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ON THE EXISTENCE OF A HARMONIC MAPPING

By

Kticur SHIBATA

Introduction. Let C be a simple closed Jordan curve in the 3-
dimensional Euclidean (x,, x,, x,)-space. Any surface R with the contour
C can be represented parametrically by a vector X(u, v) with components
X,, X,, X,, given as functions of two parameters %, v which vary over a
domain B of the (u, v)-plane bounded by a curve 9B.

The surface R is said to be harmonic when the vector X(u, v) satisfies
the Laplace differential equation
CEINCE I 0

+

A% = s
o NP

b

or
Ax.’=0, j:1,2,3.

The harmonic functions x;(, v) give rise to analytic functions
H(w) = x;+iX;

of the complex variable w=wu+iv, where %,(u, v) is conjugate harmonic
to x;(u, v). Then by the Cauchy-Riemann relations we get

3 3 2
ow) = S H )T = 3 (Zi-i 5] - gu—gu-2ig..,
= =1\ ou ov

where

3 \2 3 \2
8u = I%ulz=2<%~) ’ g22:|%u|2=2(ax1);
=1\ Ju

=1\ v

_ 0% 0x;
glz - (xu’ xv) - Z;é;%;
is the first fundamental quantities of the surface R. Hence Pw)=g,
—g,,—2ig,, is a holomorphic function of the complex variable w=u+iv.
A harmonic surface solves the least area problem of Plateau, only when
®(w) vanishes identically (cf. Courant [3], pp. 96-118). (Numbers in the
square brackets refer to the bibliography at the end of this paper.)
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These circumstances will naturally lead to the following definition
for harmonic mapping from one Riemann surface onto another :

Let R and R’ be two topologically equivalent Riemann surfaces and
let q=f(p) (€ R, q€ R’) a smooth homeomorphism between them. 2 and
w denote local coordinates at p and q respectively. Suppose given a
conformal metric y=ds§=p(w)|dw|* on R’; p(w) >0 is continuous in w and
p(w)|dw|® rests invariant under any conformal transformations of the
local coordinate w. The line element ds; at a point q on R’ is written
in several forms:

ds3 = p(w)|dw|* = p(w(2)) ?E”-dz+ %‘fdz ’
2

= pla(a))( { ldz|2+2p(w<z>)m{%§(g_—‘;_’)dzz}

= g,dx +2g12dxdy+gzzdy
= (g—“—";g”) ]dZI2+%§R{(gu_g22_2iglz)dz2} ’

where
gu=p(w<z>>’°‘—”’+% , Zn = p(w(z »}a‘” ul,
_ ow
£ = ~200u() (2 (22)).

The mapping q=f(p) is called karmonic relative to this conformal metric
p=p(w)|dw|? if [(gu.—&..)—2ig,,]dz" is a regular analytic quadratic
differential on R. ;

The present paper is concerned with the existence of a schlicht
harmonic mapping from a compact Riemann surface R onto another such
R’ homotopic to a given homeomorphism. Our aim is to give a detailed
proof of the existence by using the method of calculus of variations and
solving an extremum problem in the theory of functions. The method
employed here may be said direct in such a sense that no use is made
of automorphic functions as well as in the manner in which the varia-
tional problems are treated. The basic idea in our formulation consists
in establishing a complex variant of the Dirichlet Principle. The author
is very much indebted for the motivation of this article to the suggestive
work of Gerstenhaber-Rauch [6]. (The résumé of this article has been
announced in [8].)

Preliminaries

Let R and R’ be two closed (i.e. compact) Riemann surfaces with
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the same positive genus. Let f be an arbitrary topological mapping from
R to R’. Let z be some local coordinate defined near a point p,€ R, w
some local coordinate defined near f(p,)€ R’ and w=w(z) the function
defined by the mapping f. We call w(z) a local realization of f in the
neighbourhood of p,. Let |z|<1 and |w|<1l be respective local coor-
dinate disks corresponding to the neighbourhoods U(p,) of p,€ R and
U(f(p,)) of f(b,)€ R’ in question. w(z) is a topological mapping from
|z2|< 1 to |w|< 1. We agree to say that w(z) has the property (Q), when
it fulfills the two conditions in |z|<1:

1) w(z) is L’~derivable in the sense of Sobolev-Friedrichs (cf. Bers
[2], Friedrichs [4]), and 2) absolutely continuous in 2-dimensional sense.

This property (Q) is invariant under any conformal transformations
of both local coordinates z and w. So it is meaningful to say that the
mapping f has the property (Q) at a point p, on R, when a local realization
w(z) of f has this property in some neighbourhood of p,; f is said to
have the property (Q) on the whole surface R, if it is so at every point
of R.

Consider the class A of all the homeomorphisms which are homotopic
to a given topological mapping q=X(p) from R to R’. Then A contains
at least one quasi-conformal mapping (cf. Teichmiiller [10], pp. 28-34),
the maximal dilatation of which we denote by K.

Suppose fixed on R’ a conformal metric »=ds*’=p(w)|dw|* where p(w)
is a positive continuous function in a local coordinate w.

Let Llj R; be a system of arbitrarily fixed local corodinate neighbour-
j=1

hoods covering R. Suppose that the surface R is furnished with a
triangulation = in the following fashion: = is the collection of a finite
number of non-overlapping singular 2-simplices S; (j=1, 2,---,x) which
are closed subsets of the 2-dimensional manifold R, and whose boundary
1-simplices are composed of analytic arcs, such that any point p of R
belongs to at least one of the 2-simplices S; (i.e., p may be in the interior,
on the sides of S; or coincides with one of the vertices of S;) (j=1, 2,:+-, «)
and that each S; is necessarily comprised in the interior of at least one
of the local coordinate neighbourhoods RN; (j=1, 2,---, k).

Denote by |z|<C1 and |2z’|<C1 the local coordinate disks corresponding
to arbitrary mutually adjacent singular simplices S, and S,,, respectively.
Let p, be an arbitrary point in the singular 1-simplex S,NS,,, with the

coordinates ¢ and ¢’ relative to each disk considered. S,nS,., will appear
/N N
on |z|=1 as an arc %, #, and on |2’'|=1 as Aj, k5. Suppose that a

point p approaches p, non-tangentially from interior of S; (j=/, /+1).
Then z(p) in |z|< 1 (resp. 2/(p) in |2’|< 1) approaches ¢ (resp. ¢’) non-
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tangentially. Let ® be a measurable linear differential on R and let
o=7(z)dz=7'(z’)d2’ in the respective local coordinates for S, and S,
above mentioned (/=1, 2,---,x—1). We call ® to be locally holomorphic
on R if the following conditions are fulfilled :

(i) o is holomorphic and non-vanishing in the interior of every sim-
plex Sj (]:1) 2»"" /C) ’

|7(2)| has a non-tangential limit |7(£)|=1im|=(z(p))|
as z(p) — £(v,)
|7/(2’)| has a non-tangential limit |v/(£")| =1lim|='(2/(V))|
as 2'(p) — £'(b,)

(ii)

except possibly for a set of linear measure zero on S,nS,,, /=1, 2,--+, k—1),
(i) [7(EW)I1dEW) | =T (& (P |dE (p,)|  for aa. p, 6}.\:]1 aS;,
(iv) S| lei<m,

)
’ 98;

M being a constant greater than 1.

Let us denote by Q the set of all the locally holomorphic differentials
@=7(z)dz which are square-summable on R and normalized by the
condition

ot = (@, *) = SS 1n(2)|*|dzndz| =1.

Here *o» shall denote the differential conjugate to ® and |dzAdz| the
absolute value of vector product dzA dz of the 2-vectors dz and dz.
Plainly Q==¢, since one can construct a linear differential ®=(2)dz
on R, by Poisson integral, which is holomorphic in each intS; and
|o| =|7(z)| |dz| is continuous on the whole R (j=1, 2,---, x), where int S;
stands for the set of all the interior points of S;.
We begin with two lemmas for the convenience in the sequel.

Lemma 1. The family Q is normal in each singular simplex of =.

Proof. Let |z|<{1 be a local coordinate disk, which is a topological
image of the interior of a simplex S;€3. Let {m,j_ be an arbitrary

sequence chosen out of Q. Set

z

Tu2) = | mi)dt, m(a)dz = o,

0
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for |z|<1. Then {T,,(z)T_ is equicontinuous in |z|< 1. For, otherwise,

there exist a constant ¢ >0, a pair of sequences {z(,(}’: , {z(,’e}o in |z|]<1
V=1 v=1

/7

and a subsequence {T,,,,(z)f_, such that |z} —2{| -0 as v— oo, while
I Tny(z:l, - Tn\.(zy)lzc, v = 1) 27"' .

Let us denote by 2z, one of the accumulation points of {z{f. Our proof
v=1

dispenses with the case when |z,|<1, since it is trivial. Assume |z,|=1.
Draw a circular arc C, with centre z, and with radius <1 on |z|<1.
However small §>0 may be, there can be found a pair of points 2, and
2/ separated from z=0 by C,, such that

| Ta(2)— To(&) | =c.

Hence the length L(r) of the image curve T,,(C,) (6<7<1) is not smaller
than ¢. Thus the well-known length-area principle for holomorphic func-
tions will lead to a contradiction :

¢ LT < 207 | 7 (e 1o,

0

whence

2

S% < 20” SS | 7, (7€) | *rdOdr .

1z1<1

On the other hand, the right-hand member is uniformly bounded on
account of the normalization.

Therefore {T,,(z)? contains a subsequence, say again {T,,(:e)ifi which
n=1 n=
converges on every compact set in |z|<1l. Accordingly {'r,,(z)l~l is

uniformly convergent there. Repeating this process on every simplex
S; (=1, 2,---,«x) we finally get a sequence of 1-forms belonging to £,
whose coefficients constitute a uniformly convergent sequence on every
compact comprised in arbitrarily fixed local coordinate disk corresponding

to S; (j=1, 2,-++, ), determining a differential holomorphic in R— __L:Jl S;.
REMARK 1. It is easily seen that {T,,(z)f_ is normal on |z|<1 too.

Lemma 2. [t is possible to introduce the distance between two points
on R by means of any o belonging to Q.

Proof. We integrate an arbitrary holomorphic differential (z)dz=e



178 K. SHIBATA

along a path in a simplex S;:we set T(z)= S'r(é‘)dé‘ for |z|<{1. Then

by Lemma 1, 7(2) is uniformly continuous in |z|< 1. Hence we see that
T(z) is continuously prolongable up to |z|<1. In fact, let & be an

arbitrary point on |[z|=1 and let {z,,}T an arbitrary sequence in |z|<1
n=1

tending to ¢. Given any & >0, there is 6,=96,(§) depending only on &,
such that

(1) | T(2)— T(2")| < & so far as |z—2/|<9,

by uniform continuity of 7(z). Taking n,=n,(6,) sufficiently large, we
shall have |{—z,|<6,/2 (n>>n,) and so

(2) Izn_zmlé|zn—§|+|é‘—zm|<817 n, m._>_no-

From (1), (2) it follows that | T(z,)— T(2,,)|< € (n, m=>n,), which implies
the existence of Z=1im T(z,). Z depends only on ¢ :let another sequence

fnpco

{zj.g_l tend to ¢ Then Z’=}i£1 T(z;) exists. Since the mixed sequence
2y, 21y Zyy Zhyttty 2wy Zhy Znii,ece also tends to &, T(z,), T(21), T(z,), T(z3),
e, T(z,), T(2), T(2,.,),-- has a limit, say Z”. {T(z,,):}o_l, as a subse-
quence of the last convergent sequence, must have the same limit;

Z=Z". In analogy Z'=Z”. Thus we can determine the local distance
on each singular simplex by means of this integral of ®, although the

line elements may fail to be defined on a certain sebset of U aS;.

j=1

Formulation and solution of the first extremum problem

Let ¥, be the family of mappings f satisfying the following five
condition (I)~(V), which we shall admit as the concurrence mapping to
our first extremum problem :

(I) f is a sense-preserving topological mapping from R to R’.
(IT) f belongs to the givem homotopy class A.
(II) F ' as well as f, possess the property (Q).

Let w=w(z) be a local realization of the fe€ ¥, defined in a local
coordinate disk |z|*=x°+3’<1 taking on all the values in |w|<1 and
let S be a rectangle{(x, y)|a,<x<a,, b,<y<b,} comprised in this disk.
On account of the condition (III), w(x-+¢y,) is absolutely continuous in x
on the interval (a,, @,) for almost all y, belonging to the interval (b,, b,)
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and w(x,+:y) is absolutely continuous in y on the interval (b,, b,) for
almost all x, belonging to the interval (a,, a,) (cf. e.g., Bers [2]). Hence
ow/oz=(ow/ox)—i(ow/3y) and Sw/3Z=(ow/ox)+i(cw/dy) are finitely
defined almost everywhere on S. Then our fourth requirement is

wl®, |owl? = 1 1
(Iv) SRS p(u(2)( |52_ +‘§ )IdzAdz|§E<K+E>
under the normalization

Sgp(w)ldw/\dwlz 1,

R/

where w(z) is a local realization of f.

It will be noteworthy that one derives the almost everywhere total
differentiability of w(z) from the conditions (Q. 1) and (I) (cf. Gehring-Lehto
[6]). Making use of this fact, we can show that

w

2—@2
oz Z

mes w(S) = H( .

S

>dxdy :

as a matter of fact, let F be such a closed subset of S, that w(z) is
totally differentiable at every point of F, Sw/9z and Sw/2Z is continuous

on F and that max {mes w(S—F), SS < ow 2+ ia‘-lfi“)dxdy} is smaller than
FEANRCX4 oz
‘_|ow

any given € >0. Since mes w(F)= SS( 2w

2
52 >dxdy, we have

oz

F

w

ow|*_|ow|*
oz Z

mes w(S)— SS( e

S

)dxdy < mesw(S—F) +SS_SF< %13'24—1%%}— 2) dxdy

<26,

which was to be proved. The identity (|ow/oz|*— |ow/2Z|*)(|0z/ow|?
— |2z/ow|?)=1 holds almost everywhere in |z|<[1 (accordingly a.e. in
|w|< 1), yielding the conformally invariant relations

p(w(z))(‘aa—f 2—.—88% 2>|dz/\ dz| >0 a.e. on R

oz

2 azz
ow| |ow

ow

l'r(z(w))|2< >|dw/\ dw|>0 ae. on R'.

Finally we postulate

(V) For a fixed o€ Q
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i (5o %)) =g (2 ).

K
R
Proposition 1. F, is won-void.

2

ow

oz

ow
oz

ow _
oz

Proof. Let g be a quasi-conformal mapping with maximal dilatation
K homotopic to X above mentioned. g clearly fulfills the conditions (I),
(I), (III) and (V). Denoting by w(z) its local realization, we have

({ p(w(z))(}g—z 2+12_‘;’ 2)|dm dz|

- 2N 2

2 2 2
=SS( +|ow ow
oz

R/

ow

%)

>_1p(w)la’w/\ dwl_<_%(K+%> .

ow
oz

2_ awz

: |ow
+| &=
oz

Ji

Hence g€ J., Q.E.D.
Now we can formulate our first extremum problem :

>|dz/\d2]

w

ow ow
oz

2z

oz

Minimize the Dirichlet integral
_1 ow|®, |ow|*? _
nf= ZSEX ”‘”’(z”(‘a—z +‘ B l )IdzA dz|

within the family §.,.
Lemma 3. &, is equicontinuous.

Proof. We show, for any & >0, there exists a suitable positive
number 8,=96,(€) independent of an individual f€ §,, such that, dist (f(»,),
f(p,))< € so far as dist (p,, b,)<'8,. Here the distances on R’ and R are
to be measured with regard to the fixed conformal metric ds*=p(w)|dw|?
and the metric induced by o=7(2)dz respectively.

Suppose, on the contrary, there exist a positive number c¢,, two

sequences of points {pi,”? , {pi,z)f on R and a sequence { f,jo belonging
n=1 n=1 n=1

to ¥, such that dist (b, pP)—-0 as n— oo, while dist (£,(PP), fA(PP))
=>c¢,. We may assume that py” (j=1, 2) are contained in a local coor-
dinate neighbourhood I for all #>n,. Let |z|<1 be a local coordinate
disk corresponding to U and set z(p5’)=2; (j=1, 2) simply for some fixed
n. We draw a circular disk |z,—z|< 7, which contains z, in its interior
and is contained in |z|<1. A domain on R corresponding to the circular
annulus €= |2,—2,|<|2—2,|<7, is mapped by f,(p(z)) onto an annular
domain on R’. Let L(») be the length of the image curve of |z—z|=7r
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by f.(p(2)), which is defined for almost all values of r in the interval
[& 7,]. Set

2

I(r) = Hp(w(z»qg—”g 2+|%§—2>td0dt 2 = teh

. where w(z) is a local realization of f£,(p). Then we would have by the
condition (III)

& < (L)) = (fx/b‘(w_)]dm)z: (T\/m?a%
<( § vy ia"" 1——‘_‘1 )|dz|)

<({ p(w<z>([a—“’|‘ Yidzl)- f 1dz

I’I |#l=r

) > §|dz|=47zrd7lf’i).

|z|=r

‘da)z

|2|=r

ow

8

( 9€ p(w(Z))<

1z|=r

Therefore

4 < A7 41y .
v c

1

Integrating from =90 to r=r,, we obtain

47
62

= <K+?1{—>.

1

7'.0
log -2 <

This is a contradiction, since & can be chosen arbitrarily small.

Theorem 1. The family %, is normal on R.

Proof. Let { f,.(p)ji1 be an arbitrary sequence, such that f,€ g,
(n=1, 2,---). Since R i—s separable, we can choose a countable subset
E= {p,,}:»o_1 which is everywhere dense on R. On account of compactness
of R/, i;s infinite subset { f,,(pl)}o_l accumulates at one point on R’. Hence
its suitable subsequence { fl,,(p_l)}e_1 converges. In analogous way we
can choose a suitable subsequence _out of { fw(pz)f_; which we denote by
{ fzn(pz)}o_; Repeating this procedure, we get a seql;ence { f,,,(p,)i:_1 conver-
gent at J;,. Since { f,,,(p)c}::’_1 is a subsequence of { f,,,,,(p)f_l provid_ed I™>m,
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{ f,,,(p)f_1 converges at p=p; (j=1,2,---,/). If we consider the diagonal
sequenc; { f,,,,r(p)g’_.1 it is obviously a subsequence of { f,,,(p)f:.1 Therefore it
converges at pz_p,. (=1, 2,--- ). Here, since / may be arbitrarily large,
we see that { f,,,,(p)f_1 converges at every point of the set E. With this
in mind, we shall s—how that the subsequence { f,,,,(p);}:”=l of { f,,(p)i:=l is

uniformly convergent in the whole surface R.
In virtue of equicontinuity of $,, there exists a positive number &,
such that for any & >0 the inequalities

dist (fan(), fun))<8/3,  dist (fram(®P), Srmm(P)) < €/3
hold, whenever dist (p, p')<8,. We can choose a finite subset {Pj},{_ of
E, such that for any point p on R o
Inf dist (p, p;) = dist (b, p;)) <3

Hence we have
dist (fun0), fun(9;,)) < E/3,  dist (frum(P), Frm(P;,)) < E/3.
Since { f,,,,(p);}:e=I converges at b; (j=1, 2,---,/), we can choose »,=n,¢) large
enough, so that
dist (fun(Ps)s frmP;)) < /3 j=1,2,0,1

as far as n, m>n(E). Therefore, if n, m_>n,(E), we have

dist (fun(P), frm(P))
é dist (f,,,,(p), fnn(pjo)) +dist (f,m(pjo), fmm(pjo)) +dist (fmm(pjo)’ fmm(p)) < E.

Setting q,=f,.(p), we see that {q,,f_ form a Cauchy sequence on R’. In
virtue of compactness of R’, a poi”r_l'lc q is uniquely determined, so that
!,if{} dist(q,q,) = 0.
Let the correspondence p—q be denoted by f,. Then, for any >0
dist (f, (p), fun(P))<E  so far as n=>n,e)
and &) is clearly independent of choice of p€ R. It implies that the
subsequence { f,,,,(qo)}o=1 of { f,,(p)i:fj=1 converges uniformly on R towards

fo»), QED.
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Now it is asked whether the functional I[ f] can be minimized within
the family §,. First of all, we can form a minimizing sequence { f,,f
n=1
for this extremum problem :

Um I[f,] = iélfl[f] =1,20, f.,€3,.

By Theorem 1, the minimizing sequence contains a subsequence, say
{ f,f_ again for brevity, uniformly convergent on R. Let the limiting

map be denoted by f..(p). Then f.(p) is, by definition, one-valued as well
as continuous.

Proposition 2. f.(p) is schlicht.

Proof. Suppose, on the contrary, there exist a pair of points p, and
p, on R, such that f..(b,)=f.(p,)=q. Then there could be found, for each
n, a continuum c, C R, such that c¢,>p,, p, and the diameter of the closed
set fa(c,) tends to zero as n—oo. Let I' be a simple closed Jordan curve
enclosing p, in its interior, which is comprised in a local coordinate
neighbourhood of p, and separates p, from p,, Then ¢,NI'is always non-
empty, on which we take an arbitrary point p“. Let z be some local -
coordinate about p,, w some local coordinate about f,(p,) and z=2z,(w) the
local realization of f,! in the neighbourhood of £,(p,). Setting w( (b))
=w’, we may assume without loss of generality that w(f,(p,))=0. When
n is sufficiently large, we see clearly |w’'|<(& while dist (z,(w’),
2,0))>c,>0. Draw a circle |w|=7 (§<7r<7,) in the local coordinate
disk |w|< 1, where log (7,/€)=>=M(K*+1)/c’K. Putting

8z,, az,,

1) = || inteson (|22 22 idwn dal

we have just as in the proof of Lemma 3

< (f 11141 ) <( ,4 || (| 222

jw|=r

2z, az,,

)

2z, _ d]n(f)
+ |22 >|dw|] § ldw| = 4rr®A7)

<[  Intad)(| 2

(wl=r

|wi=r

for every 7 in [&,7,]. Hence we get successively

i’l < i‘-’;df,,<r> ,
C

2

K
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The last inequality contradicts the condition (V): indeed, let w,(2) be the
inverse function of z,(w). Then, by the condition (III)

|dwndw| = (|22 2—'%z>|dmdz| _ _ldzndz|
oz oz %2_ %z
ow ow
whence
oz 8z 2z, |9z,/3\! .
Jur) = ([ (1222 |22 )(! =921 (2) | dz n |
S,§< | ow ow
ow,|? 2

= | ( '|T(z)i2|dzAdz|g%(K+Il{).

R

5 )%

Lemma 4. The sequence { f;‘f converges uniformly on R’.
n=1

Proof. Let {q,,?_1 be a convergent sequence of points on R’, such
that Eirg 0,=0.. T h;n the sequence of points {p,,i1 satisfying the relation
f,,(p,,);q,, (n=1, 2,---) accumulates at some points, —one of which we denote
by p.. A suitable subsequence -{p,,,,}?_1 will converge to p.. If v is
sufficiently large for any given & >0, )

dist (fa,(Pw)s fu(P))
< dist (f4,(Pay)y So(P)) +dist (fa(P)y fu(Pe)) <6,
that is,
Fulp.) = Hm £ (Pa) = e -

This implies that any accumulation point of the sequence {p,,f:1 coincides
with F2'(q..); the original sequence {p,,}::1 accumulates only ;t a single
point f-*(q..), since f., is schlicht. Hence*

lim £7%(a,) = F='(a=) »
in particular

lim £5(q.) = £21(a.)
Since q.. was arbitrary, it follows that for any q& R’

lim f3%(q) = f240) -
If the last convergence were not uniform, there would exist a positive

number &, a subsequence {f (q)} of { f;‘(q)f_ and a sequence {qﬁ,.f_
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on R’ converging to ¢/, such that
dist (fau(@), M) =€>0,
which is contrary to the above relation ‘
lim f7,(qn) = £7(q2) -
Proposition 3. fZ' is continuous.

Proof. fZYq) is the uniform limit of the sequence of continuous
maps f(q).

Proposition 4A. f. is L’-derivable and wmeasurable (i.c., absolutely
continuous in 2-dimensional sense) on R. -

Proof. Let w=w,(z) be a local realization of f,(p) near a fixed point
p, (v=m, ). There exists a sufficiently large number #, and a suitable
neighbourhood U(p,), such that for any n>n, f,((p,)) is contained in a
fixed local coordinate neighbourhood of f.(p,). Let us denote by |z|<(1
the local coordinate disk corresponding to 1(p,), by S the square |x|<1/2,
|¥1<1/2 and by @,2) a continuously differentiable function vanishing
outside S. Then we have by Green’s formula

0= | [042) ~wnm(@]Pu)dx = {| 2w~ w021 P2} ddy,
) 9y

9s

where m is an arbitrary positive integer. Hence

|| (B =) pi@rdrdy = = i) =) Fdxdy.

Since the right hand integral tends to zero as #— oo, the definite integrals

S S aau;”%(z)dxdy n=1,2%

S

constitute a Cauchy seqnence. Thus the existence of lim SS (ow/2y)
S

@,(2)dxdy is concluded.

This limiting value is obviously a linear functional in @,. So we
shall denote if by A(p,). If n, is large enough comparatively with 1/¢,
it follows from Schwarz’s inequality that for n>n/(&)

azdy ([ 1p42)12dxdy < A ([ 19421 dxdy,

S 8

[1Apy 7 < ([ |20

where A is a constant independent of #n. Let €é—0. Then the classical
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theorem due to F. Riesz allows us to extend the domain of arguments
to the class of square-summable functions @(z) and to write

Ap) = SS Wiy, P(2)dxdy

S

with a function w.,(z), which is of summable square and uniquely deter-
mined almost everywhere in S (cf. Riesz [7]). It follows that

gg ww(z)%’dxdy ~ lim SS w,,(z)aai;dxdy ~ ~lim Sbg %zzng,o(z) dxdy

S

= —A(p,) = — SS WeaeyyPo(2)dxdy .

Since S was arbitrarily taken in |z|<{1l, we may write according to the
definition by Sobolev-Friedrichs

W, _ W.cy(2) in the L’-sense.

oy
Analogously we have

MW _ W.»(2) in the L’-sense,
ox

where w..,, is the weak limit of {aw,,/axf with respect to @4 (2):
n=1

[[ wocete) pi@)dxdy = tim ([ 2o (a)daay .
S S

As for the demonstration of measurability of the mapping w.(z), we
refer to the skillful device due to Ahlfors [1] and give here an expository
version of it.

Since w,(z) is topological in |z|<(1, the image of any Borel set X
under each mapping w,(z) is again a Borel set and mes w,(X) is a non-
negative additive set-function defined for all Borel sets in |z|<1.
Therefore, by Lebesgue’s theorem, the ratio mes w,(X)/mes X tends to a
finite value, when X shrinks to a point z except possibly for a set of
measure zero. We can see by making use of the total differentiability
of w,(z) that this limiting value equals |ow,/0z|*— |ow,/0Z|%. From the
absolute continuity of mes w,(X) follows the relation

mes w,(X) = SS (|ow,/2z2|*— |ow,/oZ|*)dxdy .

p.¢

If we take the disk |z|<7 <1 for X in particular and denote its image
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under every w, by E, (v=o0, 1, 2,.--), we see readily

hm sup E,CE.Sliminf E,,

f-pc0

which, together with the well known inequalities

mes (lim inf E,)) < 11m 1nf mes E,, < lim sup mes E, < mes (11m sup E,)

f-y oo f-poo

yields

(3) limmesE, = mesE.,.

fn-yo00

Consider the contour integral

Apskr) = 1. § Twnd)—w (] dw0D—w)]

lz]=r

On account of the condition (III), this integral can be defined for almost
all 7 in the interval (0, 1). By Green’s formula

= ]

iF<4

oW,, ow,|*

oz oz

_|ow,, ow,|?
oz oz

]dxdy .

Given >0, we can choose #,(€) so large that |w,,(z) —w,(z)|< € uniformly
on 0<]|z|=r<1, if n, m>n,E). Then

A, (1)< & § ('ag;zm w,

ow,,
oz

—I—] ~ )dargz
Z

ow
+_"
5

is valid uuiformly for a.a. r<{l. From the condition (IV) and the
Schwarz’s inequality follows

(4) lim S [A.(r)}dr = 0

mn-yoc0

On the other hand

Rt ey D el
] [ (52) % (3o

Letting first m— oo then n— oo, we obtain by (3) and the weak conver-
gence of the complex derivatives

(5)  limlim A,,(*) = 2mes E.—2 SS (

fn-yc0 Mm-poo
kL

w., [
oz

_ | oW 2)
)—az dxdy .
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By making use of the uniform boundedness of A,..(r) on (0, 1), we sub-
stitute (5) into (4) after application of Lebesgue’s theorem. Then we see
that the right-hand side in (5) equals zero for almost every 7 in (0, 1).
Thus it has been concluded that

(6) mes E,, = SS (
K<
for a.a.  and by continuity (6) holds good for all » on the interval [0, 1].
This reasoning is valid not only for the disk |z|< #» but also for arbitrary
disks contained in |z|<1l. The density of the set-function is defined
almost everywhere and equal to |[ow../0z|*— |ow../0Z|®?. Integral expres-
sion analogous to (6) on an arbitrary Borel set implies the measurability
of the mapping w..(2).
Since the point b, was arbitrarily taken on R, we complete the proof.

2

oW.,
oz

w.,

\dxd
oz )xy

Proposition 4B. f.' is L-derivable and measurable (i.e., absolutely
continuous in 2-dimensional sense) on R’.

Proof. By Lemma 4, the sequence {f. ;l}m converges to f=! uniformly
n=1

on R’. Hence the proof for L*~derivability follows the same line as that
in Proposition 4A.

Let w(z) be a local realization of f.. around a point pe R. Let E,
be the subset of R, where any local realization of f. ceases to be totally
differentiable. Since mes E,=0 (cf. Gehring-Lehto [5]), f..(E,) is also of
measure zero by the preceding proposition, whence it is seen that both
w(z) and z(w) are totally differentiable in respective variables at almost
every point on the surfaces. Concerning the local realization w(z) of f.
near such a point p, we set

w(z) = u(x+iy)+iv(x+iy), Az = Ax+iAy.

w(z+Az2)—w(z) = Aw = Au+iAv.
Then

Ax = x,(u, V) Au+x,(u, v) Av+o(| Au| + |Av]),

Ay = y(u, v) Au+y,(u, v)Av+o(|Au| + |Av]).
In particular, putting Av=0, we have

Ax = x,(u, v)Au+o(Au), Ay = y,(u, v)Au+o(Au),
whence

Au = u,(x, y) Ax+u,(x, ) Ay+o(|Ax| +|Ay])
= u, (%, Y)[x.(u, v) Au+o0(Au)]+u,(x, Y[ yulw, v) Au+o(Au)]
+o(|Ax|+ |Ay]).
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Letting Au—0, we see
1= ux(x! y)'xu(u, ”)+uy(x: J’) 'yu(uf v) ’
and analogously

0= v,(x, y)'xu(u; v)+vy(x, }’)'J’u(u, 1)) .

Therefore
_ vy(%, ¥) .
(7) ki ) u(%, Y)V,(%, y) — (%, 9)V.(%, 3)’
_ v.(x, )
J’u(“, U) ux(x’ y)z)y(x, y) —uy(x, J’)”x(xr y) ’
and similarly
_ uy(%, y)
) %%, V) u,(x, y)yy(x, ) —u,(x, )%, 3) ’
You, v) = ol 2)

ux(xr y)vy(x, .y) ——uy(x: y)vx(x) y) )
The equivalents to (7), (8) are

(6_w> _ow
oz 2z oz

= 7

9z _
ow |ow
oz

2

2

oaw |ow
oz

w
oz

ow
oz

which shows that, |ow/0z|*— |2w/2Zz|*==0 at all points where w(z) as
well as its inverse function z(w) are totally differentiable. In other words,
f. never transforms any set of positive measure on R to a set of measure
zero on R’, which implies the absolute continuity of f...

Proposition 5. f. is homotopic to X,

Proof. Let J,=[1—2'"",1—27"] denote the closed interval (n=1, 2,
.-.). Since f,~ fu+,, there exists such a function f(b, £) continuous on

the product set RxJ., that f(», 1—2""")=£,p), F(b, 1—27")=fru(P).
Moreover it is possible to take f(b, t), so that

sup osc f(p, 7)
(9) = Sup sup dist (f(p, £,), f(b, 2.)) < sup dist (faP), furi(P)) .

To this end we shall have only to define as follows: f(b, ¢) is the point
on a uniquely determined geodesic arc (e.g., with respect to the Poincaré
metric) connecting f;(p) (j=n, n+1), such that dist ( £,.(p), f(p, #))/dist (f.(P),
Far(P))=1.
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We first show that f(p,?) defined in RX U J, is continuous on
v=1
Rx U J, for every m. It is evidently true for m=1. Suppose the asser-
v=1

tion holds for m=mn. Then the analogous conclusion is also valid for
m=n+1. Because, in general

dist (f(p,, 1—27"—38), f(p,, 1—27"+8))
(10) < dist (f(p,, 1-27"=9), f(p,, 1-277))
+ dist(f(p,, 1—-27"), f(p,, 1—27"+39))
+dist (f(p,, 1—27"+8), f(p,, 1—27"+8)).

Since f(p, £) is uniformly continuous on R X U Jv as well as on RX J,4y,
v=1

we can find suitable positive numbers 8,=8,(€) for any &>0 (j=4,5),
such that the inequality

(11) dist (f(p, 2), SOV, ¥)<¢
holds in the two cases:
(1°) when 0<¢, ¢t/ <1277, dist (p, )+ |t—2'|<89,,
(2°) when 1—2""<¢, ¢/ <1-2'" dist(p, )+ [t—2'|<5,.
Take p,, p, and §;, so that dist (p,, p,)+06,< min (3,, 8). Then by (10),
(11) dist (f(p,, 1—27"—8,), f(b,, 1—27"+8,) < 3¢,

Hence f(p, t) is continuous on R X MLT Jv. We can conclude inductively
v=1

that f(p, £) is defined and continuous on R [0, 1).
Next, if we set f(p, 1)=rf.(p), f(b, t) is continuously prolonged up
to Rx[0,1]. Actually, we have

dist (f(p, 1), (¥, )
< dist (f(p, 1), £V, 1))+dist (f(¥', 1), 7V, £))
< dist (f(p, 1), SOV, 1))+dist (f(p"), fu(P)+dist (f.(0), SV, 8)).

Since { f,j»o converges to f., uniformly on R, we can choose 7,(&), so that
n=1

dist (f..(0"), f4(P)<&/3 so far as n>n€). If ¢ belongs to J,, we have
in virtue of (9)
dist (f.(p"), £V, ))<€/3  for any P’ ER.

Taking p, p’ so near, that the relation dist (f(p, 1), f(¥’, 1))<'&/3 holds,
we obtain finally
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dist (f(p, 1), f(p" 1)< €.
Thus we see f..(b)=~ f,(p), which was to be proved.
Proposition 6. f. is a Sense-preserving map.

Proof. Let w,(z) be a local realization near p, (|z|<1; n=-co, 1, 2,.-+),
such that z=0 corresponds to p, and w.(0)=0. If »is large enough, the
image of a fixed annulus 0<7a<|z|<b<1 under the mapping w,(z) is
bounded away from zero. Suitable choice of a branch enables us to define
a one-valued function Log w..(2)—Log w,(2z) on a<|z|< b, which tends to
zero uniformly there. We have by Green’s formula and Riesz’s theorem

lim SS _Z OWa\gandz| = SS & W) gandz|,
o0 a<Hl<s W, oz ﬂslzlsbw oz

lim SS 2 MWa|gondz| = SS z 3”’ 2= dzndzl,
T agiiigs Wn oz ﬂslzlsbw“’

whence follows

lim SS aargw"ldz/\dzl Sg Qargwe) 4 n dz| .
nyoo el Qargz

Since w,(z) is sense-preserving, it is valid that

ﬁm—uﬁ‘dargz——&z
dargz

|z]=r

on almost all circumferences |z| =7 where argw is absolutely continuous
function in arg z. Thus we get

QA Wu) gap dz| = 20(b— ),

a<Hl<s oarg z
accordingly
2B L= 4z dE| = 2a(b~a),
e << oargz
and
lim - Mldz/\ dz| = 4nc for every c€[a, b].
4c>0 Ac oarg z

c<lzlLecrde

It follows that

2e— § QABYegarg, — f BUELagarg:  for every cela, b].
aargz aargz

|2]=¢ [2|=¢
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This shows that the assigned orientation on |z|=c is preserved by w.(z)
as well as by w,(z). f. is a sense-preserving map, since it is topological.
Q.E.D.

Owing to the Propositions 4A and 4B, the dilatation D, (p) of the
mapping f..(p) is finitely defined at almost every point of R.

Proposition 7.
SRS [wa( )+ 1( )] [m(2)|*|dz A d2|_<_M(K+%).

Proof. Let w=w,(2), z=2,(w) be local realizations of £,(p), f5(q)
respectively ; set

- 02, 92y 4 — oo
B, = 'r(zy(w))(aw dw + e dw) v =g, oo,

Then
é_gk [Dr@+ 52 )]I'r(z)lzldz/\ az|
(12) — X(aa—“z’v +% )(]aazg a“’v )|-r(z)| \dz A dz|

02,|* az,,

221 [r(a,u) || dw n dw] = |18,

- (5

R

Let {e,-i be a smooth partition of unity relative to the finite covering
b i=1
{?Rj}_ of R’ and let ¥ a smooth differential of the first degree on R’. If
we write ¥ =1(w)dw +y(w)dw, we see
(Beo _Bn’ \I,)
= [ {{ te-teon G —rtaution B [ + [ taaon o

—r(a)) Z oz, ]\p(w)} dw A i

N 2 S S e,-(w){[‘r(zw(w)) o —*<2~<w>> ]«p(w) + ['r(zm(w)) e
%)

_T(z,,(w))éa%]m} dw A dw

—0 as n— oo, since in each local coordinate disk the complex derivatives
of z,(w) tend weakly to the corresponding one of z.(w). It turns out
that
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|(Be =By B)ILI(Be—Bs, O+ [(Ba— By, B—T)|
<IBe—Bs, O)| +1B.—Ball-|B.— || .

Since the smooth differentials are dense in the space of the square-
summable differentials on R’, ||8.—¥|| can be made smaller than any
€>0, while

0 < 1B.—=Bal1* = | Bl P +118alIP—2R{(B.., B} .
Therefore
(13) 1B |P < lim inf | 8,1,
which, together with (12) yields

SRS [Dfm(z)—kpfi(z)] |m(2)|2|dzndZ| < 1irginf SRS [Df,,(z) +’Di’(;)]

17(2)|?|dz A dZ |
< M(K+%) . QED.

The Propositions 2, 3, 4A, 4B, 5,6 and 7 imply f.€®,. It remains
to show that f. is extremal for our problem.
Now set

a, = Vo) dw = \/p(wv(z))(%u;‘ dz+%d§)

with local realizations w,(2) of f,(p) (v=#, o). Then, in the same manner
as in the proof of Proposition 7, for an arbitrary smooth differential ¥
of the first degree on R’, we have

lim (aeo—an’ \l’) =0 ’

npoo

whence
lim (¢, —«,, a.)=0.

From

0 |la,—a,|? = ||a,|P+|a,|*—2R{(«.., «,)}
follows

lle. | <<liminf ||a,|* = I,
while
I,<l|la.|?.
Therefore
e 1 ow.|* | |ow.|* 3| =
lealf = 2 SRS p(wm(z))(l e )Idz/\dzl I,.
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What we have just demonstrated is that to any @ € Q there corre-
sponds at least one extremal map f... So we shall denote it henceforth
by f, in place of f... Our results can be summarized concisely in

Proposition 8. There exists at least one homeomorphism f,€F,, such

that I[ f.]=inf IT£].

Formulation and solution of the second extremum problem

Consider the family o= {f., ® € Q} consisting of all the solutions
of our first problem. Clearly Fo==¢. Now we shall settle the second
extremum problem as follows:

Minimize the functional
1071 = ([ otstan(| G2 +{ G )1azn a2

within the family Fa, w.(2) being a local realization of f,.
By definition we can find a minimizing sequence { ft,,”i; such that
lim IL £, ] = inf IL£.].
Lemma 1. g is equicontinuous.

Proof. Otherwise, we would have, for some sequences {p“’} ;
{?P,‘.”’i° on R and f,, € §a, such that p® belongs to an arbitrary nelgh-
n=1

bourhood U(p;”) from some number #, on, that the relations dist (f,,(b5"),
o, 0PN >a'>0 (n=1, 2,---) with some constant a’. Suitable subsequences

of {p”’} , say again {p‘”} (7=1, 2), will converge to a point p on R.

Then its local coordinate neighbourhood WM, contains pi> (n>>mn,). Let
|2]< 1 be a local coordinate disk corresponding to N, and let w, (2) a
local realization of f,,. We would find in the same way as in the proof
of Lemma 3 that the integral

S S plevane) |Fper| + s

)tdadt z = toi®

increases indefinitely, when »# grows towards infinity. It is contrary to
the uniform boundedness of IT £, ]
Hence we get immediately

Theorem 1. The family Fq is normal on R.
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The minimizing sequence { fa,,:}a contains at least one subsequence
n=1
. uniformly convergent on R. For brevity we denote it by the same nota-
tion: { fm”(p)i° converges to a mapping q=g.(») (W€ R, q€ R’), which is
n=1

clearly one-valued and continuous.
Lemma 5. The family Q is compact on R.

Proof. Take any infinite sequence {m,j’_ out of Q. Let |2|<1
(resp. |2’|<1) be the homeomorphic image of S; (resp. S;,,) under a
coordinate map z=2(p) (resp. 2’=2'(p)). Set

T.(2)dz in |z|<1, §

”n Tn =
N {-r,',(z')dz’ in |2|<1, @)

()de  |z]<1.

0

Then by the Remark to Lemma 1, {T,,(z)f contains a suitable sub-
n=1

sequence {T,,v(z)f_ converging uniformly on |z|<1. Write
T.(2) =1lim T,(2) on |z|<1, 7.(2) =dT.(2)/dz in |z|<1.

Then {fr,,v(z)f converges uniformly to 7.(2) on |[z|<7<(1, whence
V=1

g v (rei%)| rd0 — lim S |7 (7079 | 7d0 < M/ < M

by the condition imposed on Q. Since r<(1 is arbitrary, 7.(2) has the
Fatou property in |2|<1. The boundary values 7.(¢i®) can be defined
for almost all 6€ (0, 27). Since the total variation V[T, (¢¥); 0, 2=] of
the function T,,(¢'%) over the interval (0, 2z) (»v=1, 2,---) is uniformly
bounded, we get by Helly’s theorem that

27

(14) limS |70 (e)|d0 = lim V[ T,(¢); 0,221 = V[T.(¢*); 0, 2=].

0

On the other hand, on account of the monotonicity of concentrically
circumferential integrals and the uniform convergence, we have

g |rrm(e"°)|d02§ |7 (re®) | 7d0 — limS |, (rei®) | 7d®

0 o 0

for every <1, whence
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2r 27
tim { |7, (e 1d0 < { 7)1 do0.
This inequality together with (14) afford
a5) [ Ir(e9ido = tim | |r,(e9)d6 = VLT () 0,2x],

0 o

which implies the absolute continuity of the absolute variation V[ T.(¢®);
0, ®] for every ®€ (0, 2z). Taking into consideration the uniform con-

vergence of {T,,v(ei")f-: towards 7..(¢*®) on every subinterval (0,, 6,) of

(0, 27), we obtain
02
T.(61%)— T..(¢i%) = S T (¢1%)ie?® dO
0,

and from (15)

6y b
(16) S v (e1%)|d8 = limS |7 (¢7%) | d6 .
0, e 0,
Consider the case in which S;NS;,, contains a 1-simplex. Then setting
— N
&, &,=2(y) and &1, &3=2'(y) for any arc v contained in S;NS;.,, we can
see by (16) that concerning the integration along v
$2 $2 &2 124
[ironiag) =tim § im©11dz1 =tim | 1m@rniar = § 1@ ez
4] $1 & &
The assertion |7.(8)||d¢|=|7.(E)|d¢’| for aa. peS;nS;., (j=1,2
--.,k—1) follows at once, where {=2z(p) and {’=2z'(p). Thus we have had

the linear differential ®.,=7.(2)dz holomorphic in R— CJaSj, and |, |

j=1

[7.(2)| |dz| is well-defined at almost all points on 0 aS; and clearly

) S o, | <M.
]=13,S'j

Next, let |z| =7 be the circle on which 7.(2)==0. If |¢|< 7, we have

r— g’
lz—¢|*

log |7,(®)] = - { (log (@) dargz.

2n

The right-hand integral tends to (1/2z) S (log |T..)DL*— €19/ 12—¢&1%]

0

dargz as v—co, while 7,({) converges to 7.({) uniformly in |&|<7.
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Hence

|«r,,(z)|=expv(ziﬁ§(logm(z)l)lfglif—dargz):{:o, E1<r.

0
Since 7 is taken arbitrarily near 1, it follows that «.(¢)-+0 in |&|<1.
One concludes that o_ belongs to Q.

Lemma 6. Let p; (j=1, 2) be arbitrary points on a singular simplex
S, and let " the class of all rectifiable simple arcs which connects the two
points p; on S;. Then for any y€ I’ and for any o =7(2)dz € Q, the quantity

f1o1 = {17114z

Y Y

is bounded away from zero.

Proof. Suppose on the contrary

infglcol ~0.
YED
weg ¥

Then there would exist o,=7,(2)dz€ Q and v,€I’ (n=1, 2,--+), such that
(17) limS lo,| = 0.

yn

Let z be a local coordinate defined in |2z|< 1 corresponding to the interior
to S,, such that z(p,)=0, b, being a fixed interior point of S,. Set

Tu2) = [ r@)de for 121<1.

0

Then, according to the Remark after Lemma 1, T,(z) can be prolonged
continuously onto v|z|_<_ 1 and the sequence {T "(z)j.'o_‘ contains at least one
subsequence, say {T,w(z:)}:"_,l converging uniformly ;)n |z|<1l. Put T.(2)
= 11»1{01 T,[(2). Then )

| To@) = To(2)| = lim | T (2)— Tufe)| < lim [ 70,1 1421 ,

z; = 2(p;), j=12.

The right-hand side is equal to zero by (17). Hence T.(2,)= T.(2,). T..(2)
=dT./dz is defined and possesses the Fatou property in |z|<1. v, are
analytic arcs which are uniformly bounded. So by Vitali’s theorem there
exists a suitable path 7. €' from p, to p,, such that
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(18) [ 17.(2)1d21 = 0.

yeo
If we take on v. any point p, we have by (18) T..(2(p))= T.(2,)= T.(2,).
Therefore 7T.(z)=const. on |z|<1, whence o,=7.(2)dz=0 on |z|=1.
Since o, belongs to Q, it follows from the requirement concerning
that ».,=0 on every simplex adjacent to S,, accordingly on the whole
R, which is absurd.

Proposition 9. g..(b) is schlicht.

Proof. Suppose, on the contrary, g.(p,)=g.(p,)=q for some bp,, p,€ R
(b,==p,), q€ R’. Let z=2,, (w) (lw|< 1) be a local realization of f;. about
Sow,(®,), such that f, (p,) corresponds to w=0. Set

r 2

_ 2 | 920,1* | | 920,|° 400
A(r) = H (20 (10)) | <_awi + e )tdadt w = e,
Then clearly
M/, 1
A, <—<K+—>.
N=7T\E+%

We can find, by Lemma 6, a positive ¢ independent of ¢ and #, such that

2

¢ < | 1720, (te) ) 1dzo (1) .

Hence follows the inequality
< Ant dA(t)/dt,
leading to a contradiction.
Proposition 10. g..(b) is @ homeomorphism between R and R’.

Proof. This is an immediate consequence from the continuity of
2.(p) and Proposition 9.

Proposition 11A. g..(b) is L-derivable and absolutely continuous in
2-dimensional sense on R.

Proposition 11B. gZ'(q) is L*~derivable and absolutely continuous in
2-dimensional sense on R’.

The proofs are similar to that of Proposition 4A (resp. Proposition

4B), since g.. (resp. gz') is the uniform limit of { fa,j_ (resp. { f;,:}’-: ).
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Proposition 12. g.. is homotopic to X.
Proposition 13. g. is a sense-preserving map.

The proofs are similar to that of Propositions 5 and 6, since g.. is
the uniform limit of { f“’"}:’l

The class Q of the loc:ally holomorphic differentials ® is compact by
Lemma 5, so the sequence {w,j contains at least one subsequence uni-
formly convergent in R— U1 BS,, the limit of which we denote by o
=7,(2)dz; it belongs agamj—to Q. Let z,,(w), Z.(w) be local realizations

of f5.(q), g='(q) respectively. Then, using the similar reasoning to that
in the proof of Proposition 7, we see

(%]

>|'r,,o(Z @) |*|dw A dw |

aES

< li Inf SRS ( %z;’,’" E %z;" 2>lfrn(zw,,(w>)lz|de dw| _<_—];£<K+%)

Thus we have obtained, concerning the dilatation D, of the mapping g_
the following

Proposition 14.

SRS[ DO+ 5 % ()] o, <M(K+L).

The Propositions 9, 10, 11A, 11B, 12, 13 and 14 imply the fact that
g.. belongs to ¥, . We are now going to compare it with £, , defined

as one of the extremal maps in §,_; since {f,,} converges to g. uni-
n=1

formly on R, we have by the procedure often employed (cf. Proposition 7)

| O o
SWW (z»(‘—] | =[Vidznaz,

where w,,(2) and W.(2) stand for local realizations of f, and g.

respectively. The second member in (19) is, by definition of { fa,j

b
=1

equal to
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1= g oo 2]+

o 2>|dz/\d2|.
Iz

We get therefore

§R§ P(w,.,(z))q%ﬁr%-‘% iz ndz| < Sj p(W. (z»(l——{ ‘

ow..
oz

ldandz| <1,

whence we have the identity

[ oto.on (| Fz=/

‘aw“ )|dz/\dz | =1,
oz

with a local realization w,_ of f, . The above relation describes the
fact that the mapping f,_ just solves the second extremum problem.
This extremum f,_, however, as well as the families & and g, still
depend on the constant M. So we write Qy, oy=7y(2)dz, fyy=fy,,, and
wy(2) in place of 2, o, f,_ and w,_(2) respectively henceforth in the
present section to study the behaviour of I[ f,,], when M is considerably
large. It will turn out below that, although the quantity I[ f3,] never
increases as M grows, it is not steadily decreasing for M — co ; there are
two values of M, say, M,<_M, such that I[ fy,]=1I[ fy,]. Hence f,
solves automatically our second extremum problem for M=M,.

Proposition 15. If M is sufficiently large, there exists at least one
locally holomorphic differential &p,€ Q,, such that

(20) [[[pruw ot (p)] Bnrkiom < M(K+-}{—) :

Proof. We see trivially that the left-hand side of (20) cannot be
greater than M (K +%) If the inequality sign enters in this circumstance

for some large value of M, the conclusion is immediate by posing &,,=®,,.
So we may assume

(21) gs [Df (b) + ]wM* = M(K+%) for every M.

D()

Under these hypotheses our purpose is to derive &, from ,, through
some approximation process for sufficiently large M. In spite of an
extreme naivety of the underlying plan, the author has regrettedly failed
to avoid a certain cumbersomeness in the details of proof.
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Let us set

={p!D D)+ M(p)_M(K+——)}

<
= s < Keg)
In view of the conditions (IV), (V) and (21), both E* and E- are sure
to be of positive measure. In order to dispense with unnecessary leng-
thiness of the context, we shall deal with the case when there exists at
least one simplex S;€ 3%, such that mes (E*nS,) mes (E-NS;) >0. The
proof for the other case follows almost the similar line.

Given an arbitrarily small 6>0, let F be a closed subset of E-NnS,,
such that

22) SS[Df ®+ 5 )]wM*coM<e/M-

Let B, be a simply connected subdomain of a local coordinate disk U,
={z||z|< 1} corresponding to intS, with piecewise analytic boundary
which encloses z(F'), such that

23) SS [DfM(z) + D,«l (z)] () 12| dz A dZ| < &/ M.

B,-%(F)

Suppose, for the time being, that B, contains a subarc v, C 39U, of length
28>0, whose middle point we denote by z,. Let a<a’ be two positive
numbers smaller than 1 and let B, a Jordan subregion confined in B,.
How to fit them shall be found soon below. Employing them, we are
going to define two domains A_, A; and the positive quantity ¢

A, = {z||arg z—arg z,| < 8} n {z] 2| >a’},
AL = A, vizla<|z|<a},

o= ([ 1@ 71dznaz) /([Imu@11dzn dz] .
lz1<1 . Bz

There exists a polynomial @({) which satisfies the inequalities

l—é—logc—(/?(é')‘é(e/M)z on |¢1<a,

(24)
3log All—-gl’(f)lé(&/M)z for ¢€ U;—A] belonging to |{|>a’

(cf. Walsh [11], p. 15). Set A,= max |exp ®(2)|. Through an adequate
choice of a, a’ and B, it is possible to find such a linear transformation
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£(z) of U, onto itself, that ¢(B,) is contained in |¢|< a, and that

@ < min |£()| < max |£(2)| <1, (U, ~B)NAL =,

(@5) [§[ru0r+ 5 g ity n i < azma,

4

[ leu@llari < § 1nu@ a2,
8”;“‘4( 0[z| 1

where o,,({)d¢=m(2)dz. Put
PO =oy@)expp(l),  1¢1<1.
Then by (24), (25)

@) | 1Pe©f1as ndg1 = a-2e/my) ({ 1nz)121dz ),

1¢iI<1 121<1

(26) § 1PO@)|1dE| < A+ M) § |mu(2)] |da] .

1g1=1 lzl=1

In possession of (22), (24), (25) we assert that there exists a positive
constant ¢,, such that

@) ([P | iPewride g

1<t

Dr, (&)

|ra(2)| |’dzNdZ| —c,.

<({[prua++.

121<1

57, @)

Even in case in which B, lies in U, entirely apart from 2U,, one is sure
to succeed in deriving the same results (26) etc. by means of linear trans-
formations and an analytic prolongation across the boundary.

Next set

P(z) = Pw(z)[gg ) ?ldz ndz) /([ 1P 7 dz nazl ]

121<1

Then
@7) SS |P(2)]?]dzn dZ| = H Imag(2) |21 d2 A dZ]

jz1<1 1z1<1

27) limsup § [P(2)| |dz| < (1+e0[M?)[(1—26/MY) § |mul)] Id2],

jzl=r 121=1
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@ | [DfM(Z) +

K% M( )

]IP(z)[ |dz A dZ|

1
< [Df (z)+_—];¢ (2)|?|dz A dZ| —ch.
IS.S Dry)4"™ '
with the constant ¢ >c¢,/(1—2(6/M)?).
Let S,; be the simplex adjacent to S, and let s; a small subarc of

oS,; adjacent to S;;nS,, such that S oyl =a, >0 (j=1, 2, 3). We take

suitably a simply connected subregion S¥ of S,, partly bounded by
s;\(S;;nS;), so that

SS @ppxary <& SS Opp*Dps

S

(28) §S [Df (p)+D l(p)

1
Let |2/|<1 be a local coordinate disk corresponding to S;;. The above
composed linear differential |P(z)||dz| induces on the circular arc
2(S;;nS;) the summable linear differential | P/(2)| |d2’| which is identical
with |P(2)||dz|. In view of the concavity of the logarithm

] m* M<;n‘m.

1 — S log u(x)dx < log {b 1 S u(x) dx} for summable #(x) >0 on (a, b),

we assign the boundary value
log | P'(¢)| —log |ma(¢")|  on {'(S;;nS))
W)=y —¢ on ¢'(s;)
0 elsewhere on || =1
to define the Poisson integral
w() = —j w1 Ldarg e
Ié‘ i
in |2/|<{1. After an adequate choice of S¥; and 2/, we may have

(Euclidean) dist. (2/(3S#), 2/(s;)v2/(S;;nS;)) =>6>0,

(log| P'(2)| |+ |log|m(zs0) | )] d2'| < &, S ldz'| <&,

7 ’cs .
Z(S”.nS,) 2765

where |7)(2")|1d2'| = |7(2)||dz|. Then
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29) W(2) < 58_(1 +&)  in 2(S;,—SE).
7T

With the harmonic conjugate v’(2’) to #'(2’) we put

P'(2’) = exp (log|m(2)| +u/(2)+iv'(2)) .
Then
| P/))| on Z(S,;NS)

|P(2)]| = § e | mi(2") | on 2'(s;)
|73(2")| elsewhere on |2/| =1.
It follows from (28), (29) that
5 _ _
- exp(=2@+9) [ 1) 71d2 naz 1 < ([ 1P @) 1110z a1
z sy, ;?;*.

§S[Df )+ /)]IP’(z’)l |dz n d?|

1j

< max (43, 1) SS [ (z’)+

’J
If we select 8, &, in particular, so that

e )]1 (2| d A dE | <6

(30) (- exp (=2 (1+8) > 1 (/MY d1+8)/=<¢/M,
we get
@y ([ 1P@Eridr a1 = a—emm ({ 1) i1dznaz

8,5 8 1
while

@) [ 1P@1dz )= [ 1mi@) 1a21 < [ 170@)  1d2| —(eau/2)
i i s (@>>0),

@ {{ [+ 5 @

< exp (%(1+8)) SS[ @)+

’}

]IP’(z’)IZIdz’/\ dz'|

B ,)]l-rﬁu(z/)lzldz’/\ dz'| +&

< SS [DfM(z’) + ( 3
514

Let S7; (#S,;)€ = be the possible simplex adjacent to S;; and let S¥*
its simply connected subregion, such that 9S¥*>s; and that

]| w2 |?|dz' A dZ’| + 36 .
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(32) i}i oppkwy < & SS*S Dpp¥@pp,y §§k [Df u(P) + sz;(p)] @pxey < E .
i

Iy ij

If we take a local coordinate disk |2”/|<{1 corresponding to Sj;, we have
the summable linear differential |P”(2”)||dz"|=|P(2")||dZ'|, |Tu(z")|
|dz"| = |T(2")| |d2’| for almost all points on S;;nS,;. It is possible to
adopt S¥* and 2” so as to be subject to the conditions:

Ilog |P//(z/l)| ’ ldz//l é 83 ,
z”(cj)
(Euclidean) dist. (2”/(s;), 2”(eS¥*nintS;})) >6.

If 8, & are chosen so as to fulfill the requirement (30), the straightforward
computation yields

@3 (1P iride naz) = a-emy) ([ 171 1az7 n a2

S// S//
15 'j

4 ,7 1 17( !\ | 2] J?! /7
(33") g[nf,u(z )+ ) @l n e
1j
4 1 s s 2 /17 ~/
< §S [DfM(z )+DfM(z,,)]I'rM(z )|2|dz" A dZ”’| +36.
1
The differential
P(2)dz for p(z) in intS,,
P/(2)dz’ for p(z) in U intS,;,

S
Il

R

P"(z")dz" for p(z”) in CJ int S7;
. in R—S,— U S,;— [ st
i=1 5=

satisfies not only the local holomorphy conditions (i), (ii), (iii), (iv), but also

SRS [DfM(p) + Dfi(p)] are < M <K+ ’11?> Y

and
[1—]l&[*] < be/ M)

for some positive constants c¢{ and b (independent of & and M) on
account of (27), (31), (33), (277), (31”), (33”). Let it be normalized into
oy=0a/||a]|: we have ||&y||=1 and the inequality .
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M-%E m(1-%e/m)

1 ~ 4 _
ai'M1<\7ﬂ-(g—/—My S' '<m)7_ 1-be/ M) <M

is valid in virtue of (27’), (31’) for sufficiently large M, which enables us
to conclude that

B € Qyy for M > 1.

Finally it can be verified that

SS [Dr)+ - (p)] i SRS [, +Df:(p)] Sarkiing

= @-se/ a0 [ [ Do)+ LS ([ [ D+ 2 v

_ : _1_>. 1\_ .,

>@ b(e/M))M(K+K : (M(K+K) ).

When M is large enough, the last term will exceed 1, which proves the
assertion. Q.E.D.

Existence of a harmonic mapping

Proposition 15 shows the fact that the map f,, belongs to the family
B, if M is sufficiently great. This mapping, by definition, extremizes
the functional I f] in the wider family $p,,; much more does in Fs,,.

Now we are in a position to get the necessary condition for the
map f=f, to minimize the Dirichlet functional within the family 33,,.
To this end, we set

= z = W g2+ W gz
a = pdz+qds = p(w(z))( 2 e+ 28 dz)

with a local realization w(2) of f(b).
Let F be a compact set comprised in a local coordinate neighbourhood
N; (7=1,2,---,k) of R and let |2|<1 the corresponding local coordinate
disk. Take a complex-valued continuously differentiable function A(2)
defined in |z|<{1 with the compact carrier 2(F), and compose, with a
complex constant & a mapping 2’=z+6EM2) of |z|<1 onto itself. It is
topological as soon as |&| is small enough. If we write a=p’ dz’+q¢'dz,
then
, OZ oz/ , 2%\ ,-
am (# Z g )z (0 % g Z e,
whence follows
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oz o7 oz | oz
o= g~ _p R g P=
p,:paé o P %
oz'|* | oz|*’ oz|* | oz|*"
oz oz oz oz

Since dz”?=(1+8\,)’dz"+ENEdZ+26(1+EN)N;|dz|?, it is easy to verify
that

ds’ = |p'dz'+q'dZ'|* = (|p'|*+|¢'|")|d' |+ 2R{p'g'd="}
= (12'1°+ g1 1dz’ | "+ 2R {p'q' (1 +&N,) 26 | dz|*}
+2R{p'7[A+Er,)dz"+ENLdZ"]} .

Set w,(2)=w(z+éN2)). Then w,(z) becomes a local realization of some
homeomorphism f,, which is considered to be generated from f by means
of a certain local deformation. f, satisfies the conditions (I), (II), (III),
(IV) and (V) too, with @=a&,,, owing to Proposition 15 and the continuity
of the functional concerned. Therefore f, belongs to &3, again. As we
compute readily

' I[fs] _I[f]
= ([apenrrr+ig@ miar naz van{ ([ sy 7@ +on @)

|dzn dz|)
=[fas@i+19@191dzn a2

— 4m{s SS A (2)[1+EM.(2)]G(2) | dz A dZ]| } ,
mi
where
Glz) =

5(2) ¢(D[1+EN ()= ENz(2)[1 +EN()IL | 5(2)|°+ 1 9(2) |"] + p(2)a(R)[EN() T
LI1+é&n(2)]°— |&nz(2)|7]

Letting £§—0 with the conditions lim arg é&=0 or =»/2, we have
20

¢[[R{p@T@DN=()} 1d2n 2]
lim ILf1=I0A] _ ) %
R 1 {{ S{6@a@ ()} 1dzn ) .
2,

From the extremality of I[ ] within the family &g o it is concluded that
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34) SS M:(2)p(2)q(@) |dzndZ] = 0.

R;
For the purpose of demonstrating our assertion, we shall utilize a kind of
smoothing operator due to G. Springer [9], which works upon square-
summable functions and makes them smooth. It brings us some simpli-
fication ; for an arbitrary square-summable function »(z) the smoothing

operator is defined as follows :

M, o(z) = S o(z -+ tei®) Y (tei®) tdodt ,

OL——-":

where
3(r*—1t)/nr® t>vr

re = =

Take 7 sufficiently small, so that |z|<1—7» may comprise z(F). Set
§(2)=p(2)q(z). Then M,E(2) is defined and summable in |z|<1—7. By
Fubini’s theorem we have

@5) (| (re@I@Idendz = ([ s@ImA@]1d2n a2

121<1-r 1zI<1-r
~ SS £(2)-2 [T M(2)] | dzn dz]| .
1z2]l<1-r az

M A(2) is continuously differentiable and has a compact carrier comprised
in |z|<1—7r. On account of the orthogonality condition (34) the right-
hand side in (35) vanishes, whence

| @) dznaz - 0.
lZI<1-7
Since M,&(z) is smooth, we obtain by Green’s formula
SS %[W&,’g‘(z)]x(z)ldz/\ di| =0.
jz1<1-7

Arbitrariness of A(z) enables us to conclude that 9R,E(2)/9Z vanishes
identically on |z|<<1—7, i.e., W, E(2) is holomorphic in |z|< 1—7. Let
us put

ME(2) = ay+az+--  for |z|<1—r.
M, [M, £(2)] is defined in |z|<1—7,—7, and we have
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M, [T, £2)] = | | M, £z +1e) Y, (4e1%) td6dt

© Cmmimmy 3
sy

79 21

= S S La,+a,(2+te®) +---1Y, (tei) tdOdt = a,+az+ -

=M, &) .
Hence by Fubini’s theorem
M, E(z) = M, [, £(2)] = M, [WM, £(2)] = M, £(2),
which implies the independency of M,&(z) on ». Next we shall show
lrigl M,E(z)=E(2) for almost all z in |z|<1—7. Given any € >0, we can
choose a positive number 6, such that Sg |E(2)| |dzn dZ|< & for every
X
measurable subset X of M, provided mes 2(X)<(8. There exists a closed
set E, comprised in |z|<{1—7, such that £(2) is continuous on E, and

w(1—7)*—mes E,<8/2. Hence, if » is sufficiently small, |£(z+¢)—&(2)|
<& for 2, z+¢€E,,|¢|<r. When we denote by E the translated set

of E, by a vector ¢ and define the set-function w(E,)= SS |E(z+ &) —E(2) ]
Hz
|dzA dZ|, we have n(1—7)’—mes (E,N EX)<[z(1—7)*—mes E, ]+ [=(1—7)*

—mes E&]—2[z(1—7)—mes E,]< 8. So p{z||z|<1—r}<uE.NE?)
+u[{z| |2|<1—r} —(E.nE®)]|<=z(1—7r)*€+28. Therefore

| MM, E(2)—E(2)| |dz A dZ|

lzI<1-7

<([[ ] 1ee+o-s@11dznaz1 |v.0)1d8 adE|

IGI<r T RI<1-7

so far as » is small enough. This implies

lim SS | M,E(2)—E(2)| |dzndZ| = 0 for every fixed ' <1.

jz|<1~r/
By Fatou’s lemma, we can choose a suitable sequence {r,jﬂ_ of radii, such
that
lim| M, &(z)—&(2)| |dzndZ| = 0, limr, = 0.

lz1<1-7/

Therefore lim [, &(z)—&(2)]=0 for almost all zin |2|<1—7’. That is,
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lim M, &(2) exists and equals £(z) at almost every point in |z|<1-—7/,
f-y00

while M, £(2) is a holomorphic function independent of #z; £(2) is equal to
a holomorphic function MM,E(z) almost everywhere in |z|< 1—7’. Letting
r’—1, we conclude that £(z) can be identified with a holomorphic function
in |z|<{1 through a suitable modification of its definition on a set of
measure zero. Since ; may be any one of the finite collection of coor-
dinate neighbourhoods on R, we see consequently that p(z)g(z)dz* is an
analytic quadratic differential on R. Thus we have proved

Theorem 2. There exists at least one topological mapping from R to
R’ which belongs to the given homotopy class and is harmonic relative to
the given conformal metric on R’.

ExampLE. Consider the simplest case in which R and R’ are both
tori (5, A being naturally fixed). Then the harmonic map of R onto R’
is unique except the conformal mappings of R onto itself.

Suppose there exist two such mappings, say, f and f. Let q be an
arbitrary point on R’ and @, a7 the holomorphic quadratic differentials
on R associated with f, f respectively. Since the dimension of the vector
space of analytic quadratic differentials on R is one and f is homotopic to
f, the nets on R woven by their trajectories and orthogonal trajectories
J{as4 =0 and J{az} =0 coincide with each other and it is also the case
with R{a,;} =0 and R{az}=0. Further we can see without so much
difficulty that these families of analytic curves correspond to each other
by the mapping f~'(q)—f"!(q) and that composite map f~'f reduces to a
conformal transformation of R onto itself.

ReEMARK 2. To the limited knowledge of the present author, the
question whether or not the uniqueness in Theorem 2 holds good seems
to be still unanswered for the general case. So at the end of the paper
we should like to pose the

PrOBLEM. We restrict ourselves to the pair (R, R’) of (topologically
equivalent compact Riemann) surfaces with genera superior to 1. Then,
is the harmonic mapping relative to the given conformal metric on R’
unique within the preassigned homotopy class?
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Added in Proof. Correction. In my preceding paper [8], please

read line 6 at page 206 as follows:

(iv) @ is holomorphic and free from zeros in the interior of every

simplex S; (j=1, 2,-++, «).








