoid the anomalous behavior of the forces due to the discontinuous change of the

occupancy of the electronic states at the Fermi-surface, we used the Gaussian sméaring
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method [60]. This method helps to reduce the numbers of k-points and to reduce the CPU
time.

We did not apply GGA to the exchange-correlation energy to save the computation time
in the calculations of the force matrices. This causes about 10 % smaller values of the vibron
frequency but the difference is much smaller for other modes [61]. The error can be thought
smaller in the atomic phase where the electron densities are less localized than the molecular

phase, because the GGA favors the localization of the electron density.

B. Calculation of the force constants and the interpolation of the frequencies over

the Brillouin zone

We use the method which Parlinski et al. studied the phonon dispersion and reported
its efficiency in their recent paper [62]. We define the supercell containing several primitive
cells. When one of the atoms, say v-th atom in the 0-th primitive cell, in the supercell is

displaced with the displacement %(0,v), the force, F(n,x), acting on the p-th atom in the

n-th primitive cell, is written in the harmonic approximation,

F(n,p) = -EL:B(n,u;L, v) - &(0,v) (4.1)

= —Br(n, p;0,v) - 4(0,v), (4.2)

- where B(n, u; L, v) denotes the harmonic force constant matrix between the atoms (n, u) and
(L,v) whichis (3x3), and B£(0, g; L,v) is the force constant in the supercell approximation.
In the above equation, the summation over the label L comes from the supercell method in
which the equivalent atoms in every supercell displace in the same manner.

Using above force matrices, dynamical matrix D(E) for the crystal is written

D(F;p,v) = Jﬁ S B(0, 4;m,v) exp|—2mik - {R(0,s) — E(m,v)}] (4.3)

m

where M, and R(m, ;) denote the mass of the atom and its original position respectively

and the summation m runs over all atoms in the crystal.
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Next, we replace the B(0, 4; m, v) by the By (n, u; L,v) of the supercell approximation

and define the dynamical matrix D L(E) in the supercell approximation,

DL(g; L v) = _\/—]El_:—ﬂz > wBL(0, u; £, v) exp[—27ri/g~ {E(O, K — ﬁ(n, v)}] (4.4)

K

In the above equation‘, the summation over « runs over the atoms in a supercell and should
be taken isotropically from the atom (0, ) we are considering, which leads to the matrix,
Dy, of hermitian. To remove the overcounting of the contribution from the atoms on the
supercell boundary, the wait w, is introduced.

The dynamical matrices Dy,(k) and D(E) coincide at several points in the Brillouin zone,

kr, satisfying the condition,
exp(2miky - [) = 1. (4.5)

This condition means that the kr, is the reciprocal lattice points for the super-lattice L.
The dynamical matrices at points other than the kr’s are thought to be those obtained by
some kind of interpolation. The interpolation will become more accurate when the supercell
grows larger, because the number of the accurate points I:L in the Brillouin zone increases

as the supercell grows larger.

C. Dispersion curves and the stabilities of the structures

We perform the calculations for some structures of interest in the atomic phase as well
as in the molecular phase. In the atomic phase, we take the tetragonal diamond family with
special attention to the Cs — IV and the § — Sn structure. Those are important structures
because they have been pointed out as the structures having low energy near the pressure
of molecular dissociation, which are studied in section II. In the molecular phase, we take
the Cmeca structure. Those structures are shown in Figs.7 and 11.

For the Cs — IV and B — Sn structures we calculated the force constant matrices among

32 atoms using the supercell consisting of 16 primitive cells each of which contains two
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atoms. For the Cmca structure, we similarly calculated the force matrices among 32 atoms
in the supercell which consists of 8 primitive cells each of which contains 4 atoms.

Owing to the symmetry of the structure, some force constant matrices are obtained from
other force constant matrix by the symmetry operations. Those symmetry consideration
also restricts the shapes of the force constant matrices. Although the present treatment do
not necessarily need the symmetry operations, we used them to restrict the elements of the
force matrix and to check the results.

The total dynamical matrices of the system at each I?—points are obtained by the use of
those force constant matrices, which are 6 x 6 for the Cs — IV and the § — Sn and 12 x
12 for the Cmeca structure.

The frequencies thus obtained are shown in Fig.18(a) for the Cs—IV structure at r, = 1.3
(P ~ 300GPa). The poiﬁts of exact frequencies are shown by solid squares in the figures.
The ”interpolation” frequencies shown by the doted lines between the exact points may
have some errors, because the number of the mesh points of the exact value is small. The
frequencies at all points of exact values are real, which means that this structure is stable
as a whole. [63] As the density is increased, the frequencies increase due to the increase of
the interaction among the atoms which is shown in Fig.18(b) at r; = 1.1 (P ~ 1200G Pa).

In Fig.19, we show the results for the 8 — Sn structure. In the B — Sn structure, there
are 6 modes of which 2 mode are unstable. The large values of the imaginary frequencies
mean strong instabilities in this structure. In the cubic diamond structure, 3 optical phonon
modes become unstable. The instability in the cubic diamond has been pointed out from
the total energy calculations [31], as is shown in section II. The frequencies in this structure
also show strong instabilities.

For the Cmca structure in the molecular phase, we show the results in Fig.20 at r, = 1.35.
This structure has 12 modes at each E—point and some of them is unstable as can be seen in
the figure.

Here we study the instabilities of the C'meca structure in relation to the imaginary fre-

quency mode at the I-point. This mode corresponds to the displacements of the atoms

34



towards the Cmec2; structure. As we studied the structures above 200 GPa in section II,
the Cmca is the limiting structure of the Cme2; corresponding to the special value of the
displacement of the molecular center and possible optimization change the stable region for
the Cmca. To study the stable region of the Cme2; structure, we performed some more
optimization of the Cmec2; structure by changing the molecular orientations. The results
of the similar calculation carried out in the section II are shown in Fig.21. With this op-
timization, the Cmca is located at the local maximum of the energy. The height of this
energy hump, however, is very low which is lower than 0.2 mRy and the displacement from
the Cmca is also small. This hump remains to higher pressures, as are shown in the same
figure.

Those results show that the Cmc2; structure is stable above 200 GPa and that the
structures at even higher pressures are probably very close to the Cmca structure. This is
in accordance with the Kohanoff [41]’s MD observation that the averaged structure becomes
Cmeca at elevated temperature above 70 K.

Another unstable mode at the Y-point in the Brillouin zone correspond to the displace-
ment of the molecular center in the Cmca structure with doubled unit cell along y-direction.
The imaginary frequency of this mode is less than 400 em™! and we will need more accu-
rate calculations. We would like to point out also that, if more sophisticated calculation
such as the self-consistent phonon approach is used in the calculation, some unstable modes
may become stable due to the renormalization effect on the frequency. The renormalized

frequencies, however, may still remain low if they become stable.
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D. Evaluation of the ZPE for some structures

Using above vibrational frequencies at some of the points in the Brillouin zone, we
evaluate the ZPE for the structures studied above ,where we sampled 64 k-points in the
Brillouin zone.

The Cs — IV has stable modes at almost all region of the Brillouin zone. In other
structures, some modes are unstable as are shown in the preceding subsection. However,
the unstable modes are rather small portion for the Cmea structure. We think we can
approximately evaluate the ZPE by discarding the contributions from the frequencies of
the unstable modes, because the short range structure, which determine the high frequency
modes, do not differ appreciably from the Cmca and also because the modes with small
imaginary frequencies will remain low frequency modes even if they become stable by other
approaches.

We calculate the ZPE for the Cs — IV in the atomic phase and the Cmeca structure as

the representative in the molecular phase. We show also the ZPE for the 8 — Sn though it
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has many unstable modes and other approaches may be needed.

In Table II, we summarize the total energy in the clamped nuclei approximation, E;,
which we studied in section II, and the ZPE, E,,, for the Cs — IV, f — Sn in the atomic
phase and for the Cmca in the molecular phase with some structural parameters.

We first compare our results in the atomic phase with those of Kagan et al. [64] which
are obtained by the perturbational approach and accurate at high densities. They observed
the general tendency that the ZPE is lower for the structures with high coordination, fcc
and hcp, for example, than those with low coordination, planar and filamentary when they
are compared at the same density. In Fig.22, we plotted our data with some data by Kagan
et al.. We note here that the values of the ZPE of present calculation are very close to those
obtained by Kagan et al.. Straus and Ashcroft [32] showed that the ZPE of sc is lower than

that of anisotropic filamentary structure.

TABLE II. The total energy in the clamped nuclei approximation E,; and the zero-point energy E,,

with some structural data.

Cs- IV B—Sn
rs[ao] c/a Est[Ry] Ezp[Ry] c/a Es¢[Ry] Ep[Ry]
1.0 2.915 -0.74345 0.03674 0.7384 -0.73799 0.02926
1.1 2.853 -0.88292 0.02911 0.8131 -0.88048 0.02575
1.2 2.786 -0.97236 0.02357 0.8360 ~-0.97112 0.02062
1.3 2.707 -1.02981 0.01957 0.9099 -1.02998 0.01851
Cmea
7s{ao] plA] 6degree] Es:[Ry] E:p[Ry]
1.2 0.845 46.1 -0.971172 0.02400
1.25 0.871 39.4 -1.004043 0.02236
1.3 0.873 374 -1.030423 0.02097
1.35 0.814 40.2 -1.051963 0.01960
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We next compare our results with those of Natoli et al. [34,35] who studied the fila-
mentary structure of atomic phase and an assumed structure in the molecular phase by the
QMC. They obtained that the ZPE of the atomic phase is lower than that of the molecular
phase in agreement of our results. The pressure from the ZPE is in agreement with Natoli
et al.’s. Our values, however, are nearly a half of those obtained by them. The ZPE of their
Cme2; is 45 mRy at ry, = 1.31 which corresponds to averaged frequency of ~ 3290 cm™1.
This value seems to be too large because the averaged values lie nearly maximum value of

our vibrational frequencies.
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FIG. 22. Zero-point Energy of the Cs — IV and Cmeca structure. The marks show our data points and
the lines connecting those points are guides to the eye. Zero-point Energy of other structures are from Ref.

[64]
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E. Effects of the ZPE on the Pressure of Molecular Dissociation

Adding the ZPE to the total energy, we discuss the molecular dissociation assuming the
atomic phase to be Cs — IV and the molecular phase the Cmca structure. The condition

of the phase transition, when the ZPE is omitted, is given by,

El?(Vm) +pVn = E:t(V;) + pVe

_ _EG(Vm) - EL(Va) _  (9EG __(9E
P= Vo= Ve \OV )y \OV )y,

These equations are the equal condition of the the Gibbs free energies, which is identical

with enthalpy in the present case of T = 0, between the atomic and molecular phases. In
the above equations, V,, and V, denote the volume of the molecular phase and that of the
atomic phase respectively between which the transition occur. Using the density parameter
rs the volume in units of aj is written, V = (47 /3)r.

The values of the r, between which the transition occur are 1.246 and 1.253 for the
atomic and molecular phase respectively, which means the volume change associated to the
transition is less than 2 %.

When the ZPE is taken into account, the transition pressure changes from p to p + Ap,
and the volume changes of both phases are AV,, and AV,, for the molecular phase and the

atomic one, respectively. Then the condition is given by,

EL (Vi + AVy) + EL (Vi + AV,) + (p + Ap) (Vi + AVi)

= E4(Va + AV,) + ES (Vo + AV,) + (p+ Ap)(Va + AV,) .

We observe that the AV,, and AV, are about 3 % for both phases, at the transition
volumes. Expanding this both sides of above equation to first order terms and using the the

conditions for the static case, we obtain,

ER(Vm) + ApVi, = ES(Va) + AV,
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from which we obtain the shift of the transition pressure,

(V) — EZ,(Va)

Ap = —
P Vm_Va

The volume changes are given, to the first order, by

Ap —p,
AV, = ———— |
(0?ET | 8V'?)
~and
AV; - Ap - pgp

~(0%Eg[av?)

where the right hand side is evaluated at each transition density without ZPE, and pJ
and p, are the pressure contributions from the ZPE. The shift of the transition pressure of
the Cmca to the Cs — IV is —60 GPa. The same quantity for the deuterium is divided by
the factor of v/2, which means the transition pressure of deuterium is higher than those of
hydrogen.

At the transition pressure, the contribution from the ZPE to the total pressure is about

30 GPa which is about 10 % of the total pressure.

42



V. STRUCTURES OF COMPRESSED HYDROGEN AND MOLECULAR
DISSOCIATION WITH METALLIC TRANSITION

We studied, in section II the total energy in the clamped nuclei approximation and in
section III, the vibrational frequencies for some of recently proposed structures with, in
section IV, the vibrational frequencies at some points in the Brillouin zone for some of
the possible structures in both atomic and molecular phases. Combining the information
obtained by the present study and those obtained before, we discuss the structures and the

possible scenario to the molecular dissociation with the metallic transition.

A. From the view point of the static energy

From the total energy calculations in the clamped nuclei approximation we obtained the
Gibbs free energies and compared those among some candidate structures.

At pressures lower than around 100 GPa, the enefgy differences among structures with
various orientational patterns are very small when the molecular centers are on the same
lattice, which implies that the molecules are in a rotational states or in states with large
orientational fluctuations if they are ordered. The structures with the fcc lattice of the
molecular centers, of which the lowest energy structure of orientational order is the Pa3, are
of higher energy than the Pca2; of the hcp lattice at pressures above ~ 50 GPa.

As the pressure becomes higher than around 150 GPa the energy differences becomes
considerably large, which implies that the molecules are orientationally ordered in some
pattern of the orientation at those pressures. In the structures with hcp lattice of the
molecular centers, the Pca2; structure or the Cme2, is most probable. However, at pressures
near 200 GPa, molecular centers begins to move from the hcp sites to those of other lattice
which the recent theoretical studies predict to be base centered orthorhombic lattice. The
total energy of the Cmc2, in this region will need study with some more optimization.

Detailed study of the Cmc2; and the Cmeca structures above 200 GPa revealed that the
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energy of the Cmc2; structure becomes slightly lower than the Cmeca structure and Cmc2,
structure approaches to the Cmca. And the Cmc2; or the Cmca persist up to ~ 450 GPa.

Around 450 GPa the structures in the atomic phase becomes lower than those in the
molecular phase. In this region of the pressure, the C's — I'V structure is of lowest energy.
The anisotropic planar structure is predicted in the small region around 1.7 TPa [31]. The
isotropic hep structure will appear around 2 TPa and bec over 4 TPa [43].

Let us here study the band overlapping in the molecular phase and discuss the metallic
transition. The GGA band gaps in the Pca2, persist over 200 GPa and those of the Cmc2,
close near 200 GPa. The GGA also underestimates the band gaps [61] and the pressures
will shift upward by ~ 100 GPa [28]. We note that the band gaps of the structures in which
the molecules keep away with each other persists to higher energy. For example, the energy
gaps of the Pa3 structure persists over 200 GPa, which is similar to the Pca2, of the hcp
lattice. The band gaps of the Cmca close above ~ 60 GPa and already metallic in the region
above ~ 300 GPa. The Cmca structure which is very close to the Cmc2; structure in this

region of the pressure can not be ruled out there.

B. From the view point of the vibrational frequencies

The vibrational modes and their frequencies with the dispersions of the vibrational fre-
quencies add some more insight into the structures in both atomic and molecular phases.

Our calculations of the frequencies are performed for the structures in which the
molecules are oriented in some patterns and we may not be able to comparé the results
with the experimental ones in the phases where the molecules are in the rotating state or
in the states of large orientational fluctuations which are expected in phase II. However, we
think that our treatment can approximately deal with the frequencies of the vibrons and the
mid-lying phonons if the frequencies do not depend significantly on molecular orientations.
In fact, it is the case when the density becomes lower than ~ 100 GPa, as is observed in the

small differences of the calculated vibrons and phonon frequencies among those in different
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molecular orientations. So we compared the results with experiments in section III for some
modes.

Our results imply that the structure most probable in phase II is the hcp lattice with
molecules in partial order or in ordered structure with large orientational fluctuation. The
Pa3 structure, with large orientational fluctuation, is not ruled out from the view point of
the vibron and mid-lying phonon frequencies, because weak peaks in the IR experiments may
be expected for the symmetry forbidden vibrons like a-N; [65] owing to lattice distortions.

And in phase III, the calculated frequencies of vibrons and mid-lying phonons suggests
the Cmc2; structure most probable. The frequencies of the vibrons and mid-lying phonons
in the Cmca contradict the experiments at pressures lower than 200 GPa. We note that, if
the experimental frequencies are extrapolated to above 250 GPa, the frequencies approach
the values calculated in the present study, which supports the Cmea or C'meca-like structures

above 250 GPa. There exists no available data of IR and Raman experiments.
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VI. CONCLUSIONS AND REMARKS

The vibron and the mid-lying phonon frequencies for the Pa3 structure is compatible
with the experimental results in phase II, although this structure has the total energy higher
than the hcp structures in the pressure range of the phase II, [26,30,31] and has no IR active
vibron modes in the pure systems. However, weak IR signal may be observed in the mixed
system of the ortho- and para- species or in the system with lattice distortions, where the
present analysis of the activities can not be applied. If the Pa3 structure is realized in phase
11, the mid-lying phonon mode should be observed in the IR experiments [16] for which there
is no experimental data.

In the molecular phase above 200 GPa, we studiéd the Cmc2; and the C'mca structures.
The Cmc2; structure is very close to the Cmca structure and approaches to the Cmca at
higher pressures. The total energy of the Cmc2; in the clamped nuclei approximation is
slightly lower than the C'mca but the energy difference is very small. The Cmca structure
is not ruled out at pressures higher than ~ 350 GPa.

We studied the phonon dispersion and the ZPE with its effects on the transition pressures.
Our results show that the phonon dispersion in the Cs — IV suggests that the Cs — IV is
stable and probable in the atomic phase. In the molecular phase we studied the ZPE for the
structure Cmca as the representative. The magnitude of our ZPE is much less than those
obtained by Ceperley et al. which seems to be too large as is discussed in section IV.

The pressure of the molecular dissociation for hydrogen is ~ 400 GPa according to our
study including the effects of“the ZPE and that for the deuterium is slightly higher by ~ 30
GPa. ~.

Our present results suggest that the metalization occurs by the band overlapping above ~
300 GPa, although the estimation of the band gap may need more studies by the calculation
beyond the LDA. '

At this end of the paper, we refer the results of recent path-integral molecular dynamics

approach [66] to the quantum effects on the equilibrium position of the hydrogen atoms in
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the silicon lattice [67}, in which the results show rather classical behavior of hydrogen in the
lattice. This may justify the present approach which starts from the study by the classical

treatment of the proton motion and later takes the quantum correction into account.
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