

Title	Examples of projective manifolds not admitting Kähler metric with constant scalar curvature
Author(s)	Hano, Jun-ichi
Citation	Osaka Journal of Mathematics. 1983, 20(4), p. 787-791
Version Type	VoR
URL	https://doi.org/10.18910/9015
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Hano, J.
Osaka J. Math.
20 (1983), 787-791

EXAMPLES OF PROJECTIVE MANIFOLDS NOT ADMITTING KÄHLER METRIC WITH CONSTANT SCALAR CURVATURE

JUN-ICHI HANO*

(Received May 14, 1982)

Introduction. We denote by P^k a complex projective space of dimension k . The direct product $P^m \times P^n$ ($m \leq n$) has a natural imbedding in P^{mn+m+n} , called the Segre imbedding. Let $M_{m,n}$ be a non-singular hyperplane section of $P^m \times P^n$ in P^{mn+m+n} . The first Chern class of $M_{m,n}$ is positive, (the convention here is that the first Chern class of P^k is positive). The purpose of this note is to prove the following

Theorem. *If $m < n$, $M_{m,n}$ does not admit a Kähler metric whose scalar curvature is constant. If $m = n$, $M_{m,n}$ admits a homogeneous Einstein-Kähler metric and hence its scalar curvature is constant.*

This implies immediately that $M_{m,n}$ ($m < n$) can not be Einstein-Kähler. This fact for the cases $m=1$, $n \geq 2$ and $m=2$, $n=3$ and 4 have been verified by Y. Sakane [3] and [4]. We show here that some modification of his idea leads to the above theorem.

1. Let (z_α) , (w_β) and $(\xi_{\alpha\beta})$ be homogeneous coordinates of P^m , P^n and P^{mn+m+n} respectively. The equations

$$\xi_{\alpha\beta} = z_\alpha w_\beta, \quad \alpha = 0, \dots, m, \quad \beta = 0, \dots, n$$

define the Segre imbedding, which is independent on the choice of these homogeneous coordinates. Let p_1 and p_2 denote the projections of $P^m \times P^n$ into the 1st and 2nd components respectively. Let H_1 and H_2 be the hyperplane bundles of P^m and P^n respectively. Then the line bundle $p_1^*H_1 \otimes p_2^*H_2$ is the restriction of the hyperplane bundle over P^{mn+m+n} to the submanifold $P^m \times P^n$. We denote by M the intersection of a hyperplane in P^{mn+m+n} with $P^m \times P^n$. Thus the line bundle $\{M\}$ associated to the divisor M in $P^m \times P^n$ is $p_1^*H_1 \otimes p_2^*H_2$.

Let $K(M)$ and $K(P^m \times P^n)$ be the canonical line bundles for M and for

* Supported by Sonderforschungsbereich 40 "Theoretische Mathematik", Universität Bonn.

$P^m \times P^n$ respectively. Then

$$K(M) = K(P^m \times P^n) \otimes \{M\} |_M,$$

and hence

$$K(M) = p_1^* H_1^{-m} \otimes p_2^* H_2^{-n} |_M.$$

This means that the 1st Chern class of M is positive definite.

2. We shall show that any holomorphic vector field on M extends to a holomorphic vector field on $P^m \times P^n$. Indeed, the following lemma asserts a stronger fact.

Put $X = P^m \times P^n$. Let $T(X)$ and $T(M)$ be the tangent bundles of X and M respectively. Given a holomorphic vector bundle E , we denote by $\Omega^p(E)$ the sheaf of germs of holomorphic E -valued p -forms.

Lemma (Sakane [3], p 356). *The exact sequence*

$$0 \rightarrow \Omega^0(T(X) \otimes \{M\}^{-1}) \rightarrow \Omega^0(T(X)) \rightarrow \Omega^0(T(X) |_M) \rightarrow 0$$

induces the exact sequence

$$0 \rightarrow H^0(X, T(X)) \rightarrow H^0(M, T(X) |_M) \rightarrow 0.$$

Here, we present a simpler proof. The above given sequence implies the following exact sequence:

$$\begin{aligned} 0 &\rightarrow H^0(X, \Omega^0(T(X) \otimes \{M\}^{-1})) \rightarrow H^0(X, \Omega^0(T(X))) \\ &\rightarrow H^0(M, \Omega^0(T(X) |_M)) \rightarrow H^1(X, \Omega^0(T(X) \otimes \{M\}^{-1})) \rightarrow. \end{aligned}$$

In order to prove the lemma, it suffices to show that

$$H^q(X, \Omega^0(T(X) \otimes \{M\}^{-1})) = 0, \quad \text{for } q = 0, 1.$$

The cohomology group in question is isomorphic to

$$H^{m+n-q}(X, \Omega^1(K(X) \otimes \{M\}))$$

by the Serre duality. Since

$$K(X) \otimes \{M\} = p_1^* H_1^{-m} \otimes p_2^* H_2^{-n},$$

we can apply the Künneth formula,

$$\begin{aligned} H^{m+n-q}(X, \Omega^1(K(X) \otimes \{M\})) &= \\ &\sum_{p'+p''=m+n-q} \{H^{p'}(P^m, \Omega^0(H_1^{-m})) \otimes H^{p''}(P^n, \Omega^1(H_2^{-n})) + \\ &H^{p'}(P^m, \Omega^1(H_1^{-m})) \otimes H^{p''}(P^n, \Omega^0(H_2^{-n}))\}. \end{aligned}$$

As a result of the Kodaira-Nakano vanishing theorem and the Serre duality,

$$H^p(P^m, \Omega^0(H_1^{-m})) = 0 \quad \text{for all } p.$$

Thus, we see that

$$H^{m+n-q}(X, \Omega^1(K(X) \otimes \{M\})) = 0 \quad \text{for all } q,$$

completing the proof.

3. The group of all holomorphic automorphisms of $P^m \times P^n$ is $PSL(m+1, \mathbf{C}) \times PSL(n+1, \mathbf{C})$. By the previous lemma the group G of all holomorphic automorphisms of $P^m \times P^n$ which map M onto itself contains the identity connected component of the group of all holomorphic automorphisms of M .

Let \tilde{G} be the inverse image of G under the projection $SL(m+1, \mathbf{C}) \times SL(n+1, \mathbf{C}) \rightarrow PSL(m+1, \mathbf{C}) \times PSL(n+1, \mathbf{C})$. The isomorphism $\mathbf{C}^{m+1} \otimes \mathbf{C}^{n+1} = \mathbf{C}^{(m+1)(n+1)}$ defines a canonical imbedding of $SL(m+1, \mathbf{C}) \times SL(n+1, \mathbf{C})$ into $SL((m+1)(n+1), \mathbf{C})$. Thus, an element in $SL(m+1, \mathbf{C}) \times SL(n+1, \mathbf{C})$ is a linear transformation of $\mathbf{C}^{(m+1)(n+1)}$ and maps a hyperplane onto another hyperplane, obviously.

Let H be the hyperplane in P^{m+n} such that $M = (P^m \times P^n) \cap H$. Then, \tilde{G} consists of elements $(\sigma, \tau) \in SL(m+1, \mathbf{C}) \times SL(n+1, \mathbf{C})$ which leave the hyperplane H invariant. The hyperplane H is the zero of a non-zero linear form A on $\mathbf{C}^{m+1} \otimes \mathbf{C}^{n+1}$. If we put

$$a(z, w) = A(z \otimes w), z \in \mathbf{C}^{m+1}, w \in \mathbf{C}^{n+1},$$

a is a bilinear form on $\mathbf{C}^{m+1} \times \mathbf{C}^{n+1}$. Thus, \tilde{G} is the set of all $(\sigma, \tau) \in SL(m+1, \mathbf{C}) \times SL(n+1, \mathbf{C})$ with the property

$$a(\sigma(z), \tau(w)) = \lambda_{\sigma, \tau} a(z, w), z \in \mathbf{C}^{m+1}, w \in \mathbf{C}^{n+1},$$

for some non-zero constant $\lambda_{\sigma, \tau}$.

Now, choose homogeneous coordinates on \mathbf{C}^{m+1} and \mathbf{C}^{n+1} so that

$$a(z, w) = z_0 w_0 + \cdots + z_k w_k,$$

where $0 \leq k \leq m \leq n$. Suppose $k < m$. Take a point (z, w) with $z_0 = \cdots = z_{k-1} = w_0 = \cdots = w_{k-1} = 0$. Then the point is in M , but is a singular point, as

$$dA|_{\mathbf{C}^{m+1} \times \mathbf{C}^{n+1}} = \sum_{\alpha=0}^{k-1} w_\alpha dz_\alpha + z_\alpha dw_\alpha$$

vanishes at this point. Therefore k must be m , and

$$a(z, w) = z_0 w_0 + \cdots + z_m w_m.$$

Write an $(n+1) \times (n+1)$ matrix τ in the form

(*)

τ_1	β
γ	δ

where τ_1 is an $(m+1) \times (m+1)$ matrix. For $(\sigma, \tau) \in SL(m+1, \mathbf{C}) \times SL(n+1, \mathbf{C})$,

$${}^t\sigma \begin{array}{|c|c|} \hline I_{m+1} & 0 \\ \hline \end{array} \tau = \begin{array}{|c|c|} \hline \lambda I_{m+1} & 0 \\ \hline \end{array}$$

if and only if $\tau_1 = \lambda {}^t\sigma^{-1}$ and, $\beta = 0$.

Let L be the subgroup of $SL(n+1, \mathbf{C})$ consisting of all matrices τ with $\beta = 0$ in the above expression (*). The map $(\sigma, \tau) \rightarrow \tau$ defines a covering homomorphism of \tilde{G} onto L . The subset N in L consisting of all matrices of the form

I_{m+1}	0
$*$	I_{n-m}

is a normal subgroup in L . The center Z of L is the set of all matrices of the form

αI_{m+1}	0
0	βI_{n-m}

with $\alpha^{m+1}\beta^{n+1}=1$. The radical of L is $N \cdot Z$ and $N \cap Z = \{\text{identity}\}$. Thus, we conclude that if $m < n$, the Lie algebra of all holomorphic vector fields is not reductive, and if $m = n$, the identity connected component of G is isomorphic to $PSL(m+1, \mathbf{C})$, which acts transitively on M ;

$$M = SU(m+1)/S(U(1) \cdot U(1) \cdot U(m+1)).$$

The complex Lie algebra of all holomorphic vector fields on a compact complex manifold is known to be reductive if M admits a Kähler metric with constant scalar curvature (A. Lichnerowicz [2], see [1]). Applying this result to our case, we obtain our non-existence theorem. When $m = n$, M is a compact homogeneous space of kählerian type and admits an Einstein-Kähler metric (see M. Takeuchi [5], Corollary in p. 195).

Bibliography

- [1] S. Kobayashi: Transformation groups in differential geometry, *Ergebniss*, 70, Springer, 1972.
- [2] A. Lichnerowicz: *Isométries et transformations analytiques d'une variété Kählerienne compacte*, Bull. Soc. Math. France **87** (1959), 427–437.
- [3] Y. Sakane: *On compact Einstein Kähler manifolds with abundant holomorphic transformations*, Manifolds and Lie groups, Papers in Honor of Yozo Matsushima, Progress in Mathematics, 14, Birkhäuser Boston, 1981, 337–358.
- [4] Y. Sakane: *On compact Einstein Kähler manifolds with abundant holomorphic transformations II* (preprint).
- [5] M. Takeuchi: *Homogeneous Kähler submanifolds in complex projective spaces*, Japan J. Math. **4** (1978), 171–219.

Department of Mathematics
Washington University
St. Louis, MO 63130
U.S.A.

